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1 Introduction

Transport infrastructure projects are among the largest investments at all levels of governments.
Their size often makes them a focal point for public debate, with the public and policy-makers
taking strong stances on their desirability. These heterogeneous views are partly driven by economic
impacts, as transportation networks shape the income distribution across regions or demographic
groups. However, they also depend on additional considerations. For instance, people may factor
in preferences for collective goods, the environment, or loyalty to the political party championing a
project. For simplicity, we refer to these non-economic considerations as the “political” component
of preferences. Likewise, the policymaking process leading up to transport investments may account
for redistribution to certain groups and for political motivations such as seeking public support.

These considerations matter because they shape the welfare implications of transport infras-
tructure, as well as the incentives of the policy-makers who implement them. How important is real
income in people’s preferences for transportation infrastructure, compared to the political compo-
nent of preferences? How do distributional as well as electoral considerations shape the design of
transport infrastructure?

We make progress on these questions by studying California’s High-Speed Rail (CHSR), an
electric high-speed rail designed to connect urban centers in California that is among the most
expensive transport projects in U.S. history. For our purposes, a key feature is that Californi-
ans were asked to vote on this project: in the 2008 general election, a proposition on the ballot
(Proposition 1A) asked Californians whether they approved 10 billion USD in state-issued bonds
to initiate funding for the CHSR.1 Detailed spatial data on Proposition 1A voting outcomes and on
other simultaneous ballots across California’s census tracts give us direct insights into Californians’
policy preferences.

Using these voting data and an economic model, we estimate the relative weight of expected
real income and political considerations in voters’ preferences for the CHSR. Then, we estimate the
policymakers’ preferences for redistribution and for popular approval by comparing the expected
impact of the initially proposed CHSR with feasible counterfactual designs with alternative sta-
tion placements along the CHSR line. By revealed-preference, counterfactual station distributions
were suboptimal from the policymaker’s perspective; we use this insight to recover bounds on the
planner’s preferences. Having estimated the preferences of both the voters and the planner, we
undertake counterfactuals that demonstrate the relevance of the political component of preferences
in shaping the welfare effects and the design of the CHSR.

A challenge throughout the analysis is that voters’ expected economic returns from the CHSR
are not observed. To measure these expected returns, we develop and estimate a quantitative
model of the spatial impact of the CHSR. Because we do not know how voters forecasted the

1The proposition passed with 52.6% of votes in favor. The CHSR is currently under construction on a delayed
and costlier construction schedule than originally proposed. We discuss the background on the project in more detail
in Section 2, and the way in which we introduce potential mismatches between beliefs and the proposed network in
the subsequent sections.
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economic impact of the CHSR, we consider a range of specifications with varying degrees of voter
sophistication (e.g., whether general-equilibrium effects are considered) and optimism on the CHSR
expected completion date and costs. In the spirit of the quantitative spatial frameworks of Ahlfeldt
et al. (2015) and Monte et al. (2018), the model accounts for the CHSR potential impact on workers’
commuting time. In addition, we include features that are specific to high-speed passenger travel.
First, the CHSR connections can be used for more infrequent long-distance business or leisure
travel. We observe both types of trips in the data, and we incorporate them in the model alongside
commuting. Second, as the CHSR would compete with other travel modes, we incorporate a
transport-mode decision (car, air, and public transit) for each route and type of travel (commuting,
leisure, and business), accounting for both time and monetary costs in this choice. The model
also accounts for indirect effects of transportation infrastructure beyond time or cost savings, such
as its equilibrium impacts on land prices, wages, and local development as captured by urban
agglomeration spillovers on productivity and amenities.

Using observed travel behavior for each purpose (commuting, leisure, and business) and mode
(car, air, and public transit), we estimate key model elasticities that capture travelers’ disutility
from travel costs, as well as flexible tract- and purpose-specific preferences for each travel mode.
Across a range of scenarios varying in voter sophistication and pessimism on costs, the quantified
model reveals net aggregate real-income impacts that range from -0.18% to 0.65%. These aggregate
impacts mask considerable heterogeneity; e.g., in our baseline, the most favored 10% of tracts
experience real-income gains between 0.6% and 4.7% per year, while 2.7% of all tracts lose. Tracts
that are closer to stations, with lower car usage, or with longer average commute times gain more
from the CHSR. Thus, areas closer to larger urban centers such as San Francisco or Los Angeles
benefit more, and more sparsely populated areas like Central-Valley locations stand out with lower
gains.

We then estimate the relative importance of real-income effects and political considerations for
voters’ preferences for the CHSR. We measure the economic gains using the model above, and
use a range of covariates to proxy for voters’ political beliefs. Our estimation deals with several
potential identification concerns, such as the correlation between the economic benefits of the
CHSR and unobserved components of political preferences, and misspecification of our model of
voters’ forecasts. In particular, we instrument for the economic impact of the CHSR using alternate
CHSR routes with random placement of stations. We also conduct the estimation using a range of
alternative model specifications and sample restrictions.

Regardless of the model assumptions and identification strategies, we consistently find that
voters are responsive to the expected economic impact of the CHSR. However, swaying votes is
costly: the extra real-income gain from the CHSR needed to convince an extra one percent of the
population of a census tract to vote in favor is between 0.2% and 0.4% at the median county, which
is large compared to the typical income effects. Moreover, the political component drives a much
larger fraction of the spatial variation in preferences (and votes) than the real-income component,
with a standard deviation of between 1.0 to 2.4 percentage points across tracts, which is about
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5 to 6 times larger than the standard deviation of the real-income component. Furthermore, we
estimate that Proposition 1A would have been approved in the absence of a preference for real
income gains. Hence, due to political preferences, there is a range of costs such that the CHSR
would lower aggregate real income and still be approved: CHSR proposals predicted to reduce
aggregate real-income by as much as 0.3% to 0.5% uniformly across California would have still won
the vote.

In a second step, we estimate the preferences of a social planner. We assume that the observed
distribution of stations along the CHSR line maximizes the planner’s objective function. The first
component of this objective function is a weighted sum of aggregate real income across tracts,
with tract-specific Pareto weights parameterized as function of their economic and demographic
composition. In addition the planner may be politically minded, in the sense that it attaches a
weight to the total number of votes in favor of the project.2 To estimate these preferences, we rely
on counterfactual station placements. These deviations imply a distribution of real income changes
across demographics and votes which determine bounds on the planner’s Pareto weights on each
demographic and preference for the aggregate vote. We implement a moment-inequality method
based on Andrews and Soares (2010) to compute confidence sets for these parameters, and then
solve for optimal designs under alternative planner preferences.

We identify strong planner preferences for votes, as well as some preference for dense areas and
for areas with a larger share of college graduates. These estimates imply a large heterogeneity in
tract-specific weights, and the planner is thus far from the utilitarian benchmark. The optimal
designs of the CHSR for an apolitical planner (i.e., without political concerns) substantially differs
from the proposed plan by increasing the proximity of stations to the main metropolitan areas.
The reason is that metro areas have low voting elasticities (i.e., they strongly support the project
already). Hence, the absence of electoral motives leads to redistribution towards high density
locations with low expected political gains, where the marginal voter is far from the mode of
political support. The utilitarian planner solution looks broadly similar to the apolitical planner,
although it reallocates some stations away from high college-share areas.

This paper contributes to several literatures. First, it builds on the literature studying the
real income effects of transportation infrastructure, including Donaldson (2018), Faber (2014),
and Donaldson and Hornbeck (2016) among others (see Redding and Turner (2015) for a review).
Methodologically, our approach develops a quantitative spatial model in the style of Redding and
Rossi-Hansberg (2017) to capture the specificity of the type of long-distance travel facilitated by
the CHSR. In doing so we incorporate standard model choices in the tradition of McFadden et al.
(1973), and incorporate insights from studies that have estimated the impact of high-speed rails
on economic outcomes, such as Zheng and Kahn (2013), Bernard et al. (2019), Borusyak and Hull

2This planning problem captures, in a reduced-form way, a complex political process whereby the design of
infrastructure responds to both real income considerations and the overall popularity of a projects. While voting over
infrastructure project is unusual, policymakers’ preferences for popular approval are not. Instead, these preferences
may exist whenever authorities are mindful of their popularity and keep an eye on the number of constituents
approving of an infrastructure project.
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(2020), Dong et al. (2020), and Hayakawa et al. (2021).3 Our paper departs from the traditional
focus on market-access driven economic gains by estimating how other considerations matter in
people’s preferences for transportation infrastructure.

Recent studies, such as Tsivanidis (2019), Gupta et al. (2022), Severen (2021) and Tyndall
(2021), among others, study spatial and distributional effects of improvements to commuter rails.
Our analysis studies (expected) distributional effects stemming from both the real-income consid-
erations and a political component of utility. Voting data allows us to estimate the strength of
the component of utility associated with political values (such as party-affiliation) in real-income
equivalent terms. We find that the distributional impacts from political components are an order
of magnitude larger than the standard impacts through market access. Recent papers, including
Alder (2019), Fajgelbaum and Schaal (2020), and Allen and Arkolakis (2022), study optimal design
of road infrastructure in quantitative spatial models with real-income-maximizing social planners.
We estimate the preferences of a planner who has both distributional and political concerns, and
study optimal placement of stations in this context. Unlike in these frameworks, our optimiza-
tion is problem is inherently subject to non-convexities due to the mix of substitutabilities and
complementarities among possible station locations.

Second, the paper contributes to the literature in economics and political science on whether
policy preferences reflect individual economic considerations. This type of question has been asked
in an international trade context, in public finance, and in environmental economics.4 Holian
et al. (2013) and Holian and Kahn (2015) correlate votes in several ballot initiatives, including the
CHSR Proposition 1A, with determinants of political ideology and proxies for economic geography.
Kendall and Matsusaka (2021) estimate voters’ preference weights over the common good versus the
private returns of California ballot propositions. We use a structural model of economic gains from
the CHSR, and develop an identification strategy that separates the expected economic returns
from the political component of preferences.

Third, we contribute to the literature studying the political determinants of transportation
infrastructure. Empirically, Knight (2005), Burgess et al. (2015) or Alder and Kondo (2020) find
evidence of political distortions in transportation investments. A theoretical literature studies
mechanisms that drive the political economy of transportation investments (Brueckner and Selod
(2006), De Borger and Proost (2012), and Glaeser and Ponzetto (2018)). We estimate the Pareto
weights of a hypothetical social planner and popular approval by using an observed policy choice
(in our case, the CHSR station placement). In doing so, we follow the work of Goldberg and Maggi
(1999) in international trade, and the tradition of Bourguignon and Spadaro (2012), Jacobs et al.

3As in Dingel and Tintelnot (2020), our setting is sparse as it includes bilateral commuting and long-distance
travel amount about 64 million census tracts. After imposing bounds on total travel time, we treat the resulting
sparsity as a result of sampling noise.

4Recent papers relying on voting data to infer preferences for international trade policy include Hicks et al. (2014),
Becker et al. (2017), and Van Patten and Méndez (2022). Alesina and Giuliano (2011) review research that uses
survey data to measure preferences for private vs. public value in income taxation. Kahn and Matsusaka (1997),
Deacon and Schläpfer (2010), and Wu and Cutter (2011) use ballots to draw inference about demand for collective
goods following Deacon and Shapiro (1975).
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(2017) and Hendren (2020) in public finance. The logic of all these works is to estimate social
planning weights that rationalize the observed tax schedule as optimal in order to learn about the
weight of distributional or electoral concerns in the policy-making process. We apply this logic to
a spatial policy, the CHSR, with complex spatial linkages.

The paper proceeds as follows. Section 2 gives some background on the CHSR. Section 3 lays
out our quantitative framework. Section 4 presents the data, the quantification of the model and
the estimation of voters; preferences. Section 5 estimates the planner’s preferences and presents
model-based counterfactuals. Section 6 concludes. A full description of the model as well as details
on data sources and implementation appears in the Online Appendix.

2 Background

2.1 Institutional Background

In 1996, the California state legislature established the California High Speed Rail Authority
(CAHSRA), which was tasked with exploring the creation of a high-speed rail network to connect
northern California, including San Francisco and Sacramento, with southern California, including
Los Angeles and San Diego. In August 2008, the California legislature approved that Proposition
1A would appear on the ballot in the November 2008 general election, asking California voters to
approve the issuance of nearly $10 billion in bonds to fund the CHSR.5 The CHSR would be required
to meet several criteria. First, it would connect San Francisco to Los Angeles and Anaheim, and
would also include Sacramento, the San Francisco Bay Area, the Central Valley, Los Angeles, the
Inland Empire, Orange County, and San Diego. Second, it would travel at at least 200 miles per
hour, making the trip from San Francisco to Los Angeles Union Station in at most two hours and
40 minutes. Third, there would be no more than 24 stations across the entire network. Finally,
the anticipated completion date as of 2008 was 2020. Phase 1 of construction would focus on the
Los Angeles-San Francisco corridor, while Phase 2 would extend the network to Sacramento in the
north and San Diego in the south. Proposition 1A was one of twelve measures on the ballot in the
November 2008 general election.

Proposition 1A was ultimately approved by 52.6% of votes. Participation was high, equal to
94% of voters casting a vote in the 2008 presidential election. Figure 1 shows support for the CHSR,
as measured by the share of positive votes on Proposition 1A in each census tract. Each point is
the population centroid of a tract; in denser areas the entire tract is colored. Bright yellow areas
were more supportive while dark blue areas were less supportive. Broadly speaking, we observe
stronger support in urban centers (Los Angeles, San Diego, San Francisco, San Jose, Fresno, and
Sacramento) and declining support as we move away from the railway line. Counties of the greater

5The proposed funding sources for the CHSR included funds from bond issuances, private investors, the federal
government, and other local sources. Specifically, the nearly $10 billion in Proposition 1A bonds were expected to
be coupled with up to $3 billion in local funding, $16 billion in federal funding, and a $7 billion in public-private
partnership funding. In principle, this funding would finance a complete San Francisco to Anaheim system for a total
of $33.6 billion in 2008 dollars.
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Figure 1: CHSR Route and Proposition 1A Votes

(a) California (b) LA County

San Francisco bay area (e.g., Marin and Sonoma) show clusters of strong support, while in Los
Angeles support is more concentrated in central areas.

The construction of the CHSR has suffered many delays and hurdles since its construction
began in 2015. It is now focused on the Central Valley segment, a 180 miles-long stretch (out of the
CHSR approximately 800 miles) that is expected to be completed by the mid 2030s. The estimated
total costs of the project have risen from around $50 billion in 2008 (California High Speed Rail
Authority, 2008) for the entire system to up to $105 billion in 2023 for Phase I (California High
Speed Rail Authority, 2022). Our analysis considers several scenarios to account for the uncertainty
voters had in 2008 about both the future CHSR costs and the completion schedule.

2.2 Potential Time Savings and Costs across Routes

We use data on trips undertaken by Californians to assess the potential usage, time saving,
and cost savings of the CHSR. The average commute in California is 31 minutes one-way, with 7%
of trips lasting more than 60 minutes. For trips above 50 miles, the California Household Travel
Survey (CAHTS) conducted between 2010 and 2012 shows that a quarter of Californians undertook
such trips every year. Out of 64.4 million annual leisure trips, the mean trip is 143 minutes long;
and out of 7.1 million annual business trips, the median is 123 minutes long. The first three rows
of Appendix Table A.1 show that car was used by 90% of commuters, with both public transit
and walking or biking accounting each for approximately 5% of commuting trips. Travel by car

6



accounted for 96% of leisure trips and 88% of business trips.
Against this backdrop, the information presented to voters in 2008 suggested sizable time and

cost effects of the CHSR. As a preliminary look of these potential gains, Table A.1 also reports
summary statistics by travel mode for the percentage of all routes (origin-destination census tract
pairs) that would be quicker or cheaper were the CHSR to be used on that route in combination with
that mode. We consider two scenarios for costs: assuming ticket prices corresponding to the original
proposal voted in 2008 (California High Speed Rail Authority, 2008), and a “pessimistic” scenario
with twice-as-expensive ticket prices, which roughly corresponds to most recent updates (California
High Speed Rail Authority, 2022). We defer to Appendix D for details on the construction of the
travel times and costs by transport mode.

The table shows that the majority of origin-destination census tracts would be considerably
faster or cheaper according to the 2008 business plan. Of course, this calculation includes routes
that are seldom used. In the next sections we account for the likelihood that travelers from each
origin will travel through the CHSR, and we assign a monetary equivalent value to the corresponding
time savings.

3 Framework

This section gives an overview of the theoretical framework.6 We start by presenting voters’
preferences, and a model of the voting decision as driven by political and economic considerations.
We then zoom in on these economic considerations, by developing a quantitative model of the
impact of the CHSR on the distribution of real incomes across census tracts in California. In
section 6, we discuss how we model the planner’s problem when choosing the design of the CHSR.

3.1 Utility and Voting

Preferences Consider a resident ω of a location i. Her utility uω (s) captures both her eco-
nomic and political preferences, which depend on whether an infrastructure project, in our case the
California High-Speed Rail, is approved to be built (s = Y for Yes) or not (s = N for No):

uω (s) = E [ln W (i, s) | Ii] + ln a (i, s) + εu
ω (s) . (1)

The first component, E [ln W (i, s) | Ii] measures the average expected real income of residents of

i when the project has status s. It incorporates economic forces through which an infrastructure
project can impact real income, and is discussed in detail in Section 3.2. The expectation on
ln W (i, s) is taken over shocks that may affect the economy, including shocks over fundamental
economic characteristics of different locations i and uncertainty about the transportation project
itself, conditional on the information Ii of residents of i. The second component, ln a (i, s), captures
the political component of preferences on average across residents of i. Finally, the shock εu

ω (s)

6A complete self-contained exposition of the model is provided in Appendix B.
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captures idiosyncratic (mean-zero) variation in utility across residents of tract i stemming from
either economic or political considerations.

Given (1), we define the average utility impact of the transport project across residents of
location i as ∆U (i) ≡ Eω [uω (Y ) − uω (N)] and get:

∆U (i) = E
[
ln Ŵ (i) | Ii

]
+ ln â (i) . (2)

In this expression, Ŵ (i) ≡ W (i,Y )
W (i,N) measures real income differences between a world with and

without the planned infrastructure project, while â (i) measures the net political preferences for
the project. Both components affect which locations win or lose (∆U (i) ≷ 0). Existing research
on the distributional impacts of infrastructure projects typically aims to measure Ŵ (i). One of
the goals in this paper is to measure the relative importance of Ŵ (i) and â (i) in shaping this
distributional impact of a transport project across locations i.

In practice, neither the real-income or the political components are directly observed. To make
progress, we impose more structure. First, we assume that residents form rational expectations, so
that:

E
[
ln Ŵ (i) | Ii

]
= ln Ŵ (i) − ϵW (i) , (3)

where ln Ŵ (i) is the real income change that would be brought by the CHSR under the actual

realization of shocks, and ϵW (i) is a mean-zero expectational error. In the next section, we proxy
for Ŵ (i) using a range of economic models with varying degrees of sophistication in the forces that
they incorporate.

Second, the political component â (i) is not directly observed but can be proxied for with
location-specific variables Xk (i) that bear a relationship to people’s political preferences, such as
people’s party affiliation (we discuss these proxies later on). Formally, we assume that:

ln â (i) =
K∑

k=1
β̃kXk (i) + ϵa (i) , (4)

where X0 (i) = 1 so that β̃0 captures a common political component of preferences, and where ϵa (i)

captures unobserved determinants of political ideology. Given our goals, a central question is how to
measure the rate β̃k at which a given proxy (people’s political affiliation, say) can be meaningfully
compared with the real-income impacts of a given project. Unlike in the case of ln Ŵ (i), no
family of models exists to translate proxies of values into a welfare metric that is comparable to
real income. However, voting outcomes directly reveal this trade-off between political values and
economic gains. Hence, to overcome this issue, we turn next to the voting model.

Voting Faced with a choice between Y and N, households vote “Yes” if and only if uω (Y ) >

uω (N). Aggregating over individuals, given utility (1), our setup corresponds to a probabilistic
voting model (Deacon and Shapiro, 1975), with the fraction of positive votes in location i defined
as
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v (i) = Pr [uω (Y ) > uω (N)] . (5)

We assume that these idiosyncratic shocks are Type-I extreme-value distributed across residents,

with shape parameter θV :

Pr (εu
ω (s) < x) = e−e−θV x

. (6)

As a result, the fraction of voters in i that support building the rail takes the standard logit form:

v (i) = eθV (E[ln Ŵ (i)|Ii]+ln â(i))

1 + eθV (E[ln Ŵ (i)|Ii]+ln â(i)) . (7)

Combining this expression with (3) and (4), and re-writing the left-hand side as the log odds-ratio,

we obtain the equation that we will bring to the data:

ln
(

v (i)
1 − v (i)

)
= θV ln Ŵ (i) +

K∑
k=1

βkXk (i) + ϵ (i) , (8)

where βk ≡ θV β̃k and where ϵ (i) ≡ −ϵW (i) + ϵa (i) includes the expectational error and the

unobserved components of political ideology.7

Equation (8) shows the trade-off between real income and political preferences in determining
votes. The parameter θV is the rate at which real income is translated into votes. Having identified
this parameter, we can recover the β̃k’s in (4) as β̃k = βk/θV , thus revealing how a given proxy for
political preferences translates into real-income equivalent terms. We can then construct ln â (i)
and compute how much it drives the heterogeneity in ∆U (i) in (2). The elasticity of votes to real
income θV does not matter per se for the average utility impact of the project on a tract ∆U (i), but
estimating this parameter is a crucial step to translate ideology proxies into a common real-income
metric.

3.2 Economic Effects of the CHSR

We now turn to describing the model of the real income gains from the CHSR in tract i, ln Ŵ (i) .

Uncertainty and Delays The real income impacts of the CHSR are twofold. First, until the
CHSR is built and operational, households expect to pay a tax t to fund the corresponding invest-
ment. Second, once the CHSR is operational, households still pay the tax but also benefit from the
corresponding real income gains. The overall real income effect of the CHSR is the annualized flow
combining these two streams.

At the time of voting, in 2008, the CHSR business plan stated a specific year in which the
CHSR would be operational. To account for the fact that voters may have doubted that timing, we
assume that they expected the CHSR to be operational no sooner than T years after the vote, and
that they attributed a yearly completion probability equal to p in every year after that (until built

7While notation has not been introduced for it, this error term also captures that voters may use an economic
model that diverges from the range of models that we use to proxy for Ŵ (i). This source of error, as well as the one
we have already specified, bring about identification concerns that we tackle in the empirical section.
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and operational). Voters may have also doubted the CHSR business plan’s sunk and operational
cost projections. We consider scenarios with varying degrees of optimism over p, T and the total
cost of the CHSR as manifested in the tax rate t and ticket prices.

Assuming a yearly discount rate r, the annualized real-income effects of the CHSR, if approved,
are a weighted average of ln (1 − t) (the annual real-income change from paying a yearly tax t to
finance to the CHSR) and ln V̂ (i) (the yearly tax-inclusive real-income change associated with the
CHSR being operational for residents of location i):

ln Ŵ (i) =
(

1 − (1 + r)−T p

r + p

)
ln (1 − t) + (1 + r)−T p

r + p
ln V̂ (i) . (9)

Economic benefits from CHSR To evaluate the real-income change associated with the CHSR
being operational, V̂ (i), for residents of tract i, we follow the body of research that uses quantitative
spatial models to estimate the distributional impacts of infrastructure. We tailor the model to the
specifics of high-speed rail. One may worry that voters rely on simpler heuristics rather than on
model predictions with fairly rich spatial interactions; therefore, we consider polar cases of such
models in terms of complexity: a baseline where the CHSR only impacts time savings and cost of
travel; and a full model with several equilibrium feedbacks. Throughout, we assume that NR (i)
residents in location i vote on the expected returns to that location. The development of the CHSR
impacts commuting and travel choices but not residential choice, although we could accommodate
cases with residential mobility.8

The raison d’être of the CHSR is that it allows passengers to save time on their medium to
long-distance travel. At the heart of the model, therefore, is the time potentially saved by workers
on daily commutes (for workers who have especially long commutes) and on less frequent long-
distance leisure trips. The CHSR also facilitates long distance business trips, making firms more
productive as they connect with suppliers and customers (Bernard et al., 2019). We augment a
commuting model alla Ahlfeldt et al. (2015) to incorporate these infrequent long-distance trips.

Our “baseline” model only captures direct effects of the CHSR. Specifically, in each census
tract, residents spends income on tradeable goods, housing, commuting, and leisure trips. Each
resident receives idiosyncratic preference shocks for commuting or traveling for leisure to different
destinations. These activities entail a payoff (a salary when commuting or a utility flow when
traveling for leisure) in exchange for a time and a monetary cost. Thus, residents make discrete
choices of destinations for commuting and for leisure trips (for the latter, they also choose the
number of trips taken). In this baseline, wages and the cost of housing remain constant and, as
shown below, the real income gains from the CHSR amount to the net time- or cost-savings over

8Our framework accommodates an extension where workers can move between locations. Assume that every year
workers can change location at some fixed rate and that, in this case, they draw an idiosyncratic preference shock for
each possible location. Then, the net present value of the effect of the CHSR for someone living in i in 2008, ln Ŵ (i),
is still a linear function of ln V̂ (i), but the coefficient in front of ln V̂ (i) is smaller than in the baseline model (9), as
voters are likely to move out and put less weight on their current tract. In this extension, the coefficient θV in front
of ln Ŵ (i) when running the regression (8) can be deducted from the one we obtain when running (8) in the baseline
without having to rerun the regression, as they are scaled version of each other.
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likely travel destinations, adjusted by the travelers’ valuation of time and willingness to substitute
across destinations.

The “full” model formally nests our “baseline” and captures, in addition, equilibrium impacts
on wages, land rents, amenities, and productivity. Tradeable goods are produced with labor, land,
and productivity-enhancing business trips. Hence, the CHSR indirectly impacts the productivity
of firms and wages through its direct impact on the time and monetary cost of both commuting and
business trips. In addition, firm productivity and wages are impacted by agglomeration spillovers
that depend on the (endogenous) spatial distribution of worker density. Such spillovers from labor
density also impact the amenity enjoyed by residents and leisure travelers. Finally, because pro-
ducers compete with residents to use land, land rents respond to the development of the CHSR,
capitalizing local productivity enhancements through the increased demand for productive space.
However, only a share of the residents of each tract is homeowner and benefits from this capitaliza-
tion (with remaining land being owned by absentee landowners). Together, changes in land rents
and wages capture that the CHSR may lead to local economic development.9

Substitution across Modes Importantly, when deciding the destination, travelers for each
purpose (commuting, business, or leisure) incorporate a choice of transport mode (car, public
transit, air, or walking/biking), perceiving the different modes as imperfect substitutes. Residents
of different locations vary in their preferences for different travel modes. In our “baseline”, the
CHSR is perceived by travelers as a perfect substitute to public-transit or air travel, potentially
enhancing on those choices. In that case, when the CHSR becomes available, someone who was
initially traveling by car may substitute into the CHSR but doing so implies a different choice of
mode of travel, with an implied utility effect. We also show results for a case where the CHSR is
perceived as a perfect substitute to traveling by car.

Key Measurement Equations We show here the key equations governing the real income
impact of the CHSR. The summary equations below apply to the full model, which nests the
baseline model with the appropriate parameter restrictions.

The annual real-income change for residents of tract i due to the CHSR is:10

V̂ (i) =
(

B̂ (i)
r̂ (i)µH

)(
ŴC (i)

P̂L (i)µL

)
. (10)

The first term in parenthesis includes in the numerator the change in expected income net of
commuting costs and in the denominator the change in the price index for leisure trips (P̂L (i)),
adjusted by the spending share of tract i’s residents on leisure travel (µL). The second term in
parenthesis includes in the numerator the change in residential amenities stemming from urban
spillovers (B̂ (i)) and in the denominator the change in the cost of housing (r̂ (i)), adjusted by its
spending share µH . In the baseline model, this second term in parenthesis equals one by assumption.

9The economic model does not include environmental effects from the CHSR. To the extent that they are valued
by voters, they will be allocated to the political component of preferences in our analysis.

10In general, X̂ denotes the ratio between value of variable X if the CHSR is constructed and its value if is not.
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The change in income net of commuting cost, ŴC (i), captures the expected time savings and
change in travel costs of commuters, based on their ex ante commuting patterns, augmented by
the flexibility to substitute across employment destinations and modes of travel once the CHSR is
operational:

ŴC (i) ≡

∑
j∈J

∑
m∈MC

λC (i, j, m)
(

Î (i, j, m)
τ̂ (i, j, m)ρC

)θC
 1

θC

. (11)

In this expression, Î (i, j, m) is the change in disposable income conditional on commuting from

one’s residence i to one’s workplace j using transport mode m from a set of transport modes
that may be used commuting, MC .11 This term depends on the changes in the monetary cost of
commuting from i to j by mode m as well as (in the full model only) on the changes in wage at
destination and in land rent income at origin. Second, τ̂ (i, j, m) is the change in travel time from i

to j using m, converted into a dollar-equivalent value by the elasticity ρC . Third, θC captures the
extent to which residents substitute across commuting destinations travel modes when the relative
appeal of destination or modes changes.12 Finally, the weights λC (i, j, m, N) on these changes are
the fraction of tract-i residents that commute for work to j through mode m absent the CHSR.

The change in the leisure price index follows a similar functional form:

P̂L (i) ≡

∑
j∈J

∑
m∈MC

λL (i, j, m)
(

p̂L (i, j, m) τ̂ (i, j, m)ρL

B̂ (j)

)−µLθL
− 1

µLθL

, (12)

where now λL (i, j, m) is the fraction of leisure travelers from i choosing destination j using mode

m absent the CHSR, p̂L (i, j, m) is the change in the monetary cost of travel, B̂ (j) are changes
in amenities in the leisure destination j, and (ρL, θL) capture respectively the value of time when
traveling for leisure and the substitution across destinations for leisure.13

Our baseline model with only direct effects assumes away endogenous changes in amenities or
land rents in (10) and (12) (i.e., B̂ (i) = r̂ (i) = 1) and no wage changes from the reallocations
triggered by the CHSR, implying that changes in disposable income in (11) stem from the tax
to finance the CHSR and the change in the monetary cost of commuting.14 As a result, in our

11This set of modes is travel-purpose specific because (1) air is used for long-distance travel but not for commuting
in practice and (2) walking or biking amounts for a non-negligible fraction of commuting trips but is negligible for
long-distance travel.

12Formally, as detailed in the appendix, this parameter is the inverse of the dispersion in idiosyncratic preference
draws across residents of i about where to commute and how to commute there.

13When comparing (11) and (12), one can notice two asymmetries: in (11), the monetary cost enters as a negative
additive shifter to disposable income while in (12) it enters multiplicatively; and the latter is shaped by the intensity
of leisure spending µL (i). As detailed in the appendix, these differences arise due to the non-homothetic nature of
spending on commuting : assuming a fix number of commuting days in the year, travelers spend a fix amount of
money in commuting and the remaining income is divided into consumption, housing, and leisure trips. In contrast,
leisure travelers decide how many trips to make to their preferred destination, with homothetic preferences (over
leisure trips, consumption, and housing) with spending shares possibly varying across tracts.

14More generally, the change in disposable income is defined as the change in after-tax income net of commuting
costs: Î (i, j, m) = (1 + χpre (i, j, m)) (1 − t) ŷ (i, j) − χpre (i, j, m) p̂C (i, j, m), where ŷ (i, j) is the change in pre-tax
income, χpre (i, j, m) is the share of commuting costs in disposable income for someone traveling from i to j through
mode m before the CHSR is operational, and p̂C (i, jC , mC) is the change in the monetary cost of this commuting
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baseline model where only direct effects are included, we do not need any additional equations
beyond (11) and (12) to measure real-income effects. In contrast, the full model with indirect
effects generates additional changes in amenities B̂ (i), land rents r̂ (i), and disposable income
Î (i, j, m). In particular, wages enter as part of disposable income and change with the CHSR in
the full model, as the rollout of the CHSR impacts firm productivity. Specifically, firm productivity
is impacted for two reasons: first, because the CHSR allows firm to send workers on productivity-
enhancing business trips with greater ease; second, because the CHSR changes the distribution of
workers over space, impacting agglomeration spillovers. The full system of equations describing
these forces is presented in Appendix B.8.

4 Measuring the Economic Impacts of the CHSR

In this section, we estimate the parameters of the economic model of the CHSR. We then present
the real income effects of the California High-Speed rail predicted by the quantified model.

4.1 Data

We start with a brief overview of the main data used in our analysis and refer the reader to
Appendix C for details. We conduct the analysis at the level of census tracts. Our sample covers
7,866 census tracts housing 98.5% of the statewide population. To estimate the model, we rely on
information on commuting flows from the 2006-2010 American Community Survey and on leisure
and business trips from the California Household Travel Survey (CAHTS) conducted between 2010
and 2012. The CAHTS records trips longer than 50 miles over an 8-week period. To compute
travel time across various modes, we rely on Google Maps for car and bus transit, and on official
rail and air time schedules. The monetary cost of car travel is computed combining information on
trip length with estimates of average cost per mile, while for bus, rail, and air we use information
from the American Public Transportation Association, the Bureau of Transportation Statistics, and
various rail operators. We construct times and costs of traveling by CHSR using information from
the 2008 CHSR business plan. We use voting data for Proposition 1A as well as other elections in
2006 and 2008 from UC Berkeley’s Statewide Database.

4.2 Gravity Estimates

To characterize the impact of the high-speed rail using the equations (10), (11) and (12), we
need estimates of the travel flows absent the CHSR, λk (i, j, m) for k = C, L (commuting and
leisure), of the substitution elasticities θk for k = C, L, and of the parameters ρ and µL, along with
information on the times and cost shocks associated with the CHSR. In addition, when business
travel is introduced in the analysis as part of the full model, we need estimates of the business

route. Since commuting costs are about 2% of disposable income, Î (i, j, m) ≈ (1 − t) ŷ (i, j), and in the baseline
model with only direct effects we have ŷ (i, j) = 1.
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travel flows, λB (i, j, m), and of the parameters θB and µB. Next, we discuss the procedure to
obtain these estimates.

4.2.1 Commuting Equation

We base the estimation of the parameter vector (θC , ρC) on the following model-implied rela-
tionship for the share of residents from i that commute to j using transport mode m:

λC (i, j, m) =

(
I(i,j,m)

DC(i,m)τ(i,j,m)ρC

)θC

∑
j′∈J

∑
m′∈MC

(
I(i,j′,m′)

DC(i,m′)τ(i,j′,m′)ρC

)θC
(13)

where I (i, j, m) (defined in (A.4) in Appendix B) denotes the total income net of commuting costs

that residents of location i would have if they were to commute to location j by transport mode
m, τ (i, j, m) denotes the travel time between locations i and j by mode m, and DC(i, m) captures
a systematic component of preferences of residents of location i for transport mode m. All these
variables are measured prior to the construction of the high-speed rail.15

We now discuss some implementation details. First, we allow for three possible travel modes
for commuters: MC = {walking or biking, car, public transport}. Second, we assume the labor
income component of I (i, j, m) is the product of an origin-specific component e (i), which accounts
for the possibility that workers that reside in different locations have different human capital, and
a destination-specific component w (j), which accounts for productivity differences across work-
places.16 Third, for every pair of tracts i and j and mode m, we observe commuting shares and
construct yearly commuting costs and travel times as discussed in Appendix C. Fourth, we con-
sider as feasible commuting choices any pair of origin and destination census tracts and transport
mode such that both census tracts are in CA and the travel time is either less than 4 hours
(when using either car or public transport) or less than 2 hours (when biking or walking). 17

Finally, because our information on commuting comes from a finite sample of residents, we al-
low for the possibility that the observed commuting shares λobs

C (i, j, m) differ from the true ones,
λC (i, j, m) determined according to (13), by a term errorC (i, j, m) that captures sampling error:
λobs

C (i, j, m) = λC (i, j, m) + errorC (i, j, m).

15I.e., all expressions in this section correspond to the pre-CHSR full model equilibrium, as defined in Appendix
B. To save notation, we omit the index s in every variable; e.g., the expression in (13) corresponds to λC (i, jC , mC , s)
for s = N , as defined in (A.17).

16We estimate these origin- and destination-specific components using the following estimating equation:
wdata (i, j) = exp (ẽ (i) + w̃ (j)) + ε (i, j), where wdata (i, j) denotes the observed average wage of workers who re-
side in i and work in j, ẽ (i) ≡ ln (e (i)), w̃ (j) ≡ ln w (j), and ε (i, j) accounts for all other factors affecting observed
average wages that cannot be accounted for by an origin-specific and a destination-specific fixed effect. We assume
that ε (i, j) does not impact workers’ commuting decisions and is mean-independent of the origin- and destination-
specific components; e.g., it captures measurement error in wages as well as wage shocks unexpected to workers when
making their commuting decisions. We take this approach because we do not observe wdata (i, j) for every (i, j) pair.

17As a result, we use about 33 million origin-destination pairs between which it is feasible to commute by car,
21 million pairs for public transit, and 5 million for bike or walking. For all of the 7,866 potential origin locations
considered in our analysis, there is at least one destination that may be reached by car and at least one destination
may reached by public transport. Only 5 origins have no destination tract reachable by bike or walking.

14



We perform the estimation in two steps. First, to estimate θC and ρC , we use variation in the
choice of destination conditional on origin and transport mode. We use the two moment conditions

E
[ (

λobs
C (i, j|m) − λC (i, j|m)

)
X (i, j, m)

]
= 0, (14)

where X(i, j, m) = (ln (I (i, j, m)) , ln τ (i, j, m))′, and λobs
C (i, j|m) and λC (i, j|m) denote the ob-

served and model-implied shares of residents of census tract i that commute to j conditional on
the transport mode m. These moments are independent from origin- and mode-specific effects
DC (i, m). We build sample analogues of these moment conditions by averaging across origins i,
destinations j, and modes of transport m. Second, to estimate the preferences that residents of a
census tract i have for a particular transport mode m, we model the origin- and mode-specific term
DC (i, m) entering (13) as a function of observed origin-specific covariates XC (i) and a vector of
unknown mode-specific parameters ΨC (m):

DC (i, m)−θC = exp (ΨC (m) XC (i)) .

In our implementation, XC(i) includes a constant, the share of residents who own a car, the share of
residents who are under 30, the share of college-educated residents, the share of nonwhite residents,
the log median income, and the log population density. To estimate these parameters, we use
variation across origins in the share of commuters that use each transport mode m, regardless of
the destination. We use the mode m-specific moment conditions

E
[∑

j

λobs
C (i, j, m) −

∑
j

λC (i, j, m)

XC (i)
]

= 0, (15)

where we build a sample analogue of these mode-specific moment conditions by taking an average

across all originsi.18

In the first step, we obtain an estimate of θC equal to 2.97 (with robust standard error equal
to 0.14) and an estimate of ρC equal to 0.75 (robust s.e. 0.04). This last parameter captures the
percentage increase in wages in a destination that would leave workers indifferent if commuting
time were to increase by one percentage point; it thus measures the value of time in commuting.
Our estimates of θC and ρC are both consistent with the literature. For example, Severen (2019)
computes an estimate of θC equal to 2.2 using tract-level data for Los Angeles, and Monte et al.
(2018) uses county-to-county commuting data covering all the US, and obtain estimates of θC = 3.3
and ρC = 1.34.

18Since we observe data from a sample of workers residing in each census tract, we assume that any difference
between λobs

C (i, j|m) and λobs
C (i, m) and their model implied expressions, when evaluated at the true parameter values,

is due to sampling noise. Consequently, the estimates of θC , ρC , and {ΨD(m)}m that we obtain from the two sets
of moment conditions described above converge to their true values as the sample size in each census tract grows
arbitrarily large. An assumption of our current setting is that there is no amenity component of destination census
tracts that matters for workers’ commuting patterns; as long as these amenities are equally valued by all residents,
regardless of their census tract of residence, one may extend our analysis to include destination-specific fixed effect
that would account for such unobserved amenities.
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We present the resulting second-step estimates of ΨC (m) in Appendix Table A.2.19 Column
(1) shows that, on average, residents have a preference for commuting by public transport and, to
an even greater extent, by car, relative to bike or walking. Importantly, these preferences are in
addition to whichever preferences may arise from the different commuting times and monetary costs
associated to each transport mode. Columns (2) to (8) further reveal differences in these preferences
across census tracts. Focusing on column (8), we observe that car ownership is associated to
a positive preference for commuting by car and a mild negative preference for public transport
relative to bike or walking. Younger or more educated census tracts have a negative preference
for commuting by either public transport or car, while the share of nonwhite residents is strongly
correlated with a preference for public transport. Log median income and log population density
seem both correlated with preferences for both public transport and car relative to commuting by
bike or walking.

Using the estimates of θC , ρC , and {ΨC(m)}m described in this section, as well as the expression
for λC (i, j, m) in (13), we generate model-predicted values of the share of commuters between every
pair of census tracts (i, j) by any transport mode m. As these predicted shares are functions of
consistent estimators of the parameters of interest, they are themselves consistent.

4.2.2 Business and Leisure Travelers

Our modeling of both leisure and business trips implies the following expression for the share
of trips that have origin in a census tract i, destination in a census tract j, and are done using a
mode of transit m in a setting before the high-speed rail is implemented:20

λ̃k (i, j, m) =

(
Zk(i,j)

Dk(i,m)τ(i,j,m)ρk

)µkθk
pk (i, j, m)−µkθk−1

∑
j∈J

∑
m∈Mk

(
Zk(i,j)

Dk(i,m)τ(i,j,m)ρk

)µkθk
pk (i, j, m)−µkθk−1

(16)

for k = L (leisure) or k = B (business), and where λ̃k (i, j, m) denotes the share of trips of type

k originating from census tract i that both have tract j as destination and are done by transport
mode m,21 Zk (i, j) is a quality shifter of the number of trips done from tract i to tract j, Dk (i, m)
captures a systematic component preferences of travelers from i by transport mode m, τ (i, j, m)
denotes the travel time between locations i and j by mode m, and pk (i, j, m) is the monetary cost
per round trip. For both leisure and business travel we consider three feasible modes of transport:
MB = ML = {airplane, private vehicle, public transport}.22

Due to limitations in the size of the sample, we write the shifters Zk (i, j) and Dk (i, m) as a
function of observable characteristics rather than as origin-destination and origin-mode fixed effects.

19We normalize the parameter vector ΨD(m) for m = walking or biking, and, given this normalization, we estimate
the parameter vectors corresponding to m = private vehicle and m = public transport.

20This expression is implied by (A.18) to (A.22) in Appendix (B.4).
21We use λ̃k (i, j, m) to denote the share of trips in order to distinguish it from λk (i, j, m), which we use to denote

the corresponding share of travelers and is the summary statistic we use to quantify the model.
22In the case of leisure, the shifter is ZL (i, j) = qL (i, j) B (j) , equal to the product of a bilateral preference shifter

and destination amenities; in the case of business travel it is ZB (i, j) = qB (i, j) A (j), equal to the product of a
bilateral productivity shifter and endogenous destination productivity.
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Specifically, we let: (
Zk (i, j)
Dk (i, m)

)µkθk

≡ exp (γk (m) + ΨkXk (j)) , (17)

for k = L, B, where γk (m) is a mode and purpose-specific parameter, Ψk is a vector of mode-

invariant but purpose-specific parameters, and Xk (j) is a vector of observed characteristics. In
our empirical specification for leisure travel, XL(j) includes proxies for the amenity value of the
destination; i.e., the log distance between j and the closest beach, a dummy variable for whether j

is in a national park, the share of workers in j employed in the hospitality sector, and the log total
population. For the business travel regression, XB(j) includes the share of workers in management
roles in the destination tract, as well as its log total population .

We measure the share of business and leisure trips λ̃k (i, j, m), travel time τ (i, j, m), and travel
costs pk (i, j, m) as indicated in Section 4.1. Similarly to the commuting estimation, our observed
measure of λ̃k (i, j, m), which we denote as λ̃obs

k (i, j, m), is based on a small random sample of resi-
dents of California and, consequently, will likely differ from the corresponding true share λ̃k (i, j, m)
due the sampling error.

As the expression in equation (16) illustrates, the parameters µk and θk are not separately
identified from this estimating equation alone. We thus calibrate µk using external data sources.
For leisure travel, we calibrate µL to equal 0.05, consistent with the Bureau of Labor Statistics
figure on the annual share of spending on travel across U.S. households, including on transporta-
tion, food away from home, and lodging.23 For business travel, µB corresponds to the share of a
firm’s revenue spent on its employees’ business travel. We set µB = 0.015 using information from
industry reports.24 Furthermore, the only way to separately identify the parameters θk and ρk is
to use the separate variation provided by the travel time variable τ (i, j, m) and the monetary cost
term pk (i, j, m). While we follow standard procedures to measure travel times and, thus, we are
reasonably confident of its accuracy, our measure of the monetary cost of traveling between any two
census tracts is likely to suffer from substantial measurement error. Consequently, we introduce
the term pk (i, j, m) merely as a control, assume that ρL = ρB = ρC (as a reminder, ρC is the
corresponding term entering the commuting equation), and estimate θk from the variation induced
by the travel time term τ (i, j, m).

We follow a two-step estimation approach similar to that described in Section 4.2.1. In the first
step, we identify θk and βk through the following moment condition:

E
[ (

λobs
k (i, j|m) − λk (i, j|m)

)
Xk (i, j, m)

]
= 0, (18)

for k = L, B, where Xk(i, j, m) = (Xk(j), ln τ (i, j, m) , ln pk(i, j, m))′, λobs
k (i, j|m) and λk (i, j|m)

denote the observed and model-implied shares of trips of type k from location i to j conditional on

23The US travel Association reports leisure travel spending in the ballpark of 800 billion USD, which as a share
of US private consumption yields a similar share of 5.6%.

24The US Travel Association and Global Business Travel Association both report US business travel spending in
the ballpark of 340 billion USD in 2019, which corresponds to about 1.5% of US GDP in that year.
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the transport mode m,
ρ̂k = ρ̂C = 0.75, and αk is an unknown nuisance parameter. The survey from which we obtain

the information on leisure and business trips λ̃obs
k (i, j, m) only collects information for trips whose

origin and destination tracts are at least 50 miles away; thus we build sample analogues of the
moment conditions in (18) by taking an average across all modes of transport m and all pairs of
origins i and destinations j that are at least 50 miles apart. Consequently, for each origin tract i,
the denominator of the second term entering the moment condition above sums only over such a
restricted choice set..25

In a second step, given the first-step estimates of θk, βk, and αk, and a normalization that
imposes that the model-specific shifter γk (m) equals zero for m = airplane, we identify the shifter
γk (m) for m = private vehicle and m = public transport using the following two mode m-specific
moment conditions

E
[∑

j

λ̃obs
k (i, j, m) −

∑
j

λ̃k (i, j, m)
]

= 0. (19)

We build a sample analogue of these mode-specific moment conditions by taking an average across
all origins i.26

Our estimate of the coefficient on log travel time −µkθkρk computed according to the moment
conditions in equation (18) is −1.20 (with robust standard error equal to 0.28) for leisure and -1.65
for business (robust s.e. 0.82). According to the estimates presented in Section 4.2.1, this time
elasticity is -2.24 in the case of commuting, reflecting a higher disutility of time spent traveling in the
case of regular trips to the workplace. In combination with our calibrated values of µL and µB and
our estimate of ρC , the estimated coefficients on log travel time imply the substitution elasticities
across destinations are θL = 31.99 (with robust standard error equal to 7.35) and θB = 146.98 (with
robust s.e. equal to 73.38). This result reveals that, despite small substitution rates with respect
to travel time, travelers in fact perceive business and leisure destinations as highly substitutable
among each other because the calibrated budget share of each activity is small.

Concerning the estimates of γk (m) for k = L and k = B and both m = private vehicle and
m = public transport, we find that leisure travelers have a strong amenity preference for traveling
by car (for m = private vehicle, γ̂L (m) = 4.02 with robust standard error equal to 0.17) , while we
are not able to reject the null hypothesis that they extract the same amenity value from traveling

25In the case of trips performed by airplane, we further classify as infeasible those for which the travel time by
airplane is larger than by car. Hence, in our application, the choice set varies also by transport mode m, being smaller
for m = airplane than for the other two modes of transport, which share the same choice set. Specifically, the sample
analogue of each of the moments described in equation (18) averages over approximately 24 million pairs of origin
and destination tracts among which it is feasible to travel by airplane, and over approximately 52 million pairs of
tracts that may be reached by car and by public transport.

26As discussed in Section 4.2.1, we assume that, for both k = L and k = B, any difference between the observed
travel shares entering in the moment conditions and and their model implied expressions, when evaluated at the true
parameter values, is due to sampling noise. Under this assumption, our estimates of the parameters entering equations
(16) or (17) converge to their true values as the sample size grows arbitrarily large. Currently, these estimates are
computed under the extra assumption that there is no unobserved amenity component of destination census tracts
that matters for workers’ business and leisure trips; however, as long as these amenities are equally valued by all
residents, one may account for such unobserved amenities through destination-specific fixed effects.
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by public transport and by air (for m = public transport, it is the case that γ̂L (m) = −0.26, with
robust s.e. equal to 0.23). For the case of business travelers, we also find that they have an amenity
preference for traveling by car relative to air, although this one is much smaller than in the case
of leisure travelers (specifically, for m = private vehicle, it is the case that γ̂B (m) = 0.65, with
standard error equal to 0.10). Quantitatively more important is the disutility that business travelers
have for traveling by public transport relative to traveling by air (for m = public transport, it is
the case that γ̂B (m) = −1.69, with robust s.e. equal to 0.21).27

Using the estimates described in the previous paragraphs and the expression for λ̃k (i, j, m) that
results from combining (16)and (17), we compute model-implied shares of trips As these predicted
shares are functions of consistent estimators of the parameters of interest, they are themselves
consistent. Furthermore, they exploit the structure of the model to generate predicted trip shares
for origin and destination tracts that are less than 50 miles away, solving the corresponding missing
data problem that affects our survey data on leisure and business trips.

4.3 Model Parametrization and Counterfactual Scenarios

We implement counterfactuals using the system (A.32)-(A.42) in Appendix B.8 at the census
tract level, for the 7866 census tracts for which all information is available. Doing so requires
information on a range of variables in a pre-CHSR equilibrium that we describe next. For each
variable we choose the latest year for which data is available prior to 2020, as this was the earliest
year on which the CHSR would have been operational according to the 2008 business plan, and
because doing so avoids noise from Covid-19 shocks.

First, the fraction of commuters, leisure travelers, and business travelers by origin-destination
and mode (λk (i, j, m) for k = C, L, B), the origin and destination components of commuters’ wages,
the gravity parameters (ρk, θk), and the spending shares in leisure and business travel (µL, µB) are
obtained for 2019 from the estimation and calibration steps described in the previous sections.
Consistent with the previous estimation, we implement the model assuming that the available
transport modes for commuting are MC = {car,public transit,walking/biking}, while for leisure
and business travel they are Mk = {car,public transit,air} for k = L, B. Second, we retrieve
information on the number of residents, the share of floor space use for housing, labor income,
land-rent income, and initial commuting travel costs as described in Appendix C. Finally, for the
full model, we calibrate spillover elasticities and firms’ use of floorspace using existing estimates
from the literature, as also explained in Appendix C.

27Concerning the estimates of the parameter vector Ψk, which includes the coefficients on the observed destination-
specific shifters included in the vector Xk(j),we find that leisure travelers tend to travel more to census tracts that
are closer to the beach, that belong to a national park, or that have a larger share of employment in hospitality (the
estimates of the corresponding parameters are always statistically different from zero at the 1% level). Conversely,
the relationship between the population of a census tract and its amenity value as a destination for leisure trips is
not statistically different from zero. For the case of business trips, we find that, similarly, the relationship between
log population of a census tract and its appeal as a destination for business trips is not statistically different from
zero, but that the share of workers employed in management positions has a positive and statistically significant
correlation with the amenity value of a tract as a destination for business travelers.
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Table 1: Model and Calibration Variants

Impact of the CHSR

Direct time Indirect impacts Completion probability
and cost impacts (land, wages, spillovers) and taxpayer costs CHSR may replace:

Baseline yes no p = 1, T = 12, c = $10b pub. transit, air
Full yes yes p = 1, T = 12, c = $10b pub. transit, air
Pessimistic yes no p = 0.5, T = 24, c = $130b pub. transit, air
+ Car yes no p = 1, T = 12, c = $10b pub. transit, air, car

Note: this table summarizes the differences across counterfactual types. Each of the cases “Full”, “Pessimistic” and
“+Car” deviate from the baseline by one criterion shown in bold. In the third column, T is the minimum number of
years after the vote at which the CHSR may become operational, p is the probability that it will become operational
in after year after T if it has not done so before, and c is the present discounted value of taxes Californian taxpayers
expect to pay if the project is approved. In the highly optimistic baseline, c equals just the $10bn pledged by the
Prop 1a. In the much more “Pessimistic” case, c equals current projections. In particular, the 2022 business plan
projected between $72bn and $105bn for phase-I of CSHR (California High Speed Rail Authority, 2022). Since our
counterfactuals encompass the full network (about 800 miles) instead of just phase-I (about 520 miles), we take an
intermediate point of these estimates and adjust proportionally by the extra length to obtain costs of about $130bn.

Using these equations and these data, to compute the real income gains associated with the
CHSR we also need the time and monetary cost shocks τ̂ (i, j, m) and p̂k (i, j, m) for each origin-
destination pair and mode of travel on which the CHSR is endogenously used by travelers, if
available. In our baseline counterfactuals, we compute these time and monetary costs shocks
assuming that the CHSR is a perfect substitute to public transit and to air travel. Appendix C
describes how we compute time and cost of travel with and without the CHSR for each mode, and
Appendix B.6 describes the endogenous decision of each type of traveler to use the CHSR. The
next section describes summary statistics of this shock.

Given this parametrization, we implement counterfactuals assuming 4 configurations of model
assumptions that span varying levels of complexity and optimism regarding the completion and
costs of the CHSR. Our “baseline” parametrization implements the simplest model without any
general equilibrium effects, in which the only benefits from CHSR accrue from time and cost savings
of commuters and leisure travelers (i.e., there are no productivity-enhancing effects through business
travel). In this highly optimistic baseline, the completion probability, time until completion, ticket
prices, and sunk cost financed by Californian taxpayers correspond to what was spelled out in the
2008 CHSR business plan. Specifically, this assumes that the project is complete and operational
in 2020 (p = 1 and T = 12), with total costs to Californian taxpayers of only the $10bn pledged by
the Prop 1a.

We implement three additional models, each differing from the baseline in a different dimension:
the “full” model allows for indirect impacts of the CHSR through land prices, wages, and spillovers
accruing from agglomeration of employment.; the “pessimistic” variant assumes half the completion
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probability (p = 0.5) in twice the time (T = 24), with current projections on ticket prices (approx-
imately twice as large as in 2008) and with costs to Californian taxpayers to cover in full current
projections of capital costs; and the “+Car” variants allows CHSR to also be considered as a perfect
substitute to traveling by car in the eyes of travelers. Table 1 summarizes these alternatives and
provides additional details.

4.4 Time and Cost Shocks from the CHSR

Table 2 gives a sense of how many travelers are directly exposed to the CHSR shock, and
by how much. The first two columns show fractions of total travelers who, before the CHSR is
available, travel on routes where the CHSR would be used if available. These are lower bounds to
the number of actual users in a counterfactual with the CHSR, as initial travelers on other routes
may substitute into routes where the CHSR is preferred. The subsequent columns report moments
from the distributions of time and cost changes across these direct winners.

The first column considers our baseline scenario where the CHSR may only replace public transit
or air travel. Before the CHSR, a small fractions of public-transit or air travelers use routes where
the CHSR is preferred, which follows from the initial share of these travelers being small (see Table
A.1). A considerable fraction of these initial travelers directly benefit (19% of initial public-transit
commuters, 14% of initial public-transit or air leisure travelers, and 43% of the initial public-transit
or air business travelers). The shares grow considerably in the second column, when the CHSR may
directly replace the car, because the initial share of travelers by car is large. However, comparing to
the initial shares in Table A.1, only 2% of commuters via car directly benefit, while 14% of leisure
and 8.6% of business travelers by car do.

The remaining columns report the median and 75 percentile of the traveler-weighted distribution

Table 2: The CHSR Shock

% Initial Travelers Time Gain Cost Change (Pub. Trans. or Air)

Directly Better Off 2008 CHSR Price 2X Ticket Price

Pub. Trans.

or Air
+ Car median 75 ptile med 75p med 75p

Commute 1.0% 3.1% 26’ (31%) 43’ (41%) -19% -4% 5% 22%
Leisure 0.5% 14.1% 10’ (6%) 33’ (25%) -62% -42% -33% -12%

Business 5.1% 12.7% 9’ (4%) 27’ (12%) -63% -57% -33% -25%
Note: The first column shows the fraction of all travelers within each travel purpose who, before the CHSR becomes
available, travels on routes where the CHSR is used when available, assuming that the CHSR may only directly replace
public transit or air. The second column assumes that the CHSR may also replace the car. The third and fourth
(fifth and sixth) column show moments from the traveler-weighted distribution of time changes (cost changes) across
origin-destination-modes within each travel purpose, conditioning on origin-destination-modes where the CHSR is
used when available.

21



of time gains and cost changes across all routes and travel modes that directly benefit, assuming as in
the first column that the CHSR is a direct substitute to public transit or air. The direct beneficiaries
save a substantial amount of time; e.g., all the commuters via public transit who directly benefit,
the median saves 31 % of commute time. These direct winners also save a substantial amount in
travel costs at the most optimistic 2008 projection for ticket prices. In the “pessimistic” scenario,
corresponding to current projections of ticket prices, there are still considerable gains among leisure
or business travelers who directly benefit, whereas for commuters the time savings come at the
expense of higher commuting costs. The difference between these types of travelers is because the
latter does not use air travel, and therefore only gains time when switching from the relatively
cheap public transit into the CHSR.

4.5 Aggregate and Regional Real-Income Effects of the CHSR

We now compute the expected real-income effects of the CHSR, Ŵ (i) defined in (9). Table
3 summarizes the aggregate effects across the 4 model variants described in Section 4.3. In our
baseline (without general-equilibrium effects and with CHSR costs as promised in the 2008 business
plan), the net aggregate gain is 0.32%, which corresponds to an annual monetary gain of $143.0
in 2008 USD per worker. The “full” model, which includes productivity effects stemming from
business travel, changes in land prices and spillovers, has net aggregate gains that are twice as
large. The gains are also about twice as large as the baseline in “+Car” variant, which assumes
that, when deciding how to substitute across modes, travelers consider the combination of driving
and using the CHSR as a perfect substitute to just driving (in the baseline, using the CHSR is
considered as a perfect substitute to public transit or to taking an airplane, but not to driving).28

The pessimistic scenario (which roughly corresponds to current projections on costs and ticket
prices) gives net losses.29

28There are many differences in in method, underlying data, and details of implementation between our analysis and
existing cost-benefit analyses of the CHSR. Still, we can broadly compare the ballpark of our numbers against existing
estimates that have considered related forces. Initial 2008 estimates by the High-Speed Rail Authority (California
High Speed Rail Authority, 2008) estimated net present-discounted gains of $97bn in 2008 USD. In our baseline, the
analog number is $135bn. The 2023 CHSR project update (California High Speed Rail Authority, 2023b) includes a
benefit-cost analysis (California High Speed Rail Authority, 2023a) such that, if only “high-speed rail user benefits”
(corresponding to the forces we include in the “pessimistic” case) are included (while wider economic benefits are
excluded), the phase-I of the CHSR (from San Francisco to Los Angeles and Anaheim) leads to a present-discounted
loss of $15bn in 2021 dollars. Our “pessimistic” case only considers direct time savings to travelers, uses total costs
corresponding to the 2022 Business Plan (California High Speed Rail Authority, 2022), and implements the full CHSR
(instead of just phase-I) by scaling up costs in proportion to the additional miles of the total network relative to
phase-I. This “pessimistic” scenario yields a loss $121bn in 2021 USD. The 2023 CHSR update also reports gains of
$26bn for the Phase I when “wider economic benefits for worker and firms” are further included in addition to rail
user benefits. If we run a “Pessimistic+Full” version of our model (so that wider economic benefits beyond direct
time savings are included), we obtain 2021 USD gains of $33bn for the full network.

29Appendix table A.3 decomposes the aggregate effects into the gains stemming from commuting, leisure travel,
and business trips. In the three cases without general-equilibrium effects, leisure trips account for about 10%-25% of
the aggregate effect. Even though long-distance leisure trips save more time than the average commute trip, aggregate
commuting time dwarfs leisure travel time. Leisure trips are more important when the CHSR may directly replace
the car rather than only public transit. The magnification of gains in the “full” case with general-equilibrium impacts
are due almost exclusively to productivity-enhancing effects of business trips.
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Table 3: Aggregate Real-Income Impacts from the CHSR

Case Aggregate Annual Gain 2008 USD per Worker

Baseline 0.32% $143.0
Full Model 0.65% $292.4
Pessimistic -0.18% $-81.9
+ Car 0.60% $265.6

Note: The table reports the aggregate annual gain Ŵ across the model variants described in Section 4.3, defined as
the working age population weighted average across tracts of Ŵ (i) defined in (9). This number measures an annual
welfare gain. To transform to 2008 USD gains, we multiply Ŵ (i) by the average nominal 2008 wage in tract i and
then take the residents-weighted average across tracts.

These aggregate changes mask considerable heterogeneity. Figure 2 plots real-income effects
across tracts in the baseline scenario and Figure 3 zooms into the LA county and the San Francisco
Bay Area. Bright yellow tracts gain the most, and dark blue tracts lose the most. The top 10%
of winning tracts gain between 0.6% and 4.7% per year, while 2.7% of all tracts lose. To gauge
the drivers of heterogeneity, Appendix Table A.4 shows regressions of these tract-level real-income
changes on tract-specific characteristics in the pre-CHSR equilibrium: each each tract’s distance to
the nearest CHSR station, the percentage of car and public-transit travelers, the average commute
time, and fixed effects for belonging to Los Angeles or San Francisco county. These variables enter
indirectly in the quantification through the summary statistics needed for the quantification, as
described in Section 4.3. As we could expect, tracts that are closer to stations gain more. By
this logic, all the largest cities in California should gain. However, tracts with lower car usage,
more prone to using public transportation, or with longer commute times gain more, because these
tracts are more likely to adopt the CHSR in some outbound trip. As a result, among Central
Valley locations, Fresno and Bakersfield stand out with relatively low gains. The tracts located in
San Francisco or Los Angeles county gain over and above what these characteristics would predict,
suggesting that their specific travel patterns, in particular for commuting, are more likely to adopt
the CHSR.30

As we shall see in Section 5, despite the different aggregate effects across model variants shown
in Table 3, the heterogeneity in gains across model variants is always consistent with a both i) a
strong elasticity of votes to real income, and ii) a more important role for political preferences than
economic effects in explaining the cross-sectional dispersion in welfare effects. Furthermore, as we
will see in the Section 6, the significant gap between the gains in San Francisco or LA and the
Central Valley would have been even larger in the absence of political incentives for the planner.

30We also find that employment gains are concentrated in the immediate vicinity of CHSR stations, in Los Angeles
and San Francisco, and also in the Central Valley (e.g. Stockton, Modesto). Suburban locations in the greater San
Francisco and Los Angeles areas hollow out.
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Figure 2: Spatial Distribution of Real-Income Gains from the CHSR

Figure 3: Spatial Distribution of Real-Income Gains from the CHSR (SF and LA)

(a) SF Bay Area (b) LA County

Note: The maps shows percentiles of tract-level real income effects Ŵ (i) in the baseline scenario.
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5 Voter Preferences

Armed with the quantified model of the real-income gains of the CHSR, we now estimate the
relative importance of real-income and political components of preferences in shaping voters’ overall
preferences for the CHSR.

5.1 Estimation Strategy

We bring (8) to the data. We aim to compute consistent estimates of θV and βk. Using these
estimates, we can recover the weights β̃k ≡ βk/θV on the components of political preferences defined
in (4) and compute predicted distributions of vote shares in favor of the CHSR in counterfactual
scenarios.

As proxies for political preferences, we consider three different sets of covariates Xk (i) in (8).
The first set bears a direct relationship to voters’ political ideology: it includes the share of regis-
tered Democrats and the shares of votes cast in favor of two propositions, Prop 10 and Prop 1B,
on alternative energy and transportation projects, respectively.31 We interpret the vote shares on
Prop 10 as proxies for the strength of the environmental concerns and the vote shares on Prop 1B
as proxies for the willingness of voters to support transportation infrastructure spending in general.
The second set of covariates measures several demographic characteristics of the residents of each
census tract: the share of residents who are nonwhite, college-educated, and under 30 years of
age. Finally, the third set of covariates includes the distanced between each census tract and both
the closest CHSR station and the closest point on the CHSR railway track. These two distance
measures account for the potential amenity impacts of being close to either a CHSR station (likely
positive) or the CHSR railway track (likely negative), as well as for potential correlation between
the location of the CHSR tracks and stations and voters political ideology that is not properly
captured by the two other sets of covariates. In addition to the three sets of covariates discussed
above, we control in all specifications for county fixed effects. Consequently, the identification is
based on variation across census tracts within counties.

The consistency of OLS estimators of the the parameter θV is affected by several potential
identification concerns. First, the expectational error of voters (term ϵW (i) discussed in Section
3.1) is included in the error term. If voters’ expectations are rational, the expectational error
ϵW (i) is correlated with the realized values of ln Ŵ (i) across tracts, biasing the OLS estimate of
θV towards zero (Dickstein and Morales, 2018). Addressing this issue requires an instrument that
belongs to the voters’ information set when they voted. We use as instrument the real income
impact of the CHSR Ŵ (i) generated by our model with fundamentals from the year 2008 (our
dependent variable Ŵ (i) is constructed with fundamentals from the year 2019). Assuming that
voters’ expectations are rational and that the 2008 fundamentals belong to their information sets,

31Proposition 10 (“Bonds for Alternative Fuels Initiative”), on the ballot in the same 2008 election as the CHSR,
would have allowed the state to issue $5 billion in bonds for alternative fuel projects (it failed with 40.6% in favor).
Proposition 1B (“Transportation Bond Measure”), on the ballot in the 2006 midterm elections, authorized the state
to issue $19.9 billion in bonds for transportation projects (it passed with 61.4% in favor). Source: ballotpedia.org.
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this instrument is mean independent of voters’ expectational error ϵW (i).
Second, the error term also includes the term ϵa (i) in (4), which captures preferences for the

CHSR of residents of a tract i that are not adequately controlled for by the observed covariates
Xk(i). If the CHSR favored tracts with systematically large or small values of ϵa (i), this term
would be correlated with the real income effects of the CHSR, ln Ŵ (i). More generally, it is
possible that components of voters’ political preferences that are not properly captured by our
proxies are correlated with the voters’ exposure to the CHSR as measured by our model. The OLS
estimate of θV may be biased upwards or downwards as a result.32

To address these potential issues, we follow two IV strategies that rely on counterfactual CHSR
designs. For each census tract i, both instruments equal the average real-income change Ŵ IV (i)
of the residents of i across 100 simulated counterfactual high-speed railway networks:

Ŵ IV (i) = 1
100

100∑
n=1

ln
(
Ŵ cf (i, n)

)
, (20)

where Ŵ cf (i, n) is the model-predicted change in welfare in location i from a counterfactual CHSR
design n, and where the model used to generate this welfare change is calibrated to 2008 funda-
mentals, so that they are also mean independent of the expectational error term ϵW (i).

The first IV following (20) uses CHSR designs built by randomizing the location of the 24
stations along the coordinates of the currently projected CHSR line. The second IV exploits the
shape of three alternative routes that were considered in the early stages of the CHSR design
process during the 1990s (US DOT, 2005), as shown in Appendix Figure A.1. One of these routes
was similar, but not identical, to that which was ultimately chosen and voted upon in 2008. Our
understanding of the process is that these three initially considered CHSR routes were selected on
the basis of technical feasibility and cost savings.33 Thus, these three potential routes were thus
directly affected by the political preferences of voters in any given tract. Our second instrument
uses the formula described in equation (20), where each counterfactual n corresponds to a high-
speed railway network where one of these three potential routes is randomly chosen and then the
24 stations are randomly located along the randomly chosen route. As these two instrumental
variables do not incorporate information on the actual location of the 24 projected stations (in the
case of the first instrument) nor on the actually projected CHSR railway line (in the case of the
second instrument), they may still be valid even if CHSR stations (or railway line, in the case of the
second instrument) favor tracts with systematically large or small values of the unobserved term.

A third potential concern that would bias the OLS estimator of θV as well as invalidate all
instrumental variables described above is the possibility that our economic model does not correctly

32It is worth highlighting that the set of covariates in our regression account for a large share of the variation in
vote shares across locations; the R-squared of the OLS estimated regression is slightly above 0.9 in the specification
with the largest set of covariates.

33There are two main potential routes from Northern to Southern California: along the coast or through the center
of the state (along I-5 or via the Central Valley). The topology of the coastal area makes it more difficult for trains
to reach top speed and is costlier in terms of building. Along the I-5 is flatter and cheaper but farther away from
population centers. The third option, via the Central Valley, ranks in between these alternatives in terms of both
proximity to population and expected costs.
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capture voters’ forecast of the economic gains of the CHSR. It is generally hard to determine the
statistical properties of this potential error in our measure of voters’ expected welfare gains and,
consequently, we do not attempt to find an instrumentation strategy that may deal with it. To
address this concern, we check instead the robustness of our analysis to the range of alternative
model specifications that we have studied in the previous section.34

5.2 Estimates of Voter Preferences

In Table 4, we report report OLS and IV estimates of θV and the βk’s relying on the baseline
variant of the economic model. In the first four columns, we present OLS estimates for regression
specifications that progressively account for a larger the number of regressors. In column (1),
we include no covariate other than the model-implied welfare impact of the CHSR, and obtain a
positive and significant estimate of θV . In column (2), we add the proxies for political ideology, in
(3) we add variables that capture demographic composition, and in column (4) we also incorporate
the log distances of each tract to both the closest station and the closest point on the CHSR railway
line.

In this last OLS regression specification, the estimated value of θV equals 14.15 (with robust
standard error equal to 1.03). According to these estimates, a larger support for the CHSR is
predicted by a larger support for Obama in the 2008 general election; a larger support for Prop.
10 (support for alternative fuel vehicles); a larger support for Prop. 1b (support for transportation
projects); a larger share of residents who are white, college-educated, or under 30 years of age;
proximity to a CHSR station; and distance from the CHSR railway line. The specification whose
estimates are presented in columns (5) to (7) coincide with that whose estimates appear in column
(4), but instead of presenting OLS estimates they correspond to IV estimates that use as instru-
mental variable either the 2008-based real income measure (in column (5)), the “Random Station”
instrument in equation (20) that randomizes the location of the stations alone (in column (6)),
or the “Random Path” instrument that randomizes the location of both the railway line and the
stations (in column (7)). For all these three instruments, the large first-stage F-statistics suggest
that these are not weak.

The estimate of θV increases progressively as we move from column (4) to (7). The fact that
the estimate of θV computed using the 2008-based real income measure as instrument is larger than
the OLS estimate (16.84 vs. 14.15) is consistent with the OLS estimate being downward biased as
a consequence of voters’ expectational errors. The fact that the estimates of θV computed using
both the random-station and the random-path instrument are larger than that reported in column
(5) may be explained as a consequence of the CHSR favoring census tracts whose residents were,
for unobserved reasons, less predisposed to support the construction of the proposed CHSR.

34A specific source of model misspecification that none of the models studied in the previous section deals with
and that none of the previous IVs directly address is the possibility that tracts situated closer to the CHSR line
may face idiosyncratic economic consequences from it; e.g., economic compensation from eminent domain, or direct
nuisance from proximity to the train tracks. Thus, we control for the distance to the railway tracks. We show that
our estimates are also robust to dropping census tracts that are less than 5 km away the railway line.
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Table 4: Estimates of Voting Equation

Inst. Var.: None - OLS ln(Ŵ08)
Random Random
Station Path

(1) (2) (3) (4) (5) (6) (7)

log(Ŵ19) 38.53a 17.27a 14.53a 14.15a 16.84a 19.45a 22.68a

(1.76) (1.26) (0.98) (1.03) (1.23) (1.68) (1.80)
Log-odds Dem. Sh. 0.30a 0.38a 0.38a 0.38a 0.38a 0.39a

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Environ.: Prop. 10 1.16a 2.46a 2.46a 2.44a 2.43a 2.41a

(0.06) (0.05) (0.05) (0.05) (0.05) (0.05)
Transp.: Prop. 1b 1.54a 0.82a 0.83a 0.82a 0.81a 0.80a

(0.05) (0.04) (0.04) (0.04) (0.05) (0.05)
Sh. non-White -0.17a -0.17a -0.18a -0.18a -0.19a

(0.01) (0.01) (0.01) (0.01) (0.01)
Sh. College 0.74a 0.74a 0.73a 0.73a 0.72a

(0.01) (0.01) (0.01) (0.01) (0.01)
Sh. Under 30 0.17a 0.18a 0.18a 0.18a 0.18a

(0.03) (0.03) (0.03) (0.03) (0.03)
Log. Dist. Station -0.01a -0.01a -0.01 -0.00

(0.00) (0.00) (0.00) (0.00)
Log. Dist. Rail 0.02a 0.02a 0.01a 0.01a

(0.00) (0.00) (0.00) (0.00)

F-stat 803 574 286
Num. Obs. 7861 7861 7861 7861 7861 7861 7861
Note: a denotes 1% significance level. Robust standard errors in parenthesis. All speci-
fications control for county fixed effects.

Our results are qualitatively very similar across a range of empirical specifications, including
different weighting schemes, sample selection, economic model variant, and covariate selection.
Appendix Table A.6 replicates the estimates from Column (6) of Table 4 across the 4 main model
variants that we have discussed in the previous section. The estimates of θV are smaller in the “Full”
model when we incorporate general-equilibrium effects into the computation of voters’ expected
economic impact of the CHSR, much larger in the “pessimistic” model (because, in this case, the
variance of real-income effects is much smaller), and roughly unchanged in the “+Car” version of
the model. Table A.7 replicates Table A.6 using political covariates only.35 For each model variant,
the estimates of θV are very similar regardless of whether we use all covariates or only political
covariates. A message in our next section is that the importance of political preferences in the
cross-section of welfare effects is similar across these specifications.

35Columns (3) to (6) in Appendix Table A.5, show that the random-design IV estimates of θV are slightly larger
when we weight each census tract either by total number of votes or participation rate in the Proposition 1A
referendum. Columns (7) and (8) show that the estimates remain roughly constant when we drop the nearly 3,000
census tracts that are less than 5km away from the railway line.

28



5.3 Importance of Political Preferences

Armed with these estimates, we can now investigate the importance of political consider-
ations versus real-income in driving preferences for transportation policy. The regression re-
sults above allow us to estimate the distribution of the political component of preferences as
ln â (i) = ∑K

k=1
βk
θv

Xk (i). Not all the covariates Xk (i) in ln â (i) are proxies for political con-
siderations only. We report all the results in two cases: i) using all covariates to build a proxy
âall for â (from the “Random-Station” IV estimates from Table A.6); and ii) using only political
covariates to build a proxy âpol for â (from the “Random-Station” IV estimates from Table A.7).
Table 5 reports results for the broad definition âall, and Appendix Table A.8 reports results for
âpol. The results are almost identical regardless of whether we use âall or âpol. Hence, the political
variables entering in âall are the main drivers of the non-economic component of preferences.

Decomposition of Preferences We first directly decompose the utility impact of the CHSR
(measured in percentage points increase in real income) into its economic and political components.
Using (2) and (3), this utility change in location i is

∆U (i) = ln Ŵ (i) + ln â (i) − ϵW (i) .

As we do not observe the expectational error ϵW (i), we set it to zero and construct ∆U (i) under the
assumption of perfect foresight about the fundamentals. We find that the CHSR has a population-
weighted impact on ∆U (i) equivalent to a 1.06%- 1.00% increase in real-income (here and below,
we report results for the two specifications, âpol and âall). The actual population-weighted increase
in real income ln Ŵ (i) is 0.32%, so that the average intensity of political preferences is positive and
large, corresponding to a 0.74%-0.68% increase in real income.

The second and third columns of tables 5 and A.8 show variance decompositions. The political
component ln â (i) has a standard deviation of 2.3%-2.2% across tracts, which is about 6 times larger
than the real-income component ln Ŵ (i), at 0.4%. The political component therefore drives a much
larger fraction of the variation in preferences (and votes) than the real-income component. Hence,
strong opponents to the project (as well as strong supporters) are typically politically motivated,
rather than having a lot at stake economically.

Cost of Swaying Votes Our estimates of θV imply that changing votes is quite costly. As shown
in the last two columns of tables 5 and A.8, at the observed distribution of votes the extra real-
income gain from the CHSR that would be needed to sway an extra 1 percent of the population to
vote in favor of the project has a median of 0.4% across counties.36 This suggests a large economic
cost of swaying voters in the typical census tract.

Aggregate Vote To illustrate the various drivers of the vote, we first compute the counterfactual
aggregate vote share in favor of the CHSR if voters voted only based on their real income gains

36The logit choice structure implies that swaying an extra 1 percentage point in favor of the CHSR requires an
extra 1

θV v(i)2(1−v(i)) % real-income gain from the CHSR.
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Table 5: Political vs. Real Income Determinants of the Vote

Variance Decomposition Favorable Vote if Cost of Swaying
of ∆U(i) Voters Only Consider... 1% of Vote

θV σ∆ ln a σ∆ ln Ŵ Ŵ â 50p 90p

Baseline 19.5 2.2% 0.4% 51.4% 51.6% 0.4% 0.5%
Full 17.5 2.4% 0.4% 52.7% 50.3% 0.4% 0.6%
Pessimistic 41.6 1.0% 0.2% 47.9% 54.9% 0.2% 0.3%
+ Car 19.2 2.3% 0.6% 52.7% 50.4% 0.4% 0.6%

Note: The θV reported corresponds to IV estimate using the random routes instrument shown in Table A.6. The
political component corresponds to all covariates. Appendix table A.8 shows the results using the more restricted
proxy âpol.

(setting â (i) = 1), or only based on their political preferences (setting Ŵ (i) = 1). We find that
the vote in favor of the CHSR would be 51.4%-51.6% based on political preferences only, and
51.3%-51.4% based on real income gains only. So, despite the high cost of swaying votes and
the importance of political preferences for the cross-section of welfare effects, economic effects are
revealed to be an important driver of the aggregate vote under optimistic beliefs. However, the fact
that the CHSR would be approved in the complete absence of a preference for real income gains
means that there is a range of costs such that the CHSR could lower aggregate real income and
still be approved. For example, a CHSR that would lead to a uniform 0.3%-0.3% loss for all tracts
in the baseline case would receive 50% favorable votes thanks to the strong political component of
preferences. Under pessimistic beliefs this real-income loss that would have left the average voter
indifferent increases to 0.5%-0.5%.

6 Planner’s Preferences

6.1 Planner’s Problem

We now formalize the problem of a hypothetical planner designing the CHSR. We use it to
estimate the planner’s preferences over residents of different locations (which we model as depending
on the residents’ demographic composition) and votes, as well as to implement optimal CHSR
designs under counterfactual preferences.

We represent the observed CHSR as the optimal investment decision of a central planner. We
focus on the problem of where to locate the 24 stations along the the actual rail line. Formally,
the planner chooses geographic coordinates d = {d1, ..., d24} from the set D of coordinates that
define the actual CHSR. For simplicity, we assume that the cost of building a station is the same
everywhere. Each design d maps to a distribution of travel times and travel costs. Hence, each
d maps to a real income ln W (i, Y, d) if the CHSR is approved, to a real income impact Ŵ (i; d)
defined in (9), to an expected welfare impact ∆U (i; d) defined in (2), and to a share of favorable
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votes v (i; d) defined in (7).37

Formally, the planner chooses the CHSR design d that solves the following optimization:

W = max
d∈D

E
[

J∑
i=1

Ω (i) N (i) ∆U (i; d) + λ
J∑

i=1
N (i) v (i; d) | IP

]
. (21)

The first term is a weighted sum of expected utilities across locations using location-specific (per-
capita) Pareto weights Ω (i) that capture the planner’s preferences for that location. The second
term is the total number of California residents that approve the project. The variable IP denotes
the planner’s information set. When λ > 0, the planner attaches a positive weight to votes in
favor of the CHSR. We thus allow the planner to take into account political considerations in the
design of transportation infrastructure. Conditional on the project being approved, the design of
the CHSR internalizes political preferences â (i) only through votes. Then, (6.1) is equivalent to:38

W = max
d∈D

E
[

J∑
i=1

Ω (i) N (i) ln Ŵ (i; d) + λ
J∑

i=1
N (i) v (i; d) | IP

]
. (22)

We now consider optimality conditions. Similar to voters, we assume the planner has rational
expectations. For any alternative design dn different from the actual design d0, the objective
function would have changed (to a first order approximation) according to:

∆W (dn) ≈
J∑

i=1

Ω (i) + λ θV v (i) (1 − v (i))︸ ︷︷ ︸
≡V (i)

N (i) ∆ ln Ŵ (i, dn) − ϵ (dn) ≤ 0 (23)

where

∆ ln Ŵ (i, dn) ≡ ln
(

Ŵ (i; dn)
Ŵ (i; d0)

)
= ln

(
W (i, Y, dn)
W (i, Y, d0)

)
(24)

is the log difference in real income between the counterfactual and the actual CHSR designs given a
realization of economic shocks, and ϵ accounts for the planner’s expectational error when evaluating
the impact of the high-speed rail design. Because we assume that the CHSR corresponds to the
optimal choice of the planner, any deviation such as (23) must yield weakly negative returns.

Condition (23) demonstrates the trade-off between votes and real income in the planner’s design.
Naturally, the planner has incentives to invest more in locations with higher Ω (i) or higher returns
in terms of votes. The latter is captured by the elasticity of votes to real income,

V (i) ≡ ∂v (i)
∂ ln Ŵ (i)

= θV v (i) (1 − v (i)) . (25)

The voting elasticity is larger closer to median voters (v (i) = 0.5), so that locations with very small
or large political component â (i) are therefore less sensitive to real income. Next, we leverage that
unchosen CHSR designs that increase real-income of a location i at the expense of some other
location i′ reveal an upper bound for Ω (i) relative to Ω (i′). Similarly, unchosen CHSR designs

37An assumption implicit in this formulation is that the political preferences of voters over whether or not to build
the CHSR, ln â (i), do not depend on the design d.

38This step combines (2) with (6.1) and uses the law of iterated expectations assuming that voter’s information
set at the time of voting is at least as rich as the planner’s at the time of choosing the location of stations.
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that increase (reduce) aggregate (Ω-weighted) real-income while reducing (increasing) aggregate
votes reveal a lower (upper) bound for λ (i) relative to the average of the Ω’s.

6.2 Estimation

We use a moment inequality estimator based on (23) to compute confidence sets for the param-
eters entering the objective function of the planner’s problem. We discuss key features and provide
details of implementation in Appendix E.

6.2.1 Construction of Moments

First, to limit the dimensionality of the parameter vector, we write the planner’s weight for
each census tract i, Ω(i), as a function of observed covariates Zk (i) and a constant:

Ω (i) = β0 +
K∑

k=1
βkZk (i) . (26)

Second, to build the inequalities described in (23), we construct a large number (i.e., several hun-
dreds) of perturbations to the proposed CHSR. In each, a single station is moved to another
“potential location”. The set of potential locations is chosen to identify upper and lower bounds on
the parameters. Specifically, we use peaks and troughs of the covariates Zk (i) and of the voting
elasticity V (i) along the CHSR line.39 We index each one-station deviation by n and let dn be the
associated design. In this way, we obtain N perturbations ∆W (dn) as defined in (23).

Figure 4 shows a perturbation where the Los Angeles station shifts towards Anaheim. The
map on the left shows the real-income changes ∆ ln Ŵ (i) defined in (24). The map on the right
shows the voting elasticity V (i). Downtown LA is a low-voting gradient area because it strongly
supports the CHSR (a high value of â (i)); so increasing real income barely changes votes. This
perturbation redistributes real-income from densely-populated, low-voting gradient areas of L.A to
higher-voting gradient places in Orange County (closer to median voters). As this perturbation
implies a reduction in the utilitarian component of the planner’s objective and an increase in
aggregate votes but was not chosen, it helps identify an upper bound on the preference for votes λ

relative to an average of the Ω (i).
For the estimation, we build E moment inequalities (indexed by e) from these N perturbations,

each defined as the sum of the inequalities ∆W (dn) in (23) corresponding to (mutually exclusive)
subsets Ne ⊂ N of all perturbations:

N∑
n=1

∆W (dn) 1 {n ∈ Ne} ≤ 0 for e = 1, .., E. (27)

As long as the subset Ne is a function of variables that belong to the information set of the planner,
the assumption of rational expectations implies that the expectational errors ϵ (dn) are averaged
out, ∑n ϵ (dn) 1 {n ∈ Ne} → 0 as ∑n 1 {n ∈ Ne} → ∞.40 Then, using (26), we can rewrite the

39Figure (A.2) in the Appendix shows such peaks and throughs for Zk (i) equal to population density.
40This result crucially depends on two assumptions. First, for any perturbation n, the unobserved term ϵ (dn)
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Figure 4: Example of Perturbation Identifying λ

moment inequality e in (27), as
N∑

n=1

J∑
i=1

{[
β0 +

K∑
k=1

βkZk (i) + λV (i)
]

N (i) ∆ ln Ŵ (i, dn)
}

1 {n ∈ Ne} ≤ 0 for e = 1, .., E. (28)

The moment inequalities in (28) form the basis of ours procedure to estimate the βk’s and λ. We
compute confidence sets for these parameters following Andrews and Soares (2010). We construct
the subsets of deviations Ne for each moment by grouping perturbations that help identify upper and
lower bounds for our various parameters. This procedure identifies an admissible set of parameter
values such that, for a given confidence level, we are unable to reject the hypothesis that the data
was generated by a parameter vector within the set.

6.2.2 Pareto Frontier Between Votes and Welfare

To understand how we form our moment inequalities and how they identify our parameters,
we discuss here a restricted case in which the planner’s objective function depends exclusively on
two unknown parameters: β0, which captures a utilitarian component of preferences (and here we
normalize to 1) and λ, which determines the role of votes in the planner’s preferences. Figure 5 plots
our the perturbations on a two-dimensional graph where the x-axis represents the (demeaned) total
change in votes and the y-axis represents the change in the utilitarian component of the planner’s
welfare (∑J

i=1 N (i) ln Ŵ (i; dn)). We form four moments by grouping the perturbations that fall
in the four quadrants displayed in the figure. The lower-left quadrant groups perturbations that
yield lower utilitarian welfare and lower votes than the actual CHSR proposal (corresponding to
the (0, 0) point). These perturbations trivially satisfy our inequality conditions and do not provide

is unknown to the planner at the time at which the optimal CHSR design was chosen; this is guaranteed by the
assumption that ϵ (dn) exclusively incorporates expectational errors of the planner. Second, across the perturbations
n included in the same subset Ne, the correlation across the different unobserved terms ϵ (dn) is sufficiently low such
that the Law of Large Numbers applies.
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Figure 5: Utilitarian Welfare vs. Votes

any information to identify our parameters. Similarly, perturbations in the upper-right quadrant
imply greater welfare and higher votes. These perturbations do not suggest a trade-off, violate our
inequality conditions, and can only be rationalized by the expectational errors.

In contrast, the perturbations in the upper-left and lower-right quadrants are informative be-
cause they suggest a trade-off between welfare and votes. The orange dots represent the average
across all perturbation within each quadrant, on which our moments are built. An admissible
parameter λ is such that the moment condition in (28) is satisfied. The admissible values for λ

(relative to β0) are such that y (e) + λx (e) ≤ 0, where (x (e) , y (e)) are the coordinates of the two
moments e = 1, 2 (orange dots). Visually, this corresponds to drawing a line through the origin
with slope −λ such that the two orange dots fall underneath. The set of admissible parameters λ

is represented by the purple area on the graph.
As the figure illustrates, the perturbations in the upper-left quadrant identify a strictly positive

lower bound on λ, while those in the lower-right quadrant identify an upper bound. Our estimation
procedure extends this logic to multiple covariates. Appendix E gives additional details about how
the perturbations and moments are constructed in the general case in which the unknown parameter
vector includes βk for k = 1, . . . , K, and about how we implementation the procedure in Andrews
and Soares (2010).

6.2.3 Parameter Estimates

Table 6 shows estimates of the β’s and λ across specifications that allow for covariates that
include: population density, residents’ average wage, and shares of college educated and non-white
residents. In the estimation, the support of the parameters is not restricted and each parameter βk
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Table 6: Planner’s Preferences Estimates

Observable Pareto weight parameters β and λ

(1) (2) (3) (4) (5) (6)

Density [0.00, 1.13] [0.00, 0.16]

Wages [-0.15, 0.26] [-0.15, 0.26]

Share college [-0.13, 0.54] [0.00, 0.59]

Share non-white [-0.33, 0.54] [-0.26, 0.13]

Votes [0.46, 2.29] [0.58, 2.89] [0.58, 1.53] [0.62, 1.68] [0.37, 2.48] [0.61, 1.68]

Constant [1.00, 1.00] [0.98, 1.00] [0.99, 1.00] [0.99, 1.00] [0.98, 1.01] [0.99, 1.01]

or λ can take any positive or negative value.
To simplify the interpretation, we standardize every covariate Zk(i) and impose that the

population-weighted mean of the Pareto weights Ω (i) equals 1. Each parameter βk can thus be
interpreted as capturing the impact of a one-standard deviation increase on the covariate relative
to the average Pareto weight.41 For each specification and parameter, we report the minimum and
the maximum of the admissible values corresponding to a 95% confidence set. Column (1) of Table
6 corresponds to the case discussed in Figure 5. Columns (2) to (5) allow for one extra unknown
parameter βk at a time, while column (6) reports a full estimation with all the βk’s.

The estimation reveals a strictly positive preference for votes across the various specifications.
The other covariates do not appear significantly different from 0, as 0 belongs to the 95% confidence
set for each parameter. However, our estimates from column (6) suggest a positive preference for
census tracts with higher population density and a larger share of college-educated residents.42 In
what follows, we use column (6) as our baseline specification.

Figure A.4 in the Appendix shows the distribution of the total weights Ω (i) + λV (i) affecting
each tract i implied by the centroid of our confidence set. Overall, these estimates imply large
variance in these Pareto weights, so that the planner is far from the utilitarian benchmark.

6.3 Counterfactual Optimal Designs

To demonstrate the importance of political and distributional considerations for the design of
transportation policy, we conduct counterfactual exercises that show the optimal station placement
for a planner with different preferences. More specifically, we compare the actual proposed CHSR
design to that preferred by an apolitical planner whose objective function does not depend on votes
(i.e., λ = 0), and to that preferred by a utilitarian planner that does not attach different Pareto
weights to different tracts on the basis of their demographic characteristics (i.e., βk = 0 for some

41We also standardize the variable V (i). As a result, the constant we estimate is
(
β0 + λV

)
and captures the

overall utilitarian motive of the planner, including what is inherited from the voting block.
42Figure A.3 in Appendix E displays the topology of the confidence set from column (6) by showing pairwise

projections for each combination of the parameters βk and λ.
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or all of the k).43

Since it is infeasible to compute counterfactual optimal designs for a large set of parameter
values, we use the centroid of our 95% the confidence set. This centroid yields values of the βk

associated to average wages and to the share of non-white residents that are very close to zero;
hence, for simplicity in the exposition, we set these parameter to zero and use the centroid of the
confidence set conditional on these two zero parameters: β = [0.00, 0.00, 0.43, 0.00]’ for [density,
wages, share college, share non-white] and λ = 1.25.44

Apolitical Planner To explore what the optimal CHSR design would have been if the planner
had no political concerns, we define the preferences of an apolitical planner to be such that the
Pareto weights Ω (i) are as determined by the centroid of our confidence set but λ = 0, thereby
eliminating the planner’s incentives to assign higher real income to locations in higher voting
elasticity areas.

Figure 6 shows in red the optimal location of stations corresponding to the apolitical planner,
and in black the actual CHSR plan, along with the spatial distribution of real income changes. The
optimal counterfactual design is quite different from the proposed plan. Broadly speaking, political
motives shift stations away from high-density areas of L.A. and San Francisco. These locations
receive the majority of commuting flows from nearby areas, yet are already strongly politically
biased in favor of the CHSR (have a low voting elasticity due to a strong political preference for
the high-speed rail). Hence, in the absence of political motives, several originally proposed stations
in suburban areas of San Francisco (such as San Jose), Los Angeles (Palmdale, Sylmar, Anaheim)
and San Diego (Escondido) reallocate towards their corresponding metropolitan areas.

Table 7 summarizes the impact of the counterfactual CHSR designs. Relative to the original
design, aggregate real income increases and the aggregate vote declines. Locations with high
density or low voting elasticity experience the largest gains.45 Appendix Figure A.6 zooms on
the Los Angeles region, displaying the real income changes (left panel) and the voting elasticity
(right panel). The relocation of stations towards more central redistributes welfare towards the
city center and away from the suburbs, in line with a general redistribution pattern towards high
density areas that have low voting elasticity.

43The optimal station placement problem is highly non-convex due to substitutabilities and complementarities
across any station locations, as well to the sigmoidal function that defines the voting probabilities. We use a three-
step optimization technique that combines the perturbations from the estimation stage, simulated annealing, and a
continuous optimizer. Our procedure does not guarantee a global optimum, but we verify that it yields the highest
possible outcome when each station is moved individually within a range of 10 km from the proposed optimum
along the CHSR outline. Appendix Figure also A.5 shows aggregate welfare around each station in the optimal
apolitical design, suggesting that our procedure selects a reasonable candidate for an optimum. Appendix E.2
provides additional details.

44Although the centroid of βdensity is close to zero, the Ω (i) are per-capita Pareto weights, still implying a strong
utilitarian motive.

45Additional details are provided in Table A.9 in Appendix E. Moving each station to its optimal location while
keeping all other stations at the proposed plan usually raises the planner’s objective function. This is not always the
case, however, due to complementarities in simultaneously reallocating several stations to the optimum.
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Figure 6: Apolitical Planner, Optimal Station Placement

Notes: The maps shows the change in welfare ∆ log Ŵ (i) in each location according to color scale on the right.

Utilitarian Planner We define the utilitarian planner as having no preferences for votes (λ = 0)
and constant Pareto weights (Ω (i) = 1). Unsurprisingly since the utilitarian and the apolitical
planners only differ in the positive weight that the latter puts on the share of college educated
residents, the utilitarian design does not differ significantly from the apolitical one. In both cases,
the counterfactual optimal design moves several stations closer to the core of the large metropolitan
areas, where density is higher and the voting elasticity lower. Some stations do differ, however, due
to a redistribution from high to low college share areas, as is illustrated in the case of Riverside in
Appendix Figure A.7. The optimal utilitarian design reallocates the Riverside towards L.A. The left
panel displays the distribution of real income changes implied by this relocation, and the right panel
shows the standardized distribution of the college share. The main beneficiaries from eliminating
redistribution from the planner’s objective are areas with a low share of college-educated residents,
while the high-college educated areas in the immediate surroundings of UC Riverside are negatively
affected.
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Table 7: Apolitical planner, Statistics

Utilitarian Component Change 0.18%

[min max] [-1.70%, 4.25%]

Aggregate Vote Change -0.18%

[min max] [-14.15%, 3.79%]

∆Real Income by Quartile 1st 2nd 3rd 4th

Density 0.01% 0.06% 0.16% 0.46%

Wages 0.27% 0.14% 0.11% 0.16%

Share college 0.19% 0.17% 0.13% 0.20%

Share non-white 0.06% 0.09% 0.19% 0.34%

Voting elasticity 0.39% 0.16% 0.10% 0.07%

Notes: Aggregate real income change is computed using the counterfactual Pareto weights
under the normalization that the population-weighted mean E [Ω (i)] = 1 and provided
in basis points. The rows [min max] show the support across locations. The bottom five
rows show the average real income change for each quartile of each covariate.

7 Conclusion

In this paper we study the determinants of transportation infrastructure projects, and specifi-
cally how important are considerations beyond private real-income gains in shaping these projects.
We use the California High-Speed Rail as the basis of our study, leveraging the fact that we observe
the spatial distribution of votes in favor or against this project across California’s census tracts.
We combine this voting data with a range of quantitative spatial models used to compute expected
real income impacts of the CHSR at the time of the 2008 vote.

The empirical analysis reveals that voters did respond to the expected real-income impacts of
the CHSR. However, we find that political considerations, proxied by party affiliation and by voters’
opinions in other propositions, shaped the vote and the spatial distribution of welfare changes to a
larger extent than real-income considerations. In fact, our analysis suggests that the CHSR project
would still have won the vote even for a range of costs so large that the project would have led to
net aggregate income losses.

We then turn to estimating the drivers of the CHSR design. We posit that the observed CHSR
design represents the optimal choice of a hypothetical planner, whose preferences we estimate
by revealed choice using the moment inequalities defined by unchosen designs. We find strong
planner’s preferences for winning votes, and some preferences for densely populated and college-
educated areas. A counterfactual optimal design by an apolitical planner increases the proximity of
stations towards main metropolitan areas, which tend to strongly support the project in any case.
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Figure A.1: Potential CHSR Routes (1996)

Note: this figure shows our digitization of the three planned routes reprinted in page 113 of part 1
of the 2005 CHSR Environmental Impact Report (US DOT, 2005), available at https://hsr.ca.gov/wp-
content/uploads/docs/programs/eir-eis/State_Wide_EIR_EIS_Volume_1_Part_1_of_3.pdf. Each route includes
multiple branches that could be used within a route. The route in black is the actual planned CHSR as of the 2008
vote.

https://hsr.ca.gov/wp-content/uploads/docs/programs/eir-eis/State_Wide_EIR_EIS_Volume_1_Part_1_of_3.pdf
https://hsr.ca.gov/wp-content/uploads/docs/programs/eir-eis/State_Wide_EIR_EIS_Volume_1_Part_1_of_3.pdf


Table A.1: Travelers by Mode and Potential Gains across Routes

Public Transit Car Air

Travelers by Mode

Commute 5.3% 90.3% 0%

Leisure 1.8% 96.4% 1.8%

Business 2.2% 88.4% 9.4%

Time-Saving Routes
Share of routes 65% 61% 30%

Gain (min) 327 127 33

Cost-Saving Routes

(’08 CHSR Price)

Share of routes 62% 39% 40%

Gain ($) 43 6 96

Cost-Saving Routes

(2X Ticket Price)

Share of routes 44% 0% 39%

Gain ($) 33 - 45

Source: ACS and CAHTS for fraction of commuters and leisure or business travelers, respectively. The fraction
of commuters adds up to less than 100% because the complement includes walking or biking. Those fractions are
0% for long-distance (>50 miles) leisure or business trips. To compute CHSR trips and compare them with car or
airplane travel, we compute the fastest route that combines road and CHSR. When comparing to car, we consider
all origin-destination pairs. When comparing to air travel, we only consider routes were traveling by plane (including
driving to airports) is faster than driving all the way. When comparing to public transit (defined as bus or rail),
we assume that CHSR users complement their trip with public transit and that public-transit travelers use the rail
station closer to origin and destination tracts. The average time and cost gains are computed among routes that are
faster or cheaper, respectively. See Appendix D for data construction on travel and cost gains.



Table A.2: Commuting Equation Estimates, Second Step

(1) (2) (3) (4) (5) (6) (7) (8)

Public Transport
Constant 1.73a 3.70a 2.39a 1.85a 0.46a 0.98 -5.32a -8.22a

(0.05) (0.15) (0.31) (0.12) (0.10) (1.55) (0.34) (1.05)
Sh. Car Owners -2.31a -0.47b

(0.18) (0.21)
Sh. Under 30 -1.41b -2.91a

(0.64) (0.32)
Sh. College-educated -0.26 -1.46a

(0.25) (0.23)
Sh. Nonwhite 2.96a 1.46a

(0.24) (0.18)
Log Median Inc. 0.07 0.59a

(0.14) (0.09)
Log Pop. Density 0.95a 0.70a

(0.05) (0.03)
Private Vehicle

Constant 2.64a -0.71a 3.64a 3.14a 2.55a 0.41 1.24a -7.98a

(0.04) (0.13) (0.27) (0.09) (0.07) (1.17) (0.23) (0.84)
Sh. Car Owners 4.00a 4.76a

(0.15) (0.19)
Sh. Under 30 -2.20a -1.59a

(0.56) (0.25)
Sh. College-educated -1.17a -1.07a

(0.19) (0.19)
Sh. Nonwhite 0.21 0.20

(0.20) (0.14)
Log Median Inc. 0.20c 0.43a

(0.11) (0.08)
Log Pop. Density 0.19a 0.41a

(0.03) (0.02)

Num. Obs. 23593 23593 23593 23593 23593 23593 23593 23593
Note: a denotes 1% significance; b denotes 5% significance; and c denotes 10% significance. Robust
standard errors are displayed in parenthesis. All specifications are conditional on the estimates
θ̂C = 2.97 and ρ̂C = 0.75.



Table A.3: Gain by Type of Travel

Baseline Full Pessimistic +Car

Commute 0.29% 0.23% -0.14% 0.44%

Leisure 0.03% 0.03% -0.04% 0.15%

Business - 0.38% - -

Total 0.32% 0.65% -0.18% 0.60%

Note: in cases “Baseline,” “Pessimistic,” and “+Car,” this table splits the aggregate welfare change in (9) into the
commuting component ŴC (i) in (11) and the leisure component P̂L (i) in (12). By construction of (10), these effects
are log-additive. The remaining components of (10), are constant in these cases. In the “Full” case, the decomposition
is not exact as elements are not log-additive. The gains coming from commuters are computed as coming from their
time and cost savings from HSR, holding income constant, plus spillovers in amenities for residents. The gains coming
from business travelers are computed as the welfare gains coming from endogenous wage changes, due both to time
and cost saving in business traveling from the CHSR and productivity spillovers.

Table A.4: Heterogenous Gains from CHSR

Baseline Full Pessimistic +Car

(1) (2) (3) (4)

dist. to station -0.00128∗∗∗ -0.00120∗∗∗ -0.000984∗∗∗ -0.00527∗∗∗

(0.0000514) (0.0000717) (0.0000438) (0.000121)

% public transit 0.0790∗∗∗ 0.0740∗∗∗ 0.0678∗∗∗ 0.0450∗∗∗

(0.00123) (0.00172) (0.00105) (0.00289)

% car 0.00539∗∗∗ -0.000240 0.00390∗∗∗ -0.0121∗∗∗

(0.000743) (0.00104) (0.000634) (0.00175)

commute time 0.0000297∗∗∗ 0.0000768∗∗∗ 0.0000181∗∗∗ 0.000315∗∗∗

(0.00000374) (0.00000521) (0.00000318) (0.00000877)

LA fixed effect 0.00296∗∗∗ 0.00310∗∗∗ 0.00257∗∗∗ -0.000135
(0.000105) (0.000146) (0.0000892) (0.000246)

SF fixed effect 0.0105∗∗∗ 0.0141∗∗∗ 0.0100∗∗∗ 0.00679∗∗∗

(0.000312) (0.000435) (0.000266) (0.000731)

R2 0.734 0.589 0.745 0.359
N 7866 7866 7866 7866
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: the table shows the result from running, for each model variant, an OLS regression of the tract-level real-income
change, Ŵ (i), on observable tract characteristics. “dist. to station” is the tract centroid’s distance to the nearest
CHSR station, “% public transit” and % car” are the fraction of residents who initially commutes via public transit
or via car, and “commute time” is the average commuting time across all residents. The LA and SF fixed effects
correspond to dummies for whether the census tract is within LA county or SF county, respectively.



Table A.5: Estimates of Voting Equation, Alternative Weighting and Sample Selection Criteria

Baseline Weighting - Num. Votes Weighting - Participation Selection - ≥ 5km line

Inst. Var.:
Random Random Random Random Random Random Random Random
Station Path Station Path Station Path Station Path

(1) (2) (3) (4) (5) (6) (7) (8)

log(Ŵ19) 19.45a 22.68a 27.09a 29.93a 22.31a 25.51a 20.73a 23.73a

(1.68) (1.80) (2.22) (2.38) (3.75) (3.31) (2.29) (2.54)
Log-odds Dem. Sh. 0.38a 0.39a 0.41a 0.41a 0.43a 0.43a 0.41a 0.41a

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Environ.: Prop. 10 2.43a 2.41a 2.36a 2.35a 2.20a 2.19a 2.46a 2.45a

(0.05) (0.05) (0.06) (0.06) (0.16) (0.17) (0.06) (0.06)
Transp.: Prop. 1b 0.81a 0.80a 0.86a 0.86a 0.90a 0.90a 0.84a 0.83a

(0.05) (0.05) (0.05) (0.05) (0.09) (0.10) (0.05) (0.06)
Sh. non-White -0.18a -0.19a -0.26a -0.27a -0.23a -0.24a -0.29a -0.30a

(0.01) (0.01) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
Sh. College 0.73a 0.72a 0.72a 0.71a 0.69a 0.69a 0.71a 0.70a

(0.01) (0.01) (0.02) (0.02) (0.03) (0.03) (0.02) (0.02)
Sh. Under 30 0.18a 0.18a 0.21a 0.20a 0.21 0.21 0.26a 0.26a

(0.03) (0.03) (0.03) (0.03) (0.16) (0.16) (0.03) (0.03)
Log. Dist. Station -0.01 -0.00 0.01c 0.01b -0.01 -0.00 -0.03a -0.02b

(0.00) (0.00) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Log. Dist. Rail 0.01a 0.01a 0.01b 0.00c 0.01 0.01 0.03a 0.03a

(0.00) (0.00) (0.00) (0.00) (0.01) (0.01) (0.01) (0.01)

F-stat 574 286 743 543 241 351 294 261
Num. Obs. 7861 7861 7861 7861 7861 7861 5010 5010
Note: a denotes 1% significance level. Robust standard errors in parenthesis. All specifications control for county fixed
effects. Columns (1) and (2) present baseline estimates. Columns (3) and (4) present results where each census tract is
weighted by the number of votes in the HSR referendum. Columns (5) and (6) present results where each census tract
is weighted by the participation rate in the HSR referendum. Columns (7) and (8) present results where we exclude
census tracts that are less than 5 km away from the railway line.



Table A.6: Estimates of Voting Equation, Alternative Models, All Covariates

Model: Baseline Full Pessimistic + Car

Inst. Var.:
Random Random Random Random Random Random Random Random
Station Path Station Path Station Path Station Path

(1) (2) (3) (4) (5) (6) (7) (8)

log(Ŵ19) 19.45a 22.68a 17.51a 18.92a 41.62a 47.20a 19.17a 23.15a

(1.68) (1.80) (1.48) (1.54) (3.55) (3.72) (1.46) (2.00)
Log-odds Dem. Sh. 0.38a 0.39a 0.39a 0.39a 0.38a 0.39a 0.40a 0.41a

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Environ.: Prop. 10 2.43a 2.41a 2.43a 2.42a 2.42a 2.41a 2.46a 2.45a

(0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05)
Transp.: Prop. 1b 0.81a 0.80a 0.84a 0.84a 0.81a 0.81a 0.90a 0.91a

(0.05) (0.05) (0.05) (0.05) (0.04) (0.05) (0.04) (0.05)
Sh. non-White -0.18a -0.19a -0.17a -0.18a -0.18a -0.19a -0.18a -0.19a

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Sh. College 0.73a 0.72a 0.73a 0.73a 0.72a 0.72a 0.75a 0.74a

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Sh. Under 30 0.18a 0.18a 0.17a 0.17a 0.18a 0.18a 0.16a 0.16a

(0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
Log. Dist. Station -0.01 -0.00 -0.01c -0.01 -0.01 -0.00 0.01a 0.03a

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.01)
Log. Dist. Rail 0.01a 0.01a 0.02a 0.01a 0.01a 0.01a 0.01a 0.01a

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

F-stat 574 286 610 311 599 295 394 206
Num. Obs. 7861 7861 7861 7861 7861 7861 7861 7861
Note: a denotes 1% significance level. Robust standard errors in parenthesis. All specifications control for
county fixed effects. Columns (1) and (2) present baseline estimates. Columns (3) and (4) present results for the
model that incorporates general equilibrium effects. Columns (5) and (6) present results for the “pessimistic”
model, which assumes a 0.5 probability that the CHSR is completed in 24 years. Columns (7) and (8) present
results for a version of the model that allows the CHSR to be a perfect substitute to traveling by car.



Table A.7: Estimates of Voting Equation, Alternative Models, Political Covariates Only

Model: Baseline Full Pessimistic + Car

Inst. Var.:
Random Random Random Random Random Random Random Random
Station Path Station Path Station Path Station Path

(1) (2) (3) (4) (5) (6) (7) (8)

log(Ŵ19) 17.89a 23.57a 15.94a 20.62a 39.09a 49.63a 15.56a 20.92a

(1.65) (1.98) (1.49) (1.77) (3.55) (4.10) (1.33) (2.02)
Log-odds Dem. Sh. 0.30a 0.30a 0.30a 0.30a 0.30a 0.30a 0.31a 0.32a

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Environ.: Prop. 10 1.16a 1.11a 1.16a 1.11a 1.16a 1.12a 1.16a 1.11a

(0.06) (0.06) (0.06) (0.06) (0.06) (0.06) (0.06) (0.06)
Transp.: Prop. 1b 1.54a 1.52a 1.57a 1.56a 1.54a 1.52a 1.62a 1.63a

(0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

F-stat 713 317 732 333 738 328 454 231
Num. Obs. 7861 7861 7861 7861 7861 7861 7861 7861
Note: a denotes 1% significance level. Robust standard errors in parenthesis. All specifications control for
county fixed effects. Columns (1) and (2) present baseline estimates. Columns (3) and (4) present results
for the model that incorporates general equilibrium effects. Columns (5) and (6) present results for the
“pessimistic” model, which assumes a 0.5 probability that the CHSR is completed in 24 years. Columns (7)
and (8) present results for a version of the model that allows the CHSR to be a perfect substitute to traveling
by car.

Table A.8: Political vs. Real Income Determinants of the Vote, Political Variables only

Variance Decomposition Favorable Vote if Cost of Swaying
of ∆U(i) Voters Only Consider... 1% of Vote

θV σ∆ ln a σ∆ ln Ŵ Ŵ â 50p 90p

Baseline 17.9 2.3% 0.4% 51.3% 51.4% 0.4% 0.6%
Full 15.9 2.6% 0.4% 52.5% 50.3% 0.5% 0.7%
Pessimistic 39.1 1.0% 0.2% 48.0% 54.5% 0.2% 0.3%
+ Car 15.6 2.7% 0.6% 52.2% 50.5% 0.5% 0.7%

Note: The θV reported corresponds to IV estimate using the random routes instrument from Table Table A.7.



B Full Description of the Economic Model

We model an economy with a set J of tracts, each tract i with a fixed resident population
NR (i) and connected to other tracts by various transport modes. Residents consume a traded
good, floor space, and leisure trips. They choose where to commute to work, where to take leisure
trips, how many such trips to make, and what transport mode to use for each travel purpose
and origin-destination pair. The discrete choices of destination and travel mode are governed by
idiosyncratic shocks to residents’ preferences. Across tracts, residents are heterogeneous in average
preferences over transport modes and leisure destination, efficiency units of labor, and ownership
of the local floor space.

Traded good firms produce using labor, floor space, and business trips with constant returns
to scale. They choose where to send workers to business trips, how many such trips to make,
what transport mode to use, and through what route in the transport network. The discrete
choices of business travel destination and travel mode are governed by idiosyncratic shocks to
firms’ productivity. Across tracts, firms are heterogeneous in terms of average preferences over
transport modes and business destination, and productivity. In addition, tracts are heterogeneous
in terms of the level of endogenous amenities enjoyed by their residents and the stock of floor space.

All the transport modes operate constant-returns technologies using the tradeable good as input,
with ticket prices covering the price of each trip. The CHSR network is constructed with a fixed
investment financed from income taxes. The rollout of the CHSR endows the economy with an
option of making faster or cheaper trips along some routes within specific modes compared to the
status quo.

In the presentation of the model, variables that are indexed by s may change either endogenously
or exogenously based on whether the CHSR proposition passes (s = Y ) or not (s = N).

B.1 Preferences
When the CHSR status is s, the utility Uω of an individual ω living in tract i who travels to jC

for commuting and to jL for leisure, by transport modes mC and mL respectively, is:

Uω (i, jC , mC , jL, mL, s) = max
C,HC ,TL

B (i, s)
C1−µL(i)−µH (i)H

µH (i)
C

dC (i, jC , mC , s)

(
qL (i, jL) B (jL, s)
dL (i, jL, mL, s) TL

)µL(i)

εC
ω (jC , mC) εL

ω (jL, mL) .

(A.1)
subject to the budget constraint:

C + r (i, s) HC + pL (i, jL, mL, s) TL = I (i, jC , mC , s) (A.2)

Expression A.1 indicates that consumers derive utility from the amenities of their place of
residence B (i, s) and from the consumption of tradeable commodities C, housing HC , and leisure
trips TL, with Cobb-Douglas shares that can be location-specific. This heterogeneity captures in a
reduced-form way the fact that workers in different tracts in California may have different spending
patterns on leisure trips and housing, for example due to different demographic characteristics. The
amenity term B (i, s) may respond endogenously to the local density of economic activity as detailed



below. These workers face disutility dC (i, jC , mC , s) from daily commuting travel . The utility that
they derive from leisure trips depends negatively on time travelled dL (i, jL, mL, s) and positively
on the quality of the destination visited, equal to a composite of an exogenous origin-destination
component qL (i, jL) (capturing, for example, that residents of some locations may on average be
more likely to have relatives in some other specific location) and the destination-specific amenity
B (jL, s). The last two terms of (A.1), εC

ω (jC , mC) and εL
ω (jL, mL), are idiosyncratic preference

shocks for commuting and leisure travel to each destination by each travel mode.
The utility cost of travel is a power function of travel time τk (i, j, m, s) and depends on travel

mode for both commuting (k = C) and leisure (k = L):

dk (i, j, m, s) = Dk (i, m) τk (i, j, m, s)ρk for k = C, L, (A.3)

where ρk is the elasticity of travel disutility to travel time, and where Dk (i, m) is a location-specific
preference for traveling through transport mode m. This term captures that workers in different
tracts may have different tastes for different modes of travel, such as a preference for using cars
over public transit.

We turn now to describing the budget constraint A.2. In the expenditure side on the left, the
price per unit of tradeable commodities (C) is normalized to 1 and the cost per unit of floor space
for housing (H) is r (i, s). The monetary cost per round-trip leisure travel from i to j through means
m in state s is pL (i, j, m, s). The right-hand side of the budget constraint (A.2) is the disposable
income, defined as gross income y (i, jC , s) net of taxes t (s) and annual commuting costs:

I (i, jC , mC , s) ≡ (1 − t (s)) y (i, jC , s) − pC (i, jC , mC , s) TC . (A.4)

The tax rate t (s) equals t if the CHSR is approved (s = Y ) and 0 otherwise. Gross income comes
from two sources, labor and home ownership:

y (i, jC , s) ≡ e (i) w (jC , s) + η (i) r (i, s) . (A.5)

The returns to labor equal the efficiency units per resident of tract i, e (i), times the wage per effi-
ciency unit at destination, w (jC , s). So, within an origin tract, commuters to different destinations
earn different wages based on w (jC , s); and, across origin tracts, commuters to the same destination
earn different wages based on e (i) . The last term in (A.5) is the return to home-ownership, where
η (i) is the locally owned floor space per resident. An increase in land rents r (i, s) reduces the real
income of tract-i residents through the cost of housing, but it increases it through the returns to
land as a function of η (i).

Finally, the round-trip monetary commuting cost of traveling from i to j through means m in
state s is pC (i, j, m, s). The annual commuting cost multiplies this per-trip cost by the number of
working days through the year, TC . Unlike for leisure, where the number of trips TL is endogenously
chosen, the number of commuting trips TC is fixed by the number of working days. The resulting
demand system is quasi-homothetic, with homothetic demand over C, H, and TL after spending
pC (i, jC , mC , s) TC annually on commuting.



B.2 Indirect Utility and Welfare
Maximizing out the solutions for consumption C, housing H and number of leisure trips TL,

the solution to (A.1) gives indirect utility conditional on the origin, destinations, travel modes, and
idiosyncratic preference shocks for destination:

Vω (i, jC , mC , jL, mL, s) = B (i, s)
r (i, s)µH (i)

(
I (i, jC , mC , s)

dC (i, jC , mC , s)εC
ω (jC , mC)

)(
qL (i, jL) B (jL, s)

pL (i, jL, mL, s) dL (i, jL, mL, s)

)µL(i)

εL
ω (jL, mL)

(A.6)

Each resident ω makes discrete choices of destination and transport mode for both commut-
ing and leisure to maximizes indirect utility. These choices are represented by the quadruplet
{jC , jL, mC , mL}. Destinations are chosen from the set of tracts J while the set of transport modes
for travel purpose k = L, C is Mk. We assume the idiosyncratic preference shocks for commuting
and leisure travel εC

ω (jC , mC) and εL
ω (jL, mL) to be IID Type-I extreme value distributed:

Pr
(
εk

ω (jk, mk) < x
)

= e−e−θkx for k = C, L, (A.7)

where θk maps to the (inverse) of the dispersion of shocks across travel modes and destinations for
travel purpose k = C, L.

The average yearly real income of tract-i residents is defined as the expected value of indirect
utility across the realizations of the εC

ω and εL
ω preference shocks, that is:

V (i, s) = Eω

[
max

(jC ,jL,mC ,mL)∈J 2×MC×ML

Vω (i, jC , mC , jL, mL, s)
]

. (A.8)

Using standard properties of the extreme-value distributions for the shocks εC
ω and εL

ω , we can
write this expression as:1

V (i, s) = B (i, s)
r (i, s)µH(i)

WC (i, s)
PL (i, s)µL(i) (A.9)

where W C (i, s) captures average income net of commuting costs of residents of i,

WC (i, s) =

∑
j∈J

∑
m∈MC

(
I (i, j, m, s)

dC (i, j, m, s)

)θC

 1
θC

, (A.10)

and where PL (i, s)is akin to a quality-adjusted price index for leisure trips for residents of i, net of
travel costs:

PL (i, s) ≡

∑
j∈J

∑
m∈MC

(
pL (i, j, m, s) dL (i, j, m, s)

qL (i, j) B (j, s)

)−µL(i)θL

− 1
µL(i)θL

. (A.11)

1As an intermediate step, we exploit that the idiosyncratic preference shocks are independent, and so are the
travel choices:

V (i, s) = B (i, s)
r (i, s)µH (i) Eω

[
max

jC ,mC

(
I (i, jC , mC , s)

dC (i, jC , mC , s)εC
ω (jC , mC)

)]
Eω

[
max
jLmL

(
qL (i, jL) B (jL, s)

pL (i, jL, mL, s) dL (i, jL, mL, s)

)µL(i)

εL
ω (jL, mL)

]
.



B.3 Tradeable Sector Firms
In the tradeable sector, we assume a measure 1 of firms in each tract. Tracts differ in their

productivity A (j, s). Each firm uses floor space HY , labor NY , and business trips TB as inputs. A
firm ω sending workers on TB business trips to destination jB using transport mode mB produces
output according to the Cobb-Douglas production function:

Yω (j, HY , NY , RB , jB , mB , s) = A (j, s) H
µHY

(j)
Y N

1−µHY
(j)−µB(j)

Y

(
qB (j, jB) A (jB , s)
dB (j, jB , mB , s) RB

)µB(j)

εB
ω (jB , mB) .

(A.12)

Business trips are productivity-enhancing, capturing for example that they promote new supplier or
customer relationships. Specifically, the returns to business trips depend on the productivity of the
destination A (jB, s), on an exogenous origin-destination productivity match qB (j, jB) (capturing
that firms in some locations may on average be more likely to find business partners in some
specific locations), and negatively on time traveled (captured by dB (j, jB, mB, s)). Finally, the
return to business trips also depend on an idiosyncratic productivity shock εB

ω (jB, mB) for the
destination and travel mode for these business trips. We assume them to be IID Type-I extreme
value distributed:

Pr
(
εB

ω (jB, mB) < x
)

= e−e−θBx
, (A.13)

where θB is the (inverse) of the dispersion of shocks across travel modes and destinations for business
travel.

We assume that firms hire labor and floor space before observing the realizations of the idiosyn-
cratic business opportunity shocks. Then, they choose the business trip destination (from the set
of locations J ), the transport mode (from the set of available modes MB), and the number of trips
TB. Hence, a firm in j solves the problem:

Π = max
HY ,NY

E

[
max

(TB ,jB ,m)∈(R+×J ×MB)
Yω (j, HY , NY , RB , jB , m, s) − pB (j, jB , m, s) TB

]
− w (j, s) NY − r (j, s) HY ,

(A.14)

where pB (j, jB, mB, s) is the monetary cost per roundtrip business trip. Because conditional on
floor space and labor there are decreasing returns to the number of trips, we can solve for the
number of trips TB, plug them back into the term within the expectation, and then integrate
over realization of idiosyncratic business shocks using standard properties of the extreme value
distribution defined in (A.13).

After these steps, we obtain a closed-form solution for the expected output net of business costs
(the term within brackets in (A.14)). Specifically, the firm problem over floor space and labor can
be re-written as follows:

Π = max
HY ,NY

(
Ω (j, s) H

µHY
(j)

Y N
1−µHY

(j)−µB(j)
Y

) 1
1−µB(j)

− r (j, s) HY − w (j, s) NY . (A.15)

where Ω (j, s) is an endogenous TFP term that depends on both the TFP of the location A (j, s)



and the distribution of business travel opportunities,

Ω (j, s) ≡ κB (j) A (j, s)

 ∑
jB∈J

∑
m∈MB

(
qB (j, jB) A (jB, s)

pB (j, jB, mB, s) dB (j, jB, mB, s)

)θBµB(j)
 1

θB

, (A.16)

where we have denoted κB (j) ≡ µB (j)µB(j) (1 − µB (j))1−µB(j) .

B.4 Travel Choices

The travel decisions of workers and firms imply equations for shares and numbers of trips taken
to a given destination. We use these equations to estimate key parameters of the model. Specifically,
using standard properties of the extreme-value distributions for the shocks εC

ω and εL
ω , the solution

to (A.8) gives the fraction of residents from i that commute to j using transport mode m,

λC (i, jC , mC , s) =

(
I(i,jC ,mC ,s)

dC(i,jC ,mC ,s)

)θC

∑
j∈J

∑
m∈MC

(
I(i,j,m,s)

dC(i,j,m,s)

)θC
, (A.17)

as well as the fraction of residents from i that travel for leisure to j through transport mode m:

λL (i, jL, mL, s) =

(
qL(i,jL)B(jL,s)

pL(i,jL,mL,s)dL(i,jL,mL,s)

)µL(i)θL

∑
j∈J

∑
m∈ML

(
qL(i,j)B(j,s)

pL(i,j,m,s)dL(i,j,m,s)

)µL(i)θL
. (A.18)

Similarly, from the solution to the firm’s problem in A.14 and using standard properties of the
extreme value shocks εB

ω , the fraction of firms from j sending workers on business trips to jB takes
the same functional form as (A.18):

λB (i, jB, mB, s) =

(
qB(i,jB)A(jB ,s)

pB(i,jB ,mB ,s)dB(i,jB ,mB ,s)

)µB(j)θB

∑
j∈J

∑
m∈MB

(
qB(i,j)A(j,s)

pB(i,j,m,s)dB(i,j,m,s)

)µB(j)θB
. (A.19)

The last two expressions measure the shares of travelers (or firms) from location i making leisure
(or business trips) to a destination. In the data, we observe the number of trips to each destination
by travel purpose. In the model, the number of leisure trips from i to jL through means mL depends
both on the share of travelers and on the intensity of travel. From the consumer problem (A.1),
leisure trips are a constant share µL (i) of disposable income among location-i residents. Adding
up this optimal choice across residents of i, we obtain that the total number of leisure trips from i

to jL using mode mL is:

TL (i, jL, mL, s) = λL (j, jL, mB, s) µL (i) NR (i) I (i)
pL (i, jL, mL, s) , (A.20)

where I (i) is the average disposable income among location i’s residents, itself a function of where
they commute for work:

I (i) ≡
∑
j∈J

∑
m∈MC

λC (i, j, m, s) I (i, j, m, s) . (A.21)

Similarly, from the solution for TB from (A.14), the total number of business trips from i to jB



through mode mB is:

TB (i, jB, mB, s) = λB (i, jB, mB, s) µB (j)
1 − µB (j)

Y (i, s)
pB (i, jB, mB, s) . (A.22)

B.5 Spillovers

Firm productivity and residential amenities may respond endogenously to the level of local
activity. We use similar functional forms as Ahlfeldt et al. (2015) and assume that spillovers
respond to the density of workers in the location and in the surroundings:

A (j, s) = ZA (j)

∑
k∈J

e−ρspillover
A τmin(j,k,s) ÑY (k, s)

H (k)

γspillover
A

(A.23)

B (i, s) = ZB (i)

∑
k∈J

e−ρspillover
B τmin(j,k,s) ÑY (k, s)

H (k)

γspillover
B

(A.24)

where

ÑY (j, s) =
∑

i

λC (i, j, s) NR (i) (A.25)

is the number of workers employed in j and H (j) is the available floor space, so that ÑY (j,s)
H(k) worker

density in j and τmin (j, k, s) is the fastest travel time across all modes over a given route. In
Ahlfeldt et al. (2015), the congestion at residence (denominated B here) depends on how many
people live around an area, while the agglomeration at destination (denominated A here) depends
on how many people work around an area. Since we assume a fixed number of residents, in our
case both spillovers are a function of the endogenous number of workers in the surrounding areas.
Similarly, in Ahlfeldt et al. (2015), the surrounding density is discounted by the ρ elasticities times
travel time. Since we have multiple travel mode, in our case we use the fastest travel time across
all travel modes.

B.6 Route Choice and High-Speed Rail Use

The travel time τk (i, j, m, s) and the roundtrip monetary cost pk (i, j, m, s) introduced so far for
each travel purpose k = C, L, B are the time and the cost corresponding to the actual route chosen
in the transport network to travel from origin i to destination j through mode m for purpose k in
state s. When s = N (i.e., when the CHSR is not available), we assume the chosen route to be
the fastest through the network within each mode (bike, car, public transit, airplane) and assign a
monetary cost to the corresponding route.

When the CHSR is available, travelers choose (within each mode) between their preferred pre-
CHSR route or using the CHSR. In our baseline analysis, the CHSR option is only available as
a substitute to traveling via public transit (for commuters) or via air (for business and leisure
travelers). In a robustness exercise, the CHSR is also a substitute for road travel via car for all
travelers.



In making this decision of whether to travel through the CHSR, travelers trade off time and
costs on whether or not to use the CHSR. Specifically, as implied by the indirect utility (A.6),
when the CHSR is available within mode m (s = Y ), a commuter chooses the time-cost pair
(τC (i, j, m, Y ) , pC (i, j, m, Y )) between the pre-CHSR fastest time and cost (τC (i, j, m, N) , pC (i, j, m, N))
and the CHSR time and cost

(
τCHSR (i, j, m) , pCHSR (i, j, m)

)
, by solving, for each (i, j, m):

(τC (·, Y ) , pC (·, Y )) = arg max
(τ,p)∈{(τC(·,N),pC(·,N)),(τCHSR,pCHSR)}

(1 − t) y (i, j, Y ) − pTC

τρC
. (A.26)

Similarly, as implied by the indirect utility (A.6) and by the definition of business productivity
(A.16), a leisure or business traveler chooses (τk (i, j, m, Y ) , pk (i, j, m, Y ))between (τk (i, j, m, N) , pk (i, j, m, N))
and

(
τCHSR (i, j, m) , pCHSR (i, j, m)

)
by solving:

(τk (·, Y ) , pk (·, Y )) = arg min
(τ,p)∈{(τC(·,N),pC(·,N)),(τCHSR,pCHSR)}

pτρk (A.27)

for k = L, B. Therefore, when s = Y (i.e., when the CHSR is available), the times and costs
τk (i, j, m, Y ) and pk (i, j, m, Y ) may be different for commuting and for leisure or business travel
because, the monetary costs from using the CHSR enter asymmetrically in indirect utility depend-
ing on the travel purpose. I.e., within the same origin-destination, travelers may use CHSR for
commuting and not for leisure, or vice-versa.

B.7 Equilibrium Conditions

Equilibrium in the labor market of tract i dictates that the demand for efficiency units of labor
in a location equals the supply of efficiency units to that location, N (i, s):

NY (i, s) =
∑
j∈J

λC (j, i, s) e (j) NR (j)
︸ ︷︷ ︸

≡N(i,s)

(A.28)

where λC (j, i, s) fraction of commuters from j to i through any mode:

λC (j, i, s) ≡
∑

m∈MC

λC (j, i, m, s) . (A.29)

Next, using the solution for consumer demand for floor space from (A.1) and for firm’s demand
for floor space and labor from (A.14), the equilibrium in the housing markets is:

NR (i) µH (i) I (i)
r (i, s) + NY (i, s) w (i, s)

r (i, s)
µHY

(i)
1 − µHY

(i) − µB (i) = H (i) , (A.30)

where the first term in the left-hand side is the demand for floor space coming from residents of i,
the second term is demand coming from firms located in i, and H (i) is the supply of floor space
in i. Finally, since tradeable firms operate subject to constant returns, the zero-profit conditions
resulting from (A.14) dictates:

w (j, s)
1−µB(j)−µHY

(j)
1−µB(j) r (j, s)

µHY
(j)

1−µB(j) = κΩ (j) Ω (j)
1

1−µB(j) (A.31)

for some constant κΩ (j) that is a function of µB (j) and µHY
(j).

An equilibrium consists of distributions of land prices r (j, s), wages w (j, s), and supplies of



labor into tradeables NY (i, s), such that:
i) the land market clearing condition (A.30) holds for all tracts;
ii) the labor market clearing condition (A.28) holds for all tracts i; and
iii) the zero-profit condition (A.31) holds for all tracts j.
Note that the system of equations defined by (A.30)-(A.31) include as unknowns the endogenous

productivity term Ω (j), the agglomeration and amenity spillover functions A (j, s) and B (i, s), and
the average income I (i). Using (A.16), (A.23), (A.24), and (A.21), all these endogenous variables
can be expressed as functions of the endogenous variables {r (j, s) , w (j, s) , NY (i, s)} which define
the equilibrium.

B.8 System for Counterfactual Analysis

In this section we derive the system that we implement when running counterfactuals. For this,
we now move to express the equilibrium value of every endogenous outcome in a scenario where
s = Y relative to its value in an equilibrium where s = N . We let

X̂ (·) ≡ X (·, Y )
X (·, N)

be the ratio of variable X between its equilibrium value when s = Y (so that the CHSR will be
built with some probability) and when s = N (the CHSR is not built).

CHSR Shock Starting from an initial equilibrium, the previous system of equilibrium conditions
is impacted by potentially different travel times and monetary travel costs. Specifically, the shock
to the system is given by time changes,

τ̂k (i, j, m)

and by monetary travel cost changes,

p̂k (i, j, m)

for each travel purpose k = C, L, B (commuting, leisure, or business travel). On route-mode com-
binations (i, j, m) where travelers do not choose CHSR, these shocks are τ̂k (i, j, m) = p̂k (i, j, m) =
1. On route-mode combinations where CHSR is preferred to the pre-existing mode then either
τ̂k (i, j, m) < 1, p̂k (i, j, m) < 1, or both. To construct these shocks, we use the pre- and post-CHSR
travel times and costs following the discussion in Section B.6. When s = Y , then disposable income
also changes with the tax rate in a common away across locations:

1̂ − t = 1 − t.

Equilibrium System in Relative Changes The equilibrium response to {τ̂ (i, j, m) , p̂k (i, j, m) , 1 − t}
consists in changes in land rents r̂ (i), wages ŵ (i), and labor supplies N̂Y (i) such that:

i) The land market clears, i.e. (A.30) holds in the counterfactual equilibrium, which implies:

r̂ (i) = HC (i, N)
H (i) Î (i) +

(
1 − HC (i, N)

H (i)

)
ŵ (i) N̂Y (i) , (A.32)



where HC ≡ NR (i) µH(i)I(i)
r(i,s) is the aggregate housing demand in i and Î (i) is the change in average

income of residents of i defined in (A.21),

Î (i) =
∑
j∈J

∑
m∈MC

λC (i, j, m, N)
I (i, N)

λ̂C (i, j, m) Î (i, j, m) , (A.33)

where the change in disposable income next of taxes and commuting costs for commuters from i to
j using mode m is

Î (i, j, m) =
(

1 + pC (i, j, m, N)
I (i, j, m, N)

)
ŷ (i, j) − pC (i, j, m, N)

I (i, j, m, N) p̂C (i, j, m) , (A.34)

the change in pre-tax income is

ŷ (i, j) =
(

1 − e (i) w (j, N)
y (i, j, N)

)
Î (i) + e (i) w (j, N)

y (i, jC , N) ŵ (j) , (A.35)

and, from (A.17), λ̂C (i, j, m) is given by:

λ̂C (i, jC , mC) =

(
Î(i,jC ,mC)

d̂C(i,jC ,mC)

)θC

∑
j∈J

∑
m∈MC

λC (i, j, m, N)
(

Î(i,j,m)
d̂C(i,j,m)

)θC
(A.36)

ii) the labor market clears, i.e. (A.28) holds in the counterfactual equilibrium, which implies

N̂Y (i) =
∑
j∈J

(
λC (j, i, N) e (j) NR (j)

N (i, s)

)
λ̂C (j, i) (A.37)

where, in the supply side in the right-hand side of (A.37), λ̂C (j, i) is given by

λ̂C (j, i) =
∑

m∈MC

(
λC (j, i, m, N)

λC (j, i, N)

)
λ̂C (j, i, m) . (A.38)

iii) the zero-profit condition (A.31) holds in a counterfactual scenario, i.e.

ŵ (j)
1−µB(j)−µHY

(j,)
1−µB(j) r̂ (j)

µHY
(j)

1−µB(j) = Ω̂ (j)
1

1−µB(j) , (A.39)

where, from (A.16),

Ω̂ (j) = Â (j)

 ∑
jB∈J

∑
m∈MB

λB (i, jB, mB, N)
(

Â (jB)
p̂B (j, jB, mB) d̂B (j, jB, mB)

)θBµB(j)
 1

θB

. (A.40)

From (A.23), the agglomeration component of TFP changes according to:

Â (j) =

∑
k∈J

ÑY (k, N) /H (k)∑
k′∈J e−ρspillover

A τmin(j,k′,N)ÑY (k′, N) /H (k′)
e−ρAτmin(j,k,B) ˆ̃NY (k)

γspillover
A

(A.41)

where from (A.25) the change in the number of workers employed in j is:

ˆ̃NY (j) =
∑

i

(
λC (i, j, N) NR (i)

ÑY (j, s)

)
λ̂C (i, j) . (A.42)

for λ̂C (i, j) defined in (A.38).



Welfare Changes The welfare changes in (10) to (12) follow from (A.9)-(A.11), where the en-
dogenous amenities component B̂ (i) satisfies a similar equation to Â (j) in (A.41).

C Data Appendix

Geographic Units The analysis is conducted at the tract level. Our sample comprises 7866 out
8057 census tracts in California’s mainland that are populated and have positive employment and
no missing data. These tracts account for 98.5% of the state’s population and 97.6% of all tracts.

Voting We obtain data on the number of favorable and negative votes by precinct for Proposition
1A and for other ballots in 2006 and 2008 from the University of California at Berkeley Statewide
Database. We also use their crosswalk to construct a tract-level dataset of votes.

Commuting Data on commuting flows are taken from the American Community Survey (ACS)
2012-2016. The American Community Survey reports tract-to-tract data on commuting by trans-
port mode as a part of the Census Transportation Planning Products.2 To measure commuting
flows, respondents answer the question: “At what location did this person work LAST WEEK?”. We
construct the flows excluding work-from-home workers, corresponding to less than 5% of statewide
workers in this period. In addition, to measure the mode of travel, respondents are asked: “How
did this person usually get to work LAST WEEK?”. We classify car, truck, or van as the “car”
mode. We classify the bus, subway, commuter rail, light rail, or ferry as the “public transit” mode.
Finally, we classify the remainder, which includes biking and walking as the “walking or biking”
mode.

Leisure and Business trips Leisure and business trips are compiled from the California House-
hold Travel Survey (CAHTS) conducted between 2010 and 2012. The CAHTS records trips longer
than 50 miles taken over a 8-week survey period. 18,008 households and 68,193 trips appear in
the dataset. The data include information on the origin, destination, and residence census tract
of each trip, the number of people on each trip, the travel mode, and the purpose of the trip. We
classify each trip into a leisure trip if the purpose includes entertainment, vacation, shopping or
visiting friends and family. The top leisure destinations are Disneyland, Yosemite, Mission Beach
(San Diego), Downtown San Francisco, and Downtown San Diego. We classify each trip into a
business trip of the purpose includes business meetings, conventions, or seminars. The top business
destinations are the State Capitol in Downtown Sacramento, Downtown Los Angeles, Downtown
San Francisco, and Downtown San Diego. Taken together, leisure and business trips account for
84% of all trips in the survey. The remaining trips include combined business and pleasure trips,
medical trips, school-related activities, and trips for which the purpose is not stated.

2The LEHD also reports commuting flows by origin and destination based on administrative data linking em-
ployees home locations with their employer’s location. As we do not observe the frequency at which these trips are
taken, these origin-destination flows may not reflect regular commuting.



Wages We use data on wages by workplace Census tract and residence Census tract from the 2008
and 2019 samples of the Longitudinal Employer-Household Dynamics (LEHD) Origin-Destination
Employment Statistics published by the U.S. Census. The LEHD reports the number of workers
in each workplace-residence Census tract pair who have monthly earnings below $1,250, between
$1,250 and $3,333, and above $3,333. To construct an average wage along each route, we first
measure average earnings within each of these three bins within California using the individual level
American Community Survey samples in 2008 and 2019. We use these bins and our estimates of
average earnings within each bin to compute average earnings among workers within each workplace-
residence tract pair.3

Population and Demographics We define the number of working-age residents NR (i) entering
in the model quantifications using the distribution of commuters originating in each census tract
from each ACS with a re-scaling to match the working-age population of California according to
the BLS.

We measure share of non-white residents, occupational composition, the share of residents with
a college degree, and demographic covariates by census tract from the 2006-2010 and 2015-2019
American Community Survey five-year estimates.

Construction of Additional Variables Using the previous sources we construct additional
variables needed for the implementation of the model. We construct disposable income y (i, jC , N)
in (A.5) using its definition as the sum of labor income and locally owned land rents. We construct
the land rent component of income as η (i) r (i, N) ≡ ηR(i)r(i)HC(i,N)

NR(i) , where ηR (i) is the share
of homes that is owner-occupied from ACS and r (i) HC (i, N) are residential home values from
ACS transformed to annualized rent-equivalent values. We measure the share of land used for
residential purposes, HC (i, N) /H (i) entering in (A.32), using Zillow’s ZTRAX data. We construct
the disposable income I (i, jC , mC , N) defined in (A.4) using y (i, jC , N), the round-trip commuting
costs described in the next section, and TC = 250 commuting trips throughout the year.

Additional Parameter Calibration We calibrate the remaining parameters using estimates
in the literature. We assume that the share of firm expenditure on floor space is µH,Y = 0.20,
in line with Valentinyi and Herrendorf (2008). We use estimates from Ahlfeldt et al. (2015) to
calibrate the productivity and amenity spillovers from equations A.23 and A.24. Specifically, using
their preferred estimate from Table V, column 3, we assume:γspillover

A = 0.071, γspillover
B = 0.155 and

ρspillover
A = 0.361, ρspillover

B = 0.759.

3We use the 2012-2016 sample because the 2016-2020 sample is not yet available, and also encompasses the start
of the COVID-19 pandemic, which saw large changes in commuting patterns.



D Transport Network Details

Transport Network We construct a transport network to calibrate times and costs from each
census tract origin to each census tract destination, for each possible transport mode: car, public
transit (combining bus and rail stations), air travel, biking, and CHSR. The centroid is defined as
the geographic centroid of the most populous Census block within each tract. We construct the
road network based on the 2010 primary and secondary road shapefile for California obtained from
the U.S. Census, which we transform into a graph. We connect the tract centroids to the road
network by creating links from the centroids to closest node on the road network. The resulting
road network has 72790 edges and 71957 nodes, of which 7866 correspond to the centroids of our
analysis. To this network we add a rail network with 192 train stations obtained from California’s
Department of Transportation for 2013, which is the closest available year to 2008.4 We construct
the air network including the 10 largest airports in California: LAX, SFO, SAN, OAK, SJC, SNA,
SMF, ONT, BUR, LGB.

We include the 24 unique air routes operating among these airports according to the Bureau
of Transportation 2008 airline ticket dataset.5 Finally, for the CHSR, we obtain a shapefile of the
planned route and stations at the time of the vote in November of 2008 from the University of
California at Davis.6 The 2008 CHSR map includes 24 stations and two potential stations (Irvine
and Tulare). We exclude these two planned stations, as a total of 24 stations is consistent with
the description of the network in the original CHSR bill passed by the California legislature before
the 2008 vote. The resulting transport networks includes the road network expanded with tract
centroids, rail stations, airports, and CHSR stations. Similar to centroids, we create artificial edges
that connect the rail stations, airports, and CHSR stations to their closest node on the original
road network.

Travel Times We calibrate speeds by private car and public bus by assigning a travel time to
each edge of the road network to match travel times by car only and by public transit only from
Google Maps on a random sample of 10,000 origin and destination tracts.

We assign travel times by multiplying the arc-length kilometer distance of each edge by its
average speed, using one of 5 speed categories for each edge depending on its features (primary
urban, primary rural, secondary urban, secondary rural, and artificial centroid-node link). We add
a time constant to every trip that is independent from distance and captures waiting times. We
closely match the Google times for car trips, whereas we tend to somewhat under-predict travel
times for long trips via public bus.

The fastest route via car is computed on the calibrated road network (all fastest routes are
computed using the fast marching method). The fastest route via public transit is defined as the
fastest between traveling via bus or via rail for each origin-destination pair. The route via rail

4Available at: https://geodata.lib.utexas.edu/catalog/stanford-xd213bw5660.
5Available at: https://www.transtats.bts.gov/DatabaseInfo.asp?QO_VQ=EFI&Yv0x=D.
6Available at: https://databasin.org/datasets/7a9f1867f2e24a1e97ab10419a73b25a/.

https://geodata.lib.utexas.edu/catalog/stanford-xd213bw5660
https://www.transtats.bts.gov/DatabaseInfo.asp?QO_VQ=EFI&Yv0x=D
https://databasin.org/datasets/7a9f1867f2e24a1e97ab10419a73b25a/


assume that travelers use the train stations nearest to the origin and destination tracts as long as
the distance between these stations is less than between the original tracts (otherwise assuming the
bus is used). To construct rail times we use station-to-station rail times available in the websites
of rail systems in California (ACE Rail, Amtrak, BART, CalTrain, Coaster, and Metrolink), along
with the previously calibrated car speed from stations and centroids and transfer time of 17 minutes
from car to rail stations. Fastest biking routes on the road network are constructed assuming an
average speed of 20 km per hour in urban environments.

The fastest travel time by air is computed assuming road speeds to and from airports, allowing
travelers to use any airport regardless of distance to origin and destination, using flight times from
Google Maps, and including a total transfer time of 90 minutes at the origin airport.

We define the CHSR paths differently depending on whether it is used as a direct substitute to
public transit or to car. When it is a substitute to public transit, the path and time are defined
similarly to the fastest time via rail (i.e., travelers use the nearest station, with driving times from
centroids to stations). When it is a substitute to car or to air travel, it is defined similarly to the
fastest time via air (i.e., travelers can drive to their preferred airport). In both cases we use the
transfer time at stations calibrated for public transit.

When studying the actual CHSR design, we use planned speeds between contiguous station of
the CHSR network from the November 2008 High Speed Rail Authority’s Business Plan (California
High Speed Rail Authority, 2008). The resulting pairwise travel times between all stations closely
match those reported between major stations. When studying optimal counterfactual CHSR designs
by the planner, we maintain the speeds on each segment.

Travel Costs by Mode For car, the cost of travel from each origin to each destination on a
given route is computed based the per-mile cost of fuel assuming a cost of $3.50 per gallon7 and fuel
efficiency of 21 miles per gallon8. The cost of traveling via bus equals the average one-way adult
bus ticket price in the county where the origin census tract is located, according to the American
Public Transportation Association, and complemented with data from each county’s website when
necessary (average bus fare across all counties equals $2.15). A fixed and variable per-mile cost of
traveling via rail is estimated for the Amtrak Capital Corridor in Northern California and applied
to the entire rail network. This estimation yields a rail fare with a fixed cost of $2.9 and an extra
cost of 17c per minute traveled at the average rail speed of 50 miles per hour. The cost of air travel
between each pair of airports corresponds to the average ticket price according to the Bureau of
Transportation Statistics (average one-way ticket cost of $151 across routes).9 For the ticket price
of the CHSR, we rely on the $55 ticket price from LA to San Francisco from the 2008 Business Plan
(California High Speed Rail Authority, 2008) as well as an update of this number to $110 in the
2022 plan (California High Speed Rail Authority, 2022). We use these ticket prices for LA-SF in
the baseline and pessimistic scenarios, and project these costs to the remaining network using the

7Source: 2008 Los Angeles Almanac, available at http://www.laalmanac.com/energy/en12.php.
8Source: US Department of Energy, available at https://www.fueleconomy.gov/feg/byclass/Midsize_Cars2008.shtml/.
9Available at https://www.transtats.bts.gov/DatabaseInfo.asp?QO_VQ=EFI&Yv0x=D .
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ratio of variable to fixed costs as a function of distance estimated for the Amtrak Capitol Corridor.

E Appendix to the Planning Problem

This section contains additional details on the implementation of the planner’s preference esti-
mation and optimal station location problem.

E.1 Planner’s Preferences Estimation

Design of the perturbations As indicated in subsection 6.2, our estimation relies on a mo-
ment inequality estimator based on a set of perturbations n ∈ N of the CHSR design that yield
inequalities of the form

J∑
i=1

[
β0 +

K∑
k=1

βkZk (i) + λV (i)
]

N (i) ∆ ln Ŵ (i, dn) − ϵ (dn) ≤ 0. (A.43)

We generate these perturbations with the aim of identifying upper and lower bounds on the parame-
ters β and λ. For each covariate Z ∈ Z = {Z1, . . . , ZK , V }, we construct a set of potential locations
L (Z) corresponding to peaks and troughs of Z along the proposed CHSR lines. We order these
locations as a function of their distance to San Francisco along the CHSR outline. To illustrate
this procedure, Figure A.2 displays the variation in population density along the proposed CHSR
outline highlighting its peaks and troughs as potential station locations (green) in comparison to
the proposed ones (red).

For each covariate Z, we then define a set of perturbations N (Z) by moving each station
s = 1 . . . Ns individually by a certain number of steps k = −Nsteps . . . − 1 (towards San Francisco)
and k = 1 . . . Nsteps (towards San Diego) among the set of potential locations. In our baseline
specification, we choose Nsteps = 2, which, for a number of stations Ns = 24, generates 24 × 4 = 96
perturbations per covariate.

Our final set of perturbations N = ∪Z∈ZN (Z) is the union of these covariate-specific perturba-
tions. In our largest specification (using as covariates population density, average wages, the share
of college-educated residents, the share of non-white residents and votes) we obtain 5 × 96 = 480
perturbations to identify 6 parameters (β0, ..., βKand λ).

Moment Conditions To lighten notation, we rewrite the welfare inequality (A.43) for pertur-
bation j as

m (n; γ) ≡
∑

k

γkXk (n) − ϵ (n) ≤ 0,



Figure A.2: Potential Station Locations based on Population Density

Notes: Smoothed population density n̂ (i) =
∑J

i′=1 n (i′) e−ρdist(i,i′) where ρ = 100 and dist(i, i′) is the arc-degree
distance between Census tracts i and i′. The x-axis is an indicator of the location between San Francisco (x = 0)
and San Diego (x = 1) as a fraction of the entire CHSR length, with Los Angeles corresponding to x ≃ 0.7. Potential
locations for stations are identified as local peaks and troughs and indicated in green.

where γ = (β0, β1, . . . , βK , λ) is the vector of parameters we want to estimate and

X (n) ≡



∑
i NR (i) ∆ ln Ŵ (i, n)∑

i NR (i) ∆ ln Ŵ (i, n) ZT
1 (i)

...∑
i NR (i) ∆ ln Ŵ (i, n) ZT

K (i)∑
i NR (i) ∆ ln Ŵ (i, n) V (i)


.

To obtain upper and lower bounds on each parameter γk, we create a set of moments indexed
by e = 1, . . . , E with E = 2 × (K + 2). Each moment is associated to a particular sign of the
component Xk evaluated in 2008 at the time when the CHSR was designed. More precisely, for
e = 1, . . . , E, we define the moment

m̂e (γ) =
∑

n∈Ne
m (n; γ)

|N |
and associated standard deviation

σ̂e (γ) =
[∑

n∈Ne
(m (n; γ) − m̂e (γ))2

|N |

] 1
2

,

where Ne =
{
n ∈ N | X2008

e (n) ≥ 0
}

for e = 1, . . . , K + 2 and Ne =
{

n ∈ N | X2008
e−(K+2) (n) ≤ 0

}
for e = K + 3, . . . , E. Since the subsets Ne ⊂ N are created using information from 2008, we can
use the moment condition that E

[
ϵ (n) |I2008] = 0. Following the Modified Method of Moments

from Andrews and Soares (2010), we construct the statistics

Q̂ (γ) =
E∑
e

(
max

(√
|N |m̂e (γ)

σ̂e (γ) , 0
))2

.



We construct a 95% confidence set over parameter γ as

Γ =
{

γ | Q̂ (γ) ≤ cv95 (γ)
}

,

where the critical value cv95 (γ) is computed by bootstrap.

Normalization The estimation procedure runs into the problem that the planner weights γ are
not uniquely determined since for any positive real number z > 0, z ×γ give the exact same planner
preferences. We use two different types of normalizations:

• To guarantee having a bounded confidence set, we use a spherical normalization during the
estimation stage, requiring that ∑k

(
γsphere

k

)2
= 1.

• When reporting the result and to make the parameters more directly interpretable, we nor-
malize γ so that the population-weighted average of Ω (i) is 1 across locations. Specifically,
the means that for any γsphere, we define

γnorm
k ≡

γsphere
k

z (γsphere)
where

z
(
γsphere

)
=
∑

i

∑
k

N (i) γsphere
k Zk (i) .

Since the covariates Zk are normalized to have mean 0 and standard deviation 1, γnorm
k can

be interpreted as is the relative impact on the per-capita Pareto weight of having covariate
Zk one standard deviation above its mean.

E.2 Planner Optimization

Procedure The optimal station location problem is a highly non-concave optimization problem
due to the presence of a sigmoidal voting block (neither concave nor convex) and competing com-
plementarities (convex) and substitutabilities (concave) arising in the placement of stations. The
optimization problem requires the use of non-convex techniques. The optimization is done in three
sequential steps:

1. Perturbations. We first use the information contained in the precomputed perturbation set
N . For each station s, we identify which perturbation n ∈ N yields the highest welfare among
those that shifted the location of station s and evaluate a new CHSR design in which station
s is set to that best location. If total welfare increases, we accept this location, if not, we
keep the initial location and move on to the next station.

2. Simulated annealing. To escape potential local optima and increase our chances of finding
the global optimum, we use a type of simulated annealing method. A station is selected at
random and is moved randomly among the potential locations considered when constructing
the perturbations. The new location is accepted with a probability that depends on the
welfare obtained (1 if welfare increases and a positive probability even if welfare decreases).



3. Continuous optimizer. The final step of the optimization attempts to refine the local optimum
obtained by the previous two steps by using a continuous optimizer (e.g. simplex or interior-
point algorithms). We parametrize the CHSR outline with a cubic spline, allowing us to
evaluate welfare over a continuous set of station locations.

Our extensive efforts to globally explore the set of station locations do not guarantee identification
of the global optimum. Nonetheless, we verify that our final result is a promising candidate by
showing that it yields the highest possible welfare when each station is moved individually within
a range of 10 km from the proposed optimum along the CHSR outline (see Figure A.5).

Dealing with Expectations Errors The planner’s objective function is defined as the expec-
tation of future welfare, evaluated using information available in year 2008. We cannot compute
the expectation term in practice. To deal with this issue, we adopt the same strategy that we used
in the estimation: for each potential design d, we evaluate the planner’s objective using time T

data (when the CHSR was projected to be in service) and introduce a forecast error term ϵ (d; γ)
for each given set of planner weights γ = (β; λ), defined as

ϵ (d; γ) =
∑

i

Ω (i; β) N (i) ∆U (i; d) + λ
∑

i

N (i) v (i; d)

− E
[∑

i

Ω (i; β) N (i) ∆U (i; d) + λ
∑

i

N (i) v (i; d) | I2008
]

.

When computing optimal station locations for a counterfactual set of planner weight γ, ϵ (d; γ) is
unknown. When optimizing, we assume that the uncertainty driving the forecast error is orthogonal
to the planner’s preferences and set ϵ (d; γ) ≡ ϵ (d; γ̂) where γ̂ is the estimated planner’s weights.
To evaluate ϵ (d; γ̂), we use the property that design d is not optimal, i.e., that∑

i

Ω
(
i; β̂
)

N (i) ∆U (i; d) + λ̂
∑

i

N (i) v (i; d) − ϵ (d; γ̂) ≤ 0.

To avoid penalizing alternative CHSR designs, we adopt the lowest possible value for ϵ (d; γ̂) and
set it to

ϵ (d; γ̂) ≡ max
(

0,
∑

i

Ω
(
i; β̂
)

N (i) ∆U (i; d) + λ̂
∑

i

N (i) v (i; d)
)

.

E.3 Additional Tables and Figures for the Planning Problem



Figure A.3: 95% Confidence Set for Parameter Estimates

Notes: Pairwise projections of the 95% confidence set from column (6) in Table 6 in spherical normalization (see
Appendix E.1). In blue are denoted all the points

(
β∗

k , β∗
j

)
such that there exists a vector

(
β⃗, λ
)

with βk = β∗
k and

βl = β∗
j which belongs to the confidence set.

Figure A.4: Distribution of Ω (i) + λV (i)

Notes: Histogram of the effective planning weights Ω (i) + λV (i) received by locations in specification (6) in Table 6.
Parameters are normalized so that the population-weighted mean of the Pareto weights is 1.



Table A.9: Stations in the Apolitical Planner vs. Proposed Plan

(1) (2) (3) (4) (5) (6) (7)

Station Distance (km) ∆Welfare (%) ρdensity ρwages ρshare college ρshare non-white ρvoting elasticity

Sacramento -3.43 5.80e-04 -0.051 -0.048 -0.047 0.0072 0.02

Stockton -0.03 1.20e-06 -0.0093 -0.011 -0.035 -0.0086 0.016

San Francisco 7.58 3.50e-02 0.41 0.14 0.17 0.13 -0.62

Modesto 1.11 -2.00e-04 0.035 0.049 0.078 0.0019 -0.024

SFO 7.86 5.00e-03 0.03 0.064 0.057 -0.011 -0.027

Palo Alto 1.51 5.70e-03 0.13 0.086 0.11 0.15 -0.19

San Jose -16.72 4.00e-02 0.34 0.18 0.24 0.19 -0.49

Merced -1.45 -8.50e-05 0.014 0.029 0.036 -0.012 -0.015

Gilroy 27.22 -4.50e-03 0.0016 0.023 0.064 0.02 -0.012

Fresno -36.69 2.00e-04 -0.0052 -0.015 -0.021 -0.036 0.0093

Bakersfield 68.54 6.30e-04 -0.061 -0.063 -0.071 -0.032 0.013

Palmdale 47.01 4.50e-03 0.17 -0.11 -0.06 0.11 -0.042

Sylmar 33.1 3.10e-02 0.46 -0.34 -0.16 0.32 -0.17

Burbank 4.34 1.10e-02 0.3 -0.16 -0.014 0.16 -0.12

Ontario -53.43 2.40e-02 0.45 -0.35 -0.15 0.29 -0.19

Los Angeles 3.05 1.80e-03 -0.013 -0.14 -0.13 0.17 0.048

City of Industry -16.59 1.40e-02 0.27 -0.2 -0.12 0.24 -0.072

Riverside -5.8 7.20e-04 0.0021 0.0077 0.018 -0.0033 0.0079

Norwalk -7.85 3.20e-03 -0.13 0.13 0.045 -0.079 0.11

Anaheim -27.84 1.70e-02 0.38 -0.33 -0.19 0.28 -0.14

Murrieta -44.76 3.70e-04 -0.0032 -0.073 -0.077 0.073 0.001

Escondido 35.8 3.60e-04 0.036 -0.018 0.08 0.0074 -0.024

University City 1.76 1.80e-04 0.043 0.035 0.071 -0.0031 -0.023

San Diego -4.78 8.40e-04 0.019 0.047 0.074 -0.024 0.013
Notes: Column (1) reports the distance in km between the optimal location and the proposed station. A positive number
indicates a movement towards San Diego, negative towards San Francisco. Column (2) reports the change in real income in
basis points (%) given the Pareto weights Ω (i) when only the corresponding station is moved individually to its optimal location
while all other stations remain at proposed plan. In columns (3)-(7), ρX show the correlation between ∆ log ˆW (i) and the
corresponding covariate X in that one-deviation counterfactual from the proposed plan.



Figure A.5: Apolitical Planner, Robustness of Optimal Design

Notes: Each panel displays how aggregate welfare is affected when moving the indicated individual station by about
±10km around the optimal location. Optimal stations are indicated in red, the proposed ones in black (sometimes
outside).



Figure A.6: Apolitical Planner, Welfare vs. Votes in L.A.

Figure A.7: Utilitarian Planner, Welfare vs. Share College in Riverside
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