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“We should stop training radiologists now. Its just completely obvious that within five years,
deep learning is going to do better than radiologists."

– Geoffrey Hinton (in 2016)

1 Introduction

Artificial intelligence (AI) is a general-purpose technology with transformative potential sim-
ilar to that of the steam engine and electricity (Brynjolfsson and Mitchell, 2017; Brynjolfsson
et al., 2017; Agrawal et al., 2018; Acemoglu and Johnson, 2023; Goldfarb et al., 2023; Frank
et al., 2019). But, in contrast to the innovations of the industrial revolutions, AI can per-
form tasks that require complex reasoning (Webb, 2019; Felten et al., 2019; Brynjolfsson and
Mitchell, 2017). Indeed, a growing literature shows that AI can outperform humans in a host
of predictive tasks, including those typically performed by experts (Liu et al. 2019; Lai et al.
2021; Mullainathan and Obermeyer 2019; Kleinberg et al. 2017; Agrawal et al. 2018).1

Radiology is as an iconic example of this development. Yet, many disagree with Hinton’s
proclamation that AI will replace radiologists.2 These skeptics argue that instead of human
radiologists being replaced by AI, it is optimal for them to use AI assistance (Langlotz, 2019;
Agrawal et al., 2019). In addition to considerable legal and regulatory challenges that stand
in the way of full automation, combining human expertise with AI input has potential gains
that cannot be realized by exclusively relying on one or the other. For example, radiologists
may correct mistaken AI predictions or may have access to information about the clinical
context on which the AI is not yet trained. Current regulatory practice by the FDA is
consistent with these arguments: approved AI tools for clinical decision-making typically
play a supporting role rather than operating autonomously (see Norden and Shah, 2022;
Harvey and Gowda, 2020, for example). Similar arguments can be made in many other
settings where AI approaches or exceeds the abilities of human experts.

This paper investigates the optimal form of collaboration between humans and AI. That
is, should AI predictions that surpass human performance be used to automate decisions
or to assist humans? The answer to this question depends on our three broad questions.
First, do humans hold valuable information not included in AI predictions? If yes, then
one would like to harness this information by using AI to augment humans instead of fully

1We will use the term AI to refer to a neural net-based image classifier. The term artificial intelligence
is typically reserved for a system of different prediction tasks to mimic a more complex set of behaviors,
whereas machine learning is concerned with one specific prediction task. For a detailed discussion of this
distinction see (Taddy, 2018), among others.

2A more nuanced but qualitatively similar prediction that machine learning tools will displace radiologists
is conveyed in Obermeyer and Emanuel (2016).
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automating decisions. However, a substantial literature in economics suggests that humans
may err when making probabilistic judgments by deviating from the benchmark model of
Bayesian updating with correct beliefs (see Benjamin et al., 2019, for a review). In the
presence of such mistakes, it may not be optimal to always give the human access to the
AI’s information. This brings us to the next two questions: How do humans combine AI
predictions with their own information? And how do potential mistakes shape the optimal
form of human-AI collaboration?

We design and run an experiment with professional radiologists and develop an empiri-
cal methodology that aims to answer these questions.3 Our experimental design compares
human and AI performance, quantifies the predictive value of the information that humans
hold but AI tools do not (henceforth termed contextual information), and tests whether AI
assistance improves human performance. We then develop a method to estimate a model of
(potentially imperfect) belief updating, analyze what this model implies about the optimal
form of collaboration between AI and humans, and apply it to our experimental data.

The experiment includes 227 professional radiologists recruited through teleradiology com-
panies to diagnose retrospective patient cases. Radiology offers an environment that is both
naturalistic and allows us control similar to that in a laboratory experiment. As in our ex-
periment, radiologists often work remotely, and our interface resembles the one they typically
use. Our treatments vary the information set radiologists have access to when making deci-
sions, in a two-by-two factorial design. In the minimal information environment, we provide
only the chest X-ray image to which we add either AI predictions, contextual information,
or both. Using an algorithm trained on about 250,000 X-rays with corresponding disease
labels, the AI information treatment provides probabilities that a patient case is positive
for a potential chest pathology (Irvin et al., 2019). This algorithm was shown to perform
comparably to board-certified radiologists. The contextual information treatment provides
clinical history information that radiologists typically have available but, for data privacy
reasons, is difficult to obtain to train the AI. This information includes the treating doctors’
indications, the patient’s vitals, and the patient’s labs.

We will evaluate the quality of assessments by both AI and our participants against a
diagnostic standard for each patient case. We follow the machine learning literature (Sheng
et al., 2008) and construct a diagnostic standard by aggregating the assessments of five
board-certified radiologists practicing at a highly reputed hospital with at least ten years of
experience and chest radiology as a sub-specialty.4 We also assess the robustness of all our

3We will use the terms ‘humans’, ‘radiologists’, and ‘participants’ interchangeably.
4Unfortunately, medical records are of limited value because definitive diagnostic tests do not exist for

most thoracic pathologies and, even when they do exist, are selectively performed depending on a radiologist’s
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results by constructing a (leave-one-out) diagnostic standard using the assessments of our
experimental participants and by varying the aggregation method. Although this standard
may not perfectly capture a “ground truth,” patients would likely benefit from a system that
brings diagnoses closer to the aggregate opinion of several highly qualified and experienced
experts.5

We use the experimental data to estimate the value of contextual information and AI
assistance, unpack biases in how humans use AI assistance, and analyze the optimal delega-
tion problem. First, we estimate the treatment effects of our informational interventions on
radiologists’ prediction quality and the probability of making a correct decision. Next, we
analyze whether and how humans deviate from a Bayesian benchmark when incorporating
AI predictions. For example, humans may suffer from automation bias, a tendency to place
more weight on machine-provided predictions than on one’s own information.6 Additionally,
humans may treat AI predictions as independent of their own information (Enke and Zim-
mermann, 2019). We show what different types of deviations from Bayesian updating imply
for the collaboration between humans and AI. Finally, we quantitatively evaluate the optimal
human-AI collaboration in terms of diagnostic performance and costs of human time. We
assume that the AI signal can always be obtained at zero marginal cost and implement a
classifier that decides, as a function of the AI prediction, to delegate a case to either a human,
a human with access to the AI, or the AI alone.

There are two key empirical challenges that we address through a combination of exper-
imental designs. First, due to the high cost of recruiting radiologists at market rates, an
across-participant design is impractical to power, except for very large effect sizes. We ad-
dress this issue by adopting a within-participant design, where participants are randomized to
experience four informational environments in random order, avoiding repeated case encoun-
ters. Second, to estimate a model of belief updating, it is important to obtain radiologists’
diagnoses with and without AI assistance. Our second experimental design therefore asks
participants to assess each case in each of the four information environments, with at least
a two-week pause between repetitions of a case to minimize memory and anchoring biases.
To ensure that our results do not rely on this “wash-out” being successful, a third design
obtains an assessment with AI assistance only after assessments without AI assistance have
been obtained. However, this third treatment is subject to order effects. We find no evidence

recommendation.
5A similar motivation justifies the use of second opinions in medical care.
6This terminology is borrowed from the literature that dates to the proliferation of computerized auto-

mated support systems in aviation, research which raised concerns about human complacency or automation
bias (see Alberdi et al., 2009, for an overview).
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of order effects on diagnostic quality although there is evidence that familiarity with the in-
terface increases the speed with which participants go through patient cases. Our treatment
effect analysis uses data from all designs whereas our model estimate of belief updating only
uses data in which a radiologist reads the same case both with and without AI assistance.

We find that AI assistance does not improve humans’ diagnostic quality on average even
though the AI predictions are more accurate than approximately 75% of the participants
in our experiment. Moreover, the zero average effect cannot be explained by the partici-
pants ignoring these predictions – we observe that radiologists’ reported probabilities move
significantly towards AI predictions when AI assistance is provided. Instead, the zero effect
of AI assistance is driven by heterogeneous treatment effects: diagnostic quality increases
when the AI is confident (i.e. the predicted probability is close to zero or one) but decreases
when the AI is uncertain. In parallel, AI assistance improves diagnostic quality for patient
cases in which our participants are uncertain, but decreases quality for patient cases in which
our participants are certain. In contrast, providing clinical history does improve diagnostic
quality, a result that suggests humans have additional valuable information that has not yet
been incorporated into AI predictions.

An upshot of the results is that information available only to radiologists is useful, but hu-
mans do not correctly combine their information with AI predictions. In fact, AI predictions
reduce predictive preformance for a range of signals. This result cannot be rationalized if
our participants are Bayesians with correct beliefs because the AI assistance provides weakly
more information to the decision-maker.

Motivated by these findings, we analyze two types of deviations from the benchmark model
with correct updating to link errors in probabilistic judgement and optimal deployment of
AI assistance.7 The first type of deviation occurs when agents do not put the correct relative
weight on the AI information. We describe this deviation using the approach introduced in
Grether (1980; 1992) (see Benjamin, 2019, for a review) to define biases in belief updating. We
say that an agent exhibits automation bias if they over-weight the AI information relative to
their own and automation neglect if they under-weight it. The second type of deviation occurs
if agents utilize an incorrect joint distribution of their own information and AI information;
an example of such a deviation is correlation neglect (Enke and Zimmermann, 2019). Our
theoretical analysis shows that if agents exhibit only automation neglect, then AI assistance
unambiguously increases diagnostic quality. All other forms of biases we consider result in
AI assistance reducing diagnostic quality for certain realizations of AI and own information.

7We will remain agnostic about whether the deviations we consider are due to non-Bayesian updating or
can be explained by Bayesian updating with an incorrect mental model of AI predictions.
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We then develop a method and use the data from our experiment to estimate empirical
analogs of the deviations described above and select the model that best describes the treat-
ment effects we document. This exercise requires us to solve several challenges unique to a
naturalistic setting. One of the hurdles in our setting is that we, unlike in a laboratory game,
cannot control the distribution of AI predictions and human information in our experiment,
which differs from prior empirical applications of Grether’s model of which we are aware.

In the model that best describes the data, agents exhibit automation neglect and act as
if their own information and AI predictions are independent (conditional on the truth), even
though this is not the case. Although parsimonious, we find that this model replicates the
empirical patterns observed in the data. An important implication of the model is that it is
not optimal to always provide AI assistance.

Thus, we turn our attention to designing a human-AI collaborative system that can
selectively use AI predictions. We start by estimating the trade-off between diagnostic quality
and radiologist time when, as a function of AI predictions, the diagnosis of a case’s pathology
can either be delegated to a human with or without AI assistance or be fully automated.
The data from our experiment allow us to compute both of these quantities for each mode
of diagnosis.

The results from this exercise mirror our treatment effect analysis: because radiologists
take more time with AI assistance and do not correctly incorporate the AI’s information,
the majority of cases are optimally decided either by the radiologist or the AI alone but not
by the radiologist with access to AI. We also find that signficantly more cases would have
been optimally diagnosed by a human with AI assistance if humans correctly combined AI
predictions with their own information, thus pointing to the potential importance of learning
or further training.

Related Literature
A growing body of literature in computer science has explored the predictive performance

of humans versus machine learning algorithms, with radiology often serving as a key area
of application (Rajpurkar et al., 2018, 2017). The study of human-AI collaboration has
also become an increasingly important facet of medical AI research (Tschandl et al., 2020;
Reverberi et al., 2022). For comprehensive overviews of these areas, see Rajpurkar et al.
(2022); Hosny et al. (2018); Zhou et al. (2021); Lai et al. (2021). Research on the effectiveness
of human-AI collaboration is evolving, with notable studies in radiology including Rajpurkar
et al. (2020); Kim et al. (2020); Park et al. (2019); Seah et al. (2021); Fogliato et al. (2022).
An active literature studies whether AI assistance benefits radiologists, and which radiologists
benefit the most (Rajpurkar et al., 2020; Seah et al., 2021; Ahn et al., 2022; Sim et al., 2020;
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Gaube et al., 2023). Another set of papers build delegation algorithms to predict the types of
cases for which human performance exceeds machine performance (e.g. Mozannar and Sontag,
2020; Raghu et al., 2019; Bansal et al., 2021). In contrast to prior studies, we recruit a large
group of high-skilled experts under contracts that allow us to incentivize our participants.
A key conceptual difference is that, unlike previous studies which are mainly concentrated
on performance, our work emphasizes behavioral biases, how they can be measured in a
naturalistic setting, and their impact on human-AI interaction and optimal AI deployment.

A rapidly growing literature in economics also compares human and AI performance.
Within economics, these studies tend to rely on observational approaches, with examples
addressing issues in medicine (Ribers and Ullrich, 2022; Mullainathan and Obermeyer, 2019)
and bail decisions (Kleinberg et al., 2015; Angelova et al., 2022), amongst others. How-
ever, analyses based on observational data face critical identification challenges, such as the
selective labels problem (see Kleinberg et al., 2017; Mullainathan and Obermeyer, 2019; Ram-
bachan, 2021)). A limited set of studies use quasi-experimental approaches (e.g., Stevenson
and Doleac, 2019; Angelova et al., 2022) or randomized controlled trials (e.g., Imai et al.
(2020); Bundorf et al. (2020); Noy and Zhang (2023); Grimon et al. (2022)) to investigate
human use of AI tools, typically focusing on overall performance or variability in participant
response. We add to this literature by developing an experimental approach that manipulates
the information environment that calculates and compares behavior with a Bayesian bench-
mark to document systematic biases and demonstrate that these biases lead to a non-trivial
delegation problem.8

While several studies in behavioral economics have documented errors in probabilistic
judgment and belief formation, they do not consider the consequences for AI deployment (c.f.
Tversky and Kahneman, 1974; Benjamin et al., 2019; Enke and Zimmermann, 2019; Conlon
et al., 2022, for example). Our definitions of automation bias builds on the framework in
Grether (1980). We contribute to this literature in two ways. First, we develop an approach
to estimate the parameters of the model in Grether (1992) in an environment where the joint
distribution of the signals cannot be controlled (or partialled out) by the researcher.9 This
methodological advance is necessary because we cannot modify the signal within medical

8Our finding that radiologists exhibit automation neglect is related to those in Dietvorst et al. (2015),
which shows that humans are averse to following algorithmic recommendations as compared to human recom-
mendations. This aversion can be reduced if humans are allowed to modify the algorithm’s recommendation
(Dietvorst et al., 2018).

9Most applications that we are aware of rely on one of two experimental approaches. In the first approach,
the researcher can partial out either the prior information or the likelihood ratio of the signal provided, for
example in the classic bookbag-and-poker-chip experiments (see Benjamin et al. 2019; Benjamin 2019, for
reviews). In the second approach, the researcher directly provides signals from a known joint distribution
(see Conlon et al. (2022)).
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images. Second, we link the design of AI information provision to the (biased) updating rule
that humans use. This link shows that utilizing AI information by humans is an important
and practical application of the ideas in this literature.

Finally, our work also adds to the literature on decision-making, particularly in the health
care context (e.g. Abaluck et al., 2016; Currie and MacLeod, 2017; Gruber et al., 2021; Chan
et al., 2022; Chandra and Staiger, 2020). Such efforts use observational data on medical
decisions to understand predictions and payoffs, objectives that are achievable under less
stringent functional form restrictions in our experimental approach. An important distin-
guishing feature is that none of these papers consider the effects of AI predictions.

Overview
The rest of the paper is organized as follows. Section 2 introduces our model of a decision-

maker in a diagnostic setting. Section 3 describes the necessary details of the setting and
our experimental design. Section 4 discusses the treatment effects. Section 5 estimates a
descriptive model of deviations from Bayesian updating. Section 6 shows the gains achievable
under the optimal collaboration between radiologists and AI.

2 Conceptual Model

Our study focuses on classification problems and prediction algorithms intended for these
tasks. These algorithms are designed to predict the appropriate classification for a given case
and may assist a human decision-maker. This decision-maker, indexed by h, must take a
binary action aih ∈ {0,1} on case i based on a prediction of a binary class ωi ∈ {0,1}. The
realized payoff uh (aih,ωi) from an action depends both on the correct class and the action.
The human does not know ωi but observes a subset of two signals that are potentially
informative about the state depending on the information environment. The first signal is
generated by a prediction algorithm (AI), with realizations sA

i ∈ SA. The second signal is
directly obtained by the human, with a realization sH

ih ∈ SH . These signals are of arbitrary
dimension. The joint distributions of the signals conditional on the state is given by πh (·|ω) ∈
∆

(
SA,SH

)
, with prior probabilities over the class π (ω). We do not place any restrictions

on πh (·|ω) – the signals need not be independent conditional on the state of the world, the
signal distribution may depend on the human to capture skill heterogeneity (Chan et al.,
2022), and one of the signals could be more informative than the other (Blackwell, 1953).

Assume that the human’s objective is to correctly classify each case. It is without loss
of generality to normalize the payoff from taking the action that matches the correct class
to zero. Let cF P,h be the disutility of human h if they set a = 1 when ω = 0 (false positive)
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and cF N,h be the disutility if they set a = 0 when ω = 1 (false negative). The payoff of the
human is therefore

uh (a,ω) = −1 · {a = 1,ω = 0} · cF P,h −1 · {a = 0,ω = 1} · cF N,h. (1)

We allow the human’s posterior belief given the observed signals to deviate from those
implied by the true probability law πh (·|ω). Specifically, let sih ⊂

{
sA

i , sH
ih

}
be the subset

of signal realizations observed by the human h and ph (ω |sih ) ∈ [0,1] be the human’s belief
when they observe sih. Suppressing the dependence of signals on the pair (i,h), the human’s
action given the signal s is

a∗
h (s;ph) = 1 ·

{
ph (ω = 1 |s)
ph (ω = 0 |s) > crel,h ≡

cF P,h

cF N,h

}
. (2)

The expected payoff from following a∗ (s) is

Vh (s;ph) = E [uh (a∗
h (s;ph) ,ω) |s ] =

∑
ω

u(a∗
h (s;ph) ,ω)πh (ω |s) ,

where decisions are based on the human’s belief ph, but are evaluated according to the true
law πh. Because we allow for ph to differ from πh, the action a∗

h (s;ph) can deviate from the
optimal action a∗

h (s;πh) given the signal s =
(
sA, sH

)
. Except in knife-edge cases, Vh (s;ph)

is lower than V (s;πh) whenever a∗ (s;ph) ̸= a∗ (s;πh).
The discussion above shows that the effect of AI assistance on decision quality depends on

whether humans’ beliefs with AI assistance deviate from the benchmark given by Bayesian
updating with correct beliefs (about the joint distribution of the signals and the correct
class). Bayes’ rule implies that, given the signals

(
sA

i , sH
ih

)
, the decision-relevant log-odds is

given by

log
πh

(
ωi = 1

∣∣∣sA
i , sH

ih

)
πh

(
ωi = 0

∣∣∣sA
i , sH

ih

) = log
πh

(
sA

i

∣∣∣ωi = 1, sH
ih

)
πh

(
sA

i

∣∣∣ωi = 0, sH
ih

) +log
πh

(
ωi = 1

∣∣∣sH
ih

)
πh

(
ωi = 0

∣∣∣sH
ih

) , (3)

where the second term on the right-hand side is the posterior log-odds ratio for the two states
ωi = 1 to ωi = 0 given that the human’s signal is sH

ih. Thus, one goal of our exercise is to
estimate the left hand side and compare it with the analogous quantity for ph (·).

Estimating the benchmark odds ratio above is empircally is challenging even if ph (·) can
be elicited because of two conceptually important reasons. The first challenge is that signals
sH

ih and (correct) beliefs πh (·) differ across patient cases i and across humans h because of
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patient and radiologist skill heterogeneity respectively.
The second challenge arises because constructing the terms on the right hand side of

equation (3) requires a conditioning on sH
ih. In fact, even though the first term on the right

hand side is an update due to the AI signal, accounting for potential correlation with sH
ih

requires controlling for it. Unlike in some laboratory settings, we do not directly observe
humans’ signals. Our econometric approach, which is discussed in section 5, will construct
controls from reported beliefs without AI assistance.

The ideal dataset for addressing these challenging would elicit beliefs given a human h

and a case i both with and without the AI signal. However, empirically implementing this
strategy requires us to eliminate concerns about anchoring and order effects when eliciting
beliefs about the same case twice. We thus turn our attention to the experimental design
that is aimed at solving these issues.

3 Setting and Experiment

Our experiment elicits the probability of a pathology’s presence ph (ωi = 1 |sih ) and a rec-
ommended treatment/follow-up decision aih under varying information treatments. There
are four information treatments in the experiment. In the minimal information environment
participants only observe the chest X-ray, to which we add AI assistance, contextual infor-
mation, or both. Next, we describe the experimental context and interface before presenting
the design of our experiments.

3.1 Experimental Context

3.1.1 Radiology

Radiologists diagnose the presence of a given pathology at the request of a treating physician.
The information available to a radiologist consists of diagnostic images (e.g. chest X-rays),
any relevant medical history (e.g. laboratory results), and clinical indication notes of the
treating physician. The treating physician’s notes are of varying detail levels – they may
provide no clinical information or guidance, request the analysis of a specific pathology, or
only list the patient’s primary symptom (see appendix B.2 for examples). Radiologists are
expected to report all pathological findings irrespective of the pathology suspected by the
treating physicians.

Because image-based classification is a core task performed by radiologists AI tools have
made significant inroads in the field. Recent advances in deep learning methods for image
recognition have yielded algorithms that can match or surpass the performance of human
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radiologists (Obermeyer and Emanuel, 2016; Langlotz, 2019). As of 2020, 55 companies
offered a total of 119 algorithmic products of which 46 have FDA approval (Tadavarthi et
al., 2020). Most products related to clinical decision-making are marketed as support tools
as opposed to autonomous tools, partly due to regulatory and liability issues (Harvey and
Gowda, 2020).

3.1.2 CheXpert

We provide AI assistance using predictions from the CheXpert model, which is a deep learning
prediction algorithm for chest X-rays (Irvin et al., 2019). This model is trained on a dataset of
224,316 chest radiographs of 65,240 patients labeled for the presence of fourteen common chest
radiographic pathologies. The algorithm does not use any other patient information, such
as the clinical history or vitals.10 Nonetheless, a prior version of this algorithm was shown
to match or surpass the performance of board-certified radiologists from Stanford Hospital
on five pathologies (Patel et al., 2019). These results are also presented to our participants
when introducing the AI tool. Section 4 confirms that the algorithm outperforms a majority
of radiologists in our experiment. We relegate additional details about the algorithm to
appendix B.3. The algorithm assistance to our participants will be in the form of a vector of
probabilities for the presence of each CheXpert pathology.11

3.2 Experimental Designs

Our experiment varies the information available to diagnose patient cases—participants may
or may not receive AI assistance and may or may not have access to the clinical history.
The X-ray is shown under all information conditions. We expose our participants to all
four possible information conditions: X-ray only, henceforth XO; clinical history without AI,
henceforth CH ; AI without clinical history, henceforth AI ; and both clinical history and AI,
henceforth AI+CH.

There are two objectives of our experiment. The first is to compute the treatment effects
of AI and CH on diagnostic quality and radiologist time. The second is to analyze how
radiologists update when receiving the AI signal and compare it to a Bayesian benchmark.

10While large datasets of images are increasingly available (e.g. Kramer et al. 2011, Johnson et al. 2016,
Irvin et al. 2019) it is significantly more difficult to construct such datasets for other patient information due
to the compulsory manual review of textual data for HIPPA compliance.

11Some algorithms attempt to make their predictions explainable to a human by highlighting the parts of
the image that drive a specific prediction. However, prior studies show that providing such localization in
addition to the numeric output does not improve the accuracy of radiologists (Gaube et al., 2022). Moreover,
a quantitative output allows us to compute a Bayesian benchmark to the radiologist’s prediction, which is
otherwise difficult.
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Both these objectives are complicated by the likely heterogeneity in radiologist skills. For
estimating treatment effects, radiologist heterogeneity implies that a design that randomizes
treatments only across radiologists will require a large participant pool except for extremely
large effect sizes. Our participants are highly paid, making this approach expensive. And, as
explained in section 2, across-radiologist variation in information treatments is not tailored for
the second objective. We would ideally know how a given radiologist changes her assessment
for the same case under a different information condition.

Our approach to address these challenges is to use a combination of three different exper-
imental designs, each with certain advantages and disadvantages. Appendix B.1 illustrates
the three design variations.

3.2.1 Design 1 (Figure B.1)

In the first design, participants are assigned to a random sequence of the four information
treatments. Each information condition is assigned fifteen cases at random without repe-
tition. Participants read all 15 cases in one information environment before moving to the
next one.

This design builds in both across- and within-participant variation in information treat-
ments. The within-participant variation has greater power because it controls for participant
heterogeneity at the potential cost of order effects. The concern of order effects is both
testable and mitigated by the randomization of treatment sequence across subjects.

This first design is well-suited to estimate treatment effects of our information environ-
ments. However, as mentioned earlier, it is not ideal for estimating an empirical analog to
equation (5) because no case is encountered twice.

3.2.2 Design 2 (Figure B.2)

Radiologists diagnose each patient case in each of the four information environments in the
second design. For the moment, set aside concerns arising from the feature that the same
radiologist encounters the same case multiple times. This design will allow us to estimate
an empirical analog to equation (5). It also has the added benefit of controlling for both
case-radiologist heterogeneity because, unlike in the previous design, we can conduct within-
case-radiologist comparisons across treatments.

Because radiologists repeatedly encounter cases, we need to address the potential for order
effects due to memory. For example, radiologists might anchor on their previous assessment
using AI predictions or contextual information and might remember this information the
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next time the same case is encountered. We, therefore, limit radiologists’ ability to remem-
ber either their diagnosis or previously provided information by using a “washout” interval
between two encounters of the same case.12 Specifically, radiologists complete the experi-
ment in four sessions that are separated by at least two weeks. Each session is similar to the
first design: radiologists diagnose fifteen cases in each of the four information environments
with no case repeated within a session. Across sessions, the information environment under
which a given case is diagnosed is permuted. Thus, by the end of the fourth session, each of
the sixty cases is diagnosed exactly once in each information environment. Our results are
consistent with the washout being effective – radiologists’ predictions do not move towards
the AI prediction if it was provided in a prior session but do if it is provided in the current
session (see figure C.37).

3.2.3 Design 3 (Figure B.3)

In the third design, we address residual concerns about the order effects of radiologists
diagnosing cases with AI before those without AI–whether due to anchoring, memory, or
experimenter demand–by having participants diagnose fifty cases, first without and then
with AI assistance. Within each block, clinical history is randomly provided in either the
first or second half of images.

This design also allows us to conduct within case-radiologist comparisons. The potential
disadvantage of this design is that we cannot distinguish order effects from the effect of
providing AI. This issue is unavoidable given the guiding principle that participants receive
weakly more information about a case during a repeat encounter. However, we can test for
and do rule out order effects on accuracy based on the first two designs.

3.2.4 Participant Recruitment

Participants for the first and third designs, which constitute the majority, were recruited
through teleradiology companies. Most healthcare providers in the US rely on these compa-
nies’ services, even those that have on-call radiologists (Rosenkrantz et al., 2019). We work
with teleradiology companies that serve US hospitals and offer the services of both US-based
and non-US-based radiologists. Our contract specifies a piece-rate, and the companies, in
turn, compensate the participants with a piece-rate.13 In addition, we provided monetary
incentives for accuracy to a subset of radiologists, as described in the next section.

12This principle has been used in computer science (Seah et al., 2021; Conant et al., 2019; Pacilè et al.,
2020).

13The piece-rate we pay the teleradiology companies range from $7.50 to $13.00.
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The second design required us to work with a partner who could guarantee subjects’ par-
ticipation over several months. We collaborated with VinMac healthcare system in Vietnam
to recruit their staff radiologists to ensure continued participation. VinMac is in the process
of developing its own in-house AI capabilities and was willing to assist with our experiment
in exchange for recognition in a publication of the resulting dataset. The VinMac radiologists
did not receive receive any payments to participate in the experiment but we find that their
perfomance is very close to the performance of the tele-radiologists.

In total, 227 radiologists participated in our experiment. Approximately 14% of our
participants are US-based, 15% have a degree from a US institution, 44% are affiliated with
a large clinic, and 63% with an academic institution. As demonstrated in appendix C.4, the
quality of the assessments made by the radiologists in our study is comparable to that of
the staff radiologists from Stanford University Hospital, who originally diagnosed the patient
case.

3.2.5 Incentives

We cross-randomize incentives for accuracy in the first and third designs but not the second
because of the specific ways in which our partner’s radiologists are employed. Payments were
determined following the binarized scoring rule in Hossain and Okui (2013), where truth is
determined as described in section 3.3.1 below. This incentive scheme uses a loss function
of the mean squared prediction error, averaging over patient cases and pathologies, and the
respondents earn a fixed bonus of $120 if a random draw is less than the loss function.
This bonus is more than 20% of the base payment to teleradiology firms. We explain to
the participants that expected payments are maximized if they provide their best estimates
using a non-mathematical description of the payment rule. We specify the distribution so
that 30% of pilot participants would earn the bonus, cross-randomized with the other two
treatment arms.

3.3 Implementation and Data Collection

3.3.1 Patient Cases and Diagnostic Standard

The experiment uses 324 historical patient cases with potential thoracic pathologies from
Stanford University’s healthcare system. For each case, we have access to the chest X-ray
and the clinical history in the form of the primary provider’s written notes, the patient vitals,
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and demographics.14 The use of retrospective cases allows us to avoid ethical and other issues
that would arise when experimenting in high-stakes settings.

Our analysis requires constructing the correct class ωi for each patient case and pathology.
We construct ωi by aggregating the assessment of a group of expert radiologists, an approach
common in computer science (Sheng et al., 2008; Mccluskey et al., 2021). We asked five
board certified radiologists from Mount Sinai with chest specialty to read each of the 324
cases using the interface described above with the available X-ray and clinical history. For
each case-pathology i and radiologist h, we obtain πh

(
ωi = 1

∣∣∣sH
i,h

)
. We classify ωi = 1 if∑

h πh

(
ωi = 1

∣∣∣sH
i,h

)
/5 > 0.5. We interpret ωi as the diagnostic standard for a case-pathology

given all available information at the time of diagnosis.
The diagnostic standard may differ from the “ground truth” presence of a pathology.

However, obtaining such “ground truth” for an unselected sample of patient cases is infeasible
in most diagnostic settings. Additional information in medical records are often inconclusive
because definitive tests do not always exist, and follow up patient care and outcomes are
selected based on the assessed presence of a pathology.15 This issue is referred to as the
selective labels problem (e.g. Mullainathan and Obermeyer, 2019). Recent literature has
suggested instrumental variables approaches for solving this selective labels problem, but
this work targets population quantities and not a “ground truth” on each case (e.g. Chan et
al., 2022; Mullainathan and Obermeyer, 2019).

In comparison, the diagnostic standard immediately addresses the selective labels problem
because the availability of assessments is not selected on the likelihood of a pathology being
present. Results in Wallsten and Diederich (2001) suggest that, under weak conditions that
allow for measurement error in the reports and correlations across reports, the aggregate
opinion of several experts is highly diagnostic as long as the experts are median unbiased.16

To assess robustness of our results, we consider several alternative constructions of the
diagnostic standard and analyze a subsample of cases for which the standard is not ambigious.
These variations are discussed after the baseline results.

14All cases are first encounters with no prior X-ray as a comparison. We started with 500 cases that fit these
primary criteria. We omitted pediatric cases from this set. Finally, a radiologist reviewed the cases to remove
instances with poor image quality. The clinical history was manually reviewed to remove patient-identifiable
information and cleared for public release.

15Many pathologies do not have commonly used non-imaging-based diagnostic tools. For instance, the
presence of cardiomegaly – an enlarged heart – can only be determined using imaging tools, thoracic surgery
or an autopsy.

16Previous work cautions that physician opinions could reflect systematic underlying physican racial and
other biases (see Mullainathan and Obermeyer, 2017, for example).
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3.3.2 Experimental Interface and Data Collected

We developed the experimental interface to present the patient cases and to collect radiolo-
gists’ predictions and decisions in collaboration with board certified radiologists at Stanford
University Hospital and Mt. Sinai Hospital. In contrast to free-text reports, we designed it
to generate structured and quantitative data that resemble a typical radiological report. We
briefly describe this interface and provide images and further details in appendix B.

On the landing page of each case, a high-resolution image of a patient’s X-ray is pre-
sented to the radiologist, with the functionality to zoom and adjust brightness and contrast.
When the experiment calls to show the clinical history, the interface presents clinical notes,
vitals, and laboratory results available at the time the X-ray was originally ordered. If the
experiment provides AI assistance, participants are shown AI predictions.

The probability that a pathology is present given the available information, i.e. ph (ω = 1 |s),
is elicited using a continuous slider. We visually subdivide possible responses into five in-
tervals with standard language labels used in written radiological reports to aid the partici-
pants.17 We also collect a binary “treatment/follow-up” recommendation for each pathology
that is not definitively ruled out.18 We will interpret this input as a∗

h (s). In a real clinical
setting, a recommendation to follow-up could trigger the treating physician to prescribe ad-
ditional medical tests or interventions with potential costs and benefits. Thus, an optimal
recommendation trades off the cost of false positives and false negatives when recommending
an action as in section 2. The probabilistic assessments with the follow-up decision will allow
us to estimate radiologists’ relative cost of false positives and false negatives.

We elicit responses for pathologies in a hierarchical structure designed by our collabo-
rating radiologists.19 There are eight mutually exclusive top-level pathologies. For instance,
“airspace opacity” is distinct from a “cardiomediastinal abnormality.” Each of these top-level
pathologies has children that are more specific, which may be further subdivided in some
cases. In addition, we elicited an overall assessment of whether the radiologists considers the
case normal or not. In the main text we focus on analyzing the two top-level pathologies
with AI predictions and drop further subdivisions from the analysis. Our results are robust

17The specific labels are “Not present”,“Very Likely”, “Unlikely”, “Possible”, “Likely”, and “Highly Likely”.
Several radiological publications have suggested such standardized language for radiological reports. See for
instance Panicek and Hricak (2016).

18The binary treatment/follow-up decision is only asked for pathologies where a follow-up is clinically
relevant. This includes all pathologies with AI assistance.

19The hierarchical structure reduced the data entry burden on our participants, and we piloted the interface
with several radiologists specializing in the interpretation of chest X-rays. The groups all correspond to a
standard class of pathologies and prior clinical research on AI in chest X-Ray image classification has used
similar hierarchies (see Seah et al., 2021, for example).
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to including the lower-level pathologies in the analysis as we show in appendix C.5.
In addition to ph (ω = 1 |s) and a∗

h (s), we record active time, response times, and any
clickstream data that results from the interaction with the interface.20 The participants are
not explicitly informed about this monitoring, and there are no explicit time limits. Our
experiment runs remotely, and participants connect to a server, which hosts the interface
and records responses.21

3.3.3 Participant Training

We train the participants using a combination of written instructions and a video. The
materials provide an overview of the experimental tasks, the interface, and information about
the AI assistance tool. The firms and the participants know that the research study involves
retrospective patient cases. To train participants on the AI tool, we provide them with
materials that explain the development of the algorithm, present metrics of its performance
on various diseases, and summarize the algorithm’s performance relative to radiologists based
on prior research. In addition, we show the participants fifty example cases that show the
X-ray and clinical history next to the AI output. The participants are informed that the
algorithm only uses the chest X-ray to form predictions, and this knowledge is later tested in
a comprehension question. After the instructions, participants answer eight comprehension
questions, which they must answer correctly before proceeding to the experiment. We also
include an endline survey. We do not directly interact with the subjects except to field
questions about the experiment or provide tech support. The complete set of instructions is
provided in appendix B.2.

4 Estimated Treatment Effects

4.1 Overall Performance of AI and Radiologists

This section focuses on measures of performance (deviation from diagnostic standard, in-
correct decision), deviation from AI prediction, and measures of effort. Table 1 summarizes
the data on these measures and sample sizes from our experiment. The main text focuses
on the two top-level pathologies with AI predictions (Cardiomediastinal Abnormality and

20Active time is calculated based on the clickstream data to approximate the time spent actively working
on the study. We exclude instances where a participant pauses the study which would substantially increase
the noise in the time measures.

21This interface is browser-based and built using the o-tree framework Chen et al. (2016). Since we
are not directly communicating with our participants we also deploy a device fingerprinting service from
fingerprint.com to ensure that there are no repeat participants.
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Airspace Opacity) but our results are qualitatively robust to the inclusion of all pathologies
with AI predictions (see appendix C.5).22 A unit of observation is a radiologist decision (or
prediction) for a given patient and pathology.

Radiologists give the correct follow-up/treatment recommendation in 70% of case-pathologies.
On average, they spend ~2.8 minutes per case with large variability across cases. All summary
statistics are very similar across the three expertimental designs. For instance, the average
deviation from the diagnostic standard, which is defined as Yiht = |ph (ωi = 1|siht)−ωi|, for
the three designs ranges from 0.212 to 0.232, and average active time ranges from 2.58 to 2.88
minutes. Other measures, such as the share of correct decisions (aih = ωi) and the deviation
from AI assessments (Yiht =

∣∣∣ph (ωi = 1|siht)−π
(

ωi = 1|sA
i

)∣∣∣) are also similar across designs.

Table 1: Summary statistics

All Designs Design 1 Design 2 Design 3
Mean SD Mean SD Mean SD Mean SD
(1) (2) (3) (4) (5) (6) (7) (8)

Reported Probability 0.229 0.289 0.211 0.285 0.245 0.278 0.240 0.322
Decision 0.311 0.463 0.268 0.443 0.400 0.490 0.231 0.421
Deviation from Diagnostic Standard 0.223 0.284 0.220 0.294 0.232 0.265 0.212 0.297
Deviation from AI 0.192 0.169 0.200 0.170 0.172 0.159 0.216 0.182
Correct Decision 0.704 0.456 0.745 0.436 0.620 0.485 0.785 0.411
Active Time 167.4 156.0 172.8 178.2 165.6 115.8 154.8 168.0
Observations 41,920 19,080 15,840 7,000
Radiologists 227 159 33 35
Reads per Radiologist 92.3 60 240 100

Note: Summary statistics of the experimental data. Decision and accuracy statistics are for the two top-level pathologies with
AI predictions (Cardiomediastinal Abnormality and Airspace Opacity) Columns (1) and (2) present the mean and standard
deviation for all designs while Columns (3) and (4) present the same statistics for design 1 only, Columns (5) and (6) for design
2 only, and Columns (7) and (8) for design 3 only. Decision is an indicator for whether treatment/follow-up is recommended.
Correct decision is an indicator for whether the decision matches the diagnostic standard. Deviation from diagnostic standard
is the absolute difference between the reported probability and the diagnostic standard. Deviation from AI is the absolute
difference between the human’s reported probability and the AI’s reported probability. Active time is measured in seconds.

Before discussing the treatment effects, we compare the performance of the AI to the
distribution of baseline performance of participating radiologists using two different measures.
The first measure (AUROC) is derived from the receiver operating characteristic (ROC)
curve, which measures the trade-off between the false positive and the true positive rate of

22These pathology groups and, unless otherwise noted, the subsequent analyses were pre-registered (see
SSR Registration 9620).
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a classifier. It is an ordinal measure whose value ranges from 0.5 for a classifier that guesses
randomly to 1 representing perfect classification. The second measure is the root mean
squared error (RMSE), which is cardinal and a lower value indicates higher performance.
To compute these, we pool the data for top-level pathologies with AI for each radiologist’s
reports and for the AI’s prediction (see appendix C.2 for pathology-specific comparisons).

The results are shown in figure 1 and indicate significant heterogeneity in performance
across radiologists as well as the scope for AI assistance to improve radiologist performance.
The heterogeneity across radiologists aligns with findings from observational data (e.g. Chan
et al., 2022). According to the AUROC, the AI is more predictive than 78% of radiologists
and according to the RMSE more predictive than 90% of radiologists. Thus, there is ample
room for AI assistance to improve the performance of radiologists. In fact, a majority of
radiologists would do better on average by simply following the AI prediction.23

Figure 1: Comparing AI performance to radiologists
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(b) AUROC radiologists and AI
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Note: Distributions of two different accuracy measures of radiologist assessments alongside the AI’s accuracy. Both distributions
are shrunk to the grand mean using empirical Bayes. The histograms include the two top-level pathologies with AI predictions
(Cardiomediastinal Abnormality and Airspace Opacity) and each observation represents a measure calculated at the radiologist
level. The dotted line is the measure of the AI algorithm for the corresponding distribution, where “ptile” is short for “percentile.”
Only the assessments where contextual history information is available for the radiologists but not the AI prediction are
considered. AUROC is only defined for radiologists who encounter some positive cases, which includes the large majority
of radiologists. Robustness by design and diagnostic standard definition can be found in appendix C.5.1 & C.5.2.

We also compare the performances of our participants and the radiologist who originally
diagnosed each patient case in appendix C.4.24 There is no discernible difference between

23These results also align with Irvin et al. (2019), which shows that the CheXpert model yields a better
classifier than two out of three radiologists on five pathologies and all three on three pathologies. Our results
may differ from that because we use a different pool of radiologists, a different sample of cases, and reads
with contextual information (clinical history) to construct the diagnostic standard. The latter two differences
raise the bar for the AI because they reflect differences in the data-generating process.

24We classified the original free text radiology reports associated with each case as positive, negative, or
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the two groups, which is consistent with the hypothesis that radiologists participating in
the study were of similar skill and exerted similar effort as the radiologists completing the
original reads.

4.2 How do Radiologists Respond to AI and Contextual Information?

We now describe the effects of our information treatments estimated using the following
specification:

Yiht = γgi +γCH ·dCH(t)+γAI ·dAI(t)+γAI×CH ·dCH(t) ·dAI(t)+ εiht, (4)

where Yiht is an outcome variable of interest for radiologist h diagnosing patient case-
pathology i and treatment t, and γgi are pathology fixed effects since there are multiple
pathologies gi for each case in this pooled analysis. Treatments t vary by whether or not
clinical history is provided dCH(t) ∈ {0,1} and whether or not AI information is provided
dAI(t) ∈ {0,1}. We report two-way clustered standard errors at the radiologist and patient-
case level. The estimates are robust to the inclusion of radiologist and patient-case fixed
effects (appendix C.5). Cases are also balanced across treatments (see appendix C.1), which
suggests that case randomization was successful. We will also compute conditional treatment
effects given ranges of the AI signal sA

i that are grouped based on π
(

ωi = 1|sA
i

)
.

4.2.1 Do Radiologists Utilize AI Predictions?

We begin by testing whether radiologists respond to the information that the AI provides.
Panel (a) of figure 2 shows how the different information environments affect the disagreement
of the radiologists’ report with the AI’s assessment measured using the deviation from AI. In
calculating this deviation (Yiht =

∣∣∣ph (ωi = 1|siht)−π
(

ωi = 1|sA
i

)∣∣∣), the term ph (ωi = 1|siht)
is the elicited probability whereas π

(
ωi = 1|sA

i

)
is the AI’s predicted probability that ωi = 1.

When AI assistance is provided, then siht =
(
sH

ih, sA
i

)
, and otherwise siht = sH

ih. The signal
sH also depends on whether contextual information is provided.

The results show that radiologists respond to AI assistance. Their predictions move
significantly closer to the AI when receiving access to the AI prediction. To see this, observe

uncertain for each pathology using the CheXbert algorithm described in Smit et al. (2020). To facilitate
comparisons, we also discretized the probability assessments elicited during the experiment into positive
and negative assessments. Then, we compared the accuracy of the original reads against the radiologists
participating in the experiment.
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Figure 2: Treatment effects of informational interventions
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(b) Deviation from diagnostic standard
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Note: ATE of information treatments estimated using equation (4), on the deviation from AI (panel (a)) and the deviation
from the diagnostic standard (panel (b)). Results are for the two top-level pathologies with AI predictions, airspace opacity and
cardiomediastinal abnormality; separated by design and pooled across all designs. Standard errors are two-way clustered at the
radiologist and patient-case level.

that the control means for the deviation from the AI are approximately 0.21 for both when
we pool designs and for design 1 only. Treatments where AI is provided reduce this baseline
average deviation by 18%. We do not find a significant effect of clinical history on the
deviation from the AI prediction nor do we find one from the interaction between AI and
CH.

4.2.2 Treatment Effects on Diagnostic Performance

Next, we ask whether the information treatments affect radiologists’ diagnostic performance
measured using the deviation from the diagnostic standard. Recall that lower values im-
ply better performance. Panel (b) of figure 2 also shows the average treatment effects on
performance.

Access to contextual information improves performance on average. We find that access
to clinical history reduces the deviation from the diagnostic standard by 4.0% (p < 0.05) of
the control mean. This result suggests that one would like to utilize this information.

In contrast, AI assistance does not significantly improve average performance. The inter-
action between contextual information and AI assistance is also statistically indistinguishable
from zero.

In light of the findings — that the AI is more accurate than most radiologists and that
radiologists move their assessments toward the AI — it may seem puzzling that the AI infor-
mation does not improve accuracy on average. This apparent contradiction occurs because
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the average treatment effects mask significant heterogeneity in treatment effects. Our within-
participant designs — designs 2 and 3 — allow us to estimate conditional treatment effects
given radiologists’ predictions without AI assistance. Specifically, we partition cases based
on the human’s signal into five equally spaced bins of ph

(
ωi = 1|sH

ih

)
. Figure 3 shows the

conditional treatment effects (pooled for design 2 and 3) of providing AI assistance on diag-
nostic performance. Panel (a) shows the deviation from the diagnostic standard and panel
(b) shows the probability of incorrect decision. We find that providing AI assistance in cases
when the radiologist is uncertain (i.e. the probability reported is not close to either zero
or one) improves performance on both metrics, whereas AI assistance is harmful when the
radiologist is close to certain that the pathology is not present for a given case.

Figure 3: Effect of AI by radiologist prediction without AI
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(b) Incorrect decision
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Note: Panel (a) shows the conditional ATE of providing AI information on the deviation from diagnostic standard. Panel
(b) shows analogous treatment effects on incorrect diagnosis. Standard errors are two-way clustered at the radiologist and
patient-case level, with 95% confidence intervals depicted. Robustness to experimental design is in appendix C.5.1.

While AI assistance can help uncertain humans, we find that providing uncertain AI pre-
dictions reduces performance. As with the analysis of conditional treatment effects given
human predictions, we estimate conditional treatment effects given AI predictions by parti-
tioning cases into five bins based on π

(
ωi = 1|sA

i

)
. Figure 4 presents the estimates, pooling

data from all three experimental designs. When the AI provides a confident prediction (e.g.
either close to zero or close to one) performance is significantly improved. We see that in
the lowest bins of AI signals, the deviation from the diagnostic standard is reduced. In the
second highest bin we also see a marked, though not statistically significant, improvement in
performance. However, in the middle range of signals, where the confidence of the AI is low
(meaning the AI signal is not close to either zero or one), radiologists’ diagnostic performance
and probability of making a correct decision is lower when AI information is provided.
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Figure 4: Effect of AI by AI prediction

(a) Deviation from diagnostic standard
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(b) Incorrect decision
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Note: Panel (a) shows the conditional ATE of providing AI information on the deviation from diagnostic standard. Panel
(b) shows analogous treatment effects on incorrect diagnosis. Standard errors are two-way clustered at the radiologist and
patient-case level, with 95% confidence intervals depicted. Robustness to experimental design is in appendix C.5.1 and C.5.2.

The results that AI assistance can decrease performance rejects a model in which radiol-
ogists are Bayesians with correct beliefs. Figures 3 and 4 showed that AI assistance reduces
performance either if the radiologist was confident a pathology is not present or if the AI
prediction is uncertain (i.e. the prediction is not close to either zero or one). Neither result
can be rationalized in the benchmark model, suggesting that radiologists err when using AI
predictions.

4.2.3 Treatment Effects on Time Per Case and Proxies of Effort

Finally, we turn our attention to the effects of AI assistance on time taken and the number
of unique interactions (clicks) as proxies for effort. One hypothesis is that AI assistance
could economize on costly human effort without sacrificing overall performance by enabling
quicker assessments. Alternatively, it is possible that humans take more time because they
are provided with more information to process. Which of these effects dominate determines
the effect on labor costs when humans use AI assistance, and therefore the optimality of
delegating cases versus a collaborative setup.

Our results indicate that radiologists are slower when provided with AI assistance. Figure
5 shows the treatment effects on time spent per case. These outcomes are measured at the
case level. In the X-Ray Only treatment, radiologists spend about 2.6 minutes per case.
Both AI and CH increase the time spend per case by a statistically significant amount of
approximately 4%. The interaction term γAI×CH is not significant for either of the two
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Figure 5: Effect of informational interventions on time
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Note: ATE of the information treatments, estimated using equation (4), on radiologist effort measured in terms of active time (in
seconds). Results exclude five patient-cases with an unaccounted time measure, and observations from design three because of
potential order effects. Active time is winsorized to the 95th percentile. Standard errors are two-way clustered at the radiologist
and patient-case level.

outcome variables. These effects suggest that decisions where both radiologists and the AI
are involved come at a non-trivial increase in time spent per case. Treatment effects for
clicks are displayed in appendix C.5. This result further undercuts the potential benefits in
performance from including humans assisted with AI predictions “in the loop.”

4.3 Robustness

Appendix C.5 shows that the results are qualitatively robust to a variety of alternative
analyses. The treatment effect analysis in this section does not condition on the sequence
in which subjects encounter information treatments. Reassuringly, they are statistically
indistinguishable from those that use only an across participant comparison from the first
treatment encountered in designs 1 and 2 (appendix C.5.3). Appendix also C.5.5 shows that
our results are robust to including controls for order effects.

Alternative methods for constructing the diagnostic standard or focusing on cases with
greater consensus also yield similar conclusions. The variations we consider include (i) using a
leave-one-out diagnostic standard based on the assessments of our experimental participants,
(ii) using a continuous measure of disease likelihood that simply averages the assessments of
the Mount Sinai labelers, (iii) restricting to cases where the diagnostic standard is definitive,25

25Here, we restrict to cases where we can reject that the average assessment of the five Mount Sinai
radiologists used to construct the diagnostic standard is equal to 0.5 at the 5% level (i.e., cases where we can
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and (iv) a diagnostic standard that uses a lower threshold for determining a positive case
(i.e. ωi = 1

[∑
h πh

(
ωi = 1|sH

i,h

)
/5 > 0.3

]
).

We also investigated the potential for mis-calibrated reports and experimental incentives
biasing our results. The qualitative patterns of the treatment effects are unchanged if we
calibrate each radiologists’ assessments to the diagnostic standard before conducting the
analysis. Incentives for accuracy, which are cross-randomized in designs 1 and 3, also do
not have significantly different effects. Recall that our participants perform on par with the
radiologists originally assigned to diagnose the patient cases.

Finally, this section treats pathologies are separable and does not account for potential
interactions across pathologies for a given case. In section 5, we will present evidence showing
that the model with the best fit has radiologists updating their beliefs as if pathologies are
considered independently.

5 Automation Bias/Neglect and Signal-Dependence Neglect

An upshot of the results in section 4 is that our participants have valuable information,
but they deviate from the benchmark of a Bayesian with correct beliefs about the joint
distribution of their own information and the AI signal. These biases undercut the potential
information advantage in a setup that involves AI assistance.

In this section, we theoretically model and estimate systematic deviations from this bench-
mark – which we will refer to as Bayesian for short – and determine the implications of these
deviations for utilizing human expertise and AI predictions.26 The next section empirically
studies the optimal policy.

5.1 A Model of Deviations from Bayesian Updating

The framework in section 2 shows that a key question is whether the odds-ratios

ph

(
ωi = 1|sA

i , sH
ih

)
ph

(
ωi = 0|sA

i , sH
ih

) and
πh

(
ωi = 1|sA

i , sH
ih

)
πh

(
ωi = 0|sA

i , sH
ih

)
differ from each other. We now consider a set of models of belief-updating to describe
systematic deviations from the Bayesian benchmark. In our model, the human correctly

reject the null hypothesis that
∑

h πh

(
ωi = 1|sH

i,h

)
/5 = 0.5).

26The omission of the qualifier “with correct beliefs” slightly abuses terminology because a possible expla-
nation of the deviations we have documented is that our participants are Bayesians but update their beliefs
using an incorrect model for the joint distribution of sA, sH , and ω. We will entertain this possibility below.

25



interprets their own signal when AI assistance is not available but errs when both sA
i and

sH
ih are observed. As we will show below, whether or not AI assistance improves performance

depends on the type of error humans make.
The first class of biases that we consider arises when the two terms on the right-hand side

of equation (5) are incorrectly weighted. Following Grether (1980; 1992), we parametrize this
type of error using the following parsimonious functional form:

log
ph

(
ωi = 1|sA

i , sH
ih

)
ph

(
ωi = 0|sA

i , sH
ih

) = bh log
πh

(
sA

i |ωi = 1, sH
ih

)
πh

(
sA

i |ωi = 0, sH
ih

) +dh log
πh

(
ωi = 1|sH

ih

)
πh

(
ωi = 0|sH

ih

) , (5)

where bh,dh ≥ 0. The Bayesian is a special case with bh = dh = 1. While this linear form
is restrictive, it has been useful for documenting several empirical regularities showing de-
viations from Bayesian updating, like base-rate neglect and under inference (see Benjamin,
2019, for a review).

We will say that the human exhibits automation bias if bh > dh and automation neglect if
bh < dh. As a motivation for this nomenclature, observe that when bh > dh, the human over-
weights the AI signal relative to their own. Our theoretical analysis will focus on the case
when dh = 1, which is the empirically relevant case. The agent overshoots when updating the
posterior odds relative to a Bayesian. Analogously, if bh < dh, then the human under-weights
the AI signal relative to their own.27

A second class of deviations we consider will allow for models in which decision-makers do
not account for the dependence between sA

i and sH
ih, which we call signal dependence neglect.

For example, if humans act as if sA
i and sH

ih are independent conditional on ωi even if they
are not, then their posterior beliefs can be written as

log
ph

(
ωi = 1|sA

i , sH
ih

)
ph

(
ωi = 0|sA

i , sH
ih

) = bh log
πh

(
sA

i |ωi = 1
)

πh

(
sA

i |ωi = 0
) +dh log

πh

(
ωi = 1|sH

ih

)
πh

(
ωi = 0|sH

ih

) , (6)

where bh and dh are allowed to differ from 1 as above. In the case when the signals are jointly
multivariate normal and bh = dh = 1, signal dependence neglect yields correlation neglect as
defined in (Enke and Zimmermann, 2019).28 More generally, we will consider models that

27It is conceptually possible for dh to differ from 1, which are similar in spirit to base-rate biases but apply
to beliefs given the expert’s signals instead of unconditional population rates (see Griffin and Tversky, 1992;
Kahneman and Tversky, 1973). This case is theoretically analyzed in a prior working paper version. Details
are available on request.

28If sA
i and sH

ih are unidimensional with
(
sA

i ,sH
ih

)
∼ N (0,Σh), then the covariance matrix Σh is a suffi-

cient statistic for the posterior probability that ωi = 1 given the signals if ωi = 1
{

sA
i +sH

ih ≥ εi

}
and εi is

independent of
(
sA

i ,sH
ih

)
.
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vary the conditioning set in the first term on the right-hand side and the dimension of sA
i

in the first term on the right-hand side. The specific examples are motivated and discussed
further in section 5.3 below.

We intend for the models above to capture “as if” descriptions of humans’ updating rules
and will remain agnostic about underlying mechanisms and micro-foundations. In particular,
we remain silent on whether our participants are Bayesians who are utilizing the incorrect
joint distribution of

(
ωi, s

A
i , sH

ih

)
when updating their beliefs or if they are non-Bayesians.

The former type of model, known as a quasi-Bayesian model,29 can generate automation bias
or neglect as well as correlation biases.30 An implicit assumption in our model, and likely
other micro-foundations for the functional forms above as well, is that the signal acquired
by the human is invariant to the provision of AI assistance. Whether additional training
or experience with the AI can correct deviations from the benchmark model is therefore
something that we leave for future work.

Nonetheless, the models above will prove useful for our purposes. From a theoretical
perspective, the models will help outline the types of deviations that potentially decrease
decision quality. From an empirical perspective, the models help clarify the drivers of the
treatment effects documented earlier and turn out to be a good approximation to the data
from the experiment.

5.2 Implications for Human-AI Collaboration

We now show that the types of deviations described above have implications for when AI
assistance unambiguously improves human performance. The results will also illustrate the
benefit of the simple functional forms in equations (5) and (6). This subsection drops the i

and h indices for simplicity of notation.
It is useful to start by considering the decisions with and without AI assistance for a

Bayesian decision-maker. Figure 6 illustrates the realizations of sA for which the optimal
decision with AI assistance differs from the the decision without AI assistance for a fixed crel.
The horizontal and vertical axes respectively represent log π(ω=1|sH)

π(ω=0|sH) and log π(sA|ω=1,sH)
π(sA|ω=0,sH) .

As shown by the vertical dashed line, the decision-maker would take action 1 if and only if
log π(ω=1|sH)

π(ω=0|sH) exceeds logcrel. The solid line represents the analogous boundary for a Bayesian

29See Rabin (2013) for a definition and Barberis et al. (1998); Rabin (2002); Rabin and Vayanos (2010) for
examples.

30To see this, assume that ph

(
sA

i |ωi,s
H
ih

)
= π

(
sA

i |ωi,s
H
ih

)b and ph

(
sH

ih,ωi

)
= πh

(
sH

i ,ωi

)
to generate the

functional form in equation (5) for any bh as long as dh = 1. The derivation of equation (6) is similar. In
contrast to automation bias/neglect and correlation biases, own-information bias/neglect cannot be derived
in a quasi-Bayesian model because we assume that ph

(
ωi|sH

ih

)
= πh

(
ωi|sH

ih

)
.
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Figure 6: Comparing decisions with and without AI assistance – Bayesian
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Note: Decision criterion of a Bayesian with and without AI assistance and where their decisions align. Shaded regions show the
regions in which AI improves or worsens decision making.

who has access to AI assistance. Observe that the decisions a Bayesian makes as a function of
the signals sA and sH cannot be improved without additional information. Thus, a Bayesian
and access to both signals improves upon the no-AI action in the vertically shaded region.

Now consider humans who may deviate from this benchmark model. A human who
takes a given action without AI assistance a∗

No AI = a∗
(
sH ;ph

)
but a different action with AI

assistance (so that a∗
No AI ̸= a∗

AI) makes a worse decision if a∗
AI = a∗

(
sA, sH ;ph

)
disagrees with

a Bayesian’s decision a∗
Bayesian = a∗

(
sA, sH ;πh

)
with AI assistance. This follows because, in

the binary action setup, only one of the decisions can agree with the Bayesian decision. In
all other cases, the human’s decision is weakly improved for the signal realization

(
sA, sH

)
.

In other words, a human whose decision changes upon receiving the AI signal sA is better
off with AI assistance only if the change agrees with the Bayesian decision. The human is
unambiguously better off if this property holds for all signals.

Our first result states that a human who exhibits automation neglect and no other devi-
ation from the Bayesian model is unambiguously better off with AI assistance.

Proposition 1. Suppose that the human’s posterior is described by equation (5) and d = 1.
(i) If the human exhibits automation neglect (b < d = 1), then for all pairs of signal real-

izations
(
sA, sH

)
, and any crel, the human attains weakly higher expected payoff V (s) with

AI assistance.
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Figure 7: Automation bias and neglect
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Note: Where the decisions of an expert as a function of the signals disagree with a Bayesian in cases with and without AI
assistance in the presence of automation bias or neglect when d = 1.

(ii) If the human exhibits automation bias (b > d = 1), for any crel, there exist log-likelihood
ratios log π(sA|ω=1,sH)

π(sA|ω=0,sH) and log π(ω=1|sH)
π(ω=0|sH) such that the human attains lower expected payoff

V (s) with AI assistance.

See appendix A for the proof.
Figure 7 illustrates the result. The two dashed lines represent cutoffs analogous to those

in figure 6 for humans with automation bias and automation neglect. Although a human
who only exhibits automation neglect under-responds to the AI information, their beliefs
move towards those of a Bayesian decision-maker but do not overshoot them. Whenever
their decision changes, it agrees with the Bayesian’s. In contrast, if the human exhibits
automation bias, they err for moderately informative AI signals with intermediate values of
log π(sA|ω=1,sH)

π(sA|ω=0,sH) because they over-react. At high enough values of this log-likelihood ratio,
both the Bayesian and the human exhibiting automation bias would take the same action.

We next consider a decision-maker with a different type of bias, namely, one in which the
decision-maker exhibits signal dependence neglect. Perhaps not surprisingly, our next result
shows that this type of bias on its own can result in worse decisions with AI assistance:

Proposition 2. Suppose that the human exhibits signal dependence neglect so that the pos-
terior belief is described by equation (6). For any value of b > 0, d > 0, and crel > 0, there
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exist log-likelihood ratios log π(sA|ω=1,sH)
π(sA|ω=0,sH) and log π(sA|ω=1)

π(sA|ω=0) such that the human attains lower
expected payoff V (s) with AI assistance.

See appendix A for the proof.
Thus, signal dependence neglect adds another dimension of potential mistakes to those

illustrated in the figures above. In its presence, there may be a joint distribution of signals
for which AI assistance reduces performance. Even when b = d = 1 so that automation
bias/neglect are not relevant, an examination of equations (5) and (6) reveals that whether
or not a decision-maker exhibits under- or over-updating depends on the difference between
log π(sA|ω=1,sH)

π(sA|ω=0,sH) and log π(sA|ω=1)
π(sA|ω=0) .

The result bears resemblance to those in Enke and Zimmermann (2019), which shows that
in a multivariate normal model with positively correlated signals, correlation neglect results in
over-reaction to signals and verified this hypothesis in lab experiments. Proposition 2 differs
in that it allows for general signal distributions and for signal dependence neglect to co-exist
with automation bias/neglect. This extension is essential for a naturalistic environment like
ours because the experimenter does not have full control over the signal structure. The
general signal structure makes it difficult to characterize mistakes in terms of over or under-
updating, unlike in the case of a multivariate normal model.

The propositions above have important implications for the design of human-AI collab-
oration, which we consider in section 6. Specifically, we study an AI designer who only has
access to the AI signal sA and must decide on one of the three modes of delegation: utilize
only the AI prediction, delegate the case to the human, or provide AI assistance to a hu-
man expert. The results show that other than in the case when automation neglect is the
only relevant bias, the designer must learn the types of biases as well as the distribution of
π

(
sA, sH |ω

)
to determine which delegation modality yields the best decision.

5.3 Estimating Deviations from Bayesian Updating

We now turn to an empirical implementation of the model above. The analysis in this section
will be based on designs 2 and 3 because they allow us to observe the same participant make
decisions under all information-conditions on a given case. Consider the empirical analog to
equation (5):

log
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) = a + b · log
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) + d · log
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ih

)
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ih

) + εih, (7)
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where we have omitted heterogeneity across radiologists in bh and dh (appendix C.6.6 dis-
cusses radiologist heterogeneity in these estimates). Two of the terms in this equation are
directly elicited: the probability in the second term on the right-hand side, πh(ωi = 1|sH

ih),
is set to the radiologists’ assessment without AI assistance and the term ph

(
ω = 1

∣∣∣sA
ih, sH

ih

)
in the dependent variable is the assessment in the treatment arm with AI.31 The “update
term,” given by log πh(sA

ih|ωi=1,sH
ih)

πh(sA
ih|ωi=0,sH

ih) will be estimated and substituted into the equation above.
There are three challenges in estimating the update term. The first challenge is that it

is a ratio of conditional densities. We address this issue by rewriting it using Bayes’ rule as
follows:

log
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ih
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) = log
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) − log
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ih
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πh
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ih

) .

If sH
ih can be constructed or controlled for, then we can estimate the first term on the right-

hand side using data on ωi and sA
ih via a binary response model. Observing sA

i is immediate
because the signal from the AI given to humans is isomorphic to the vector of predicted
probabilities for the various pathologies. The second term in this equation has been elicited.

This brings us to the second challenge, which is controlling for sH
ih when estimating

πh

(
ωi = 1|sA

i , sH
ih

)
because we do not observe it directly, unlike in a laboratory setting (c.f.

Conlon et al., 2022). If sH
ih is unidimensional and πh

(
ωi|sH

ih

)
is monotonic in sH

ih, then
πh

(
ωi|sH

ih

)
is a valid control variable. However, we want to allow for the possibility that

the radiologist evaluates a case holistically and uses signals across pathologies. Our em-
pirical specifications will therefore employ multivariate proxy controls for sH

ih using elicited
probability assessments for multiple pathologies.32

To allow for flexible interactions between sA
i and sH

ih while avoiding over-fitting, we es-
timate πh

(
ωi = 1|sA

i , sH
ih

)
using a pathology-specific random forest that predicts ωi using

the vector of predicted probabilities for all pathologies for case ci reported by radiologist
h without AI assistance, the vector of predicted probabilities for case ci the AI algorithm
produces, summaries of the patient clinical history when made available to the radiologist,
and participant-specific fixed-effects.33

31To avoid undefined terms in calculating log-odds ratios we take the minimum of all probability assessments
and 0.95 and the maximum of all probability assessments and 0.05.

32Specifically, we will use the vector of probabilities for all pathologies reported by h for case i,(
πh

(
ωi′ |sH

i′h

))
i′∈I(ci), as the control variable. Here, ci is the patient case associated with case-pathology i

and I (ci) is the set of case-pathologies considered when deciding case ci. This control variable is valid under
the assumption that sA

i ⊥ sH
ih

∣∣ωi,
(
πh

(
ωi′ |sH

i′h

))
i′∈I(ci).

33The hyper-parameters of the random forest are chosen by grouped k-fold cross-validation, where we
ensure that each patient case appears in only one fold to avoid overfitting to the patient case. Further details
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The third challenge is the potential for measurement error, particularly of the form that
radiologists’ signal sH

ih when elicited without AI might differ from their signal when given AI
assistance. Classical measurement error arising from this source would lead to attenuation
bias in the coefficient estimates. To address this issue, we will construct instruments for sH

ih

using the reported probabilities of the other radiologists in our experiment.
With these solutions in hand, we would like to assess whether humans exhibit signal

dependence neglect when updating beliefs. As prefaced earlier, although the human and AI
signals are not conditionally independent given the diagnostic standard, humans may act as
if they are. We will therefore estimate and select between models that vary the set of signals
conditioned on in the update term. For example, in the case when radiologists behave as
if sA

i and sH
ih are independent conditional on ωi, the update term in equation (7) drops the

conditioning on sH
ih.34

The correct model of behavior satisfies the conditional moment restriction E
[
εiht|sH

i,−h, sA
i

]
=

0, where sH
i,−h collects the signals of the radiologists other than h in our experiment. For esti-

mation, we utilize unconditional moment restrictions based on functions of sH
i,−h and sA

i that

closely mimic the terms in equation (7). Our instruments include log π(ωi=1|sA
i )

π(ωi=0|sA
i ) and leave-

one-out averages of log π(ωi=1|sA
i ,sH

ih′)
π(ωi=0|sA

i ,sH
ih′) for radiologists other than h that use various proxies

for sH
ih using assessments from different sets of pathologies obtained without AI assistance.35

Empirical analogs of the resulting moment conditions are used to estimate the model using
GMM.

We will employ the model-selection procedure proposed in Andrews and Lu (2001) to
select between non-nested models. The method uses a selection criterion, the MMSC-BIC,
which is constructed from the J-statistic of the GMM objective function with an aditional
term that penalizes models that reject a greater number of moment restrictions.

of the training procedure are described in appendix C.6.2.
34We can vary the pathologies across the set of models considered when constructing I (ci). The condi-

tionally independent case corresponds to the extreme case in which I (ci) = ∅, whereas the Bayesian model
includes all pathologies.

35Specifically, we construct 14 instruments. The first is a constant and the second is the average of
log π(ωi=1|sH

ih′)
π
(

ωi=0|sH
ih′

) for all h′ ̸= h. The remaining 12 construct the average of log π(ωi=1|sih′)
π(ωi=0|sih′) for all h′ ̸= h by

varying the conditioning variables sih. The different sets of conditioning variables in sih are presented in the
second panel of appendix table C.26. These sets are used because they are the relevant terms in at least one
of the models that we consider in the testing procedure.
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5.4 Results

Our results indicate that while there are large potential gains from combining radiologists’
assessments with AI predictions, biases in radiologists’ use of AI assistance undercuts these
gains. We find that radiologists exhibit both automation neglect and signal dependence
neglect. These mistakes prevent AI assistance from improving diagnostic performance.

Table 2 presents estimates from six “as if” models of participant behavior.36 According to
the first model, participants act as if sA

i and sH
ih are conditionally independent given ωi and

consider each pathology separately. The second model accounts for dependence between sA
i

and sH
ih but maintains the assumption that pathologies are considered separately. The third

model accounts for dependence across pathologies in diagnosis by including signals from other
pathologies in sA

i and sH
ih. The next three models are identical to the first three but include

clinical history information (when provided) in sH
ih. Setting b = d = 1 and the constant to 0

in the last model corresponds to Bayesian updating with correct beliefs.
The results from this exercise point to two types of errors in radiologists’ use of AI

signals. The first type of error is that radiologists neglect signal dependence even though AI
predictions and radiologists’ signals are highly correlated after conditioning on the diagnostic
standard (see appendix table C.24). This conclusion follows because we select the model in
column 1 as it has the lowest value of the MMSC-BIC statistic. Another implication of the
selected model is that radiologists do not incorporate information across different pathologies
since only the focal pathology is relevant. This result validates our previous analysis that
evaluates each pathology separately. The second type of error is that radiologists exhibit
automation neglect, and we estimate a value of d that is close to 1 across all models we
consider.

Connecting these observations back to our theoretical discussion in section 2, the param-
eters are such that access to the AI signal may not improve performance, primarily because
of signal dependence neglect.

36These are a subset of the full set that we consider. See table C.26 in the appendix for the results from
all models. Results from all pathologies with AI are qualitatively similar (see table C.27). These analyses
were pre-registered except for the model selection exercise, which was not included in the pre-analysis plan.
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Table 2: Selecting between models of belief updating: top level pathologies with AI

(1) (2) (3) (4) (5) (6)
Automation bias (b) 0.27 0.33 0.12 0.19 0.21 0.12

(0.02) (0.03) (0.02) (0.03) (0.03) (0.02)
Own information bias (d) 1.11 1.09 1.05 1.07 1.07 1.05

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Constant 0.39 0.39 0.25 0.32 0.32 0.25

(0.04) (0.04) (0.03) (0.03) (0.04) (0.03)
No signal dependence ✓ ✓
No pathology dependence ✓ ✓ ✓ ✓
No clinical history dependence ✓ ✓ ✓
Correct updating ✓
J-Statistic 13.08 11.63 8.85 7.53 8.55 7.72
MMSC-BIC -29.11 -26.34 -8.03 -13.57 -12.55 -9.16
Selected moments 13 12 7 8 8 7
Possible moments 14 14 14 14 14 14
Observations 11420 11420 11420 11420 11420 11420
R-Squared 0.49 0.48 0.42 0.45 0.45 0.42

Note: Estimates of b and d for different specifications of the update term. The models differ by whether the update term
conditions on the signal sH of the pathology at hand, the AI and the radiologist signals for other pathologies, and the information
provided in the clinical history of a patient. Each model is estimated via GMM. The reported MMSC-BIC statistic adjusts the
J-statistic for the number of included parameters and moments, awarding bonus terms for models with fewer parameters and
fewer rejected moments (see Andrews and Lu (2001) for details). The full set of models in the selection procedure are presented
in table C.26. The update term is estimated via random forest as described in appendix section C.6.2. Standard errors are
clustered at the radiologist level. This table uses data from designs 2 and 3 where we observe the same human’s assessment of
each case both with and without AI assistance.

These deviations also explain the heterogeneous conditional average treatment effects
documented in section 4. Figure 8 shows the estimated conditional average treatment effect
of AI alongside model-implied treatment effects from three scenarios: a Bayesian benchmark,
the model in column (6) where radiologists only exhibit automation neglect, and the selected
model from table 2. As expected, a Bayesian performs significantly better when given the AI
signal. In fact, as indicated by the large reductions in the deviation from the diagnostic stan-
dard, there is significant potential value in combining the human and AI signals. The model
that only features automation neglect – column (6), equation (5) – reduces these improve-
ments and moves the implied treatment effects closer to the data. However, throughout the
entire signal range of AI predictions, the performance of such a decision-maker would still un-
ambiguously increase with AI assistance, consistent with our theoretical model’s prediction.
Only when we use the selected model, under which radiologists neglect signal dependence,
can we replicate the worsening of assessments with AI in the middle of the signal range.

Although the specifications above replicate the pattern of conditional treatment effects,
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Figure 8: Data versus model implied treatment effects
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Note: Observed conditional treatment effects of providing radiologists access to AI compared to three different model-implied
treatment effects: giving AI access to a Bayesian decision-maker, giving AI access to a decision-maker who acts according to
the empirical version of equation 5 both under the correct update term and when the decision-maker treats the AI signal as
conditionally independent. Standard errors are two-way clustered at the radiologist and patient-case level, with 95% confidence
intervals depicted. Standard errors on model based treatment effects are conditional on the model of behavior. We first
generate ph

(
ωi = 1|sA

i , sH
i

)
based on the model in Equation 7 and then estimate the treatment effect and standard error of

these model-based posteriors (ph

(
ωi = 1|sA

i , sH
i

)
).

one may still be concerned about mis-specification of the model of belief-updating or about
heterogeneity in b and d across radiologists. For example, a model of updating in which
radiologists’ beliefs move to the maximum of their own predictions and AI predictions would
not be linear in log-odds. Appendix C.6.5 uses a non-parametric model to show that the
relevant boundary of the decision-regions depicted in figure 7 is well approximated using
the linear specifications considered. Appendix C.6.6 investigates heterogeneity by allowing b

and d to vary with radiologists. We find that the estimated distributions of bh and dh are
centered close to the point estimates above, with most of the estimated distributions of bh

and dh in the range [0.1,0.4] and [1.0,1.2], respectively. Together, these results suggest the
specification in column (1) of table 2 represents a good approximation to data we collected.
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6 Designing Human-AI Collaboration

We now consider the design of collaborative systems between AI and humans. Because the AI
signal can be obtained at zero marginal cost we consider a policy τ(·) that chooses between
full automation (AI), humans with access to AI (H + AI), or humans without access to AI
(H), as a function of the AI signal sA

i . We then compare this policy in terms of human time
cost and decision loss to policies where all cases are exclusively decided by either the AI,
humans, or humans with access to AI.

As a warm-up for this exercise, it is useful to examine the predictive performance of the
different modalities, conditional on sA (see figure 9). Recall from the conditional treatment
effect analysis that human assessments improve with AI in the lowest and second-highest
bins of AI signals. Figure 9 also shows that even when the AI improves human decision-
making (in the lowest bin), AI alone outperforms humans with AI. Although this figure
does not account for differences in the human time costs across modalities, our analysis of
the estimated treatment effects shows that humans take more time when provided with AI
predictions. This points to the conclusion that in most cases where AI improves decision-
making, one is at least as well off relying exclusively on AI predictions because humans do
not incoporate the information effectively and are slower when deciding with AI. However,
automating all cases is not necessarily optimal either because humans perform better than
AI when the AI is uncertain.

Motivated by these observations, we now examine if there is a trade-off between the
marginal costs of human effort and diagnostic performance.

6.1 Computing the Trade-off Between Decision Loss and Costs of Human Effort

The optimal policy which minimizes the sum of the expected decision-loss (costs of false
positives and false negatives) and the monetized time cost of using humans solves:

τ∗(sA
i ) = arg min

τ∈{H,H+AI,AI}
m ·Vτ

(
sA

i

)
+w ·Cτ

(
sA

i

)
. (8)

The first term contains the expected decision-loss from a modality given by Vτ

(
sA

i

)
=

E
[
Vihτ |sA

i

]
, which is the expected diagnostic quality given the AI signal. The expecta-

tion is taken over both cases and radiologists. The parameter m is the dollar cost of a false
negative (e.g., a missed diagnosis). We allow preferences for false positives and false nega-
tives to vary by pathology. We estimate these preferences using data on the binary treatment
recommendations of the participants in our experiment, given their probability assessments.
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Figure 9: Model deviation from diagnostic standard
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only the human, only the AI, or the human with access to the AI. The performance measures for Human Only and Human +
AI are constructed from our treatment effect analysis. Standard errors are two-way clustered at the radiologist and patient-case
level, with 95% confidence intervals depicted.

According to the model in section 2, human h’s choice ahi of recommending treatment or
follow-up on patient case i is given by

ahi = 1
[

phi

1−phi
− ch

rel + εhi > 0
]

,

where phi is the human’s belief about pathology presence, ch
rel is the relative cost of false

positives and false negatives, and εhi captures idiosyncratic unobserved preference hetero-
geneity. We allow the parameters of this model to vary by pathology, but we suppress this
dependence for notational simplicity. The full set of results of this exercise are presented in
Table C.32. The median cost of a false positive across both top-level pathologies with AI
assistance is one half the cost of a false negative. Since we do not know the dollar cost of a
false negative, we will present results for a range of values for m.

The second term in the objective function contains Cτ

(
sA

i

)
= E

[
Cihτ |sA

i

]
, which is the

expected time cost for a given modality τ . If the case is fully automated, this time cost is
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zero. Otherwise, the time costs are based on our experimental estimates, which show that
radiologists spend more time on cases when presented with AI predictions. For the costs of
human radiologist time, we set w = $4 per minute based on a payment of $10 per case and
the observed average time per read of approximately 2.5 minutes.

Next, we solve the problem in equation (8) by first estimating the conditional mean
functions Vτ

(
sA

i

)
and Cτ

(
sA

i

)
using random forest regressions. We tune the random forest

hyperparameters by using grouped cross-validation where observations are grouped by their
patient case to avoid over-fitting to specific cases. Given estimates of expected diagnostic
quality and the expected time cost for each modality on a given case, we assign the case to
be read by the modality that minimizes Equation 8. We repeat this exercise for a range of
values of m. In our discussion of the results we focus on airspace opacity but the qualitative
findings remain unchanged if we consider other pathologies (appendix C.8).

6.2 Results

There are large potential gains from optimally delegating cases. Figure 10 shows a possibilities
frontier for the trade-off between diagnostic quality against decision time, calculated by
varying the social cost of false negatives m. One extreme on this frontier is the point where
the AI decides all cases, thus minimizing the time costs. The figure shows that one can
substantially reduce both time costs and decision loss by moving from H or H + AI to the
frontier. Table 3 provides an overview comparing H and H + AI to the two extreme points
of the frontier (i.e., AI only and the delegation policy that minimizes decision loss) along
with a comparison to a Bayesian decision-maker. For each of those, the table compares
the expected decision loss, the time cost (in minutes and dollars), and the fraction of false
positives/negatives. An unassisted radiologist (H) takes 2.8 minutes minutes per case, or
about $11, and incurs a relative decision loss of approximately 12.8. By moving to the
frontier point that minimizes decision loss, one can reduce decision loss while also saving $6.3
in time costs. Similar gains can be achieved from H +AI. A Bayesian decision-maker incurs
the lowest decision loss but faces the same time costs as H +AI.
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Figure 10: Loss-time frontier
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time versus decision loss. This analysis excludes data from design 3 because of learning effects in this setup.

Table 3: Airspace opacity delegation results

Time Cost Pr(Fp) Pr(Fn) Decision Loss
Minutes Dollars

Bayesian 2.8 11.4 6.4 1.6 4.1
AI Only 0.0 0.0 32.4 1.2 13.5
Human Only 2.8 11.2 17.0 6.3 12.8
Human + AI 2.8 11.4 21.6 4.2 12.4
Min. Decision Loss 1.2 4.9 12.7 3.4 10.2

Note: Time taken and decision loss of delegation strategies for Airspace Opacity. The average time per case is shown in both
minutes and dollars using a wage of $4 per minute. The table also reports the share of false positives (P r(F P )), the share of
false negatives (P r(F N)), and decision loss calculated as P r(F N)+crelP r(F P ) where crel =0.38 – the median crel for Airspace
Opacity. The Bayesian row shows results for the Bayesian decision-maker. AI Only shows results for full delegation to the AI.
Human Only shows results if humans read cases without AI assistance. Human + AI shows results if humans with access to
the AI read all cases. Min. Decision Loss shows results for the optimal delegation strategy that minimizes decision loss and
highlights the potential improvement in decisions from delegating to the AI. This analysis excludes data from design 3 because
of learning effects.

Next, we investigate what share of cases is decided by the three modalities under the
optimal delegation policy as we vary m (figure 11). For both a Bayesian and the observed
behavior in our experiment, we find that the AI decides almost all cases if the cost of a false
negative is less than $100 per case. For Bayesians, the share of cases that involve human-AI
collaboration rises markedly above a cost of $100, but even for costs as high as $10,000, 45%
of cases are delegated to the AI. Moreover, under Bayesian decision-making, the share of
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cases where only the human decides the case without access to the AI signal is negligible and
the only reason for using an unassisted human in this case is to save on time costs. When
we conduct the same exercise and use the observed behavior of human radiologists, we find
that humans are involved in 38% of cases if the cost of a false positive is sufficiently large.
Moreover, the majority of cases where a human is involved have the human make decisions
without AI assistance. A more complete assessment of the optimal combination of human
and machine decisions, therefore, confirms the intuition from above that cases are either
decided by humans or the AI but not by both of them together.

Figure 11: Airspace opacity modality shares
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Note: Share of cases decided by each modality (humans, AI, humans+AI) conditional on the cost of a false negative in dollars,
denoted m in the text, for airspace opacity. Panel (a) focuses on a Bayesian decision-maker. Panel (b) focuses on a human
decision-maker with decisions and time taken as in our experiment. This analysis excludes data from design 3 because of learning
effects.

6.3 Caveats

There are several caveats to our analysis. The first is that we consider AI assistance for a
single pathology at a time. This approach abstracts away from interactions between patholo-
gies. It is best suited to contexts in which the focal pathology of interest for a case is
clear to a treating physician. Given our results in section 5, it appears that physicians do
not account for cross-pathology interactions, thereby complicating attempts to infer such
interactions from radiologist assessments and behavior. The second caveat is that any col-
laborative system may change humans’ expectations about the difficulty of cases and adjust
strategically to those changing expectations. Our approach abstracts away from endogenous
information acquisition, for example, rational inattention as in Sims (2003). A potentially
interesting aspect is whether a designer can leverage such endogenous responses by designing
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an information revelation policy that induces effort. We leave such extensions that leverage
insights from information design (Kamenica and Gentzkow, 2011; Bergemann and Morris,
2019) to future work, but we do measure the total amount of time taken by the experts in
our experiment with and without AI assistance.

7 Conclusion

AI is predicted to profoundly reshape the nature of work (see Felten et al., 2023). Humans
are likely to use AI as a decision aid for many tasks not only in the long run but also in
the medium run for tasks that will ultimately be fully automated. A central question is
therefore how humans use AI tools and how tasks should be assigned. Radiology is an iconic
example, one that employes a large number of professionals whose main job is a high-stakes
classification task.

To understand the benefits and pitfalls of human-machine collaboration, we conduct an
experiment in which AI assistance for radiologists is randomized. We also randomize the
availability of contextual information that is typically available to radiologists but is not
used to train AI prediction tools for chest X-rays. Since we can simulate radiologists’ normal
workflow, this is an ideal setting for conducting such an experiment. We then devise a
methodology to estimate the radiologists’ deviation from Bayesian updating, an approach
which needs to deal with the challenge that we do not directly control the information
structure that radiologists face when making decisions.

While deploying AI assistance in our setting has large potential benefits, biases in humans’
use of AI assistance eliminate these gains. Even though the AI tool in our experiment
performs better than two-thirds of radiologists, we find that giving radiologists access to AI
predictions does not, on average, lead to higher performance. This average treatment effect,
however, masks systematic heterogeneity: providing AI does improve radiologists’ predictions
and decisions for cases where the AI is certain (e.g., predicted probability is close to zero
or one) but not when it is uncertain. This latter result – that prediction quality can be
reduced for some range of AI signals – rejects Bayesian updating We also identify systematic
errors in belief updating; specifically radiologists exhibit automation neglect (e.g., radiologists
underweight the AI prediction relative to their own) and treat the AI prediction and their own
signals as independent conditional on the correct class even though they are not. Moreover,
radiologists take significantly more time to make a decision when AI information is provided.

Together, these results have important implications for how to design collaborations be-
tween humans and machines. Increased time costs and sub-optimal use of the AI information
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both work against having radiologists make decisions with AI assistance. In fact, an optimal
delegation policy that utilizes heterogeneity in treatment effects given the AI prediction sug-
gests that cases should either be decided by the AI alone or by the radiologist alone. Only a
small share of cases are optimally delegated to radiologists with access to AI. In other words,
we find that radiologists should work next to as opposed to with AI. To the extent that expert
decision-makers generally under-respond to information other than their own (Conlon et al.,
2022) and incorporating additional information is cognitively costly, these insights may hold
in other settings where experts’ main job is a classification task.

There are several important considerations that are outside the scope of this work. One
question motivated by the unrealized potential gains of AI assistance concerns the benefits
from AI-specific training for radiologists and/or experience with AI. This and related ques-
tions require different experimental designs or longer-run studies. Other open questions are
whether the heterogeneity in the value of AI assistance is correlated with a human’s base-
line skill or other characteristics and whether such correlation can be predicted to target
assistance. The organization of human-AI collaboration also raises questions about whether
the form of collaboration influences humans’ incentives to respond strategically. The use
of AI in practice will also be mediated by other organizational incentives and the regula-
tory environment. Organizations may set guidelines on how to use AI or provide feedback,
and regulations may influence liability implications. These issues are interesting avenues for
future work.

AI continues to evolve rapidly. While economists are unlikely to have a major role in the
technical development of AI tools, our comparative advantage lies in studying how humans
interact with these tools and thereby helping shape the institutions that guide their use to
ensure that this development is beneficial to society. Empirical analysis is a particularly useful
tool in this endeavor, especially if the algorithms themselves are a black-box and cannot be
understood from first principles.
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Appendix
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A Appendix of Proofs

A.1 Proof of Proposition 1

Case b < 1 and d = 1: Suppose a∗
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sH ;p

)
= 0 and a∗
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= 1. Equivalently, logcrel >
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Case b > 1 and d = 1: If logcrel − log π(ω=1|sH)
π(ω=0|sH) > 0, then for log π(sA|ω=1,sH)

π(sA|ω=0,sH)
∈

(
1
b logcrel − 1

b log π(ω=1|sH)
π(ω=0|sH) , logcrel − log π(ω=1|sH)
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)
we have both logcrel > log π(sA|ω=1,sH)

π(sA|ω=0,sH)
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π(ω=0|sH) and logcrel < b log π(sA|ω=1,sH)
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completes this case.

Case d ̸= 1: We analyze this in two subcases.

• (1−d) logcrel > 0: We show that there exist values of
(

log π(ω=1|sH)
π(ω=0|sH) , log π(sA|ω=1,sH)
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π(sA|ω=0,sH) , we need to find a solution
to the system y > 0, x + y > 0 and bx + dy < (1−d) logcrel. Since (1−d) logcrel > 0,
there exist small enough values of x,y > 0 such that the solution exists.

• (1−d) logcrel < 0: An argument analogous of case 1 shows that there exist values
of
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A.2 Proof of Proposition 2

Consider logcrel > log π(ω=1|sH)
π(ω=0|sH) and logcrel < b log π(sA|ω=1)

π(sA|ω=0) + d log π(ω=1|sH)
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= 0. The case in which logcrel < log π(ω=1|sH)

π(ω=0|sH) is analagous.
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B Appendix of Experimental Interface and Instructions

B.1 Design

Figure B.1: Design 1

XO

Set 1

CH

Set 2

AI

Set 3
AI + CH

Set 4
Track 1

CH

Set 1
...Track 2

AI

Set 1
Track 3

AI + CH

Set 1

Track 24

Initial randomization into tracks

60 reads per track

15 reads per set

Within subject comparison,

no image encountered twice

... ...

... ... ...

... ... ...

Random assignment to

remaining treatments and sets.
.
.

Note: In this design, radiologists are assigned to a randomized sequence of the four information environments., resulting in 24
possible tracks. Under each information environment they read 15 cases. Radiologists encounter each patient case at most once.
At the beginning of the experiment every radiologist reads eight practice cases. Furthermore, a random half of the participating
radiologists receive incentives for accuracy.
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Figure B.2: Design 2

Session 1

XO AI AI+CH CH

Session 2

XO AI AI+CH CH

Session 3

XO AI AI+CH CH

Session 4

XO AI AI+CH CH

2 week
washout

2 week
washout

2 week
washout

60 reads per session

15 reads per set
read in batches of 5

Session 1

AI AI+CH XO CH

Session 2

AI AI+CH XO CH

Session 3

AI AI+CH XO CH

Session 4

AI AI+CH

2 week
washout

2 week
washout

2 week
washout XO CH

Each case randomly assigned to new condition

Note: In this design, radiologists diagnose 60 patient cases each under the four information environments. Radiologists read every
case under every information environment across four sessions, separated by a washout period. Each case is only encountered
once per session and to ensure that radiologists do not recall their/AI predictions from previous reads of the same cases, we ensure
a minimum two-week washout period between subsequent sessions. Within every experimental session radiologists therefore read
15 under each information environment. The randomization occurs at the track-level where every track has a different sequence
of the information environments. (Example tracks shown here.)
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Figure B.3: Design 3
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Set 2

Initial randomization into tracks

Same sets

Same sets

Note: In this design, radiologists diagnose 50 cases, first without and then with AI assistance. Clinical history is randomly
provided in either the first or second half of images forming the basis of the randomization. The cases diagnosed with and
without clinical history are different.

B.2 Instructions

Below are the instructions the subjects received along with the interface-based treatment.
Comments on the instructions are provided in italics and were not seen by subjects.

Instructions

You are about to participate in a study on medical decision making. You may pause the
study at any time. To resume, revisit the link you were given and your progress will have
been saved.

We will present you with adult patients with potential thoracic pathologies. These pa-
tients will be presented under the following four scenarios:

1. Only a chest X-ray is shown.

2. An X-ray is accompanied with additional information about the clinical history.

3. An X-ray is shown along with Artificial Intelligence (AI) support. This AI tool is
described in further detail below.

4. An X-ray is shown along with both additional information on clinical history and the
AI support.

The patients are randomly assigned to each of these scenarios. That is, availability of clinical
history and/or AI support is unrelated to the patient.

Clinical History: includes available lab results or indications by the treating physician, if
any.
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AI support: This tool uses only the X-ray image to predict the probability of each poten-
tial pathology of interest. The tool is based on state-of-the-art machine learning algorithms
developed by a leading team of researchers at Stanford University.

Responses
For each patient and pathology, we will ask for both an assessment and a treatment

decision:

1. We will first ask for your assessment of the probability that each condition is present in
a patient. Please consider all pathologies and findings that would be relevant
in a radiology report for the patient. You should express your uncertainty
about the presence of one or many conditions by appropriately choosing the
probability. Note that it is possible that the patient has multiple such conditions or
none of them.

2. If you determine that a pathology may be present, we may ask you to rate the severity
and/or extent of the disease on a scale.

3. Finally, when relevant we will ask whether you would recommend treatment or follow-
up according to the clinical standard of care if you determine that the pathology may
be present. The first two responses are diagnostic while the third is a clinical decision.
We are aware that a single physician or radiologist typically does not perform both
tasks. However, for this study, we ask that you respond to the best of your ability in
both of these roles.

Browser Compatibility
This platform supports desktop versions of Chrome, Firefox, and Edge. Important fea-

tures on non-supported browsers (including Safari) are missing and we discourage their use
for this experiment. In addition, the platform does not support any mobile devices and the
platform will perform poorly on mobile. If you encounter any issues during the experiment,
please send an email to DiagnosticAI@mit.edu and we will follow-up quickly.

Hierarchy

The interface uses a hierarchy to categorize various thoracic conditions. It will be useful to
familiarize yourself with this hierarchy before you start, but you may also revisit the hierarchy
at any time throughout the experiment by clicking the help tab in the upper right corner.
[The probability for the sub-pathologies is required only if the parent pathology prevalence is
greater than 10%.]
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Figure B.4: Pathology hierarchy

AI Support Tool

The AI support tool that is provided uses only the X-ray image to predict the probability of
each potential pathology of interest. The tool is based on state-of-the-art machine learning
algorithms developed by a leading team of researchers at Stanford University. The tool is
trained only on X-ray images, meaning it does not incorporate the clinical history of the
patients.

Performance of the AI Support
The AI tool is described in Irvin et al. [2019], which showed the AI tool performed at or

near expert levels across the pathologies studied. Below we plot two measures of performance
of the AI tool. We plot in blue the accuracy of the tool, defined as the share of cases correctly
diagnosed when treating false positives and false negatives equally. In red, we plot the Area
Under the ROC curve (AUC), which is another measure of AI classification performance.
The AUC is a number between 0 and 100%, with numbers close to 100% representing better
algorithm performance. The AUC is equal to the probability that a randomly chosen positive
case is ranked higher than a randomly chosen negative case.
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Figure B.5: Performance of AI tool

Example Images
Below are 50 example images with the associated AI tool predictions. These images

are randomly chosen to allow you to familiarize yourself with the AI support tool and its
accuracy. [Here we only provide two out of the 50 images. Notice that these assessments
need not sum to 100% as a case can have more than one pathology. The sum of assessments
among pathologies that are nested within a top-level pathology also may be less than the top-
level pathology’s assessment as a case could have the top-level pathology but none of the child
pathologies with an AI prediction.]
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Figure B.6: Example images
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Demonstration
The brief video below walks you through the interface and a few examples. [At this stage

participants saw an instructional video which can be found here.]
Consent
You have been asked to participate in a study conducted by researchers from the Mas-

sachusetts Institute of Technology (M.I.T.) and Harvard University.
The information below provides a summary of the research. Your participation in this

research is voluntary and you can withdraw at any time.

1. Study procedure: We will ask you to examine a number of chest x-rays. We will vary
both the amount of information provided about the patient and the availability of an
AI support tool.

2. Potential Risks & Benefits: There are no foreseeable risks associated with this study
and you will receive no direct benefit from participating.

Your participation in this study is completely voluntary and you are free to choose whether
to be in it or not. If you choose to be in this study, you may subsequently withdraw from
it at any time without penalty or consequences of any kind. The investigator may withdraw
you from this research if circumstances arise.

Privacy & Confidentiality
The only people who will know that you are a research subject are members of the research

team which might include outside collaborators not affiliated with MIT. No identifiable infor-
mation about you, or provided by you during the research, will be disclosed to others without
your written permission, except: if necessary to protect your rights or welfare, or if required
by law. In addition, your information may be reviewed by authorized MIT representatives
to ensure compliance with MIT policies and procedures.

When the results of the research are published or discussed in conferences, no information
will be included that would reveal your identity.

Questions
If you have any questions or concerns about the research, please feel free to contact us

directly at diagnosticAI@mit.edu.
Your Rights
You are not waiving any legal claims, rights, or remedies because of your participation

in this research study. If you feel you have been treated unfairly, or you have questions
regarding your rights as a research subject, you may contact the Chairman of the Committee
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on the Use of Humans as Experimental Subjects, M.I.T., Room E25-143B, 77 Massachusetts
Ave, Cambridge, MA 02139, phone 1-617-253 6787.

I understand the procedures described above. By clicking next, I am acknowledging my
questions have been answered to my satisfaction, and I agree to participate in this study.

Interface questions
[Each of these questions has a true or false response which was entered through a radio

button. Participants are not able to start the experiment without answering each question
correctly.]

Before beginning the experiment, we would like to confirm a few facts through the fol-
lowing comprehension questions. Please answer True or False to the following questions.

1) The algorithm’s prediction is based on information from both the X-ray scan as well
as the clinical history.

2) When the algorithm does not show a prediction, it is because the algorithm thinks the
pathology is not present.

3) The follow-up decision refers to any treatment or additional diagnostic procedures that
one would conduct based on the findings of the report.

4) Two patients with the same probability score for a condition ought to always receive
the same “follow-up” recommendation.

5) When a condition at a higher level of the hierarchy receives a less than ten percent
chance of being present then all the lower level conditions within this branch automatically
receive a zero probability of being present.

6) If the algorithm says that the probability of a pathology is present with 80% probability,
it means that the AI predicts 80 cases out of 100 have the pathology present.

7) Suppose your assessment is that the patient definitely has either edema or consolidation,
and you believe that edema is twice as likely as consolidation. Then you would assign 66.67%
to edema and 33.33% to consolidation.

8) I should only indicate pathologies and findings that would be relevant in a radiology
report for the patient.

Interface

Figure B.7 is an example of the clinical history indications available to the participating
radiologists under the relevant treatment condition. The thoroughness of the information
varies across available information for every patient. Some examples of varying clinical history
information are:

1. 68 years of age, Female, chest pain
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2. Unknown age, Unknown, trauma

3. 55 years of age, Male, Order History: Relevant PMH gastroparesis. Presents with vom-
iting, retching chest discomfort for a duration of today. Concern for PTX, perforated
viscus, pneumomediastinum

4. 74 years of age, Female, s/p unwitnessed fall, r/o rib fx, pna or effusion

5. Trauma

6. 56 years of age, Male, S/P ICD/ Pacemaker insertion / Complete X-ray without lifting
arms above shoulders..
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Figure B.7: Clinical history information

Note: The clinical history information environment in the experiment had information on patient indications, vitals, and
abnormal labs.
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Figure B.8: Interface slider

Note: The participants use the slider to indicate the probability of a pathology being present for a given patient based on the
treatment offered. For prevalence greater than 10% the participants are required to indicate the prevalence of a sub-pathology
(if it exists) and whether a follow-up is recommended.
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B.3 Additional Details on the AI Algorithm

The training data is a set of tuples of images and labels. These training datasets typically
rely on human input to assign the labels, which indicate whether or not a specific pattern
or object is present in the image. Training is conducted through stochastic gradient descent.
These algorithms build on the nested structure of the neural net to compute gradients com-
putationally efficiently via the chain rule. Each training step is performed on a small batch of
data so that the algorithm does not have to consider the entire dataset for each optimization
step. After each round of optimization on the training set, the model performance is assessed
through predictions on a hold-out validation sample. Most humans are able to recognize cars,
pedestrians, and traffic lights, which means that training datasets for common classification
tasks are easy to come by. The same is not true for medical imaging. Classifying disease
based on X-rays, CT scans, and retina scans requires the input of highly trained experts.
Recently, several researchers have released large training datasets of medical images with
disease labels that are extracted from written clinical descriptions (Irvin et al., 2019). The
neural net has a DenseNet121 architecture. A DenseNet is a type of convolutional neural
network that utilizes dense connections between layers through Dense Blocks; in these blocks,
we connect all layers with matching feature-map sizes directly with each other. Images are
supplied in a standardized format of 320 × 320 pixels. For optimization the researchers use
the Adam optimizer with default β-parameters of β1 = 0.9, β2 = 0.999 and learning rate 1
× 10−4. The batch size is fixed at 16 images. The training is performed for 3 epochs. The
full training procedure is described in (Irvin et al., 2019).

C Data Appendix

C.1 Balance Tests

We verify that the randomization occurred as expected through various balance and ran-
domization tests. Figure C.9 plots the distribution of treatment probabilities by patient-case
in Design 1. We also plot a placebo distribution that samples from the null distribution to
support the claim that the randomization occurred as expected. To test this formally, we
present balance tests for Design 1 and Design 2 in Table C.1 and Table C.2 , respectively.37

For these balance tests, we calculate the average covariates across the four treatment arms
and report p-values from the test of the joint null that the four means are equal. For Design
2, these are done within sessions as patients are balanced by design across all sessions.

37Design 3 is balanced by design, as each radiologist reads the same cases with and without AI assistance.
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Figure C.9: Distribution of patient treatment probabilities in design 1
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Note: The cumulative distribution functions of patient treatment probabilities by treatment for design 1. The placebo distri-
bution is calculated based on 100,000 draws from the null distribution. For each draw from the null distribution, we sample
the number of reads the case receives from the empirical distribution and then draw the number of treatments from a binomial
distribution with probability 1/4.
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Table C.1: Covariate balance in design 1

Control CH AI AI x CH p-value
sA 0.309 0.301 0.310 0.306 0.310
Airspace Opacity 0.163 0.149 0.166 0.159 0.404
Cardiomediastinal Abnormality 0.131 0.130 0.138 0.131 0.832
Support Device Hardware 0.176 0.169 0.176 0.190 0.292
Abnormal 0.187 0.179 0.195 0.189 0.545
Weight 185.24 185.87 185.20 185.17 0.942
Temp 99.02 99.04 99.05 99.06 0.230
Pulse 92.26 92.72 92.55 92.92 0.074
Age 56.80 56.55 56.42 56.87 0.858
Number Labs 34.61 34.23 34.54 34.29 0.372
Number Flagged Labs 5.907 5.862 6.061 6.053 0.349
Female 0.416 0.409 0.389 0.388 0.101

Note: Balance tests of patient covariates for patients assigned to the four treatments in Design 1. Missing clinical history variables are mean-imputed. The p-values come
from the joint test the mean covariates are equal across the four treatments.
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Table C.2: Covariate balance in design 2

Session 1 Session 2 Session 3 Session 4
sA 0.381 0.625 0.381 0.447
Airspace Opacity 0.243 0.368 0.141 0.483
Cardiomediastinal Abnormality 0.164 0.834 0.088 0.716
Support Device Hardware 0.760 0.770 0.714 0.794
Abnormal 0.265 0.624 0.722 0.330
Weight 0.461 0.597 0.878 0.735
Temp 0.107 0.245 0.437 0.654
Pulse 0.242 0.578 0.764 0.772
Age 0.559 0.220 0.082 0.898
Number Labs 0.075 0.348 0.581 0.768
Number Flagged Labs 0.297 0.189 0.935 0.738
Female 0.067 0.052 0.225 0.075

Note: Balance test p-values that the covariate means are equal across the four treatments within each session (column). Missing clinical history variables are mean-imputed.
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C.2 Quality of Diagnostic Standard

Here, we summarize evidence that the diagnostic standard measure we construct is high
quality and robust to various decisions an analyst could make. Recall that the preferred
diagnostic standard used throughout the paper is defined using the reads of five board-
certified radiologists from Mount Sinai, who each read all 324 patient cases in the study in a
random order. For each pathology, we aggregate these reports into the diagnostic standard
for a patient case i as

ωi = 1
 5∑

r=1

πr(ωi = 1|sE
i,r)

5 >
1
2


where we suppress the pathology index for simplicity and r indexes the radiologist. This
method of aggregating reports is robust to certain types of measurement error and depen-
dence across reports as discussed in Wallsten and Diederich (2001). Table C.3 contains
summary statistics for the diagnostic standard created using the Mount Sinai radiologists
and a leave-one-out internal diagnostic standard calculated using the reads collected during
the experiment under the treatment arm with clinical history but no AI assistance. Table C.4
contains additional summary statistics for the five Mount Sinai diagnostic standard labelers,
including their average time and number of clicks. We also show the average agreement of
the labels with the original radiologist’s read. Taken together, these analyses demonstrate,
for the majority of cases, that the diagnostic standard labelers agree with the assessment
of the radiologist who originally read the report in a clinical setting and we can reject that
the average probability assessment is equal to 0.5 at the 5% level. Moreover, in Section
C.5.2 we show that our results are robust to many different methods of calculating diagnos-
tic standard, including using the experiment leave-one-out diagnostic standard and various
aggregation methods of the Mount Sinai reports.
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Table C.3: Diagnostic standard quality

Prevalence Share Rejecting 0.5 Average Number of Rads
Sinai Experiment Sinai Experiment Sinai Experiment

Top-Level with AI 0.147 0.110 0.696 0.795 5.00 16.22
Pooled with AI 0.043 0.028 0.892 0.940 5.00 16.22
Abnormal 0.194 0.506 0.583 0.565 5.00 16.22
All Pathologies 0.013 0.009 0.953 0.980 5.00 16.22

Note: For each of the pre-registered pathology groups, this table shows the average prevalence, the share of cases where we can reject that
∑R

r=1
πr(ωi=1|sE

i,r)
R

= 0.5 at the
5% level, and the average number of reads per case for both the Mount Sinai diagnostic standard and the experiment leave-one-out diagnostic standard.

Table C.4: Diagnostic standard effort

Active Time Clicks Agreement with Original
Mean SD Mean SD

0 77.24 42.78 34.30 17.93 0.868
1 76.44 54.71 32.30 18.24 0.851
2 25.55 30.34 10.84 12.29 0.876
3 79.94 80.22 21.79 20.59 0.866
4 112.96 82.96 26.14 20.12 0.863

Note: For each of the five Mount Sinai radiologists we compute the average and standard deviation of time spent per case and the number of clicks per case. In addition,
we compute the average agreement with the original read as labeled by the CheXbert algorithm.
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C.3 Performance Distributions by Pathology

This section presents distributions for two different accuracy measures for radiologists and
the AI across different pathology groups. These figures allow for a comparison between the
accuracy of the AI relative to the mean radiologist.
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Figure C.10: AUROC

(a) Airspace Opacity
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(b) Edema
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(c) Consolidation
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(d) Bacterial / Lobar Pneumonia
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(e) Atelectasis
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(f) Pneumothorax
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(g) Pleural Effusion
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(h) Cardiomediastinal Abnorm.
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(i) Cardiomegaly
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(j) Fracture
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(k) Support Devices & Hardware
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(l) Abnormal
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Note: This figure summarizes the distribution of radiologist AUROCs across different pathologies, as well as the AUROC of
the AI algorithm for the corresponding pathology. Only the cases where contextual history information is available for the
radiologist but not the AI prediction were considered. AUROC is only defined for radiologists who encounter some positive
cases.
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Figure C.11: RMSE

(a) Airspace Opacity
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(b) Edema
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(c) Consolidation
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(d) Bacterial / Lobar Pneumonia
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(e) Atelectasis
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(f) Pneumothorax
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(g) Pleural Effusion
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(h) Cardiomediastinal Abnorm.
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(i) Cardiomegaly
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(j) Fracture
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(k) Support Devices & Hardware
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(l) Abnormal

0.0 0.2 0.4 0.6 0.8 1.0
RMSE

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Sh
ar

e 
of

 ra
di

ol
og

is
ts

AI (Ptile. 94)

Note: This figure summarizes the distribution of radiologist RMSE across different pathologies, as well as the RMSE of the AI
algorithm for the corresponding pathology. Only the cases where contextual history information is available for the radiologist
but not the AI prediction were considered.
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C.4 Comparison of Radiologists to Original Reads

The reports from the radiologists who originally read the patient cases included in our sam-
ple were classified as positive/negative/uncertain for each pathology using AI predictions
generated by the CheXbert algorithm described in Smit et al. (2020). We compare the ac-
curacy of the original reads relative to the diagnostic standard with the radiologists in our
sample under the treatment arm with clinical history and no AI assistance. We do this for
each pathology by converting the probability reports elicited during the experiment to posi-
tive/negative assessments, where positive is defined as having a probability greater than 50%.
We convert the CheXbert labels to positive/negative assessments by including the uncertain
cases as positive.38 We then calculate the accuracy of the experiment reads and the CheXbert
labels for groups of pathologies focused on in this study and test the null hypothesis that the
accuracy of the radiologists is the same. The results of this analysis are in Table C.5, and
those for when treating uncertain cases negative are in Table C.6.

Table C.5: Comparing experiment assessments to original reads

Top-Level
with AI

Pooled
with AI Abnormal

(1) (2) (3)
Experiment -0.000 -0.004 -0.086

(0.016) (0.006) (0.025)
Constant 0.194 0.090 0.466

(0.016) (0.006) (0.028)
Observations 11128 61204 5564
R-Squared 0.000 0.000 0.002

*p < 0.1; **p < 0.05, ***p < 0.01

Note: Regression of indicator equal to one if binarized assessment is equal to the diagnostic standard from both the original
reads and experiment reads onto a constant and an indicator equal to one if the radiologist was in the experiment. Standard
errors are clustered at the patient-case level.

38For all pathologies but bacterial pneumonia and atelectasis, fewer than 5% of patients have uncertain
cases. For abnormal and all of the top-level pathologies with AI, there are no cases with uncertain labels.
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Table C.6: Comparing experiment to original reads: uncertain as not present

Top-Level
with AI

Pooled
with AI Abnormal

(1) (2) (3)
Experiment -0.000 0.021 -0.086

(0.016) (0.004) (0.025)
Constant 0.194 0.065 0.466

(0.016) (0.005) (0.028)
Observations 11128 61204 5564
R-Squared 0.000 0.000 0.002

*p < 0.1; **p < 0.05, ***p < 0.01
Note: Regression of indicator equal to one if binarized assessment is equal to the diagnostic standard from both the original
reads and experiment reads onto a constant and an indicator equal to one if the radiologist was in the experiment. Standard
errors are clustered at the patient-case level.
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C.5 Robustness

In this section, we show the robustness of the results from Section 4.2. We first present a
table version of the results presented in figure 2 including various combinations of fixed effects
(tables C.7-C.9). We next present robustness of the results in Section 4.2 by experiment
design and by definition of the diagnostic standard. In addition, we test for order effects and
test the impact of incentives.
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Table C.7: Average treatment effects

Deviation from AI Deviation from Diagnostic Standard Effort Measures
All Designs Design 1 All Designs Design 1 All Designs Design 1

Active Time Clicks Active Time Clicks

Treatment (1) (2) (3) (4) (5) (6) (7) (8)

AI × CH 0.002 0.002 0.001 −0.003 −1.21 0.07 −0.89 0.01
(0.003) (0.005) (0.005) (0.010) (3.60) (0.76) (5.94) (1.29)

AI −0.040 −0.041 0.003 0.004 5.94 1.22 4.94 1.27
(0.004) (0.005) (0.004) (0.007) (2.44) (0.54) (4.06) (0.89)

CH −0.001 −0.003 −0.009 −0.010 8.12 0.24 8.15 0.26
(0.002) (0.004) (0.004) (0.007) (2.50) (0.52) (4.15) (0.89)

Control Mean 0.212 0.222 0.226 0.223 154.32 42.65 154.47 38.88
(0.006) (0.007) (0.010) (0.011) (4.18) (1.15) (6.05) (1.36)

Pathology FE Yes Yes Yes Yes – – – –
Radiologist FE No No No No No No No No
Case FE No No No No No No No No
Observations 41920 19080 41920 19080 17455 17455 9538 9538

Note: This table summarizes the average treatment effects (ATE) of different information environments on the absolute value of the difference between the radiologist
probability and AI probability (column (1) and (2)); absolute value of the difference between the radiologist probability and the diagnostic standard (columns (3) and (4));
and radiologists’ effort measured in terms of active time and clicks (columns (5), (6), (7) and (8)). We either pool across all designs (All Designs) or condition on only design
1. Results on effort measure excludes five patient-cases with unaccounted time measure, and observations from design 3 because of learning effects in this set-up. Active
time is winsorized to the 95th percentile. The results are for the two top-level pathologies with AI predictions, airspace opacity and cardiomediastinal abnormality. Standard
errors are two-way clustered at the radiologist and patient-case level in parenthesis. Robustness by design can be found in section C.5.1.
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Table C.8: Average treatment effects

Deviation from AI Deviation from Diagnostic Standard Effort Measures
All Designs Design 1 All Designs Design 1 All Designs Design 1

Active Time Clicks Active Time Clicks

Treatment (1) (2) (3) (4) (5) (6) (7) (8)

AI × CH 0.002 0.002 0.001 −0.003 −1.22 0.07 −0.90 0.00
(0.003) (0.005) (0.005) (0.010) (3.60) (0.76) (5.95) (1.29)

AI −0.040 −0.041 0.003 0.004 5.94 1.23 4.94 1.27
(0.003) (0.005) (0.004) (0.007) (2.44) (0.54) (4.06) (0.89)

CH −0.001 −0.003 −0.009 −0.010 8.12 0.24 8.17 0.26
(0.002) (0.004) (0.004) (0.007) (2.50) (0.52) (4.15) (0.89)

Control Mean 0.212 0.222 0.226 0.223 154.31 42.64 154.46 38.88
(0.005) (0.006) (0.009) (0.010) (1.44) (0.31) (2.35) (0.51)

Pathology FE Yes Yes Yes Yes - - - -
Radiologist FE Yes Yes Yes Yes Yes Yes Yes Yes
Case FE No No No No No No No No
Observations 41920 19080 41920 19080 17455 17455 9538 9538

Note: This table summarizes the average treatment effects (ATE) of different information environments on the absolute value of the difference between the radiologist
probability and AI probability (column (1) and (2)); absolute value of the difference between the radiologist probability and the diagnostic standard (columns (3) and (4));
and radiologists’ effort measured in terms of active time and clicks (columns (5), (6), (7) and (8)). We either pool across all designs (All Designs) or condition on only design
1. Results on effort measure excludes five patient-cases with unaccounted time measure, and observations from design 3 because of learning effects in this set-up. Active
time is winsorized to the 95th percentile. The results are for the two top-level pathologies with AI predictions, airspace opacity and cardiomediastinal abnormality. Standard
errors are two-way clustered at the radiologist and patient-case level in parenthesis. Robustness by design can be found in section C.5.1.
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Table C.9: Average treatment effects

Deviation from AI Deviation from Diagnostic Standard Effort Measures
All Designs Design 1 All Designs Design 1 All Designs Design 1

Active Time Clicks Active Time Clicks

Treatment (1) (2) (3) (4) (5) (6) (7) (8)

AI × CH 0.002 0.004 0.001 −0.003 −1.18 0.01 −0.58 −0.05
(0.003) (0.005) (0.004) (0.007) (3.48) (0.69) (5.74) (1.16)

AI −0.041 −0.043 0.002 0.002 5.55 1.11 3.70 1.00
(0.003) (0.004) (0.004) (0.006) (2.30) (0.49) (3.79) (0.79)

CH −0.002 −0.003 −0.008 −0.005 8.38 0.41 8.65 0.51
(0.002) (0.003) (0.003) (0.005) (2.43) (0.46) (4.05) (0.78)

Control Mean 0.213 0.222 0.226 0.222 154.37 42.63 154.76 38.91
(0.002) (0.002) (0.002) (0.003) (1.39) (0.27) (2.26) (0.44)

Pathology FE Yes Yes Yes Yes - - - -
Radiologist FE Yes Yes Yes Yes Yes Yes Yes Yes
Case FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 41920 19080 41920 19080 17455 17455 9538 9538

Note: This table summarizes the average treatment effects (ATE) of different information environments on the absolute value of the difference between the radiologist
probability and AI probability (column (1) and (2)); absolute value of the difference between the radiologist probability and the diagnostic standard (columns (3) and (4));
and radiologists’ effort measured in terms of active time and clicks (columns (5), (6), (7) and (8)). We either pool across all designs (All Designs) or condition on only design
1. Results on effort measure excludes five patient-cases with unaccounted time measure, and observations from design 3 because of learning effects in this set-up. Active
time is winsorized to the 95th percentile. The results are for the two top-level pathologies with AI predictions, airspace opacity and cardiomediastinal abnormality. Standard
errors are two-way clustered at the radiologist and patient-case level in parenthesis. Robustness by design can be found in section C.5.1.
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C.5.1 By Design

Design 1

This section presents summaries of radiologist accuracy and treatment effect estimates using
data from design 1. We do not present treatment effects conditional on radiologist prediction
as same cases are not read in the design.

Figure C.12: Comparing AI performance to radiologists

(a) RMSE radiologists and AI
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(b) AUROC radiologists and AI
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Note: Main specifications similar to figure 1 with the exception that observations are from design 1 only.

Figure C.13: Conditional treatment effect given AI prediction

(a) Deviation from diagnostic standard
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Note: Main specifications similar to figure 4 with the exception that observations are from design 1 only.
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Design 2

This section presents summaries of key variables, radiologist accuracy and treatment effect
estimates using data from design 2.

Table C.10: Summary statistics

Mean SD
(1) (2)

Reported Probability 0.245 0.278
Decision 0.400 0.490
Deviation from Diagnostic Standard 0.232 0.265
Deviation from AI 0.172 0.159
Correct Decision 0.620 0.485
Active time 165.6 115.8
Observations 15,840
Radiologists 33

Note: This table presents summary statistics of design 2 similar to table 1.

Figure C.14: Comparing AI performance to radiologists

(a) RMSE radiologists and AI
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(b) AUROC radiologists and AI
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Note: Main specifications similar to figure 1 with the exception that observations are from design 2 only.
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Figure C.15: Conditional treatment effect given radiologist prediction

(a) Deviation from diagnostic standard
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(b) Incorrect decision
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Note: Main specifications similar to figure 3 with the exception that observations are from design 2 only.

Figure C.16: Conditional treatment effect given AI prediction

(a) Deviation from diagnostic standard
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Note: Main specifications similar to figure 4 with the exception that observations are from design 2 only.
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Table C.11: Average treatment effects

Deviation Deviation from Effort Measures
from AI Diagnostic Standard Active Time Clicks

Treatment (1) (2) (3) (4)

AI × CH −0.001 0.003 −1.61 0.15
(0.003) (0.004) (3.46) (0.64)

AI −0.034 0.004 7.14 1.17
(0.004) (0.004) (2.25) (0.53)

CH 0.001 −0.008 8.08 0.21
(0.002) (0.003) (2.36) (0.44)

Control Mean 0.189 0.234 154.14 47.18
(0.009) (0.013) (5.72) (1.75)

Pathology FE Yes Yes - -
Observations 15840 15840 7917 7917

Note: Main specifications similar to table C.7 with the exception that observations are from design 2 only.
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Design 3

This section presents summaries of key variables, radiologist accuracy and treatment effect
estimates using data from design 3.

Table C.12: Summary statistics

Mean SD
(1) (2)

Reported Probability 0.240 0.322
Decision 0.231 0.421
Deviation from Diagnostic Standard 0.212 0.297
Deviation from AI 0.216 0.182
Correct Decision 0.785 0.411
Active time 154.8 168.0
Observations 7,000
Radiologists 35

Note: This table presents summary statistics of design 3 similar to table 1.

Figure C.17: Comparing AI performance to radiologists

(a) RMSE radiologists and AI
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(b) AUROC radiologists and AI
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Note: Main specifications similar to figure 1 with the exception that observations are from design 3 only.
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Figure C.18: Conditional treatment effect given radiologist prediction

(a) Deviation from diagnostic standard
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(b) Incorrect decision
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Note: Main specifications similar to figure 3 with the exception that observations are from design 3 only.

Figure C.19: Conditional treatment effect given AI prediction

(a) Deviation from diagnostic standard
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Note: Main specifications similar to figure 4 with the exception that observations are from design 3 only.
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Table C.13: Average treatment effects

Deviation Deviation from
from AI Diagnostic Standard

Treatment (1) (2)

AI × CH 0.009 0.010
(0.008) (0.012)

AI −0.050 −0.003
(0.010) (0.008)

CH −0.003 −0.010
(0.009) (0.013)

Control Mean 0.241 0.216
(0.011) (0.015)

Pathology FE Yes Yes
Observations 7000 7000

Note: Main specifications similar to table C.7 with the exception that observations are from design 3 only.
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C.5.2 By Definition of Diagnostic Standards

Experiment leave-one-out Diagnostic Standard

This section computes the main results using a diagnostic standard constructed using a
leave-one-out average of assessments by radiologists participating in the experiment in the
treatment arm with clinical history but no AI assistance. Specifically, for each radiologist r

and patient case i we construct ωir = 1
[∑

r′ ̸=r
π(ωi=1|sE

ir)
Ni−1 > 0.5

]
.

Figure C.20: Comparing AI performance to radiologists

(a) RMSE radiologists and AI
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(b) AUROC radiologists and AI
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Note: Main specifications similar to figure 1 with the exception that diagnostic standard is constructed using experiment
leave-one-out average.

Figure C.21: Conditional treatment effect given radiologist prediction

(a) Deviation from diagnostic standard
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(b) Incorrect decision
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Note: Main specifications similar to figure 3 with the exception that the diagnostic standard is constructed using experiment
leave-one-out average.
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Figure C.22: Conditional treatment effect given AI prediction

(a) Deviation from diagnostic standard
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(b) Incorrect decision
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Note: Main specifications similar to figure 4 with the exception that the diagnostic standard is constructed using experiment
leave-one-out average.

Table C.14: Average treatment effects

Deviation from Diagnostic Standard

Treatment (1)

AI × CH 0.004
(0.005)

AI 0.009
(0.004)

CH −0.012
(0.004)

Control Mean 0.220
(0.010)

Pathology FE Yes
Observations 41920

Note: Main specifications similar to table C.7 with the exception that the diagnostic standard is constructed using experiment
leave-one-out average.
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Continuous Diagnostic Standard

This section computes the main results using a continuous diagnostic standard constructed
using a simple average of the diagnostic standard labelers’ probability assesment.

Figure C.23: RMSE radiologists and AI

0.0 0.2 0.4 0.6 0.8 1.0
RMSE

0.00

0.05

0.10

0.15

0.20

Sh
ar

e 
of

 ra
di

ol
og

is
ts

AI (Ptile. 11)

Note: Main specifications similar to figure 1 with the exception that the diagnostic standard is constructed using continuous
values.
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Figure C.24: Conditional treatment effect given radiologist prediction

-.15

-.1

-.05

0

.05

A
TE

 o
f A

I o
n 

de
vi

at
io

n 
fr

om
 d

ia
gn

os
tic

 st
an

da
rd

[0,0.2) [0.2,0.4) [0.4,0.6) [0.6,0.8) [0.8,1]
Radiologist probability bins without AI

Note: Main specifications similar to figure 3 with the exception that the diagnostic standard is constructed using continuous
values.

Figure C.25: Conditional treatment effect given AI prediction
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Note: Main specifications similar to figure 4 with the exception that the diagnostic standard is constructed using continuous
values.
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Table C.15: Average treatment effects

Deviation from Diagnostic Standard

Treatment (1)

AI × CH 0.002
(0.004)

AI −0.006
(0.003)

CH −0.007
(0.003)

Control Mean 0.183
(0.007)

Pathology FE Yes
Observations 41920

Note: Main specifications similar to table C.7 with the exception thatthe diagnostic standard is constructed using continuous
values.
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Excluding Cases where the Diagnostic Standard is Uncertain

This section computes the main results using only cases where we can reject that the average
of the diagnostic standard assessments equals 0.5 at the 0.05 significance level.

Figure C.26: Comparing AI performance to radiologists

(a) RMSE radiologists and AI
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(b) AUROC radiologists and AI
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Note: Main specifications similar to figure 1 with the exception that sample excludes cases where we fail to reject the null
hypothesis that the US Mount Sinai constructed diagnostic standard is equal to 0.5.

Figure C.27: Conditional treatment effect given radiologist prediction
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Note: Main specifications similar to figure 1 with the exception that sample excludes cases where we fail to reject the null
hypothesis that the US Mount Sinai constructed diagnostic standard is equal to 0.5.
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Figure C.28: Conditional treatment effect given AI prediction

-.1

-.05

0

.05

.1

.15

A
TE

 o
n 

de
vi

at
io

n 
fr

om
 d

ia
gn

os
tic

 st
an

da
rd

[0,0.2) [0.2,0.4) [0.4,0.6) [0.6,0.8) [0.8,1]
AI prediction bins

Note: Main specifications similar to figure 4 3 with the exception that sample excludes cases where we fail to reject the null
hypothesis that the US Mount Sinai constructed diagnostic standard is equal to 0.5.

Table C.16: Average treatment effects

Deviation from Diagnostic Standard

Treatment (1)

AI × CH −0.004
(0.005)

AI 0.007
(0.004)

CH −0.004
(0.004)

Control Mean 0.138
(0.008)

Pathology FE Yes
Observations 27703

ote: Main specifications similar to table C.7 with the exception that sample excludes cases where we fail to reject the null
hypothesis that the US Mount Sinai constructed diagnostic standard is equal to 0.5.
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Conservative Diagnostic Standard

This section computes the main results using a binary diagnostic standard with a lower, more
conservative cutoff of 0.3 instead of 0.5. That is, ωi = 1

[∑
r πr

(
ωi = 1|sE

i,r

)
/5 > 0.3

]
Figure C.29: Comparing AI performance to radiologists

(a) RMSE radiologists and AI
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(b) AUROC radiologists and AI
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Note: Main specifications similar to figure 1 with the exception that binary diagnostic standard uses a lower cutoff at 0.3.

Figure C.30: Conditional treatment effect given radiologist prediction
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Note: Main specifications similar to figure 3 with the exception that the binary diagnostic standard uses a lower cutoff at 0.3.
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Figure C.31: Conditional treatment effect given AI prediction
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Note: Main specifications similar to figure 4 with the exception that the binary diagnostic standard uses a lower cutoff at 0.3.

Table C.17: Average treatment effects

Deviation from Diagnostic Standard

Treatment (1)

AI × CH 0.004
(0.005)

AI −0.001
(0.004)

CH −0.012
(0.005)

Control Mean 0.248
(0.011)

Pathology FE Yes
Observations 36280

Note: Main specifications similar to table C.7 with the exception that the binary diagnostic standard uses a lower cutoff at 0.3.
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Internally Constructed Diagnostic Standard Excluding Cases with AI and Clinical History

This section computes the main results using a internally constructed diagnostic standard
which excludes cases where the radiologist received AI support or clinical history.

Figure C.32: Comparing AI performance to radiologists

(a) RMSE radiologists and AI
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(b) AUROC radiologists and AI
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Note: Main specifications similar to figure 1 with the exception that the internal diagnostic standard constructed without AI
and clinical history is used.

Figure C.33: Conditional treatment effect given radiologist prediction
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Note: Main specifications similar to figure 3 with the exception that the internal diagnostic standard constructed without AI
and clinical history is used.
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Figure C.34: Conditional treatment effect given AI prediction
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Note: Main specifications similar to figure 4with the exception that the internal diagnostic standard constructed without AI
and clinical history is used.

Table C.18: Average treatment effects

Deviation from Diagnostic Standard

Treatment (1)

AI × CH −0.007
(0.005)

AI 0.016
(0.004)

CH 0.003
(0.004)

Control Mean 0.214
(0.009)

Pathology FE Yes
Observations 41920

Note: Main specifications similar to table C.7 with the exception that the internal diagnostic standard constructed without AI
and clinical history is used.
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C.5.3 Testing for Order Effects

First Treatment (only Design 1 and Design 2)

The following graphs contain only those cases from the treatment group that the subjects
encountered first. This includes the first 15 reads from design 1 and the first 5 reads from
design 2. This exercise is to check if the treatment effects for all the reads is different than
for the first reads.

Figure C.35: Comparing AI performance to radiologists

(a) RMSE radiologists and AI
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(b) AUROC radiologists and AI
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Note: Main specifications similar to figure 1 with the exception that observations are from the first treatment received in designs
1 and 2 only.

Figure C.36: Conditional treatment effect given AI prediction

(a) Deviation from diagnostic standard
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(b) Incorrect decision
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Note: Main specifications similar to figure 4 with the exception that observations are from the first treatment received in designs
1 and 2 only.
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Table C.19: Average treatment effects

Deviation Deviation from Effort Measures
from AI Diagnostic Standard Active Time Clicks

Treatment (1) (2) (3) (4)

AI × CH −0.020 −0.015 6.29 0.97
(0.018) (0.024) (24.80) (5.56)

AI −0.040 0.011 −6.34 1.48
(0.013) (0.018 (16.06) (3.77)

CH −0.014 −0.004 25.73 2.04
(0.013) (0.017) (19.25) (4.27)

Control Mean 0.235 0.231 180.48 42.49
(0.009) (0.015) (13.39) (2.76)

Pathology FE Yes Yes - -
Observations 5100 5100 2550 2550

Note: Main specifications similar to table C.7 with the exception that observations are from the first treatment received in
designs 1 and 2 only.

Previous Exposure to AI (Design 2)

Figure C.37: Conditional treatment effect given AI prediction
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Note: This graph shows the treatment effects of the deviation from AI in the second session because of receiving AI signal in the
first session conditional on receiving AI signal in the second session (Lagged Effect). On the other hand, the contemporaneous
effects show the deviation from AI in the second session given the participants receive AI in the second session, conditional on
receiving AI signal in the second session. These graphs are valid only for design 2 as participants see the same image but in a
different information environment.
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C.5.4 Incentives

This section tests if incentives for assessment accuracy promote radiologists to make more
accurate assessments. We find that the incentives do not play a significant role in getting
a correct response. The effect of incentives are estimated using the following regression
specification and the results are shown in Table C.20.

Yirt =γhi
+γINC ·dINC(r)

+γCH ·dCH(t)+γCH×INC ·dCH(t).dINC(r)

+γAI ·dAI(t)+γAI×INC ·dAI(t).dINC(r)

+γAI×CH ·dCH(t) ·dAI(t)+γAI×CH×INC ·dCH(t) ·dAI(t).dINC(r)+ εirt

where Yirt is an outcome variable of interest for radiologist r diagnosing patient case-
pathology i and treatment t, and γhi

are pathology fixed effects. Here CH refers to cases
with access to clinical history information, AI to cases with AI predictions and INC refers
to incentivized cases.
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Table C.20: Effect of incentives

Deviation from AI Deviation from Diagnostic Standard Effort Measures

Top-Level Pooled Top-Level Pooled Active Time Clicks
with AI with AI with AI with AI

Treatment (1) (2) (3) (4) (5) (6)

AI × CH −0.001 −0.003 −0.002 −0.002 −9.37 −1.50
(0.006) (0.002) (0.012) (0.004) (7.45) (1.73)

AI −0.033 −0.013 0.003 0.001 11.26 2.44
(0.006) (0.003) (0.009) (0.003) (5.54) (1.32)

CH −0.000 0.001 −0.012 −0.004 11.10 0.87
(0.005) (0.002) (0.008) (0.003) (5.07) (1.28)

Control Mean 0.223 0.112 0.221 0.083 156.22 39.27
(0.008) (0.003) (0.012) (0.005) (8.80) (1.94)

AI × CH × Incentives 0.010 0.006 0.004 0.002 17.08 3.04
(0.009) (0.003) (0.016) (0.006) (11.83) (2.57)

AI × Incentives −0.021 −0.007 −0.002 0.001 −12.72 −2.37
(0.008) (0.003) (0.012) (0.004) (8.06) (1.78)

CH × Incentives −0.006 −0.003 0.004 0.003 −5.95 −1.22
(0.007) (0.003) (0.013) (0.005) (8.30) (1.77)

Control Mean × Incentives 0.006 0.002 −0.000 −0.003 −3.53 −0.77
(0.009) (0.003) (0.011) (0.004) (12.10) (2.72)

Pathology FE Yes Yes Yes Yes - -
Observations 26080 169520 26080 169520 9538 9538
F-stat 1.61 1.35 .18 .59 1.08 .71
P>F-stat .17 .25 .95 .67 .37 .58

Note: This table summarizes the average treatment effects (ATE) of different information environments on the (1) absolute value of the difference between the radiologist
probability and AI algorithm probability (Columns (1) and (2)), absolute value of the difference between the radiologist probability and the diagnostic standard (Columns
(3) and (4)) and radiologists’ effort measured in terms of active time and clicks for all and the second-half images (Columns (5) and (6)). The F-statistic tests for the joint
significance of the four incentivized groups. Top-level specification includes two pathologies: airspace opacity and cardiomediastinal abnormality while Pooled AI includes
all the pathologies with AI predictions excluding abnormality and support device hardware. Only cases in design 1 and design 3 are considered. Two-way clustered standard
errors at the radiologist and patient-case level are in parenthesis.
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C.5.5 Controlling for sequence number and session

Figure C.38 uses the following specification that controls for the sequence number in which the
participants saw a particular case within one experiment session and the session dummies
for the different designs and experiment sessions to estimate the heterogeneous treatment
effects. There are four sessions in Design 2, whereas Design 1 and 3 have only one session.

Yirt = γhi
+ γAI · dAI(t) +

∑
g

[
γg ·dg(sA

i )+γAI×g ·dAI(t).dg(sA
i )

]
+ γwirt + γmirt + εirt

where Yirt is an outcome variable of interest for radiologist r diagnosing patient case-
pathology i and treatment t, γhi

are pathology fixed effects, γwirt are sequence number
dummies and γmirt are session dummies. Here, g is defined as an index for an interval of
the AI signal range where 1 ≤ g ≤ 5. A case is said to be in an interval g conditional on the
signal value for the given patient-case.

Figure C.38: Conditional treatment effect given AI prediction
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Note: Main specifications similar to figure 4 with additional controls for rounds and session.

102



Table C.21: Average treatment effects

Deviation Deviation Effort Measures
from AI from Diagnostic Standard Active Time Clicks

Sessions (1) (2) (3) (4)
Design 2: Session 1 −0.018 0.027 47.44 16.34

(0.010) (0.013) (10.61) (2.56)
Design 2: Session 2 −0.035 0.012 2.54 8.33

(0.010) (0.011) (9.28) (2.36)
Design 2: Session 3 −0.033 0.002 −18.90 5.37

(0.010) (0.011) (9.13) (2.46)
Design 2: Session 4 −0.037 0.004 −32.53 3.06

(0.009) (0.011) (7.07) (2.25)
Design 3 0.019 −0.008 - -

(0.009) (0.011) - -
Control Mean 0.220 0.218 158.54 39.01

(0.006) (0.010) (5.78) (1.33)
Design 2: Session 1 × AI 0.001 0.007 6.87 0.89

(0.006) (0.009) (5.80) (1.25)
Design 2: Session 2 × AI 0.007 −0.004 0.11 −0.50

(0.007) (0.009) (5.32) (1.21)
Design 2: Session 3 × AI 0.002 0.003 0.70 −0.61

(0.008) (0.009) (4.54) (1.25)
Design 2: Session 4 × AI 0.010 0.005 −0.21 0.12

(0.007) (0.011) (4.59) (1.15)
Design 3 × AI −0.006 −0.000 - -

(0.009) (0.008) - -
Control Mean × AI −0.040 0.002 4.49 1.27

(0.004) (0.005) (3.08) (0.66)
Pathology FE Yes Yes - -
Observations 41920 41920 17455 17455
F-stat .71 .29 .48 .33
P>F-stat .62 .92 .75 .86

Note: Main specifications similar to table C.7 with additional control variables for sequence number of a particular case and
the experiment session. Due to the high volume of sequence numbers, we do not show them in this table but account for them.
Design 1 session dummy is ommitted due to collinearity and is thus the control mean.
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C.5.6 Calibrated radiologist probability

Figure C.39: Comparing AI performance to radiologists

(a) RMSE radiologists and AI
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(b) AUROC radiologists and AI
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Note: Main specifications similar to figure 1 with the exception that reported probability of the radiologists is calibrated to the
diagnostic standard.

Figure C.40: Deviation from diagnostic standard

(a) Conditional on radiologist signal
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(b) Conditional on AI signal
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Note: Main specifications similar to figure 3 and figure 4 with the exception that reported probability of the radiologists is
calibrated to the diagnostic standard and there are no separate results for ATE on incorrect decision.
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Table C.22: Average treatment effects

Deviation from Diagnostic Standard

Treatment (1)

AI × CH −0.001
(0.004)

AI −0.000
(0.003)

CH −0.002
(0.003)

Control Mean 0.187
(0.010)

Pathology FE Yes
Observations 41917

Note: Main specifications similar to table C.7 with the exception that reported probability of the radiologists is calibrated to
the diagnostic standard and hence only the ATE on deviation from the diagnostic standard is reported.

C.5.7 All Pathologies and Abnormal with AI

All Pathologies with AI

Figure C.41: Comparing AI performance to radiologists

(a) RMSE radiologists and AI
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(b) AUROC radiologists and AI
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Note: Main specifications similar to figure 1 with the exception that all patholgies with AI are considered.
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Figure C.42: Conditional treatment effect given radiologist prediction
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(b) Incorrect decision
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Note: Main specifications similar to figure 4 with the exception that all patholgies with AI are considered.

Figure C.43: Conditional treatment effect given AI prediction

(a) Deviation from diagnostic standard
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Note: Main specifications similar to figure 4 with the exception that all patholgies with AI are considered.
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Abnormal

Figure C.44: Comparing AI performance to radiologists

(a) RMSE radiologists and AI
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(b) AUROC radiologists and AI
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Note: Main specifications similar to figure 1 with the exception that only the abnormal pathology is considered.

Figure C.45: Conditional treatment effect given radiologist prediction

(a) Deviation from diagnostic standard
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(b) Incorrect decision
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Note: Main specifications similar to figure 4 with the exception that only the abnormal pathology is considered.
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Figure C.46: Conditional treatment effect given AI prediction

(a) Deviation from diagnostic standard
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Note: Main specifications similar to figure 4 with the exception that only the abnormal pathology is considered.
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Table C.23: Average treatment effects

Deviation from AI Deviation from Diagnostic Standard
Pooled Abnormal Pooled Pooled Abnormal
with AI with AI

Treatment (1) (2) (3) (4) (5)
AI × CH 0.000 0.010 0.000 −0.000 0.002

(0.001) (0.005) (0.001) (0.002) (0.008)
AI −0.016 −0.062 −0.001 0.001 0.013

(0.001) (0.005) (0.001) (0.001) (0.007)
CH −0.000 −0.003 −0.001 −0.002 −0.005

(0.001) (0.004) (0.001) (0.001) (0.006)
Control Mean 0.109 0.279 0.032 0.085 0.419

(0.003) (0.009) (0.002) (0.004) (0.012)
Pathology FE Yes No Yes Yes No
Observations 272480 20960 2137920 272480 20960

Note: Main specifications similar to table C.7 with the exception that only the abnormal pathology is considered.
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C.6 Automation Bias Appendix

C.6.1 Conditional Independence

Table C.24 presents evidence that human and AI signals are not conditionally independent.
To test the hypothesis of conditional independence, we regress the human report in the
treatment arm without AI assistance on the diagnostic standard, the AI score, and the
interaction between the diagnostic standard and the AI score. If the signals were conditionally
independent, we would observe the AI score to offer no predictive power on the human report
after conditioning on the diagnostic standard. As shown in Table C.24 we can reject this null
hypothesis.

Table C.24: Test of conditionally independent signals

Top Level with AI Pooled with AI Abnormal
Diagnostic Standard 0.318 0.265 -0.049

(0.042) (0.033) (0.078)
AI Score 0.536 0.620 0.815

(0.046) (0.035) (0.052)
Diagnostic Standard × AI -0.244 -0.217 0.205

(0.082) (0.066) (0.090)
Constant 0.089 0.044 -0.058

(0.011) (0.003) (0.039)
Observations 11420 57100 5710
R-Squared 0.260 0.301 0.316

Note: Estimates of a regression of the human report in the treatment without AI assistance on the diagnostic standard interacted
with the AI score. This table uses data from designs 2 and 3. Standard errors are two-way clustered at the radiologist and
patient case level.
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C.6.2 Estimating Bayesian Update Terms

Here, we describe the method we use to estimate the Bayesian benchmark π(ωi = 1|sH
ih, sA

i ).
This procedure is done separately for each pathology. We train a random forest classifier
that predicts the diagnostic standard based on features including the vector of a radiologist’s
reported probabilities in the non-AI treatment and the vector of AI predictions. Additional
features include radiologist identifiers to allow for heterogeneity in radiologists’ assessments,
an indicator equal to one if the case was read with clinical history, and summaries of the
patient clinical history. We estimate this quantity for various parameterizations of sH

ih and
sA

i described in Section 5. These are used in the model testing exercise to understand if
radiologists account for the joint distribution of signals when forming their posterior beliefs.
The hyperparameters of the model are tuned using grouped cross-validation where observa-
tions were grouped by patient id to avoid overfitting with five folds. We impose monotonicity
constraints on the model to impose that π(ωi = 1|sH

ih, sA
i ) is monotonically increasing in all

probability inputs. When the model includes clinical history, we provide a summarized pa-
tient’s clinical record with their sex, weight, temperature, pulse, age, and the number of
available and flagged labs. We mean impute these variables when the radiologist does not
have access to the clinical history and include an indicator equal to one if the radiologist had
access to the clinical history as an additional feature. Below we summarize the performance
of these models and the relative value of increasing the dimension of sH

ih and sA
i .
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Table C.25: Summary of Bayesian models

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Airspace Opacity Accuracy 0.88 0.91 0.88 0.89 0.90 0.90 0.89 0.90 0.89 0.89 0.91 0.90
AUC 0.89 0.96 0.91 0.92 0.96 0.96 0.94 0.96 0.93 0.93 0.96 0.96

Cardiomediastinal Abnorm. Accuracy 0.90 0.92 0.90 0.91 0.93 0.92 0.92 0.92 0.91 0.91 0.93 0.93
AUC 0.90 0.96 0.91 0.93 0.96 0.96 0.94 0.96 0.94 0.94 0.96 0.96

Abnormal Accuracy 0.88 0.91 0.88 0.89 0.91 0.91 0.90 0.91 0.90 0.90 0.92 0.91
AUC 0.91 0.96 0.91 0.93 0.96 0.96 0.95 0.96 0.94 0.94 0.96 0.96

Focal sA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Other sA ✓ ✓ ✓ ✓ ✓ ✓
Focal sE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Other sE ✓ ✓ ✓ ✓
Clinical History sE ✓ ✓ ✓ ✓ ✓ ✓

Note: This table summarizes the models used to estimate the Bayesian benchmark. Each column corresponds to a random forest classification tree with varying signal
structures. The rows Focal sA, Other sA, Focal sH , Other sH , and Clinical History sH indicate what features are included in the tree. Focal sA corresponds to the focal
pathology’s AI score, Other sA corresponds to vector of AI scores for all pathologies, Focal (Other) sH includes the radiologist’s report without AI assistance on the focal
pathology (all pathologies), and Clinical History sH contains summaries of the patient’s clinical history when available to the radiologist.
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C.6.3 Model Selection on Additional Pathology Groups

Here, we present the model selection results for the remaining pre-registered pathology
groups.
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Table C.26: Model selection: top level with AI

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Automation bias (b) 0.27 0.12 0.33 0.29 0.12 0.12 0.19 0.12 0.21 0.23 0.12 0.12

(0.02) (0.02) (0.03) (0.03) (0.02) (0.02) (0.03) (0.02) (0.03) (0.03) (0.02) (0.02)
Own information bias (d) 1.11 1.05 1.09 1.08 1.05 1.05 1.07 1.05 1.07 1.08 1.05 1.05

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Constant 0.39 0.25 0.39 0.38 0.25 0.25 0.32 0.25 0.32 0.35 0.25 0.25

(0.04) (0.03) (0.04) (0.04) (0.03) (0.03) (0.03) (0.03) (0.04) (0.04) (0.03) (0.03)
Focal sA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Other sA ✓ ✓ ✓ ✓ ✓ ✓
Focal sH ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Other sH ✓ ✓
Clinical history sH ✓ ✓ ✓ ✓ ✓ ✓
J-Statistic 13.08 7.68 11.63 15.4 7.59 8.85 7.53 6.25 8.55 9.34 6.72 7.72
MMSC-BIC -29.11 -9.19 -26.34 -18.36 -9.29 -8.03 -13.57 -10.63 -12.55 -11.76 -10.16 -9.16
Selected moments 13 7 12 11 7 7 8 7 8 8 7 7
Possible moments 14 14 14 14 14 14 14 14 14 14 14 14
Observations 11420 11420 11420 11420 11420 11420 11420 11420 11420 11420 11420 11420
R-Squared 0.49 0.42 0.48 0.48 0.42 0.42 0.45 0.42 0.45 0.46 0.42 0.42

Note: This table presents results of the model selection exercise as described in Table 2, including the full set of models that were included in the selection procedure.
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Table C.27: Model selection: pooled with AI

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Automation bias (b) 0.17 0.09 0.19 0.14 0.10 0.10 0.12 0.10 0.14 0.14 0.10 0.10

(0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01) (0.01) (0.02) (0.02) (0.01) (0.01)
Own information bias (d) 1.12 1.10 1.12 1.12 1.10 1.10 1.11 1.10 1.11 1.11 1.10 1.10

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Constant 0.37 0.31 0.38 0.36 0.31 0.30 0.33 0.31 0.34 0.35 0.31 0.30

(0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04)
Focal sA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Other sA ✓ ✓ ✓ ✓ ✓ ✓
Focal sH ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Other sH ✓ ✓
Clinical history sH ✓ ✓ ✓ ✓ ✓ ✓
J-Statistic 11.16 6.44 12.05 4.11 3.62 4.53 5.8 5.22 5.32 4.77 4.43 4.68
MMSC-BIC -14.16 -10.44 -13.26 -12.77 -13.25 -12.35 -11.07 -11.65 -11.56 -12.11 -12.45 -12.2
Selected moments 9 7 9 7 7 7 7 7 7 7 7 7
Possible moments 14 14 14 14 14 14 14 14 14 14 14 14
Observations 57100 57100 57100 57100 57100 57100 57100 57100 57100 57100 57100 57100
R-Squared 0.46 0.42 0.44 0.43 0.42 0.42 0.43 0.42 0.43 0.43 0.42 0.42

Note: This table presents results of the model selection exercise as described in Table 2, though this table only includes all pathologies with AI assistance.
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Table C.28: Model selection: abnormal

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Automation bias (b) 0.09 0.06 0.08 0.09 0.06 0.07 0.05 0.07 0.05 0.07 0.06 0.07

(0.03) (0.02) (0.03) (0.03) (0.02) (0.02) (0.03) (0.02) (0.03) (0.03) (0.02) (0.02)
Own information bias (d) 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.08 1.07 1.07 1.07 1.08

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
Constant 0.36 0.30 0.33 0.37 0.30 0.31 0.26 0.31 0.26 0.32 0.30 0.31

(0.07) (0.06) (0.07) (0.08) (0.06) (0.06) (0.06) (0.06) (0.07) (0.07) (0.06) (0.06)
Focal sA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Other sA ✓ ✓ ✓ ✓ ✓ ✓
Focal sH ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Other sH ✓ ✓
Clinical history sH ✓ ✓ ✓ ✓ ✓ ✓
J-Statistic 11.99 11.02 12.87 11.1 11.02 10.95 14.45 11.03 14.48 12.64 11.04 11.05
MMSC-BIC -25.98 -26.95 -25.1 -26.88 -26.95 -27.03 -23.52 -26.94 -23.49 -25.33 -26.93 -26.92
Selected moments 12 12 12 12 12 12 12 12 12 12 12 12
Possible moments 14 14 14 14 14 14 14 14 14 14 14 14
Observations 5710 5710 5710 5710 5710 5710 5710 5710 5710 5710 5710 5710
R-Squared 0.35 0.32 0.32 0.34 0.32 0.32 0.30 0.32 0.30 0.32 0.32 0.32

Note: This table presents results of the model selection exercise as described in Table 2, though this table only includes Abnormal.
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C.6.4 Model Selection Without Adjusting for Measurement Error

This section presents the results of the model selection exercise not accounting for measure-
ment error in the human signal. In these analyses, the instruments are constructed using
the radiologist’s report on the case in the treatment arm without AI assistance. Note that
some time elapses between the reads, so the radiologist likely observes a different draw of
sE introducing measurement error into the right-hand side variables of equation 7. This
is why the preferred method uses instruments constructed using a leave-one-out average of
reports for the case. Table C.29 presents results for top-level pathologies with AI, Table C.30
presents results for all pathologies with AI, and Table C.31 presents results for abnormal.
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Table C.29: Model selection: top level with AI without accounting for measurement error

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Automation bias (b) 0.50 0.36 0.58 0.51 0.38 0.36 0.42 0.38 0.48 0.50 0.37 0.37

(0.02) (0.02) (0.03) (0.02) (0.02) (0.02) (0.02) (0.02) (0.03) (0.02) (0.02) (0.02)
Own information bias (d) 1.00 0.90 0.95 0.94 0.90 0.90 0.93 0.90 0.92 0.94 0.90 0.90

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
Constant 0.34 0.13 0.30 0.28 0.14 0.12 0.21 0.14 0.20 0.28 0.13 0.13

(0.05) (0.04) (0.04) (0.05) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04)
Focal sA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Other sA ✓ ✓ ✓ ✓ ✓ ✓
Focal sH ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Other sH ✓ ✓
Clinical history sH ✓ ✓ ✓ ✓ ✓ ✓
J-Statistic 0.61 8.05 0.0 0.0 0.0 8.55 0.04 4.09 0.0 0.08 6.33 5.89
MMSC-BIC -3.61 -8.82 0.0 0.0 0.0 -8.33 -4.18 -12.79 0.0 -4.14 -10.55 -6.77
Selected moments 4 7 3 3 3 7 4 7 3 4 7 6
Possible moments 14 14 14 14 14 14 14 14 14 14 14 14
Observations 11420 11420 11420 11420 11420 11420 11420 11420 11420 11420 11420 11420
R-Squared 0.58 0.55 0.56 0.56 0.55 0.55 0.56 0.55 0.56 0.57 0.55 0.55

Note: This table presents results of the model selection exercise as described in Table 2 for top-level pathologies with AI assistance without accounting for measurement
error in the radiologist reports.
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Table C.30: Model selection: pooled with AI without accounting for measurement error

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Automation bias (b) 0.46 0.35 0.46 0.44 0.36 0.35 0.39 0.36 0.41 0.43 0.36 0.36

(0.02) (0.01) (0.02) (0.02) (0.01) (0.01) (0.02) (0.01) (0.02) (0.02) (0.01) (0.01)
Own information bias (d) 1.01 0.94 0.97 0.98 0.94 0.94 0.96 0.94 0.95 0.97 0.95 0.95

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Constant 0.21 0.00 0.10 0.13 0.02 0.02 0.06 0.01 0.04 0.11 0.03 0.03

(0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04)
Focal sA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Other sA ✓ ✓ ✓ ✓ ✓ ✓
Focal sH ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Other sH ✓ ✓
Clinical history sH ✓ ✓ ✓ ✓ ✓ ✓
J-Statistic 12.06 0.0 0.0 3.42 8.92 10.23 0.0 8.95 0.0 0.0 4.39 7.06
MMSC-BIC -13.26 0.0 0.0 -0.8 -7.96 -10.86 0.0 -7.93 0.0 0.0 -16.71 -14.04
Selected moments 9 3 3 4 7 8 3 7 3 3 8 8
Possible moments 14 14 14 14 14 14 14 14 14 14 14 14
Observations 57100 57100 57100 57100 57100 57100 57100 57100 57100 57100 57100 57100
R-Squared 0.58 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56

Note: This table presents results of the model selection exercise as described in Table 2 for all pathologies with AI assistance without accounting for measurement error in
the radiologist reports.
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Table C.31: Model selection: abnormal without accounting for measurement error

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Automation bias (b) 0.48 0.36 0.43 0.43 0.36 0.36 0.35 0.37 0.36 0.39 0.36 0.37

(0.02) (0.02) (0.03) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
Own information bias (d) 0.94 0.86 0.84 0.88 0.87 0.86 0.84 0.88 0.81 0.85 0.88 0.87

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
Constant 1.23 1.01 1.12 1.19 1.01 1.01 0.98 1.04 0.99 1.11 1.03 1.02

(0.07) (0.06) (0.08) (0.07) (0.06) (0.06) (0.06) (0.06) (0.07) (0.07) (0.06) (0.06)
Focal sA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Other sA ✓ ✓ ✓ ✓ ✓ ✓
Focal sH ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Other sH ✓ ✓
Clinical history sH ✓ ✓ ✓ ✓ ✓ ✓
J-Statistic 4.85 8.9 0.0 3.33 7.86 12.55 0.0 10.65 0.0 2.17 8.2 10.85
MMSC-BIC -7.81 -7.97 0.0 -9.33 -13.24 -12.77 0.0 -14.66 0.0 -2.05 -12.9 -14.46
Selected moments 6 7 3 6 8 9 3 9 3 4 8 9
Possible moments 14 14 14 14 14 14 14 14 14 14 14 14
Observations 5710 5710 5710 5710 5710 5710 5710 5710 5710 5710 5710 5710
R-Squared 0.56 0.54 0.53 0.54 0.54 0.54 0.54 0.54 0.52 0.53 0.54 0.54

Note: This table presents results of the model selection exercise as described in Table 2 for abnormal without accounting for measurement error in the radiologist reports.
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C.6.5 Linearity of the Update Model

To assess the appropriateness of linear relationship in the model of radiologist updating
with AI we estimate non-parametric versions of the model and plot the empirical analog of
Figure 7 along with the joint distribution of signals. To do so, we estimate a boosted tree
that estimates the radiologist’s reported ph(ωi=1|sA

ih,sH
ih)

ph(ωi=0|sA
ih,sH

ih) as a non-parametric function of a
constant, the update term, and the reported probability without AI assistance. We impose
monotonicity constraints on the update term and the reported probability without AI. We
then plot the frontier in which radiologists are indifferent between following up on the case-
pathology and not following up. We compare this frontier to the cutoff frontier of a Bayesian
decision maker, the radiologist without AI assistance, and the radiologist with AI assistance
under the linear model.

Figure C.47: Empirical analog of figure 7
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(b) Cardiomediastinal Abnormality

Note: For the two top-level pathologies with AI assistance, we plot estimates of the indifference frontier where radiologists are
indifferent between following up on a patient-case and not following up on a patient-case for a Bayesian decision maker, the
linear model estimated in equation 7, a non-parametric version of equation 7, and the human only without AI assistance. In
addition, we plot the joint distribution of the signals log-likelihoods.

C.6.6 Individual Heterogeneity

Here we show the distribution of individual estimates of equation (7). Each estimate contains
sampling error, as each radiologist is only reading a subset of cases. Therefore, the unadjusted
distribution of individual-level estimates is overdispersed as it is a convolution of the true
individual-level parameters and the sampling noise. We adjust for this over-dispersion using
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a Bayesian hierarchical model, where we model the individual parameter vector θh as follows.

θh ∼N (µ,Σ)

µ ∼N (0,100I)

Σ =diag(τ)Ωdiag(τ)

τk ∼Cauchy(0,2.5)

Ω ∼LKJCorr(10)

We sample from the posterior of this model and plot the marginal distribution of the
posterior means of θh below.

Figure C.48: Individual heterogeneity in b and d
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(b) Pooled with AI
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Note: Marginal distributions of individual b and d estimates by radiologist for top level pathologies with AI and all pathologies
with AI.

C.7 Preference Estimation

In the experiment we elicit both probability assessment and treatment decisions, allowing us
to identify the relative costs of false positives and false negatives the radiologists are using.
Recall that radiologist h chooses to treat or follow-up on pathology p in patient case i under
treatment t if ahitp = 1 where ahitp is given by

ahitp = 1
[

phitp

1−phitp
− chp

rel + εhitp > 0
]

where phitp is the radiologist’s probability assessment, chp
rel is the relative cost of false positives

and false negatives for radiologist h and pathology p, and εhitp captures unobserved preference
heterogeneity. If εhitp follows a Logistic distribution, we can estimate chp

rel through a logistic
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regression. We impose a low-dimensional structure on chp
rel to improve statistical precision

and estimate the following logistic regression

log P (ahitp = 1)
1−P (ahitp = 1) = β0 +β log phitp

1−phitp
+αp +γh (9)

where αp are pathology fixed effects and γh are radiologist fixed effects. The relative costs
of false positives to false negatives for radiologist h and pathology p can then be found as
chp

rel = exp
[
−β0+γh+αp

β

]
. For each pathology, we winsorize radiologists’ relative costs at the

5th and 95th percentile. The results of this exercise are presented in Table C.32.

Table C.32: Preference estimates

Mean Std Min 25% 50% 75% Max
All 3.696 5.278 0.243 0.663 1.513 3.913 20.884
Top (with AI) 1.164 1.522 0.155 0.271 0.489 1.263 5.849
AI 2.139 3.058 0.193 0.383 0.891 2.179 12.287
Abnormal 2.223 2.952 0.331 0.519 0.966 2.379 11.667

Note: Distribution of chp
rel

for each of the four pre-registered pathology groups calculated from the estimates of equation 9. The
distribution of chp

rel
is winsorized for each pathology at the 5th and 95th percentile.

C.8 Delegation Results for Cardiomediastinal Abnormality

Here we show the results of Section 6 for the other top-level pathology with AI assistance,
Cardiomediastinal Abnormality. Table C.33 shows the decision loss and time cost for various
delegation strategies, Figure C.49 plots the possibilities frontier between human time and
decision loss, and Figure C.50 plots the share of cases assigned to each modality under the
optimal delegation strategy for a range of values of the social cost of a false negative.
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Table C.33: Cardiomediastinal Abnormality delegation results

Time Cost Pr(Fp) Pr(Fn) Decision Loss
Minutes Dollars

Bayesian 2.8 11.4 3.2 6.3 8.4
AI Only 0.0 0.0 4.4 7.6 10.5
Human Only 2.8 11.2 20.5 3.6 17.2
Human + AI 2.8 11.4 18.4 3.2 15.5
Min. Decision Loss 0.5 2.1 3.3 6.4 10.5

Note: This table shows the time taken and decision loss of various delegation strategies for Cardiomediastinal Abnormality. The
average time per case is shown in both minutes and dollars using a wage of $4 per minute. The table also reports the share of
false positives (P r(F P )), the share of false negatives (P r(F N)), and decision loss calculated as P r(F N) + crelP r(F P ) where
crel =0.66 – the median crel for Cardiomediastinal Abnormality. The Bayesian row shows results for the Bayesian decision
maker. AI Only shows results for full delegation to the AI. Human Only shows results if humans read cases on their own
without AI assistance. Human + AI shows results if humans read all cases with access to the AI. Min. Decision Loss shows
results for the optimal delegation strategy that minimizes decision loss and highlights the potential improvement in decisions
from delegating to the AI. This analysis excludes data from design 3 because of learning effects in this setup.

Figure C.49: Loss-time frontier: Cardiomediastinal Abnormality
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Note: This graph shows how human radiologists and the AI perform relative to the optimal delegation system on the frontier of

the cost of human time versus decision loss. This analysis excludes data from design 3 because of learning effects in this setup.
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Figure C.50: Cardiomediastinal Abnormality modality shares
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(b) Humans
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Note: The graphs show the share of cases decided by each modality (humans, AI, humans+AI) conditional on the cost of a

false negative in dollars, denoted m in the text, for airspace opacity. Panel (a) focuses on a Bayesian decision maker. Panel

(b) focuses on a human decision-maker with decisions and time-taken as in our experiment. This analysis excludes data from

design 3 because of learning effects in this setup.
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