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ABSTRACT
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cross-sectional heterogeneity linked to (non-linear interactions of) return volatility, size, and 
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1 Introduction

Sparse models, widely adopted in economics, utilize a small set of predic-

tors or explanatory variables (potentially from a large candidate pool) to achieve

estimation tractability and model interpretability (see, e.g., Tibshirani, 1996; Bel-

loni, Chen, Chernozhukov, and Hansen, 2012). This modeling approach as-

sumes a globally sparse structure, with a small set of common covariates applied

universally to all observations. However, potential grouped heterogeneity in

the cross section and/or time series poses an empirical challenge: a model with

universal and sparse covariates may not be accurately estimated and often only

describes certain episodes or observation groups. For example, relevant predic-

tors can change over time (e.g., due to structural breaks), and parameters esti-

mated from the entire sample may be ineffective for a subset of observations.

Consequently, sparse models, although conceptually appealing, may not be sta-

ble or effective in empirical predictions, as recently documented by Giannone,

Lenza, and Primiceri (2021), who discuss the “illusion of sparsity” prevalent

in economic studies, ranging from the determinants of economic growth, asset

pricing factors, and the decline in crime rates. This is in stark contrast to the

large/overparameterized machine learning models that are gaining popularity

due to their outperformance and greater generalizability (e.g., Neyshabur et al.,

2019; Hastie et al., 2022).

To account for unknown heterogeneity groups and develop empirically ef-

fective sparse models, we propose an alternative approach to learn from the data

any grouped heterogeneity and select the corresponding local sparse models.

These models should be accurately estimated, interpretable, effective on eco-

nomic big data, and in performance as good as recent large machine learning or

AI models that lack economic interpretability. Our Bayesian Clustering Model

(BCM) tackles this new econometric problem of jointly selecting variables (and

thus the model) on the right-hand side and clustering observations on the left-

hand side of regressions. It clusters individual observations (e.g., asset returns)

into heterogeneous groups with an economically guided panel tree while esti-

mating heterogeneous local models (e.g., uncommon factors for pricing assets

in each cluster) through Bayesian variable selection.

Although BCM applies to panel data analysis generally, we focus on its

application to empirical asset pricing, a setting where grouped heterogeneity

is prevalent. Sparse modeling that accommodates grouped heterogeneity not
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only provides better answers to existing questions but also enables new analy-

ses with both theoretical and practical implications. The literature routinely uses

common factor models (i.e., Fama and French, 1993, 2015) to understand time-

series co-movement and cross-sectional variation of returns. Sparse modeling

(e.g., Freyberger et al., 2020; Feng et al., 2020) presents a potential solution to the

“factor zoo” problem (Cochrane, 2011). However, most empirical studies eval-

uate and select factors based on their global performance on ad hoc test assets,

overlooking potential grouped heterogeneity that causes failures in accurately

pricing certain assets or in certain regimes. For example, models without the

momentum factor cannot explain return spreads of recent winners and losers,

while only momentum-sorted portfolios have non-trivial exposures to the factor

(Carhart, 1997). The macroeconomic environment undergoes structural changes

as well (Nagel and Singleton, 2011), with investors learning over time and in the

aggregate, which affects the dynamics of returns.

For all these reasons, the “correct” factor model may well manifest itself

differently across (pre-specified or unknown) asset groups and macroeconomic

regimes, rendering the search for it challenging.1 To tackle the challenge, BCM

provides a clustering solution that explains which risk factors explain what as-

set returns and when. It learns an interpretable and parsimonious description of

potential (i) cross-sectional heterogeneity based on high-dimensional asset char-

acteristics and (ii) structural breaks and asset-pricing regimes instrumented by

macroeconomic predictors.

Beyond common factors, BCM uses a sparse set of uncommon factors to

capture cluster-specific asset return co-movements. Ultimately, BCM produces

a small number of macro-instrumented regimes and characteristics-managed

asset clusters, and determines a few factors in each cluster that best explain or

predict its return dispersion and dynamics. BCM also clarifies that grouped

heterogeneity (in factor-model fitting rather than ad hoc characteristics corre-

lated with returns) mitigates the errors-in-variables problem (e.g., Berk, 2000)

and validates the empirical procedure involving sorting for within-group tests.2

1Due to capital controls, investment mandates, limited participation, market segmentation,
or incompleteness, investors vary across regimes, industries, countries, and asset classes (e.g.,
Levy, 1978; Merton, 1987). Investors may find that certain factors are only relevant for certain
assets during specific periods because of different exposure to factors. These issues have im-
plications for trading, asset prices, and risk premia (e.g., Black, 1974; Errunza and Losq, 1985),
especially with limited arbitrage (Shleifer and Vishny, 1997) or slow-moving capital (Mitchell
et al., 2007).

2Even though the total variance is distributed across heterogeneity groups (and thus lower
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More generally, BCM introduces several conceptual and methodological in-

novations. First, our approach, along with Cong et al. (2022), is the earliest to

customize decision trees for analyzing financial panel data and goal-oriented

clustering (neither supervised nor unsupervised). The guidance from improv-

ing the fitness of an economic model complements pure statistical correlations

in the data and guards against the well-known overfitting problem of tree-based

models by using a natural global split criterion in the joint marginal likelihood.

BCM can have sparsity in both the selected variables and the determinants for

the clusters (e.g., a small set of characteristics or macroeconomic variables in the

asset pricing application), in contrast to rotation- or shrinkage-based methods

(e.g., PCA or Ridge for latent factors) which are not sparse in primitive features.

Second, the spike-and-slab prior (also adopted in Giannone et al., 2021) allows

us to enjoy the usual benefits of a Bayesian approach, such as accounting for

parameter uncertainty, prior economic knowledge, and model uncertainty. This

approach maintains the advantages of dense modeling, which is also empha-

sized by Avramov et al. (2023), mitigating model specification errors. Third, in

the context of asset pricing, we offer a new (non-linear) way to combine infor-

mation from characteristics and from the large number of factors documented

in the literature, generalizing the discussion beyond low-dimensional and linear

settings (e.g., Daniel and Titman, 1997).

Empirical Highlights. In our BCM application to empirical asset pricing, we

examine the entire universe of U.S. individual stocks in the sample period from

1972 to 2021. The cross section and time series of returns, ri,t, are the panel

data observations, and we consider a candidate set of widely used risk factors

ft as potential variables for selection. Our baseline specification investigates

cross-sectional asset heterogeneity based on 20 representative firm characteris-

tics zi,t−1, which are the features for clustering.

Return variance, market equity, and book-to-market are the most important

features describing the grouped heterogeneity in characteristics-managed clus-

ters. MKTRF (Market factor) and SMB (Size factor) are common factors with

in any particular group), the distribution of measurement error in beta within a group generally
differs from that in the whole sample due to heterogeneity allowed in (1). Furthermore, the total
variance is also used to estimate multiple factors, which means that the relative noise within
a heterogeneity group for estimating selected factors can be lower than in the whole sample
considering all factors. BCM thus enables one to use information from within-group tests.
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high selection probabilities.3 RMW and ROE (i.e., the two Profitability factors)

are selected in only three asset clusters with a probability above 0.7, while CMA

and IA (i.e., the two Investment factors) have low selection probabilities in most

clusters. Notably, BCM creates a unique asset cluster (high stock return vari-

ance, low earnings-to-price, low momentum, and low market equity) that com-

prises approximately 4% of all stocks, with almost no exposure to any factors.

Although most factors (18 out of 20) show high selection probabilities when

evaluated against the aggregate stock universe, some become “uncommon” and

relevant only for certain clusters once group heterogeneity is considered. Some

even become useless as assets are partitioned into finer clusters. Notably, we

find that several well-known factors (such as HML for value, RMW for prof-

itability, and UMD for momentum) are only partially useful during the expan-

sion of the cross section of leaf clusters. Furthermore, BCM improves asset pric-

ing performance with clustering and cluster-specific factor models. Benchmark

factor models, such as the Fama-French Five Factor Model (FF5), show larger

pricing errors than cluster-specific factor models in all asset clusters resulting

from BCM. The cluster-specified factor model provides better investment guid-

ance. For instance, an agnostic Bayesian investor to risk factors can earn an

out-of-sample monthly CAPM alpha of 0.86%.

We further expand our investigation to consider the heterogeneity of fac-

tor structures in asset returns over time. Unlike conventional regime-switching

models that detect structural breaks based on calendar time, the BCM identifies

regimes that are “instrumented” by macroeconomic predictors and guided by

the economic relevance of asset pricing. BCM identifies from the data three most

prominent macroeconomic regimes that alternate over time: (i) high volatility,

(ii) high valuation and non-high volatility, and (iii) low valuation and non-high

volatility. Under each regime, firm characteristics such as return variance and

size are critical to further capturing cross-sectional heterogeneity. Remarkably,

the selected firm characteristics and splitting thresholds are the same at the top

two layers under the low- and high-valuation regimes. However, the result-

ing asset clusters have distinct sets of selected factors. The sparsity model for

grouped heterogeneity in time series and cross sections significantly improves

the pricing of individual asset returns, indicating that oversimplified global

sparsity assumptions might lead to information loss.

3The list of factors and their acronyms are presented in Section 3.
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Literature. Our paper contributes to the extensive literature on sparse (factor)

modeling and emerging studies using large models. Lasso and its other pe-

nalized methods (e.g., Tibshirani, 1996; Fan and Li, 2001; Belloni et al., 2012)

are widely used for sparse variable selection, including in return forecasts (e.g.

Chinco et al., 2019). Belloni et al. (2014) develop post-selection inference meth-

ods that control high-dimensional variables, which Feng et al. (2020) adapt to

asset pricing. Bayesian variable selection features either the spike-and-slab prior

(Mitchell and Beauchamp, 1988; George and McCulloch, 1993) or the horseshoe

prior (Carvalho et al., 2010), and has recently been applied to cross-sectional

asset pricing (e.g., Bryzgalova et al., 2023).

Dense (or large) models, in contrast, assume many covariates to be useful,

even if some only have small effects, and include principal component analysis

(Stock and Watson, 2002), Ridge regularization (Kozak et al., 2020), and large

(deep learning) models (e.g., Cong et al., 2020). Fan et al. (2022); Kelly et al.

(2023) explain why they perform extremely well empirically in return predic-

tions. Our key innovation lies in effectively combining elements from both fields

to achieve interpretability, estimation tractability, and the capacity to handle big

data and mitigate model misspecification simultaneously.

Our paper, along with Cong et al. (2022), is among the first to develop

goal-oriented clustering. This allows for searching in a flexible clustering space

that is data-driven, yet guided by economic goals (e.g., fitting a sparse model

of grouped heterogeneity). Previous studies have analyzed heterogeneous as-

set groups using only heuristics, statistical correlations, or the expertise of re-

searchers. For example, different factors are adopted for assets in different coun-

tries, asset classes, business cycles, or groups with strong comovements (see,

e.g., Foerster and Karolyi, 1999; Griffin, 2002; Bekaert et al., 2009; Hou et al.,

2011; Chaieb et al., 2021).4

Closely related to ours by also analyzing endogenous grouped heterogene-

ity in financial markets, Ahn, Conrad, and Dittmar (2009) use unsupervised

clustering based on return correlations, and Patton and Weller (2022) build on

Bonhomme and Manresa (2015) to generalize K-means to group assets based on

within-group slopes and averages, and find risk-price heterogeneity pervasive

and important. Our paper distinguishes itself by emphasizing interpretability,

4While not clustering assets or studying uncommon-factor models, Jarrow and Protter (2016)
were among the earliest to point out the possible presence of a vast number of risk factors —- a
justification for dense modeling—and that different assets rely on different risk factors.
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and jointly selecting variables while clustering observations in the panel data.

Our modeling of grouped heterogeneity in asset prices is also partially moti-

vated by the weak factor problem (e.g., Giglio et al., 2022), which BCM circum-

vents by clustering assets for heterogeneous factor models.5

Our paper further contributes to conditional asset pricing models that ac-

count for time variation and regime switches. Empirical evidence suggests

that the underlying asset pricing models change over time (e.g., Pastor and

Stambaugh, 2001; Ang and Bekaert, 2002; Smith and Timmermann, 2021, 2022).

While models of time-varying coefficients have been applied in conditional as-

set pricing (e.g., Nagel and Singleton, 2011; Gagliardini et al., 2016; Cui et al.,

2022), time-varying model specifications with regime switching remain under-

developed. Guided by asset pricing model fitness, BCM handles time-series

breaks, identifies regimes using macroeconomic predictors, and selects time-

varying specified factor models for different regimes (clusters).

In terms of methodology, BCM integrates decision trees and Bayesian statis-

tical methods into a unified framework for sparse modeling with grouped het-

erogeneity. Bayesian methods have long been applied in empirical finance (see,

e.g., Avramov and Chordia, 2006; Barillas and Shanken, 2018; Chib and Zeng,

2020; Avramov et al., 2023; Chib et al., 2023), and are argued to be the ultimate

solution to asset pricing (see the AFA presidential address by Harvey, 2017). We

use spike-and-slab priors to estimate the marginal likelihood of asset returns in-

stead of finding common linear factors or estimating risk premia for fixed test

assets. Importantly, BCM computes efficiently and offers insights and perfor-

mance improvement in pricing and investments by combining information on

characteristics and factors, rather than enumerating all variable combinations.

Tree-based machine learning is gaining attention in asset pricing due to

its ability to graphically represent nonlinear interactions and effectively model

high-dimensional characteristics (e.g., Rossi and Timmermann, 2015; Gu et al.,

2020; Bianchi et al., 2021; Van Binsbergen et al., 2023). Recently, Bryzgalova

et al. (2022) apply shrinkage to prune a forest of shallow trees to select effective

basis portfolios. Cong et al. (2022) introduce “panel trees” to generalize secu-

rity sorting for deriving basis portfolios and common latent factors. Like Cong

et al. (2022) but unlike Bryzgalova et al. (2022), BCM exploits the top-down

5Various methods address weak identification/model misspecification issues (e.g., Kleiber-
gen, 2009; Gospodinov et al., 2014). Similarly to ours, Giglio et al. (2022) suggest that factor
strength depends on selecting test assets and propose using supervised PCA to choose them.
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tree growth for economically guided, goal-oriented search, thus being able to

explore a much larger universe of potential clusters efficiently, allowing deep

asymmetric interactions of asset characteristics and macroeconomic variables.

Relative to tree ensemble models (XBART, He et al., 2019; He and Hahn, 2021),

BCM focuses on clustering using economically guided, global split criteria while

preserving single-tree interpretability.

The remainder of the article is organized as follows. Section 2 presents the

BCM framework. Section 3 describes the data used for our empirical analysis.

Section 4 presents the baseline empirical findings, including asset pricing and

investment performance. Section 5 extends BCM to account for regime switches

and structural changes relevant to asset pricing. Section 6 concludes.

2 BCM for Panel Data Analysis

BCM, as a general modeling framework, combines tree-based clustering

and Bayesian variable selection. When applied to economic panel data, it gen-

erates heterogeneity groups in the cross section and/or time series. It then se-

lects potentially uncommon variables for modeling each group while keeping

the overall architecture sparse and interpretable. Section 2.1 introduces a model

of panel data generation (e.g., a model of asset returns), Section 2.2 discusses the

variable/model selection (e.g., factors) in each individual cluster using Bayesian

Spike-and-Slab priors, and then Section 2.3 presents the algorithm for clustering

observations and fitting a heterogeneous model (e.g., uncommon factor model)

for each leaf cluster. Given our application focus, for the remainder of the paper,

we mostly use terminologies in asset pricing, though they have general coun-

terparts in panel data analysis in other fields as well.

2.1 Panel Data with Grouped Heterogeneity

We consider the underlying data-generating process of a potentially unbal-

anced and large panel of observations. We denote the excess return (dependent

outcome) of the individual asset (unit) i at time t by ri,t, where the integer i

ranges from 1 to nt, the number of assets (units) available at time t. We let zi,t−1

denote the vector of M characteristics of the i-th asset (unit) in the time period

t − 1, xt−1 a vector of macro variables (common controls), and ft a vector of K
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candidate factors (explanatory variables).

We first introduce the complete model of the data-generating process with

clusters a posteriori, and provide further details on clustering in Section 2.3. Sup-

pose asset returns exhibit grouped heterogeneity in the cross section and/or

time series, in that they follow a potentially different factor structure (as re-

flected in the coefficients on the factors) across the groups (i.e., clusters):

ri,t = A(zi,t−1,xt−1) +B(zi,t−1,xt−1)
Tft + ϵi,t,

where A(zi,t−1,xt−1) =
J∑

j=1

1{T (zi,t−1,xt−1)=j}αj,

B(zi,t−1,xt−1) =
J∑

j=1

1{T (zi,t−1,xt−1)=j}βj(zi,t−1),

βj(zi,t−1) = bj,0 + bT
j,1 (IK ⊗ zi,t−1) ,

ϵi,t
independent∼ N(0, σ2

i,t), σ2
i,t =

J∑
j=1

1{T (zi,t−1,xt−1)=j}σ
2
j ,

(1)

where ft is a vector of K pre-specified factors (the candidate pool from which we

perform Bayesian factor selection), IK , a K ×K identity matrix, 1(·), the indica-

tor function, and ⊗, the Kronecker product. The clustering function T (zi,t−1,xt−1)

describes the latent grouped heterogeneity, which is assumed to be a determin-

istic function of asset characteristics zi,t−1 and/or macro variables xt−1. It maps

the characteristics and macro variables for each unit observation to one (and

only one) group number in 1, 2, . . . , J , where J denotes the number of clusters

to be estimated.6 For simplicity, we specify A(·) as a cluster-specific scalar, and

B(·) as a K×1 vector for heterogeneous alpha and beta, respectively. They both

depend (in a non-linear way with interactions, see, e.g., Avramov and Chordia,

2006) on the characteristics through clustering rules (i.e., T (zi,t−1,xt−1)).

Generalizing traditional security sorting to allow for interactions among

multiple characteristics or even time-series variables, we empirically learn the

clustering function T (·) using a customized tree that we introduce shortly. We

consider two tree-based specifications of T (·), which then play a crucial role in

partitioning the asset space based on firm characteristics and macro predictors

through a sequence of split rules (cutpoints). In the baseline, the BCM tree is

6BCM is data-driven in that J and the clustering function are not pre-specified when we take
the model to data, but are learned endogenously from the data.
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driven solely by firm characteristics T (zi,t−1) to identify the cross-sectional het-

erogeneity of asset returns; later, we allow the tree to be driven by both firm

characteristics and macro predictors T (zi,t−1,xt−1) to identify heterogeneity in

both the cross section and time series (changes in asset-pricing-related regimes).

2.2 Bayesian Model Selection in a BCM Leaf

We start with the Bayesian model selection in a given cluster (a single leaf

node of the tree), i.e., we focus on asset return observations, ri,t, in the same j-th

cluster for some j. Without worrying about cluster assignment, substituting the

dynamics of A(·) and B(·) into the return dynamics, while using the identity

(IK ⊗ zi,t−1)ft = ft ⊗ zi,t−1, one gets:

ri,t = αj + bT
j,0ft + bT

j,1 (ft ⊗ zi,t−1) + ϵi,t. (2)

The coefficients vector bj,0 = {bj,0,k | 1 ≤ k ≤ K} has length K while bj,1 =

{bj,1,k,m | 1 ≤ k ≤ K, 1 ≤ m ≤ M} has length KM , and each element bj,1,k,m
denotes the regression coefficient of the interaction term between k-th factor of

ft and m-th firm’s characteristics, zi,t−1.

Group Spike-and-Slab prior. Notice that (2) consists of factor ft and interac-

tion terms ft ⊗ zi,t−1 that are results of the dynamic beta. The number of factors

and firm characteristics can be large, resulting in a large number of variables in

the model. We perform Bayesian variable selection on factors, assuming that

each factor and its interactions with characteristics entering the model jointly,

i.e., all interaction terms will be selected once the corresponding factor is se-

lected, and vice versa. As such, we modify the Bayesian spike-and-slab pri-

ors (George and McCulloch, 1993) into a group spike-and-slab prior, which is a

Bayesian counterpart of the group Lasso for joint variable selection.

We assume independent priors for regression coefficients vector bj,0, on

which the prior for bj,1 depends. A vector of the latent variables taking the value

of 1 or 0 to indicate whether the prior on corresponding coefficient [bj,0,bj,1] is

in the region of “slab” or “spike,” i.e., whether the corresponding variable in (2)

are selected in the model or not,

γj = (γj,1, γj,2, · · · , γj,K , · · · , γj,K+KM) = (γT
j,f︸︷︷︸

K×1

, γT
j,f•z︸ ︷︷ ︸

KM×1

)T, (3)
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where to simplify the notation, we decompose the length K + K × M vector

γj into two components γj,f and γj,f•z corresponding to factors ft and all inter-

action terms ft ⊗ zi,t−1, and γj,f ,k is the k-th element of γj,f . To perform group

selection, we assume that the coefficient bj,1,k,m does not have its free indicator

but follows the corresponding γj,f ,k. Therefore γj,f•z is uniquely defined once

γj,f is given. This way, the main effect and all interactions of factors are jointly

selected or removed from the model.

The prior distributions of the regression coefficients are:

π(bj,0,k | σ2
j ,γj) = (1− γj,f ,k)N(0, ξ20σ

2
j ) + γj,f ,kN(0, ξ21σ

2
j ),

π(bj,1,k,i | σ2
j ,γj) = (1− γj,f ,k)N(0, ξ20σ

2
j ) + γj,f ,kN(0, ξ21σ

2
j ),

π(αj,0 | σ2
j ) = N(0, ξ2σ2

j ),

π(σ2
j ) = inverse-Gamma(S0, v0),

π(γj) = π(γj,f ) =
K∏
k=1

w
γj,f ,k
k (1− wk)

(1−γj,f ,k),

(4)

for k = 1, · · · , K, and i = 1, · · · ,M . We use the continuous version of the spike-

and-slab prior for factor selection (George and McCulloch, 1993), a mixture of

two normal distributions with different variances. If γj,f ,k = 1, the correspond-

ing k-th factor ft,k is selected, and the prior is in the “slab” with large ξ1. Thus,

the coefficient is less shrunk. If γj,f ,k = 0, the k-th factor is not selected, and the

prior is in the “spike” with very small ξ0 to shrink the coefficients towards zero.

In addition, ξ is large to reflect almost no shrinkage of alpha.

The tuning parameter wk represents the prior probability of selecting the

corresponding factor (γj,f ,k = 1). Similar to Avramov (2002), our model incorpo-

rates investors’ prior beliefs about factor usefulness through the prior parame-

ter values for wk. For example, an agnostic investor with equal uncertainty about

the usefulness of factors may choose wk = 0.5, implying an equal prior proba-

bility to select or remove a factor. On the other hand, a skeptical investor who

believes most factors are useless a priori may select a very small value of wk

(e.g., wk = 0.1) to reflect their low prior belief. In our empirical analysis, we

present the performance of models for investors with varying beliefs in factor

relevance. Furthermore, we impose a standard conjugate inverse-Gamma prior

on the residual variance.
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2.3 Clustering by Growing a BCM Tree

With the knowledge of how we select factors (and models) in each cluster,

we discuss how the clusters are jointly determined. We first introduce a global

split criterion for growing the tree based on the marginal likelihood of the model

in (2), then the Gibbs sampler for inference of parameters in the model. A Tree

is essentially a sequence of split rules (cutpoints) that partitions the space of

characteristics into many hyper-rectangular regions (leaf nodes). By splitting

using firm characteristics, the BCM tree can learn cross-sectional heterogeneity

as assets with different characteristic values are partitioned into different sides.

Similarly, splitting using macro-variables allows the tree to learn time-series het-

erogeneity, such as regime switching, as different periods with varying macro

conditions are partitioned into different sides. For simplicity, the following sec-

tion expresses a split rule {z ≤ c} as c̃, but it should be noted that the variable

z can be either firm characteristics or macro predictors. The split rule {z ≤ c}
at each intermediate node of the tree checks whether a specific variable (z) is

smaller than a threshold (c). Figure 1 illustrates.

Figure 1: Decision Tree Partitioning Two Dimensional Characteristics Space.

Left: A decision tree with two splits and three leaves. Right: Corresponding partition plot for
the predictor space spanned by size and value. This tree partitions the entire space into three
rectangular A3, A4, A5.

A0 : size ≤ 0.8

A3A1 : value ≤ 0.4

A5A4

NoYes

NoYes
0.4

0.80 1

1

size

value A3

A5

A4

Suppose a new asset return with characteristics (e.g., size and value) comes;

we start by passing it from the (top) root node A0, check all the split rules, and

then assign it to one and only one of the three (bottom) leaf nodes, or clusters. All

leaf nodes constitute a partition of the entire space, as shown in the right panel.

We call nodes other than the root and final leaves intermediate nodes (with split

rules), such as A1 in Figure 1. J is then the number of final leaves.

A BCM tree grows iteratively. In the baseline specification, before the first

12



split, the entire cross section of the asset returns is at the root of the tree, A0.

BCM starts from the root node, searches for the optimal split rule that maxi-

mizes the objective (the split criterion), among all possible candidates defined

by various characteristics or macro variables and thresholds, and creates two

leaf nodes (bottom nodes). Then we evaluate the leaf nodes to find the second

optimal split rule. Besides the split rule candidates, we add one more option

of “stop splitting” at each iteration, with a penalty of the tree size to help the

tree stop once there is no desirable split rule. It prevents growing the tree too

large (thus less interpretable) and alleviates the over-fitting problem. The it-

eration terminates once all leaf nodes reach “stop splitting” or other stopping

conditions, such as reaching the pre-specified maximum depth of the tree or

the minimal number of data observations in a leaf. We next elaborate on the

procedures and include the pseudo codes in Algorithm 1 in Appendix I.

2.3.1 First Split

We explore all split rule candidates, including every pair of firm charac-

teristic (and macro variable) and split threshold, to partition the cross section

(panel). All characteristics are normalized cross-sectionally between [0, 1] based

on the percentiles. Figure 2 presents one split rule candidate, which partitions

the sample into the left and right child leaf nodes, A1 and A2, respectively, based

on whether individual asset’s SVAR falls in the bottom 40 percentiles.

Figure 2: Illustration of one candidate for the first split

For calculating the split criterion, to search for the best characteristic to split the optimal cut-
point, let us consider one split candidate, SVAR≤ 0.4.

A0 : SVAR ≤ 0.4

A1 A2

Yes No

The partitioning generally aims to group similar observations into the same

leaf to fit a locally sparse model well. To evaluate split rule candidates, the ”fit-

ness” of the resulting factor model at each leaf is a natural split criterion. How-

ever, the likelihood function of the model in (2) involves unknown parameters

which cannot be accurately estimated given the noisy data, which may favor a
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bad split rule. Instead, we use the closed-form expression of the marginal like-

lihood, where all fitted parameters are integrated out, to address any concerns

about parameter uncertainty during tree growth.

Marginal likelihood. Stack all data in the same cluster in matrix form, R,Z,F,

and let F • Z denote the stacked matrix of ft ⊗ zi,t−1. The marginal likelihood of

the model at node A0 is given by:

p(A0) := p(R | Z,F) =
∫

p(R | Z,F,γj, αj,bj,0,bj,1, σ
2
j )

× π(αj | σ2
j )π(bj,0,bj,1 | σ2

j ,γj)π(σ
2
j | γj)π(γj)dαjdbj,0dbj,1dσ

2
jdγj.

(5)

Intuitively, the marginal likelihood takes the expectation of the unknown pa-

rameters in the likelihood function with respect to the prior distributions. A

function of the data and prior parameters only, it accounts for parameter esti-

mation and model selection uncertainties, separating the tree growth from fac-

tor model estimations. We describe in Proposition 1 (proved in Appendix II.)

the marginal likelihood.

Proposition 1. Stacking all asset returns in the node in a vector R, the marginal like-

lihood in (5) has a closed form:

p(R | Z,F) =
∑
Im

π(γj,f = Im)p(R | γj,Z,F), (6)

where p(R | γj,Z,F) =
1

(2π)N/2

√
|Λ0|γj

|
|ΛN |

vS0
0

vSN
N

Γ(SN)

Γ(S0)
,

Γ(z) =
∫∞
0

xz−1e−xdx is the gamma function, and π(γj,f = Im) =
∏K

k=1w
γj,f ,k
k (1 −

wk)
(1−γj,f ,k) is the prior probability of the model as shown in (4). Im is a length K vector

with all elements 0 or 1, and {Im}2Km=1 enumerates all possible values that γj,f can take.

Note that γj is uniquely defined once γj,f is given. Furthermore,

ΛN = WTW +Λ0|γj
, µN = Λ−1

N

(
WTr

)
,

vN = v0 +
1

2

(
RTR− µT

NΛNµN

)
, SN = S0 +

N

2
,

where N is total number of data observations, W = [1,F,F•Z], and Λ0|γj
is a diagonal

matrix with s-th element being ξ−2
1 σ−2

j if γj,s = 1, or ξ−2
0 σ−2

j if γj,s = 0 and 0 elsewhere.
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To simplify the notation, we now denote the marginal likelihood evaluation of

(6) using all observations in node An, n ∈ {0, 1, 2, . . . } by p(An).

Split and stopping criteria. We collect all split rule candidates in C = {c̃j}, in-

cluding candidates that split each variable at all possible cutpoint values. Recall

that each split rule candidate c̃j partitions the current node into two child leaf

nodes (Figure 2) before we fit the factor model at each potential leaf cluster sep-

arately. Because ϵi,t are independent, the two child nodes are independent, and

the joint marginal likelihood of the entire data is the product of the marginal

likelihoods of the two child nodes,

l(cj) = p(RL | ZL,FL)× p(RR | ZR,FR) = p(A1)× p(A2). (7)

The superscript L and R represent data observations partitioned to the left and

right child nodes by the split rule candidate c̃j . Each split rule candidate parti-

tions the data to A1 and A2 differently, and the value of (7) varies across split

rule candidates, serving as a natural measurement of model fitness and quality

of the candidate with larger values better.

Furthermore, besides all the split rule candidates, we consider the option

to stop splitting at the current node definitively, the null cutpoint option, the

marginal likelihood of which is defined as:

l(∅) = |C|
(
(1 + d)ã2

ã1
− 1

)
p(R | Z,F) = |C|

(
(1 + d)ã2

ã1
− 1

)
p(A0), (8)

where |C| is the number of all split rule candidates, d is the depth of the current

node (root node has depth 1), and ã1 and ã2 are two hyper-parameters. The

marginal likelihood in (8) is evaluated on all data in the root node, since all the

data belong to the same current node if we stop splitting further. We follow the

XBART framework (He et al., 2019; He and Hahn, 2021) to set the early stop op-

tion to match the regularization tree prior used in BART (Chipman, George, and

McCulloch, 2010) that chooses ã1 = 0.95 and ã2 = 2. The additional weight on

the null cutpoint criterion |C|
(

(1+d)ã2

ã1
− 1

)
is chosen as regularization of the tree.

As the tree grows, d increases, and the weight (penalty) increases exponentially.

If the benefit of splitting does not outweigh the growth penalty on tree size, the

tree stops growing to avoid overfitting.

Once all marginal likelihoods have been calculated for all split rule candi-
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dates and the null cutpoint, assuming the equal prior probability of each split

rule candidate, the split criterion can be derived following the Bayes rule:

L(cj) =
l(cj)∑

j′ l(cj′) + l(∅) , L(∅) = l(∅)∑
j′ l(cj′) + l(∅) . (9)

The split criterion in (9) is essentially the posterior probability of a split candi-

date with the prior probability of each candidate proportional to 1. We choose

the one that maximizes (9) as the first split rule. This is a maximum posterior

(MAP) estimator since it maximizes the posterior probability. Once a split rule

is selected, we split the current node and yield two child leaf nodes. However,

if the null cutpoint is selected, the current node will not split further.

2.3.2 Second Split

If the first split is not the null cutpoint, the second split can happen at either

the left or right child node of the root node. Therefore all split candidates of both

nodes should be considered, and the split rule candidates expand to C = {cA1
k }∪

{cA2
k }, where the superscript denotes which node to split. Figure 3 illustrates

two split rule candidates, for example, at either side of the root.

Figure 3: Illustration of the Second Split Candidates

This figure illustrates two example candidates for the second split. Note that no matter which
leaf node to split, the second (j-th) iteration of the tree algorithm has three (j + 1) leaf nodes.

A0 : SVAR ≤ 0.4

A1 : MOM36M ≤ 0.4 A2

A3 A4

Yes No

Yes No

(a) If splitting node A1 at MOM36M.

A0 : SVAR ≤ 0.4

A1 A2 : ME IA ≤ 0.8

A5 A6

Yes No

Yes No

(b) If splitting node A2 at ME IA.

No matter which one is chosen, one leaf node splits into two new leaf nodes

for the next iteration. The joint marginal likelihood corresponding to Eq. (7) is:

l(cA1
j ) = p(A3)× p(A4)× p(A2), l(cA2

j ) = p(A1)× p(A5)× p(A6), (10)
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which is essentially the product of the marginal likelihood evaluated on all re-

sulting leaf nodes. The marginal likelihood of a null cutpoint is defined simi-

larly:

l(∅A1) = |C|
(
(1 + d)ã2

ã1
− 1

)
p(A1)× p(A2)

l(∅A2) = |C|
(
(1 + d)ã2

ã1
− 1

)
p(A2)× p(A1),

where the null cutpoints ∅A1 and ∅A2 denote stop splitting the node A1 or A2,

respectively. Note that d = 2 for the second split, since A1 or A2 has depth 2.

Similarly, for all candidates in C = {cA1
j } ∪ {cA2

j } and two nulls, we have:

W =
∑
j′

l(cA1

j′ ) +
∑
j′

l(cA2

j′ ) + l(∅A1) + l(∅A2 )

L(cA1
j ) =

l(cA1
j )

W
,L(∅A1) =

l(∅A1)

W
,L(cA2

j ) =
l(cA2

j )

W
,L(∅A2) =

l(∅A2)

W
.

(11)

The second split is the one maximizing (11). We emphasize that the split crite-

rion is defined globally — (10) is defined on all resulting leaf nodes and all data.

Thus, the second split maximizes the global marginal likelihood to avoid over-

fitting. This global split criterion avoids the myopic local split criterion used

in standard machine learning recursive algorithms. The node no longer splits

when the null cutpoint is chosen for a specific node, say A1.

2.3.3 Further Splits

The clustering algorithm proceeds iteratively by splitting leaf nodes based

on marginal likelihood improvement. All existing leaf nodes are considered for

each split, and the split rule candidates are evaluated. The global split criterion

is defined on all resulting leaves, and the candidates that maximize the split cri-

terion are chosen. The tree-growing process terminates once all leaf nodes have

chosen the early stop option or some pre-specified stopping conditions are met.

The tree creates J leaf clusters if the tree terminates splitting after J-1 iterations.

It is worth repeating that by using marginal likelihood, we avoid intermediate

model estimation errors. Yet, the choice of split rules, or tree growth, is still

determined by Bayesian variable selection in each resulting cluster. Moreover,

the joint marginal likelihood has a natural economic interpretation, whereas a

global split criterion under a non-Bayesian framework has to be defined ad hoc.
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2.3.4 Post-Clustering Inference

Once the tree growth is complete, we refit the model using (2) for each

cluster, and obtain posterior samples of all model parameters by Markov chain

Monte Carlo (MCMC) approach, using the Gibbs sampler for inference. Ex-

pressing the stacked data in matrix form, we have

R = αj + bT
j,0F+ bT

j,1 (F • Z) + ϵ = WTβ + ϵ, (12)

where WT = [1,F,F • Z] and β = [αT
j ,b

T
j,0,b

T
j,1]

T to simplify notations. The full

conditionals are given as follows,

1. Update β = {βk}k=0,··· ,K+MK . Note that this step updates the regression

coefficients of all variables. For simplicity, we represent them using βk

rather than distinguishing [αj,bj,0,bj,1]. For k = 0, 2, · · · , K +MK,

βk | β−k, σ
2
j ,γj,R,W ∼ N

(
β̃k,

σ2
j

µk

)
,

where µk = wT
kwk +

1
ξγj,k

and β̃k = µ−1
k wT

k(R−W−kβ−k). Note that wk and

W−k denote the k-th column and all columns except the k-th of matrix W
respectively, and ξγj,0 = ξ1 for the intercept β0 = aj always in the “slab”.

2. Update γj,f ,k, for k = 1, 2, · · · , K,

γj,f ,k | β, σ2
j ,R,W ∼ BER

 ξ
− 1

2
1 exp

(
− 1

2σ2
j ξ1

β2
k

)
wk

ξ
− 1

2
1 exp

(
− 1

2σ2
j ξ1

β2
k

)
wk + ξ

− 1
2

0 exp
(
− 1

2σ2
j ξ0

β2
k

)
(1− wk)

 .

Then update γj,f•z, copy the corresponding values in γj,f for the main ef-

fect of ft, and assemble γj = (γj,f ,γj,f•z).

3. Update σ2
j

σ2
j | β,γj,R,W ∼ IG(S∗, v∗),

where S∗ = 1
2
(N+K+KM+S0), v∗ = 1

2

(
||R−Wβ||22 +

∑K+MK
k=0

β2
k

ξγj,k
+ v0

)
,

and N is number of data observations in the leaf node.

18



3 Data on U.S. Equities

Assets. To illustrate the performance of BCM, we apply it to splitting and pric-

ing the whole universe of U.S. individual equities at the monthly frequency. Our

sample spans from January 1972 to December 2021. We apply the standard fil-

ters (see, e.g., Fama and French, 2015) to (1) only include stocks listed on NYSE,

AMEX, or NASDAQ for more than one year, (2) use observations of firms with

CRSP share codes of 10 and 11, and (3) exclude stocks with negative book equity

or negative lagged market equity. We use the first 35-year subsample for model

estimation, and the recent 15 years for out-of-sample tests. In the training sam-

ple, the average and median number of stocks are 4,759 and 4,733, respectively,

while in the testing sample, these numbers are 3,742 and 3,633. Note that BCM

allows the panel data to be unbalanced.

Factors. Although BCM does not impose restrictions on the candidate factors

(both tradable and non-tradable) or variables to select from in estimating the

heterogeneous models in each leaf cluster, we consider a collection of 20 trad-

able factors for easy interpretation and computation. These factors are widely

adopted and prominent in the asset pricing literature and suffice for illustrating

the power of BCM. Alternative factors can be easily added to BCM.

First, we include factors from two popular factor models, the five factors

from Fama and French (2015) of excess market factor (MKTRF), small-minus-big

(SMB), high-minus-low (HML), robust-minus-weak (RMW), and conservative-

minus-aggressive (CMA), and the additional q-factors (Hou, Xue, and Zhang,

2015; Hou, Mo, Xue, and Zhang, 2021) of investment (IA), profitability (ROE),

and expected growth (REG). We also collect popular factors from the investment

profession: betting-against-beta (BAB, Frazzini and Pedersen, 2014), quality-

minus-junk (QMJ, Asness, Frazzini, and Pedersen, 2019), and HML Devil (HMLM,

Asness and Frazzini, 2013).

Finally, we include commonly used factors in the literature: market beta

(BETA, Fama and MacBeth, 1973), momentum (UMD, Carhart, 1997), long-term

reversal (LTR, De Bondt and Thaler, 1985), short-term reversal (STR, Jegadeesh

and Titman, 1993), liquidity (LIQ, Pástor and Stambaugh, 2003), idiosyncratic

volatility (IVOL, Ali, Hwang, and Trombley, 2003), intermediary asset pricing

(IMD, He, Kelly, and Manela, 2017), earning surprise (SUE, Rendleman Jr, Jones,

and Latane, 1982), and net equity issues (NI, Loughran and Ritter, 1995).
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Characteristics. We use 20 firm characteristics with monthly observations for

each asset: market equity (ME), market beta (BETA), bid-ask spread (BAS),

stock return variance (SVAR), book-to-market (BM), earnings-to-price (EP), cash

flows-to-price (CFP), sales-to-price (SP), asset growth (AGR), net equity issuance

(NI), accounting accruals (ACC), operating profitability (OP), return on equity

(ROE), momentum (MOM), short-term reversal (STR), seasonality (SEAS),

advertisement-to-market (ADM), R&D-to-market (RDM), and earning-

announcement abnormal return (ABR).7 We rank all observations of each char-

acteristic in each month cross-sectionally and standardize the rank scale in the

range of [0, 1], with their cross-sectional median set to 0.5. Missing values are

then imputed to be 0.5.8 We use quintiles as split value candidates for each

characteristic to mimic conventional 5 × 1 sorting in asset pricing. For 20 char-

acteristics, there are 80 (4×20) splitting candidates.

Macroeconomic variables. Following Welch and Goyal (2008), we adopt ten

macro variables for detecting time-series breaks and regimes relevant to asset

pricing. These variables include the 3-month treasury bill rate, inflation, term

spread, default spread, dividend yield, earnings-to-price, market volatility, net

equity issues, leverage, and liquidity. We map the macroeconomic variables

into the [0, 1] range based on their empirical percentile values in a rolling 10-

year window. For example, if the inflation variable exceeds 0.7, meaning the

current inflation level is higher than 70% of observations in the past ten years.

The standardization enables us to compare the performance of each predictor

on the same variation scale without look-ahead biases.

4 Empirical Application to Asset Pricing

This section presents our empirical findings applying the baseline BCM

to modeling asset heterogeneity and uncommon factors in the cross section

of stock returns; Section 5 extends the model to include structural breaks and

macro-instrumented regimes to allow for grouped heterogeneity in both the

cross section and time series. Throughout the discussion, we set wi = 0.5 for

7The characteristics cover both firm fundamentals and market signals, span all categories
commonly used in the literature, and have been mostly introduced before the test sample period.

8In earlier drafts, we standardized the values directly to [−1, 1] and obtained similar results.
We report results using rank-based standardization because of its greater robustness in general.
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agnostic investors to indicate their equal prior probability to select any factor,

and wi = 0.1 for skeptic investors to reflect their prior belief that most factors

are irrelevant.

4.1 Data-Driven and Economically Guided Asset Clusters

Figure 4: First Two Splits in the Cross Section

The heat map in the upper panel displays the search for the first split’s cutpoint, aiming for
the highest marginal likelihood value. Twenty characteristics and their cross-sectional quintiles
are considered as candidates for cutpoints. The heat map in the lower panel shows the search
for the second split’s cutpoint, also aiming for the highest marginal likelihood value. The tree
algorithm must compute 80 (K + 1) candidates for iterative splitting.

(a) First Split

(b) Second Split

BCM clusters the unbalanced panel of individual stock returns by itera-

tively splitting the entire sample using firm characteristics, based on marginal

likelihood improvement as the global split criteria. Therefore, it constitutes an

economically guided panel tree (Cong et al., 2022). The upper panel of Figure 4

shows the evaluations based on the split criterion of all candidates for the first
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split.9 The heat map depicts the resulting marginal likelihood for all 80 possible

split candidates, with the value obtained with an SVAR split at a threshold of

0.4 (S1), followed by SVAR at 0.6, ME at 0.4, and EP at 0.4. The importance of

volatility, size, and value in splitting the cross section of individual equity re-

turns is consistent with the broad finance literature.10 Moreover, all split rule

candidates have a higher marginal likelihood than the root, indicating the pres-

ence of asset heterogeneity and the benefit of clustering.

The first split yields two leaf nodes; the second can occur on either side

(see Figure 2). The heat map in the lower panels displays the evaluations of

split criteria for all candidate splits. Each panel represents a split at the left and

right leaves, resulting in 80× 2 split candidates. Certain candidates may gener-

ate small clusters in certain months due to limited data on specific interactions

of correlated characteristics. We set a minimum leaf size of 10 stock returns

per month to ensure an adequate number of observations. Candidates with-

out child leave meeting this requirement are discarded (indicated by dark cells

with a white cross X). The optimal second split, S2, is again SVAR (at 0.8) and is

implemented on the right leaf node after the first split (N1 S1 for SVAR ≤ 0.4).

For brevity, we leave out demonstrations for subsequent splits. K splits

yield K+1 leaves, and the algorithm considers 80× (K+1) possible candidates

for iterative splitting. Figure A.1 (in the appendix) displays the improvement

in (log) marginal likelihood for each split compared to the root node, account-

ing for the normalizing constants. The initial split significantly increases the

marginal likelihood, as do many subsequent splits, corroborating the presence

of grouped heterogeneity. As the benefit of additional splits eventually dimin-

ishes, tree growth stops after 20 splits due to the early stopping in (8).

The BCM tree (Figure 5) comprises 21 terminal leaves, representing 21 clus-

ters managed through various asset fundamentals and market signals. The se-

quence of split rules from the root to the leaves based on the lagged firm char-

acteristics determines the cluster membership of an asset, which may change

over time due to changes in asset characteristics. The average monthly return

observations for the terminal leaf nodes are reported. The resulting leaf clusters

appear balanced, neither too large nor too small.

9Although finer grids of cutpoints are feasible, they do not alter the main results. It suffices
to consider quintile cutpoints of each characteristic, as in the conventional 5× 1 sorting.

10For example, Pontiff (2006) shows that idiosyncratic volatility reflects holding costs and is
thus related to mispricing.
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The leaf nodes fall into four mega clusters based on the first three splits

in the top two layers of the tree: (i) low-variance and small-cap (SVAR ≤ 0.4

and ME ≤ 0.6), (ii) low-variance and large-cap (SVAR ≤ 0.4 and ME > 0.6), (iii)

medium-variance (0.4 < SVAR ≤ 0.8), and (iv) high volatility (SVAR > 0.8).

In the third layer, earnings-to-price (EP) is the splitting candidate at three

out of four nodes (N4, N6, N7). Other characteristics used in further splits in-

clude one-year momentum (MOM), short-term reversal (STR), operating prof-

itability (OP), and bid-ask spread (BAS). Such splitting of the cross section re-

sults in characteristics-based clusters of assets that may have different factor

structures, reflecting asset heterogeneity, and are used as test assets on the left-

hand side in (1) in what follows.

4.2 Common and Uncommon Factors

Factor selection and common factors. The posterior mean of the latent vari-

ables γj,f has a natural interpretation as the posterior probability that a factor is

selected. Table 1 presents the factor selection probabilities in each leaf cluster,

which are computed based on 3,500 MCMC samples with the first 1,500 burn-in

draws discarded. The IDs of leaf clusters correspond to the terminal leaves of

the tree in Figure 5. In parentheses, we also report the Bayesian estimates of the

betas for various factors. Given that betas in BCM are time-varying as functions

of firm characteristics, we first compute their time-series average for individual

stock returns in each leaf cluster and then present their equal-weighted averages

across individual betas to measure cluster exposures to the factors.

MKTRF is selected with a 100% probability in most leaf clusters, except for

N54 (0%), N56 (22.6%), and N63 (88.7%). This finding confirms the market fac-

tor’s role as a universal pricing factor, aligning with expectations from CAPM.

The size factor (SMB) is also crucial, selected with a probability exceeding 0.7

in 13 out of 21 clusters. STR and BETA are similarly prominent, with selection

probabilities greater than 0.7 in 12 and 10 clusters, respectively. However, the

remaining factors demonstrate limited usefulness, appearing in only a few clus-

ters. For instance, the profitability factors (RMW and ROE) are selected with

probabilities above 0.7 in just 3 clusters, while the investment factors (CMA and

IA) exhibit low selection probabilities across most leaf clusters.

Note that Harvey and Liu (2021) similarly identify MKTRF and SMB as the

most important factors. As in that study, the fact that MKTRF and SME have
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consistent significance and signs across clusters here is nontrivial. For exam-

ple, while the market factor has theoretical underpinnings and was the first risk

factor tested (Jensen et al., 1972), various studies have shown that it becomes in-

significant or even reverses its sign when combined with other factors, casting

doubts on its empirical validity as a risk factor. Nevertheless, it is widely used

in risk adjustments and cost-of-capital calculations, probably due to its inherent

intuitiveness and theoretical appeal.

N56 is a special cluster with selection probabilities below 50% for almost all

factors, and negligible betas on those factors. It represents assets with the high-

est volatility (SVAR > 0.8), poor earnings (EP ≤ 0.2), past loser characteristics

(MOM ≤ 0.2), and small size (ME ≤ 0.2). These factors are typically associated

with the most challenging stocks in empirical asset pricing (see, e.g., Fama and

French, 1996, 2015). In comparison, N57, which shares the same parent node as

N56, only differs slightly in size but has a 100% selection probability for MKTRF,

SMB, and UMD. BCM informs us that N56 assets are the least “priceable.”

Uncommon factors. While MKTRF and SMB are common factors, many other

factors are selected with high probability only in a subset of clusters, and are,

therefore, uncommon and asset-specific. To understand which factors price

what assets, we further summarize the factor selection results in Table 1 us-

ing different probability thresholds in Table 2. Specifically, we consider three

thresholds of 0.95, 0.9, and 0.7, to categorize factors based on their selection

probabilities. This way, we clarify which factors are common across clusters

and which are uncommon and specific for which clusters.

Table 2 summarizes the factor selection patterns in the mega clusters based

on the splits in the top two layers. Panel A (i.e., characteristics-managed asset

clusters N8, N18, and N19) contains stocks of low-variance and small-cap (i.e.,

SVAR ≤ 0.4 and ME ≤ 0.6). We found that MKTRF, IVOL, and BETA are cru-

cial for those stocks, as they are all selected with a probability larger than 0.95.

However, the factors selected in N8 differ from those selected in N18 and N19.

Figure 5 shows that low stock valuation (EP, earning-to-price) differentiates N8

from N18 and N19. Momentum (UMD) and short-term reversal (STR) factors

are useful in N18 and N19, but do not help price the low-valuation assets in N8.

Panel B includes clusters that contain stocks of low-variance and large-cap

(i.e., SVAR ≤ 0.4 and ME > 0.6). MKTRF and SMB are the most important factors

for sub-clusters, but each requires its own set of factors. For instance, UMD is
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Table 2: Factor Selection Evaluation by Leaf Clusters

This summary table presents the results from Table 1 under different selection probability
thresholds. The selected factors are listed according to their respective probability values, with
rows representing probability thresholds of > 0.95, > 0.9, and > 0.7. Four panels display leaf
cluster positions for the top three tree layers. We present in-sample (1972-2006) and out-of-
sample (2007-2021) alphas (in %) for cluster-specific fitted factor models.

Prob. N8 N18 N19 N48 N49 N50 N51 N52 N53 N54 N55

Panel A: I(SVAR ≤ 0.4)I(ME ≤ 0.6) Panel C: I(SVAR > 0.4)I(SVAR ≤ 0.8)
> 0.95 MKTRF MKTRF MKTRF MKTRF MKTRF MKTRF MKTRF MKTRF MKTRF BETA BETA

IVOL IVOL IVOL STR STR IVOL IVOL STR SMB STR STR
BETA BETA BETA IVOL HMLM ROE BETA BAB IVOL IVOL

BAB STR STR SMB IMD UMD
SUE HML BETA UMD MKTRF

UMD RMW SMB HML BAB
STR SMB RMW

UMD IA
> 0.9 LTR LTR SUE LTR
> 0.7 BAB BETA UMD UMD BETA SMB

SUE BAB
SMB

In-Sample α -0.36 0.36 0.37 -0.07 0.20 0.41 0.03 0.21 0.07 0.91 -0.10
Out-of-Sample α 0.45 0.33 0.14 1.12 0.18 0.38 0.08 0.08 -0.17 -0.13 -0.09

Prob. N20 N21 N22 N23 N56 N57 N29 N30 N62 N63

Panel B: I(SVAR ≤ 0.4)I(ME > 0.6) Panel D: I(SVAR > 0.8)
> 0.95 MKTRF MKTRF MKTRF MKTRF UMD MKTRF MKTRF MKTRF IVOL

IVOL HML SMB SMB MKTRF IVOL IVOL IVOL SMB
HML SMB UMD HMLM SMB STR SMB STR
SMB STR LIQ QMJ
UMD BETA RMW

BAB ROE
ROE STR

HMLM
> 0.9
> 0.7 BAB REG NI NI MKTRF
In-Sample α 0.07 -0.22 0.12 -0.24 1.61 -1.05 0.25 1.20 -0.88 -0.85
Out-of-Sample α 0.12 0.14 -0.02 -0.10 1.68 0.02 0.38 0.38 -0.14 0.27

selected in N20 and N22 with a probability greater than 0.95, but not in N21 and

N23 with a probability greater than 0.7. N21 has clear-cut properties, containing

stocks with the largest size and smallest volatility (SVAR < 0.2 and ME > 0.8),

and for those stocks, it seems that we need a relatively large number of factors,

including the two value factors HML and HMLM.

Panel C consists of 8 clusters with medium variance stocks (0.4 < SVAR ≤
0.8). These clusters exhibit significant heterogeneity, requiring distinct factors.

Panel D includes 6 clusters with the highest volatility stocks (SVAR > 0.8), and

involves fewer factors than others. Remarkably, IVOL proves to be an important

factor in 4 out of 6 clusters. Because high volatility correlates with high hold-

ing costs, larger mispricing (excess alpha) may exist in these clusters (Pontiff,

2006), which is empirically observed. Among these clusters, N56 is unique and

contains microcap and past loser stocks characterized by high volatility and low

valuation (growth stocks). None of the factor candidates appears to be useful in

explaining these stock returns.
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Finally, we present in-sample and out-of-sample alphas derived from fit-

ting the cluster-specific factor models. The in-sample alpha represents the av-

erage of MCMC posterior samples of the parameter, while the out-of-sample

alpha denotes the average of pricing residuals. These monthly alpha values are

estimated for individual stock returns and can potentially be relatively high.

In Panel B, most alpha values are small for low-variance and large-cap stocks.

However, the leaf cluster N56, which does not utilize any of the selected factors,

exhibits the highest alphas in-sample (1.61%) and out-of-sample (1.68%). By im-

plementing a long-short alpha strategy that equally weights portfolios in N56

(with the most positive in-sample alpha) and N62 (with the most negative in-

sample alpha), hedging corresponding selected factors, we observe in-sample

and out-of-sample return spreads of 2.49% and 1.82%, respectively.

Within-group estimations and tests. Berk (2000) points out the potential errors-

in-variables problem in testing factor models using characteristic-sorted port-

folios, a common procedure used in the literature (e.g., Litzenberger and Ra-

maswamy, 1980; Daniel and Titman, 1997). The uncommon factors and different

loadings on common factors indicate that the distribution of β across clusters,

unlike what Berk (2000) assumes. We therefore demonstrate that examining the

variation within groups can help estimation and evaluation, when the varia-

tion differs significantly across the sorted groups, and the number of clusters

is not large. Note that any errors-in-variables problem only biases against our

findings. Within-group tests are valid and useful under appropriate sorting!

Overall, we find strong evidence supporting the existence of asset hetero-

geneity and uncommon factors. A factor with a negligible selection probability

(and thus “weak”) in one cluster could be selected with a high probability in

another, challenging the standard two-pass procedure for risk premia inference.

Instead of using a supervised principal component analysis to estimate the risk

premia of weak factors (Giglio et al., 2022) where test assets are chosen based on

their correlations with given factors, we jointly select test assets and factors to

emphasize asset heterogeneity and resolve the weak identification issue.

4.3 Grouped Heterogeneity in Disguise

Mostly useful and mostly useless factors. We next revisit the tree-growing

process and investigate how the importance of factors changes as the tree grows
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iteratively and generates finer clusters. In each iteration, we define a factor with

a selection probability higher than 0.7 in more than 60% of all leaf clusters to

be ”mostly useful,” a factor with a selection probability lower than 0.3 in more

than 60% of leaf clusters to be ”mostly useless,” and the rest to be ”partially

useful/useless.” A factor can move across categories during the iterative tree

growth. Table 3 summarizes the results, where ticks indicate mostly useful fac-

tors, crosses, mostly useless factors, and circles, partially useful factors.

Table 3: Factor Selection Evaluation Through Iterative Splits

This table shows the iterative factor selection results during tree growth (first column) for an
increasing number of clusters. A factor is displayed with a “

√
” for a selection probability higher

than 70% in more than 60% of leaf clusters. A factor is displayed with a “×” for a selection
probability lower than 30% in more than 60% leaf clusters. A factor belonging to either group is
displayed with an “o”.

Split Order MKTRF SMB HML RMW CMA UMD HMLM QMJ BAB LIQ
Root

√ √ √ √ × √ √ √ √ √
S1

√ √ × o × √
o o

√
o

S2
√ √ × × × √ √ × √ ×

S3
√ √

o × × √ √
o

√ ×
S4

√ √ √ × × √ √ × √ ×
S5

√ √ × × × √
o × √ ×

S6
√ √

o o × √
o × √ ×

S7
√ √

o o × √ × × √ ×
S8

√ √
o o × √ × × o ×

S9
√ √

o o × √ × × o ×
S10

√ √
o o × √

o × o ×
S11

√ √
o o × o o × o ×

S12
√ √

o o × √ × × o ×
S13

√ √
o o × o o × o ×

S14
√ √

o o × o × × o ×
S15

√ √
o o × o × × o ×

S16
√ √

o o × o × × o ×
S17

√ √
o × × o × × o ×

S18
√ √

o × × o × × o ×
S19

√ √
o × × o × × o ×

S20
√ √

o × × o × × o ×

Split Order STR LTR REG IVOL SUE IA ROE IMD NI BETA
Root

√ √ √ √ √ × √ √ √ √
S1

√ × √ √
o o o o

√ √
S2

√ × √ √ × × × × √ √
S3

√
o × √ × × o × √ √

S4
√ × × √ × × × × √ √

S5
√ × × √ × × o × √ √

S6 o × × √ × × o × √
o

S7
√ × × √ × × o × o o

S8
√ × × √ × × o × o o

S9
√ × × √ × × × × × o

S10
√ × × o × × o × o o

S11
√ × × o × × o × o o

S12
√ × × o × × o × o o

S13
√ × × o × × o × o o

S14
√ × × √ × × o × × o

S15
√ × × o × × o × × o

S16
√ × × o × × o × × o

S17
√ × × o × × × × × o

S18
√ × × o × × × × × o

S19
√ × × o × × × × × o

S20
√ × × o × × × × × o
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At the root node (whole universe of stock returns), 18 out of 20 factors are

selected as the most useful. However, the marginal likelihood is the smallest

at the root node, as seen in Figure A.1. The marginal likelihood increases as

the tree grows, and some factors become mostly useless. For example, at the

third split, with four leaves, RMW, CMA, LIQ, REG, SUE, IA, and IMD become

mostly useless. When the tree stops growing after 20 splits, MKTRF, STR, and

SMB consistently constitute useful factors.

UMD and IVOL are mostly useful in the first half of splits, while CMA and

IA are never mostly useful. Furthermore, RMW, QMJ, LIQ, LTR, SUE, and IMD

are mostly useful only at the root. Those results are consistent with what we

have observed in Tables 1 and 2. Although some factors are mostly useless, they

can still be important for some specific clusters. For example, two investment

factors (CMA and IA) are mostly useless and have a cross almost at every split,

but IA is still helpful in pricing assets in cluster N52, as shown in Table 2.

Overall, BCM highlights how nonlinear interactions in characteristics help

identify grouped heterogeneity and how such heterogeneity, when not consid-

ered, manifests itself as anomalies previously documented. Incorporating both

high-dimensional, nonlinear information from characteristics and the structure

of linear factor models, BCM adds to studies pitching firm characteristics versus

factors (e.g. Daniel and Titman, 1997) and mitigates the ”factor zoo” problem.

Anomalies and associated factors. Grouped heterogeneity may also be a key

driver for the anomalies documented in the literature. For example, numer-

ous anomalies have been associated with return volatility and size (e.g., Banz,

1981; Ali, Hwang, and Trombley, 2003; Ang, Hodrick, Xing, and Zhang, 2006).

Our framework has identified the prominence of SVAR and ME as asset char-

acteristics for heterogeneity across endogenously generated groups. This result

suggests that these anomalies may reflect heterogeneous factor structures across

assets, despite small stocks usually having high return variance. Mechanically,

it is also possible that a better estimation of the variance component instead of

the mean improves the marginal likelihood of splitting the cross section.

However, adding a common factor constructed from a particular anomaly

may not eliminate the anomaly, particularly if the factor is weak. For example,

most low-variance and large-cap stocks do not load on the idiosyncratic volatil-

ity (IVOL) factor. In contrast, most high-return-variance stocks do not load on

Betting-Against-Beta (BAB) factor. Moreover, a seeming anomaly could result
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from factors not related to it. For example, the factors the large-cap low-variance

clusters (N20, N21, N22, N23) load on greatly differ from those of high-return-

variance clusters (N56, N57, N29, N30, N62, N63), and most factors are unre-

lated to beta or idiosyncratic volatility anomalies. This observation aligns with

Chaieb, Langlois, and Scaillet (2021), which suggests that characteristics are not

necessarily paired more often with their corresponding factors.

4.4 Sources for Time Variation in Factor Loadings

Conditional factor models enable us to examine the drivers for the time-

varying factor loadings across leaf clusters. Table 4 summarizes the signs and

significance of the conditioning variables used for the time-varying factor load-

ings of MKTRF and SMB, the two most important factors across all clusters, as

seen in Table 2. Table 4 has four panels showing the top two layers of the tree.

“+” indicates significant and positive predictors, “-”, significant and negative

predictors, and “◦”, insignificant predictor. The uncertainty of parameter esti-

mates is based on 2,000 MCMC posterior samples, with 95% credible intervals.

Concerning the loading on MKTRF, we find that market equity (ME) has a

persistent positive impact on most leaf clusters’ time-varying beta on the market

factor, in line with economic intuition: a stock with a higher market equity value

has greater exposure to the value-weighted aggregate market. We also learn that

the book-to-market (BM) ratio is an important determinant of the time variation

of beta on the market factor. Furthermore, investment growth (AGR) is a posi-

tive indicator in Panel A, B, and C; however, it has little impact on high return

variance stocks in Panel D. In addition, momentum (MOM) is a positive indica-

tor for medium and high return variance stocks in Panel C and D; in contrast, it

seems to be a negative indicator for low-variance and small-cap stocks in Panel

A, consistent with the findings of Kelly, Moskowitz, and Pruitt (2021) on past

performance predicting future market beta.

Concerning loadings on SMB, our analysis uncovers that market equity

negatively affects SMB beta in Panels B, C, and D. However, it can positively

influence low-variance small-cap stocks in Panel A, aligning with economic in-

tuition. BCM tree reveals a nonlinear relationship between SMB factor loading

and firm market equity, which may interact with return variance. Another sig-

nificant characteristic influencing the time variation of SMB beta is operating

profitability (OP). OP positively affects stocks with low variance and large mar-
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Table 4: Significant Characteristics of Factor Loadings

This table explains the conditioning variables’ signs and significance for the time-varying factor
loadings of the market and beta factors. A ”+” indicates a positive significant predictor, a ”-”
indicates a negative significant predictor, and an ”o” indicates an insignificant predictor. The
significance is determined from 2,000 MCMC samples’ 95% credible parameter intervals. Four
panels display leaf clusters’ positions under the top three layers of the tree.

MKTRF Beta Characteristics SMB Beta Characteristics
Leaf Node ME BM OP AGR MOM ME BM OP AGR MOM

Panel A: 1{SVAR ≤ 0.4}1{ME ≤ 0.6}
N8 + o o o o o o o o o
N18 + + + + - o o o o o
N19 + o o o o + o o o -

Panel B: 1{SVAR ≤ 0.4}1{ME > 0.6}
N20 + + + + o - o + + o
N21 + + + o o - o + o o
N22 o o o + o - o o o o
N23 + + + o o - + + o +

Panel C: 1{SVAR > 0.4}1{SVAR ≤ 0.8}
N48 o o o o o o o o o o
N49 + o o o o o o o o o
N50 + + o o o o o o o o
N51 + o o o o o o + o o
N52 + + + + + - o + + o
N53 + o o + o o o o + o
N54 o o o o o o o o o o
N55 + o o o o o o o o o

Panel D: 1{SVAR > 0.4}1{SVAR > 0.8}
N56 o o o o o o o o o o
N57 + o o o o - o o - o
N29 + o o o + o o o o o
N30 + + + o o o o o o o
N62 + + + o + - o o o +
N63 o o o o o o o o - +

ket capitalization and stocks with medium variance in Panels B and C.

4.5 Pricing Performance and Investment Strategies

An asset pricing model has to be evaluated in terms of its empirical perfor-

mance. In the standard approach, missing a useful factor or including a useless

one may result in a significant alpha. In contrast, BCM offers the advantage

of fitting individual stocks in different clusters separately, allowing for hetero-

geneous factor selection and estimation. Because BCM relies on economically

guided statistical fitness (marginal likelihood of factor models), its economic fit-
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ness in terms of minimized pricing errors is not guaranteed and depends on the

validity of the assumed grouped heterogeneity with uncommon factors.

To evaluate the pricing error in a specific cluster (j), we rely on the Cross-

Sectional R2 by aggregating individual stocks in the same cluster, defined as

Cross-Sectional R2 = 1−
∑Nj

i=1

(
1
Ti

∑Ti

t=1(r
(j)
i,t − r̂

(j)
i,t )

)2

∑Nj

i=1

(
1
Ti

∑Ti

t=1 r
(j)
i,t

)2 , (13)

where r̂
(j)
i,t =

∑J
j=1 1{T̂ (zi,t−1,xt−1)=j}β̂j(zi,t−1)

Tf
(j)
t , and Nj is number of assets in

the j-th cluster. It measures how well the model explains cross-sectional differ-

ences in average returns across all individual stocks in cluster j. We compare

the performance of the heterogeneous factor model with the FF5 model in each

of the 21 clusters. A higher Cross-Sectional R2 value suggests lower pricing er-

rors, and a positive value confirms that the factor model has better fitness than

the constant model. We use the FF5 model and its variants as our benchmark

because it is arguably the most powerful and widely adopted. The comparison

results with other benchmarks are similar.

Table 5 shows that the uncommon-factor models outperform the cluster-

specific and pooled FF5 models in both in-sample and out-of-sample analyses.

The effectiveness of FF5 models can vary depending on whether cluster-specific

or pooled approaches are used. The former takes advantage of cross-sectional

cluster homogeneity, while the latter benefits from a significantly larger sam-

ple size. Our Skeptic or Agnostic model consistently generates higher Cross-

Sectional R2 values than the FF5 model for almost all clusters. Small-variance

and large-cap stocks in Panel B exhibit the lowest pricing errors, whereas high

return variance stocks in Panel D display high pricing errors. N56, consisting

of microcap, past loser stocks with high volatility and low valuation, remains

unexplained by any factor, including those in Table 2. The FF5 model performs

even worse for this cluster, suggesting the inclusion of irrelevant factors. Recall

that for agnostic investors choose and wi = 0.1 for skeptic investors. Compar-

ing the performance of skeptic and agnostic beliefs, we observe that the latter

outperforms in several clusters by a slight margin.

The BCM improvement in asset pricing performance comes from both Bayesian

factor selection and characteristic-based clustering. The latter captures grouped

heterogeneity, and the former reflects the asset-pricing implications of the grouped
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Table 5: Evaluating Pricing Performance with Leaf Clusters

This table presents the cross-sectional R2 (%) values for different models, computed for each
leaf cluster to evaluate pricing errors in fitted factor models. Skeptic (wi = 0.1) and agnostic
(wi = 0.5) prior models for BCM are shown. We include Fama-French five factors in both
cluster-specific and pooled samples. The leaf node IDs match the tree cluster in Figure 5.

In-Sample (1972-2006) Out-of-Sample (2007-2021)
Leaf Node Skeptic Agnostic FF5-Cl FF5-Pl Skeptic Agnostic FF5-Cl FF5-Pl

Panel A: I(SVAR ≤ 0.4)I(ME ≤ 0.6)
N8 12.2 13.1 11.4 13.6 14.5 18.3 12.6 16.5
N18 13.0 13.3 11.8 14.0 14.4 19.3 16.1 21.0
N19 14.5 14.6 12.7 12.3 16.6 17.4 16.2 18.0

Panel B: I(SVAR ≤ 0.4)I(ME > 0.6)
N20 21.0 21.0 19.5 18.9 18.0 17.7 15.5 15.8
N21 15.0 14.9 13.7 14.9 25.1 26.8 24.4 26.5
N22 16.1 16.9 15.9 17.1 19.4 19.4 17.6 19.0
N23 15.2 15.8 14.8 15.9 15.6 16.7 12.6 14.5

Panel C: I(SVAR > 0.4)I(SVAR ≤ 0.8)
N48 11.7 12.9 11.2 11.8 10.3 15.9 11.2 12.9
N49 17.6 17.7 16.0 17.0 17.4 19.4 18.3 18.4
N50 13.2 14.1 13.0 13.0 11.8 13.8 10.7 11.0
N51 12.9 13.4 12.3 12.7 14.8 16.7 13.1 13.0
N52 15.4 15.4 14.3 14.0 19.4 21.4 18.6 18.4
N53 15.3 15.5 14.4 14.1 16.9 17.3 15.0 15.2
N54 19.0 20.2 17.4 16.7 23.9 25.0 22.6 22.1
N55 11.8 11.7 9.4 10.3 13.6 14.3 11.5 12.2

Panel D: I(SVAR > 0.8)
N56 14.2 17.5 12.9 11.4 4.7 5.5 4.0 3.7
N57 16.5 16.3 11.5 11.3 14.6 16.6 13.2 11.9
N29 12.8 12.7 11.2 10.9 11.3 11.4 9.5 9.2
N30 17.9 18.9 16.8 17.2 22.8 24.4 19.4 18.9
N62 12.9 13.5 10.6 11.0 14.1 15.5 12.6 13.4
N63 15.6 16.0 14.0 13.9 11.9 13.2 10.2 11.1

heterogeneity. Identifying the heterogeneity group is extremely useful because

BCM informs us about the explanatory power of different assets. Some clusters

can be understood by a model with selected factors, while others are very noisy.

Note that the Cross-Sectional R2 for the “well-behaved” clusters can be as high

as 25%-27% out-of-sample, which more than doubles that in most other factor

models. For example, FF5 without tree clustering, as one of the best-performing

factor models in the literature, achieves an R2 of 11.1% in the full test sample

(2007-2021), whereas an FF5 model with BCM clustering (but without factor se-

lection) has improvements for almost all clusters and can achieve an R2 over

20% out-of-sample for several clusters.
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Investment performance. The outperformance of BCM relative to benchmark

models such as FF5 in fitting each cluster with smaller pricing errors suggests

that uncommon-factor models can provide more accurate expected returns and

covariance estimates. Using these model-implied parameters to form optimal

portfolios can improve investment performance, further validating and evalu-

ating BCM. Factor models are also routinely used for developing trading strate-

gies in both active and passive investing and for risk management. Therefore, it

is natural to examine how BCM helps with investments.

To evaluate the performance of investment strategies using portfolios cre-

ated for each cluster based on the selected factors, we examine the value-weighted

portfolios of the 21 leaf clusters depicted in Figure 5, and the Fama-French 5× 5

Size-BE/ME portfolios. Table 6 presents the performance of two portfolio strate-

gies: the LS-Cluster strategy, which longs the leaf cluster portfolio with the high-

est factor model implied returns and shorts the lowest one, and the MVE-Cluster

strategy, which is the mean-variance efficient portfolio on factor model implied

returns of all clusters. Both BCM approaches (Skeptic and Agnostic) outper-

form the FF5 model in and out of the sample in the LS-Cluster strategy, i.e.,

LS-Cluster strategies based on BCM generate higher Sharpe ratios and CAPM

alphas than that on the FF5. Furthermore, the MVE-Cluster strategy based on

BCM with agnostic priors outperforms both in and out of the sample, providing

an annualized Sharpe ratio of 1.8 and a monthly CAPM alpha of 0.86%.

Notice that regardless of the factor models we use, the out-of-sample Sharpe

ratio of investment portfolios constructed from the BCM clusters (e.g., 1.8 and

1.64 with MVE-Cluster using Agnostic and FF5, respectively) can easily triple

that of portfolios constructed using the same strategy but from FF25 portfolios

(0.6 and 0.52). The out-performance in CAPM Alpha is equally strong, both

in- and out-of-sample. Relative to other benchmark investment portfolios con-

structed from single-sorted portfolios, or common risk-factor premia, the im-

provements from BCM clustering are even bigger.

5 Macro-Instrumented Asset Pricing Regimes

The macroeconomic environment continuously evolves, and investors learn

from experience and data to adjust their strategies. The underlying return dy-

namics and, thus, the factor structure are unlikely to stay the same. The fi-
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Table 6: Investing in Cluster-Selected Factor Models

This table presents the investment performance of value-weighted portfolios corresponding to
the 21 leaf clusters depicted in Figure 5. Skeptic (wi = 0.1) and agnostic (wi = 0.5) indicate
different prior beliefs of factor usefulness by investors. The “LS-Cluster” longs the leaf cluster
portfolio with the highest factor model implied returns (loadings on risk premia) and shorts the
lowest. The “MVE-Cluster” strategy is the mean-variance efficient portfolio on cluster-selected
factor model implied returns. We have also provided results for the Fama-French ME-B/M 5×5
portfolios.

In-Sample (1972-2006) Out-of-Sample (2007-2021)
Portfolio Skeptic Agnostic FF5 Skeptic Agnostic FF5

Panel A: Annualized Sharpe Ratio

LS-Cluster 1.14 0.94 0.55 0.45 0.24 0.20
MVE-Cluster 0.81 0.88 0.82 1.23 1.80 1.64

LS-Cluster (ME-B/M 5× 5) 0.90 0.89 0.79 0.19 0.27 -0.11
MVE-Cluster (ME-B/M 5× 5) 0.70 0.83 0.80 0.53 0.60 0.52

Panel B: CAPM Alpha (%)

LS-Cluster 2.30*** 2.04*** 1.16*** 1.18 0.75 0.69
MVE-Cluster 0.50*** 0.58*** 0.46*** 0.79*** 0.86*** 0.75***

LS-Cluster (ME-B/M 5× 5) 1.21*** 1.43*** 0.89*** 0.06 0.04 -0.64*
MVE-Cluster (ME-B/M 5× 5) 0.53*** 0.60*** 0.69*** -0.16 -0.06 -0.21

nance literature has documented extensive evidence of model instability and

breaks. For example, Smith and Timmermann (2021, 2022) examine the risk

of structural breaks and find abrupt changes in factor loadings. As described

in Section 2, BCM can account for structural breaks via clustering time series

observations. BCM identifies macroeconomic variables (e.g., market volatility,

inflation, or treasury bill rate) that reflect time-series asset heterogeneity, pro-

viding insights into the common or uncommon factors driving returns under

various macro-instrumented asset-pricing regimes.

Time-series splits. A time-series split works similarly to a cross-sectional split

described in Section 4. The algorithm searches for split candidates in time-series

(macro) and cross-sectional (characteristics) variables. Either type of split candi-

date partitions the panel of asset returns into two child leaves. The tree-growing

process proceeds similarly, with the marginal likelihood in (5) being evaluated

iteratively. By jointly comparing time-series and/or cross-sectional candidates

at each split, BCM determines the optimal type of split and identifies both cross-
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sectional and time-series heterogeneity of asset returns.

In our empirical implementation, we impose an economic restriction that

the algorithm splits the sample first using macroeconomic variables, with up

to two splits that result in at most three regimes for illustration and easy inter-

pretation, and then using asset-specific characteristics. Note that the regimes

are defined according to the value of macro variables, i.e., macro-instrumented.

Thus, they generally correspond to discontinuous episodes in calendar time.

As shown in Figure 6, three regimes indicated by two macroeconomic states,

market volatility (X SVAR) and market earnings-to-price (X EP), emerge from

the training sample from January 1972 to December 2006: (i) High-Vol with

X SVAR > 0.8, (ii) Non-High Vol and High Valuation with X SVAR ≤ 0.8 and

X EP > 0.6, and (iii) Non-High-Vol and Low-Valuation with X SVAR ≤ 0.8 and

X EP ≤ 0.6. Based on the in-sample estimates, we analyze the regimes in the

test sample (also displayed in the figure). The cumulative returns of the two

most frequently selected factors, IVOL and MKTRF, are superimposed and can

be related to the market valuation and volatility dynamics.

Figure A.2 (in the appendix) presents the corresponding BCM tree and as-

set clusters, with macro predictors selected by their ranks scaled to [0, 1] based

on the previous 10-year rolling window. Market volatility is the most critical

predictor of regime switching, followed by market EP in non-high-volatility pe-

riods, all consistent with Pastor and Stambaugh (2001), which features breaks in

a model linking equity risk premia to changes in stock market volatility.

Regime-specific factor models. Following the time series splits, three sub-

trees split the cross section by firm characteristics under those three macro-

instrumented asset pricing regimes. Individual stock return variance remains

the first characteristic that splits the cross section under each regime, forming

asset clusters under the high-volatility regime based on individual stock return

variance. Remarkably, the firm characteristics and thresholds used for cross-

sectional splits are the same in the top two layers under the low- and high-

valuation regimes. However, the resulting asset clusters have very different fac-

tor structures. In total, 21 asset clusters are discovered. The tree that accounts

for cross-sectional and time-series asset heterogeneity differs greatly from that

of Figure 5, which leaves out time-series breaks.

Table 7 presents the selection of uncommon factors for each asset cluster,

considering both cross-sectional and time-series asset heterogeneity. The table
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Figure 6: Time-Series Breaks

Macro-instrumented regimes in calendar time (tree plotted in Figure A.2 in the appendix), with
multiple regime switches corresponding to the first two splits based on market volatility and
earnings-to-price. The training data is from 1972-2006, and the test data is from 2007-2021. The
cumulative returns of the two most commonly selected factors are included.

includes three panels corresponding to the three macro-instrumented regimes.

Asset clusters in the high-volatility regimes (Panel C) have fewer selected fac-

tors than others (Panels A and B), with IVOL being the most crucial factor. In

Panel A, which represents the non-high-volatility and low-valuation regime,

MKTRF is frequently selected along with IVOL. In the high-valuation regime

(non-high volatility and high valuation) of Panel C, profitability and investment

factors also appear important. Furthermore, the high-volatility regime exhibits

the largest discrepancy between the out-of-sample and in-sample alphas, indi-

cating the poor performance of the underlying factor models during periods of

high market volatility. Cluster N30 is characterized by high return variance and

low cash flow during periods of high market volatility and shows a substantial

difference between out-of-sample and in-sample alphas.

We then examine the asset pricing performance of cluster-specific factor

models under each regime. Table 8 presents the results. Except for the cross-

sectional R2 defined in (13), we also report the total R2, which captures the frac-

tion of time-series variations of realized equity returns explained by the contem-
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Table 7: Regime Switches: Factor Selection Evaluation by Leaf Clusters

This table presents the uncommon factor selection outcomes for the cross-sectional clustered
model during regime changes (tree plotted in Figure A.2 in the appendix). The rows labeled
> 0.95, > 0.9, and > 0.7 correspond to different selection probability thresholds, and the listed
factors are ordered based on their values. Three panels display leaf cluster positions for the
three macroeconomic-targeted regimes. We present in-sample (1972-2006) and out-of-sample
(2007-2021) alphas (in %) for cluster-specific fitted factor models.

Panel A: I(X SV AR ≤ 0.8) I(X EP ≤ 0.6)
Prob. N32 N33 N34 N35 N36 N74 N75 N38 N39
>0.95 STR MKTRF MKTRF IMD QMJ HML IVOL IVOL IVOL

IVOL IVOL SMB IVOL IVOL IMD MKTRF
IMD STR SUE MKTRF BETA
SUE IA CMA

>0.9 HML SUE LTR

>0.7 HML NI IVOL NI
QMJ LTR
BAB

In-Sample α 0.09 1.05 0.02 0.18 1.70 0.59 0.55 0.70 0.03
Out-of-Sample α -0.05 0.60 0.06 0.43 0.50 -0.14 -0.08 0.26 0.70

Panel B: I(X SV AR ≤ 0.8) I(X EP > 0.6) Panel C : I(X SV AR > 0.8)
Prob. N20 N42 N43 N44 N45 N23 N12 N13 N28 N29 N30 N31
>0.95 STR MKTRF IVOL MKTRF QMJ SMB MKTRF BETA HMLM STR IVOL STR

IVOL IVOL SUE IVOL LIQ RMW IVOL STR IVOL BETA IVOL
SUE IA ROE BETA STR QMJ SUE IVOL IA
ROE BETA IMD IVOL IVOL

SUE SUE
IA
IMD
BETA

>0.9 LTR

>0.7 ROE UMD NI IVOL

In-Sample α 1.12 0.36 0.36 0.82 1.41 -0.36 0.41 0.66 0.66 0.69 0.89 0.17
Out-of-Sample α 0.10 1.62 0.44 1.42 1.09 0.05 0.64 1.53 2.25 2.22 6.02 2.06

poraneous factors, aggregated over time and assets, defined as:

Total R2 = 1−
∑N

i=1

∑Ti

t=1 (ri,t − r̂i,t)
2∑N

i=1

∑Ti

t=1 r
2
i,t

, (14)

where r̂i,t =
∑J

j=1 1{T̂ (zi,t−1,xt−1)=j}β̂j(zi,t−1)
Tft, and the predictive R2, defined as:

Predictive R2 = 1−
∑N

i=1

∑Ti

t=1 (ri,t − r̂i,t)
2∑N

i=1

∑Ti

t=1 r
2
i,t

, (15)

where r̂i,t =
∑J

j=1 1{T̂ (zi,t−1,xt−1)=j}β̂j(zi,t−1)
Tλf , and λf is the factor risk premia

estimate, a simple average return of the tradable factor. Predictive R2 captures

the predictive performance of model-implied return forecasts and summarizes

the model’s ability to capture compensation for systematic risk exposures.

Unlike in Table 5, the cluster-specific FF5 model, which only uses data in
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Table 8: Asset Pricing Performance Across Regimes

This table compares the asset pricing performance of various models based on three metrics
in different macroeconomic regimes. It displays models with skeptical and agnostic priors for
BCM. We include the Fama-French five-factor model in cluster-specific and pooled samples. The
clustering model is based on the three clusters (tree plotted in Figure A.2 in the appendix).

In-Sample (1972-2006) Out-of-Sample (2007-2021)

Panel A: I(X SVAR ≤ 0.8) I(X EP ≤ 0.6)

Skeptic Agnostic FF5-Cl FF5-Pl Skeptic Agnostic FF5-Cl FF5-Pl
Total R2 (%) 13.3 13.3 12.2 11.3 15.4 15.3 14.1 13.2
Cross-Sectional R2 (%) 11.0 11.3 9.6 9.4 15.1 16.3 14.3 13.5
Predictive R2 (%) 0.4 0.5 0.2 0.1 -0.1 -0.1 -0.2 -0.2

Panel B: I(X SVAR ≤ 0.8) I(X EP > 0.6)

Skeptic Agnostic FF5-Cl FF5-Pl Skeptic Agnostic FF5-Cl FF5-Pl
Total R2 (%) 22.5 22.3 21.4 19.8 11.8 12.0 10.9 9.5
Cross-Sectional R2 (%) 34.0 33.9 31.4 30.6 11.6 10.7 9.7 7.6
Predictive R2 (%) 1.1 1.1 1.1 1.0 0.2 0.2 0.1 0.1

Panel C: I(X SVAR > 0.8)

Skeptic Agnostic FF5-Cl FF5-Pl Skeptic Agnostic FF5-Cl FF5-Pl
Total R2 (%) 21.3 21.0 17.7 15.3 17.5 15.6 12.5 11.2
Cross-Sectional R2 (%) 11.7 21.2 19.6 16.9 18.0 33.4 29.0 28.4
Predictive R2 (%) 0.6 0.2 0.3 0.3 0.2 0.6 0.6 0.8

the regime, consistently outperforms the pooled version, reflecting the supe-

rior information when considering macro-instrumented regimes (even without

factor selection). In Table 8, the three performance measures suggest that the

cluster-specific factor models from our BCM almost always outperform both

FF5 models in- and out-of-sample for skeptical and agnostic investors in the

low- and high-value regimes, and for agnostic investors in the high-volatility

regime. The high-volatility regime is also where factor models explain the most

variation in returns, and heterogeneous factor models show the greatest im-

provement compared to other benchmark (common-)factor models.

6 Conclusion

Sparse modeling aims to provide interpretability and tractability, and the

literature thus far assumes a globally sparse structure or a small set of common

covariates applying to all observations. However, potential grouped hetero-

geneity challenges this approach, partially causing the “illusion of sparsity”
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(Giannone et al., 2021). We provide an alternative framework for developing

sparse models accommodating grouped heterogeneity through joint observa-

tion clustering and heterogeneous variable selection. Our tree-based clustering

utilizes a natural global split criterion—maximizing the joint marginal likeli-

hood analytically derived using spike-and-slab priors for Bayesian variable se-

lection and model estimation. As such, BCM prevents overfitting in tree-based

models, achieves sparsity and economic interpretability, and maintains the ad-

vantages of dense modeling (e.g., mitigating model misspecifications Avramov

et al., 2023).

When estimating uncommon-factor models for cross-sectional asset pric-

ing, BCM combines information from firm characteristics, macroeconomic states,

and systematic factors to sparsely model cross-sectional heterogeneity captured

by high-dimensional firm characteristics and detect macroeconomic-instrumented

asset pricing regimes. We find compelling grouped heterogeneity in the cross

section (linked to asset return variance, market cap, and earnings-to-price val-

uation ratio) and time series (predicted by market volatility and valuation) in

U.S. equities. MKTRF and SMB are robust common factors, while a small set

of uncommon factors are identified as drivers of returns across characteristics-

managed-market-timed clusters. BCM also helps explain volatility- or size-

related anomalies, enables testing models within sorted portfolios, and miti-

gates the “factor zoo” problem, in addition to outperforming benchmark common-

factor models in pricing and investments.

Future studies could explore the theoretical underpinnings of the grouped

heterogeneity and uncommon factors found in the data, or apply BCM to other

asset classes or across asset classes and countries. Given how BCM embod-

ies a general economically guided, goal-oriented (greedy) search in the large

modeling space for clustering panel observations, its applications to panel data

with grouped heterogeneity beyond asset pricing and the objective of maximum

marginal likelihood can also be promising for social science research.
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Online Appendices

I. BCM Algorithm

Section 2.3 presents the step-by-step tree growing examples, while this sec-
tion illustrates the complete growing algorithm in pseudo-codes.

Algorithm Bayesian Clustering Model

1: procedure BCM
2: Input: data and parameters. Output: a tree structure with a bunch of split rules that defining

clusters by panel characteristics.
3: for j from 1 to num iter do ▷ Loop over number of iterations
4: if current depth ≥ dmax then
5: return.
6: else
7: Search the tree, find all leaf nodes A
8: for each leaf node s in A do ▷ Loop over all current leaf nodes
9: if s is not labeled as “cannot split” then

10: for each split candidate c̃m in Cs do
11: Partition data temporally in N according to c̃m.
12: if Left or right child node cannot satisfy minimal leaf size then
13: L(c̃m) = −∞.
14: else
15: Calculate the split criteria L(c̃m) in (9).
16: end if
17: end for
18: end if
19: end for
20: Find the best leaf node and split rule that maximizes split criteria

c̃j = argmax
N∈N ,c̃m∈∪|N|

s=1Cs

{L(c̃j)}

21: Split the node selected at the j-th split rule of the tree c̃j . If a null cutpoint is
selected, label the corresponding node “cannot split” and return to line 7.

22: end if
23: end for
24: for j from 1 to J do ▷ Loop over all clusters returned by the tree
25: Draw posterior samples of parameters by the Gibbs sampler in Section 2.3.
26: end for
27: return
28: end procedure

Note that the number of clusters J is not determined by users, but is learnt from data after the
for loop ending in line 23.
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II. Proof of Proposition 1

Proof. To simplify notations, we re-express the model in (2) as

R = Wβ + ϵ

where β = [αj,b
T
j,0,b

T
j,1] and W = [1,F,F • Z].

First, we keep taking conditions with respect to the assignment to spike
or slab γj and integrate out all other parameters. Given γj , the prior on β is
N(0, σ2

jΛ
−1
0|γj

), where Λ0|γj
is a diagonal matrix with s-th element being ξ−2

1 σ−2
j

if γj,s = 1, or ξ−2
0 σ−2

j if γj,s = 0. Following the standard result of Bayesian
linear regression with conjugate Normal-Inverse-Gamma prior, integrating out
all regression coefficients and residual variance yields,

p(R | γj,Z,F) =
1

(2π)N/2

√
|Λ0|γj

|
|ΛN |

vS0
0

vSN
N

Γ(SN)

Γ(S0)
,

where Γ(z) =
∫∞
0

xz−1e−xdx is the gamma function.
Second, we integrate out the indicator of assignment γj . Let {Im}2Km=1 de-

note a collection of all length K vectors with each element taking values 0 or 1
indicating all possible values that γj,f can take. Note the prior of each model is
π(γj,f = Im) =

∏K
k=1w

γj,f ,k
k (1−wk)

(1−γj,f ,k) is defined in (4). The Bayes rule yields,

p(R | Z,F) =
∑
Im

π(γj,f = Im)p(R | γj,Z,F),

The selection of interaction terms ft ⊗ zi,t−1 follows that of the main effect of f .
Therefore, γj is fixed, given γj,f .

III. Figure: Marginal (Log) Likelihood Improvements

Figure A.1: This bar plot shows the increase in log marginal likelihood (without normalizing
constants) compared to the root model with no splits. To avoid overfitting, the tree applies a
penalty (8) during growth and stops after 20 splits, resulting in 21 terminal leaves.
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