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1. Introduction

Gerrymandering refers to the manipulation of electoral maps in order to gain a political ad-
vantage: the strategic redrawing of electoral districts by the incumbent party.1 Most coun-
tries tackled this risk of manipulation by delegating redistricting to independent electoral
commissions (Stephanopoulos 2013).2 In contrast, in part with the support of enhanced
data and software, gerrymandering is stronger than ever in the United States. Beyond pro-
ducing “bizarrely-shaped” districts, that are not geographically compact or cohesive, ger-
rymandering appears to provide an unfair advantage to the party of the gerrymanderer and
to impact policymaking. It affects the quality of political candidates (Stephanopoulos and
Warshaw 2020), the ideological position of legislators (Jeong and Shenoy 2022; Caughey
et al. 2017; Shotts 2003), roll-call voting behavior (Jones and Walsh 2018), the ideological
slant of implemented policies (Caughey et al. 2017), and the allocation of public resources
(Stashko 2020). Perhaps as a consequence, gerrymandering is viewed as a major problem
of the U.S. political system by a majority of Americans.3

This paper focuses on the strategic incentives of gerrymanderers when they draw electoral
maps.4 We propose a novel model of gerrymandering and then bring some of its predic-
tions to the data. We take into account a simple but important fact that has been mostly
overlooked by the literature: not all inhabitants of a district vote (either because they are
not eligible to vote or because they decide not to do so), and while districts must be equal in
population size (counting voters and non-voters), only voters matter for electoral outcomes.

Differences in voting eligibility and voting propensity are large in practice. Only 72%
of the U.S. population was eligible to vote in 2020, with significant heterogeneity across
precincts.5 Among eligible voters, the propensity to vote varies substantially with socio-
demographic characteristics independently of their district characteristics. For instance,
only 51.4% of those aged 18-24 voted in 2020, much below the 71% of those aged 65-74.6

Together, variations in voting eligibility and voting propensity lead to large turnout rate

1The term is a portmanteau between the name of Governor Gerry and the salamander-like shape of a Mas-
sachusetts district from 1812, when the state legislature redrew the state senate districts.

2Exceptions include Hungary, Lebanon and, most notably, the U.S.
3APNORC Center for Public Affairs Research 2021.
4Understanding those incentives and what an optimally gerrymandered map look like is a necessary step to
identify a gerrymandered map, develop measures of gerrymandering, evaluate the effects gerrymandering
could have on electoral outcomes and policymaking, and assess potential regulations.

5The remaining 28% were ineligible for reasons such as being minors, convicted felons, or noncitizens.
6Similar gaps exist across race, income, and other socio-demographic characteristics (Census 2021, US Elec-
tions Project 2020).
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differences (calculated as the share of all inhabitants who vote), both across precincts within
states, and across and within partisan groups.7 Importantly, these variations in turnout rates
are largely predictable.8 Gerrymanderers can thus easily exploit them. And indeed, there is
evidence that gerrymanderers and the courts take turnout rates into account when drawing
and assessing maps.9

How does a gerrymanderer want to draw their electoral map when voters differ not just in
their ideological lean but also in their eligibility or propensity to vote? Do they want to
“pack” some types of voters into some districts? Or to “crack” them and create districts
that mix supporters and opponents? In the latter case, does the gerrymanderer want to mix
higher turnout supporters with higher turnout opponents or with lower turnout ones? Does
the gerrymanderer want their higher turnout supporters in strong or weak districts?

In order to answer these questions, we propose a new model of gerrymandering in which
voters differ in terms of ideology and turnout rate. We anchor our model in the classic prob-
abilistic voting model (see e.g., Lindbeck and Weibull 1987). The population is composed
of various groups of individuals, which are characterized by their ideological lean—with
Democrats having a higher probability to prefer the Democratic Party than Republicans
do—and by their turnout rates (as in Strömberg 2004), which can depend on the compo-
sition of the district. Before the election, the gerrymanderer must draw the electoral map.
This means allocating individuals from each group to districts, with the two-pronged con-
straint that each district must contain the same population mass and, naturally, that all of
the population be allocated to a district. The gerrymanderer’s objective is to maximize the
expected seat share of the incumbent party.

Our model uncovers a new force that shapes the map in the presence of turnout hetero-
geneity: gerrymanderers want to separate lower-turnout supporters from higher-turnout
opponents and to mix higher-turnout supporters with lower-turnout opponents. This is be-
cause the election is more easily lost when a population of supporters gets diluted by an

7In recent presidential elections, the 25th and 75th percentiles of precinct-level turnout rates are 30% and 55%.
See Table E.7 and Figure ?? in Appendix E.5 for more details.

8For example, when we predict precinct-level turnout rates for 25 states using only socio-demographic char-
acteristics, the coefficient of correlation between predicted and realized turnout is 0.8 (Appendix E.4.1).

9The history of Texas’s 23rd congressional district is a case in point: as detailed by Levitt (2016, p282) “[S]tate
officials in 2011 [... drew a] district—that would look like it served the Latino population but was designed
to do just the opposite. The court adjudicating the state’s 2011 preclearance submission found that [t]he
map drawers consciously replaced many of the district’s active Hispanic voters with low-turnout Hispanic
voters in an effort to strengthen the voting power of CD 23’s Anglo citizens”. Henderson et al. (2016) find
systematic differences in turnout rates of Hispanic voters in majority-minority districts versus other districts
in California, Florida, and Texas.
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equally sized population of higher-turnout opponents, and more easily won when the same
population of supporters outstrips an equally sized population of lower-turnout opponents.

Solving for the optimal map, we identify a “pack-crack-pack” strategy along the turnout
dimension. The gerrymanderer’s incentives are to isolate both their lower-turnout support-
ers and their higher-turnout opponents in packed districts and to mix intermediate-turnout
supporters and opponents in cracked districts. We show that this novel strategy comes on
top of the typical “pack-and-crack” strategy along the ideology dimension identified by
Owen and Grofman (1988), according to which the optimal map is composed of only two
types of districts: packed districts with only opponents and cracked districts with more
supporters than opponents. In this model, and other models in the literature (see Section
2), packed districts only concern opponents. Our model thus helps explain an otherwise
puzzling pattern in the data, i.e., that gerrymanderers seem to often create districts packed
with supporters (McCartan, et al. 2022).10

Our model generates two other predictions. First, the mixing of supporters and opponents
in cracked districts should follow an assortative matching pattern: districts can be ordered
along the turnout rates of both opponents and supporters. Second, in the optimal map, there
is a negative correlation between the average turnout rate of individuals of each partisan
leaning and the probability that the gerrymanderer wins their district.

We then examine recent gerrymandering attempts to determine whether our predictions find
support in the data. To do so, we collect maps proposed by Republicans and Democrats
in the most recent 2020 redistricting cycle. The district maps are combined with precinct-
level data on population, turnout, and vote shares in recent presidential elections. This
novel dataset, which includes 50 districting proposals for 25 states, allows us to compare
redistricting proposals from both parties in the same state. The comparison of Democrat
and Republican maps for a given state is key to attributing district characteristics to partisan
strategy over other redistricting constraints and considerations.

Section 7.2 tests for the negative correlation between the turnout rate of the precincts com-
posing a district and the anticipated vote share of the gerrymanderer’s party in the district.
In line with the theoretical prediction, we find that Democrat and Republican maps tend to

10For instance, in the 2020 redistricting cycle, Democrat gerrymanderers in MA and MD created packed
Democrat-leaning districts. In particular, the maps enacted by Democrat gerrymanderers include districts
as safe for Democrats as the safest possible Democrat districts in 5,000 simulated maps (with the constraint
that the simulated maps satisfy state redistricting rules and geographical distribution of preferences). For
Republican gerrymanderers, maps in, e.g., IN and SC show similar patterns. This is based on the Figures at
https://alarm-redist.org/fifty-states/ on October 10, 2023.
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treat the same precinct differently, depending on its turnout rate. In particular, a relatively
low-turnout precinct tends to get allocated to a district that leans more strongly Democrat
under the Democrat map than under the Republican map.

In Section 7.3, we provide empirical evidence that (i) information about precincts’ turnout
rates is critical for identifying modifications to district borders that increase a party’s ex-
pected seat share, and (ii) gerrymanderers tend to identify these opportunities and exploit
them in practice. To do so, we first construct many counterfactual districts by reallocating
precincts along the border between two adjacent districts. We find that gerrymanderers
have many more profitable deviations (i.e., those that would increase their expected num-
ber of seats) under their opponent’s proposal than under their own proposal. Moreover,
gerrymanderers appear to extract essentially all of the available profitable deviations: start-
ing from their own proposal, few deviations can produce non-trivial gains. To quantify the
importance of turnout rate heterogeneity, we show that over half of the deviations that seem
profitable when relying on ideological differences alone are actually detrimental when also
taking turnout rates into account.

2. Literature

Theories of redistricting focus on partisan gerrymandering. Owen and Grofman (1988) is
the germinal model of gerrymandering under uncertainty. Assuming two types of voters,
opponents, and supporters, it rationalizes the so-called “pack and crack” strategy: to con-
centrate losses in as few districts as possible, the gerrymanderer should segregate (‘pack’)
some opponents in select districts that heavily favor the opponent. To win as many dis-
tricts as possible, they should mix (‘crack’) the remaining opponents with supporters in
districts that narrowly favor the gerrymanderer. In the presence of a high degree of uncer-
tainty, however, even the mixed districts can be strongly in favor of the gerrymanderer. Gul
and Pesendorfer (2010) and Friedman and Holden (2008, 2020) generalize this intuition in
the presence of a continuum of ideological preferences and both aggregate and individual
uncertainty.

Under a unifying framework, Kolotilin and Wolitzky (2023) find that pack-and-pair pat-
terns—which generalize pack-and-crack—are typically optimal for the designer. When
individual uncertainty dominates, the gerrymanderer packs the stronger opponents in some
districts and pairs the others into cracked districts. When aggregate uncertainty dominates,
a gerrymanderer may sort voters by the intensity of preferences. High-intensity Republi-
cans are matched with high-intensity Democrats. This is known as matching extremes, or
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pairing, and is the districting strategy of focus in Friedman and Holden (2008, 2020). In all
those models, individuals differ along one dimension, the intensity of their preferences for
one party over the other, while individuals in our model differ along two dimensions: their
preferences and their likelihood of voting.

The importance of incorporating turnout heterogeneity into redistricting models has also
been recognized by Gomberg et al. (2023). They propose a model in which the gerryman-
derer aims to align the ideology of the median district as closely as possible with their own
ideology. That approach complements ours by confirming that the motivation to exploit
turnout differentials exists irrespective of the gerrymanderer’s objective function. They
find that a significant ideological gap can emerge when comparing a simplistic redistricting
approach (ignoring turnout differentials) to a turnout-based strategy.

In addition to introducing a second dimension of heterogeneity into a model of strategic
redistricting, our analysis also features two other important differences. First, we build on
a standard probabilistic voting model à la Persson and Tabellini (2000). This simplifies
the analysis and connects our results to the broader political economics literature. It also
implies that our framework is amenable to study the redistributive politics implications
of gerrymandering. Second, we draw concrete implications from the model that we can
directly bring to the data.

Introducing turnout heterogeneity proves qualitatively important: in contrast to our paper,
the above-mentioned theories cannot easily rationalize the gerrymanderer packing their
own supporters, nor the resulting negative link between turnout and vote shares that we
find in the data. The proposed alternative explanations for the creation of safe districts in
favor of the gerrymanderer’s party are (i) a high degree of aggregate uncertainty (Owen and
Grofman 1988), and (ii) the need to protect incumbent seats. However, the latter explana-
tion, known as incumbency gerrymandering, has found little support in empirical work.11

Our paper proposes an alternative explanation, which is that packing supporters can be op-
timal for the gerrymanderer in the presence of turnout disadvantages, even if there is little
aggregate uncertainty.

Another strand of the literature focuses on how to evaluate redistricting in practice. Most
measures of partisan gerrymandering are designed to assess the extent to which a party
packs and cracks voters.12 These include the Efficiency Gap (Stephanopoulos and McGhee

11Gelman and King (1994) and Friedman and Holden (2009) find that, if anything, gerrymandering works
against the interests of incumbents. Similar conclusions are reached by Abramowitz et al. (2006).

12Others evaluate the shapes of districts (Chambers and Miller 2010, Niemi et al. 1990), or compare outcomes
to simulated districts (Chen and Rodden 2013, Gomberg et al. 2023).
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2015), Mean-Median difference (McDonald and Best 2015), Declination (Warrington 2018),
and Partisan Dislocation (DeFord et al. 2022). The Efficiency Gap, perhaps the best-known
among these, measures the number of votes ‘wasted’ by one party relative to the other. The
idea is that if one party packs and cracks, then the other party’s votes are wasted because
they win safe districts (votes over 50% of the vote share are wasted) and lose competi-
tive districts (all votes in lost districts are wasted). Note that our pack-crack-pack strategy
would not necessarily be detected by the Efficiency Gap and other measures designed to
detect pack and crack strategies. In particular, the creation of partisan safe districts would
conventionally be seen as ‘wasteful’ or non-strategic. In the conclusion, we discuss this
issue in light of the case law surrounding partisan gerrymandering.

Though many measures of gerrymandering build on the predictions of a pack-and-crack
strategy, few studies directly test whether gerrymanderers adhere to it. Jeong and Shenoy
(2022) offers some evidence. For instance, they observe that African Americans, who pre-
dominantly support Democrats, are allocated differently across districts by Democrat and
Republican gerrymanderers. However, while they find that the packing of African Amer-
icans decreases when Democrats gain control of redistricting, it does not disappear. This
suggests that both pack-and-crack and pack-crack-pack are empirically relevant strategies.
Note that their empirical strategy also relies on the comparison of Democrat and Repub-
lican maps. However, they compare maps drawn during different redistricting cycles, fol-
lowing a shift in control of the redistricting process, whereas our analysis compares the
maps proposed by the two parties within a single redistricting cycle.

Instead of detecting partisan strategies, other measures are designed to evaluate the norma-
tive properties of a map. Common measures include the bias, asymmetry, and responsive-
ness of the seats-to-votes curve (Cox and Katz 2007, Grofman and King 2007, Katz et al.
2020).13 Katz et al. (2020) define a map’s bias as the gap between the number of seats won
by one party for each possible vote share, and those won by the other party with the same
vote shares. A map displays low responsiveness if the number of seats won by a party does
not change much as the vote share changes. They show that existing measures of partisan
gerrymandering need not measure the actual bias and responsiveness of a map. Importantly
for our setting, they also highlight that both the measures of gerrymandering and the esti-
mates of a seats-to-votes curve are sensitive to the assumptions made about turnout rates.
Thus, whether the intent is to detect a partisan gerrymander in practice or to determine how

13The seats-to-votes curve is the hypothetical relationship between the number of seats won by a party and its
level of state-wide support.
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gerrymandering affects fairness in theory, one needs to understand redistricting strategies
in the presence of heterogeneous turnout rates.

3. The Model

Two parties, the Democrats (D) and the Republicans (R), will compete in a statewide elec-
tion. The state is divided into J electoral districts, indexed by j. Each district elects one
representative by first-past-the-post. Prior to the election, the incumbent has the opportu-
nity to decide on the composition of each electoral district.

3.1. The Population

Each individual belongs to one of a finite number of groups, indexed by k. These groups
differ along two dimensions: partisan lean and turnout rates.

In this baseline model, we consider exactly two ideologies, where partisan lean is either
Democratic or Republican: on average, Democrats assign a valence νD ∈ IR to the Demo-
cratic Party, which is higher than the valence νR ∈ IR assigned by Republicans to the Demo-
cratic Party: νD > νR. We discuss multiple ideological types in Section 3.4. Throughout,
we shall often refer to νK (K ∈ {D,R}) as the voter’s ideology.

The novelty of our model is to let population groups differ in turnout rates, denoted τk ∈
[0, 1]. Nk(> 0) denotes the population size of each of these groups, and the total population
size is 1:

∑
k Nk = 1.

To ease notation, we will often use subscripts d and d′ to represent Democratic-leaning
groups and subscripts r and r′ to represent Republican-leaning groups. For instance, in-
stead of writing “τk with νk = νD”, we will simply write τd.

3.2. Gerrymandering

The gerrymanderer designs an electoral map that allocates the population across electoral
districts. An electoral map n := (nkj)∀k,j (with nkj ≥ 0) is a matrix that specifies how
citizens of each group k are allocated to each district j.

We take the convention that the gerrymanderer belongs to party D. Their goal is to maxi-
mize the expected seat share of party D, π(n), subject to the constraints that each district
must have an equal share of the population 1/J , and that all individuals are allocated to a
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district:

maxn π(n) s.t.
∑

k nkj =
1
J
, ∀j &

∑
j nkj = Nk, ∀k. (1)

3.3. Probabilistic voting

We now turn to voting behavior, which underpins the probability of winning a district. In
the tradition of probabilistic voting models à la Lindbeck and Weibull (1987), we assume
that the gerrymanderer is uncertain about the voters’ preferences. Uncertainty is only re-
solved at the time of the election.

Following Persson and Tabellini (2000, chapter 3), we consider two types of shocks: first,
an independently and identically distributed elector-level shock ηe toward party R captures
preference heterogeneity among individuals within each group. Second, an aggregate shock
δ captures the valence of party R over party D at the time of the election.

The elector-level shock ηe ∈ R is distributed according to the cumulative distribution func-
tion F and the aggregate shock δ ∈ R is distributed according to Γ, where F is symmetric,
and F and Γ are strictly increasing and twice differentiable.

Due to preference heterogeneity, not all Democratic-leaning voters vote for party D, and
not all Republican-leaning voters for R. Conditional on turning out, an elector e with
political lean νk votes for D iff νk − ηe − δ ≥ 0. The share of voters from group k that cast
their ballot for D conditional on turning out is F (νk − δ), which is strictly increasing in νk

and strictly decreasing in δ. The complementary fraction 1− F (νk − δ) votes for R.

However, only a share τk of type-k individuals turn out. The total number of ballots cast by
nkj individuals of type k in district j is thus: tkj = nkjτk, where ‘t’ stands for ‘turnout’. For
a given value of δ, the share of these ballots that goes to D or R only depends on the groups’
partisan leans, νD or νR. Therefore, we can usefully aggregate the total number of ballots
cast by partisan lean: let K denote all groups k with ideological lean νK ∈ {νD, νR}.
Accordingly, tKj ≡

∑
k∈K|νk=νK

tkj denotes the total turnout by ideological type K in
district j. It follows that the number of votes in favor of D in district j is the turnout-
weighted average of D’s support across all groups present in the district:∑

k

tkjF (νk − δ) = tDj F (νD − δ) + tRj F (νR − δ).
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Party D wins district j whenever it collects more votes than R. The probability that this
happens is:

πj = Pr
δ

(∑
K

tKj VK (δ) ≥ 0

)
,

where VK (δ) ≡ F (νK − δ)− 1

2
. (2)

VK (δ) is the excess vote share of D among individuals with ideology νK for a given re-
alization of δ. Like D’s vote share, this excess vote share is strictly increasing in νK and
strictly decreasing in δ.

We impose that the two ideology shocks matter to determine whether a majority of each
group votes for D or R:

Assumption 1. (i) F has full support over Φ ⊇ [νR − νD, νD − νR] and (ii) Γ has full
support over Ψ ⊃ [νR, νD]

We show in Appendix A that under Assumption 1 (i) there is a unique realization δ̂j of the
aggregate shock δ at which the number of votes for D is equal to the number of votes for
R. This critical value δ̂j ∈ [νR, νD] is a function of (tDj , t

R
j ) and is implicitly defined by the

condition:

tDj VD

(
δ̂j

)
+ tRj VR

(
δ̂j

)
= 0. (3)

Hence, the probability that party D wins district j is given by:14

πj(nj) = Γ(δ̂j). (4)

We can think of δ̂j as the expected position of the median voter in district j. In essence, (4)
simply says that the gerrymanderer wins a district whenever the realization of the aggregate
shock δ is such that its median voter prefers D to R. In the case of uniform distributions
for F for instance (see the discussion in Section 6), δ̂j takes on a simple form:

δ̂j :=
∑
K

tKj
tj
νK , with tj :=

∑
k

tkj.

Assumption 1 (ii) implies that each party has a non zero probability of winning each district.

14The probability that R wins district j is 1− πj(nj), making the problem symmetric for party R.
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The expected seat share won by the Democrats being 1
J

∑
j πj ,15 we can rewrite the gerry-

manderer’s problem (1) as:

max
n

π(n) = 1
J

∑
j

Γ(δ̂j)

s.t.
∑
k

nkj =
1
J
, ∀j &

∑
j

nkj = Nk, ∀k.
(5)

3.4. Discussion of Key Assumptions

Before moving to the analysis of the gerrymanderer’s behavior, we discuss five key as-
sumptions of the model.

3.4.1 Endogenous Turnout

In our base model, turnout rates differ between groups, but are exogenously fixed. In partic-
ular, this assumes away the possible influence of election closeness on turnout. Introducing
that influence could, for instance, imply that voters of a given group turn out at a higher rate
when they are assigned to a closely contested district, and at a lower rate when assigned to
a strongly partisan district.

One reason why we abstract from endogenous turnout considerations in the baseline model
is that exogenous socio-demographic variables account for most of the turnout variation.
Different groups display large and systematic differences in turnout rates, independently of
district composition. For example, at the 25th percentile of the precinct distribution, 63%
of the total population are citizens of voting age. At the 75th percentile, this increases to
81%. Such differences do not disappear in close versus lopsided elections. Further, as we
detail in Appendix E.4.1, socio-demographic variables alone explain 79% of the variation
in observed turnout rates across precincts for the 2016 and 2020 presidential elections.

In Appendix E.4.2, we present a quantitative assessment of the impact of district competi-
tiveness on voter turnout. Using a panel of precincts, we estimate the effect of changes in
competitiveness on turnout, before and after the 2020 redistricting cycle. Our analysis finds
that the effect of district competitiveness on turnout is small and statistically insignificant.
Specifically, the 95% confidence intervals rule out any increase in turnout greater than 0.5

15To see why, order the districts from most likely to elect a D candidate to least likely. For values of δ above
δ̂1, D has zero seats. For values of δ between δ̂1 and δ̂2, D has one seat (from district 1). For values of δ
between δ̂2 and δ̂3, D has two seats (from districts 1 and 2), and so on. The expected number of seats is:∑J−1

j=1 j ×
[
Γ(δ̂j)− Γ(δ̂j+1)

]
+ J × Γ(δ̂J) =

∑
j πj .
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percentage points resulting from a 10 percentage point rise in competitiveness (e.g., from
a 60-40 to a 50-50 split). This suggests that, compared to socio-economic factors, election
competitiveness plays only a minor role in explaining turnout variation.

These findings are consistent with Moskowitz and Schneer (2019), who report a precise
null effect of Congressional district competitiveness on voter turnout using a nationwide
panel of voters. Their supplemental survey evidence indicates that voters often have low
awareness of their district’s competitiveness, limiting its influence on turnout. Other stud-
ies, while identifying a statistically significant effect, estimate the impact to be modest.
For instance, Bursztyn et al. (2020) find that a one standard deviation increase in competi-
tiveness raises turnout by just 0.4 percentage points among eligible voters in Switzerland.
Similarly, Jones et al. (2023) report a 2 percentage point increase in turnout following re-
districting reforms in Pennsylvania and Ohio—an effect that remains small in comparison
to the much larger turnout gaps observed across groups of voters (see Table E.7 and Figure
?? in Appendix E.5). Overall, these results suggest that while competitiveness can affect
turnout, its impact is relatively minor compared to other drivers of voter behavior.

Yet, there may be other situations in which turnout rates do react noticeably to election
closeness, and our theoretical setup can be extended to account for such effects. Appendix
C proposes two generalizations of the baseline model to endogenize turnout. The first
generalization is based on the calculus of voting tradition described, for example, in Riker
and Ordeshook 1968 and Kawai et al. (2021). In that setup, an eligible voter will only turn
out if the expected benefit of voting, accounting for the voters’ perceived voting efficacy,
outweighs voting costs. While perceived voting efficacy (an extension of the concept of
pivot probability) may differ across groups, it ought to vary in line with election closeness,
which depends on the specifics of the electoral map. We find that, even when the impact
of closeness is asymmetric across groups or parties, voting costs do not alter cross-district
comparisons in an optimal map, and hence do not modify the essence of our results. To be
more precise, endogenous turnout can affect the expected position of the median voter (δ̂)
in each district, which modifies the details of the gerrymanderer’s calculus. However, they
do not modify eventual districting: whether a gerrymanderer prefers to assign, say, high-
turnout supporters to some district i rather than another district j does not depend on the
presence or absence of voting costs. The second generalization accounts for group-based
effects, in line with, e.g., Morton (1987), Shachar and Nalebuff (1999), and Levine and
Mattozzi (2020). For the same reason, all our results extend to that setup as well.
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3.4.2 Objective Function

Our model assumes that the gerrymanderer draws the map to maximize their expected seat
share. This assumption aligns with most of the gerrymandering models in the literature.
Adhering to this approach thus ensures the comparability of our model with those of previ-
ous research. It is clear that there are various benefits for a party and its members of holding
a larger number of seats and there is empirical evidence supporting this assumption (see,
e.g., Jacobson and Kernell 1985; Incerti 2015; Snyder 1989 and see Genicot r⃝ al. 2021,
pp. 3189-92, for a discussion).

Alternatively, we could assume that the gerrymanderer maximizes the probability of ob-
taining a majority of seats in the assembly like, for instance, Lizzeri and Persico (2001);
Strömberg (2008); Gomberg et al. (2023). Such an objective would restore the incentive
to draw a map following the typical “pack-and-crack” structure: creating several relatively
strong districts that the gerrymanderer expects to win with the same probability, and giving
up on the others.

In practice, gerrymanderers’ objectives go beyond pure partisan gains (Katz et al. 2020).
For instance, parties may draw maps to protect incumbents or to hurt incumbents of the
other party (and even encourage them to retire). While our model abstracts from those
objectives, our empirical strategy takes them into account. In particular, we focus on Con-
gressional districts, which are drawn by state legislatures, leaving little role for incumbents.

3.4.3 Two Ideology Types

In our base model, we focus on the case of two ideologies: Democratic (νD) and Republi-
can (νR). Yet, the reasoning and the propositions extend to the case of multiple ideologies.
There are at least two reasons to favor the two-type model in the body of the paper: First, as
discussed in Appendix F.2, empirically, several states appear to have a bimodal distribution
of types. Second, the intuition of the results is much simpler with two ideologies. When
extending the model to an arbitrary number of groups, with each group k having its own
partisan lean, νk ∈ [νR, νD], and turnout τk, our three Propositions hold verbatim.16 How-
ever, the interpretation of the results is less intuitive since intermediary types in a given
district will be treated as Democrats or Republicans depending on their relative ideology
in the district.

16The proofs are written to apply to this multi-type case.
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3.4.4 Geographical and Legal Constraints

Our model, like much of the existing literature, places minimal constraints on the actions
of gerrymanderers. Specifically, we abstract from legal constraints such as geographic
contiguity, adherence to political boundaries, and compliance with the Voting Rights Act
of 1965, which are typically observed to varying degrees in practice (Sherstyuk, 1998).
These constraints will be revisited in the empirical section (see Section 7.1).

3.4.5 Other Sources of Heterogeneity

We consider only one source of heterogeneity other than partisanship here – differential
turnout. Other sources of heterogeneity could be introduced, including swingness or in-
formation (Strömberg 2004), as long as they enter the sensitivity of the group (Genicot r⃝
Bouton r⃝ Castanheira 2021). That is, the results that follow extend to a case where voters
differ along several dimensions and where the gerrymanderer observes both the partisan
lean and sensitivity of each population group.

4. Basic Swaps

Since districts must be well apportioned and the number of districts is fixed, comparing
two feasible electoral maps is equivalent to assessing the effect of a sequence of population
exchanges or “swaps” across districts. The key question will be whether a (sequence of)
swap(s) increases or decreases the expected number of seats controlled by the gerryman-
derer’s party.

As a convention, we always denote by d and r the types who originate from district i and
by d′ and r′ the types who originate from district j. We denote by “k i ⇌j k′ swap” the
reallocation of an ε mass of individuals of type k ∈ {d, r} from district i to district j, in
exchange for an equal mass of citizens of type k′ ∈ {d′, r′} from district j.

We can distinguish (i) swaps of individuals sharing the same ideology, either two different
types of Democrats (d i⇌j d

′ , or DD swaps for short) or two different types of Republicans
(r i ⇌j r′ , or RR swaps), and (ii) swaps of Republicans for Democrats (d i ⇌j r′ and
r i⇌j d

′ , or DR and RD swaps for short).

Swapping two types k and k′ who share ideology νK may increase or decrease the expected
number of seats, depending on two factors: first, which group has the highest turnout
rate? Second, does increasing the number of votes by this group increase or decrease
the probability of winning the district? Quantitatively, we consider ε → 0 to compute the
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marginal effect of a DD or RR swap on the joint probability of winning in i and j:(
∂πi

∂nk′i
− ∂πi

∂nki

)
−
(

∂πj

∂nk′j
− ∂πj

∂nkj

)
= (τk′ − τk)

(
∂πi

∂tKi
− ∂πj

∂tKj

)
. (6)

Instead, in a k i⇌j l
′ swap where νk ̸= νl′ , we must take account of the different ideologies

in each district:(
∂πi

∂nl′i
− ∂πi

∂nki

)
−
(

∂πj

∂nl′j
− ∂πj

∂nkj

)
= τl′

(
∂πi

∂tli
− ∂πj

∂tlj

)
+ τk

(
∂πj

∂tkj
− ∂πi

∂tki

)
. (7)

We can readily draw three inferences from (6) and (7):

(1) With a DD-swap (k and l′ are Democrats), ∂π
∂tD

is strictly positive in both districts
i and j. Hence, gerrymanderers want to assign higher turnout supporters to the
district where they have the largest impact (i.e., the district where ∂π

∂tD
is larger).

(2) With an RR-swap (k and l′ are Republicans), ∂π
∂tR

is strictly negative in both dis-
tricts. Hence, gerrymanderers want to assign higher turnout opponents to the dis-
trict where they have the least negative impact (i.e., where ∂π

∂tR
is larger, which

means closer to zero).

(3) With DR-swaps, gerrymanderers still want to assign supporters to the district where
they have the largest positive impact and opponents to the district where they have
the least negative impact. There might thus be a tension in DR-swaps if the gerry-
manderer prefers to send both supporters and opponents to the same district. Then
one term is positive and the other negative in (7)) and the sign of the effect of the
swap depends on the relative turnout rates of the groups.

It remains to identify the determinants of the magnitude of ∂π
∂tD

and ∂π
∂tR

. Using the definition
of δ̂ in (3) and the implicit function theorem, we find that:

∂πj

∂tKj
= γ(δ̂j)

VK(δ̂j)

|
∑

X tXj
∂VX(δ̂j)

∂δ̂j
|
, (8)

where VK(δ̂j) is the excess vote share for ideology νK , as defined in (2), evaluated at δ̂j .
Notice that this critical excess vote share and therefore Equation (8) must be positive for
Democrat-leaning groups and negative for Republican-leaning groups (such that the excess
vote share for the district is zero).
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Equation (8) tells us that the magnitude of |∂π/∂tKj | is larger in districts where (i) the like-
lihood of the district being tied, γ(δ̂j), is larger; (ii) the critical excess vote share among
the corresponding ideological groups in the district |VK(δ̂j)| (keeping the denominator con-
stant) is larger in magnitude; (iii) the overall turnout in the district is lower (see the denom-
inator).

The forces in (i) imply that gerrymanderers want to place their supporters in districts that
are more likely to be tied. This is because ∂πj/∂t

D
j > 0, since VD(δ̂j) > 0. On the contrary,

gerrymanderers want to place their opponents in districts that are less likely to be tied. This
is because ∂πj/∂t

R
j < 0, since VR(δ̂j) < 0. This force drives the classical pack-and-crack

strategy along the ideological dimension widely discussed in the literature. The two other
forces are new and stem from the heterogeneity in turnout rates.

The forces in (ii) imply that the gerrymanderer prefers to place supporters in districts with
large VD(δ̂j). These are districts with weak support for party D (weak districts require
strong support from all D-leaning voters in order to tie). Importantly, they also want to
place opponents in weak districts. Since such districts are largely pro-Republican, so is the
median voter. Hence, VR(δ̂j) is close to zero, implying that opponents only have a minor
negative impact on the probability of winning the district. Based on these forces only, there
would thus always be a tension in DR-swaps: the gerrymanderer would want to send both
supporters and opponents to the weak district.

Finally, since VD(δ̂j) > 0 and VR(δ̂j) < 0, the forces in (iii) create incentives to place
high-turnout supporters in low-turnout districts since the effect of their additional votes is
then amplified. Conversely, they want to allocate high-turnout opponents to districts with
high overall turnout, to dilute the effect of their votes.

5. Optimal Gerrymandering

This section presents our main theoretical results, which identify three key patterns of an
optimal gerrymander.

Before doing so, we introduce the concepts of “packed” and “cracked” districts, as well
as additional pieces of notation. We refer to a district as “packed” if it comprises solely
supporters or solely opponents. A packed D district is defined as one where

∑
d ndj =

1/J , whereas a packed R district is one where
∑

r nrj = 1/J . Conversely, if a district
includes both supporters and opponents, it will be called a “cracked” district. We denote
the lowest and highest turnout rates within each political faction as: r := argminr τr and
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r̄ := argmaxr τr for the Republicans, and d := argmind τd and d̄ := argmaxd τd for the
Democrats.

Our first proposition shows that the optimal map displays what we call a ‘pack-crack-pack’
pattern. That is, gerrymanderers rely on a cutoff strategy, splitting supporters and oppo-
nents according to their turnout rates: low-turnout supporters and high-turnout opponents
get “packed” in separate districts, whereas the others are mixed in “cracked” districts.

For expositional clarity, we always state our findings from the viewpoint of a Democratic
gerrymanderer. By symmetry, equivalent results hold for a Republican gerrymanderer.

Proposition 1. In an optimal map, the allocation of voters to districts is characterized by
two cutoffs, τd∗ ∈ [τd, τd̄] and τr∗ ∈ [τr, τr̄] such that:

(1) High-turnout supporters, with τd > τd∗ , are assigned to cracked districts, whereas
low-turnout supporters, with τd < τd∗ , are assigned to packed districts;

(2) High-turnout opponents, with τr > τr∗ , are assigned to packed districts, whereas
low-turnout opponents, with τr < τr∗ , are assigned to cracked districts.

The intuition of the proof is as follows: If a gerrymanderer packs some high-turnout sup-
porters, but not some low-turnout ones, a DD swap is necessarily profitable. Such a swap
does not affect the probability of winning the packed district whereas it increases the proba-
bility of winning the cracked district. Similarly, if a gerrymanderer packs some opponents,
it must be the higher turnout ones.

To understand why the gerrymanderer may have incentives to pack supporters in the first
place, consider a weak and a strong D district. With force (ii) in mind, the gerrymanderer
wants to send both opponents and supporters to the weak D district. To resolve this tension,
and determine which of the supporters or opponents the gerrymanderer allocates to that
district, their relative turnout rates are key (this is the effect of τl′ and τk in (7)). If the
supporters have the lower turnout rate, then the benefit of sending them to the weak D
district is relatively small. The gerrymanderer then prefers to assign opponents to that
district. This creates an incentive to pack lower-turnout supporters in strong Democrat
districts.

This is not to say that gerrymanderers always pack their lower-turnout supporters (τd∗ need
not be interior). Indeed, a potential countervailing force is an incentive to place supporters
in districts that are more likely to be tied (force (i) above works against force (ii) if packed
districts are less likely to be tied). We discuss this issue further in Section 6.
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Figure 1 illustrates the result for a case in which all three types of districts co-exist: when
the two cutoffs are strictly interior, there are (a) districts packed with low-turnout support-
ers, (b) cracked districts, and (c) districts packed with high-turnout opponents. Of course,
whether all of the three zones displayed in the figure should actually be present in a map
depends on the distribution of types (Section 6 discusses concrete examples).
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Turnout Rate

FIGURE 1. ILLUSTRATION OF PROPOSITION 1

This pack-crack-pack pattern complements the existing literature. First, it identifies differ-
ential turnout rates as a novel reason why gerrymanderers may prefer to pack and crack
their opponents. In the classical “pack and crack” strategy proposed by Owen and Grof-
man (1988) or its generalized “segregate-pair” version by Kolotilin and Wolitzky (2023),
the gerrymanderer sorts opponents based on the intensity of their preferences, with the
stauncher opponents allocated to packed districts. In contrast, in our model, the gerryman-
derer also sorts opponents based on their turnout rates, with the higher turnout rate oppo-
nents allocated to packed districts. This is a novel prediction since the above-mentioned
papers implicitly assume equal turnout rates for all ideology types. Second, our model iden-
tifies a novel incentive for gerrymanderers to pack their lower-turnout supporters. Such a
strategy cannot be optimal when individuals only differ along the partisan dimension. In-
deed, packing supporters is conventionally seen as an inefficient or ‘wasteful’ allocation of
voters.

The next proposition focuses on the question of the composition of cracked districts and
shows that turnout rates cannot diverge across districts: there is positive assortative match-
ing of supporters and opponents in terms of turnout rates.

Proposition 2. In an optimal map, there cannot be two cracked districts i and j with
τk < τk′ and τl > τl′ , when πi ̸= πj and ideology types νk = νk′ = νK and νl = νl′ = νL.
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The intuition of the proof is as follows. First, note that we cannot have two districts i

and j such that supporters have a larger positive impact on the probability of winning in
district i (i.e., ∂πi/∂t

D
i > ∂πj/∂t

D
j ) but opponents have the least negative impact on the

probability of winning in district j (i.e., ∂πi/∂t
R
i < ∂πj/∂t

R
j ). Indeed, in such a case, the

gerrymanderer would want to implement an RD-swap (i.e., assigning supporters to district
i and opponents to district j). Thus, in an optimal map, districts in which supporters have
the largest positive impact must be the same as those in which opponents have the least
negative impact. Second, when one district has that twin feature, then we know from DD
and RR swaps that the gerrymanderer wants to assign both higher turnout supporters and
higher turnout opponents to that district. This leads to positive assortative matching along
the turnout dimension.

This result complements the existing literature. The “pack-moderates-and-pair” strategy
identified in Kolotilin and Wolitzky (2023) requires negative assortative matching along the
partisanship dimension: the most extreme opponents should be matched with the most ex-
treme supporters. We show assortative matching along the turnout dimension: individuals
who turn out the most for the Democrats are matched with those who turn out the most for
the Republicans. Both results have similar flavors in the sense that the most intense support-
ers and opponents are matched together. However, while in Kolotilin and Wolitzky (2023)
districts composed of more extreme supporters and opponents have a higher probability of
winning, our model predicts the opposite correlation. Indeed, the following proposition
identifies a negative relationship between turnout rates and winning probabilities across
districts:

Proposition 3. Consider any pair of cracked districts i and j including, respectively, voters
k and k′ of the same ideology νk = νk′ = νK . If πi < πj , then it must be that τk ≥ τk′ .

As we have seen, the gerrymanderer wants to assign individuals (both supporters and op-
ponents) with higher turnout to the district(s) in which they have the largest positive (or
least negative) impact. Proposition 3 shows that these districts are the ones with a lower δ̂
(and hence a lower probability of winning). This is driven by the second of the three forces
shaping the optimal map (i.e., the gerrymanderer prefers to allocate both high-turnout sup-
porters and high-turnout opponents into weak D districts, see Section 4). The other two
forces, related to the probability of a tie and the overall turnout in the districts, may inter-
fere with that pattern. Yet, the proposition shows that they can never dominate.

Note that this ordering is also present across D- and R-packed districts. Proposition 1
indicates that D-packed districts, which are most likely to be won by the Democratic party,
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must have lower turnout rates than Democratic voters allocated to cracked districts (in D-
packed districts, τd ≤ τd∗). Conversely, R-packed districts, which are least likely to be won
by the Democratic party, are composed of the highest Republican turnout rates (τr ≥ τr∗).17

6. Pack-Crack-Pack versus Pack-and-Crack

In this section, we isolate the role of heterogeneous turnout rates in the model and discuss
how the pack-crack-pack incentives and the traditional pack-and-crack incentives interact.

Effects of Turnout Differentials

Consider a specification of the model with uniform distributions for F and Γ. This spec-
ification neutralizes the classical forces behind pack-and-crack à la Owen and Grofman
(1988), thereby isolating the new results brought about by turnout heterogeneity.

To see this, first note that, under a uniform F , the critical value δ̂ that equalizes the number
of votes for D and for R becomes a simple average of the voters’ ideology weighted by
their turnout:

δ̂j =
tDj ν

D + tRj ν
R

tDj + tRj
.

If all turnout rates were the same, δ̂j would be the average partisanship of the individuals in
the district.18 Moreover, when uniformly distributed, Γ is also linear, and hence the objec-
tive of the gerrymanderer to maximize the expected share of districts won, 1

J

∑
j Γ(δ̂j), is

also linear in δ̂j . In other words, the joint linearity of F and Γ implies that the probability of
winning a district behaves as a Tullock contest function of the (turnout-weighted) average
ideology of its population.

In the absence of turnout differentials, that is if all groups have the same turnout rate τ ,
the sum of the different δ̂j is constant: the expected number of seats is independent of the
allocation of voters to districts. That is, the gerrymanderer would be indifferent between
all feasible maps because the classical incentive to pack and crack identified by Owen and
Grofman (1988) is neutralized.19 This implies that, with this specification, the optimal map
with turnout differential is purely driven by our effects.

17The gerrymanderer is indifferent to the specific distribution of types within D-packed districts and within R-
packed districts. Creating identical districts or ordering them based on turnout rates would both be optimal.

18All intermediate developments can be found in the Online Appendix.
19Another way to see this is to note that as γ is independent of δ̂ in (8), the first force discussed in Section 4

disappears.
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Uniform distributions have the added advantage of delivering closed-form solutions. This
allows us to identify sufficient conditions for the coexistence of the three types of districts
in our pack-crack-pack pattern along the turnout dimension. As we detail in the online
Appendix, for the case of a large number of districts, the presence of sufficiently low-
turnout supporters becomes a sufficient condition for the creation of at least one district
packed with supporters (in particular, τd < τr is sufficient). Conversely, the presence
of sufficiently high-turnout opponents is sufficient for the creation of at least one district
packed with opponents (in particular, τd̄ < τr̄ is sufficient). These sufficient conditions
are satisfied in Figure 1 (see p17), where low enough Democrats (τd < τ ∗d ) are packed
in Democratic districts, high enough Republicans (τr > τ ∗r ) are packed in Republican
districts, and intermediate turnout Democrats and Republicans (τd > τ ∗d and τr < τ ∗r ) are
assigned to cracked districts.

A disadvantage of the uniform specification is that it can predict maps with counterfactual
features precisely because it neutralizes the classical pack-and-crack forces. In particular,
for some parameters, it is optimal to draw a map with multiple cracked districts composed
of a majority of opponents. Such districts would be lost with a high probability. This is
an artifact of the uniform distribution: because γ is a constant, increasing one’s expected
vote share by 1% increases the probability of winning a lopsided district as much as that of
winning a closely contested district. This artifact disappears when the aggregate shock is
distributed according to, e.g., a single-peaked distribution such that γ(νR) << γ(0). That
is, one more democratic vote has a much lower probability of swinging an R stronghold
than a closely contested district.

Bringing Back Traditional Pack-and-Crack

A single-peaked Γ reintroduces the incentives that lead to the traditional pack-and-crack
strategy identified by Owen and Grofman (1988) and Kolotilin and Wolitzky (2023). The
probability of winning a district πj then exhibits an S-shaped relationship between the
average ideology of the district δ̂ and the probability of winning it.

Let us first return to the case in which all turnout rates are the same. The convexity of Γ for
low probabilities of winning generates an incentive to create two distinct types of districts.
Some districts get packed with opponents, while all others are cracked with an identical
average ideology when turnout rates are homogeneous. In essence, if they cannot be strong
in all districts, gerrymanderers prefer to abandon some districts (packed-R districts) to
reinforce their supporters’ position in the other (cracked) districts.
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When turnout rates are heterogeneous, both the traditional pack-and-crack incentives and
our turnout differential incentives are present. These two sets of incentives generate two
different but congruent reasons to pack high-turnout opponents. By contrast, these incen-
tives pull in opposite directions when it comes to packing low-turnout supporters. Which
effect dominates then depends on the curvature of the distribution compared to the differ-
ence in turnout rates. To illustrate this point, consider two districts: district i is packed with
one type of democrats d, whereas district j is cracked. Under a uniform F , the profitability
of a d i⇌j r

′ swap in (7) depends on the sign of:

γj
τdt

R
j + τr′t

D
j

t2j
− γi

τr′

tDi
, with γi ≤ γj.

Since tDi = τdndi(= τd/J), a sufficiently low τd is a sufficient condition for the swap not to
be profitable (i.e., the gerrymanderer does not want to unpack district i). Keeping τd fixed,
increasing γj/γi (i.e., making Γ more S-shaped) reduces the incentive of the gerrymanderer
to pack their supporters. Note that sufficiently large values of γj/γi are needed to reverse
the sign of the above expression, hence making the swap profitable.

As illustrated in the following example, when γj/γi is larger than one –but not too large–
the gerrymanderer has incentives to pack their supporters and not create weak cracked
districts. Our pack-crack-pack incentives thus come on top of the traditional pack-and-
crack incentives.

Let νD = 1 = −νR and the population is partitioned in four groups: 3/8th are low-turnout
Republicans r, with τr = 0.4; 1/4th are high-turnout Republicans r̄, with τr̄ = 0.8; 1/4th
are low-turnout Democrats d (τd = 0.2), and 1/8th high-turnout Democrats d̄ (τd̄ = 0.5).

Figure 2 contrasts the optimal maps for the uniform case, Γ(δ) ∼ U [−5, 5], and the Normal
case, Γ(δ) ∼ N(0, 1). In both cases, both d-types and r̄-types are packed. Under the uni-
form distribution, two cracked districts are created by mixing the high-turnout Democrats
and the low-turnout Republicans, despite the fact that these districts have a low expected
probability of winning. Under the normal distribution instead, the gerrymanderer prefers
creating only one such mixed district. The strong convexity of Γ makes it profitable to
increase support in District 2 despite the cost of packing low-turnout opponents in District
3.
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δ ∼ U [−5, 5] δ ∼ N(0, 1)

FIGURE 2. Pack-Crack-Pack.

7. Empirical Analysis

In this section, we examine recent instances of gerrymandering to assess whether our
model is substantiated by empirical data and to quantify the extent to which heteroge-
neous turnout rates influence partisan gerrymandering proposals. In Section 7.2, we focus
on a key testable implication of the model: whether we observe a negative correlation be-
tween turnout rates and expected vote shares, as predicted by Proposition 3. In Section 7.3,
we evaluate the optimality of gerrymanderers’ decisions by assessing the extent to which
gerrymanderers exhaust swaps at the borders of actual gerrymandering proposals that our
model deems profitable.

For this empirical analysis, we collected data from 25 states where both Republicans and
Democrats submitted a proposal for congressional districts in the 2020 redistricting cycle.20

We assembled precinct-level data to evaluate these redistricting proposals. Our final dataset
includes 94,304 precincts across the 25 states (see Appendix E for more information).

7.1. From Theory to Data

In practice, gerrymanderers draw maps using electoral precincts as the building blocks of
districts.21 Using electoral precincts to create districts means moving a discrete number
of individuals at a time, which contrasts with our model where we assume a continuum

20Specifically, we have a total of 50 redistricting proposals from the states of Alabama, Arizona, Arkansas,
Connecticut, Florida, Georgia, Kansas, Louisiana, Maryland, Minnesota, Montana, Nebraska, North Car-
olina, New Hampshire, New Jersey, New Mexico, Nevada, New York, Ohio, Oklahoma, Pennsylvania, South
Carolina, Texas, Washington, and Wisconsin.

21Only 2% of the precincts in our sample are split across proposed congressional districts under either the
Democrat or Republican proposals.
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of individuals. Yet, given that most precincts are very small in comparison to the size of
a district (average population is 2,000 for precincts vs. more than 700,000 for districts),
it is unlikely that this discrepancy will create a substantial difference between theoretical
predictions and actual maps. This is why we use precincts as the base unit of observation
for the empirical analysis and think of precincts as small groups in our model. As in our
model, actual gerrymanderers have information about the average ideology and turnout
rates of precincts. In fact, precincts are the smallest possible geographic units at which
electoral data are available. We thus treat precinct characteristics as the fixed parameters
of the model: they have a set ideological lean and turnout rate. The question is: to which
district should they be assigned? The average ideology and turnout of the districts are
endogenous to that allocation.

The biggest challenge in testing the predictions of our theoretical model is to take into ac-
count the geographic and legal redistricting constraints mentioned in Section 3.4.4 that can
strongly affect district composition, but that the model abstracts from (e.g., geographic
contiguity, respect for political boundaries, and adherence to the Voting Rights Act of
1965). Scholars have long noted that these factors make it difficult to identify a parti-
san gerrymander from an ‘unintentional’ gerrymander (Erikson, 1972; Chen and Rodden,
2013; Stephanopoulos, 2023): is a precinct in a particular district because this increases the
seat share of the gerrymanderer or because of a legal or geographical constraint? For this
reason, it is impossible to test if a gerrymanderer follows a particular strategy by simply
looking at the composition of districts in a single map.22

To overcome this challenge, we combine two strategies. First, we focus on differences
between the Democrat and Republican proposals for the same redistricting cycle. The idea
is that if a precinct has to be assigned to a particular district due to legal constraints, both the
Democrat and the Republican proposals will have to respect them. Instead, the difference
between the two proposals ought to reflect the gerrymanderer’s incentives, while filtering
out common geographic or legal constraints. This is a variation on a strategy adopted by

22As an example, consider the case of a majority-Latino community of interest. Under certain conditions, the
Voting Rights Act would prohibit the community of interest from being divided across multiple districts.
Majority-Latino precincts also tend to have relatively low turnout rates and to lean Democrat. The prediction
from our model is for a Democrat gerrymanderer to pack the community of interest into a safe Democrat
district. But if we observe this in practice, it could be due to the Voting Rights Act, rather than partisan
gerrymandering, a false positive. Similarly, if the community of interest is in a strong Democrat district
under the Republican proposal, we might improperly reject the theoretical prediction, a false negative.
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others in the literature who have compared redistricting proposals across time (e.g., Jeong
and Shenoy 2022, Friedman and Holden 2009, Shotts 2003, Cox and Katz 2007).23

However, taking the difference between the two proposals is not enough to capture the
intent of the gerrymanderers. This is because not all precincts can easily be moved from
one district to another: we call these “unmovable.” While the overall characteristics of a
district (in terms of, e.g., lean and turnout) depend on the characteristics of both movable
and unmovable precincts, the gerrymanderer can only make decisions on the former. Let
us consider a district with 70% of unmovable precincts. The Republican and Democratic
proposals will only differ through their decisions on the 30% of movable precincts allo-
cated to that district. If the Democratic gerrymanderer allocates movable precincts that are
leaning more Democrat to that district compared to the Republican gerrymanderer, then
the district will be measured as leaning more Democrat under the D map than under the R

map. The problem is that all precincts, including the unmovable ones, will appear to have
been intentionally allocated to a more Democratic-leaning district under the D map. In
our example, with 70% of unmovable precincts, any inference about the gerrymanderers’
choices made based on the allocation of precincts to districts would mainly be driven by
unmovable precincts. Hence, our second strategy is to focus on movable precincts to make
inferences about the gerrymanderer’s intent. To identify movable precincts, we will focus
on precincts that are near district borders (more details on this point below).

7.2. A Reduced-Form Test: Turnout and Vote Shares

Proposition 3 and the discussion that follows predict a negative relationship between the
turnout rate of the precincts composing a district and the probability that the gerryman-
derer’s party wins that district. Importantly, Proposition 3 and its extension to multiple
types hold among groups that share a common ideological lean. Empirically, we thus need
to compare precincts that differ in turnout rates but share a common partisan lean.

23A limitation of comparing proposals across time is that many other factors change in a ten-year redistricting
cycle, including the population and the number of districts per state. In 2020, 18 states had a different number
of congressional districts than in the previous redistricting cycle. Given the small number of congressional
districts per state, any change in the number of districts makes it difficult to compare maps over time. It
is also rare to observe a change in partisan control within a state. In 2020, only two states (Arkansas and
West Virginia) experienced a change in full partisan control over redistricting, and only Arkansas had both
a change in partisan control and no change in the number of districts. Even for the 2010 cycle, when there
was a nationally coordinated effort by Republicans to control the redistricting cycle, only 4 states switched
control, and only 2 switched control with no change in the number of districts (party control of redistricting
cycles by state and year are available at https://redistricting.lls.edu/).
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Take all precincts of a given partisan lean in a state, assume that they are all movable, and
order them by increasing turnout rates. Now, consider the probability that the Democrat
wins the district to which each precinct is assigned. This probability of winning should
be decreasing with the turnout rates under the Democrat proposal, but increasing under the
Republican proposal. Across the two maps, the difference in the probability that Democrats
win a district in the Democrat proposal versus the Republican proposal should be decreas-
ing in turnout rates.

As detailed above, we expect this difference to only hold for movable precincts.We thus
test whether, for the set of movable precincts, lower turnout precincts of a given partisan
lean are placed in bluer districts in a Democratic map compared to in a Republican map:

Empirical Prediction 1. Among sets of movable precincts of a given partisan-lean in a
given state, there is a negative relationship between the precinct turnout rate and the dif-
ference in the expected Democratic vote share of its assigned district under the Democrat
versus Republican map.

Empirical Methodology

The first step to test the above prediction is to define the sub-sample of movable precincts.
We define those as the precincts that are adjacent to the congressional district borders in
the baseline map.24 We expect precincts to be especially movable if they lie on preexisting
congressional district borders that do not coincide with county borders. Figure F.6 in the
Appendix documents that the differences between Democratic and Republican redistricting
proposals are indeed greater for this sub-sample. This is because congressional districts
should follow county borders “where possible,” with some states limiting the total number
of counties that can be split into multiple districts.

For the sub-samples of movable precincts, we measure turnout rate and partisan lean and
estimate the following empirical specification:

Difference in Democratic Vote Sharekpbs = β Turnoutkps + θps + κbs + εkpbs, (9)

where Difference in Democratic Vote Sharekpbs is the difference in the district-wide ex-
pected Democratic vote share under the Democrat proposal versus the Republican proposal
for a precinct k, of partisan-lean p, along pre-existing border b, in state s. θps is a vector

24Perhaps as a result of movability constraints, redistricting proposals tend to resemble the status quo map, with
changes made along the borders. We avoid using precincts that are adjacent to borders in the proposed maps
due to endogeneity problems.
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of state-specific partisan-lean fixed effects, κbs is a vector of congressional district border
fixed effects, and εkpbs is an error term. The coefficient of interest is β, which we predict
is negative. We include state-specific partisan-lean fixed effects, θps, so that the variation
used to estimate β comes from comparisons within precincts of the same partisan-lean in
the same state, in line with the theory. We include border fixed effects, κbs, to ensure that
comparisons come from within precincts that could be feasibly moved or ‘swapped’ across
two districts.25

To determine the partisan lean of a precinct, we use the share of registered Democrats as
a proxy for the ideology of a precinct. Party registration data has the advantage of relying
on individuals’ ideology, as revealed by their party affiliation, and not being affected by
voting decisions. However, since not all voters choose to register with a party, it may fail to
accurately represent the average ideology of the precinct at large.26 As a robustness check,
we use precinct-level past vote shares to proxy for ideology. Precinct-level past vote shares
take independent voters into account, but are sensitive to turnout decisions. For precincts
with large turnout heterogeneity across party lines, vote shares may not give an accurate
measure of average ideology.

We consider four ideological groups in each state, defined as the state-specific quartiles of
these proxies for partisanship. Hence, we test for a negative correlation within precincts that
are strongly Democrat-leaning, weakly Democrat-leaning, weakly Republican-leaning, or
strongly Republican-leaning in each state.27 We show that results are not sensitive to the
number of quantiles used to define partisan lean in Appendix F.2.

We measure the expected Democratic vote share of a district as the average votes of the
two most recent presidential elections prior to redistricting. We test our predictions on three
different definitions of Turnoutkps, detailed in Appendix E.4: past turnout rate, predicted
turnout rate, and percent citizen voting age population (CVAP).28 We use all three measures

25To see why border fixed effects are needed, note that the correlation could be negative when comparing
precincts of a given partisan lean across the state, but positive within each border (and vice versa). Due
to geographic constraints, we expect that within-border correlations are more likely to reflect intentional
decisions by gerrymanderers than cross-border correlations.

26On average, 25% of registered voters in our sample are not affiliated with either the Democratic or Republican
party, while only 3% of the ballots go to third-party candidates.

27In Figures F.2 and F.3 in Appendix F.2 we show that there is a bimodal distribution of percent Democrats
across all precincts, as well as within several states. This suggests that, in some states, it may be sufficient
to consider only two ideological groups (Democrat-leaning versus Republican-leaning precincts). In other
states, we may improperly reject the empirical prediction by mistakenly including too few partisan-lean fixed
effects.

28Note that, in line with the theory, each measure of turnout uses the total population in the denominator. Four
states in the sample use prison-adjusted populations when creating congressional districts, meaning they

26



to address concerns that turnout could be endogenous to redistricting. Predicted turnout is
our preferred measure because it uses only exogenous sociodemographic variables to pre-
dict past turnout. We prefer this measure over past turnout because we can more confidently
rule out endogeneity concerns. We also prefer predicted turnout over percent CVAP since
the latter is a crude proxy and gerrymanderers are likely aware of other salient correlates
of turnout like race, education, and income.29 Finally, we estimate standard errors allowing
for spatial correlation across precincts using the approach of Colella et al. (2019).30

Results

Table 1 reports the coefficients from OLS estimations of Equation (9) for each of the three
measures of turnout. Columns 1-3 report coefficients for the sample of all border precincts,
and columns 4-6 report coefficients for the subsample of border precincts that excludes
county borders, leaving only those we expect to be “most movable.” In all regressions, the
measure of turnout is negatively correlated with the difference in Democratic vote share, in
line with the theoretical prediction.

As anticipated, the correlations are stronger in the sub-sample that excludes county borders.
In both samples, the coefficients are largest in magnitude for predicted turnout, relative to
CVAP or realized turnout. As mentioned above, our preferred measure of turnout is pre-
dicted turnout.31 The point estimates in columns (2) and (5) suggest that a one standard
deviation increase in predicted turnout (10 p.p.) is associated with a 0.65-1.12 p.p. de-
crease in the difference in the expected Democratic vote share of districts across proposals
(which represents 8-14% of the mean of the absolute value of the difference in district vote
shares).32

reassign incarcerated individuals to their last known residence. For those four states, we also use prison-
adjusted population counts in the denominator for turnout. See Appendix E.1 for detail.

29The aim is to use a measure of turnout that best approximates the information that gerrymanderers use in
reality. Even if previous turnout is endogenous to past redistricting decisions, it might be a good measure
if gerrymanderers use it to evaluate maps in practice. Without knowing the exact information used by the
various proposers in our dataset, we risk attenuation bias due to measurement error. This is another reason
why it is useful to use three different proxies for turnout.

30We allow for arbitrary correlation among precincts that are within 50 kilometers of each other, measured as
the Euclidean distance between the centroids of precincts. We use the Stata command acreg.

31Consistent with the idea that CVAP is a crude proxy for anticipated turnout, we observe a relatively weak
correlation between the precinct-level turnout rate in 2022 midterm elections and percent CVAP (coefficient
of correlation is 0.35). By comparison, the average turnout rate for 2016 and 2020 presidential elections and
predicted turnout have a coefficient of correlation with 2022 turnout of 0.85 and 0.83, respectively.

32In a competitive district, a 0.65 p.p. change in expected vote shares can translate into large changes in the
probability of winning a district. In Section 7.3, we calibrate the probability of winning a district as a function
of expected vote shares. This calibration implies that a small increase in the expected change in vote shares
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In Appendix F.2, we show that the negative correlation is robust to alternative definitions
of partisan lean. The coefficients for all three measures of turnout are negative if we use
two levels of partisan lean and for up to ten levels of partisan lean. The results are also
robust to using vote shares rather than ideology to measure precinct-level ideology. We
show that the negative correlation is not sensitive to the selection of states with a leave-
one-out exercise in Appendix F.4. We also consider alternative definitions of movable
precincts in Appendix F.3 by including precincts that are increasingly far away from the
existing borders. In line with our hypothesis that precincts near the borders of baseline
congressional districts are more likely to be movable, the negative correlation grows weaker
as we include precincts that are further and further from the border. In the full sample, the
negative correlation is small and statistically insignificant. This suggests that geographic
and legal constraints do limit a gerrymanderer’s ability to optimize a map to some extent.
Overall, the negative correlations between turnout rates and the difference in expected vote
shares among movable precincts support the idea that gerrymanderers exploit differences
in turnout rates in a pattern consistent with the predictions of the theoretical model.

TABLE 1. Turnout and difference in district-level Democratic vote share.

Border precincts Border precincts,
excluding county borders

(1) (2) (3) (4) (5) (6)

Percent CVAP -0.020** -0.007
(0.009) (0.013)

Predicted turnout rate -0.066*** -0.112***
(0.023) (0.030)

Turnout rate -0.045*** -0.085***
(0.015) (0.021)

N 17635 17635 17635 9068 9068 9068
R2 0.049 0.051 0.050 0.054 0.062 0.060
Outcome variable mean -0.004 -0.004 -0.004 -0.001 -0.001 -0.001
State-partisan lean FE X X X X X X
Border FE X X X X X X

Note: OLS estimates. The dependent variable is the difference in the two-party Democratic vote share
between the Democratic and Republican maps (D map - R map). Percent CVAP is the share of citizens aged
18 and older. The turnout rate is the average of Democratic and Republican votes as a share of the total
population in the 2016 and 2020 presidential elections. Predicted turnout rate is based only on demographic
and socioeconomic variables. Regressions include border and state-specific partisan-lean fixed effects, with
partisan lean defined by state-specific quartiles of registered Democrats. Standard errors are clustered within
50 kilometers to account for spatial correlations. ∗ p < 0.1, ∗∗ p< 0.05, ∗∗∗ p< 0.01.

would have large effects on the probability of winning a highly competitive district. A 0.65 p.p. increase in
expected vote shares would increase the probability of winning a 50-50 district by 13 p.p..
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7.3. Swapping Precincts at the Border

In this section, our objective is to test whether, in practice, gerrymanderers exploit prof-
itable deviations (i.e., changes in the map that would increase their party’s expected number
of seats) and, if they do, the extent to which turnout rates matter for optimizing a map.

These tests require taking the model seriously when evaluating actual redistricting propos-
als. In theory, there should be no profitable deviation from one’s own proposal and plenty
from the opponent’s proposal. We can test this directly by creating counterfactual districts
and evaluating whether these “swaps” reveal gains that were left unexploited. Given the
geographical and legal limitations discussed earlier, there may of course remain some ap-
parently unexploited profitable deviations. Consequently, we compare profitable deviations
within a party across different proposed maps:

Empirical Prediction 2. The share of unexploited profitable deviations for a party should
be lower under its proposal than under the one of the other party.

Naturally, the number of possible counterfactual maps is extensive. Hence, we concentrate
on counterfactual districts created by redistributing precincts along the district boundaries
of proposed maps. This has the added benefit of increasing the likelihood of feasibility of
the counterfactual scenarios, in particular in view of the contiguity constraint.

Counterfactual Maps

For each pair of adjacent districts, we identify all precincts along the border, then inde-
pendently randomly assign each of these precincts to either of the two districts with 50%
probability. A random allocation of precincts is considered a feasible counterfactual map
only if it satisfies the equal population constraint.33 For a border with n precincts, there
are 2n possible redistricting proposals. The median number of precincts per border is 20,
but some borders have hundreds of precincts. Due to computational limitations, we sample
until we generate 1,000 feasible maps per border, resulting in 824,000 simulated maps.34

33As in reality, we impose strict population constraints for the counterfactual districts. The total population of
the counterfactual district must be within 1% of the size of an ideal district in the state. The size of an ideal
district is the total population of the state divided by the number of districts. Given these tight population
constraints, we reassign precincts one border at a time. Otherwise, assessing a large number of feasible
counterfactual maps is a computational challenge.

34Moreover, there are a few borders for which there is no feasible swap due to the strict population constraints.
We exclude such borders from the analysis. In total, we simulate 416,000 maps for Democrat proposals and
408,000 for Republican proposals.
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Relative to existing redistricting simulation methods, ours has the advantage of generating
a sample of districts that only differ ‘at the margin’ from proposed maps. Existing redis-
tricting algorithms generate maps that differ greatly from the proposals and were never
considered by gerrymanderers. Hence, focusing on counterfactual maps not too different
from the proposals is best to evaluate the extent to which turnout rates affect gerrymander-
ers’ decision-making. Moreover, our method allows for district-level comparisons between
enacted maps and counterfactual maps. This is useful because we can focus on areas of a
map that are less likely to be influenced by legal constraints. For example, as in Section
7.2, we can focus on district borders that do not coincide with county borders, since these
borders were not drawn to respect existing political boundaries.

Profitable Deviations

We can determine if a deviation is profitable by mapping vote shares into win probabilities.
Let π1 + π2 be the sum of the probability of winning the two districts along a border under
the baseline proposal and π̃1+ π̃2 be the same for the counterfactual map. A counterfactual
redistricting is a profitable deviation if π̃1 + π̃2 > π1 + π2.

To calculate the probabilities of winning, we need to parameterize the aggregate and indi-
vidual-level shocks. We choose a normal distribution for the aggregate shock δ, which
implies an S-shaped relationship between vote shares and the probability of winning a dis-
trict. For simplicity, we assume a uniform distribution for the individual-level shocks. We
calibrate the standard deviation of the aggregate shock, σ, using the state-wide standard de-
viation of the Democratic two-party vote share in presidential elections from 2008-2020.35

The values for σ range from 0.006 to 0.08 (see Appendix F.5). These values imply that ger-
rymanderers only meaningfully benefit from swaps in competitive districts. In our model,
the standard deviation of the normal distribution is equal to the standard deviation in vote
shares, divided by the density of individual shocks, ϕ. Thus, we risk over-estimating σ if
there is a relatively large degree of individual-level uncertainty and under-estimating σ if
there is a relatively low degree of individual-level uncertainty. Rather than calibrate ϕ, we
present results for a range of values of σ between 0.005 and 0.3 (Figure F.10 in Appendix
F.6). Concretely, this means that a district with 60% of the expected vote share is won with
probability greater than 99% if σ = 0.005 and with probability 63% if σ = 0.3.

35We use presidential elections rather than congressional elections to avoid imputing values for uncontested
races. We are able to use more presidential elections for this state-level analysis than in the precinct-level
analysis of Section 7.2 since precinct borders change over time.
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Results

The vast majority of swaps have a negligible effect on either party’s payoff, with 76% of
swaps affecting the payoff function by less than 0.5 p.p. in absolute value (The median
effect size of a swap is 2.4 × 10−6 p.p.). However, the standard deviation is large (4 p.p.),
with a tiny number of swaps affecting the payoff by up to 60 p.p. Figure F.9 in Appendix
F.6 shows the distribution of the change in the payoff for a Democratic gerrymanderer for
all counterfactual districts.
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FIGURE 3. SHARE OF SIGNIFICANTLY PROFITABLE SWAPS. The y-axis is the per-
cent of feasible counterfactual maps (‘swaps’) that are profitable for Democrats (left) and
Republicans (right). A swap is profitable if the change in payoff exceeds the threshold on
the x-axis. The payoff is the expected number of seats. To compute the expected number
of seats, we assume that the aggregate shock is normally distributed with mean zero and
standard deviation calibrated using statewide presidential election returns from 2008-2020
(see Table F.1).

Figure 3 reports the share of swaps that are “profitable” for each party under Democrat and
Republican proposals, using different thresholds to define a non-negligible profitable devi-
ation. Part A depicts the share of swaps that are profitable for all district borders, including
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precincts that are unlikely to be movable as they overlap with county borders. In that sam-
ple, the share of profitable deviations is relatively large, suggesting that gerrymanderers
might fail to exhaust all profitable swaps. Moreover, the share of unexploited profitable
deviations for a party is not much lower under its own proposal than under the one of the
other party.

Part B of Figure 3 instead isolates the most movable precincts by focusing on the subset of
borders that do not overlap with county borders. Here, a clear pattern emerges: each party
has much fewer profitable deviations in its own proposal than under its opponent’s pro-
posal, and the number of profitable deviations is very small under the party’s own map. For
instance, under the Democratic Proposal, only 0.5% of swaps are profitable for Democrats
by at least 1 percentage point. In comparison, 12% of swaps are profitable by at least 1 p.p.
under the Republican proposal. Likewise, under the Republican proposal, 5% of swaps are
profitable for Republicans by at least 1 p.p., compared to 12% of swaps under the Demo-
crat proposal. Note that each party also has strictly fewer profitable deviations than their
opponents, within each proposal. These patterns remain regardless of the threshold used
to define a profitable deviation (the x-axis of Figure 3). The comparison between the two
parts of Figure 3 provides supportive evidence that gerrymanders exploit profitable devia-
tions whenever they can and that legal and geographic constraints reduce this exploitation.

These results are robust to different levels of σ, the standard deviation of the aggregate
shock (see Figure F.10 in Appendix F.6). To confirm that our results are not driven by
minority maps being less aggressive, Figure F.12 shows that the results are similar when
comparing the shares of profitable swaps for the party with majority versus minority control
of the state legislature.

Isolating the turnout rate effect

The above exercise demonstrates that gerrymanderers propose maps that exploit swaps that
are deemed profitable by our model. However, it leaves open the question of the relative
role of ideological heterogeneity as opposed to turnout heterogeneity. To disentangle these
two, we repeat the above exercise with the difference that we artificially suppress turnout
heterogeneity from the gerrymanderers’ calculations.

Technically, in the original exercise above, we computed δ̂i (and hence the probabilities
of winning any given district, πj and π̃j) using precinct population (nk), past turnout rates
(τk), and each of the two proxies for ideology, νk, discussed in Section 7.2 (namely, the
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share of registered Democrats or the Democratic vote share):

δ̂i =
∑
k

nkτkνk∑
k nkjτk

. (10)

What if a gerrymanderer were to mistakenly ignore turnout heterogeneity? If we impose
τk = τ for all precincts k, then the median ideology of the district would simply be the
average ideology of each precinct, weighted by the precinct’s total population:

δ̄j =
∑
k

nkjνk∑
k nkj

. (11)

We compute δ̄i and the resulting π̃(δ̄i) for each proposed and counterfactual district using
precinct population and the same proxies for νk. The two measures of a district’s median
ideology allow us to compare profitable deviations under the assumption that a gerryman-
derer uses an ‘ideology only’ model (with δ̄i) versus our ‘ideology and turnout’ model
(with δ̂i). To the extent that turnout heterogeneity matters for gerrymanderers’ payoffs in
practice, we expect to find only weak support for Prediction 2 using the ideology-only
model.

In addition, we can quantify the importance of turnout rate heterogeneity for optimizing
a map by evaluating the rate at which a gerrymanderer would make mistakes by ignoring
turnout rates. There may be some swaps that are profitable based on ideology alone, but not
after taking turnout rate heterogeneity into account. For a gerrymanderer who mistakenly
ignores turnout rates, these would be type I errors (false positives). We can also determine
the frequency of type II errors (false negatives): those swaps that are not profitable with
ideology alone, but that are profitable after taking turnout rate heterogeneity into account.

The results are starkly different when turnout heterogeneity is not taken into account: we no
longer find strong evidence in support of Empirical Prediction 2. Figure 4 shows the rate of
profitable swaps for Democrats and Republicans when using an ideology-only measure of
δ̄i based on voter registration data. With this “ideology-only” approach, Republicans would
have a similar share of swaps that are profitable under their own proposals and under the
Democratic proposals, whether looking at the full sample or the sample of borders that do
not coincide with county borders. Worse, Democrats have fewer profitable swaps under
their own proposal than Republicans in the full sample. For borders that do not coincide
with county borders, the result depends on the threshold used to define “profitable” swaps:
for low (respectively, high) thresholds, Democrats have fewer (resp. more) profitable swaps
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A. All borders
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B. Borders that do not coincide with counties
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FIGURE 4. SHARE OF SIGNIFICANTLY PROFITABLE SWAPS, MEASURING PAYOFFS
WITH IDEOLOGY ONLY. The y-axis is the percent of feasible counterfactual maps
(‘swaps’) that are profitable for Democrats (left) and Republicans (right). A swap is prof-
itable if the change in payoff exceeds the threshold on the x-axis. The payoff is the ex-
pected number of seats. To compute the expected number of seats we assume that the
aggregate shock is normally distributed with mean zero and standard deviation calibrated
using statewide presidential election returns from 2008-2020 (see Table F.1). For this exer-
cise, we assume that the vote share of a district is the weighted average of the precinct-level
ideology, where ideology is measured with party registration.

under their own proposal than under the Republican proposal. Evidence in support of
the empirical prediction is similarly weak with the other proxy for a precinct’s ideology,
namely previous vote shares (Figure F.11 in Appendix F.6).

This reveals the central importance of turnout heterogeneity to identify profitable devi-
ations: the interaction between turnout and ideology appears to play an important role
in defining the district borders proposed by actual gerrymanderers. In contrast, trying to
determine whether a swap is profitable without taking turnout into account results in a
hit-and-miss pattern with a high rate of both type I and type II errors.36

36Of the swaps that are profitable by at least 1 p.p. for the gerrymanderer’s party using ideology only (using
registered voters to measure ideology), only 33% are profitable after adding information about turnout rate
differences. Of the swaps that are profitable when incorporating information about turnout rates, 60% are not
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8. Conclusions

This paper studies the strategic incentives of gerrymanderers when drawing electoral maps,
introducing a novel aspect by considering that not all individuals vote. We first present a
formal theory of redistricting that accounts for heterogeneity in turnout. Our findings show
that gerrymanderers, aiming to maximize their party’s number of seats, allocates supporters
and opponents differently across electoral districts. Specifically, low-turnout supporters are
packed into safe districts to prevent dilution by higher-turnout opponents, thereby ensur-
ing their influence on the final outcome. Conversely, high-turnout opponents are packed in
losing districts, minimizing their influence by concentrating losses. The remaining groups
are placed in mixed districts, where opponents are paired with higher-turnout supporters.
We term this strategy “pack-crack-pack”: as turnout increases, supporters are packed, then
mixed in cracked districts, followed by packing high-turnout opponents. Our model pre-
dicts (i) assortative matching by turnout in cracked districts, and (ii) that districts can be
ranked by turnout, with the probability of winning decreasing as average turnout rises.

In the second part of the paper, we empirically test two key predictions of the model: (i) a
negative correlation between turnout rates and expected vote shares of the gerrymanderer’s
party across districts; (ii) gerrymanderers exploiting any swaps of precincts across districts
that would increase their party’s expected number of seats. To test these predictions, we
compared the actual proposals put forth by both the Democrats and the Republicans in 25
U.S. states during the 2020 redistricting cycle. We found patterns in the data that were
in line with both predictions, an indication that turnout-based gerrymandering is already
happening in practice.

The empirical relevance of turnout-based gerrymandering adds complexity to building
legally valid evidence against partisan gerrymandering in an already long and winding road
of contradictory court cases.37 The Supreme Court’s engagement with partisan gerryman-
dering began with Davis v. Bandemer (1986), where it recognized partisan gerrymandering
as a potential violation of the Equal Protection Clause. However, the Court failed to estab-
lish a clear and workable standard, proposing a test that required showing intent to harm an
identifiable political group and proof that the plan would consistently degrade that group’s
influence. This vague standard proved unmanageable. The lack of a clear standard persisted
until Vieth v. Jubelirer (2004), where the Court rejected the Bandemer criterion. Justice

profitable if you use ideology only, based on registered voters, and 38% are not profitable if you use ideology
only, based on vote shares.

37For more details, see Stephanopoulos and McGhee (2015, 2018) and Stephanopoulos (2023).
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Kennedy, in his concurring opinion, acknowledged the harms of partisan gerrymandering
but expressed uncertainty about the proper standard, leading to a period of doctrinal limbo.

In LULAC v. Perry (2006), Justice Kennedy signaled an openness to considering “par-
tisan symmetry” as a metric of partisan gerrymandering, while expressing reservations
about its practical implementation. This led to the development of the “Efficiency Gap”
by Stephanopoulos and McGhee (2015).38 This metric gained traction in lower courts but,
in 2018, the Supreme Court rejected the Efficiency Gap and other statewide measures as
insufficient to establish harm to individual voters’ rights and demanded a more district-
specific analysis. Finally, in Rucho v. Common Cause (2019), the Supreme Court ruled
that partisan gerrymandering claims are nonjusticiable, effectively leaving the issue to state
courts. Since then, several state courts have shown a willingness to utilize a statistical ap-
proach and other objective metrics, although without converging on a consistent approach
(see Cervas et al. 2023).

Our findings contribute to the development of ex-post measures of gerrymandering. As dis-
cussed in Section 2, most existing measures evaluate the degree to which a party uses pack-
ing and cracking strategies. However, we found that in cases of heterogeneous turnout rates,
gerrymanderers adopt a pack-crack-pack strategy, deviating from traditional approaches.
This alternative strategy could produce maps that appear unbiased according to existing
measures of gerrymandering. For instance, if a pack-crack-pack strategy is employed, the
Efficiency Gap might not detect partisan bias and may even suggest the map favors the
opposing party, given that safe districts are traditionally viewed as a ‘waste’ of votes.

Our results suggest that existing measures like the Efficiency Gap should be complemented
by accounting for systematic differences in turnout between districts. A systematic associa-
tion of “weak opponents” with “strong supporters” could serve as district-specific evidence
of partisan gerrymandering. Similarly, the presence of packed districts with low-turnout
supporters and high-turnout opponents could also be indicative gerrymandering. While
this understanding is important, developing more comprehensive yet coherent measures of
gerrymandering remains a major challenge. We need a deeper understanding of how local
conditions may result in different district-specific symptoms of individual voter injuries.

38The Efficiency Gap quantifies the extent to which a party follows the conventional pack-and-crack strategy
by adding up the number of votes ‘wasted’ by one party relative to the other. Concretely, packing opponents
generates a lot of wasted votes for the opponent (say, they win with a 91% margin when 51% of the votes
would suffice, hence wasting 40%), whereas cracking supporters reduces the number of votes wasted for the
gerrymanderers’ party.
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Only then can we develop a single statistic that captures both the extent of gerrymandering
and the intent to discriminate against specific groups.
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Appendices
As stated in Section 3.4.3, the Properties and the proofs in this Appendix are written for the case of
multiple ideologies: νk ∈ [νR, νD]. We therefore maintain the notation that ideology νR is the most
republican, i.e., with the lowest value of ν, and νD the most democratic, with the highest value of ν.

A. Properties

Proof of Existence and Uniqueness of δ̂j and that νR ≤ δ̂j ≤ νD. To see that δ̂j exists and
is unique and that δ̂j ∈ [νR, νD], note that the sum of excess vote shares of D in district j (3) is:
(i) strictly positive for δj = νR since VR(νR) = 0 and VK(νK) > 0 for all νK > νR; (ii) strictly
negative for δj = νD since VD(νD) = 0 and VK(νK) < 0 for all νK < νD; (iii) continuous in δj by
the continuity of F ; and (iv) strictly decreasing in δj , since F is strictly increasing over its support
Φ.

As remarked earlier, changes in the population of a district affect the probability of winning a district
πj = Γ(δ̂j) only via its effect on the turnout of the ideological groups {tKj }∀K and how it affects
δ̂j . We can also show the following basic properties:

Property 1. If F and Γ are strictly increasing, then:

i. For all tD > 0, ∂π
∂tD

> 0 if tR > 0, and ∂π
∂tD

= 0 if tR = 0,

ii. For all tR > 0, ∂π
∂tR

< 0 if tD > 0, and ∂π
∂tR

= 0 if tD = 0.

Proof of Property 1. Recall that the definition of δ̂ is such that:∑
K

tKVK

(
δ̂
)
= 0.

Hence,

∂δ̂

dtK
= −

VK

(
δ̂
)

∑
L tLV ′

L

(
δ̂
) . (A.1)

Notice that if the district is packed K, then tL = 0 for all L ̸= K. The definition of δ̂ then implies
that VK

(
δ̂
)
= 0 and therefore δ̂ = νK .

Now if the district is not packed K then the sign of (A.1) is given by the sign of VK

(
δ̂
)

(recall that

V ′
L < 0). If the district is not packed D, it follows from the strict monotonicity of F that δ̂ < νD and
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therefore VD

(
δ̂
)
> 0. This proves Property 1.i. Similarly, if the district is not packed R, it follows

from the strict monotonicity of F that δ̂ > νR and therefore VR

(
δ̂
)
< 0. This proves Property 1.ii.

Property 2. Consider any two ideologies, νL < νH (for instance, νR < νD). Then, VL(δ)/VH(δ)

is strictly decreasing in δ for all δ ∈ (νR, νD).

Proof of Property 2. We must prove that ∂
(

VL(δ)
VH(δ)

)
/∂δ is always negative. It is immediate to

see that it has the same sign as:

∂VL(δ)

∂δ
VH (δ)− ∂VH (δ)

∂δ
VL (δ) . (A.2)

We note that (i) νH > νL ⇒ VH (δ) > VL (δ), ∀δ, and (ii) ∂VK (δ)/∂δ < 0, ∀K ∈ {L,H}.

We now show that (A.2) must be negative for any value of δ ∈ (νL, νH) . First, remember that:

Vk (δ) ≡ F (νk − δ)− 1

2
,

and hence that, from the symmetry of F, we have that Vk (δ) = 0 if δ = νk. Combined with
∂VK(δ)

∂δ < 0, ∀K ∈ {L,H}, this gives us that for all δ ∈ (νL, νH), then VH (δ) > 0 > VL (δ).
Hence, (A.2) is strictly negative.

B. Proofs: Main Results

Proof of Proposition 1. Suppose that district i is packed R ( t
R
i
ti

= 1) while j is cracked

(
tRj
tj

< 1) and consider an r i⇌j r
′ swap with τr < τr′

First, note that, given that tRi
ti

= 1 we know that ∂πi

∂tRi
= 0 by Property 1ii. Hence, an r i⇌j r

′ swap
does not affect πi. We can thus focus on πj , for which the marginal effect is:

− (τr′ − τr)
∂πj

∂tRj
,

which is positive by Property 1ii. The proof for D voters follows the same steps.

Proof of Proposition 2. Suppose not. Then there exists a district i with types k and l and a
district j with types l′ and k′ where τk < τk′ , τl > τl′ , νk = νk′ and νl = νl′ , with πi ̸= πj (which
requires δ̂i ̸= δ̂j).

Wlog, we assume νK ≥ νL and start by considering the case where νK > νL.

42



In an optimal map, the effect of a k i⇌j k
′ swap must be non-positive. From (6) and τk < τk′ , this

requires: (
∂πi

∂tKi
− ∂πj

∂tKj

)
≤ 0. (B.1)

The effect of a l i⇌j l
′ swap must also be non-positive. From (6) and τl > τl′ , this requires:(

∂πi

∂tLi
− ∂πj

∂tLj

)
≥ 0. (B.2)

Plugging those inequalities in (7), we obtain that a k i⇌j l
′ swap is necessarily weakly profitable:

τl′ ×

(
∂πi

∂tLi
− ∂πj

∂tLj

)
︸ ︷︷ ︸

≥0

+ τk ×

(
∂πj

∂tKj
− ∂πi

∂tKi

)
︸ ︷︷ ︸

≥0

≥ 0. (B.3)

Now, inequality (B.3) is strict unless both terms between parentheses are equal to zero, that is:

∂πi

∂tLi
=

∂πj

∂tLj
, and (B.4)

∂πi

∂tKi
=

∂πj

∂tKj
. (B.5)

Using the expressions in (8) and dividing (B.4) by (B.5) implies that

VL(δ̂i)

VK(δ̂i)
=

VL(δ̂j)

VK(δ̂j)
.

Property 2 tells us that VL(δ)
VK(δ) is strictly decreasing in δ. As a result, the previous equality cannot

hold unless δ̂i = δ̂j , a contradiction. This proves the proposition for νK ̸= νL.

Now suppose that νK = νL. Inequalities (B.1) and (B.2) then imply that (B.5) holds.

Since the districts are cracked, we know that they contain at least some voters of types q and m,
with ideology νQ ̸= νM that are present either in district i and/or district j. Moreover, we select
types q in i and m′ in j that lean more democratic than νK if K is more republican than the median,
and more republican than νK if K is more democratic than the median. That is: νQ, νM ′ ≷ νK , if
νK ≶ min{δ̂i, δ̂j} (with more than two ideologies, νM could be distinct or equal to νQ).

Given (B.5), in order not to have a profitable q i⇌j k
′ swap we must have that

∂πi

∂tQi
≥ ∂πj

∂tQj
. (B.6)
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Similarly in order not to have a profitable k i⇌j m
′ swap we must have that

∂πi

∂tMi
≤ ∂πi

∂tMj
. (B.7)

Dividing these equations by (B.5) tells us that,

VQ(δ̂i)

VK(δ̂i)
≥

VQ(δ̂j)

VK(δ̂j)
, and

VM (δ̂i)

VK(δ̂i)
≤ VM (δ̂j)

VK(δ̂j)
.

If νK > δ̂i, with both inequalities reversed if νK < δ̂i. Given the monotonicity of Property 2, the
only way for both inequalities to hold is δ̂j = δ̂i, a contradiction.

Proof of Proposition 3. The claim is that all cracked districts can be ordered by increasing
turnout rates and decreasing winning probabilities.

Take any two districts i and j such that πi (ni) < πj (nj), which requires δ̂i < δ̂j . Consider
two types, k and k′ with the same ideology νK . We now prove that τk < τk′ always leads to a
contradiction.

From (6), a k i⇌j k
′ swap is profitable unless:

∂πi

∂tKi
− ∂πj

∂tKj
≤ 0. (B.8)

Next, consider a type m′ with an ideology different from νK : a k i⇌j m
′ swap is profitable unless

τm′

(
∂πi

∂tMi
− ∂πj

∂tMj

)
+ τk

(
∂πj

∂tKj
− ∂πi

∂tKi

)
︸ ︷︷ ︸

≥0

≤ 0,

where the sign of the second term follows from (B.8). As a result, we need:

∂πi

∂tMi
≤ ∂πj

∂tMj
. (B.9)

Now recall from (8) that:
∂πm
∂tXm

= γ(δ̂m)
VX(δ̂m)∣∣∣∣∑Y tYm

∂VY (δ̂m)
∂δ̂m

∣∣∣∣ , (B.10)

and consider the different possibilities.

Case 1: νK < δ̂i < δ̂j < νM . In this case, we have that 0 > VK(δ̂i) > VK(δ̂j) (where the second
inequality follows from δ̂i < δ̂j).
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Using this together with (B.10), we see that (B.8) implies that γ(δ̂i)

|∑Y tYi V ′
Y (δ̂i)| >

γ(δ̂j)

|∑Y tYj V ′
Y (δ̂j)| . Given

this, for (B.9) to hold, we must have that:

0 < VM (δ̂i) < VM (δ̂j),

which contradicts δ̂i < δ̂j .

Case 2: νK > δ̂j > δ̂i > νM . In this case, we have that VK(δ̂i) > VK(δ̂j) > 0 (where the first

inequality follows from δ̂i < δ̂j). Hence, (B.8) implies that γ(δ̂i)

|∑Y tYi V ′
Y (δ̂i)| <

γ(δ̂j)

|∑Y tYj V ′
Y (δ̂j)| . Given

this, for (B.9) to hold, we must have that:

VM (δ̂i) < VM (δ̂j) < 0,

which contradicts δ̂i < δ̂j .

Case 3: δ̂i < νK < δ̂j . That is, there is (at least) one type with an ideology strictly between the two
district medians (note that this requires multiple ideological types).

This case can simply not materialize: for νK ∈ [δ̂i, δ̂j ], we have VK(δ̂i) ≥ 0 ≥ VK(δ̂j). This
implies that ∂πi

∂tKi
≥ 0 and ∂πj

∂tKj
≤ 0, with at least one strict inequality. Hence, (B.8) cannot hold.
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Online Appendix to

“Pack-Crack-Pack: Gerrymandering with Differential Turnout”

L. Bouton r⃝ G. Genicot r⃝ M. Castanheira r⃝ A. Stashko

C. Endogenous Turnout

In the baseline model, turnout rates are group-specific but exogenously set at τk. This overlooks the
possibility that such turnout rates may also depend on the competitiveness of the election or other
factors related to local circumstances. When this happens, voters from a same group may display
a different turnout rate depending on the district in which they are. In this section, we extend the
model to incorporate such district-specific effects: the probability that a voter turns out and votes for
D can be decomposed into a group-specific factor τk and a district-specific factor λk

j . To simplify
the exposition, we can think of τk as the share of individuals from group k who are eligible to vote.
That is, there is a share 1− τk who are ineligible; they cannot vote, e.g., because of legal constraints
such as age or citizenship, or of external factors such as having to work on election day. In contrast,
conditional on being eligible, λk

j captures decisional, or preference, factors, i.e., their decision to
vote or not. The share of group-k voters who turn out and vote for D and R are then:

τk × λD
j and τk × λR

j .

We consider two different models of costly voting from the literature to endogenize λP
j : (i) Calculus

of voting à la Riker and Ordeshook (1968), and (ii) Group-based voting à la Shachar and Nalebuff
(1999).

Calculus of Voting

This first model of endogenous voting follows the traditional calculus of voting model described,
for example, in Riker and Ordeshook (1968), and extended by Kawai et al. (2021). The logic is as
follows: the voters’ preference intensity reveals how much they value the election of their preferred
candidate over that of the opponent. We follow the same probabilistic voting specification as in
Lindbeck and Weibull (1987): preference intensity is captured by νk − ηe − δ, and going to the
voting booth has a cost ck ≥ 0 that can be group specific. One’s personal vote also only matters
insofar as it may affect the election outcome. In Riker and Ordeshook (1968), this is captured by
the probability of being pivotal. In Kawai et al. (2021), the central element is the voters’ perceived
voting efficacy, which we denote pk (nj) > 0, and which depends both on group-specific factors
that affect their beliefs about how their vote may influence policy and on the actual composition
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of the district, nj . In particular, voters might believe their vote to have a larger impact in a closely
contested district than in a highly partisan district.

An eligible voter turns out and votes for D when her expected benefit of doing so is larger than the
cost of voting:

(νk − ηe − δ) pk (nj) ≥ ck or ηe ≤ νk − δ − ck
pk (nj)

,

and she votes for R when:
ηe ≥ νk − δ +

ck
pk (nj)

.

The share of eligible voters who cast a ballot for D is therefore increasing in νk and decreasing in
δ, like in the absence of voting costs. Conversely, the share of eligible voters who cast a ballot for
R is decreasing in νk and increasing in δ. The new element is that the share of voters who turn out
is now decreasing in ck/pk (nj): turnout decreases with the cost of voting (ck) and increases with a
voter’s perceived voting efficacy (pk (nj)).

To simplify exposition, we assume that ck/pk (nj) is the same for all individuals with the same
ideology νk. We thus have ck/pk(nj) ∈ {cD/pD(nj), cR/pR(nj)}. We could easily relax this
assumption.

We slightly modify Assumption 1 to guarantee that both parties receive some votes despite these
costs. Equivalently, it amounts to assuming that voting costs are not prohibitively high:

Assumption 1bis. (i) Γ has full support over Ψ = [δmin, δmax] ⊃ [νR, νD] and (ii) F has full
support over Φ ⊃ [minK,j(νR − cK/pK(nj)− δmax), maxK,j(νD + cK/pK(nj)− δmin)].

A second natural assumption is that, irrespective of the map and in each given district, the median
individual in group D leans more toward candidate D than the median individual in group R:

Assumption 2. νD − cD
pD(nj)

> νR − cR
pR(nj)

and νD + cD
pD(nj)

> νR + cR
pR(nj)

for all nj .

It remains to characterize pK (nj) . We want to capture the fact that voting efficacy is expected to
be higher in close districts than in safe districts. Whether a district is close or safe depends on δ̂

(more details on the definition of that critical value of the aggregate shock below): close districts
are characterized by values of δ̂ close to 0. Conversely, safe D and R districts are characterized
respectively by values of δ̂ close to νD and νR respectively. Hence, we impose that voting efficacy
peaks at 0, and is monotonically decreasing away from it. Let’s assume that a district map implies
a belief δ̃ regarding the critical value of the aggregate shock for which the district is tied (we will
impose rational expectation below). Abusing slightly notation, we assume that:

pK (nj) = pK(δ̃), with ∂pK(δ̃)/∂δ̃ ≶ 0 for δ̃ ≷ 0.
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Under Assumptions 1bis and 2, an eligible voter with type k, when in district j, casts a D-ballot
and an R-ballot respectively with probabilities:

F

(
νK − δ − cK

pK(δ̃j)

)
and 1− F

(
νK − δ +

cK

pK(δ̃j)

)
,

whereas “moderate” voters abstain. The probability that D wins district j is then:

πj = Pr
δ

[∑
K

tKj WK(δ, δ̃j)

]
, with WK(δ, δ̃j) ≡ F

(
νK − δ − cK

pK(δ̃j)

)
+F

(
νK − δ + cK

pK(δ̃j)

)
−1.

Still like in the baseline model, there is a unique realization of δ for which the number of votes for
D and for R are equal. In particular, for any value of δ̃j , there is a critical value δ∗j (δ̃j) such that:∑

K

tKj ×WK(δ∗j (δ̃j), δ̃j) = 0. (C.1)

To see that δ∗j (δ̃j) exists and is unique, note that the LHS of (C.1): (i) is strictly positive for δ = νR

since, by Assumption 2, we have that WD(δ, δ̃) > WR(δ, δ̃), ∀δ and that, by the symmetry of F ,
WR(νR, δ̃) = 0; (ii) is strictly negative for δ = νD since WR(νD, δ̃) < WD(νD, δ̃) = 0; (iii)
is continuous in δ by the continuity of F ; and (iv) is strictly decreasing in δ, since F is a strictly
increasing function.

Finally, an equilibrium also requires a consistency requirement on the beliefs of the voters, i.e., δ̃j =

δ̂j . Thus, the consistent critical value δ̂j that we are interested in solves the fixed point δ̂j = δ∗j

(
δ̂j

)
.

It is implicitly defined as ∑
K

tKj VK(δ̂j) = 0, (C.2)

where VK(δ̂j) = WK(δ̂j , δ̂j) is the excess vote share of D in district j among voters with ideology
K at δ̂j .

The uniqueness of the consistent critical value δ̂j is guaranteed by the following assumption:

Assumption 3. dVk(δ̂j)/dδ̂j < 0 for both K = D,R.

It requires that for any ideological group K, the excess vote share of D in district j is decreasing in
the critical value of the aggregate shock δ̂j . This prevents situations in which, e.g., the change in the
voting efficacy is such that the excess vote share of D goes up when the aggregate shock is more in
favor of R. It is easy to show that this assumption is necessarily satisfied if any one of |p′K (δ)| or
cK , or |f (x− cK/pK (δ′))− f (x+ cK/pK (δ′))|, ∀x ∈ R, is sufficiently close to zero.

For any given cutoff δ̂j , we thus have that D wins district j for all values of δ ≤ δ̂j and R wins for
all δ > δ̂j . That is, like in the base model:

πj = Γ(δ̂j),
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with the only difference being that the value of this cutoff now depends on the groups’ cost of voting
and perceived voting efficacy, on top of the heterogeneity of their eligibility rates, τk.

It is then easy to check that, under Assumptions 1bis, 2, and 3, the proof of Property 1 (in Appendix
A) applies verbatim with this modified VK function.39 The following property proves the equivalent
of Property 2 (also in Appendix A) for this endogenous turnout model.

Property 2bis. VR(δ)
VD(δ) is strictly decreasing in δ ∈ (νR, νD).

Proof. Notice that the sign of the effect of δ on VR(δ)
VD(δ) is the same as the sign of:

∂VR (δ)

∂δ
VD (δ)− ∂VD (δ)

∂δ
VR (δ) . (C.3)

From Assumption 2bis, we have that νD − cD
pD(δ̂j)

> νR − cR
pR(δ̂j)

and νD + cD
pD(δ̂j)

> νR + cR
pR(δ̂j)

,

∀δ̂j , and hence that VD (δ) > VR (δ) ∀δ. From Assumption 3, we know that ∂VK(δ)
∂δ < 0 ∀K ∈

{D,R}.

We now show that (C.3) must be negative for any value of δ ∈ (νR, νD) . First, note that from the
symmetry of F, we have that Vk (δ) = 0 if δ = νk. Combined with ∂VK(δ)

∂δ < 0 ∀K ∈ {D,R}, this
gives us that if δ ∈ (νR, νD) then VD (δ) > 0 and VR (δ) < 0. Then, we have that ∂VR(δ)

∂δ VD (δ) < 0

and ∂VD(δ)
∂δ VR (δ) > 0, implying that (C.3) is strictly negative.

It then follows that the proofs of Propositions 1, 2, and 3 extend directly to the present setup.

Group-based Voting

An alternative approach to endogenize λk
j is that it is not voters who spontaneously change their

voting behavior depending on the composition of their district because they themselves perceive
that they have higher or lower voting efficacy. Instead, it is the parties/candidates (or some group-
specific leaders) that exert some costly effort to mobilize their supporters. Our approach is in the
spirit of the follow-the-leader trend of the group-based voting literature (see, e.g., Morton 1987,
1991; Shachar and Nalebuff 1999; Levine and Mattozzi 2020; Bouton et al. 2024).

In each district, both running candidates can exert effort to mobilize individuals leaning their way:
that is, candidate D mobilizes individuals leaning Democrat and candidate R mobilizes individuals
leaning Republican. In particular, candidate D chooses λD

j ∈ (0, 1] and candidate R chooses
λR
j ∈ (0, 1]. (More on the objective function of the candidates below.)

39Note that, in this case, the use of the symmetry of F around 0 is key to have that VK

(
δ̂
)

= 0 requires

δ̂ = νK .
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Voting costs are uniformly distributed between 0 and 1 within each group k. Among group k

individuals, a share τk are mobilizable in the sense that they turn out if their voting cost is below
λK
j ∈ (0, 1]. The remaining individuals abstain. Hence, the share of individuals in group k who

actually vote is τkλK
j .

As in the baseline model, an individual in group k prefers D if and only if νk − ηe − δ ≥ 0. The
share of voters from group k that prefer D over R is therefore F (νk − δ). We can then derive the
number of votes for D in a given district for any given realization of the aggregate shock δ. With
nkj voters of type k in district j, they cast a total of tkjλK

j = nkjτkλ
K
j ballots for either party. It

follows that the number of votes in favor of D in district j is the turnout-weighted average of D’s
support across all groups present in the district:∑

K

tKj λK
j F (νk − δ)

where tKj ≡
∑

k∈K|νk=νK
tkj .

For any given pair of effort levels
(
λD
j , λ

R
j

)
, there is a unique realization of the aggregate shock, δ̂j ,

such that the support for D and R in district j is identical. This critical value is defined implicitly
by:

VD(δ̂j)λ
D
j t

D
j + VR(δ̂j)λ

R
j t

R
j = 0 (C.4)

where VK (δj) is defined as in the baseline model and is decreasing in δj . Like in the other versions
of the model, D wins for δ < δ̂j , i.e., with probability πj = Γ(δ̂j).

It follows from (C.4) that a variation in λD
j modifies δ̂j by:

dδ̂j

dλD
j

=
VD(δ̂j)

fDjλD
j t

D
j + fRjλR

j t
R
j

tDj , (C.5)

where we write fKj as a short form for f(νK − δ̂j) for K = D,R.

The objective function of candidate D in district j is to maximize their probability of winning the
district, net of mobilization costs:

max
λD
j >0

πj
(
tDj , t

R
j , λ

D
j , λ

R
j

)
− c

(
tDj , λ

D
j

)
,

with c(tDj , λ
D
j ) = κ(tDj )

α(λD
j )

β/β, with α ∈ [0, 1] and β > 1. Like in Shachar and Nalebuff
(1999), this specification allows for costs to also depend on the size of the target population (i.e.,
eligible voters). In our specification, for α = 0, mobilization effort is a pure public good. For
α = 1, mobilization effort is a pure private good.
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Assuming that β is large enough for the objective function to be quasi-concave, and hence to display
a unique maximum, the optimal level of effort, λD∗

j , solves the first order condition:

γ(δ̂j)×
dδ̂j

dλD
j

= κ(tDj )
α
(
λD∗
j

)β−1
, or:

λD∗
j =

β−1

√√√√γ(δ̂j) (tDj )
1−α

κ

VD(δ̂j)

fDjλD∗
j tDj + fRjλR∗

j tRj
,

where the second line is obtained by using (C.5) to substitute for dδ̂j
dλD

j
.

By symmetry:

λR∗
j =

β−1

√√√√−
γ(δ̂j) (tRj )

1−α

κ

VR(δ̂j)

fDjλD∗
j tDj + fRjλR∗

j tRj
.

Combining the FOCs on λD∗
j and λR∗

j yields:

λD∗
j

λR∗
j

tDj

tRj
= β−1

√√√√−
(tDj )

β−αVD(δ̂j)

(tRj )
β−αVR(δ̂j)

.

Plugging this ratio into (C.4) we obtain:

VD

(
δ̂j

)
(tDj )

β−α
β + VR

(
δ̂j

)
(tRj )

β−α
β = 0. (C.6)

This highlights that, if α > 0, then the strategic mobilization effort by each candidate generates an
‘underdog effect’: the candidate who has comparatively more support in the district faces higher
mobilization cost. Hence, she exerts lower mobilization effort in equilibrium.40 Indeed, for α = 0,

δ̂j is defined by the ratio
tDj
tRj

= − VR(δ̂j)
VD(δ̂j)

as in the baseline model. It implies that the probability of

winning is not affected by the endogenous turnout. If instead α > 0, then δ̂j is defined by the ratio(
tDj
tRj

)β−α
β

= − VR(δ̂j)
VD(δ̂j)

with β−α
β ∈ (0, 1) . Hence, when

tDj
tRj

> 1, δ̂j , and hence πj , become smaller

than in the baseline model.

Differentiating equality (C.6)with respect to tDj yields:

dδ̂j

dtDj
=

VD(δ̂j)

fDj tDj + fRj tRj

(
tDj
tRj

)α
β

β − α

β
. (C.7)

40Note that, by relaxing the assumption that β < α, we could also obtain a ‘bandwagon effect’: the can-
didate with comparatively less support in the district has higher mobilization costs and hence exerts lower
mobilization effort. Our results would also hold in that case.
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Similarly:
dδ̂j

dtRj
=

VR(δ̂j)
β−α
β

fDj tDj

(
tDj
tRj

)−α
β

+ fRj tRj

. (C.8)

We prove the equivalent of Property 1 below, and it is easy to check that Property 2bis and its proof
from the previous section hold.

Property 1bis. If F and Γ are strictly increasing, then:

i. For all tD > 0, ∂π
∂tD

> 0 if tR > 0, and ∂π
∂tD

= 0 if tR = 0,

ii. For all tR > 0, ∂π
∂tR

< 0 if tD > 0, and ∂π
∂tR

= 0 if tD = 0.

Proof. From (C.6) and VD (δ) > VR (δ) for all δ, we have that, if
tDj
tj

< 1, then VD

(
δ̂j

)
> 0 >

VR

(
δ̂j

)
. Together with C.7 and β−α

β > 0, we obtain that

dδ̂j

dtDj
=

VD

(
δ̂j

)
fDj tDj + fRj tRj

(
tDj
tRj

)α
β

β − α

β
> 0.

For
tDj
tj

= 1, (C.6) requires VD

(
δ̂j

)
= 0, and hence dδ̂j

dtDj
= 0. This proves point i.

The proof of point ii follows similar steps.

It follows that the proofs of Propositions 1, 2, and 3 extend directly to the present setup.

D. Probabilistic Voting with Uniform Shocks

Following (Persson and Tabellini, 2000, chapter 3), consider two uniform shocks: first, the indepen-
dently and identically distributed elector-level shock ηe follows a uniform distribution U [− 1

2ϕ ,
1
2ϕ ].

Second, the aggregate shock δ, which captures the valence of party R over party D at the time of
the election, follows another uniform distribution Γ = U [− 1

2γ ,
1
2γ ].

With that specification, the share of voters from group k that cast their ballot for D is:

σk (δ) =
1
2 + ϕ (νk − δ) .

Throughout, we assume that vote shares in each district are “interior”:41

41This assumption is but a sufficient condition that simplifies the algebra. It can be relaxed to allow for σk to
equal 0 or 1. With two types, our results hold as long as νD + νR < 1

2ϕ and |νk| < 1
2γ .
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[A1U] Assumption Interior: We assume that σk is strictly between 0 and 1 for any realization of δ
by imposing that |νk| < 1

2ϕ − 1
2γ for all k, p. Moreover, we assume |νk| < 1

2γ : depending on the
realization of δ, σk can be strictly above or strictly below 1/2.

Under that assumption, the vote share of each party in district j given a realisation of the aggregate
shock δ is: ∑

k

tkjσk (δ) =

∑
k t

k
j

2
+
∑
k

tkj ϕ (νk − δ) .

Like in the general model, this number of votes is increasing in νk for all k and strictly decreasing
in δ. For the simplicity of exposition, we normalize ϕ to 1 for most of the analysis.

Denoting total turnout in district j by tj :=
∑

k t
k
j , under Assumption A1, the probability that D

wins district j is:

πj = Pr

(
tj
2
+
∑
k

tkj (νk − δ) ≥ tj
2

)
= Pr

(
δ ≤ δ̂j :=

∑
k

tkj νk

tj

)
.

By the distribution of δ and Assumption [A1U], this simplifies into: πj = 1
2 + γδ̂j .

E. Data Appendix

E.1. Dataset

We compile precinct-level political and demographic data from various sources and use geospatial
data to assign these characteristics to congressional districts under both Democratic and Republican
proposals from the 2020 redistricting cycle.42

A central aspect of our analysis is the ability to compare how a precinct is treated under a Demo-
cratic versus a Republican proposal. As a result, we limit our focus to states where proposals from
both political parties are available. Notably, detailed data for redistricting proposals, rather than
just the final maps, became widely accessible only after the 2020 redistricting cycle. These maps
were drawn by redistricting committees, party caucuses, independent organizations, or individual
representatives (see Appendix E.2).

At the precinct level, we compile information on demographics, voter registration, and presidential
election returns from 2016 and 2020. Precincts are geographic areas used to administer elections.
They are the smallest possible geographic unit to observe election returns. The precinct-level data

42We focus on U.S. congressional districts rather than state legislative districts to minimize incumbency gerry-
mandering. Since most maps are drawn by state legislators, the incentives for incumbency gerrymandering
are stronger at the state level. Additionally, most states have a small number of congressional districts, making
our theoretical framework more manageable by considering a finite number of districts.
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come from multiple sources. We use precinct-level population counts from the 2020 Census and
information about age, race/ethnicity, sex, income, and education from the American Community
Survey. Four states in our sample (MD, NJ, NV, and WA) use prison-adjusted populations when
redistricting for congressional districts. In these states, the total population counts for precincts
are adjusted by reassigning incarcerated individuals to their last known residence. These data were
obtained from the state redistricting websites and by a public records request to the Washington
Secretary of State.

The Redistricting Data Hub compiles voter registration data, election returns, and Citizen Voting
Age Population (CVAP, the number of citizens aged 18 and older).43

E.2. Redistricting Proposals

We collect redistricting proposals from the 2020 cycle for all states where both Democratic and
Republican proposals are available. The sources vary by state, with most proposals coming from
state legislature redistricting committees, which typically align with the majority party. Therefore,
we assign committee maps to the majority party, while minority party proposals are sourced from
party caucuses or individual representatives. When multiple proposals exist for the minority party,
we prioritize caucus maps over individual submissions. In some states, independent or bipartisan
redistricting commissions submitted maps endorsed by either party. For more details, see Table E.1.
Geospatial data for each proposal were gathered from state legislature websites or requested directly.
Two states were excluded from the analysis despite having two partisan proposals: Maine, due to
missing voter registration data for many precincts, and West Virginia, due to missing geospatial
data.

E.3. Geospatial Analysis

We use geospatial data to merge precinct-level data in Python. The precinct boundaries vary slightly
across the precinct-level data sources for election returns, party registration, and demographics. We
aggregate all precinct-level data to the boundaries used by the 2020 Census. Where necessary, we
use block-level population data to disaggregate precincts and voter registration data. Due to the
discrepancies in precinct borders, we expect some measurement error in the final precinct-level
dataset, especially when computing ratios like turnout rates in small precincts. We drop 4,633
precincts (8.3% of precincts) in which there is either a) a total population under 50, b) reportedly
more votes than people, c) reportedly more registered voters than people, or d) reportedly more
citizens of voting age than people. These tend to be small precincts, accounting for 2.3% of the
total population in the sample.

43The Redistricting Data hub geocodes and validates precinct-level data. Their source for voter registration
data is L2, their source for election returns is the Voting and Election Science Team (VEST), and their source
for CVAP is the American Community Survey.
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TABLE E.1. REDISTRICTING PROPOSALS

State Party Proposer Proposal Name Notes
AL D State Senator Rodger

Smitherman
Singleton
Congressional Plan 1

Senator Smitherman is the minority party leader.

AL R Alabama Legislature US House Second
Special Session 2021
Draft

This plan was passed by Republican dominated state
legislature, but later invalidated by the Supreme Court.

AZ D Arizona Independent
Redistricting
Commission

CD Test Map Version
10.1.2

Proposed by Democratic members of the redistricting
commission.

AZ R Arizona Independent
Redistricting
Commission

CD Test Map Version
10.1.1

Proposed by Republican members of the redistricting
commission.

AK D State Senator Greg
Leding

SB724 Amendment proposed by Democratic state senator.

AK R Arkansas General
Assembly

Arkansas Final
Congressional Plan

Plan passed by Republican majority legislature.

CT D Democrat Members of
Connecticut
Reapportionment
Committee

Democrat Members’
Proposed Map

Presented by members of the Democratic party to the state’s
Supreme Court.

CT R Republican Members
of Connecticut
Reapportionment
Committee

Republican Members’
Proposed Map

Presented by members of the Republican party to the state’s
Supreme Court.

FL D State Senator Darryl
Rouson

S019C8062 Of the proposals from Democrats, this was submitted most
recently.

FL R Governor Ron DeSantis PP000C0109109 Governor DeSantis rejected the legislature’s plan and
proposed this one, which was later enacted and challenged
in state court.

GA D House and Senate
Democratic Caucuses

House Bill 5EX Amenment proposed by democratic caucuses.

GA R Senate and House
Committee Chairs

Senate Bill 2EX Plan enacted state legislature and later invalidated by state
supreme court.

KS D State Senator Dinah
Sykes

United Senator Sykes is the minority party leader.

KS R Kansas House
Committee on
Redistricting

Ad Astra 2 The Democratic governor vetoed this proposal and the
legislature overrode the veto. The state supreme court
ultimately rejected the map.

LA D State Senator Gary
Smith

SB11 Of the proposals from Democrats, this plan was from the
most senior member of the state legislature.

LA R State Representative
Clay Schexnayder

House Bill 1 The Democratic governor vetoed this proposal and the
legislature overrode the veto. An appeals court rejected the
map, but the U.S. Supreme Court allowed it to be used in
2022 elections.

MD D Legislative
Redistricting Advisory
Commission

LRAC Final
Recommended
Congressional Plan

This map was enacted and upheld by the Maryland Court of
Appeals.

MD R Maryland Citizens
Redistricting
Commission

CRC Final
Recommended
Congressional Map

The governor traditionally proposes a map. The Republican
Governor delegated this job to a task force called the
Maryland Citizens Redistricting Commission.

MN D Democratic
Farmer-Labor (DFL)
Caucus

House DFL plan/
Murphy plan

Plan proposed by the Democratic caucus in the state
legislature.

MN R State Representative
Paul Torkelson

C2102-0 Plan proposed on behalf of state Republican caucus.
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TABLE E.1 CONTINUED. REDISTRICTING PROPOSALS

State Party Proposer Proposal Name Notes
MT D Democrats on

Redistricting
Commission

CP 13 Most recent plan proposed by Republican members of
redistricting commission.

MT R Republicans on
Redistricting
Commission

Montana Congressional
Adopted

Most recent plan proposed by Democratic members of
redistricting commission.

NC D Senator Jay Chaudhuri CST-6 Of the proposals submitted by Democrats, this proposal was
later used in court cases challenging the Republican map.

NC R North Carolina General
Assembly

Congressional Plan
Senate Bill 740 / SL
2021-174

Plan enacted and later rejected by the state supreme court.
The following year the state supreme court overturned their
previous opinion.

NE D Democratic State
Senator Justin Wayne

LB2 Although Nebraska has a nonpartisan legislature, this map
was endorsed by the state Democratic party.

NE R Nebraska Legislature
Redistricting
Committee

LB1 Plan enacted by state legislature.

NH D State Representative
Paul Bergeron

Amendment 2022 -
1736h

Plan proposed by Democrats after the democratic governor
vetoed the original plan.

NH R State Representative
Berry Ross

i-93 Corridor Plan Plan proposed by Republicans after the democratic
governor vetoed the original plan.

NJ D New Jersey
Congressional
Redistricting
Commission

New Jersey
Congressional Districts
2022-2031

Plan proposed by Democratic members of the Redistricting
commission.

NJ R New Jersey
Congressional
Redistricting
Commission

Republican Proposal Plan proposed by Republican members of the Redistricting
commission.

NM D New Mexico
Legislature

New Mexico Final
Congressional Plan

Plan enacted by state legislature.

NM R Citizen Redistricting
Committee

Map A Authored by a non-partisan redistricting committee, but
endorsed by the Republican party.

NV D Democrats in the
Nevada Legislature

Nevada Final
Congressional Plan

Plan enacted by state legislature and later challenged in
state court.

NV R Republicans in the
Nevada Legislature

Congressional Minority
Plan

Plan submitted by the Legislature Joint Minority
Committee.

NY D Democrats in the New
York Legislature

New York State
Assembly
Congressional Plan

The New York State Independent Redistricting Commission
submitted two maps: one from Democrats and one from
Republicans. The democratic legislature then proposed this
map, which was enacted and later rejected by the state
supreme court.

NY R Republican-appointed
members of the New
York Independent
Redistricting
Commission

Plan B Plan proposed by Republicans appointed to the New York
State Independent Redistricting Commission.

OH D Democratic members
of Ohio Redistricting
Commission

Proposed Sub SB 237 -
Senate Dem Caucus

Plan proposed by Democratic member of redistricting
commission.

OH R Republican members of
Ohio Redistricting
Commission

Senate Bill 258 Plan passed by state legislature and later invalidated by the
state’s Supreme Court.
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TABLE E.1 CONTINUED. REDISTRICTING PROPOSALS

State Party Proposer Proposal Name Notes
OK D Oklahoma Senate

Democrats
Oklahoma
Congressional Draft -
Democrat Proposal

Amendment proposed by state senators.

OK R Oklahoma State
Legislature

Oklahoma
Congressional District
Maps 2022-2031

Plan passed by the Republican majority legislature.

OR D State Senator Peter
Courtney

Oregon Congress Plan
B

Plan was sponsored by Senator Peter Courtney, president of
the state Senate.

OR R Republican members of
Interim Committee On
Redistricting

Oregon Congressional
Plan SB 881A

Plan was sponsored by Republican members of the
redistricting committee.

PA D Senate Democratic
Caucus

Senate Democratic
Caucus

Plan submitted by the Senate Democratic Caucus in the
state supreme court case.

PA R General Assembly Updated Preliminary
Congressional Plan

Plan enacted by state legislature and later vetoed by the
democratic governor.

SC D State Senator Brad
Hutto

Floor Amendment 4 -
Hutto / Greene Fix Map

Amendment proposed by the minority party leader.

SC R South Carolina
legislature

South Carolina
Congressional Districts
House Plan 2
Amendment 1 (ACT
118)

Plan passed by Republican majority state legislature.

TX D State Representative
Yvonne Davis

PLANC2165 Amendment proposed by Democrats. Of the three
Democratic proposals found, this proposal was from the
most senior-ranking representative.

TX R Republican members of
state legislature

Texas Congressional
Plan 2193

Plan proposed and passed by state legislature.

WI D Democratic legislators SB622 - amendment 1 Plan proposed by state senators Bewley, Erpenbach,
Ringhand, Roys and Wirch. This map was originally
written by the People’s Commission, a bipartisan group
organized by the Democratic governor.

WI R Republican legislators SB622 Plan passed by Republican majority state legislature, but
vetoed by Democratic governor.

WA D State Representative
April Sims

Sims Plan proposed by the House Democratic Caucus appointee
to the redistricting committee.

WA R State Representative
Paul Graves

Graves Plan proposed by the House Republican Caucus appointee
to the redistricting committee.

Finally, we assign precincts to congressional districts for each map. We compute the percent of
a precinct’s land area that falls inside a district. A precinct is assigned to a unique district if at
least 98% of its land area is inside one district. Otherwise, a precinct may be assigned to multiple
districts. Precincts are split relatively infrequently: 1.7% of precincts are split in the Democrat
proposals and 2.2% of precincts are split in the Republican proposals.

Where precincts span multiple districts, we disaggregate precinct characteristics using the percent-
age of precinct population in each district. To measure the population in a part of a precinct, we use
block-level population data from the Census. In the rare case that a block is split across a precinct,
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we use the land area of the block to disaggregate its population. We drop split precincts from the re-
gression analysis in Section 7.2, since we use precincts as the unit of analysis and make comparisons
across Democrat and Republican proposals. We do, however, include split precincts in the analysis
of counterfactual maps in Section 7.3. There, we allow parts of split precincts to be swapped along
the border when we construct counterfactual maps.

For each precinct, we identify the district it is assigned to under both proposals, enabling us to
compute district-level characteristics. Additionally, we identify precincts adjacent to district borders
in the previous congressional map or in both partisan proposals. This subset of border precincts
helps us isolate movable precincts and construct and evaluate counterfactual maps. Using Census
adjacency files, we then identify precincts adjacent to these border precincts, continuing the process
iteratively. The final precinct-level dataset includes 96,307 precincts across the 25 states (summary
statistics are reported in Section E.5).

E.4. Measures of Turnout Rate

A challenge in measuring turnout rates is that we do not know exactly which information gerry-
manderers use in practice to anticipate vote shares. At a minimum, redistricting committees must
use information about total population and race. They might also incorporate election data with
varying degrees of sophistication. Another concern is that observed turnout might be endogenous to
redistricting. We use three measures of turnout rates to address both potential measurement errors
and endogeneity concerns.

First, we use data from elections prior to redistricting to measure turnout. We compute the turnout
rate of a precinct as the average of the total number of votes in the 2016 and 2020 presidential
elections, divided by the population of the precinct in 2020.44 Note that these elections happened
before the 2020 redistricting proposals, but might still be endogenous to redistricting proposals if
districts in the 2020 cycle are similar to districts in the 2010 cycle.

In a second approach, we predict the measure of turnout just described using only demographic and
socioeconomic characteristics, which are difficult for political parties to manipulate: population,
race and ethnicity, citizenship, age, education, and income.

Just in case one worries that our prediction model is overly sophisticated compared to the informa-
tion at hand for partisan gerrymanderers, in a third approach we use Citizen Voting Age Population
(CVAP) as an exogenous proxy for the turnout rate. However, the coefficient of correlation between

44We take the average of the two presidential elections to limit noise. We use presidential elections instead
of congressional elections or state-level elections because we do not need to impute values for uncontested
elections and because within-state contest effects, which could depend on redistricting, only indirectly affect
presidential elections.
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TABLE E.2. CANDIDATE VARIABLES FOR TURNOUT PREDICTION MODELS
Population, Race, and Ethnicity Age, Education, and Income
Total Population Population aged 0 to 17
Voting Age Population (aged 18+) Population aged 18 to 24
Total Hispanic or Latino Population aged 25 to 34
Total White, non-Hispanic Population aged 35 to 44
Total Black, non-Hispanic Population aged 45 to 54
Total AI/AN, non-Hispanic Population aged 55 to 64
Total Asian, non-Hispanic Population aged 65 and up
Total NHOPI, non-Hispanic Percent aged 0 to 17
Total Other Race, non-Hispanic Percent aged 18 to 24
Percent Hispanic or Latino Percent aged 25 to 34
Percent White, non-Hispanic Percent aged 35 to 44
Percent Black, non-Hispanic Percent aged 45 to 54
Percent AI/AN, non-Hispanic Percent aged 55 to 64
Percent Asian, non-Hispanic Percent aged 65 and up
Percent NHOPI, non-Hispanic Population with no high school degree
Percent Other Race, non-Hispanic Population with high school degree

Population with some college
Citizen Voting Age Population (CVAP) Population with Bachelor’s degree
CVAP, Total Population with graduate degree
CVAP, American Indian or Alaska Native Percent with no high school degree
CVAP, Asian Percent with high school degree
CVAP, Black or African American Percent with some college
CVAP, Native Hawaiian, Pacific Islander Percent with Bachelor’s degree
CVAP, White Percent with graduate degree
CVAP, Hispanic or Latino Median household income

Labor force population
Percent of adults in labor force

percent CVAP and turnout rate is low (0.41) compared to the coefficient of correlation between pre-
dicted turnout and observed turnout (0.89). The downside of using percent CVAP as a proxy is that
it assumes that gerrymanderers are naive enough to ignore correlations between turnout rates and
other factors like race, income, and education.

E.4.1 Predicted Turnout

To predict turnout at the precinct level, we measure precinct-level demographic and socioeconomic
factors using data from the American Community Survey and Census. The candidate variables
are in Table E.2. Population, race, and ethnicity variables are from the 2020 Census: P.L. 94-171
Redistricting Data Summary File (downloaded at the Census Voting Tabulation District level from
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NHGIS).45 The Citizen Voting Age Population variables are from the Redistricting Data Hub.46 The
Redistricting Data Hub uses the 2019 special CVAP tabulation files from the American Commu-
nity Survey (ACS) 5-Year Estimates (2016-2020). They disaggregate Census Block group-level
estimates to the Census Block level. We then aggregate the block-level data to the precinct level,
as in section E.1. Age, education, and income variables are from the 2020 American Community
Survey: 5-Year Data (2016-2020). We download these data at the Census Tract level from NHGIS.
To aggregate to the precinct level, we first disaggregate to the block level (using the percent of tract
population in a block), then aggregate to the precinct level.

TABLE E.3. TURNOUT PREDICTION: MODEL PERFORMANCE
Model MSE Correlation
Lasso, state-specific model 0.0083 0.7423
Lasso, pooled model 0.0115 0.6054
Random Forest 0.0052 0.8449
Gradient Boosting 0.0048 0.8573

We compare the performance of three different models, namely Lasso, Random Forest, and Gradient
Boosting. The dataset was divided into training and test data. The training data, comprising 75% of
the precincts, was used to train each model, and the remaining 25% was used to evaluate accuracy.

The state was included as a categorical variable in all models. We additionally train a LASSO
model separately for each state.47 Table E.3 reports the MSE and the correlations between turnout
and predicted turnout for the test data. We use predictions from the Gradient Boosting model in our
main analysis since it has the lowest MSE. Figure E.1 plots the distribution of turnout and predicted
turnout across all precincts. If we regress turnout on predicted turnout in the full sample, the R2 is
0.79, with Root MSE of 0.06. The coefficient of correlation between predicted turnout and turnout
is 0.89 (p < 0.001). The most important predictors are reported in Table E.4, ranked by feature
importance. Higher numbers indicate that the candidate variable has a larger effect on the model’s
performance.48
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FIGURE E.1. DISTRIBUTION OF TURNOUT RATE AND PREDICTED TURNOUT RATE.

TABLE E.4. TOP PREDICTORS, RANKED BY FEATURE IMPORTANCE

Variable Feature Importance
Percent White, non-Hispanic 0.2721
Total population 0.2281
State categorical variable 0.1598
Citizen Voting Age Population 0.0817
Voting Age Population 0.0515
Percent with no high school degree 0.0417
Total Hispanic population 0.0416
Percent below poverty rate 0.0288
Percent age 65 and up 0.0263
Percent with college degree 0.0216

E.4.2 District Competitiveness and Turnout Rates

In this section, we study associations between district competitiveness and turnout. The aim is
to determine if endogenous turnout responses might be large in magnitude and whether there are
asymmetric responses between Democratic- and Republican-leaning precincts.

We use a differences-in-differences approach, comparing changes in turnout amongst similar precincts
that experienced changes in competitiveness during the 2020 redistricting cycle. For the states in

45Steven Manson, Jonathan Schroeder, David Van Riper, Tracy Kugler, and Steven Ruggles. IPUMS National
Historical Geographic Information System: Version 17.0 [dataset]. Minneapolis, MN: IPUMS. 2022. http:
//doi.org/10.18128/D050.V17.0.

46Available at: https://redistrictingdatahub.org/.
47We used the LassoCV function from scikit-learn, which automatically selects the alpha value that

minimizes the Mean-squared error (MSE) by cross-validation. The maximum number of iterations was set to
100. For Gradient Boosting we use their HistGradientBoostingRegressor algorithm.

48Feature importance measures the decrease in model performance when the values of a variable are randomly
reassigned. For each candidate variable, we randomly reassign values within the dataset, then train the model
and measure MSE for the test data. We repeat this process 10 times for each variable. The feature importance
score is the average difference in MSE caused by the permutation of the values of a given variable.
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TABLE E.5. DISTRICT COMPETITIVENESS AND TURNOUT

A. Closeness measured using Cook’s PVI (2016 and 2020 presidential votes)
(1) (2) (3)

Competitiveness (PVI) 0.0023*** 0.0001 -0.0002
(0.0006) (0.0002) (0.0003)

N 187923 187923 187923
R2 0.251 0.763 0.936
Outcome variable mean 0.408 0.408 0.408
Year FEs X X X
State FEs X
Precinct FEs X
Group-district FEs X

B. Closeness measured using registered voters
(1) (2) (3)

Competitiveness (voter reg.) 0.0024*** -0.0002 0.0000
(0.0004) (0.0002) (0.0002)

N 187923 187923 187923
R2 0.266 0.936 0.763
Outcome variable mean 0.408 0.408 0.408
Year FEs X X X
State FEs X
Precinct FEs X
Group-district FEs X

Note: Standard errors clustered at the level of pre-redistricting congressional districts. Additional controls
are the log of total population, log of citizen voting age population, percent Black, non-Hispanic, percent
Hispanic, percent Asian, percent American Indian/Alaska Native, percent below the poverty line, median
household income, percent with a bachelor’s degree or higher, percent ages 18-24, percent ages 65 and
older, and percent registered democrats. Group-district fixed effects (FEs) indicate groups of similar turnout
rates and ideology within the same pre-redistricting congressional district. We use state-specific quartiles of
predicted turnout and of share of registered democrats to define groups. ∗ p < 0.1, ∗∗ p< 0.05, ∗∗∗ p< 0.01.

our main dataset, we construct a precinct-level panel. In the pre-redistricting period, we measure
turnout as the average of the 2016 and 2020 presidential elections. In the post-redistricting period,
we observe turnout in the 2022 midterm elections.49 Following Moskowitz and Schneer (2019), we
measure competitiveness using the Cook Partisan Voting Index (PVI). PVI measures how partisan a
district is, relative to the nation, using average vote shares from the 2016 and 2020 presidential elec-
tions. If the nationwide Democratic vote share is 50% then a district with 55% Democratic votes is
−5 and a district with 55% Republican votes is +5. Competitiveness is measured as −abs(PV Id).
A 10-unit increase in competitiveness is equivalent to, for example, a district moving from a 60-40
split to a 50-50 split in two-party vote shares. Since PVI uses turnout to measure competitive-
ness, we complement this measure with a measure of competitiveness that uses party registration

49Precinct-level election data for 2022 is available only for senate and gubernatorial elections, not house elec-
tions.
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data from 2010:− |two-party share of registered voters that are Democrats − 50%|. Note that we
observe voter registration data and PVI in the pre-redistricting period only. Since the same voter
registration and PVI data are used to measure competitiveness in both the pre- and post-redistricting
periods, any variation in competitiveness comes from redistricting alone.

We estimate the effect of congressional district competitiveness on turnout with the following spec-
ification:

turnoutpt = β competitivenesspt + θp + ϵpt, (E.1)

where turnoutpt is the number of votes per population in precinct p at time t, competitivenesspt

is one of the two measures listed above, and θp are precinct-fixed effects. The coefficient β captures
the effect of competitiveness on turnout if, conditional on time-invariant precinct characteristics,
changes in competitiveness are uncorrelated with other factors that might affect turnout. This iden-
tification strategy is similar to the differences-in-differences approach of Moskowitz and Schneer
(2019), but instead of an individual-level panel, we use a precinct-level panel. A concern with this
approach arises if the change in competitiveness is non-random due to strategic redistricting. In
an additional specification, we compare changes in turnout amongst precincts that were assigned
to the same initial congressional district and that have similar ideology and predicted turnout rate
(i.e., group-district FEs). According to the model, precincts that belong to the same group should be
treated similarly by gerrymanderers. Any difference in changes in competitiveness amongst these
similar precincts is perhaps due to a geographic or legal constraint, which is unlikely to be related
to precinct-level turnout within the group-district. The group-district fixed effects specification is
akin to the ‘block fixed effects’ approach in Moskowitz and Schneer (2019).

Estimates are reported in Table E.5. There is a small positive and statistically significant associa-
tion between competitiveness and turnout when including only state and year fixed effects (Panel
A, Column 1). The point estimate suggests that a 10-point increase in competitiveness would in-
crease turnout by 2.3 percentage points (β = 0.0023, SE = 0.0006; a standard deviation in PVI
competitiveness is 9.4). However, this drops to a 0.1 percentage point increase in turnout per 10-
point increase in competitiveness when including county fixed effects, and the point estimate is
not statistically significant (Column 2, β = 0.0001, SE = 0.0002). The estimated coefficient is
slightly negative and statistically insignificant when including group-district fixed effects (Column
3, β = −0.0002, SE = 0.0003). The 95% confidence interval implies that a 10-point increase in
competitiveness would increase turnout by no more than 0.5 percentage points. We see the same re-
sults using voter registration to measure competitiveness (Panel B). These findings are very similar
to those from Moskowitz and Schneer (2019). Using a nationwide panel of voters, they estimate a
0.1 p.p. increase in turnout per 10-point increase in competitiveness.
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TABLE E.6. HETEROGENEOUS AND UNDERDOG COMPETITIVENESS EFFECTS

A. Closeness measured using Cook’s PVI (2016 and 2020 presidential votes)
(1) (2) (3) (4)

Competitiveness (PVI) 0.0003 0.0006** -0.0001 0.0001
(0.0003) (0.0003) (0.0003) (0.0002)

Competitiveness (PVI) × D-leaning -0.0008** -0.0008***
(0.0004) (0.0003)

D-leaning 0.0067
(0.0142)

Underdog (PVI) -0.0054 -0.0058
(0.0045) (0.0037)

N 187929 187929 187929 187929
R2 0.936 0.763 0.936 0.763
Outcome variable mean 0.408 0.408 0.408 0.408
Year FEs X X X X
Precinct FEs X X
Group-District FEs X X

B. Closeness measured using registered voters
(1) (2) (3) (4)

Competitiveness (voter reg.) 0.0002 0.0004 -0.0002 0.0000
(0.0003) (0.0003) (0.0002) (0.0002)

Competitiveness (voter reg.) × D-leaning -0.0007** -0.0006**
(0.0003) (0.0003)

D-leaning 0.0087
(0.0137)

Underdog (voter reg.) 0.0011 0.0006
(0.0027) (0.0026)

N 187929 187929 187929 187929
R2 0.936 0.763 0.936 0.763
Outcome variable mean 0.408 0.408 0.408 0.408
Year FEs X X X X
Precinct FEs X X
Group-District FEs X X

Note: Standard errors clustered at the level of pre-redistricting congressional districts. Additional controls
are the log of total population, log of CVAP, percent Black, non-Hispanic, percent Hispanic, percent Asian,
percent American Indian/Alaska Native, percent below the poverty line, median household income, percent
with a bachelor’s degree or higher, percent ages 18-24, percent ages 65 and older, and percent registered
Democrats. Group-district fixed effects indicate groups of similar turnout rates and ideology within the same
pre-redistricting congressional district. We use state-specific quartiles of predicted turnout and of share of
registered democrats to define groups. ∗ p < 0.1, ∗∗ p< 0.05, ∗∗∗ p< 0.01.

In Table E.6, we test if a change in competitiveness affects Democratic- versus Republican-leaning
precincts differently and if there are underdog effects. In Columns 1 and 2, there is a statistically sig-
nificant interaction between competitiveness and an indicator for whether a district is Democratic-
leaning. The point estimates in Column 2 suggest that a 10 point increase in competitiveness
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decreases turnout among Republican-leaning precincts by 0.6 p.p., but decreases turnout among
Democrat-leaning precincts by 0.2 p.p.. To put these estimates in context, imagine that a gerryman-
derer creates a highly competitive district that they expect to win with 51% of the votes. Suppose
also that all voters experienced a 10 p.p. increase in competitiveness in the district. The estimates
from Column 2 suggest that, after voters respond to the change in competitiveness, Democrats
would expect to win with 50.9% of the votes.

In Columns 5 and 6, we test for underdog effects. The indicator underdogpt equals one if the
precinct is not aligned with the district (e.g., the precinct is Democrat-leaning and the district is
Republican-leaning). There are no statistically significant underdog effects, using either fixed ef-
fects specification or measure of competitiveness. The 95% confidence intervals from Columns 5-6
imply that if a precinct becomes an underdog (i.e., switches from a district in which it is aligned to
one where it is not aligned), then turnout increases by no more than 0.2 to 0.6 percentage points.
Turnout might decrease if a precinct becomes misaligned due to bandwagon effects. We can rule
out any decrease in turnout greater than 1.3 p.p. in magnitude.

Overall, we estimate fairly precise null effects of competitiveness on turnout and of partisan align-
ment on turnout (underdog and bandwagon effects). We find evidence of heterogeneous effects of
competitiveness for D- and R-leaning precincts. While small in magnitude, heterogeneous effects
might nonetheless affect the optimal map. And, effects of competitiveness on turnout might dif-
fer across U.S. states and in other contexts. For both of these reasons, we study two models with
endogenous turnout in Appendix C.

TABLE E.7. SUMMARY STATISTICS FOR PRECINCTS (N=96,307)

Mean SD p1 p25 p50 p75 p99
Population

Total population 1,977 1,973 87 837 1,390 2,363 9,630
Voting Eligibility and Turnout

Percent voting age population 0.78 0.06 0.64 0.75 0.78 0.82 0.95
Percent citizen voting age population 0.71 0.13 0.36 0.63 0.72 0.81 0.98
Percent registered voters 0.64 0.14 0.22 0.56 0.66 0.74 0.94
Turnout rate 0.46 0.13 0.14 0.37 0.47 0.55 0.73
Note: Mean, Standard Deviation (SD) and percentiles (p) for precincts in all 25 in-sample states.

E.5. Summary Statistics

Table E.7 reports summary statistics for all precincts. Figure E.2 shows the distribution of turnout
rates for precincts with above- and below-median share of Registered Democrats for each state.
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FIGURE E.2. TURNOUT RATE ACROSS PRECINCTS. This figure shows the distri-
bution of turnout rates across precincts with above- and below-median share of registered
Democrats for the state.

F. Additional Empirical Evidence

F.1. Partisan Redistricting Proposals

Figure F.1 shows the number of expected Democrat seats under each proposal. In 16 of the 25
states, Democrats expect to win strictly more seats under the Democrat proposal than the Republican
proposal. In total, if all Democrat proposals were implemented there would be 30 more seats for
Democrats than if all Republican proposals were implemented, a 12% swing in seats (there are 259
seats across the 25 states). Notably, if we were to use registered Democrats and Republicans to
evaluate these maps, ignoring turnout data, then there would only be a 21-seat difference between
Democrat and Republican proposals, an 8% swing in seats.

F.2. Precinct-level Ideology and Partisan Lean

This section evaluates the robustness of results in Section 7.2 to alternative definitions of partisan
lean. Recall that, within precincts of a given partisan-lean that are adjacent to previous congressional
district borders, we find a negative correlation between a precinct turnout rate and the change in
Democratic vote share of a district under the Democrat vs Republican proposal. In Table 1, we
assume that there are four levels of partisan lean. Figure F.2 shows the distribution of the share
of registered Democrats and the Democratic vote share across all precincts. The distributions are
bi-modal and the median value is 0.52 and 0.48, respectively. Figure F.3 shows the distribution of
the share of registered Democrats and Democratic vote shares by state. Using these two measures
as proxies for the ideology of a precinct, we can divide each state into any number of equal-sized
groups, using quantiles of ideology.
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FIGURE F.1. EXPECTED DEMOCRAT SEATS UNDER BOTH PROPOSALS.
This figure shows the expected number of seats won by Democrats under the Democratic
and Republican proposals for U.S. Congressional districts. A seat is expected to be won by
Democrats if the Democrat vote share is larger than the Republican vote share. Vote shares
are measured using the average of the two presidential elections prior to the redistricting
cycle (2016 and 2020). The party in control of redistricting is outlined in black. A party
is in control of redistricting if both the majority party in the legislature and the party of
the governor are aligned. Six states have split control: KS, MD, MN, NC, PA, and WI.
Republicans have control in the states with zero expected Democratic seats (AR, MT, OK).
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FIGURE F.2. DISTRIBUTION OF PERCENT REGISTERED DEMOCRATS AND
DEMOCRATIC VOTE SHARE WITHIN PRECINCTS. Percent Democrat is either the
two-party share of registered voters that are Democrats (black solid line) or the two-party
vote share for Democrats (green dashed line). The vertical lines indicate the median values
of 0.49 for Percent Registered Democrats and 0.45 for Democratic Vote Share.

We show OLS regression coefficients for the estimating Equation 9 using alternative definitions of
partisan fixed effects, using either party registration (Figure F.4) or Democratic vote shares (Figure
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F.5) to proxy for ideology. In each regression, we first choose the number of partisan-lean groups,
ranging from two to ten. We divide each state into equal-sized partisan-lean groups using quantiles
of the proxies for ideology (registered voters and vote shares). Then, we include a state fixed effect
for each level of partisan-lean. We additionally include border fixed effects, as in the main specifi-
cation reported in Table 1. The negative correlations in Table 1 are robust to these alternative fixed
effects. Coefficients are also stable across specifications. We find no statistically significant dif-
ferences between the coefficients from Table 1 (with 4 partisan-lean groups) and the corresponding
coefficients in Figures F.4 and F.5 (p-values for t-tests are > 0.10 for each pairwise comparison of
estimated coefficients).
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FIGURE F.3. DISTRIBUTION OF PERCENT REGISTERED DEMOCRATS AND DEMO-
CRATIC VOTE SHARE WITHIN PRECINCTS, BY STATE. Percent Democrat is either the
two-party share of registered voters that are Democrats (black solid line) or the two-party
vote share for Democrats (green dashed line). The vertical lines indicate the median values
in each state.
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A. Border precincts
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FIGURE F.4. CORRELATION BETWEEN TURNOUT AND CHANGE IN DEMO-
CRATIC VOTE SHARE BY THE NUMBER OF IDEOLOGICAL TYPES. This figure
plots the regression coefficients from estimating Equation (9), using different numbers of
ideological groups and hence partisan-lean fixed-effects. For each coefficient, we divide
the sample of precincts into the number of ideological groups indicated on the x-axis,
using quantiles of registered Democrats. The independent variable is one of three mea-
sures of turnout: percent Citizen Voting Age Population (CVAP), predicted turnout rate,
or turnout rate. Each symbol is a point estimate from a separate regression. Vertical lines
indicate 95% confidence intervals. Standard errors allow for arbitrary correlations between
precincts within 50 kilometers.
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A. Border precincts
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FIGURE F.5. CORRELATION BETWEEN TURNOUT AND CHANGE IN DEMO-
CRATIC VOTE SHARE BY NUMBER OF IDEOLOGICAL TYPES. This figure plots
the regression coefficients from estimating Equation (9), using different numbers of ide-
ological groups and therefore different partisan-lean fixed effects. For each coefficient,
we divide the sample of precincts into the number of ideological groups indicated on the
x-axis, using quantiles of Democratic vote shares in previous presidential elections. The
independent variable is one of three measures of turnout: percent Citizen Voting Age Pop-
ulation (CVAP), predicted turnout rate, or turnout rate. Each symbol is a point estimate
from a separate regression and vertical lines indicate 95% confidence intervals. Standard
errors allow for arbitrary correlations between precincts within 50 kilometers.
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F.3. Definition of Movable Precincts

In Section 7.2, we restrict attention to a subset of precincts that are most likely to be movable. As
described in Section 7.1, the empirical prediction may fail if we make inferences from precincts
that the gerrymanderer had no control over. In Figure F.6, we show the distribution of the difference
in the Democratic vote share under the Democratic proposal versus the Republican proposal (the
outcome variable for the regressions in Table 1) for the full sample, the sample of precincts adjacent
to a previous congressional district border, and the sample precincts adjacent to CD borders that are
not county borders. The standard deviation increases in the border sample, relative to the whole
sample, and especially after excluding county borders. This lends evidence to our hypothesis that
precincts adjacent to previous district borders are more likely to be movable than others.
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FIGURE F.6. DISTRIBUTION OF CHANGE IN DEMOCRATIC VOTE SHARE UNDER
D VS R MAP. Democratic vote share is the two-party vote share from 2016 and 2020
presidential elections, aggregated to the level of the proposed district. We then take the
difference between the D map and the R map.

To test sensitivity to this definition of movable, we estimate equation 9 for different sub-samples
using an increasingly lenient definition of being movable. First we include precincts adjacent to
border precincts (1 precinct from a border), then precincts that are 2 and 3 precincts from a bor-
der. Finally we report estimates for the full sample. The estimated coefficients are in Figure F.7.
The negative correlation becomes smaller in magnitude as the definition of a movable precinct be-
comes more lenient. However, the negative correlation is robust to include precincts adjacent to
border precincts, and the precincts adjacent to those, when using predicted and previous turnout
measures. In contrast, the estimated coefficients for CVAP are stable across sub-samples and statis-
tically insignificant. This might be because CVAP is a relatively noisy measure of expected turnout.
The estimated correlation is statistically insignificant for all measures of turnout when using the full
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sample of precincts. As explained in Section 7.1, estimates from the full sample might be biased be-
cause precincts that are not movable due to geographic and legal constraints are subject to spillover
effects from precincts that are movable.
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A. Border precincts, excluding county borders
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FIGURE F.7. CORRELATION BETWEEN TURNOUT AND CHANGE IN DEMO-
CRATIC VOTE SHARE BY SUB-SAMPLE OF MOVABLE PRECINCTS. This figure plots
the regression coefficients from estimating Equation (9) using different definitions of mov-
able precincts. Each symbol represents a point estimate from a separate regression, and
the vertical lines indicate 95% confidence intervals. Standard errors are clustered within
precincts, allowing for arbitrary correlations between precincts located within 50 kilome-
ters.
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F.4. Sensitivity to Selection of States

To test if the results are sensitive to the selection of states, we repeat the regressions in Table 1,
leaving out one state at a time. Figure F.8 shows coefficients for estimates from each of the 25
samples. For the partisan-lean fixed effects, we use four quartiles defined by share of registered
Democrats, as in Table 1.
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A. Border precincts, excluding county borders
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FIGURE F.8. CORRELATION BETWEEN TURNOUT AND CHANGE IN DEMO-
CRATIC VOTE SHARE BY SUB-SAMPLE OF MOVABLE PRECINCTS. This figure plots
the regression coefficients from estimating Equation (9), using different samples of states.
For each coefficient, we leave out the state indicated on the x-axis. Each symbol is a point
estimate from a separate regression and vertical lines indicate 95% confidence intervals.
Standard errors allow for arbitrary correlations between precincts within 50 kilometers.
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F.5. Calibrating the Standard Deviation of the Aggregate Shock

We use the standard deviation of two-party Democratic vote share from recent presidential elections
(2008-2020) to calibrate σs, the standard deviation of the aggregate shock in a state. The average
value of σs in the sample of precincts is 0.021.

TABLE F.1. STANDARD DEVIATION OF STATEWIDE PRESIDENTIAL DEMOCRAT
VOTE SHARES, 2008-2020

State σs State σs

Alabama 0.016 Louisiana 0.006 New Jersey 0.007 South Carolina 0.012
Arkansas 0.02 Maryland 0.019 New Mexico 0.013 Texas 0.022
Arizona 0.08 Minnesota 0.019 Nevada 0.024 Washington 0.009
Connecticut 0.018 Montana 0.042 New York 0.021 Wisconsin 0.034
Florida 0.013 North Carolina 0.009 Ohio 0.035
Georgia 0.017 Nebraska 0.025 Oklahoma 0.015
Kansas 0.021 New Hampshire 0.02 Pennsylvania 0.025

F.6. Swapping Precincts at the Border: Robustness Checks

Most swaps have a negligible effect on the gerrymanderer’s payoff function. In Figure 3, we plot
the kernel density of the change in payoff for all swaps for Democrat and Republican proposals,
for both the full sample of borders (Panel A) and for the subset of borders that do not overlap with
county borders (Panel B). To compare the effects of swaps across boundaries and states, we also plot
the distribution of the standardized effect of a swap (z-score), which is normalized by the border-
specific mean and standard deviation. From these plots, it is easier to see that the most profitable
swaps persist in the opponent’s proposal, rather than a party’s own proposal.

Next, we show that the patterns in Figure 3 are robust to alternative values of σ, the standard devi-
ation of the zero-mean normal distribution for the aggregate shock. We plot the share of profitable
deviations by σ in Figure F.10. In Panel A, we report the share of all swaps that are profitable
(π̂1 + π̂2 − π1 − π2 > 0) and in Panel B we report the share of all swaps that are profitable by at
least 1 percentage point. We include all borders in this sensitivity analysis. While the data-implied
values of σ lie between 0.01 and 0.02, depending on the state, the difference in the share of profitable
deviations across proposals at first increases for larger values of σ, peaking between 0.05 and 0.1.
For very large values of σ, the proposals tend to look more similar in terms of share of profitable
deviations, approximating the case of the uniform aggregate shock.
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FIGURE F.9. DISTRIBUTION OF THE EFFECT OF A SWAP ON THE PAYOFF FOR
THE DEMOCRATIC GERRYMANDERER. This figure plots the distribution of the effect
of all counterfactual redistrictings, or swaps. The x-axis is the change in the payoff for the
Democratic party, measured in percentage point gains to the Democrat’s payoff function
(left plots) or in standard deviations of the effect of swaps at a border (right plots). The
solid blue line shows the distribution of the effect of swaps for the Democratic proposals,
and the dashed red line shows the same for the Republican proposals.

Figure F.11 shows the share of profitable swaps using the ideology-only measure. These results are
analogous to those shown in Figure 4, except we use vote shares to proxy for ideology rather than
party registration.

Finally, we show that the patterns in Figure F.12 are not due to a single party nor to only the parties
that have majority control over the legislature at the time of redistricting. We evaluate the share
of swaps that are profitable for the party with majority control over the state legislature and the
share of swaps that are profitable for the minority party in the state legislature. Parties have fewer
profitable deviations under their own proposal when we look at borders that do not coincide with
county borders, regardless of whether they are the majority or minority party in the state.
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B. Profitable deviations at of 1 p.p. or higher
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FIGURE F.10. SENSITIVITY ANALYSIS: profitable swaps by standard deviation
of the aggregate shock (σ)

31



A. Measure Payoffs with Ideology only: all borders
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B. Measure Payoffs with Ideology only:
borders that do not coincide with counties
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FIGURE F.11. SHARE OF SIGNIFICANTLY PROFITABLE SWAPS, MEASURING
PAYOFFS WITH IDEOLOGY ONLY. The y-axis is the percent of feasible counterfactual
maps (‘swaps’) that are profitable for Democrats (left) and Republicans (right). A swap is
profitable if the change in payoff exceeds the threshold on the x-axis. The payoff is the
expected number of seats. To compute the expected number of seats, we assume that the
aggregate shock is normally distributed with mean zero and standard deviation calibrated
using statewide presidential election returns from 2008-2020 (see Table F.1). For this exer-
cise, we assume that the vote share of a district is the weighted average of the precinct-level
ideology, where ideology is measured with precinct-level vote shares.
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B. Borders that do not coincide with county borders
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FIGURE F.12. SHARE OF SIGNIFICANTLY PROFITABLE SWAPS, COMPARING
PROPOSALS FROM MAJORITY AND MINORITY PARTIES. The y-axis is the percent
of feasible counterfactual maps (‘swaps’) that are profitable for the party that has majority
control of both chambers of the state legislature (left) and for the minority party (right). A
swap is profitable if the change in payoff exceeds the threshold on the x-axis. The payoff is
the expected number of seats. To compute the expected number of seats we assume that the
aggregate shock is normally distributed with mean zero and standard deviation calibrated
using statewide presidential election returns from 2008-2020 (see Table F.1).
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