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This paper studies the manipulation of electoral maps by political parties, known as 
gerrymandering. At the core of our analysis is the recognition that districts must have the same 
population size but only voters matter for electoral outcomes. We propose a model of 
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turnout rates, and electoral maps. Using a novel empirical strategy that relies on the comparison 
of maps proposed by Democrats and Republicans during the 2020 redistricting cycle in the US, 
we bring such empirical implications to the data and find support for them.
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1. Introduction

Gerrymandering refers to the manipulation of electoral maps in order to gain a political ad-
vantage: the strategic redrawing of electoral districts by the incumbent party.1 Most coun-
tries tackled this risk of manipulation by delegating redistricting to independent electoral
commissions (Stephanopoulos 2013).2 In contrast, in part with the support of enhanced
data and software, gerrymandering is stronger than ever in the United States. Beyond pro-
ducing “bizarrely-shaped” districts, that are not geographically compact or cohesive, ger-
rymandering appears to provide an unfair advantage to the party of the gerrymanderer and
to impact policymaking. It affects the quality of political candidates (Stephanopoulos and
Warshaw 2020), the ideological position of legislators (Jeong and Shenoy 2022; Caughey
et al. 2017; Shotts 2003), roll-call voting behavior (Jones and Walsh 2018), the ideological
slant of implemented policies (Caughey et al. 2017), and the allocation of public resources
(Stashko 2020). Perhaps as a consequence, gerrymandering is viewed as a major problem
of the U.S. political system by a majority of Americans3.

This paper focuses on the strategic incentives of gerrymanderers when they draw electoral
maps.4 We propose a novel model of gerrymandering and then bring some of its predic-
tions to the data. We take into account a simple but important fact that has been mostly
overlooked by the literature: not all inhabitants of a district vote (either because they are
not eligible to vote or because they decide not to do so), and while districts must be equal in
population size (counting voters and non-voters), only voters matter for electoral outcomes.

Differences in voting eligibility and voting propensity are large in practice. Only 72%
of the U.S. population was eligible to vote in 2020, with significant heterogeneity across
precincts.5 Among eligible voters, the propensity to vote varies substantially with socio-
demographic characteristics independently of their district characteristics. For instance,
only 51.4% of those aged 18-24 voted in 2020, much below the 71% of those aged 65-74.6

Together, variations in voting eligibility and voting propensity lead to large turnout rate

1The term is a portmanteau between the name of Governor Gerry and the salamander-like shape of a Mas-
sachusetts district from 1812, when the state legislature redrew the state senate districts.

2Exceptions include Hungary, Lebanon, and most notably, the U.S.
3APNORC Center for Public Affairs Research 2021.
4Understanding those incentives and what an optimally gerrymandered map look like is a necessary step to
identify a gerrymandered map, develop measures of gerrymandering, evaluate the effects gerrymandering
could have on electoral outcomes and policymaking, and assess potential regulations.

5The remaining 28% were ineligible for reasons such as being minors, convicted felons, or noncitizens.
6Similar gaps exist across race, income, and other socio-demographic characteristics (Census 2021, US Elec-
tions Project 2020).
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differences (calculated as the share of all inhabitants who vote), both across precincts within
states, and across and within partisan groups.7 Importantly, these variations in turnout rates
are largely predictable.8 Gerrymanderers can thus easily exploit them. And indeed, there
is suggestive evidence that gerrymanderers and the courts take turnout rates into account
when drawing and assessing maps.9

How does a gerrymanderer want to draw their electoral map when voters differ not just
in their ideological lean but also in their eligibility or (exogenous) propensity to vote? Do
they want to “pack” some types of voters into some districts? Or to “crack” them and create
districts that mix supporters and opponents? In the latter case, does the gerrymanderer want
to mix higher turnout supporters with higher turnout opponents or with lower turnout ones?
Does the gerrymanderer want their higher turnout supporters in strong or weak districts?

In order to answer these questions, we propose a new model of gerrymandering in which
voters differ in terms of ideology and turnout rate. We anchor our model in the classi-
cal probabilistic voting model (see e.g. Lindbeck and Weibull 1987). The population is
composed of various groups of individuals, which are characterized by their ideological
lean—with democrats having a higher probability to prefer the Democratic party than re-
publicans do—and by their turnout rates (as in Strömberg 2004). Before the election, the
gerrymanderer must draw the electoral map. This means allocating individuals from each
group to districts, with the two-pronged constraint that each district must contain the same
population mass and, naturally, that all the population be allocated to a district. The gerry-
manderer’s objective is to maximize the expected seat share of the incumbent party in the
state assembly.

Our model uncovers a new force that shapes the map in the presence of turnout hetero-
geneity: gerrymanderers want to separate lower-turnout supporters from higher-turnout
opponents, and to mix higher-turnout supporters with lower-turnout opponents. This is be-
cause the election is more easily lost when a population of supporters gets outnumbered
by an equally sized population of higher-turnout opponents, and more easily won when the

7See Table H.6 and Figure H.2 in Appendix H.5 for more details.
8For example, when we predict precinct-level turnout rates for ten states using only socio-demographic char-
acteristics, the coefficient of correlation between predicted and realized turnout is 0.8 (Appendix H.4.1).

9The history of Texas’s 23rd congressional district is a case in point: as detailed by (Levitt, 2016, p282)
“[S]tate officials in 2011 [... drew a] district—that would look like it served the Latino population but was
designed to do just the opposite. The court adjudicating the state’s 2011 preclearance submission found
that [t]he map drawers consciously replaced many of the district’s active Hispanic voters with low-turnout
Hispanic voters in an effort to strengthen the voting power of CD 23’s Anglo citizens”.
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same population of supporters outnumbers an equally sized population of lower-turnout
opponents.

Solving for the optimal map, we identify a “pack-crack-pack” strategy along the turnout
dimension. The gerrymanderer’s incentives are to isolate both their lower-turnout support-
ers and their higher-turnout opponents in packed districts and to mix intermediate-turnout
supporters and opponents in cracked districts. We show that this novel strategy comes on
top of the typical “pack-and-crack” strategy along the ideology dimension identified by
Owen and Grofman (1988), according to which the optimal map is composed of only two
types of districts: packed districts with only opponents and cracked districts with more
supporters than opponents. In this model, and other models in the literature (see Section
2), packed districts only concern opponents. Our model thus helps explains an otherwise
puzzling pattern in the data: i.e., that gerrymanderers seem to often create districts packed
with supporters (McCartan, et al. 2022).10

Our model generates two other predictions. First, the mixing of supporters and opponents
in cracked districts should follow an assortative matching pattern: districts can be ordered
along the turnout rates of both opponents and supporters. Second, in the optimal map there
is a negative correlation between the average turnout rate of individuals of each partisan
leaning and the probability that the gerrymanderer wins their district.

We then examine recent gerrymandering attempts to determine whether our predictions find
support in the data. To do so, we collect maps proposed by Republicans and Democrats
in the most recent 2020 redistricting cycle. The district maps are combined with precinct-
level data on population, turnout, and vote shares in recent presidential elections. This
novel dataset, which includes the maps of 20 districting proposals over 10 states, allows us
to compare redistricting proposals from both parties in the same state. The comparison of
Democrat and Republican maps for a given state is key to attribute district characteristics
to partisan strategy over other redistricting constraints and considerations.

Section 7.2 tests for the negative correlation between the turnout rate of the precincts com-
posing a district and the anticipated vote share of the gerrymanderer’s party in the district.
In line with the theoretical prediction, we find that Democrat and Republican maps tend to

10For instance, in the 2020 redistricting cycle, Democrat gerrymanderers in MA and MD created packed
Democrat-leaning districts. In particular, the maps enacted by Democrat gerrymanderers include districts
as safe for Democrats as the safest possible Democrat districts in 5,000 simulated maps (with the constraint
that the simulated maps satisfy state redistricting rules and geographical distribution of preferences). For
Republican gerrymanderers, maps in, e.g., IN and SC show similar patterns. This is based on the Figures at
https://alarm-redist.org/fifty-states/ on October 10, 2023.
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treat the same precinct differently, depending on its turnout rate. In particular, a relatively
low-turnout precinct tends to get allocated to a district that leans more strongly Democrat
under the Democrat map than under the Republican map.

In Section 7.3, we provide empirical evidence that (i) information about precincts’ turnout
rates is critical for identifying modifications to district borders that increase a party’s ex-
pected seat share, and (ii) gerrymanderers tend to identify these opportunities and exploit
them in practice. To do so, we first construct a large number of counterfactual districts by
reallocating precincts along the border between two adjacent districts. We find that ger-
rymanderers have many more profitable deviations (i.e. those that increase their expected
number of seats) under their opponent’s proposal than under their own proposal. Moreover,
gerrymanderers appear to extract essentially all the benefits from turnout differentials: start-
ing from their own proposal, few deviations can produce non-trivial gains. To quantify the
importance of turnout rate heterogeneity, we show that over half of the deviations that seem
profitable when relying on ideological differences alone are actually detrimental when also
taking turnout rates into account.

2. Literature

Theories of redistricting focus on partisan gerrymandering. Owen and Grofman (1988) is
the germinal model of gerrymandering under uncertainty. Assuming two types of voters,
opponents, and supporters, it rationalizes the so-called “pack and crack” strategy: to con-
centrate losses in as few districts as possible, the gerrymanderer should segregate (‘pack’)
some opponents in districts that heavily favor the opponent. To win as many districts as
possible, they should mix (‘crack’) the remaining opponents with supporters in districts that
narrowly favor the gerrymanderer. In the presence of a high degree of uncertainty, however,
even the mixed districts can be strongly in favor of the gerrymanderer. Gul and Pesendorfer
(2010) and Friedman and Holden (2008, 2020) generalize this intuition in the presence of
a continuum of ideological preferences and both aggregate and individual uncertainty.

Under a unifying framework, Kolotilin and Wolitzky (2020) find that pack-and-pair pat-
terns —which generalize pack-and-crack—are typically optimal for the designer. When
individual uncertainty dominates, the gerrymanderer packs the stronger opponents in some
districts and pairs the others into cracked districts. When aggregate uncertainty dominates,
a gerrymanderer may sort voters by the intensity of preferences. High-intensity Republi-
cans are matched with high-intensity Democrats. This is known as matching extremes, or
pairing, and is the districting strategy of focus in Friedman and Holden (2008, 2020). In
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all those models, individuals differ along one dimension, the intensity of their preferences
for one party over the other, while individuals in our model differ along two dimensions:
their preferences and their likelihood of voting. The importance of incorporating turnout
heterogeneity into redistricting models has also been recognized by Gomberg et al. (2023).
They propose a model in which the gerrymanderer aims to align the ideology of the me-
dian district as closely as possible with their own ideology. That approach complements
ours by confirming that the motivation to exploit turnout differentials exists irrespective
of the gerrymanderer’s objective function. They find that a significant ideological gap can
emerge when comparing a simplistic redistricting approach (ignoring turnout differentials)
to a turnout-based strategy.

In addition to introducing a second dimension of heterogeneity into a model of strategic
redistricting, our analysis also features two other important differences. First, we build on
a standard probabilistic voting model à la Persson and Tabellini (2000). This simplifies
the analysis and connects our results to the broader political economics literature. It also
implies that our framework is amenable to study the redistributive politics implications
of gerrymandering. Second, we draw concrete implications from the model that we can
directly bring to the data.

Introducing turnout heterogeneity proves qualitatively important: in contrast to our paper,
the above-mentioned theories cannot easily rationalize the gerrymanderer packing their
own supporters, nor the resulting negative link between turnout and vote shares that we
find in the data. The proposed alternative explanations for the creation of safe districts in
favor of the gerrymanderer’s party are (i) a high degree of aggregate uncertainty (Owen
and Grofman 1988), and (ii) the need to protect incumbent seats. However, the latter expla-
nation, known as incumbency gerrymandering, has found little support in recent empirical
work.11 Our paper thus adds one new explanation, which is that packing supporters can
be optimal for the gerrymanderer in the presence of turnout disadvantages, even if there is
little aggregate uncertainty.

Another strand of the literature focuses on how to evaluate redistricting in practice. Most
measures of partisan gerrymandering are designed to assess the extent to which a party
packs and cracks voters.12 These include the Efficiency Gap (Stephanopoulos and McGhee
2015), Mean-Median difference (McDonald and Best 2015), Declination (Warrington 2018),

11Gelman and King (1994) and Friedman and Holden (2009) find that, if anything, gerrymandering works
against the interests of incumbents. Similar conclusions are reached by Abramowitz et al. (2006).

12Others evaluate the shapes of districts (Chambers and Miller 2010, Niemi et al. 1990), or compare outcomes
to simulated districts (Chen and Rodden 2013, Gomberg et al. 2023).
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and Partisan Dislocation (DeFord et al. 2022). The Efficiency Gap, perhaps the most well-
known among these, measures the number of votes ‘wasted’ by one party relative to the
other. The idea is that if one party packs and cracks, then the other party’s votes are wasted
because they win safe districts (votes in excess of 50% of the vote share are wasted) and
lose competitive districts (all votes in lost districts are wasted). Note that our pack-crack-
pack strategy would not necessarily be detected by the Efficiency Gap and other measures
designed to detect pack and crack strategies. In particular, the creation of partisan safe
districts would conventionally be seen as ‘wasteful’ or non-strategic.

Though many measures of gerrymandering are based on the pack-and-crack strategy, few
studies directly test whether gerrymanderers adhere to that strategy. Jeong and Shenoy
(2022) offer some evidence suggesting that gerrymanderers indeed employ such a strategy.
For instance, they observe that African Americans, who predominantly support Democrats,
are allocated differently across districts by Democrat and Republican gerrymanderers. No-
tably, they find that the packing of African Americans decreases when Democrats gain
control of redistricting. This is in line with our finding that both the pack-and-crack strat-
egy and the pack-crack-pack strategy are empirically relevant. Note that their empirical
strategy also relies on the comparison of Democrat and Republican maps. However, they
compare maps drawn during different redistricting cycles, following a shift in control of the
redistricting process, whereas our analysis compares the maps proposed by the two parties
within a single redistricting cycle.

Instead of detecting partisan strategies, other measures are designed to evaluate the nor-
mative properties of a map. Common measures include the bias, asymmetry, and respon-
siveness of the seats-to-votes curve (Cox and Katz 2007, Grofman and King 2007, Katz
et al. 2020). The seats-to-votes curve is the hypothetical relationship between the number
of seats won by a party and the level of state-wide support. Katz et al. 2020 define a map’s
bias as the gap between the number of seats won by one party for each possible vote share,
and those won by the other party with the same vote shares.

A map has low responsiveness if the number of seats won by a party does not change
much as the vote share changes. They also show that existing measures of partisan gerry-
mandering need not measure the actual bias and responsiveness of a map. Importantly for
our setting, they also highlight that both measurements of gerrymandering and estimates
of a seats-to-votes curve are sensitive to the assumptions made about turnout rates. Thus,
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whether the intent is to detect a partisan gerrymander in practice or to determine how ger-
rymandering affects fairness in theory, one needs to understand redistricting strategies in
the presence of heterogeneous turnout rates.

3. The Model

Two parties, the Democrat (D) and the Republican (R), will compete in a statewide elec-
tion. The state is divided into J electoral districts, indexed by j. Each district elects one
representative by first-past-the-post. Prior to the election, the incumbent has the opportu-
nity to decide on the composition of each electoral district.

3.1. The Population

Each individual belongs to one of a finite number of groups, indexed by k. These groups
differ along two dimensions: partisan lean and turnout rates.

In this baseline model, partisan lean is either Democratic or Republican: on average,
Democrats assign a valence νD ∈ IR to the Democratic party, which is higher than the
valence νR ∈ IR assigned by Republicans to the Democratic party: νD > νR. Within each
group, individual voters differ in their preference for either party.

The novelty of our model is to let population groups differ in turnout rates, denoted τk ∈
[0, 1]. Nk(> 0) denotes the population size of each of these groups. Naturally, population
sizes Nk must add up to 1, the total size of the population.

To ease notation, we will often use subscripts d and d′ to represent Democratic-leaning
groups and subscripts r and r′ to represent Republican-leaning groups.

3.2. Gerrymandering

The gerrymanderer designs an electoral map that allocates the population across electoral
districts. An electoral map n := (nkj)∀k,j (with nkj ≥ 0) is a matrix that specifies how
citizens of each group k are allocated to each district j.

We take the convention that the gerrymanderer belongs to party D. Their goal is to maxi-
mize the expected seat share of party D, π(n), subject to the constraints that each district
must have an equal share of the population 1/J , and that all individuals are allocated to a
district:

maxn π(n) s.t.
∑

k nkj =
1
J
, ∀j &

∑
j nkj = Nk, ∀k. (1)
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3.3. Probabilistic voting

We now turn to voting behavior, which underpins the probability of winning a district. In
the tradition of probabilistic voting models à la Lindbeck and Weibull (1987), we assume
that the gerrymanderer is uncertain about the voters’ preferences. Uncertainty is only re-
solved at the time of the election.

Following (Persson and Tabellini, 2000, chapter 3), we consider two types of shocks: first,
an independently and identically distributed elector-level shock ηe toward party R captures
preference heterogeneity among individuals within each group. Second, an aggregate shock
δ captures the valence of party R over party D at the time of the election. The elector-level
shock ηe follows a uniform distribution U [− 1

2ϕ
, 1
2ϕ
], and the aggregate shock δ follows

another uniform distribution Γ = U [− 1
2γ
, 1
2γ
].

Due to preference heterogeneity, not all Democratic leaning voters vote for party D, and
not all Republican leaning voters for R. As we detail below, conditional on turning out, an
elector e with political lean νk votes for D iff νk − ηe − δ ≥ 0.

Then, the probability that party D wins district j is given by:13

πj(nj) = Γ(δ̂j) with δ̂j :=
tDj νD + tRj νR

tDj + tRj
(2)

where we denote by tDj =
∑

d ndjτd the total turnout by Democrat-leaning individuals in
district j and by tRj =

∑
r nrjτr the equivalent total for Republican-leaning individuals.

Since distributions are symmetric, the variable δ̂j represents the expected position of the
median voter in district j. In essence, (2) simply says that the gerrymanderer wins a district
whenever its median voter prefers D to R, with πj being the probability that the aggregate
shock δ remains below δ̂j .14 Moreover, we can rewrite δ̂j as a linear function of a contest
success function:15

δ̂j :=
tDj

tDj + tRj
∆+ νR

13The probability that R wins district j is 1− πj , making the problem symmetric for party R.
14This property is independent of the precise distribution of individual preferences. For instance, if individual

preferences were normally distributed, the average –and hence median– district preference would remain the
same weighted average δ̂j .

15A Tullock contest success function is used by an increasingly large literature: see Tullock (1980); Hirshleifer
(1989); Baron (1994); Skaperdas and Grofman (1995); Esteban and Ray (2001); Konrad (2007); Jia et al.
(2013); Herrera et al. (2014); Bouton et al. (2018) among others.
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where ∆ = νD − νR is the ideological gap between Democrat and Republican-leaning
voters. δ̂j is increasing in the share of the district’s overall turnout that leans Democrat,
tDj /(t

D
j + tRj ), which we also refer to as the effective share of Democrats in district j.

In Appendix A, we introduce mild restrictions to guarantee that the resulting vote shares
remain strictly between zero and one in each district, irrespective of their composition.
Roughly speaking, this assumption requires that, relative to the ideological gap ∆, the
density ϕ is sufficiently small, whereas γ is sufficiently large. Under this Assumption (A1)
the probability that party D wins district j boils down to πj(nj) =

1
2
+ γδ̂j.

The expected number of seats won by the Democrats being
∑

j πj ,16 we can thus rewrite
the gerrymanderer’s problem (1) as:

max
n

π(n) =
∑
j

πj(nj)

J
=

1

2
+

γ

J

∑
j

δ̂j

s.t.
∑
k

nkj =
1
J
, ∀j &

∑
j

nkj = Nk, ∀k.
(3)

The probability that Democrats win district j is linear in δ̂j and therefore linear in the
effective share of Democrats in the district. For this reason, the gerrymanderer’s objective
boils down to maximizing a sum of contest success functions.

3.4. Discussion of Key Assumptions

Before moving to the analysis of the gerrymanderer’s behavior, we discuss five key as-
sumptions of the model.

3.4.1 Objective Function

Our model assumes that the gerrymanderer draws the map with the sole objective of max-
imizing their expected seat share. This assumption aligns with most of gerrymandering
models in the literature. Adhering to this approach thus ensures the comparability of our
model with those of previous research. It is clear that there are various benefits for a party

16To see why, order the districts from most likely to elect a D candidate to least likely. For values of δ above
δ̂1, D has zero seats. For values of δ between δ̂1 and δ̂2, D has one seat (from district 1). For values of δ
between δ̂2 and δ̂3, D has two seats (from districts 1 and 2), and so on. The expected number of seats is:∑J−1

j=1 j ×
[
Γ(δ̂j)− Γ(δ̂j+1)

]
+ J × Γ(δ̂J) =

∑
j πj .
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and its members of holding a larger number of seats and there is empirical evidence sup-
porting this assumption (see, e.g. Jacobson and Kernell 1985; Incerti 2015; Snyder 1989
and see Genicot r⃝ al. 2021, pp. 3189-92, for a discussion).

Alternatively, we could assume that the gerrymanderer maximizes the probability of ob-
taining a majority of seats in the assembly like, for instance, Lizzeri and Persico (2001);
Strömberg (2008). Such an objective would restore the incentive to draw a map following
the typical “pack-and-crack” structure: creating a number of relatively strong districts that
the gerrymanderer expects to win with the same probability, and giving up on the others.

In practice, gerrymanderers’ objectives go beyond pure partisan gains (Katz et al. 2020).
For instance, parties may draw maps to protect incumbents or to hurt incumbents of the
other party (and even encourage them to retire). While our model abstracts from those al-
ternative objectives, our empirical strategy tries to take them into account. In particular, we
focus on Congressional districts, which are drawn by state legislatures. Thus, no incum-
bents are directly involved in the redistricting process and there is no bonus for winning a
majority of Congressional seats within a state.

3.4.2 Geographical and Legal Constraints

Our model, like much of the existing literature, places minimal constraints on the actions
of gerrymanderers. Specifically, we abstract from legal constraints such as geographic
contiguity, adherence to political boundaries, and compliance with the Voting Rights Act
of 1965, which are typically observed to varying degrees in practice (Sherstyuk, 1998).
These constraints will be revisited in the empirical section (see Section 7.1).

3.4.3 Distribution of the Aggregate Shocks

Our model assumes a uniform distribution for the aggregate shocks. This allows us to ab-
stract from the “traditional” incentives to pack and crack one’s opponents, and hence to
isolate the novel incentives stemming from turnout rate differentials. In Section 6.1, we
relax that assumption and instead assume that the distribution of the aggregate shock δ is
(strictly) single-peaked. This allows us to show that our novel turnout-differential incen-
tives have a similar effect on the optimal map in a model that also includes the traditional
incentives to pack and crack. This extended model is the one we bring to the data.
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3.4.4 Two Ideology Types

For tractability and ease of exposition, our model assumes that voters have one of two
possible ideology types or partisan leans: Democratic (νD) or Republican (νR), with het-
erogeneous individual preferences for voters within each group. In Section 6.2, we extend
the model to a more general distribution of ideology types. In particular, we allow for an
arbitrary number of groups, and each group k has its specific partisan lean, νk, and turnout
τk. All our results extend directly.

3.4.5 Endogenous Turnout

Our model assumes that, within each group, turnout rates are not affected by the partisan
composition of the district. This captures two facts mentioned in the introduction. First,
a large part of the heterogeneity in turnout rates (which we defined as the total number of
votes divided by the total population) across precincts is driven by heterogeneity in voting
eligibility. There is indeed significant cross-precinct heterogeneity in voting eligibility: at
the 25th percentile of the precinct distribution, 63% of the total population are citizens
of voting age. At the 75th percentile, this raises to 82%. Second, even among eligible
voters, the propensity to vote differs for exogenous reasons (e.g. differences in education
level, age, or ethnicity) that vary greatly across precincts and that are independent of the
partisan composition of the districts. In particular, using only socio-demographic variables
to predict the precinct-level turnout rates for 2016 and 2020 presidential elections, we find
that we can predict turnout rates with a relatively high degree of accuracy. Namely, our
“predicted turnout” variable explains 76% of the variation in observed turnout rates (see
Section H.4.1 in the Appendix).

Yet, at the margin, the incentive to vote may also depend on the electoral map itself. In
particular, turnout can be expected to increase when the electoral race is expected to be
close in the district.17 In Appendix E, we show that our model can be extended in this
direction without modifying the essence of our results.18 The intuition is that the partisan

17Although this is a logical implication of pivotal and group-based voting models, empirical evidence is mixed.
Moskowitz and Schneer (2019) find a precise null effect of the competitiveness of U.S. Congressional districts
on voter turnout, using a nationwide panel of voters. Bursztyn et al. (2020) find that a one standard deviation
increase in competitiveness increases turnout among eligible voters by 0.4 percentage points, using data
from election polls in Switzerland. Jones et al. (2023) find that an increase in competitiveness following
redistricting reforms in Pennsylvania and Ohio increased turnout among registered voters by 2 percentage
points.

18Specifically, we consider a model in which an eligible voter will only turn out if the expected benefit of voting
outweighs some exogenously given voting cost (this follows the calculus of voting tradition as described in,
for example, Riker and Ordeshook 1968). The expected benefit relies on both the utility differential between
the parties and a parameter that captures the probability of a vote being pivotal, which may vary depending
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composition of the map affects the turnout of both Democrats and Republicans symmetri-
cally, leaving the expected position of the median voter in the district (δ̂), and therefore the
probability of winning the district, unchanged. Turnout can be endogenous, as long as the
effect of the map on turnout is symmetric across partisan groups, our analysis is unaffected.

With this extension of our model in mind, we add the competitiveness of the district to our
predictive model of turnout in Section H.4.1. We find that district competitiveness is not an
important predictor of turnout rates, relative to race, ethnicity, income, and education. If we
simply regress turnout rates on district competitiveness, we find that a competitive district
election is associated with very small changes in turnout at the precinct level (i.e. a one
standard deviation increase in competitiveness of a district is associated with only a 0.7 p.p.
increase in precinct turnout rates). Moreover, there is no evidence of an asymmetric effect
across Democratic and Republican-leaning precincts, in line with the extended model.

3.4.6 Other Sources of Heterogeneity

We consider only one source of heterogeneity other than partisanship here – differential
turnout. Other sources of heterogeneity would be similar, including swingness or informa-
tion (Strömberg 2004), as long as they enter the sensitivity of the group (Genicot r⃝ Bouton
r⃝ Castanheira 2021). Hence, the results that follow extend to a case where voters differ

along a number of dimensions and where the gerrymanderer observes both the partisan lean
and sensitivity of each population group.

4. Elementary Swaps

Since districts must be well apportioned and the number of districts is given, comparing
two feasible electoral maps is equivalent to assessing the effect of a sequence of population
exchanges or “swaps” across districts. The key question will be whether a swap (or a
sequence of them) increases or decreases the expected number of seats controlled by the
gerrymanderer’s party. This section describes the basic properties of such swaps.

We denote by “k i ⇌j k′ swap” the reallocation of some individuals of type k ∈ {d, r}
from district i to district j, in exchange for citizens of type k′ ∈ {d′, r′} from district j.

Three types of swaps are possible: the reallocation of (i) two different types of Democrats
(d i⇌j d

′ , or DD swaps for short), (ii) two different types of Republicans (r i⇌j r
′ , or

RR swaps), and (iii) Republicans for Democrats (d i⇌j r
′ or r i⇌j d

′ , or DR swaps). As a

on the specifics of the electoral map (such as whether a race in a given district is expected to be closely
contested).
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convention, we always denote by d and r the types who originate from district i and by d′

and r′ the types who originate from district j.

Property 1 (Swaps). The effect of a k i ⇌j k′ swap on the expected number of seats
displays either increasing or decreasing returns. There are:
1. decreasing returns to d i⇌j d

′ swaps;
2. increasing returns to r i⇌j r

′ swaps;
3. decreasing (increasing) returns to d i⇌j r

′ swaps if τd > (<)τr′ .

To see this, first note that each swap affects two districts at once: in a DD swap, for instance,
if tDi increases, tDj must decrease. In a DR swap, if tDi increases and tRi decreases, then the
effects must be the opposite in district j, and so on. Second, recall that under a uniform
distribution of the aggregate shock, the probability of winning a district in (2) is linear in
the position of the median voter in the district δ̂ = tD

tD+tR
(see Section 6.1 for a relaxation of

the uniform assumption). These properties stem therefore directly from the decreasing or
increasing returns to replacing one type of individual by another type on the median voter’s
position δ̂.

The decreasing returns to DD swaps and increasing returns to RR swaps are intuitive. Take
district j (the effects are symmetric in district i). The median voter’s position δ̂j is increas-
ing and concave in tDj (since it increases both the numerator and the denominator of δ̂j) and
decreasing and convex in tRj (since it increases only the denominator of δ̂j). Thus, whether
the marginal return to a swap is increasing or decreasing depends on how these swaps af-
fect tDj or tRj . For instance, a DD swap that brings higher turnout Democrats to district j
increases tDj and thus has a positive and concave effect on δ̂j (formal developments are in
Appendix B).

The effect of a DR swap is slightly more involved since it affects both tD and tR, but a
similar logic applies. Take district j: replacing Republicans with Democrats in district j
increases tDj , the numerator of δ̂j . The denominator, tDj + tRj , may increase or decrease,
depending on the relative turnout rates of the Democrats and Republicans. If τd is higher
(lower) than τr′ , then total turnout increases (decreases) in district j, and the swaps have
diminishing (increasing) returns.19

19The returns in one district are compounded by the same –diminishing or increasing– returns in the other
district, since the swap experienced by i is the mirror image of that in j: tDi decreases, tRi increases, and total
turnout in i moves in the opposite direction of that in j. Therefore, if the D-vote share displays a concave
pattern in j, it must display a concave pattern also in i.
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When contemplating decreasing returns, gerrymanderers will tend to perform swaps that
reinforce their vote share in the districts where their vote share is lowest. Conversely, in
the presence of increasing returns, gerrymanderers will try to reinforce their vote share in
the districts where their vote share is highest. However, the profitability of a swap does not
depend only on initial vote shares (Property 1). It also depends on the total turnout levels
in each of the two districts.

To illustrate the effect of overall turnout, consider two districts with the same vote shares:
tDi /ti = tDj /tj , but i features a lower turnout rate than j: ti < tj . The marginal effect
of a given vote on the probability of winning the district is therefore higher in i than in j

because a vote represents a larger share of total turnout. A gerrymanderer has an incentive
to allocate (stronger) supporters to low-turnout districts, to amplify their effect. Conversely,
allocating (stronger) opponents to high-turnout districts dilutes their negative effect on the
expected number of seats won. In our example, the following swaps are thus profitable:
a d i⇌j d

′ swap with τd ≤ τ ′d (send relatively high turnout supporters to the low turnout
district); an r i ⇌j r′ swap with τr > τ ′r (send relatively high turnout opponents to the
high turnout district), and an r i⇌j d

′ swap independently of the values of τd′ and τr (send
opponents to the high turnout district in exchange for supporters).

These two forces may combine differently, depending on the ideology and turnout gaps
between each group and district. We now derive their implications for the actual maps that
a gerrymanderer may want to propose.

5. Optimal Gerrymandering

This section outlines general patterns characterizing an optimal map. As explained above,
we work under the assumption that the aggregate shock is uniformly distributed. This
allows us to abstract from the “traditional” incentives to pack and crack one’s opponents,
and hence to isolate the novel incentives stemming from turnout rate differentials. In the
next section, we relax that uniform assumption to instead consider a model that combines
the new turnout-differential incentives we identify in this section, and the traditional pack-
and-crack incentives previously identified in the literature. We show that our main results
hold in that more general model.

For expositional clarity, we state our findings from the viewpoint of a Democrat gerryman-
derer. By symmetry, equivalent results hold true for a Republican gerrymanderer.
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Our first proposition shows that the optimal map must take a specific pattern, which we call
‘pack-crack-pack’. In particular, the gerrymanderer relies on a cutoff strategy, splitting the
sets of supporters and opponents according to their turnout rates.

To state that proposition, we need to introduce the concepts of “packed” and “cracked”
districts, as well as additional pieces of notation. We refer to a district as “packed” if
it comprises solely supporters or solely opponents. A packed D district is defined as one
where

∑
d ndj = 1/J , whereas a packed R district is one where

∑
r nrj = 1/J . Conversely,

if a district includes both supporters and opponents, it will be called a “cracked” district. We
denote the lowest and highest turnout rates within each political faction as: r := argminr τr

and r̄ := argmaxr τr, for the Republicans, and d := argmind τd and d̄ := argmaxd τd for
the Democrats.

Proposition 1. In an optimal map, the allocation of voters to districts is characterized by
two cutoffs, τd∗ ∈ [τd, τd̄] and τr∗ ∈ [τr, τr̄] such that:

(1) High-turnout supporters, with τd > τd∗ , are assigned to cracked districts, whereas
low-turnout supporters, with τd < τd∗ , are assigned to packed districts;

(2) High-turnout opponents, with τr > τr∗ , are assigned to packed districts, whereas
low-turnout opponents, with τr < τr∗ , are assigned to cracked districts.

The proof is intuitive. If a gerrymanderer packs some high-turnout supporters, but not some
low-turnout ones, a DD swap is necessarily profitable. It does not affect the probability
of winning the packed district (turnout rates are irrelevant in a packed district), whereas
it increases the expected vote share of Democrats in the cracked district. Similarly, if a
gerrymanderer packs some opponents, it must be the higher turnout ones.

To understand why the gerrymanderer may have incentives to pack supporters, remember
that there are two forces shaping the map: (i) the increasing or decreasing returns of swaps,
and (ii) overall turnout. When facing increasing returns (which is the case for DR swaps
with a turnout disadvantage for supporters), the gerrymanderer wants to reinforce their
vote share where it is already high. This means packing lower-turnout supporters in strong
Democrat districts. The overall turnout of those districts then decreases further, which
strengthens the incentives to allocate Democrats to those districts.

Figure 1 illustrates the result for a case in which all three types of districts co-exist: when
the two cutoffs are strictly interior, there are (a) districts packed with low-turnout support-
ers, (b) cracked districts, and (c) districts packed with high-turnout supporters. Of course,
whether all of the three zones displayed in the figure should actually be present in a map
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depends on the distribution of types. Informally, and as displayed in the figure, the condi-
tion is that τd be sufficiently low and τr̄ be sufficiently high, with enough overlap between
the turnout rates of supporters and opponents (τd̄ > τr; see Appendix D for more detail).
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Turnout Rate

FIGURE 1. ILLUSTRATION OF PROPOSITION 3

This pack-crack-pack pattern complements the existing literature. First, it identifies differ-
ential turnout rates as a novel reason why gerrymanderers may prefer to pack and crack
their opponents. In the classical “pack and crack” strategy proposed by Owen and Grof-
man (1988) or its generalized “segregate-pair” version by Kolotilin and Wolitzky (2020),
the gerrymanderer sorts opponents based on the intensity of their preferences, with the
stauncher opponents allocated to packed districts. In contrast, in our model, the gerryman-
derer sorts opponents based on their turnout rates, with the higher turnout rate opponents
allocated to packed districts. Second, our model identifies a novel incentive for gerryman-
derers to pack their lower-turnout supporters. Such a strategy cannot be optimal when
individuals only differ along the partisan dimension. Indeed, packing supporters would
conventionally be seen as an inefficient or ‘wasteful’ allocation of voters.

The next proposition focuses on the question of the composition of cracked districts.

Proposition 2. In an optimal map, there cannot be two cracked districts i and j, respec-
tively with types d, r and d′, r′ such that τd < τd′ and τr > τr′ .

The Proposition shows that among cracked districts, there is a positive assortative matching
of supporters and opponents in terms of turnout rates: gerrymanderers cannot benefit from
combining their highest-turnout supporters with their lowest-turnout opponents.

The intuition builds on the first force shaping the map, namely the decreasing returns of
DD swaps and increasing returns of RR swaps. When considering where to allocate sup-
porters, because of the decreasing returns of DD swaps, the gerrymanderer prefers to allo-
cate higher-turnout supporters to the district with a lower winning probability. The same
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holds for opponents: because of increasing returns of RR swaps, higher-turnout opponents
should also be allocated to the district with a lower winning probability. The second force,
by contrast, may interfere with that pattern as the gerrymanderer has incentives to allo-
cate higher turnout supporters to lower-turnout districts, and higher turnout opponents to
higher-turnout districts. The proof shows that, nevertheless, the optimal map must feature
positive assortative matching along the turnout dimension.

This result complements the existing literature. The “segregate-pair” strategy identified
in Kolotilin and Wolitzky (2020) requires assortative matching but along the partisanship
dimension: the most extreme opponents should be matched with the most extreme sup-
porters. Note that they call this negative assortative matching since the voters who lean the
most Democratic are then matched with the most Republican-leaning voters.

Finally, the following proposition identifies a negative relationship between turnout rates
and winning probabilities in districts:

Proposition 3. In an optimal map, all cracked districts can be ordered by increasing
turnout rates and decreasing winning probabilities, so that for any two districts i and j

with i < j: maxr∈i τr ≤ minr′∈j τr′ , maxd∈i τd ≤ mind′∈j τd′ , and πi(ni) ≥ πj(nj). The
last inequality holds strictly if there exist two different types r′ in j and r in i.

Due to the increasing returns to RR swaps, Lemma 1 in the Appendix shows that cracked
districts can be ordered by the turnout rates of opponents, often strictly. Combined with
Proposition 2, this means that districts are similarly ordered by the turnout rates of sup-
porters. Hence, cracked districts are ordered by overall turnout. Now, to understand why a
district with a higher turnout must also have a lower probability of winning, remember that
gerrymanderers prefer to allocate their higher-turnout supporters to (i) districts with lower
overall turnout, and (ii) districts with a lower probability of winning. A map that displays
a district with both a relatively low turnout and low probability of winning would therefore
trigger a deviation. An optimal map must balance those two forces: a district with a higher
turnout must also have a lower probability of winning.

Note that this ordering is also present across D- and R-packed districts. Proposition 1
indicates that D-packed districts, which are most likely to be won by the Democratic party,
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must have lower turnout rates than Democratic voters allocated to cracked districts (in D-
packed districts, τd ≤ τd∗). Conversely, R-packed districts, which are least likely to be won
by the Democratic party, are composed of the highest Republican turnout rates (τr ≥ τr∗).20

6. Generalizations

The model so far was voluntarily stylized in order to isolate the new results brought about
by turnout heterogeneity. However, this was done at the cost of removing the classical
forces behind pack and crack à la Owen and Grofman (1988) and of assuming only two
(expected) ideological types. This section shows how our base model can be extended in
these directions before moving to the empirical Section 7, which de facto considers non-
uniform shocks and multiple ideologies.

6.1. Single-Peaked Aggregate Shock

Recall that the objective of the gerrymanderer is to maximize the expected number of dis-
tricts won

∑
j Γ(δ̂j) where the partisanship of the median voter δ̂j =

tDj νD+tRj νR

tDj +tRj
represents

the pivotal aggregate shock determining which party wins the district.

Up to this point, we have only considered the case of a uniform distribution, in which Γ

is linear. This assumption is meant to abstract from the traditional pack-and-crack incen-
tives and allows us to focus on the new gerrymandering forces that turnout heterogeneity
generates. Yet, one issue with this particular specification is that it predicts maps with
counterfactual features. Most strikingly, it may be optimal for a gerrymanderer to draw a
map with multiple cracked districts composed of a majority of opponents, that their party
would lose almost certainly. This is an artifact of the uniform distribution, which implies
that one more partisan voter in an almost surely lost district may have a bigger impact
than in a close district, by Property 1. As we show in this section, a straightforward way
to remedy this is to consider an aggregate shock distributed according to a single-peaked
distribution. This slight modification removes the incentive to create such weak districts
and reintroduces traditional pack-and-crack incentives. In particular, our focus shifts to a
non-uniform, strictly continuous, distribution for δ with support on R. We assume:

Assumption [S] ∂Γ(δ)
∂δ

= γ (δ) exhibits a single peak around δ = 0 and νD > 0 > νR.

20The gerrymanderer is indifferent to the specific distribution of types within D-packed districts and within R-
packed districts. Creating identical districts or ordering them based on turnout rates would both be optimal.
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6.1.1 Properties of the Swaps

Consider the effect of simultaneously increasing ni
s by ε and decreasing ni

r by ε on the
probability of winning district i, Γ(δ̂i). Whether this effect is concave or convex depends
on the sign of:

γ′(δ̂i)

(
dδ̂i
dε

)2

+ γ(δ̂i)
d2δ̂i
dε2

. (4)

The effects previously described in Property 1 are captured by the second term while the
first term captures the additional effect brought about by the single-peakedness of the dis-
tribution. If δ̂i > 0 then γ′

i < 0, which means that this added effect is concave. If δ̂i < 0

then γ′ > 0 and the added effect is convex.

This implies that (i) for τd > τr, the decreasing returns from DD and DR swaps identified
in Property 1 are reinforced by single-peakedness if the district leans towards D (δ̂i > 0)
but not if it leans towards R (δ̂i < 0). (ii) For τd < τr, increasing returns from RR and DR
swaps are reinforced in R-leaning districts (δ̂i < 0), but not in D-leaning districts.

6.1.2 Homogeneous Turnout Rates: Traditional Forces

Imagine that all turnout rates are the same, implying that the second term in (4) is null and
that the incentives to exploit turnout in district design are now void. Hence the sole driver
of gerrymandering is the shape of the distribution, i.e. γ′(δ̂j).

Assumption [S] reintroduces the traditional incentives that lead to the traditional pack-
and-crack strategy identified by Owen and Grofman (1988) and Kolotilin and Wolitzky
(2020). The probability of winning a district πj exhibits an S-shaped curve in relation to
the average partisanship of the district δ̂. Indeed, γ′(δ̂) > 0, ∀δ̂ < 0 introduces a convexity
in the objective function of the gerrymanderer. This typically results in the creation of two
types of districts: some districts are packed with opponents, while all others are cracked
with an identical mix of supporters and opponents. In essence, if they cannot be strong in
all districts, gerrymanderers prefer to abandon some districts (packed R districts) in order
to free up some supporters to reinforce the other (cracked) districts.

6.1.3 Implications for Heterogeneous Turnout Rates

When turnout rates are heterogeneous, both the traditional pack and crack incentives and
our turnout differential incentives are present: both terms in (4) matter.
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We have seen that the concavity of Γ in strong districts (δ̂i > 0) reinforces the concavity of
the DD swaps and of the DR swaps when τd > τr′ . In contrast, the convexity of Γ in weak
districts (δ̂i < 0) goes against it. This effect reduces the incentives for the gerrymanderer
to create multiple cracked districts that they expect to lose in expectation. Instead, the
gerrymanderer may prefer to abandon some of those districts (and transform them into a
packed R district) in order to free up some supporters to reinforce the other districts. This
force may also lead the gerrymanderer to add lower turnout supporters to a cracked district
to reinforce it. This pattern is illustrated in the example below.

Nonetheless, we can show that our main results hold, at least qualitatively, in this ex-
tended setup. First, the pack-crack-pack structure of the optimal map holds: the proof of
Proposition 1 is unaffected. If the gerrymanderer creates any packed D district, it must
be composed of supporters with the lowest turnout rate(s). Otherwise, it is easy to show
that there necessarily exists a profitable DD swap. Similarly, any packed R district must be
composed of opponents with the highest turnout rate(s).

Moreover, the three types of districts in the pack-crack-pack structure can coexist in an opti-
mal map. Our turnout differential incentives and the traditional pack-and-crack incentives
generate two different reasons to pack high turnout opponents, but these incentives fight
each other when it comes to packing low turnout supporters. Which effect dominates then
depends on the curvature of the distribution compared to the difference in turnout rates. To
illustrate this point, consider two districts: district i packed D with one type of democrats
d and a cracked district j. From (F.2), the profitability of a d i⇌j r

′ then depends on the
sign of:

γj
τdt

R
j + τr′t

D
j

t2j
− γi

τr′

tDi
.

A sufficiently low τd is a sufficient condition for the swap not to be profitable as tDi becomes
arbitrarily low (i.e., the gerrymanderer does not want to unpack district i).

Finally, we show in Appendix F that slightly weaker versions of Propositions 2 and 3 hold
in the general model. We can order districts by declining probability of winning and, if
district j has a strictly lower probability of winning than district j, both democrats and
republicans have higher turnout rates than their counterparts in district i.

6.1.4 An Example

Here is an example to illustrate how the optimal map changes with the distribution of the
aggregate shock.
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δ ∼ U [−5, 5] δ ∼ N(0, 1)

FIGURE 2. Pack-Crack-Pack.

Let νD = 1 = −νR. Assume that the population is partitioned in four groups: 3/8 low
turnout republicans r (τr = 0.4), 1/4 high turnout republicans r̄ (τr̄ = 0.8), 1/4 of low
turnout democrats d (τd = 0.2), and 1/8 high turnout democrats d̄ (τd̄ = 0.5).

Figure 2 contrasts the optimal maps for the case of a uniform distribution of the aggregate
shock U [−5, 5], and the case of a normal distribution N(0, 1). In both cases, low turnout
democrats and high turnout republicans are packed. Under the uniform distribution, two
cracked districts are created by mixing the high turnout democrats and the low turnout
republicans, despite the fact that these districts have a low expected probability of winning.
Under the normal distribution instead, the gerrymanderer prefers creating only one such
mixed district to strengthen its lead in that district.

6.2. General Distribution of Ideology Types

This section considers a general distribution of ideologies. Each group k is defined by its
ideology νk, together with its turnout rate τk. These groups may be interpreted as well-
defined population groups (profession, age class, etc) or as electoral precincts. The empir-
ical analysis in Section 7 focuses on the latter interpretation.

Recall that the probability that D wins district j is Γ(δ̂j) where δ̂j is the expected ideology
of the median voter in district j, which becomes δ̂j :=

∑
k

tkjνk
tj

.

Returning to a uniform distribution for tractability, Γ is linear. We can therefore focus on
the effect of swaps on δ̂. Consider the effect of replacing a mass ε of voters of type k by
voters of type k′ in district j:

∂δ̂j
∂ε

=
∂δ̂j
∂nk′

− ∂δ̂j
∂nk

=
τk′(νk′ − δ̂j)− τk(νk − δ̂j)

tj
. (5)
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In the baseline model, voters had either of two ideologies: ν ∈ {νD, νR}, implying that,
in expectations, the ideology of any district median must sit in between these two partisan
positions: νD > δ̂j > νR, ∀j. The voters involved in the swap are necessarily more
“polarized” than the districts involved in the swap. In a generalized setup, this corresponds
to types k and k′ and districts i and j such that νk′ > δ̂i ≥ δ̂j > νk. In this case, swapping
k and k′ citizens increases the support for D in district i (∂δ̂i/∂ε > 0) and decreases it in
district j (∂δ̂j/∂ε < 0). The second derivative becomes:

∂2δ̂j
∂ε2

=
τk−τk′

tj

∂δ̂j
∂ε

− 1

tj

∂tj
∂ε

∂δ̂j/∂ε︷ ︸︸ ︷
τk′ (νk′−δ̂j)−τk(νk−δ̂j)

tj
=

2

tj
[τk − τk′ ]

∂δ̂j
∂ε

. (6)

If τk′ > τk then (6) is negative: there are decreasing returns to such a swap, like in Property
1. If instead τk′ < τk, then (6) is positive: there are increasing returns to such a swap, again
like in Property 1. This means that for voters whose ideologies are more polarized than the
districts involved in the swap, the incentives of the gerrymanderer are the same as those
identified above.

The new case introduced by multiple types is that there may exist groups whose ideology
sits in between the medians of the two districts they are swapped from. For instance:
δ̂j > νk′ ≥ νk > δ̂i. This case adds a new effect of swaps, namely that a swap may increase
or decrease the probability of winning in both districts at once.

To illustrate this, set νk = νk′ = ν, so that (5) becomes ∂δ̂j
∂ε

=
(τk′−τk)(ν−δ̂j)

tj
. This is always

positive when high-turnout voters are allocated to the least favorable district (ν − δ̂j >

0). Importantly, and this is the key difference from more “polarized” groups, the same
holds in the mirror district i. The probability of winning that district also increases when
voters from the lower-turnout group are allocated to the more favorable district (ν − δ̂i <

0 ⇒ ∂δ̂i/∂ε > 0).21 That is, such swaps of moderate voters are always desirable: the
gerrymanderer has strong incentives to allocate higher turnout moderates to weaker districts
and lower turnout moderates to stronger districts.

How does this impact the optimal map? This guarantees that the gerrymanderer never
allocates voters with the same ideology νk to cracked districts such that δ̂j ≥ νk ≥ δ̂i. This
means that in an optimal map, all voters of a given ideology νk are allocated to districts in
which they play either the role of democrats (i.e., νk > δ̂i) or the role of republicans (i.e.,

21 For τk > τk′ , the general condition for a swap to increase both δ̂j and δ̂i is that δ̂j >
τkνk−τk′νk′

τk−τk′ > δ̂i. This

converges to δ̂j > ν > δ̂i when νk → νk′ .
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νk < δ̂i). As shown in Appendix G, this result allows us to prove that Propositions 2 and
3 also hold in this extended setup: for any two districts i and j such that the former has a
strictly lower probability of winning than the latter, there will be (i) assortative matching
across ideological types along the turnout rate dimension, and (ii) voters with any given
ideology νk in district i must have a higher turnout rate than voters with the same ideology
in district j. Proposition 1 also generalizes: we can show that voters with the largest ν are
packed and cracked along the turnout dimension. Conversely, voters with the smallest ν
are cracked and packed.

7. Empirical Analysis

In this section, we examine recent instances of gerrymandering to assess the degree to
which our model is substantiated by empirical data and to quantify the extent to which
heterogeneous turnout rates influence partisan gerrymandering proposals.

In Section 7.2, we assess a key testable implication of the model: whether we observe a
negative correlation between turnout rates and expected vote shares, as predicted by Propo-
sition 3. Then, in Section 7.3, we evaluate gerrymanderers’ decisions ‘at the margin’ by
examining the characteristics of electoral precincts that are adjacent to proposed electoral
district borders. By randomly reassigning precincts along the border, we can assess the ex-
tent to which gerrymanderers exhaust profitable swaps and the degree to which information
about turnout rates helps them to do it.

For these empirical exercises, we collected data from 10 states in which both Republi-
cans and Democrats submitted a redistricting proposal for congressional districts in 2020.
Specifically, we have 20 redistricting proposals from the states of Florida, Kansas, Louisiana,
Maryland, Nebraska, Nevada, New Mexico, New York, North Carolina, and Pennsylvania,
covering 113 congressional districts. We assemble precinct-level data to evaluate these re-
districting proposals. Our final dataset includes 44,338 precincts across the 10 states (see
Appendix H for more information).

7.1. From Theory to Data

This section details how our empirical analysis takes into account several realistic features
of the gerrymandering problem in order to test the predictions of our theoretical model.
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First, our empirical analysis takes into account that, in practice, gerrymanderers draw maps
using electoral precincts as the building blocks of districts.22 We think of precincts as small
groups in our model, and use precincts as the base unit of observation for the empirical
analysis. In practice, as in our model, gerrymanderers have information about the aver-
age ideology and turnout rates of precincts. In fact, precincts are the smallest possible
geographic units at which electoral data are available. Using electoral precincts to cre-
ate districts means moving a discrete amount of individuals at a time, in contrast to our
continuum of individuals in the theory. Yet, given that most precincts are very small in
comparison to the size of a district (average population is 1,900 for precincts vs more than
700,000 for districts), it is unlikely that this discrepancy will create a substantial difference
between theoretical predictions and actual maps.

Second, we need to identify the partisan-lean of precincts (νk). There are two natural
proxies for the ideology of a precinct: the share of registered Democrats and the vote share
for Democrats. Party registration data has the advantage of relying on individuals’ ideology,
as revealed by their party affiliation, and not being affected by voting decisions. However,
since not all voters choose to register with a party, it may fail to accurately represent the
average ideology of the precinct at large.23 By contrast, precinct-level vote shares take
independent voters into account but this proxy is sensitive to turnout decisions. Hence, for
precincts with large turnout heterogeneity across party lines, it may not give an accurate
measure of average ideology. We will use both proxies in the analysis.

Third, we need to take into account the geographic and legal redistricting constraints men-
tioned in Section 3.4.2 that the model abstracts from (e.g. geographic contiguity, respect
for political boundaries, and adherence to the Voting Rights Act of 1965). Scholars have
long noted that these factors make it difficult to identify a partisan gerrymander from an
‘unintentional’ gerrymander (Erikson, 1972; Chen and Rodden, 2013): is a precinct in a
particular district because this increases the seat share of the gerrymanderer or because of
a legal or geographical constraint? For this reason, it is difficult to test if a gerrymanderer
follows a pack-crack-pack strategy by simply looking at the composition of districts in a

22Only 2% of the precincts in our sample are split across proposed congressional districts under either the
Democrat or Republican proposals.

23On average, 24% of registered voters are not affiliated with either the Democratic or Republican party, while
only 2% of the ballots go to third-party candidates.
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single map.24 Taking redistricting constraints into account is therefore essential to identi-
fying the intent of the gerrymanderer.

To overcome this challenge, we focus on differences between Democrat and Republican
redistricting proposals. The idea is that if a precinct has to be assigned to a particular
district due to legal constraints, both the Democrat and the Republican proposals will have
to respect that constraint. Any differences between the two proposals should be driven by
partisan gerrymandering incentives, rather than by shared geographic or legal constraints.25

In what follows, we compare Republican and Democrat proposals from the 2020 redis-
tricting cycle. These proposals were made during the 2020 redistricting process, either by
party caucuses, partisan members of redistricting commissions, or by state legislators. We
expect that the proposal by the majority party will be a strong partisan gerrymander, as it
is likely to pass into law. The minority party in the state legislature also has incentives to
draw a map in their favor. Their map can be used in negotiations if redistricting control is
split across the two parties or as evidence in future lawsuits. Overall, the minority party
wants to demonstrate that another map is feasible in which the majority party would win
fewer seats. As a sanity check, we verify that the Democrat proposals are weakly better for
the Democrat party than the Republican proposals in all states. Figure I.1 in the Appendix
shows that in all the 10 states in our dataset, Democrats expect to win (weakly) more seats
under the Democrat proposal than the Republican proposal, the comparison being strict in
8 of the 10 states.

24As an example, consider the case of a majority-Latino community of interest. Under certain conditions, the
Voting Rights Act would prohibit the community of interest from being divided across multiple districts.
Majority-Latino precincts also tend to have relatively low turnout rates and to lean Democrat. The prediction
from our model is for a Democrat gerrymanderer to pack the community of interest into a safe Democrat
district. But if we observe this in practice, it could be due to the Voting Rights Act, rather than partisan
gerrymandering, a false positive. Similarly, if the community of interest is in a strong Democrat district
under the Republican proposal, we might improperly reject the theoretical prediction, a false negative.

25Others have addressed this issue by comparing changes in redistricting proposals across time (e.g., Jeong and
Shenoy 2022, Friedman and Holden 2009, Shotts 2003, Cox and Katz 2007). A limitation is that many other
factors do change in a ten-year redistricting cycle, including the population and the number of districts per
state. In 2020, 18 states had a different number of congressional districts than in the previous redistricting
cycle. Given the small number of congressional districts per state, any change in the number of districts
makes it difficult to compare maps over time. It is also rare to observe a change in partisan control within
a state. In 2020, only two states (Arkansas and West Virginia) experienced a change in full partisan control
over redistricting, and only Arkansas had both a change in partisan control and no change in the number
of districts. Even for the 2010 cycle, when there was a nationally coordinated effort by Republicans to
control the redistricting cycle, only 4 states switched control, and only 2 switched control with no change
in the number of districts (party control of redistricting cycles by state and year are available at https:
//redistricting.lls.edu/).
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Finally, in practice, gerrymanderers are certainly also responding to the traditional pack-
and-crack incentives identified in the literature. As discussed in Section 3.4.3, a version
of our model with an aggregate shock distributed according to a single-peaked distribution
combines both those incentives and our turnout differential incentives; hence our main
results hold. Throughout our empirical analysis, we focus on this specification of our
model.

7.2. A Reduced-Form Test: Turnout and Vote Shares

Proposition 3 and the discussion that follows predict a negative relationship between the
turnout rate of the precincts composing a district and the probability that the gerryman-
derer’s party wins the district. Importantly, Proposition 3 and its extension to multiple
types make a prediction about groups that share a common ideological lean. Empirically,
we thus need to compare precincts that mainly differ in turnout rates, but display similar
partisan lean.

Take all precincts of a given partisan lean in a state and order them by increasing turnout
rates. Now, consider the probability that the Democrat wins the district to which each
precinct is assigned. This probability of winning should be decreasing with the turnout
rates under the Democrat proposal, but increasing under the Republican proposal. Thus, the
difference in the probability that Democrats win a district in the Democrat proposal versus
the Republican proposal should be decreasing in turnout rates. Given that the probability
of winning a district is increasing in the anticipated vote share, we have the following
empirical prediction:

Empirical Prediction 1. Among precincts of a given partisan-lean in a given state, there is
a negative relationship between the precinct turnout rate and the difference in the expected
Democratic vote share of its assigned district under the Democrat versus Republican map.

To help with the intuition of this prediction, consider a low turnout Democrat-leaning
precinct. Democrats should put the precinct in a packed district (with low turnout) and
Republicans should put it in a cracked district (together with higher turnout supporters).
The difference in expected Democrat vote share across the two maps (Democrat proposal
- Republican proposal) will be positive. Next, consider a high-turnout Democrat-leaning
precinct. Democrats should assign it to a cracked district (together with lower turnout Re-
publicans), while Republicans should assign it to a packed Democrat district (all with high
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turnout). The difference in expected Democrat vote share will be negative. Thus, the dif-
ference in expected Democrat vote shares is decreasing in turnout rates, among Democrat-
leaning precincts.

7.2.1 Empirical Methodology

To test the above prediction, we measure the turnout rate and partisan lean of each precinct
and estimate the following empirical specification:

Difference in Democratic Vote Sharekps = β Turnoutkps + θps + εkps, (7)

where Difference in Democratic Vote Sharekps is the difference in the district-wide expected
Democratic vote share under the Democrat proposal versus Republican proposal for a
precinct k, of partisan-lean p, in state s. θps is a vector of state-specific partisan-lean fixed
effects, and εkps is an error term. The coefficient of interest is β, which we predict is neg-
ative. We include state-specific partisan-lean fixed effects, θps, so that the variation used to
estimate β comes from comparisons within precincts of the same partisan-lean in the same
state, in line with the theory.

As described in Section 7.1 we measure the partisan lean of precincts by comparing either
the proportion of registered Democrats among registered voters or the Democratic vote
share to the sample median. We use state-specific quartiles of these proxies to define the
partisan lean of a precinct. Hence, we test for a negative correlation within precincts that
are strongly Democrat-leaning, weakly Democrat-leaning, weakly Republican-leaning, or
strongly Republican-leaning in each state.26 We show that results are not sensitive to the
number of quantiles used to define partisan lean in Appendix I.2: we test the prediction for
as few as two levels of partisan-lean (i.e., all precincts are either Democrat- or Republican-
leaning) and up to ten levels of partisan-lean.

We measure the expected Democratic vote share of a district, as the average votes of the
two most recent presidential elections prior to redistricting. The variable Turnoutkps is one
of the three measures of turnout defined in Appendix H.4: past turnout, predicted turnout,
and citizens voting age population (CVAP). We consider these three different measures to
address concerns that turnout is potentially endogenous to redistricting. Predicted turnout

26In Figures I.2 and I.3 in Appendix I.2 we show that there is a bimodal distribution of percent Democrats
across all precincts, as well as within several states. This suggests that, in some states, it may be sufficient
to consider only two ideological groups (Democrat-leaning versus Republican-leaning precincts). In other
states, we may improperly reject the empirical prediction by mistakenly including too few partisan-lean fixed
effects.
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TABLE 1. Turnout and difference in district-level Democratic vote share.

(1) (2) (3) (4) (5) (6)

Percent CVAP -0.010*** -0.008**
(0.003) (0.003)

Predicted turnout rate -0.015*** -0.015***
(0.005) (0.004)

Turnout rate -0.004 -0.006
(0.004) (0.004)

N 42332 42332 42332 42318 42318 42318
R2 0.075 0.075 0.075 0.070 0.070 0.070
Outcome variable mean -0.003 -0.003 -0.003 -0.003 -0.003 -0.003
State-partisan lean FE (reg. voters) X X X
State-partisan lean FE (vote shares) X X X

Note: OLS estimates. The dependent variable is the difference between the (two-party)
Democratic vote share of the district under the Democrat proposal and under the Republican
proposal (D map - R map). Percent CVAP is the percent of total population that are citizens above
age 18. The turnout rate is the total number of votes for Democrats and Republicans divided by the
total population. The measure of predicted turnout rate uses only demographic and socioeconomic
variables to predict the turnout rate. The regressions include state-specific partisan-lean fixed
effects, where we define partisan lean of a precinct using either the share of registered Democrats
(Columns 1-3) or the Democratic vote share (Columns 4-6). ∗ p < 0.1, ** p< 0.05, *** p< 0.01.
Robust standard errors in parentheses.
is our preferred measure because it uses only exogenous sociodemographic variables to
predict past turnout.27

7.2.2 Results

Table 1 reports the coefficients from OLS estimations of Equation (7) for each of the three
measures of turnout. Columns 1-3 report coefficients using registered voters to define par-
tisan lean, and columns 4-6 report coefficients using vote shares to define partisan lean.
In all regressions, the measure of turnout is negatively correlated with the difference in
Democratic vote share, in line with the theoretical prediction. The correlations are stronger
and more precise for predicted turnout than for realized turnout or percent CVAP. As men-
tioned above, our preferred measure of turnout is predicted turnout. The point estimates in
columns (2) and (5) suggest that a one standard deviation increase in predicted turnout (10
p.p.) is associated with a 0.15 p.p. decrease in the difference in the expected Democratic
vote share of districts across proposals (which represents 50% of the mean difference).28

27We prefer predicted turnout over past turnout because we can more confidently rule out endogeneity concerns.
We also prefer predicted turnout over percent CVAP since the latter is a crude proxy and gerrymanderers are
likely aware of other salient correlates of turnout like race and income.

28In a competitive district, a 0.15 p.p. change in expected vote shares can translate into large changes in the
probability of winning a district. In Section 7.3 we calibrate the probability of winning a district as a function
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In Appendix I.2, we show that the negative correlation is robust to alternative definitions
of partisan lean. The coefficients for all three measures of turnout are negative if we use
two levels of partisan lean and for up to ten levels of partisan lean. Overall, the nega-
tive correlation between turnout rates and differences in expected vote shares supports the
idea that gerrymanderers exploit differences in turnout rates in a pattern consistent with the
predictions of the theoretical model.

7.3. Swapping Precincts at the Border

In this section, our objective is to test whether, in practice, gerrymanderers exploit prof-
itable deviations (i.e. changes in the map that would increase their party’s expected number
of seats), and if they do, whether they take turnout rates into account.

These tests require taking the model seriously when evaluating actual redistricting propos-
als. In theory, there should be no profitable deviation for one’s own proposal, and plenty
for the opponent’s proposal. We can test this directly by creating counterfactual districts
and evaluating whether these “swaps” reveal gains that were left unexploited. Given the
geographical and legal limitations discussed earlier, there may of course remain some ap-
parently unexploited profitable deviations. Consequently, we compare profitable deviations
within a party across different proposed maps:

Empirical Prediction 2. The share of unexploited profitable deviations for a party should
be lower under its proposal than under the one of the other party.

Naturally, the number of possible counterfactual maps is extensive. Hence, we concen-
trate on counterfactual districts created by redistributing precincts along district boundaries.
This has the added benefit of increasing the likelihood of feasibility of the counterfactual
scenarios, in particular in view of the contiguity constraint.

Counterfactual Maps

For each pair of adjacent districts, we identify all precincts along the border, then indepen-
dently randomly assign each precinct to one of the two districts with 50% probability. A
random allocation of precincts is considered a feasible counterfactual map only if it satisfies
the equal population constraint.29 For a border with n precincts there are 2n possible redis-
trictings. The median number of precincts per border is 20, but some borders have hundreds

of expected vote shares. This calibration implies that a 0.15 p.p. change in expected vote shares could affect
the probability of winning a district by up to 5 p.p.

29We impose strict population constraints for the counterfactual districts, as in reality. The total population of
the counterfactual district must be within 1% of the size of an ideal district in the state. The size of an ideal
district is the total population of the state divided by the number of districts. Given these tight population
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of precincts. Due to computational limitations, we sample until we generate 1,000 feasible
maps per border, resulting in 353,000 simulated maps.30

Relative to existing redistricting simulation methods, ours has the advantage of generating
a sample of districts that only differ ‘at the margin’ from proposed districts. Existing re-
districting algorithms generate some maps that differ greatly from the proposals and were
never considered by gerrymanderers. To evaluate the extent to which turnout rates affect
gerrymanderers’ decision-making, focusing on counterfactual maps not too different from
the proposals is best. Moreover, our method allows for district-level comparisons between
enacted maps and counterfactual maps. This is useful because we can focus on areas of a
map that are less likely to be influenced by legal constraints. For example, we can focus on
borders that cut through counties, since these borders were not drawn to respect existing
political boundaries.

Profitable Deviations

We can determine if a deviation is profitable by mapping vote shares into win probabilities.
Let π1 + π2 be the sum of the probability of winning the two districts along a border under
the baseline proposal and π̃1+ π̃2 be the same for the counterfactual map. A counterfactual
redistricting is a profitable deviation if π̃1 + π̃2 > π1 + π2. As discussed above, in this
empirical analysis, we focus on the specification of our model with single-peaked aggre-
gate shocks (see Section 6.1). In particular, we consider a mean-zero normally distributed
aggregate shock. This creates an S-shaped πj , consistent with the idea that gerrymanderers
do not stand to gain much from improving their expected vote share in a district that is won
or lost with near certainty. Their focus is mainly on more contestable districts.

To calculate the probabilities of winning, we need to choose a value for σ, the standard de-
viation of the aggregate shock. We calibrate the standard deviation of the aggregate shock
using the state-wide standard deviation of the Democratic two-party vote share in presi-
dential elections from 2008-2020,31 the values range from 0.006 to 0.025 (see Appendix
I.3). These values imply that gerrymanderers only meaningfully benefit from swaps in very

constraints, we reassign precincts one border at a time. Otherwise, assessing a large number of feasible
counterfactual maps is a computational challenge.

30Moreover there are a few borders for which there is no feasible swap due to the strict population constraints.
We exclude such borders from the analysis. In total, we simulate 179,000 maps for Democrat proposals and
174,000 for Republican proposals. The difference results from the fact that the number of borders and the
number of precincts per border differs between the two maps.

31In our model, the standard deviation of the normal distribution is equal to the standard deviation in vote shares,
divided by ϕ. Thus, we over-estimate σ if there is a relatively large degree of individual-level uncertainty and
we under-estimate σ if there is a relatively low degree of individual-level uncertainty. Rather than calibrate
ϕ, we present results over a range of σ. We use presidential elections rather than congressional elections to
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competitive districts. To clarify that our results do not depend on the specific value of σ,
we depict the results for a range of values between 0.005 and 0.3 in Appendix I.4 (Figure
I.6). To understand the meaning of this range, note that a district with 60% of the expected
vote share is won with probability greater than 99% if σ = 0.005 and with probability 63%

if σ = 0.3.

Isolating the turnout rate effect

Treating a precinct as a group, we estimate δ̂i as the average ideology across all precincts
in a district, weighted by the precinct’s turnout rate:

δ̂i =
∑
k

nkτkνk∑
k nkjτk

. (8)

We compute δ̂i using precinct population (nk), past turnout rates (τk), and one of the two
proxies for νk discussed in Section 7.2 (i.e. the share of registered Democrats or the Demo-
cratic vote share). We then evaluate πj and π̃j using the parameterization discussed above.

What if a gerrymanderer were to mistakenly ignore turnout heterogeneity? If we impose
τk = τ for all precincts k, then the median ideology of the district would simply be the
average ideology of each precinct, weighted by the precinct’s total population:

δ̄j =
∑
k

nkjνk∑
k nkj

. (9)

We compute δ̄i for each proposed and counterfactual district using the same proxies for
νk and precinct population. The two measures of a district’s median ideology allow us to
compare profitable deviations under the assumption that a gerrymanderer uses an ‘ideology
only’ model (with δ̄i) versus an ‘ideology and turnout’ model (with δ̂i). To the extent that
turnout heterogeneity matters for gerrymanderers’ payoffs in practice, we expect to find
weak support for Prediction 2 using the ideology-only model.

In addition, we can quantify the importance of turnout rate heterogeneity for optimizing
a map by evaluating the rate at which a gerrymanderer would make mistakes by ignoring
turnout rates. There may be some swaps that are profitable based on ideology alone, but not
after taking turnout rate heterogeneity into account. For a gerrymanderer that mistakenly
ignores turnout rates, these would be type I errors (false positive). We can also determine

avoid imputing values for uncontested races. We use more presidential elections than in the precinct-level
analysis since precinct borders change over time.
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FIGURE 3. SHARE OF PROFITABLE SWAPS. The y-axis is the percent of feasible
counterfactual maps (‘swaps’) that are profitable for Democrats (blue bars) and Re-
publicans (red bars). A swap is profitable if the expected number of seats is higher
than under the baseline proposal. We separately plot the percent of swaps that are
profitable and with gains to the expected number of seats greater than 0.0001. To
compute the expected number of seats we assume that the aggregate shock is nor-
mally distributed with mean zero and standard deviation calibrated using statewide
presidential election returns from 2008-2020 (see Appendix I.3, values range from
0.005 to 0.025).

the frequency of type II errors (false negative): those swaps that are not profitable with
ideology alone, but that are profitable after taking turnout rate heterogeneity into account.

7.3.1 Results

Figure 3 reports the share of swaps that are profitable for each party under Democrat and
Republican proposals. There is a clear pattern: Democrats have fewer profitable devia-
tions under their own proposal than under the Republican proposal. Under the Democrat
Proposal, 30% of swaps are profitable, with only 15% of swaps having a positive effect
greater than 0.0001. Under the Republican proposal, those shares are 39% and 20%, re-
spectively. Likewise, Republicans have fewer profitable deviations under their proposal
(resp. 28% and 13%) than under the Democrat’s (resp. 37% and 20%). Similarly, each
proposal features a greater share of profitable deviations for the opponent’s party than for
the gerrymanderer’s party (for instance, in Figure 3, the Democrat proposals yield 37%
profitable deviations for the Republicans, and 30% for the Democrats).
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As Figure 3 makes clear, most swaps have a tiny effect on the gerrymanderer’s payoffs
(the sum of the probability of winning the two districts).32 The median profitable swap
affects the payoff by 0.0001. Figure I.5 in Appendix I.4 show that the patterns in Figure
3 hold for a broad range of payoff thresholds to define meaningful swaps. In another
robustness check, we exclude district borders that coincide with county borders. For the
remaining borders, which cut through counties, gerrymanderers likely have more flexibility
to allocate precincts optimally. For this subset of borders, the patterns in Figure 3 are even
more pronounced, and gerrymanderers have fewer profitable deviations overall (Appendix
I.4).

Finally, we assess the importance of turnout rate heterogeneity in assessing profitable de-
viations. To do this, we repeat the empirical swaps exercise, but we compute payoffs using
the measure δ̄i, which imposes equal turnout rates across all precincts. By artificially sup-
pressing turnout heterogeneity, we focus on the incentive to exploit differences in partisan
lean, i.e. the standard pack-and-crack strategy. We find, at best, weak evidence in support
of Empirical Prediction 2 when only using ideology to measure payoffs.

Figure 4 indeed shows that Democrats and Republicans each have more unexploited prof-
itable swaps under their own proposal than under their opponent’s proposal when using
ideology only to measure payoffs, when we proxy for the ideology of a precinct with past
vote shares. When proxying for ideology of a precinct using registered voters, the evidence
is mixed. Democrats have fewer profitable swaps under their own proposal than under the
Republican proposal, but Republicans have more profitable swaps under their own pro-
posal than under the Democrat proposal. Note also that, when using vote shares to proxy
for ideology, the gerrymanderer’s party has more profitable swaps than their opponent does
in their own proposal. Overall, when we shut down heterogeneity in turnout, the patterns
in Figure 3 weaken or reverse.33

The reason is simple: it is difficult to determine if a swap is profitable without taking turnout
into account. That is, there is a high rate of type I and type II errors. Of the swaps that are
profitable for the gerrymanderer’s party using ideology only (using vote shares to measure
ideology), only 57% are profitable after adding information about turnout rate differences.
Of the swaps that are profitable when incorporating information about turnout rates, 46%

32Some swaps have zero effect on the payoff, despite our measure being precise up to 24 decimal digits. This
is why the bars in Figure 3 do not add up to 100%.

33The patterns in Figure 4 are not sensitive to excluding negligible swaps or to varying the value of the standard
deviation of the aggregate shock (Figures I.7 and I.8 in Appendix I.4).
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FIGURE 4. PROFITABLE DEVIATIONS WITHOUT TURNOUT DIFFERENTIAL.
This figure compares profitable deviations when we measure δ̂ with the assump-
tion that τk = τ for all precincts. We proxy for precinct-level ideology using either
the share of Democratic voters in previous elections or the share of registered vot-
ers that are Democrats.

are not profitable if you use ideology only, based on vote shares, and 62% are not profitable
if you use ideology only, based on registered voters.

8. Conclusions

This paper studies the strategic incentives of gerrymanderers when drawing electoral maps.
Our approach introduces a novel aspect by considering the fact that not all individuals
vote. We first present a formal theory of redistricting, taking into account heterogeneity in
turnout. We show that a gerrymanderer aiming to maximize their party’s number of seats
allocates supporters and opponents quite differently across electoral districts. Specifically,
low-turnout supporters are packed into safe districts to prevent their votes from being di-
luted by higher-turnout opponents, thus ensuring their influence on the final vote outcome.
Conversely, high-turnout opponents are concentrated in disadvantaged districts, reducing
their influence and concentrating losses in a smaller number of districts. Other population
groups are allocated to mixed districts, deliberately associating opponents with higher-
turnout supporters. We call this strategy “pack-crack-pack”: going from low to high turnout
rates, packing supporters, creating cracked districts that mix supporters and opponents, and
finally packing high-turnout opponents. Our model also predicts (i) assortative matching
along the turnout dimension in cracked districts, and (ii) that districts can be ordered from
lowest to highest turnout rates, with the probability of winning each district decreasing as
average turnout increases.
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In the second part of the paper, we empirically test two key predictions of the model: (i) a
negative correlation between turnout rates and expected vote shares of the gerrymanderer’s
party across districts; (ii) gerrymanderers exploiting any swaps of individuals across dis-
tricts that would increase their party’s expected number of seats. To test these predictions,
we compared the actual proposals put forth by both the Democrats and the Republics in ten
U.S. states during the 2020 redistricting cycle. We found patterns in the data in line with
both predictions.

We anticipate that these findings could contribute to refining the ex post measures of gerry-
mandering. As discussed in Section 2, most existing measures of partisan gerrymandering
are designed to assess the degree to which a party packs and cracks voters. Yet, we have
shown in this paper that, when there is heterogeneity in turnout rates, gerrymanderers may
opt for a pack-crack-pack strategy instead of strictly adhering to the traditional approach.
This alternative strategy could lead gerrymanderers to draw maps that are deemed unbi-
ased by existing measures of gerrymandering. For instance, the Efficiency Gap measure
quantifies the extent to which a party follows the conventional pack-and-crack strategy by
assessing the number of votes ‘wasted’ by one party relative to the other. If a gerryman-
derer adopts a pack-crack-pack strategy instead, the Efficiency Gap may not detect partisan
intent. In fact, if there are enough packed districts favoring the gerrymanderer’s party, the
Efficiency Gap might even suggest that the map benefits the gerrymanderer’s opponent.
This is because the creation of safe districts is traditionally considered a ‘waste’ of votes.
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Appendices

A. Vote shares

Given the uniform distribution of ηe, the share of voters from group k that cast their ballot for D is:

σk (δ) =
1
2 + ϕ (νk − δ) .

Throughout, we assume that vote shares in each district are “interior”:34

[A1] Assumption Interior: We assume that σk is strictly between 0 and 1 for any realization of δ

by imposing that |νk| < 1
2ϕ − 1

2γ for all k, p. Moreover, we assume |νk| < 1
2γ : depending on the

realization of δ, σk can be strictly above or strictly below 1/2.

Next, we derive the vote shares of each party in a given district for any given realization of the

aggregate shock δ. With nkj voters of type k in district j, they cast tkj = nkjτk ballots. The

variable “t” stands for “turnout”. It follows that the number of votes in favor of D in district j is the

turnout-weighted average of D’s support among each group present in the district:∑
k

tkjσk (δ) =

∑
k t

k
j

2
+
∑
k

tkj ϕ (νk − δ) .

This number of votes is increasing in νk for all k and strictly decreasing in δ. For the simplicity of

exposition, we normalize ϕ to 1 for most of the analysis.

Denoting total turnout in district j by tj :=
∑

k t
k
j , under Assumption A1, the probability that D

wins district j (at least 1/2 of the votes) is:

πj = Pr

(
tj
2
+
∑
k

tkj (νk − δ) ≥ tj
2

)
= Pr

(
δ ≤ δ̂j :=

∑
k

tkj νk

tj

)
.

By the distribution of δ and Assumption A1, this simplifies into: πj = 1
2 + γδ̂j .

34This assumption is but a sufficient condition that simplifies the algebra. It can be relaxed to allow for σk to
equal 0 or 1. With two types, our results hold as long as νD + νR < 1

2ϕ and |νk| < 1
2γ .
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B. Swaps: Two Ideological Types

Since it only affects vote shares in districts i and j, at the margin, a k i ⇌j k′ swap (defined p12)

impacts the expected number of seats by:[
∂πi
∂nk′i

− ∂πi
∂nki

]
−
[
∂πj
∂nk′j

− ∂πj
∂nkj

]
. (B.1)

Let ∆ ≡ νD − νR. It is easy to check that:

∂πj
∂ndj

= τd
tRj
t2j

∆γ and
∂πj
∂nrj

= −τr
tDj
t2j

∆γ.

Proof of Property 1

Notice that to establish the concavity or convexity of a k i ⇌j k′ swap on πi + πj it suffices

to establish whether simultaneous increasing some type k and decreasing type k′ in district i has

increasing or decreasing returns since we are doing the same operation in reverse in district j.

Decreasing returns of DD swaps. The effect of replacing some type d by some type d′ on πi is:

∆γ (τd′ − τd)
tRi
t2i

. (B.2)

Let us start with τd′ > τd′ . As we replace type d by d′ in i, ti increases (while tRi remain unchanged).

The opposite happens if τd′ < τd′ . Hence, in both cases, (B.2) decreases.

Increasing returns of RR swaps. The effect on swapping some type r by type r′ on πi is:

−∆γ ((]τr′ − τr)
tDi
t2i

. (B.3)

If τr′ > (<)τr, the swap increases (decreases) ti so the the effect is always increasing.

Concavity or Convexity of RD swaps. A simultaneous increase in d′ and decrease in r type affects

πi as follows:

∆γ

(
τd′

tRi
t2i

+ τr
tDi
t2i

)
. (B.4)

The second-order effect has the same sign as (τd′ − τr)
(
τd′t

R
i + τrt

D
i

)
, implying that the marginal

effect of the swap is decreasing (increasing) iff τd′ > (<)τr.
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Clearly, the same applies for the reverse swap, a DR swap. The marginal effect of swapping some

d type from district i for some r′ type on πi is:

−∆γ

(
τd
tRi
t2i

+ τr′
tDi
t2i

)
. (B.5)

The second-order effect has the same sign as: (τr′ − τd)
(
τdt

R
i + τr′t

D
i

)
, implying that the marginal

effect of the swap is decreasing (increasing) iff τd > (<)τr′ .

Profitable Swaps

We are now in a position to derive the marginal effect of each swaps onto the expected number of

seats, πi + πj . We consider each type of swap in turn:

The effect of d i⇌j r
′ swap on the joint probability of winning, πi + πj , is proportional (∆γ

multiplies it) to an expression that can be written in three equivalent manners:[
∂πi
∂nr′i

− ∂πi
∂ndi

]
−
[

∂πj

∂nr′j
− ∂πj

∂ndj

]
= (τd − τr′)

[
tRj
t2j

− tRi
t2i

]
+ τr′

[
1

tj
− 1

ti

]
(B.6)

= (τr′ − τd)

[
tDj
t2j

− tDi
t2i

]
+ τd

[
1

tj
− 1

ti

]
(B.7)

= τd

[
tRj
t2j

− tRi
t2i

]
+ τr′

[
tDj
t2j

− tDi
t2i

]
. (B.8)

The effect of r i⇌j d
′ swap on the joint probability of winning, πi+πj , is similarly proportional

to any of the following three equivalent expressions:

(τd′ − τr)

[
tRi
t2i

−
tRj
t2j

]
+ τr

[
1

ti
− 1

tj

]
(B.9)

(τr − τd′)

[
tDi
t2i

−
tDj
t2j

]
+ τd′

[
1

ti
− 1

tj

]
(B.10)

τd′

[
tRi
t2i

−
tRj
t2j

]
+ τr

[
tDi
t2i

−
tDj
t2j

]
. (B.11)

The effect of d i⇌j d
′ swap on the joint probability of winning, πi + πj is proportional to:

(τd′ − τd)

[
tRi
t2i

−
tRj
t2j

]
. (B.12)
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The effect of r i⇌j r
′ swap on the joint probability of winning, πi + πj is proportional to:

(τr′ − τr)

[
tDj
t2j

− tDi
t2i

]
. (B.13)

C. Proofs: Main Results

Proof of Proposition 1.

Without loss of generality, the gerrymanderer is D. We start by showing that if r types are packed,

then all types r′ such that τr′ > τr must also be packed. Suppose that there exists a packed district i

with nri > 0. District i contains no d types, so tDi
t2i

= 0. In district j, there is some r′ with nr′j > 0

and τr′ > τr. From equation (B.13), the effect of a r i⇌j r
′ swap between packed district i and

cracked j has the same sign as:

(τr − τr′)

[
tDi
t2i

−
tDj
t2j

]
= (τr′ − τr)

tDj
t2j

≥ 0.

Hence, the swap is strictly profitable as soon as tDj > 0: the allocation may only be an equilibrium

if tDj = 0, that is if j is also a packed district.

The same logic implies that if d types are packed, all types d′ such that τd′ < τd must also be

packed.

Proof of Proposition 2. Suppose not. Then there exists a district i with types d and r and a

district j with types d′ and r′ where τr′ < τr and τd < τd′ . In an optimal districting, the effect of a

d i⇌j d
′ swap (equation B.12) must be non-positive. Given that τd′ > τd, this requires:

tRi
t2i

−
tRj
t2j

≤ 0. (C.1)

The effect of a r i⇌j r′ swap (equation B.13) in an optimal districting must be strictly negative.

Given τr > τr′ , this requires

tDi
t2i

−
tDj
t2j

< 0. (C.2)

From (B.8), we see that these two conditions imply that there would be a strictly profitable d i⇌j r
′

swap contradicting the optimality of the considered map.
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The following Lemma addresses the question of how opponents of different types should be dis-

tributed across districts. It demonstrates that, when allocating opponents across two cracked dis-

tricts, the gerrymanderer groups lower-turnout opponents in one district and higher-turnout oppo-

nents in the other.

Lemma 1. In an optimal map, there cannot be two cracked districts, i with two types of republicans

r and r̃, and j with two types of republicans r′ and r̃′, such that τr > τr′ and τr̃ < τr̃′ .

Lemma 1 follows from the convexity of RR swaps identified in Property 1. The gerrymanderer

benefits from losing big in one district, concentrating high-turnout opponents there, in order to push

its advantage in the other, now more favorable, district populated with lower turnout opponents.

A special case of Lemma 1 is when there are only two types of republicans, r and r′. Then, the

proposition implies that there cannot be two cracked districts where these two types coexist.

Proof of Lemma 1. Assume that the claim is incorrect. There is a district i with two types

of republicans r, r̃ and a district j with two types of republicans r′ (potentially equal to r) and r̃′

(potentially equal to r̃), such that τr > τr̃′ and τr′ > τr̃.

In an optimal map, a swap of r types from district i and r̃′ types from district j cannot increase

the gerrymander’s objective. Using (B.13) this implies that tDi
t2i

≤ tDj
t2j

Similarly, a swap of r′ types

from district j and r̃ types from district i cannot increase the gerrymander’s objective implies that
tDi
t2i

≥ tDj
t2j

. Together it means that tDi
t2i

=
tDj
t2j

and both types of swaps have a zero marginal effect on

the expected number of seats won.

Recall from Property 1 that the gerrymander’s objective is convex in the swaps of Republicans of

different turnout rates across districts. It follows that a discrete swap in one direction or the other

would increase the expected number of seats won.

Proof of Proposition 3. The claim is that all cracked districts can be ordered by increasing

turnout rates and decreasing winning probabilities.

By Lemma 1, all mixed districts can be ordered by non-decreasing Republican turnout rate. That

is, we can order districts so that for any two districts i and j with i < j, we must have maxr∈i τr ≤
minr′∈j τr′ , where “r ∈ i” is short for nri > 0. Moreover, Proposition 2 tells us that we have

assortative matching among cracked districts. It follows that we can order districts so that for any

two districts i and j with i < j: maxd∈i τd ≤ mind′∈j τd′ . It remains to prove the following:

CLAIM: πi(ni) ≥ πj(nj) or, in other words, tDi
ti

≥ tDj
tj

, with a strict inequality if there exist two

types r′ in j and r in i with different turnout rates.
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CASE 1: there exist two types r′ in j and r in i with different turnout rates. Since our districts are

ordered by increasing turnout rate this means that τr′ > τr.

Assume not, and instead that πi(ni) ≤ πj(nj) or, equivalently, that tDi
ti

≤ tDj
tj

and tRi
ti

≥ tRj
tj

.

From (B.13), we need tDi
t2i

>
tDj
t2j

so that an r i⇌j r
′ swap is not profitable. Since tDi

ti
≤ tDj

tj
then it

must be that 1
ti
> 1

tj
. Together with tRi

ti
≥ tRj

tj
, it implies that tRi

t2i
>

tRj
t2j

. From (B.11) we see that this

would imply a profitable r i⇌j d
′ swap, a contradiction. We must thus have that tDi

ti
>

tDj
tj

.

CASE 2: If there is only one type of republicans r = r′ in both districts but (at least) two types of

democrats d′ in district j and d in district i so that τd < τd′ .

Assume not, and instead that πi(ni) ≤ πj(nj) or, equivalently, that tDi
ti

≤ tDj
tj

and tRi
ti

≥ tRj
tj

Case 2.a: tDi
ti

<
tDj
tj

and tRi
ti

>
tRj
tj

. From (B.12), we know tRi
t2i

≤ tRj
t2j

or a d i⇌j d
′ swap would be

profitable. Since tRi
ti

>
tRj
tj

this requires 1
ti

< 1
tj

. At the same time, (B.8) requires that tDi
t2i

≥ tDj
t2j

,

otherwise a d i⇌j r
′ swap would be profitable. Since tDi

ti
<

tDj
tj

this requires 1
ti
> 1

tj
, a contradiction.

Case 2.b: tDi
ti

=
tDj
tj

and tRi
ti

=
tRj
tj

. No profitable d i⇌j d
′ swap (B.12) requires tRi

t2i
≤ tRj

t2j
. Since

tRi
ti

=
tRj
tj

, this implies that 1
ti

≤ 1
tj

. At the same time, no profitable d i⇌j r
′ swap (B.8) requires

that tDi
t2i

≥ tDj
t2j

. Since tDi
ti

=
tDj
tj

, this means that 1
ti

≥ 1
tj

. It follows that ti = tj , and therefore that

tDi = tDj and tRi = tRj .

CASE 3: If there is only one type of republicans r = r′ and one type of democrats d = d′ in both

districts, we can clearly order them such that j has the (weakly) lower probability of winning.

For both d i⇌j r
′ and r i⇌j d

′ swaps not to be profitable ((B.6) and (B.9)) it must be that the two

districts are identical in the concave case (τd > τr). If τd < τr, it would be optimal to pack one of

the districts which contradicts the assumption that both districts are cracked.
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D. Robust maps

To further describe the optimal map, we want to isolate the effects of the population structure, and

abstract from the constraints imposed by a possibly small number of districts. Related models rule

out such constraints by assuming a continuum of districts (Kolotilin and Wolitzky (2020), Friedman

and Holden 2008, 2020, Gul and Pesendorfer 2010). Instead, we introduce the concept of a robust

map, which is insensitive to the number of districts.

To understand the issue, consider a case in which there are only low-turnout supporters and high-

turnout opponents. By Lemma 2, the gerrymanderer avoids mixing them in a same district. Now,

imagine there are 75% supporters and 25% opponents but there are only two districts. Then, the

gerrymanderer can only create one packed district filled with supporters. In the second district, they

are forced to mix the remaining 25% of supporters with the 25% of opponents.

Now, clone this map by doubling the number of districts, while keeping the population unchanged.

The gerrymanderer can now create four packed districts, three filled with supporters, and only one

with opponents. In this example, four districts are sufficient to describe an optimal map. Moving

beyond this simple example, we allow for the indefinite cloning of a map:

Definition: The cloning of a map consists in the replication of each district j, creating c ∈ N0

additional districts with the same population structure as the original one.

It is straightforward to check that cloning may only serve the gerrymanderer: the cloned map results,

by definition, in the same payoff as the original map. Yet, it may also open the door to additional

swaps that were initially not available. Instead, when all room for optimization has been exhausted,

further cloning becomes immaterial. For instance, increasing the number of districts from 4 to 8 in

the example does not affect payoffs. This defines robust maps:

Definition: A map is robust if, for any c ∈ N0, cloning does not allow a gerrymanderer to further

increase their expected seat share.

Robustness allows us to determine sufficient conditions for the existence –or co-existence– of the

packed-D districts, cracked districts, and packed-R districts, i.e. a pack-crack-pack pattern, as iden-

tified in the following proposition:

Proposition 4. For a Democrat gerrymanderer:

(1) If τr < τd̄, a robust map must have at least one cracked district: τr∗ > τr and τd∗ < τd̄;

(2) If τd̄ < τr̄, a robust map must have at least one packed R district: τr∗ < τr̄ ;

(3) If τd < τr, a robust map must have at least one packed D district: τd∗ > τd .
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Proposition 1 shows that (1) whenever the highest turnout rate of democrats is higher than the lowest

turnout rate of republicans, a robust map must display at least one cracked district; (2) opponents

who turn out more than any supporters will necessarily be allocated to packed-R districts; (3) sup-

porters who turn out less than any opponent will be allocated to packed-D districts.

Concretely, the depiction in Figure 1 is a robust map if all three conditions in Proposition 4 are met.

The left-most part of that figure may become empty if condition (3) is violated, etc. But, every

time there is at least one group of supporters with a turnout rate higher than at least one group of

opponents, a robust map will have a positive number of cracked districts.

Key to the proof of Proposition 4 is the following lemma:

Lemma 2. No optimal map can have :

(a) two cracked districts i and j such that max{τd, τd′} < min{τr, τr′} for any d, r types in district

i and d′, r′ types in district j;

(b) a packed D district i and a packed R district j such that τd > τr′ for any d type in district i and

r′ type in district j.

Proof of Lemma 2.
Without loss of generality, we assume that the gerrymanderer is a Democrat.

Proof of part(1). Consider district i with ndi, nri > 0 and district j with nd′j , nr′j > 0. That is,

there are some democrats and some republicans in both districts, with index k associated with those

initially in district i and index k′ associated with those initially in district j. Let max{τd, τd′} <

min{τr, τr′}: partisans have strictly lower turnout rates than opponents.

Without loss of generality, let types τd′ in district j have the lowest turnout: τd′ ≤ τd. This means

there are up to six cases to consider: (I-III) τd′ = τd < τr ⋛ τr′ , and (IV-VI) τd′ < τd < τr ⋛ τr′ .

In an optimal districting, none of the four possible swaps (d i⇌j d′ , r i⇌j r′ , d i⇌j r′ , and

r i⇌j d
′ ) may have a strictly positive marginal effect on πi + πj . Starting with d i⇌j d

′ , (B.12)

must be non-positive:

(τd − τd′)

[
tRj
t2j

− tRi
t2i

]
≤ 0. (NoDD)

Next, consider r i⇌j r
′ swaps: for τr ̸= τr′ , (B.13) must be strictly negative:

(τr − τr′)

[
tDi
t2i

−
tDj
t2j

]
< 0. (NoRR)

The strict inequality follows from the convexity of RR swaps in Property 1.
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Finally, the two possible DR swaps must have a negative impact on πi+πj . The effect of a d i⇌j r
′

swap must be negative:

(τr′ − τd)

[
tDj
t2j

− tDi
t2i

]
+ τd

[
1

tj
− 1

ti

]
≤ 0, (NoDR)

and the effect of a r i⇌j d
′ swap must be negative:

(τr − τd′)

[
tDi
t2i

−
tDj
t2j

]
+ τd′

[
1

ti
− 1

tj

]
≤ 0. (NoRD)

Case I: τd = τd′ < τr = τr′ . It is easy to show that this case cannot be an optimal districting

as the gerrymanderer can strictly increase their payoff through some d i⇌j r
′ or r i⇌j d

′ swaps.

To see this recall that, by Property 1(3), the effect of either swap is convex since republicans have

the turnout rate advantage. This implies that: (i) if both (NoDR) and (NoRD) are satisfied with

equality, the expected number of seats going to party D must be at a local minimum, and (ii) if

either (NoDR) or (NoRD) is non zero, then one must be strictly positive since (NoDR) and (NoRD)

are the opposite of each other.

Case II. τd′ = τd < τr′ < τr. We note that (NoRR) only holds if: tDi
t2i

− tDj
t2j

< 0. This also

implies that all R types in district i must have a higher turnout rate than all R types in district j,

otherwise there is at least one profitable r i⇌j r
′ swap. Note also that all D types must have the

same turnout rate in this case, otherwise Case V or VI applies. The value of a d i⇌j r
′ in (NoDR)

can therefore be decomposed into a first term that is strictly positive, and a second term that must

be sufficiently negative for the d i⇌j r
′ to be non-profitable. This requires that ti < tj . Given the

aforementioned conditions on turnout rates, ti < tj requires that there are more Democrat voters in

i than in j, i.e. tDi /ti > tDj /tj . Put together, these two conditions in turn require that tDi
t2i

− tDj
t2j

> 0,

meaning that (NoRR) must be positive and hence that Case II cannot be optimal.

Case III. τd′ = τd < τr < τr′ . This is the same as Case II except for the fact that τr < τr′ .

Relabeling the districts i and j proves that Case III cannot be an optimal redistricting.

Case IV. τd′ < τd < τr′ = τr . If inequality (NoDD) is strict, the fact that (NoDD) must hold for

all D types implies that τd ≥ τd′ for all D types in districts i and j. Note also that all R types must

have the same turnout rate in districts i and j, otherwise case V or VI applies. It must then be that

ti > tj . For this not to be the case, district j would need to have strictly fewer D types than district

i (since all D types in i have higher turnout rates than all D types in j and all R types have the same

turnout rate). This implies that tDj < tDi , which, together with tj ≥ ti, implies tDj /t
2
j < tDi /t

2
i .

However, tDj /t
2
j < tDi /t

2
i and tj ≥ ti violate condition (NoRD). Thus, it must be that ti > tj .
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Given ti > tj and that (NoDD) is strict, along with (B.6), we have that a d i⇌j r
′ swap must be

positive (condition (NoDR) cannot be satisfied).

If inequality (NoDD) is not strict, then tRj /t
2
j = tRi /t

2
i . Note that tRj /t

2
j = tRi /t

2
i implies tDj /t

2
j −

tDi /t
2
i = 1/tj − 1/ti. Thus, inequalities (NoDR) and (NoRD) simplify to:[

tDj
t2j

− tDi
t2i

]
≤ 0 and

[
tDi
t2i

−
tDj
t2j

]
≤ 0. (D.1)

Given that these inequalities are the opposite of each other, they can only be jointly satisfied if equal

to zero. But, for the ordering of turnout rates under consideration, we have from Property 1(3) that

the effect of either swap is convex. Hence, we would be at a local minimum.

It follows that Case IV can not be an optimal districting.

Case V. τd′ < τd < τr′ < τr. With τr > τr′ , (NoRR) requires

tDi
t2i

−
tDj
t2j

< 0. (D.2)

whereas with τd > τd′ , (NoDD) requires

tRi
t2i

−
tRj
t2j

≥ 0. (D.3)

Given (D.2) and that (NoRR) must hold for all R types, then all R types present in i must have a

higher turnout rate than any of the R types present in district j. If inequality (D.3) is strict, then by

(NoDD) all D types present in i must have a higher turnout rate than any of the D types present in

district j. This in turn implies that ti > tj . For this not to be the case, one would need to have more

D types in district i than in district j. Since D types in district i have a higher turnout rate than

D types in district j, this implies tDi > tDj . Along with the assumption that tj > ti, this implies

tDi /t
2
i > tDj /t

2
j , which means the effect of an r i⇌j r

′ is positive, or condition (NoRR) is violated.

Thus, we must have ti > tj . In that case, (NoDR) must be positive.

If (D.3) holds with equality, then
tRj
t2j

− tRi
t2i

= 0. As in Case IV, this implies that expressions (NoDR)

and (NoRD) cannot both be true. Thus, Case V can not be an optimal districting.

Case VI. τd′ < τd < τr < τr′ . This is the same as Case V except for the fact that τr < τr′ . Hence,

condition (NoRR) now requires:

tDi
t2i

−
tDj
t2j

> 0. (D.4)
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Given τd′ < τd, (NoDD) still requires:

tRi
t2i

−
tRj
t2j

≥ 0. (D.5)

Adding up inequalities (D.4) and (D.5) implies that ti < tj . Together, the latter inequality and (D.4)

imply that (NoRD) is not satisfied.

Together, cases I-VI show that it is never optimal to maintain a pair of districts in which low-turnout

partisans (D types) and high-turnout opponents (R types) co-exist.

Proof of part (2). Take any two districts i and j such that min{τd, τd′} > max{τr, τr′} for any d, r

types in district i and d′, r′ types in district j. We cannot have
∑

r∈R nri = 0 and
∑

d∈D ndj = 0.

Let us proceed by contradiction and assume that both
∑

r∈R nri = 0 and
∑

d∈D ndj = 0 (that is,

we start from a situation with a packed D district and a packed R district). Since R-types have by

assumption lower-turnout rates than D-types, this implies that ti > tj . Since
∑

r∈R nri = 0, then

we also have that tRi /t
2
i = 0. Hence, (B.6) is strictly positive: it is strictly profitable to perform a

d i⇌j r
′ swap, a contradiction.

We are now in a position to prove Proposition 4.

Proof of Proposition 4.
Part (1). Assume not and that instead all districts are packed, some with supporters and some with

opponents. Note that the payoff of any two fully packed maps is equal. We can thus clone our fully

packed map c times so that c × min{nd̄, nr} ≥ 1/J , where 1/J is the mass of voters needed to

populate a district without changing the gerrymanderer’s payoff. Moreover, the gerrymanderer’s

payoff under this fully packed map is the same as the payoff associated with another fully packed

map in which at least one district is only composed of partisans with turnout rates τd̄ and at least one

district is only composed of opponents with turnout τr(< τd̄). However, this leads to a contradiction:

Lemma 2(b) tells us that the expected seat share can be strictly increased by mixing these high-

turnout supporters with these low-turnout opponents. This establishes that:

τd∗ < τd̄ and τr∗ > τr,

i.e. there must be a strictly positive number of mixed districts.

Part (2). To prove point (2), we show that if τd̄ < τr̄ then τr∗ < τr̄, i.e. any robust map has at least

one district packed with opponents: In the absence of a packed district, there must be some mixed

district j with nr̄j > 0. Cloning the map ensures that there are at least two cracked districts that

mix τr̄ with some lower turnout D types. By Lemma 2(a), this cannot happen in an optimal map.
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Part (3). We show that if τd < τr then τd∗ > τd. In the absence of a packed district only populated

with τd < τr, there must be some cracked district i that mixes low-turnout supporters with higher-

turnout opponents: ∃i with ndi > 0 and nri > 0, s.t. τr > τd. Cloning the map, there are at least

two such districts. By Lemma 2(a), this cannot happen in an optimal map.

E. Extension: Endogenous Turnout

We extend the model to a setup in which turnout rate is the product of (a) the share of eligible voters

τk in group k and (b) the turnout decision σk of those who are eligible: τk σk.

Those eligible to vote turn out only when their expected benefit of voting outweighs the cost, in line

with the calculus of voting tradition (as described in, for example, Riker and Ordeshook 1968). The

expected benefit depends on both the utility differential between the parties and a function pk(nj),

which maps the composition of district j to a benefit of voting for eligible voters in group k. The

benefit of voting can vary, for example, with the partisan composition in district j. Moreover, popu-

lation groups can differ in how sensitive they are to district-level characteristics. Voting also entails

a cost ck, which can be group-specific. We thus have that an eligible individual i from group k in dis-

trict j votes for D if (νk − ηek − δ) pk(nj) ≥ ck. They vote for R if ck ≤ − (νk − ηek − δ) pk(nj),

and they abstain otherwise.

For a given value of δ, the share of eligible individuals who turn out to vote for D is then:

σD
kj (δ) =

1

2
+ ϕ

(
νk − δ − ck

pk(nj)

)
,

whereas the share who votes for R is:

σR
kj (δ) =

1

2
− ϕ

(
νk − δ +

ck
pk(nj)

)
.

It follows that the actual number of votes for D, given δ is:

tDj =
∑
k

nkj · τk · σD
kj (δ) =

∑
k nkj · τk

2
+ ϕ

∑
k

nkj · τk ·
(
νk − δ − ck

pk(nj)

)
,

and similarly for party R:

tRj =

∑
k nkj · τk

2
− ϕ

∑
k

nkj · τk ·
(
νk − δ +

ck
pk(nj)

)
.
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Hence, the probability that D wins district j is:

πj = Pr
(
tDj ≥ tRj

)
= Pr

(
δ ≤

tDj νD + tRj νR

tj

)
,

which is the same as in the baseline model, where turnout rates are exogenous.

F. Extension: Single-Peaked Aggregate Shock

Swaps

Denote γi = γ
(
δ̂i

)
and γj = γ

(
δ̂j

)
. The effect of a r i⇌j d

′ swap, bringing some d’ from j into

i and swapping it for some r, on the joint probability of winning, πi + πj is given by:

∆

[
τd′

(
γi
tRi
t2i

− γj
tRj
t2j

)
+ τr

(
γi
tDi
t2i

− γj
tDj
t2j

)]
. (F.1)

While the effect of a d i⇌j r
′ swap, bringing some r’ from j into i and swapping it for some d, on

the joint probability of winning, πi + πj is given by:

∆

[
τd

(
γj

tRj
t2j

− γi
tRi
t2i

)
+ τr′

(
γj

tDj
t2j

− γi
tDi
t2i

)]
. (F.2)

The effect of a d i⇌j d
′ swap on the joint probability of winning, πi + πj is:

∆(τd′ − τd)

[
γi
tRi
t2i

− γj
tRj
t2j

]
. (F.3)

While a r i⇌j r
′ swap has the following effect:

∆(τr′ − τr)

[
γj

tDj
t2j

− γi
tDi
t2i

]
. (F.4)

Results

The following proposition is the counterpart of Proposition 2 for the single-peaked aggregate shock.

It tells us that assortative matching occurs across mixed districts that vary in their effective share of

Democrats, tD
tD+tR

, and, consequently, in the partisanship of their median voter, δ̂.

Proposition 5. In an optimal map, there cannot be two cracked districts i with types d, r and j with

types d′, r′ where τr′ < τr and τd < τd′ and where tDi ̸= tDj .
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Proof. First, no profitable d i⇌j d
′ given that τd < τd′ means that:

[
tRj
t2j
γj −

tRi
t2i
γi

]
≥ 0.

Second, no profitable r i⇌j r
′ implies:

[
tDi
t2i
γi −

tDj
t2j
γj

]
≤ 0.

Either inequality being strict implies a strictly positive F.2, and therefore the map is not optimal.

The only possibility is
tRj
t2j
γj =

tRi
t2i
γi and tDi

t2i
γi =

tDj
t2j
γj . Summing these two inequalities implies that

γi
ti

=
γj
tj

. Since tDi
t2i
γi =

tDj
t2j
γj , it follows that tDi

ti
=

tDj
tj

(and thus tRi
ti

=
tRj
tj

). This means that δ̂i = δ̂j

and therefore γi = γj and ti = tj . It follows that tDi = tDj (and tRi = tRj ), a contradiction.

Proposition 6 serves as the counterpart to Proposition 3 for the single-peaked aggregate shock.

It informs us that when we arrange districts in descending order of their expected probability of

winning, among districts whose expected probabilities of winning differ, these districts are ordered

based on increasing turnout rates for both parties

To show this it is useful to first note that:

Lemma 3. Consider two districts, i and j, with tDi
t2i
γi >

tDj
t2j
γj . Then, any r′ type present in j must

have a weakly higher turnout than all the types r present in i.

Proof. For a r i⇌j r
′ to be non-profitable: ∆(τr − τr′)

>0︷ ︸︸ ︷[
tDi
t2i

γi −
tDj
t2j

γj

]
≤ 0, which clearly

requires that τr ≤ τr′ .

Proposition 6. In an optimal map, all cracked districts can be ordered by decreasing expected

winning probabilities, so that for any two districts i and j with i < j: πi(ni) ≥ πj(nj). When the

expected winning probabilities differ, these districts are ordered by increasing turnout rates for both

parties, so that if πi(ni) > πj(nj) then maxr∈i τr ≤ minr′∈j τr′ , maxd∈i τd ≤ mind′∈j τd′ .

Proof.
The claim is that all cracked districts can be ordered by increasing turnout rates and decreasing

winning probabilities.

Without loss of generality, order district by non increasing tDi
t2i
γi. Consider two districts i < j.

Either (i) tDi
t2i
γi >

tDj
t2j
γj ; or (ii) tDi

t2i
γi =

tDj
t2j
γj .

CASE (i): tDi
t2i
γi >

tDj
t2j
γj . Lemma 3 tells us that we can order the districts by non decreasing

republican turnout rates. Moreover, from (F.1), we know that
tRj
t2j
γj >

tRi
t2i
γi, otherwise there would
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be a profitable r i⇌j d
′ . We can this order the democrats’ turnout rates as well. Assume not and

that τd′ < τd then from (F.3) we would have a profitable d i⇌j d
′ swap.

Now we want to show that the probability of winning the district are strictly decreasing:

Claim πi(ni) > πj(nj) or tDi
ti

>
tDj
tj

. Assume not and assume instead that tDi
ti

≤ tDj
tj

.

First notice that since tDi
t2i
γi >

tDj
t2j
γj then it must be that γi

ti
>

γj
tj

. Second, since
tRj
t2j
γj >

tRi
t2i
γi and

γi
ti

>
γj
tj

then it must be that
tRj
tj

>
tRi
ti

and therefore
tDj
tj

<
tDi
ti

a contradiction. Hence, it must be that
tDi
ti

>
tDj
tj

.

CASE (ii): t
D
i

t2i
γi =

tDj
t2j
γj . For r i⇌j d

′ and d i⇌j r
′ (equations F.1 and F.2) not to be profitable then,

we must have tRi
t2i
γi =

tRj
t2j
γj . Summing these two we get that γi

ti
=

γj
tj

. In this case tDi
ti

=
tDj
tj

and the

probability of winning are the same.

G. Extension: General Distribution of Ideology Types

We consider the setup with multiple ideological types described in Section 6.2. We denote by D the

voters with the largest νk and by R those with the lowest νk.

Swaps

We consider two types of swaps: the effect of swapping voters of the same ideology (kk′ swaps) and

the effect of swapping voters of different ideologies (kl′ swaps). As before, we use the convention

that k and l types initially belong to district i whereas k′ and l′ types initially belong to district j.

We present here the marginal effect of each swap on the expected number of seats, πi + πj .

The effect of a kk′ swap on the joint probability of winning, πi + πj , is:

(τk′ − τk)

[(
νk − δ̂i

ti

)
−

(
νk − δ̂j

tj

)]
. (G.1)

The effect of a kl′ swap on the joint probability of winning, πi + πj , is:

τl′

[(
νl′ − δ̂i

ti

)
−

(
νl′ − δ̂j

tj

)]
− τk

[(
νk − δ̂i

ti

)
−

(
νk − δ̂j

tj

)]
. (G.2)
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Results

As before, a cracked district refers to a district containing more than one ideological type and a

packed district refers to a district containing only one ideological type. Note that, for any cracked

district i, it must be that νR < δ̂j < νD.

First, we show that Proposition 1 still holds for D and R types:

Proposition 7. In an optimal map, the allocation of D and R voters to districts is characterized by

two cutoffs, τd∗ ∈ [τd, τd̄] and τr∗ ∈ [τr, τr̄] such that:

(i) High-turnout supporters, with τd > τd∗ , are assigned to mixed districts, whereas low-turnout

supporters, with τd < τd∗ , are assigned to packed districts;

(ii) High-turnout opponents, with τr > τr∗ , are assigned to packed districts, whereas low-turnout

opponents, with τr < τr∗ , are assigned to mixed districts.

Proof. Consider two types of R-voters such that τr < τr′ . We want to show that if r-voters are

packed (in district i), then r′-voters are also packed. We proceed by contradiction and show that if

r-voters are packed (in district i), then r′-voters cannot be in a cracked district (j).

From (G.1), we have that an rr′ swap has the same sign as (τr′ − τr)
[(

νR−δ̂i
ti

)
−
(
νR−δ̂j

tj

)]
. Since

district i is packed with R-voters, we have that δ̂i = νR. Thus, the previous inequality boils down

to (τr′ − τr)
[
−
(
νR−δ̂j

tj

)]
, which is (weakly) negative if and only if νR ≥ δ̂j . This is never true for

a cracked district, and hence an rr′ is necessarily profitable.

Using a similar strategy, it is easy to prove that, considering two types of D-voters such that τd > τd′ ,

if d-voters are packed (in district i), then d′-voters must also be packed.

Second, we can extend Proposition 2 to districts with strictly different probabilities of winning:

Proposition 8. In an optimal map, there cannot be two cracked districts i and j such that δ̂i ̸= δ̂j ,

respectively with types k, l and k′, l′ such that τk < τk′ , τl > τl′ , where νk = νk′ and νl = νl′ .

Proof. The proof proceeds by contradiction: we suppose that there are two cracked districts i

and j such that δ̂i ̸= δ̂j , respectively with types k, l and k′, l′ such that τk < τk′ , τl > τl′ , where

νk = νk′ and νl = νl′ .

Without loss of generality, we assume that νk ≥ νl.

From (G.1) and τk′ > τk, a kk′ swap is not profitable if and only if:(
νk − δ̂i

ti
− νk − δ̂j

tj

)
≤ 0, (G.3)
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and since τl > τl′ , an ll′ swap is unprofitable if and only if:(
νl′ − δ̂i

ti
− νl′ − δ̂j

tj

)
≥ 0. (G.4)

From (G.2) we have that a kl′ swap is unprofitable if and only if:

τl′

[(
νl′ − δ̂i

ti

)
−

(
νl′ − δ̂j

tj

)]
− τk

[(
νk − δ̂i

ti

)
−

(
νk − δ̂j

tj

)]
≤ 0. (G.5)

Combined with (G.3) and (G.4), condition (G.5) requires:

νk − δ̂i
ti

=
νk − δ̂j

tj
&

νl′ − δ̂i
ti

=
νl′ − δ̂j

tj
. (G.6)

From (6), we know that the effect of the ll′ swap must be convex for all νl < min{δ̂i, δ̂j} (this is the

case if l corresponds to the most republican type R). Due to convexity, condition (G.4) must hold

with strict inequality in an optimal districting. If (G.3) is true and (G.4) holds with strict inequality,

then (G.5) cannot be satisfied, and there must thus be a profitable kl′ swap.

Hence, we have a contradiction when νl < min{δ̂i, δ̂j}. It remains to prove that the result holds

across any two districts with νl ≥ min{δ̂i, δ̂j} and δ̂i ̸= δ̂j .

First, suppose that νk > νl. For the equalities in (G.6) to hold it must be that ti = tj and δ̂i = δ̂j . A

contradiction since we have assumed that δ̂i ̸= δ̂j .

Second, suppose that νk = νl. In this case, the equalities in (G.6) tell us that νk−δ̂i
ti

=
νk−δ̂j

tj
.

If ti = tj then δ̂i = δ̂j , a contradiction.

If ti < tj , then νm−δ̂i
ti

− νm−δ̂j
tj

is strictly increasing in νm. This means that there cannot be any type

m′ in j with νm′ > νk, otherwise νm′−δ̂i
ti

− νm′−δ̂j
tj

> νk−δ̂i
ti

− νk−δ̂j
tj

= 0 implies that a km′ swap

would be profitable:

τm′

[(
νm′ − δ̂i

ti

)
−

(
νm′ − δ̂j

tj

)]
− τk

[(
νk − δ̂i

ti

)
−

(
νk − δ̂j

tj

)]
> 0.

Since j is not packed it must be that νk > δ̂j (otherwise, given that k is the most democrat-leaning

type in j, all voters in j would have an ideology lower than the average, an impossibility).

The fact that νm−δ̂i
ti

− νm−δ̂j
tj

is strictly increasing in νm also means that there cannot be any type m

in i with νm < νk, otherwise νm−δ̂i
ti

− νm−δ̂j
tj

<
νk′−δ̂i

ti
− νk′−δ̂j

tj
= 0 implies that a mk′ swap would
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be profitable:

τk′

[(
νk′ − δ̂i

ti

)
−

(
νk′ − δ̂j

tj

)]
− τm

[(
νm − δ̂i

ti

)
−

(
νm − δ̂j

tj

)]
> 0.

Since i is not packed it must be that νk < δ̂i (otherwise, given that k is the most republican-leaning

republican type in i, all voters in i would have an ideology higher than the average, an impossibility).

But δ̂j < νk = νl′ < δ̂i contradicts the no ll’ condition (G.4).

Note that ti > tj is a symmetric case, and thus also leads to a contradiction.

Finally, we can extend Proposition 3 to any voters with a given ideology included in districts with

strictly different probabilities of winning:

Proposition 9. Consider any pair of cracked districts i and j including, respectively, voters k and

k′ with νk = νk′ . If δ̂i < δ̂j then it must be that τk ≥ τk′ .

Proof. Take any two districts i and j such that δ̂j > δ̂i. We prove that τk′ < τk always leads to

a contradiction.

Case 1: νk = νk′ ∈ [δ̂i, δ̂j ]. From (G.3), a kk′ swap is profitable unless:
(
νk−δ̂i

ti
+

δ̂j−νk
tj

)
≤ 0.

For the case under consideration, all terms are weakly positive (with at least one strictly positive),

implying that a kk′ swap is always profitable.

Case 2: νk = νk′ < δ̂i < δ̂j . First, note that there must exist a type νm′ > δ̂j in district j

(otherwise, the expected position of the district median could not be strictly larger than νk). In other

words, Case 2 implies that there exists m′ such that: νk < δ̂i < δ̂j < νm′ .

Now, we show that condition (G.3) (for no profitable kk′ swap) implies that a km’-swap must be

profitable. First, from (G.3), a kk′ swap is profitable unless ti < tj (because 0 > νk− δ̂i > νk− δ̂j).

Second, rearranging terms in (G.5), we have that a km’ swap is profitable unless:

τm′

[(
νm′ − δ̂i

ti

)
−

(
νm′ − δ̂j

tj

)]
+ τk

[(
δ̂i − νk

ti

)
−

(
δ̂j − νk

tj

)]
≤ 0

The second term between brackets is the opposite of the condition (G.3) for the kk’-swap to be not

profitable. Hence, it is positive. The first term between brackets is strictly positive since νm′ − δ̂i >

νm′ − δ̂j > 0 and ti < tj . Hence, the condition is necessarily violated.

Case 3: δ̂i < δ̂j < νk = νk′ . This case and its proof are symmetric to Case 2.
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H. Data Appendix

H.1. Dataset

We compile precinct-level political and demographic data from several different sources. We then

use geospatial data to assign the precinct-level characteristics to congressional districts under Demo-

crat and Republican proposals from the 2020 redistricting cycle.35

The ability to compare how a precinct is treated under a Democrat versus Republican proposal is

key for our analysis. Therefore, we limit attention to states in which we observe a proposed map

from both political parties. Detailed data for redistricting proposals, and not just the final map,

became widely available only after the 2020 redistricting cycle. The maps themselves were drawn

by redistricting committees, party caucuses, or individual representatives (see Appendix H.2).

We further restrict attention to states with high quality information on party affiliation among regis-

tered voters. Party affiliation is a key input that we use to determine the partisan lean of a precinct or

legislative district.36 In total, we collect data for 20 redistricting proposals from 10 states (Florida,

Kansas, Louisiana, Maryland, Nebraska, Nevada, New Mexico, New York, North Carolina, and

Pennsylvania), covering 113 congressional districts.

At the precinct-level, we compile information on demographics, voter registration, and presidential

election returns from 2016 and 2020. Precincts are geographic areas used to administer elections.

They are the smallest possible geographic unit to observe election returns. The precinct-level data

come from multiple sources. We use 2020 Census data to measure the total population. We use

American Community Survey data to measure age, race/ethnicity, sex, income, and education. The

Redistricting Data Hub compiles voter registration data, election returns, and Citizen Voting Age

Population (CVAP, the number of citizens aged 18 and older).37

35We focus on U.S. congressional districts rather than state legislative districts to avoid incumbency gerry-
mandering, as much as possible. Since most maps are drawn by state legislators, incentives for incumbency
gerrymandering are relatively strong at the state level. Given that most states have only a small number
of congressional districts, an advantage of our theoretical framework is that we consider a finite number of
districts.

36Because we use party affiliation as a proxy for ideology, we use only states where voters are required to
register with a party in order to participate in the party’s primary elections. We expect the quality of party
affiliation data to be higher in these states than in states where party registration is optional or imputed.

37The Redistricting Data hub geocodes and validates precinct-level data. Their source for voter registration
data is L2, their source for election returns is the Voting and Election Science Team (VEST), and their source
for CVAP is the American Community Survey.
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H.2. Redistricting Proposals

We collect redistricting proposals from the 2020 redistricting cycle for all states in which we ob-

serve both a Democrat and a Republican proposal. The sources of the proposals vary from state to

state. In most states, we observe a proposal from the redistricting committee of the state legislature.

Committees charged with redistricting are typically aligned with the majority party in the legisla-

ture. We therefore assign a legislative committee map to the majority party. For the minority party,

we use proposals from party caucuses and from individual representatives. If there are multiple pro-

posals for the minority party, we use the proposal from a caucus over an individual. New York is an

exception because an independent committee issued two partisan maps for congressional districts.

See Table H.1 for details. We compare the map proposed by the Republican-nominated members

of the independent redistricting committee to the map proposed by the Democrats of the New York

state legislature. Geospatial data for each proposal were gathered from state legislature websites or

by request to state legislatures. The Geospatial data allows us to map each proposal and measure

how the proposed districts intersect with existing precincts.
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TABLE H.1. Redistricting Proposals
State Party Author Proposal Name Notes
FL Dem State Senator Darryl Rouson S019C8062 Of the proposals from Democrats, this was submitted most recently.
FL Rep Governor Ron DeSantis PP000C0109109 Governor DeSantis rejected the legislature’s plan and proposed this one, which was

later enacted and challenged in state court.
KS Dem State Senator Dinah Sykes United Senator Sykes is the minority party leader.
KS Rep Kansas House Committee on Re-

districting
Ad Astra 2 The democratic governor vetoed this proposal and the legislature overrode the veto.

The Kansas Supreme Court ultimately rejected the map.
LA Dem State Senator Gary Smith SB11 Several proposals were submitted by Democrats in a short time span. This plan was

from the most senior member of the state legislature.
LA Rep State Representative Clay Schex-

nayder
House Bill 1 The Democratic governor vetoed this proposal and the legislature overrode the veto.

An appeals court rejected the map, but the U.S. Supreme Court allowed it to be used
in 2022 elections.

MD Dem Legislative Redistricting Advi-
sory Commission

LRAC Final Recommended Con-
gressional Plan

This map was enacted and upheld by the Maryland Court of Appeals.

MD Rep Maryland Citizens Redistricting
Commission

CRC Final Recommended Con-
gressional Map

The governor traditionally proposes a map. The Republican Governor delegated this
job to a task force called the Maryland Citizens Redistricting Commission.

NC Dem Senator Jay Chaudhuri CST-6 Of the proposals submitted by Democrats, we chose the proposal that was later used
in court cases challenging the Republican map.

NC Rep North Carolina General Assembly Congressional Plan Senate Bill
740 / SL 2021-174

This proposal was enacted and later rejected by the state supreme court. However, the
following year the state supreme court overturned their previous opinion.

NE Dem Democratic State Senator Justin
Wayne

LB2 Although Nebraska has a nonpartisan legislature, this map was endorsed by the state
Democratic party.

NE Rep Nebraska Legislature Redistrict-
ing Committee

LB1 This proposal was enacted and later challenged in state court.

NM Dem New Mexico Legislature New Mexico Final Congressional
Plan

This proposal was enacted and later challenged in state court.

NM Rep Citizen Redistricting Committee Map A This proposal was authored by the non-partisan redistricting committee but endorsed
by the Republican party.

NV Dem Democrats in the Nevada Legisla-
ture

Nevada Final Congressional Plan This proposal was enacted and later challenged in state court.

NV Rep Republicans in the Nevada Legis-
lature

Congressional Minority Plan This proposal was submitted by the Legislature Joint Minority Committee.

NY Dem Democrats in the New York Leg-
islature

New York State Assembly Con-
gressional Plan

The New York State Independent Redistricting Commission submitted two maps: one
supported by Democrats and one supported by Republicans. The democratic legisla-
ture then proposed this map, which was enacted by the legislature and later rejected
by the state supreme court.

NY Rep Republican-appointed members
of the New York Independent
Redistricting Commission

Plan B This map was proposed by Republicans appointed to the New York State Independent
Redistricting Commission.

PA Dem Senate Democratic Caucus Senate Democratic Caucus This plan was submitted by the Senate Democratic Caucus in the state supreme court
case.

PA Rep General Assembly Updated Preliminary Congres-
sional Plan

This plan was enacted and was later vetoed by the democratic governor.
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H.3. Geospatial analysis

We use geospatial analysis to merge precinct-level data in Python. The precinct boundaries vary

slightly across the precinct-level data sources for election returns, party registration, and demo-

graphics. We aggregate all precinct-level data to the boundaries used by the 2020 Census. Where

necessary, we use block-level population data to disaggregate precincts in the elections and voter

registration data. Due to the discrepancies in precinct borders, we expect some measurement er-

ror in the final precinct-level dataset, especially when computing ratios like turnout rates in small

precincts. We drop 4,633 precincts (8.3% of precincts) in which there is either a) a total population

under 50, b) reportedly more votes than people, c) reportedly more registered voters than people, or

d) reportedly more citizens of voting age than people. These tend to be small precincts, accounting

for 2.3% of the total population in the sample.

Finally, we assign precincts to congressional districts for each map. We compute the percent of a

precinct’s land area that falls inside a district. A precinct is assigned to a unique district if at least

99.9% of its land area is inside one district. Otherwise, a precinct may be assigned to multiple

districts (though we treat overlays that are smaller than 0.1% of the precinct’s land area as error).

Precincts are split infrequently: 1.4% of precincts are split in the Democrat proposals and 1.1% of

precincts are split in the Republican proposals.

Where precincts span multiple districts, we disaggregate precinct characteristics using the percent-

age of precinct population in each district. To measure the population in a part of a precinct, we use

block-level population data from the Census. In the rare case that a block is split across a precinct,

we use the land area of the block to disaggregate the population of the block. We drop split precincts

from the regression analysis in Section 7.2, since we use precincts as the unit of analysis and make

comparisons across Democrat and Republican proposals. We do, however, include split precincts

in the analysis of counterfactual maps in Section 7.3. There, we allow parts of split precincts to be

swapped along the border when we construct counterfactual maps.

Our final precinct-level dataset includes 44,338 precincts across the 10 states (summary statistics are

reported in Section H.5). For each precinct, we know the district it is assigned to under both propos-

als, allowing us to compute district-level characteristics. We also identify if a precinct is adjacent

to a district border. We use this subset of border precincts to construct and evaluate counterfactual

maps, as described in Section 7.3.

H.4. Measures of Turnout Rate

A key challenge when measuring turnout rate is that observed turnout is potentially endogenous to

redistricting. In particular, turnout might become mobilized if a precinct is assigned to a competitive

60



district and suppressed if it is assigned to a noncompetitive district. We use three measures of turnout

rates to address endogeneity concerns.

First, we use data from elections prior to redistricting to measure turnout. We compute the turnout

rate of a precinct as the average of the total number of votes in the 2016 and 2020 presidential

elections, divided by the population of the precinct in 2020.38 Note that these elections happened

before the 2020 redistricting proposals, but might still be endogenous to redistricting proposals if

districts in the 2020 cycle are similar to districts in the 2010 cycle.

In a second approach, we predict the measure of turnout just described using only demographic and

socioeconomic characteristics, which are difficult for political parties to manipulate: population,

race and ethnicity, citizenship, age, education, and income.

Just in case one worries that our prediction model is overly sophisticated compared to the informa-

tion at hand for partisan gerrymanderers, in a third approach we use Citizen Voting Age Population

(CVAP) as an exogenous proxy for the turnout rate (the coefficient of correlation between percent

CVAP and turnout rate is 0.38).

H.4.1 Predicted Turnout

To predict turnout at the precinct level, we measure precinct-level demographic and socioeconomic

factors using data from the American Community Survey and Census. The candidate variables and

definitions are in Tables H.2 Population, race, and ethnicity variables are from the 2020 Census:

P.L. 94-171 Redistricting Data Summary File (downloaded at the Census Voting Tabulation District

level from NHGIS).39 The Citizen Voting Age Population variables are from the Redistricting Data

Hub.40 The Redistricting Data Hub uses the 2019 CVAP special CVAP tabulation files from the

American Community Survey (ACS) 5-Year Estimates (2016-2020). They disaggregate Census

Block group-level estimates to the Census Block level. We then aggregate the block-level data

to the precinct level, as in section H.1. Age, education, and income variables are from the 2020

American Community Survey: 5-Year Data (2016-2020). We download these data at the Census

Tract level from NHGIS. To aggregate to the precinct-level, we first disaggregate to the block level

(using the percent of tract population in a block), then aggregate to the precinct level.

38We take the average of the two presidential elections to limit noise. We use presidential elections instead
of congressional elections or state-level elections because we do not need to impute values for uncontested
elections and because within-state contest-effects, which could depend on redistricting, only indirectly affect
presidential elections.

39Steven Manson, Jonathan Schroeder, David Van Riper, Tracy Kugler, and Steven Ruggles. IPUMS National
Historical Geographic Information System: Version 17.0 [dataset]. Minneapolis, MN: IPUMS. 2022. http:
//doi.org/10.18128/D050.V17.0.

40Available at: https://redistrictingdatahub.org/.
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TABLE H.2. Candidate variables for turnout prediction models
Population, Race, and Ethnicity Age, Education, and Income

Total Population Population aged 0 to 17
Voting Age Population (aged 18+) Population aged 18 to 24
Total Hispanic or Latino Population aged 25 to 34
Total White, non-Hispanic Population aged 35 to 44
Total Black, non-Hispanic Population aged 45 to 54
Total AI/AN, non-Hispanic Population aged 55 to 64
Total Asian, non-Hispanic Population aged 65 and up
Total NHOPI, non-Hispanic Percent aged 0 to 17
Total Other Race, non-Hispanic Percent aged 18 to 24
Percent Hispanic or Latino Percent aged 25 to 34
Percent White, non-Hispanic Percent aged 35 to 44
Percent Black, non-Hispanic Percent aged 45 to 54
Percent AI/AN, non-Hispanic Percent aged 55 to 64
Percent Asian, non-Hispanic Percent aged 65 and up
Percent NHOPI, non-Hispanic Population with no high school degree
Percent Other Race, non-Hispanic Population with high school degree

Population with some college
Citizen Voting Age Population (CVAP) Population with Bachelor’s degree

CVAP, Total Population with graduate degree
CVAP, American Indian or Alaska Native Percent with no high school degree
CVAP, Asian Percent with high school degree
CVAP, Black or African American Percent with some college
CVAP, Native Hawaiian and Other Pacific Islander Percent with Bachelor’s degree
CVAP, White Percent with graduate degree
CVAP, Hispanic or Latino Median household income

Labor force population
Percent of adults in labor force

Note: AI/AN is American Indian and Alaska Native, NHOPI is Native Hawaiian and other Pacific
Islander.
We compare the performance of three different models, namely Lasso, Random Forest, and Gradient

Boosting. The dataset was divided into training and test data. The training data, comprising 75% of

the precincts, was used to train each model, and the remaining 25% was used to evaluate accuracy.

The state was included as a categorical variable in all models. We additionally train a LASSO

model separately for each state.41 Table H.3 reports the MSE and the correlations between turnout

and predicted turnout for the test data. We use predictions from the Gradient Boosting model in our

main analysis since it has the lowest MSE. Figure H.1 plots the distribution of turnout and predicted

turnout across all precincts. If we regress turnout on predicted turnout in the full sample, the R2

is 0.757, with Root MSE of 0.064. The coefficient of correlation between predicted turnout and

turnout is 0.870 (p < 0.001). The most important predictors are reported in Table H.4, ranked by

41We used the LassoCV function from scikit-learn, which automatically selects the alpha value that minimizes
the Mean-squared error (MSE) by cross-validation. The maximum number of iterations was set to 100. For
Gradient Boosting we use the HistGradientBoostingRegressor algorithm from scikit-learn.
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feature importance. Higher numbers indicate that the candidate variable has a larger effect on the

model’s performance.42

We intentionally exclude political variables from the prediction exercise to focus on variation in

turnout which is plausibly exogenous to redistricting. If we include competitiveness of the 2010

congressional district as a candidate variable, then the MSE in the test sample decreases only slightly

from 0.0061 to 0.0052, and the measure of competitiveness itself has a low Feature Importance of

0.03.
TABLE H.3. TURNOUT PREDICTION: MODEL PERFORMANCE

Model MSE Correlation
Lasso, state-specific model 0.0100 0.6853
Lasso, pooled model 0.0126 0.5897
Random Forest 0.0065 0.8162
Gradient Boosting 0.0061 0.8270

TABLE H.4. Top predictors, ranked by Feature Importance

Variable Feature Importance
Percent White, non-Hispanic 0.2446
State categorical variable 0.2213
Total population 0.0880
Percent with no high school degree 0.0490
Citizen Voting Age Population 0.0406
Percent below poverty rate 0.0406
Percent age 65 and up 0.0278
Percent with graduate degree 0.0237
Percent with high school degree 0.0222
Total Hispanic population 0.0217

H.4.2 Correlations between District Competitiveness and Precinct Turnout Rates

In this section, we study the correlations between a precinct’s turnout rate (averaged over 2016 and

2020) and the competitiveness of the Congressional District (CD) that the precinct was assigned

to in 2010. Although suggestive in nature, these correlations can help to inform whether endoge-

nous turnout responses might be large in magnitude and whether there are asymmetric responses

between Democratic- and Republican-leaning precincts. We measure closeness as the negative of

distance from 50% vote share (Closeness of CD=− |Democratic vote share of CD − 50%| ). We

then regress turnout of a precinct on closeness of CD and other covariates. In Table H.5, closeness

42Feature importance measures the decrease in model performance when the values of a variable are randomly
reassigned. For each candidate variable, we randomly reassign values within the dataset, then train the model
and measure MSE for the test data. We repeat this process 10 times for each variable. The feature importance
score is the average difference in MSE caused by the permutation of the values of a given variable.
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FIGURE H.1. DISTRIBUTION OF TURNOUT RATE AND PREDICTED TURNOUT
RATE. The turnout rate is the total number of votes for both the Democrat and
Republican parties divided by the total population. The black line is the average
turnout rate in the 2016 and 2020 presidential elections. The green dashed line is
the predicted turnout rate. We pool across all precincts from ten states, totaling
43,527 precincts.
TABLE H.5. Turnout rate and closeness correlation in Congressional Dis-
tricts

(1) (2) (3)

Closeness of CD 0.199** 0.051 0.077
(0.083) (0.046) (0.057)

Democratic vote share of CD -0.075 0.117***0.106***
(0.053) (0.032) (0.032)

Closeness of CD × D-leaning precinct -0.042
(0.039)

D-leaning precinct -0.019*
(0.010)

N 43527 43527 43527
R2 0.123 0.593 0.594
Outcome variable mean 0.454 0.454 0.454
State Fixed Effects X X X
Controls X X

Note: A unit of observation is a precinct. The outcome variable is the turnout rate of a precinct, measured as the total votes for
Democrats and Republicans divided by the total population. Closeness of a Congressional District (CD) is measured as
− |Democratic vote share of CD − 50%|. A precinct is Democratic-leaning if more than 55% of the registered voters that are affiliated
with a party are Democrats (as in Table 1). The additional control variables in Columns 2 and 3 are: percent age 0-17, percent age
18-24, percent age 25-34, percent age 35-44, percent age 45-54, percent age 65 and up, percent with a college degree or above, percent
with no high school degree, percent below poverty rate, median household income, percent CVAP, percent of CVAP that is American
Indian or Alaskan Native, percent of CVAP that is Asian, percent of CVAP that is Black, non-Hispanic, percent of CVAP that is Native
Hawaiian or Pacific Islander, percent CVAP that is White, non-Hispanic, percent CVAP that is Hispanic, and percent registered
Democrats. Percent The sample of precincts includes the following 10 states: FL, KS, LA, MD, NC, NE, NM, NV, NY, PA.

of a CD is correlated with higher turnout rates, when we condition only on state-fixed effects (Col-

umn 1). However, in Column 2, once we control for precinct characteristics including the share of

64



registered Democrats, age, race/ethnicity, education, and income, the correlation is smaller in mag-

nitude and statistically insignificant (β = 0.051, SE = 0.046). This point estimate suggests that

an increase in district vote share from 100% for one party to 50% is associated with a 5 percentage

point increase in turnout rate. A standard deviation in Closeness of CD is 14 p.p.. Thus, a one

standard deviation increase in competitiveness is associated with a 0.7 p.p. increase in a precinct’s

turnout rate. In Column 3, we test if the correlation between turnout rates and district closeness

varies by Democratic and Republican-leaning precincts by interacting closeness with an indicator

for a Democrat-leaning precinct. There is no statistically significant interaction effect. Point esti-

mates suggest that, among Republican-leaning precincts, a standard deviation of closeness (11 p.p.)

is associated with a 0.8 p.p. increase in turnout. Among Democrat-leaning precincts, a standard

deviation of closeness (17 p.p.) is associated with a 0.6 p.p. increase in turnout. We conclude that

there is no strong evidence that district closeness has a significant and asymmetric mobilization ef-

fect on precinct-level turnout. Identifying such causal effects would be difficult with precinct-level

data, however, and is outside the scope of this paper.

H.5. Summary Statistics

Table H.6 reports summary statistics for all precincts. Figure H.2 shows the distribution of turnout

rates, for precincts with above- and below-median share of Registered Democrats, for each state.
TABLE H.6. Summary statistics for precincts (N=43,390)

Mean SD p1 p25 p50 p75 p99
Population

Total population 1,919 1,731 89 890 1,429 2,340 8,435
Voting Eligibility and Turnout

Percent voting age population 0.79 0.06 0.64 0.76 0.79 0.82 0.96
Percent citizen voting age population 0.71 0.14 0.35 0.63 0.72 0.81 0.98
Percent registered voters 0.64 0.14 0.23 0.56 0.65 0.73 0.92
Turnout rate 0.46 0.13 0.15 0.37 0.47 0.55 0.74

Note: Mean, Standard Deviation (SD) and percentiles (p) for precincts in the following 10 states: FL, KS, LA, MD, NC, NE, NM,
NV, NY, PA. The percent voting age population is the share of the total population above age 18. The percent citizen voting age
population is the share of the total population above 18 that are citizens. Percent registered voters is the share of the total population
that is registered to vote. Turnout rate is the total number of votes for the Democrat or Republican party, divided by the total population.
We report the average turnout rate from Presidential Elections for 2016 and 2020. Finally, percent registered Democrat and percent
registered Republican are the two-party shares of registered voters affiliated with each party.

I. Additional Empirical Evidence

I.1. Partisan Redistricting Proposals

Figure I.1 shows the number of expected Democrat seats under each proposal. In 8 of the 10

states, Democrats expect to win strictly more seats under the Democrat proposal than the Republican
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FIGURE H.2. Distribution of turnout rate across precincts, by partisan lean
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Note: This figure shows the distribution of turnout rate across precincts with above- and
below-median share of registered Democrats for the state. The turnout rate is the total number of
votes for Democrats and Republicans, divided by the total population. We use the average turnout
rate across the 2016 and 2020 presidential elections.

proposal. In total, if all Democrat proposals were implemented there would be 14 more seats for

Democrats than if all Republican proposals were implemented, a 12% swing in seats. Notably, if

we were to use registered Democrats and Republicans to evaluate these maps, ignoring turnout data,

then there would only be 7 seats of difference between Democrat and Republican proposals, a 6%

swing in seats.

FIGURE I.1. NUMBER OF EXPECTED DEMOCRAT SEATS UNDER BOTH PARTIES’ PROPOSALS FOR U.S.
CONGRESSIONAL DISTRICTS. This figure shows the expected number of seats won by Democrats under the
Democrat (D) and Republican (R) proposals for U.S. Congressional districts. A seat is expected to be won by
Democrats if the Democrat vote share is larger than the Republican vote share. Vote shares are measured using
the average of the two presidential elections prior to the redistricting cycle (2016 and 2020). The party in control
of redistricting is outlined in black. A party is in control of redistricting if both the majority party in the legislature
and the party of the governor are aligned. Three states have split control: LA, MD, and PA.
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I.2. Precinct-level Ideology and Partisan Lean

This section evaluates the robustness of results in Section 7.2 to alternative definitions of partisan

lean. Recall that we find a negative correlation between a precinct turnout rate and the change in

Democratic vote share of a district under the Democrat vs. Republican proposal, within precincts

of a given partisan lean. In Table 1, we assume that there are four levels of partisan lean. Figure I.2

shows the distribution of the share of registered Democrats and the Democratic vote share across

all precincts. The distributions are bi-modal and the median value is 0.55 and 0.51, respectively.

Figure I.3 shows the distribution of the share of registered Democrats and Democratic vote shares

by state. Using these two measures as proxies for the ideology of a precinct, we can divide each

state into any number of equal-sized groups, using quantiles of ideology.
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FIGURE I.2. DISTRIBUTION OF PERCENT REGISTERED DEMOCRATS AND
DEMOCRATIC VOTE SHARE WITHIN PRECINCTS. Percent Democrat is either the
two-party share of registered voters that are Democrats (black solid line) or the two-
party vote share for Democrats (green dashed line). The vertical lines indicate the
median values of 0.55 for Percent Registered Democrats and 0.51 for Democratic
Vote Share.

In Figure I.4, we show OLS regression coefficients for estimating Equation 7 using alternative def-

initions of partisan fixed effects. In each regression, we first choose the number of partisan-lean

groups, ranging from two to ten. We divide each state into equal-sized partisan-lean groups using

quantiles of the proxies for ideology (registered voters and vote shares). Then, we include a state

fixed effect for each level of partisan-lean. The negative correlations in Table 1 are robust to these

alternative fixed effects. Coefficients are also stable across specifications. We find no statistically

significant differences between the coefficients from Table 1 (with 4 partisan-lean groups) and the

corresponding coefficients in Figure I.4 (p-values for t-tests are > 0.10 for each pairwise compari-

son of estimated coefficients).
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FIGURE I.3. DISTRIBUTION OF PERCENT REGISTERED DEMOCRATS AND DEMOCRATIC VOTE SHARE

WITHIN PRECINCTS, BY STATE. Percent Democrat is either the two-party share of registered voters that are
Democrats (black solid line) or the two-party vote share for Democrats (green dashed line). The vertical lines
indicate the median values in each state.

I.3. Calibrating the Standard Deviation of the Aggregate Shock

We use the standard deviation of two-party Democratic vote share from recent presidential elections

(2008-2020) to calibrate σs, the standard deviation of the aggregate shock in a state.
TABLE I.1. STANDARD DEVIATION OF STATEWIDE DEMOCRAT VOTE SHARES,
2008-2020

State σs State σs

Florida 0.013 Nevada 0.024

Kansas 0.021 New Mexico 0.013

Louisiana 0.006 New York 0.021

Maryland 0.019 North Carolina 0.009

Nebraska 0.025 Pennsylvania 0.025

Average 0.017

I.4. Swapping Precincts at the Border: Robustness Checks

Most swaps in Figure 3 of Section 7.3 have a negligible effect on the gerrymanderer’s payoff func-

tion. In Figure I.5, we plot the percent of swaps that are profitable for Democrats and Republicans,

varying the definition used to define a profitable swap. That is, we say a swap is profitable only if

the effect on the payoff is sufficiently high. The pattern in Figure 3 holds if we ignore swaps with a
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A. Measuring ideology with registered voters
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B. Measuring ideology with vote shares

-.03

-.02

-.01

0

.01

C
oe

ff
ic

ie
nt

2 3 4 5 6 7 8 9 10
Number of ideological groups

Percent CVAP Predicted turnout rate Turnout rate

FIGURE I.4. CORRELATION BETWEEN TURNOUT AND CHANGE IN DEMOCRATIC VOTE SHARE BY

NUMBER OF IDEOLOGICAL TYPES. This figure plots the regression coefficients from estimating Equation (7),
using different numbers of ideological groups and therefore different partisan-lean fixed-effects. For each coef-
ficient, we divide the sample of precincts into the number of ideological groups indicated on the x-axis, using
quantiles of either percent registered Democrats (Panel A) or Democratic vote shares (Panel B). The independent
variable is one of three measures of turnout: percent Citizen Voting Age Population (CVAP), predicted turnout
rate, or turnout rate. Each symbol is a point estimate from a separate regression and vertical lines indicate 95%
confidence intervals.

negligible effect on the payoff: each party has fewer unexploited profitable swaps under their own

proposal than under their opponents’ proposal (Figure I.5, Panel A). For example, 5% of swaps are

profitable for Democrats by 1 p.p. or more under their own proposal, versus 8% under the Republi-

can proposal. Only 4% of swaps are profitable for Republicans by 1 p.p. or more under their own

proposal, versus 6% under the Democrat proposal.

The pattern eventually reverses, however, if we focus only on the most extremely profitable swaps.

Democrats have more profitable swaps with an effect of 2.5 percentage points or more under their

own proposal than under the Republican proposal. Note that the swaps with the largest effects

might be especially difficult to implement due to legal and geographic constraints. For example,

counties should not be divided into multiple districts, where possible. At the same time, there is

more variation in vote shares across counties than within. Thus, where a district border coincides
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B. Borders that do not overlap with county borders
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FIGURE I.5. SHARE OF SIGNIFICANTLY PROFITABLE SWAPS. The y-axis is the
percent of feasible counterfactual maps (‘swaps’) that are profitable for Democrats (left) and Republicans (right).
A swap is profitable if the change in payoff exceeds the threshold on the x-axis. The payoff is the expected number
of seats. To compute the expected number of seats we assume that the aggregate shock is normally distributed
with mean zero and standard deviation calibrated using statewide presidential election returns from 2008-2020
(see Appendix I.3, values range from 0.01 to 0.02).

with a county border, swaps are more likely to have a significant effect and less likely to be feasible.

If we exclude borders that coincide with counties from our analysis, we see that parties have fewer

profitable deviations overall and that Empirical Prediction 2 holds, even for swaps with large effects

on payoffs (Figure I.5).

Next, we show that the pattern in Figure 3 is robust to alternative values of σ, the standard deviation

of the zero-mean normal distribution for the aggregate shock. We plot the share of profitable devi-

ations by σ in Figure I.6. While the data-implied values of σ lie between 0.01 and 0.02, depending

on the state, the difference in the share of profitable deviations across proposals at first increases for

larger values of σ, peaking at 0.09. For large values of σ, the proposals tend to look more similar in

terms of share of profitable deviations, approximating the case of the uniform aggregate shock.

Finally, we repeat these sensitivity analyses for the alternative methods of measuring payoffs using

ideology only in Figures I.7 and I.8.
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FIGURE I.6. SENSITIVITY ANALYSIS: profitable swaps by standard deviation of the aggregate shock (σ)
A. Measure Payoffs with Ideology only:

using Vote Shares to Measure Ideology
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B. Measure Payoffs with Ideology only:
using Registered Voters to Measure Ideology
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FIGURE I.7. SHARE OF SIGNIFICANTLY PROFITABLE SWAPS. The y-axis is the percent of feasible
counterfactual maps (‘swaps’) that are profitable for Democrats (left) and Republicans (right). A swap is profitable
if the change in payoff exceeds the threshold on the x-axis. The payoff is the expected number of seats. To
compute the expected number of seats we assume that the aggregate shock is normally distributed with mean zero
and standard deviation calibrated using statewide presidential election returns from 2008-2020 (see Appendix I.3,
values range from 0.01 to 0.02).
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Panel A. Measure Payoffs with Ideology only (using Vote Shares)
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B. Measure Payoffs with Ideology only (using Registered Voters)
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FIGURE I.8. SENSITIVITY ANALYSIS: profitable swaps by value of standard deviation of the
aggregate shock (σ)
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