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ABSTRACT

While Artificial Intelligence (AI) algorithms have achieved performance levels comparable to 
human experts on various predictive tasks, human experts can still access valuable contextual 
information not yet incorporated into AI predictions. Humans assisted by AI predictions could 
outperform both human-alone or AI-alone. We conduct an experiment with professional 
radiologists that varies the availability of AI assistance and contextual information to study the 
effectiveness of human-AI collaboration and to investigate how to optimize it. Our findings reveal 
that (i) providing AI predictions does not uniformly increase diagnostic quality, and (ii) providing 
contextual information does increase quality. Radiologists do not fully capitalize on the potential 
gains from AI assistance because of large deviations from the benchmark Bayesian model with 
correct belief updating. The observed errors in belief updating can be explained by radiologists’ 
partially underweighting the AI’s information relative to their own and not accounting for the 
correlation between their own information and AI predictions. In light of these biases, we design a 
collaborative system between radiologists and AI. Our results demonstrate that, unless the 
documented mistakes can be corrected, the optimal solution involves assigning cases either to 
humans or to AI, but rarely to a human assisted by AI.
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“We should stop training radiologists now. Its just completely obvious that within five years,
deep learning is going to do better than radiologists."

– Geoffrey Hinton (in 2016)

1 Introduction

Artificial intelligence (AI) is a general-purpose technology with transformative potential sim-
ilar to that of the steam engine and electricity (Brynjolfsson and Mitchell, 2017; Brynjolfsson
et al., 2017; Agrawal et al., 2018; Acemoglu and Johnson, 2023; Goldfarb et al., 2023; Frank
et al., 2019). But, in contrast to the transformation during the industrial revolutions, AI can
potentially displace humans from tasks that require complex reasoning (Webb, 2019; Felten
et al., 2019; Brynjolfsson and Mitchell, 2017). Advances in AI have therefore caused concern
about the role of human work, even in highly skilled occupations (Ford, 2015). Indeed, a
growing literature shows that AI tools based on machine learning can outperform humans
on a host of predictive tasks, including those typically performed by experts (Liu et al. 2019;
Lai et al. 2021; Mullainathan and Obermeyer 2019; Kleinberg et al. 2017).
However, Hinton’s prediction about radiology — an iconic example in machine learning —
may have been premature.1 Many argue that instead of being replaced by AI, it is optimal to
have human radiologists use AI assistance, at least for the foreseeable future (Langlotz, 2019;
Agrawal et al., 2019). In addition to considerable legal and regulatory challenges that stand
in the way of full automation, there may be potential gains from combining human expertise
with AI input that cannot be realized by exclusively relying on one or the other. For example,
radiologists may correct mistaken AI predictions or may have access to information about the
clinical context that has not yet been systematized and built into AI tools. Current regulatory
practice is consistent with these arguments – approved AI tools for clinical decision-making
typically play a supporting role rather than operating autonomously (see Norden and Shah,
2022; Harvey and Gowda, 2020, for example). Similar reasons are likely to result in partial
task automation or collaboration between human experts and AI being optimal in other
contexts.
We run an experiment to examine how radiologists use AI predictions, whether AI assistance
improves their performance, estimate a model of (potentially biased) belief updating, and
analyze what this model implies about the optimal form of collaboration between AI and
humans.2 If humans correctly combine AI predictions with their own information, then AI

1A more nuanced but qualitatively similar prediction that machine learning tools will displace radiologists
is conveyed in Obermeyer and Emanuel (2016).

2We will use the terms ‘humans,’ ‘radiologists,’ and ‘participants’ interchangeably.



3

assistance unambiguously improves prediction and decision quality. Unless the costs in terms
of human effort outweigh these benefits, it is optimal to provide AI assistance to humans.
However, substantial literature in economics suggests that humans may err when making
probabilistic judgments by deviating from the benchmark model of Bayesian updating with
correct beliefs (see Benjamin et al., 2019, for a review). The optimal approach for combining
human and AI information in the presence of these mistakes is non-trivial.

The experiment employs professional radiologists whom we recruit through teleradiology
companies to diagnose retrospective patient cases. We experimentally manipulate the in-
formation set radiologists have access to when making decisions in a two-by-two factorial
design. In the minimal information environment, we provide only the chest X-ray image to
which we add either AI predictions or contextual information, or both. The AI information
treatment provides probabilities that a patient case is positive for a potential chest pathology
generated using an algorithm trained on over 250,000 X-rays with corresponding disease la-
bels (Irvin et al., 2019). This algorithm was shown to perform comparably to board-certified
radiologists. The contextual information treatment provides clinical history information that
radiologists typically have available but, for privacy reasons, was not available to train the
AI. This information includes the treating doctors’ indications, the patient’s vitals, and the
patient’s labs.

We first estimate the treatment effects of those informational interventions on radiologists’
prediction accuracy and the probability of making a correct decision. We then test alterna-
tive models of biased belief updating to investigate whether radiologists exhibit systematic
deviations from a Bayesian benchmark when incorporating AI predictions. For example, hu-
mans may suffer from automation bias, a tendency to place more weight on machine-provided
predictions than on one’s own information.3 Additionally, humans may treat AI predictions
as independent of their own information (Enke and Zimmermann, 2019). Finally, we evaluate
various forms of human-AI collaboration – in terms of diagnostic performance and costs of
expert time – that decide, as a function of the AI prediction, to use only the AI input, only
the human input, or the human input with access to AI.

Diagnostic radiology is an ideal laboratory for investigating human-AI interaction for var-
ious reasons. Deep learning has made significant advances in radiology, surpassing human
decision-making in many cases, and such algorithms are already clinically deployed Rajpurkar
and Lungren (2023). It, therefore, serves as a useful leading indicator for other professions

3This terminology is borrowed from the literature that dates to the proliferation of computerized auto-
mated support systems in aviation, which raised concerns about human complacency or automation bias (see
Alberdi et al., 2009, for an overview).
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where similar developments will follow. Moreover, radiology is a highly-paid medical spe-
cialty, which means that the potential benefits from productivity enhancements through AI
are large. Radiology is also ideal from a research perspective. Unlike other physicians, radi-
ologists do not have direct contact with patients, allowing us to run a decision experiment
that resembles their normal workflow through a remote interface that we developed. To aid
quantitative analysis, instead of obtaining a free-text report, we collect radiologist’s assessed
probability that a given chest pathology is present and a binary clinical recommendation of
whether to treat or follow up for that pathology. For our experiment, we hired 180 radiolo-
gists through teleradiology companies that serve US hospitals and offer the services of both
US-based and non-US-based radiologists.

Analyzing the quality of our participants’ assessments requires establishing, for each patient
case, a standard or ground truth. An important challenge in our setting is that definitive
diagnostic tests do not exist for most thoracic pathologies and, even when they do exist,
are selectively performed depending on a radiologist’s recommendation. We therefore follow
the machine learning literature (Sheng et al., 2008) and construct a diagnostic standard by
aggregating the assessments of five board-certified radiologists at Mt. Sinai Hospital with at
least ten years of experience and chest radiology as a sub-specialty. We assess the robustness
of all our results by constructing a (leave-one-out) ground truth using the assessments of our
experimental participants and by varying the aggregation method.

There are two important challenges in designing the experiment, which we address using
a combination of experimental designs. First, while teleradiology firms allow us to recruit
radiologists for our experiment we need to compensate them at the market rate, making data
collection expensive. An across-participant design would therefore be cost-prohibitive except
for extremely large effect sizes. In the first design, we, therefore, randomize each participant
into an order in which they are exposed to the four informational environments but do not
encounter cases repeatedly. Thus, this design allows for within-participant comparisons in
addition to an initial pure across-participant comparison. The second challenge is that, to
estimate a model of belief updating, we need to observe radiologists’ assessments of a given
case both with and without AI assistance. Moreover, the assessment without AI assistance is
required to estimate the Bayesian benchmark, which we can compare to the assessment that
incorporates AI assistance. Our second design addresses this issue by asking each participant
to diagnose each patient case once in each of the four information environments in random
order while ensuring at least a two-week wash-out period between two encounters of a given
case. This wash-out period is intended to eliminate the memory of prior information and
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anchoring effects.4 Most of our treatment effect analysis pools data from the different designs
whereas our model estimates of belief updating only uses data where a radiologist reads the
same case both with and without AI assistance.

We find that AI assistance does not improve humans’ diagnostic quality on average even
though the AI predictions are more accurate than almost two-thirds of the participants in
our experiment. Moreover, the zero average effect cannot be explained by the participants
ignoring these predictions – we observe that radiologists’ reported probabilities move sig-
nificantly towards the AI’s predictions with AI assistance. Instead, the zero effect of AI
assistance is driven by heterogeneous treatment effects – diagnostic quality increases when
the AI is confident (e.g. the predicted probability is close to zero or one) but decreases
when the AI is uncertain. In parallel, AI assistance improves diagnostic quality for patient
cases in which our participants are uncertain, but decreases quality for patient cases in which
our participants are certain. In contrast, providing clinical history does improve diagnostic
quality suggesting that humans have additional valuable information that has not yet been
incorporated into AI predictions.

An upshot of the results is that information available only to radiologists is useful, but
human experts do not correctly combine their information with AI predictions. Specifically,
the result that AI assistance can reduce predictive performance cannot be rationalized if our
participants are Bayesians with correct beliefs because the AI assistance provides weakly
more information to the decision-maker.

Motivated by these results, we analyze two types of deviations from the benchmark model
with correct updating to link errors in probabilistic judgement and optimal deployment of
AI assistance.5 The first type of deviation occurs when agents do not put correct weights on
their own information and AI information. We describe this deviation using the approach
introduced in Grether (1980; 1992) (see Benjamin, 2019, for a review) to define biases in
belief updating. We say that an agent exhibits own-information bias if they over-weights
their baseline information when provided with AI assistance and own-information neglect if
they under-weights it. Analogously, an agent exhibits automation bias if they over-weights
the AI information relative to their own and automation neglect if they under-weights it.
The second type of deviation occurs if agents utilize an incorrect joint distribution of their

4To ensure that our results do not rely on the wash-out being successful, a third design obtains an
assessment with AI assistance only after assessments without AI assistance have been obtained. However,
this third treatment is subject to order effects. We find no evidence of order effects on diagnostic quality
although there is evidence that familiarity with the interface increases the speed with which participants go
through patient cases.

5We will remain agnostic about whether the deviations we consider are due to non-Bayesian updating or
can be explained by Bayesian updating with incorrect prior beliefs.
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own information and AI information – an example of such a deviation is correlation neglect
(Enke and Zimmermann, 2019). Our theoretical analysis shows that if agents exhibit only
automation neglect, then AI assistance unambiguously increases diagnostic quality. All other
forms of biases we consider result in AI assistance reducing diagnostic quality for certain
realizations of AI and own information.

We then use the data from our experiment to estimate empirical analogs of the deviations
described above and select the model that best describes the treatment effects we document.
This exercise requires us to solve several challenges unique to a naturalistic setting where the
experimenter does not control the information structure. We find that in the model that best
describes our data, agents exhibit automation neglect and act as if their own information
and AI predictions are independent (conditional on the truth), even though this is not the
case. Interestingly, we do not find evidence of substantial own-information bias or neglect.

Finally, we take our data to estimate the trade-off between diagnostic quality and radiologist
time when AI predictions can be selectively utilized, and design an optimal human-AI collab-
orative system. For each pathology and conditional on the AI prediction for that pathology,
our experiment allows us to compute both the diagnostic quality and time taken if a patient
case is diagnosed by the AI, a randomly chosen radiologist without AI assistance, and a radi-
ologist assisted with the AI prediction. We use these data to train a classification algorithm
that yields the frontier of diagnostic quality and total radiologist time. The results from this
exercise mirror our treatment effect analysis – because radiologists take more time with AI
and do not correctly incorporate the AI’s information, the majority of cases are optimally
decided either by the radiologist or the AI alone but not by the radiologist with access to AI.

Related Literature

A growing body of literature in computer science has explored the predictive performance
of humans versus machine learning algorithms, with radiology often serving as a key area of
application (Rajpurkar et al., 2018, 2017). Additionally, the study of human-AI collaboration
has become an increasingly important facet of medical AI research (Tschandl et al., 2020;
Reverberi et al., 2022). For comprehensive overviews of these areas, see Rajpurkar et al.
(2022); Hosny et al. (2018); Zhou et al. (2021); Lai et al. (2021). Research on the effectiveness
of human-AI collaboration is evolving, with notable studies in radiology including Rajpurkar
et al. (2020); Kim et al. (2020); Park et al. (2019); Seah et al. (2021); Fogliato et al. (2022). An
active literature studies whether AI assistance benefits radiologists, and which radiologists
benefit the most (Rajpurkar et al., 2020; Seah et al., 2021; Ahn et al., 2022; Sim et al.,
2020; Gaube et al., 2023). In contrast to prior studies, we recruit a large group of high-
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skilled experts from teleradiology companies under contracts that allow us to incentivize
our participants. A key differentiating factor of our research is that, unlike previous studies
which mainly concentrated on performance, our work emphasizes behavioral biases and their
impact on human-AI interaction.

An emerging literature in economics also compares human and AI performance. Within
economics, these studies tend to rely on observational approaches, with examples addressing
issues in medicine (Ribers and Ullrich, 2022; Mullainathan and Obermeyer, 2019) and bail
decisions (Kleinberg et al., 2015; Angelova et al., 2022). However, analyses based on obser-
vational data face critical identification challenges, such as the selective labels problem (see
Kleinberg et al., 2017; Mullainathan and Obermeyer, 2019; Rambachan, 2021)). A limited
set of studies use quasi-experimental approaches (e.g., Stevenson and Doleac, 2019; Angelova
et al., 2022) or randomized controlled trials (e.g., Imai et al. (2020); Noy and Zhang (2023);
Grimon et al. (2022)) to investigate human use of AI tools, typically focusing on overall
performance or variability in participant response. We add to this literature by developing
an experimental approach that manipulates the information environment that calculates and
compares behavior with a Bayesian benchmark to document systematic biases and demon-
strate that these biases lead to a non-trivial delegation problem.6

While several studies in behavioral economics have documented errors in probabilistic judg-
ment and belief formation, they do not focus on the issues surrounding human-AI interaction
(c.f. Tversky and Kahneman, 1974; Benjamin et al., 2019; Enke and Zimmermann, 2019; Con-
lon et al., 2022, for example). Our definitions of own-information and automation bias build
on the framework in Grether (1980). We contribute to this literature in two ways. First,
we develop an approach to estimate the parameters of the model in Grether (1992) in an
environment where the joint distribution of the signals cannot be controlled (or partialled
out) by the researcher.7 This approach is necessary because we cannot modify the signal
within medical images. Second, we link the design of AI information provision to the (bi-
ased) updating rule that humans use. This link shows that the use of AI information by
humans is an important and practical application of the ideas in this literature.

6Our finding that radiologists exhibit automation neglect is related to those in Dietvorst et al. (2015),
which shows that humans are averse to following algorithmic recommendations as compared to human recom-
mendations. This aversion can be reduced if humans are allowed to modify the algorithm’s recommendation
(Dietvorst et al., 2018).

7Most applications that we are aware of rely on one of two experimental approaches. In the first approach,
the researcher can partial out either the prior information or the likelihood ratio of the signal provided, for
example in the classic bookbag-and-poker-chip experiments (see Benjamin et al. 2019; Benjamin 2019, for
reviews). In the second approach, the researcher directly provides signals from a known joint distribution
(e.g. Conlon et al., 2022).
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Our analysis of optimal human-AI collaboration is related to papers that build delegation
algorithms to predict the types of cases for which human performance exceeds machine
performance (e.g. Mozannar and Sontag, 2020; Raghu et al., 2019; Bansal et al., 2021).
Relative to this work, our analysis uses a decision-theoretic model and specific human biases
to trace their consequences for optimal AI deployment.

Finally, our work also adds to the literature on decision-making in the health care context
(e.g. Abaluck et al., 2016; Currie and MacLeod, 2017; Gruber et al., 2021; Chan et al.,
2022; Chandra and Staiger, 2020). This work aims to understand predictions and payoffs
from observational data on medical decisions, objectives that are achievable under less strin-
gent functional form restrictions in our experimental approach. An important distinguishing
feature is that none of these papers consider the effects of AI predictions on medical decision-
making.

Overview

The rest of the paper is organized in the following way. Section 2 introduces our model of a
decision-maker in a diagnostic setting. Section 3 describes the necessary details of the setting
and our experimental design. Section 4 discusses the treatment effects. Section 5 estimates a
descriptive model of deviations from Bayesian updating. Section 6 shows the gains achievable
under the optimal collaboration between radiologists and AI.

2 Conceptual Model

Our study focuses on classification problems and, specifically machine learning algorithms
within the domain of AI tools. These algorithms are designed to predict the appropriate
classification for a given case and may assist a human decision-maker. This decision-maker,
indexed by r, must take a binary action air ∈ {0, 1} on case i based on a prediction of a
binary state ωi ∈ {0, 1}. The realized payoff ur (air, ωi) from an action depends both on
the state and the action. The expert does not know ωi but observes, depending on the
information environment, a subset of two signals that are potentially informative about the
state. The first signal is generated by a prediction algorithm (AI), with realizations sA

i ∈ SA.
The second signal is directly obtained by the expert, with a realization sE

ir ∈ SE. These
signals are of arbitrary dimension. The joint distributions of the signals conditional on the
state is given by πr (·|ω) ∈ ∆

(
SA, SE

)
, with prior probabilities over the state π (ω). We do

not place any restrictions on πr (·|ω). The signals need not be independent conditional on
the state of the world, and the signal distribution may depend on the expert, capturing skill
(Chan et al., 2022). We also allow for cases when one of the signals is more informative than
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the other (Blackwell, 1953).

Assume that the human’s objective is to match the action to the state. Thus, the human
faces a classification problem. It is without loss of generality to normalize the payoff from
taking the action that matches the state to zero. Let cF P,r be the disutility of human r if she
takes the action a = 1 when the state is ω = 0 (false positive) and cF N,r be the disutility if
she takes the action a = 0 when the state is ω = 1 (false negative). The payoff of the human
is therefore

ur (a, ω) = −1 · {a = 1, ω = 0} · cF P,r − 1 · {a = 0, ω = 1} · cF N,r. (1)

We allow the human’s posterior belief given the observed signals to deviate from those implied
by the true probability law πr (·|ω). Specifically, let sir ⊂

{
sA

r , sE
ir

}
be the subset of signal

realizations observed by the human r and pr (ω |sir ) ∈ [0, 1] be the human’s posterior belief
that the state is ω ∈ {0, 1} when she observes sir. Suppressing the dependence of signals on
the pair (i, r), the human’s action given the signal s is

a∗
r (s; pr) = 1 ·

{
pr (ω = 1 |s)
pr (ω = 0 |s) > crel,r ≡ cF P,r

cF N,r

}
. (2)

The expected payoff from following a∗ (s) is

Vr (s; pr) = E [ur (a∗
r (s; pr) , ω) |s ] =

∑
ω

u (a∗
r (s; pr) , ω) πr (ω |s) ,

where decisions are based on the human’s belief pr, but are evaluated according to the true
law πr. Because we allow for pr to differ from πr, the odds ratio pr(ω=1|s )

pr(ω=0|s ) may differ from
the analogous quantity constructed using πr. Thus, the action a∗

r (s; pr) can deviate from the
optimal action a∗

r (s; πr) given the signal s =
(
sA, sE

)
. Except in knife-edge cases, Vr (s; pr)

is lower than V (s; πr) whenever a∗ (s; pr) ̸= a∗ (s; πr).

A key objective is to analyze deviations in humans’ use of AI signals from the benchmark
model of Bayesian updating with correct beliefs (about the joint distribution of the signals
and the state). Bayes’ rule implies that, given the signals

(
sA

i , sE
ir

)
, the log-odds of ω = 1 to

ω = 0–the key decision-relevant quantity–is given by

log
πr

(
ωi = 1

∣∣∣sA
i , sE

ir

)
πr (ωi = 0 |sA

i , sE
ir ) = log

πr

(
sA

i

∣∣∣ωi = 1, sE
ir

)
πr (sA

i |ωi = 0, sE
ir ) + log

πr

(
ωi = 1

∣∣∣sE
ir

)
πr (ωi = 0 |sE

ir ) . (3)

The second term on the right-hand side is the posterior log-odds ratio for the two states
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ωi = 1 to ωi = 0 given that the human’s signal is sE
ir. The first term is positive if, given the

realization sE
ir, the signal sA

i is more likely if ωi = 1 as compared to ωi = 0. In this case,
the posterior odds shift in favor of the state ωi = 1. Analogously, the odds shift away from
ωi = 1 if, given sE

ir, the signal sA
i is more likely if the state were ωi = 0.

The task of empirically analyzing deviations in participants’ beliefs from the benchmark in
equation (3) is challenging because the signals differ across cases i and humans may, due to
differences in skill, have heterogeneous signal distributions πr (·) . The ideal dataset would
elicit pr

(
ωi = 1

∣∣∣sA
i , sE

ir

)
and πr

(
ωi = 1

∣∣∣sE
ir

)
for the same case and the same human to keep

the signals
(
sA

i , sE
ir

)
, and human-specific parameters fixed, and use the latter to estimate

πr

(
ωi = 1

∣∣∣sA
i , sE

ir

)
using equation (3).

However, empirically implementing this strategy requires us to confront several experimental
and methodological challenges. First, the experiment needs to be sensitive to anchoring and
order effects when eliciting pr

(
ωi = 1

∣∣∣sA
i , sE

ir

)
and πr

(
ωi = 1

∣∣∣sE
ir

)
from participants. Second,

the potential for measurement error and the dependence of the first term in equation (3) on
a latent signal sE

ir complicates the exercise. We defer our approach to this second challenge
to section 5, and turn our attention to the experimental design.

3 Setting and Experiment

Our experiment elicits the probability of a pathology’s presence pr (ω = 1 |s) and a recom-
mended treatment/follow-up decision a under varying information treatments. There are four
information treatments in the experiment, with only the chest X-ray in the minimal informa-
tion case, to which we add AI assistance, contextual information, or both. Next, we describe
the experimental context and interface before presenting the design of our experiments.

3.1 Experimental Context

3.1.1 Radiology

Radiologists diagnose the presence of a given pathology at the request of a treating physician.
The information available to a radiologist consists of diagnostic images (e.g. chest X-rays),
any relevant medical history (e.g. laboratory results), and clinical indication notes of the
treating physician.8 The treating physician’s notes are of varying detail levels – they may
provide no clinical information or guidance, request the analysis of a specific pathology, or

8Radiologists are rarely in direct contact with the patient or the treating physician, except via the formal
information exchange outlined here.
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only list the patient’s primary symptom (see appendix B.2 for examples). Irrespective of
the pathology suspected by the treating physicians, radiologists are expected to report all
pathological findings.

Because image-based classification is a core task performed by radiologists, a high-paying
profession, it is not surprising that AI tools have made significant inroads in the field in the
last decade. Recent advances in deep learning methods for image recognition have yielded
algorithms that can match or surpass the performance of human radiologists (Obermeyer and
Emanuel, 2016; Langlotz, 2019). As of 2020, 55 companies offered a total of 119 algorithmic
products of which 46 have FDA approval (Tadavarthi et al., 2020). Most products related
to clinical decision-making are marketed as support tools as opposed to autonomous tools,
partly due to regulatory and liability issues (Harvey and Gowda, 2020).

3.1.2 CheXpert

We provide AI assistance using the CheXpert model, which is a deep learning prediction
algorithm for chest X-ray interpretation (Irvin et al., 2019). This model is trained on a
dataset of 224,316 chest radiographs of 65,240 patients labeled for the presence of fourteen
common chest radiographic pathologies.9 The algorithm does not use any other patient
information, such as the clinical history or vitals.10 Nonetheless, a prior version of this
algorithm was shown to match or surpass the performance of board-certified radiologists
from Stanford Hospital on five pathologies (Patel et al., 2019). These study results are also
presented to our participants when introducing the AI tool. Section 4 confirms that the
algorithm outperforms a majority of radiologists in our experiment. We relegate additional
details about the algorithm to appendix B.3. The algorithm assistance to our participants
will be in the form of a vector of probabilities for the presence of every pathology.11

9The term artificial intelligence is typically reserved for a system of different prediction tasks to mimic a
more complex set of behaviors, whereas machine learning is concerned with one specific prediction task. For
a detailed discussion of this distinction see, for instance, (Taddy, 2018).

10While large datasets of images are increasingly available (e.g. Kramer et al. 2011, Johnson et al. 2016,
Irvin et al. 2019) it is significantly more difficult to construct such datasets for other patient information due
to the compulsory manual review of textual data for HIPPA compliance.

11Some algorithms attempt to make their predictions explainable to a human by highlighting the parts
of the image that drive a specific prediction. However, prior studies show that providing such localization
in addition to the numeric output does not improve the accuracy of radiologists (Gaube et al., 2022). A
quantitative output allows us to compute a Bayesian benchmark to the radiologist’s prediction, which is
otherwise difficult.
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3.2 Experimental Designs

Our experiment varies the information available to diagnose patient cases—participants may
or may not receive AI assistance and access to the clinical history. The X-ray is shown under
all information conditions. We expose our participants to all four possible information con-
ditions: X-ray only, henceforth XO; clinical history without AI, henceforth CH ; AI without
clinical history, henceforth AI ; and both clinical history and AI, henceforth AI+CH.

There are two objectives of our experiment. The first is to compute the treatment effects of
AI and CH on diagnostic quality and radiologist time. The second is to analyze systematic
deviations from the Bayesian benchmark.

Both these objectives are complicated by the likely heterogeneity in radiologist skills. For
estimating treatment effects, radiologist heterogeneity implies that a design that randomizes
treatments only across radiologists will require a large participant pool except for extremely
large effect sizes. Our participants are highly paid experts, making this approach expensive.
And, as explained in section 2, across-radiologist variation in information treatments is not
tailored for the second objective. We would ideally know how a given radiologist changes her
assessment for the same case under a different information condition.

Our approach to address these challenges is to use a combination of three different experi-
mental designs, each with certain advantages and disadvantages. Appendix B.1 illustrates
the three design variations.

3.2.1 Design 1 (Figure B.1)

In the first design, participants are assigned to a random sequence of the four information
treatments. Each information condition is assigned fifteen cases at random without repe-
tition. Participants read all 15 cases in one information environment before moving to the
next one.

This design builds in both across- and within-participant variation in information treatments.
The within-participant variation has greater power because it controls for participant het-
erogeneity at the potential cost of order effects. The concern of order effects is both testable
and mitigated by the randomization of treatment sequence across subjects.

This first design is well-suited to estimate treatment effects of our information environments.
However, as mentioned earlier, it is not ideal for estimating an empirical analog to equation
(5) because no case is encountered twice.
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3.2.2 Design 2 (Figure B.2)

Radiologists diagnose each patient case in each of the four information environments in the
second design. For the moment, set aside concerns arising from the feature that the same
radiologist encounters the same case multiple times. This design will allow us to estimate
an empirical analog to equation (5). It also has the added benefit of controlling for both
case-radiologist heterogeneity because, unlike in the previous design, we can conduct within-
case-radiologist comparisons across treatments.

Because radiologists repeatedly encounter cases, we need to address the potential for order
effects due to memory. For example, radiologists might anchor on their previous assessment
using AI predictions or contextual information and might remember this information the
next time the same case is encountered. We, therefore, limit radiologists’ ability to remem-
ber either their diagnosis or previously provided information by using a “washout” interval
between two encounters of the same case.12 Specifically, radiologists complete the experi-
ment in four sessions that are separated by at least two weeks. Each session is similar to the
first design: radiologists diagnose fifteen cases in each of the four information environments
with no case repeated within a session. Across sessions, the information environment under
which a given case is diagnosed is permuted. Thus, by the end of the fourth session, each of
the sixty cases is diagnosed exactly once in each information environment. Our results are
consistent with the washout being effective – radiologists’ predictions do not move towards
the AI prediction if it was provided in a prior session but do if it is provided in the current
session (see figure C.28).

3.2.3 Design 3 (Figure B.3)

In the third design, we address residual concerns about the order effects of radiologists
diagnosing cases with AI before those without AI–whether due to anchoring, memory, or
experimenter demand–by having participants diagnose fifty cases, first without and then
with AI assistance. Within each block, clinical history is randomly provided in either the
first or second half of images.

This design also allows us to conduct within case-radiologist comparisons. The potential
disadvantage of this design is that we cannot distinguish order effects from the effect of
providing AI. This issue is unavoidable given the guiding principle that participants receive
weakly more information about a case during a repeat encounter. However, we can test for

12This principle has been used in computer science (Seah et al., 2021; Conant et al., 2019; Pacilè et al.,
2020).
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and do rule out order effects on accuracy based on the first two designs.

3.2.4 Participant Recruitment

Participants for the first and third designs, which constitute the majority, were recruited
through teleradiology companies. The teleradiology companies allow us to recruit several
experts in a relatively liquid spot market, a practice that is now common for decision exper-
iments with non-expert subjects (Hunt and Scheetz, 2019). Most healthcare providers in the
US rely on these companies’ services, although many large hospitals have on-call radiologists
(Rosenkrantz et al., 2019). We work with teleradiology companies that serve US hospitals
and offer the services of both US-based and non-US-based radiologists. Our contracts with
teleradiology companies specify a piece-rate, and the companies, in turn, compensate the
participants with a piece-rate.13 In addition, we provided monetary incentives for accuracy
to a subset of radiologists, as described in the next section.

The second design required us to work with a partner who could guarantee subjects’ partici-
pation over several months. We collaborated with VinMac healthcare system in Vietnam to
recruit their staff radiologists to ensure continued participation. VinMac is in the process of
developing its own in-house AI capabilities and was willing to assist with our experiment in
exchange for recognition in a publication of the resulting dataset. The VinMac radiologists
did not receive receive any payments to participate in the experiment but we find that their
perfomance is very close to the performance of the tele-radiologists.

In total, 180 radiologists participated in our experiment. Close to 25% of our participants
are US-based, 20% have a degree from a US institution, 80% are affiliated with a large clinic,
and 61% with an academic institution. As demonstrated in appendix C.3, the quality of
the assessments made by the radiologists in our study is comparable to that of the staff
radiologists from Stanford University Hospital, who originally diagnosed the patient case.

3.2.5 Incentives

We cross-randomize incentives for accuracy in the first and third designs but not the second
because of the specific ways in which our partner’s radiologists are employed.14 Payments
were determined following the binarized scoring rule in Hossain and Okui (2013), where truth

13We worked with three companies with piece-rates ranging from $7.50 to $13.00.
14There does not appear to be a consensus in the experimental literature on whether incentives are superior

to non-incentivized responses when eliciting beliefs (see Danz, Vesterlund, and Wilson, 2020; Charness,
Gneezy, and Rasocha, 2021). A comparison between the incentivized and non-incentivized participants
allows us to answer this question in the context of this experiment.
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is determined as described in section 3.3.1 below. This incentive scheme uses a loss function
of the mean squared prediction error, averaging over patient cases and pathologies, and the
respondents earn a fixed bonus of $120 if a random draw is less than the loss function.
This bonus is more than 20% of the base payment to teleradiology firms. We explain to
the participants that expected payments are maximized if they provide their best estimates
using a non-mathematical description of the payment rule. We specify the distribution so
that 30% of pilot participants would earn the bonus, cross-randomized with the other two
treatment arms.

3.3 Implementation and Data Collection

3.3.1 Patient Cases and Ground Truth

The experiment uses 324 historical patient cases with potential thoracic pathologies from
Stanford University’s healthcare system. For each case, we have access to the chest X-ray
and the clinical history in the form of the primary provider’s written notes, the patient vitals,
and demographics.15 The use of retrospective cases allows us to avoid ethical and other issues
that would arise when experimenting in high-stakes settings.
Our analysis requires constructing ωi for each patient case. There are important challenges
in using an observational dataset of patient health records to construct this field. One ap-
proach would be to use the results from further medical tests. Unfortunately, definitive
gold-standard tests do not exist for most thoracic pathologies.16 Even when follow-up tests
are conducted, they are selected on the likely presence of a pathology, an issue referred to
as the selective labels problem (e.g. Mullainathan and Obermeyer, 2019). Medical outcomes
from patient health records also do not suffice because actions taken by the treating physi-
cian in response to the radiology report contaminate these measures. Recent literature has
suggested instrumental variables approaches for solving this selective labels problem, but this
work targets population quantities and not a “ground truth” on each case (e.g. Chan et al.,
2022; Mullainathan and Obermeyer, 2019).
We construct ωi by aggregating the assessment of a group of expert radiologists, an approach
common in computer science (Sheng et al., 2008; Mccluskey et al., 2021). Specifically, we

15All cases are first encounters with no prior X-ray as a comparison. We started with 500 cases that fit these
primary criteria. We omitted pediatric cases from this set. Finally, a radiologist reviewed the cases to remove
instances with poor image quality. The clinical history was manually reviewed to remove patient-identifiable
information and cleared for public release.

16Many pathologies do not have commonly used non-imaging-based diagnostic tools. For instance, the
presence of cardiomegaly – an enlarged heart – can only be determined using imaging tools, thoracic surgery,
or an autopsy.
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ask five board certified radiologists from Mount Sinai to read each of the 324 cases using
the interface described above with the available X-ray and clinical history. For each case
i and expert radiologist r, we, therefore, obtain πr

(
ωi = 1

∣∣∣sE
i,r

)
for each pathology, which

we aggregate to generate ωi. Specifically, we classify ωi = 1 if ∑
r πr

(
ωi = 1

∣∣∣sE
i,r

)
/5 > 0.5.

This approach immediately addresses the selective labels problem because the availability of
assessments is not selected on the likelihood of a pathology being present. Results in Wallsten
and Diederich (2001) suggest that, under weak conditions that allow for measurement error in
the reports and correlations across reports, the aggregate opinion of several experts is highly
diagnostic as long as the experts are median unbiased. To assess robustness, we aggregate
πr

(
ωi = 1

∣∣∣sE
i,r

)
using both a log-odds average and a leave-one-out mean of the assessments

of all the radiologists in our experiment in the clinical history treatment condition.

3.3.2 Experimental Interface and Data Collected

We developed the interface to present the patient cases and to collect radiologists’ predictions
and decisions in collaboration with board certified radiologists at Stanford University Hospital
and Mt. Sinai Hospital. In contrast to free-text reports, we designed it to generate structured
and quantitative data on chest X-ray responses that resemble a typical radiological report.
A guiding principle in the design was to mimic clinical practice and to present and obtain
all clinically relevant information. We briefly describe this interface and provide images and
further details in appendix B.

On the landing page of each case, a high-resolution image of a patient’s X-ray is presented to
the radiologist, with the functionality to zoom and adjust brightness and contrast. When the
experiment calls to show the clinical history, the interface presents clinical notes, vitals, and
laboratory results available at the time the X-ray was originally ordered. If the experiment
provides AI assistance, participants are shown AI predictions for fourteen pathologies and a
composite prediction for whether or not there are any relevant findings.

The data entry interface collects a radiologist’s assessments of the probability that various
thoracic pathologies are present for a given case. The probability that a pathology is present
given the available information, i.e. pr (ω = 1 |s), is elicited using a continuous slider. We
visually subdivide possible responses into five intervals with standard language labels used
in written radiological reports to aid the participants.17 Our radiology collaborators grouped
pathologies into eight exclusive parent categories based on their type. Each group has children

17The specific labels are “Not present”,“Very Likely”, “Unlikely”, “Possible”, “Likely”, and “Highly Likely”.
Several radiological publications have suggested such standardized language for radiological reports. See for
instance Panicek and Hricak (2016).



17

that are more specific, which may be further subdivided in some cases. The groups all
correspond to a standard class of pathologies. For instance, “airspace opacity” is distinct
from a “cardiomediastinal abnormality.” In the main text we focus on the parent categories
with AI predictions and drop further subdivisions from the analysis. We refer to those as
top-level pathologies. Our results are robust to including the lower-level pathologies in the
analysis as we show in appendix C.4. The interface categorizes thoracic pathologies into
groups by type to ease data entry. For example, allowing the user to simultaneously set the
assessed probability of each disease in a specific category to zero.18 In addition, we elicited
an overall bottom-line assessment of whether the radiologists considers the case normal or
not.

We also ask for a binary “treatment/follow-up” recommendation for each pathology that
is not definitively ruled out.19 We will interpret this input as a∗

r (s). In a real clinical
setting, a recommendation to follow-up could trigger the treating physician to prescribe
additional medical tests or interventions with potential costs and benefits. Thus, an optimal
recommendation trades off the cost of false positives and false negatives when recommending
an action as in section 2. The probabilistic assessments with the follow-up decision will allow
us to estimate radiologists’ relative cost of false positives and false negatives.

In addition to pr (ω = 1 |s) and a∗
r (s), we record active time, response times, and any click-

stream data that results from the interaction with the interface. The participants are not
explicitly informed about this monitoring, and there are no explicit time limits. Our ex-
periment runs remotely, and participants connect to a server, which hosts the interface and
records responses. The interface has been extensively tested beforehand on different browsers
by conducting pilots with every company we recruited the participants from.20

18Our radiology collaborators grouped pathologies into eight exclusive parent categories based on their
type. Each group has children that are more specific, which may be further subdivided in some cases. The
groups all correspond to a standard class of pathologies. For instance, an “airspace opacity” is distinct from a
“cardiomediastinal abnormality.” The more specific disease of “bacterial pneumonia” manifests as an airspace
opacity. This structure reduced the burden on our participants, and we piloted the interface with several
radiologists specializing in the interpretation of chest X-rays. Prior clinical research on AI in chest X-Ray
image classification has used similar hierarchies (see Seah et al., 2021, for example).

19The binary treatment/follow-up decision is only asked for pathologies where a follow-up is clinically
relevant. This includes all pathologies with AI assistance.

20This interface is browser-based and built using the o-tree framework Chen et al. (2016). Since we
are not directly communicating with our participants we also deploy a device fingerprinting service from
fingerprint.com to ensure that there are no repeat participants.

https://fingerprint.com
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3.3.3 Participant Training

We train the participants using a combination of written instructions and a video. The
materials provide an overview of the experimental tasks, the interface, and information about
the AI assistance tool. The firms and the participants know that the research study involves
retrospective patient cases. To train participants on the AI tool, we provide them with
materials that explain the development of the algorithm, present metrics of its performance
on various diseases, and summarize the algorithm’s performance relative to radiologists based
on prior research. The participants are informed that the algorithm only uses the chest X-
ray to form predictions, and this knowledge is later tested in a comprehension question. In
addition, we show the participants fifty example cases that show the X-ray and clinical history
next to the AI output. After the instructions, they answer eight comprehension questions,
which the participants must answer correctly before proceeding to the experiment. We also
include an endline survey. We do not directly interact with the subjects except to field
questions about the experiment or provide tech support.21 The complete set of instructions
is provided in appendix B.2.

4 Estimated Treatment Effects

4.1 Overall Performance of AI and Radiologists

This section’s analysis focuses on measures of performance (deviation from ground truth,
incorrect decision), deviation from AI prediction, and measures of effort. Table 1 summarizes
the data on these measures and sample sizes from our experiment. The main text focuses
on top-level pathologies with AI with robustness to other pathology groups relegated to
appendix C.4.

Radiologists make the correct follow-up/treatment recommendation on approximately 70%
of case-pathologies on average and spend ~2.8 minutes per case with large variability across
cases. All summary statistics are very similar across the three expertimental designs (tables
C.7 and C.9). For instance, the average deviation from the ground truth for the three designs
ranges from 0.191 to 0.232, and average active time ranges from 2.58 to 3.03 minutes.

21We are blinded to the participants’ treatment status while the experiment is in progress.
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Table 1: Summary Statistics

All Designs Design 1
Mean SD Mean SD
(1) (2) (3) (4)

Reported Probability 0.233 0.290 0.214 0.287
Decision 0.322 0.467 0.277 0.448
Deviation from Ground Truth 0.223 0.281 0.218 0.290
Deviation from AI 0.191 0.169 0.201 0.171
Correct Decision 0.695 0.460 0.736 0.441
Active time 2.82 2.63 3.03 3.17
Observations 36, 280 13, 440
Radiologists 180 112

Note: This table presents summary statistics of the experimental data. Columns (1) and (2) present the mean and standard

deviation for all designs while Columns (3) and (4) present the same for design 1 only. Decision is an indicator for whether

treatment/follow-up is recommended, correct decision is an indicator for whether the decision matches the ground truth, deviation

from ground truth is the absolute difference between the reported probability and the ground truth, deviation from AI is the

absolute difference between the expert’s reported probability and the AI’s reported probability, active time is measured in

minutes.

In a comparison study with three radiologists, Irvin et al. (2019) show that the CheXpert
model yields a better classifier than two out of three radiologists on five pathologies and
all three on a subset of three pathologies. Our results may differ from that because we
use a different pool of radiologists, a different sample of cases, and reads with contextual
information (clinical history) to construct the ground truth. The latter two differences raise
the bar for the AI because they reflect differences in the data-generating process.

To benchmark the quality of AI predictions in our sample and the radiologists in our exper-
iment, we compare our participant pool with the AI input using two performance measures.
The first measure is derived from the receiver operating characteristic (ROC) curve, which
measures the trade-off between the false positive and the true positive rate of a classifier as
the cutoff for classifying a case as positive or negative is varied. It uses only ordinal informa-
tion about the AI. A classifier that is not better than random has an AUROC value of 0.5
whereas a perfectly predictive classifier has a value of one. The second measure is the root
mean squared error (RMSE), that utilizes cardinal information about the AI prediction. A
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lower RMSE indicates higher performance.22 We pool the data for top-level pathologies with
AI for each radiologist’s reports and for the AI’s prediction.
Figure 1 shows significant heterogeneity in performance across radiologists as well as the scope
for AI assistance to improve radiologist performance. The AUROC shows that the bottom
tail of the distribution of radiologists performs worse than the AI, whereas the upper tail
predicts close to perfectly. This heterogeneity aligns with findings from observational data
based on only treatment decisions (see Chan et al., 2022). The AI is more predictive than
approximately two-thirds of radiologists, whether compared using AUROC or RMSE. Thus,
there is ample room for AI assistance to improve the performance of radiologists. In fact, a
majority of radiologists would do better on average by simply following the AI prediction.
We present pathology-specific comparison results in appendix C.2.

Figure 1: Comparing AI performance to radiologists
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Note: These histograms show distributions of two different accuracy measures of radiologist assessments alongside the AI’s

accuracy. The left graph shows the distribution of the RMSE while the right shows the distribution of the average AUROC.

Both distributions are shrunk to the grand mean using empircal Bayes. These measures are for each radiologist and include

the top-level pathologies. The dotted line is the average measure of the AI algorithm for the corresponding distribution. Only

the assessments where contextual history information is available for the radiologists but not the AI prediction are considered.

Robustness by design and ground truth definition can be found in sections C.4.1 & C.4.2.

We also compare the performances of our participants and the radiologist who originally
diagnosed each patient case in appendix C.3.23 There is no discernible difference between

22An important distinction between the two measures is that the AUROC is ordinal whereas RMSE is
cardinal.

23We classified the original free text radiology reports associated with each case as positive, negative, or
uncertain for each pathology using the CheXbert algorithm described in Smit et al. (2020). To facilitate
comparisons, we also discretized the probability assessments elicited during the experiment into these three
categorized. Then, we compared the accuracy of the original reads against the radiologists participating in
the experiment.
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the two groups, which is consistent with the hypothesis that radiologists participating in
the study were of similar skill and exerted similar effort as the radiologists completing the
original reads.

4.2 How do Radiologists Respond to AI and Contextual Information?

We now describe the effects of our information treatments estimated using the following
specification:

Yirt = γhi
+ γCH · dCH(t) + γAI · dAI(t) + γAI×CH · dCH(t) · dAI(t) + εirt,

where Yrit is an outcome variable of interest for radiologist r diagnosing patient case-pathology
i and treatment t, and γhi

are pathology fixed effects since there are multiple pathologies hi

for each case in this pooled analysis. Treatments t vary by whether or not clinical history is
provided dCH(t) ∈ {0, 1} and whether or not AI information is provided dAI(t) ∈ {0, 1}. We
report two-way clustered standard errors at the radiologist and patient-case level. The spec-
ification omits radiologist-specific fixed effects because the treatments are balanced within
radiologists. Cases are also balanced across treatments (see appendix C.1), which suggests
that case randomization was successful. We will also compute conditional treatment effects
given ranges of the AI signal sA

i that are grouped based on π
(

ωi = 1| sA
i

)
.
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Table 2: Average treatment effects

Deviation from AI Deviation from Ground Truth Effort Measures
All Designs Design 1 All Designs Design 1 All Designs Design 1

Active Time Clicks Active Time Clicks

Treatment (1) (2) (3) (4) (5) (6) (7) (8)

AI × CH 0.001 −0.001 0.004 0.003 −0.86 0.22 0.04 0.32
(0.003) (0.006) (0.005) (0.012) (3.68) (0.82) (6.94) (1.63)

AI −0.038 −0.036 0.002 0.002 6.75 1.34 6.26 1.53
(0.004) (0.006) (0.004) (0.008) (2.47) (0.56) (4.71) (1.05)

CH −0.001 −0.004 −0.011 −0.015 7.37 0.16 6.53 0.09
(0.002) (0.004) (0.004) (0.008) (2.53) (0.55) (4.78) (1.08)

Control Mean 0.211 0.221 0.227 0.224 157.57 44.25 161.56 40.71
(0.007) (0.008) (0.010) (0.011) (4.46) (1.21) (7.05) (1.53)

Pathology FE Yes Yes Yes Yes - - - -
Observations 36280 13440 36280 13440 14635 14635 6718 6718

Note: This table summarizes the average treatment effects (ATE) of different information environments on the absolute value of the difference between the radiologist
probability and AI probability (column (1) and (2)); absolute value of the difference between the radiologist probability and the ground truth (columns (3) and (4)); and
radiologists’ effort measured in terms of active time and clicks (columns (5), (6), (7) and (8)). We either pool across all designs (All Designs) or condition on only design 1.
Results on effort measure excludes five patient-cases with unaccounted time measure, and observations from design 3 because of learning effects in this set-up. The results
are for the two top-level pathologies, airspace opacity and cardiomediastinal abnormality. Standard errors are two-way clustered at the radiologist and patient-case level in
parenthesis. Robustness by design can be found in section C.4.1.
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The above analysis focuses on the effects on the marginal distributions of the outcome vari-
ables Yirt for each pathology. Thus, the specification abstracts away from interactions between
pathologies in the effects on information provision, for example due to potential dependence
between the predictions and decisions. In section 5, we will present evidence showing that
the best fitting model has radiologists updating their beliefs as-if they do not account for
dependence between pathologies.

The treatment effect analysis in the main text pools the three experimental designs and
does not condition on the sequence in which subjects encounter information treatments.
Appendix C.4.5 shows that our results are robust to including controls for order effects.
The estimates from all three designs are similar to each other. They are also statistically
indistinguishable from those that use only an across participant comparison from the first
treatment encountered in design 1 (appendix C.4.3).

4.2.1 Do Radiologists Utilize AI Predictions?

We begin by testing whether radiologists respond to the information that the AI pro-
vides. The left panel in table 2 shows how the different information environments affect
the disagreement of the radiologists’ report with the AI’s assessment, which is defined
as Yirt =

∣∣∣pr (ωi = 1| sirt) − π
(

ωi = 1| sA
i

)∣∣∣. The term pr (ωi = 1| sirt) is elicited whereas
π

(
ωi = 1| sA

i

)
is the AI’s predicted probability that ωi = 1. When t indicates that AI as-

sistance is provided, then sirt =
(
sE

ir, sA
i

)
, and when t indicates that AI assistance is not

provided, then sirt = sE
ir. The signal sE also depends on whether contextual information is

provided.

The results show that radiologists utilize AI assistance: their predictions are closer to the
AI predictions when provided with assistance. To see this, observe that the control means
for the deviation from the AI are approximately 0.21 for both when we pool designs and for
design 1 only. Treatments where AI is provided reduce this baseline average deviation by
18% (all designs) and 16% (design 1). (p < 0.01).

4.2.2 Treatment Effects on Diagnostic Performance

We next ask whether the information treatments affect radiologists’ diagnostic performance.
As a measure, we consider the absolute deviation of the radiologist’s probability report from
the binary ground truth, Yirt = |pr (ωi = 1| sirt) − ωi| where lower values implies better per-
formance. Appendix C.4.2 contains results that use a continuous ground truth, which are
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qualitatively similar. The middle panel of table 2 shows the average treatment effects on
performance.

Our results indicate that while access to contextual information improves performance on
average, AI assistance does not. We find that access to clinical history reduces the deviation
from the ground truth by 4.8% (p < 0.05) of the control mean if we pool designs and by 6.7%
in design 1 (p < 0.05). In contrast, the effects for AI are close to zero and not statistically
significant. In light of the findings in the previous two sections — that the AI is more
accurate than most radiologists and that radiologists move their assessments toward the
AI—it is puzzling that the AI information does not improve accuracy.

This contradiction occurs because the average treatment effects mask significant hetero-
geneity in treatment effects. Our within-participant designs–designs 2 and 3–allow us to
estimate conditional treatment effects given radiologists’ predictions without AI assistance.
Specifically, we partition cases based on the expert’s signal into five equally spaced bins of
πr

(
ωi = 1|sE

ir

)
. Figure 2 shows the conditional treatment effects of providing AI assistance

on diagnostic performance. Panel (a) shows the deviation from the ground truth and panel
(b) shows the probability of incorrect decision. We find that providing AI assistance in cases
when the radiologist is uncertain improves performance on both metrics, whereas AI assis-
tance is harmful when the radiologist is close to certain that the pathology is not present
for a given case. Given an average reported probability of 25% or less, the vast majority
of cases fall in the first bin yielding a small average treatment effect that masks important
heterogeneity. The result that AI assistance can decrease performance rejects a model in
which radiologists are Bayesians with correct beliefs.
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Figure 2: Conditional treatment effect given radiologist prediction
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Note: Panel (a) shows the conditional average treatment effect of providing AI information on the absolute value of difference

between the radiologist probability and the ground truth. Panel (b) shows analogous treatment effects on incorrect diagnosis,

where a correct diagnosis is defined as the treatment recommendation matching the ground truth. Both these treatment effects

are conditional on the ranges of the expert’s prediction constructed using the no AI assistance. Standard errors are two-way

clustered at the radiologist and patient-case level. The error bars depict 95% confidence intervals. Robustness to experimental

design is in appendix C.4.1.

While AI assistance can help uncertain experts, we find that providing uncertain AI predic-
tions reduces performance. As with the analysis of conditional treatment effects given expert
predictions, we estimate conditional treatment effects given AI predictions by partitioning
cases into five bins based on π

(
ωi = 1|sA

i

)
. Figure 3 presents the estimates, pooling data

from all three experimental designs. When the AI provides a confident prediction (e.g. either
close to zero or close to one) performance is significantly improved. We see that in the lowest
bins of AI signals, the deviation from the ground truth is reduced. In the second highest
bin we also see a marked, though not statistically signficant, improvement in performance.
However, in the middle range of signals, where the confidence of the AI is low, radiologists’
diagnostic performance and probability of making a correct decision is lower when AI infor-
mation is provided. This result reinforces the conclusion that radiologists err when updating
their beliefs.
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Figure 3: Conditional treatment effect given AI prediction
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Note: Panel (a) shows the conditional average treatment effect of providing AI information on the absolute value of difference

between the radiologist probability and the ground truth. Panel (b) shows analogous treatment effects on incorrect diagnosis,

where a correct diagnosis is defined as the treatment recommendation matching the ground truth. Both these treatment effects

are conditional on the ranges of AI prediction. Standard errors are two-way clustered at the radiologist and patient-case level.

The error bars depict 95% confidence intervals. Robustness to experimental design is in appendix C.4.1 and C.4.2.

4.2.3 Treatment Effects on Time Per Case and Proxies of Effort

Finally, we turn our attention to the effects of AI assistance on time taken and the number
of unique interaction (clicks) as a proxy for effort. One hypothesis is that AI assistance could
economize on costly human effort without sacrificing overall performance by enabling quicker
assessments. At the polar opposite, it is possible that humans take more time because they
are provided with more information to process. Which of these effects dominate determines
the effect on labor costs when humans use AI assistance, and therefore the optimality of
delegating cases versus a collaborative setup.

Our results indicate that radiologists are slower when provided with AI assistance. The last
panel of table 2 shows the treatment effects on time spent per case and clicks. These outcomes
are measured at the case level. In the X-Ray Only treatment, radiologists spend about 2.6
minutes per case. Both AI and CH increase the time spend per case by a statistically
significant amount of approximately 4%. The interaction effct γAI×CH is not significant
for either of the two outcome variables. These effects suggest that decisions where both
radiologists and the AI are involved come at a non trivial increase in time spent per case.
This result further undercuts the potential benefits in performance from including humans
assisted with AI predictions “in the loop.”
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4.3 Discussion

We find that AI assistance does not improve the performance of our participants on average,
even though the AI predictions are more accurate than the majority of radiologists, and
that radiologists respond to this assistance. However, the average treatment effects mask
important heterogeneity – AI assistance improves performance for a large set of cases, but
also decreases performance in many instances. These results point to biases in the use of AI
predictions which we will further investigate in section 5.

We also find that humans have access to valuable contextual information, suggesting that
full automation has its drawbacks. But, the biases above – especially in conjunction with
our finding that radiologists take longer when given AI assistance – undercut this potential
information advantage in a setup that involves AI assistance. Thus, the problem of how best
to deploy AI assistance may be non-trivial and the optimal solution may involve selective
automation and/or AI assistance. Section 6 analyzes this problem.

Appendix C.4 shows that the results are qualitatively robust to a variety of alternative
analyses. The results are similar when we split the analysis by experimental design and when
we only focus on the initial across-comparison (using design 1 and 2), although the latter leads
to estimates that are imprecise. Alternative ground-truth measures – including a leave-one-
out ground truth based on the assessments of our experimental participants and a continuous
ground truth, which simply averages the assessments of the ground-truth labelers–also yield
similar conclusions. The qualitative patterns of the treatment effects are unchanged if we
calibrate each radiologists’ assessments to the ground-truth before conducting the analysis.
Finally, incentives for accuracy, which are cross-randomized in designs 1 and 3, do not have
significant effects either.

5 Automation/Own-Information Bias/Neglect

An upshot of the results in section 4 is that our participants deviate from the baseline of a
Bayesian with correct beliefs about the joint distribution of their own information and the
AI signal. In this section, we model and estimate systematic deviations from this benchmark
– which we will refer to as Bayesian24 for short – and determine the implications of these
deviations on utilizing human expertise and AI predictions.

24The omission of the qualifier “with correct beliefs” slightly abuses terminology because a possible expla-
nation of the deviations we have documented is that our participants are Bayesians but update their beliefs
using an incorrect model for the joint distribution of sA, sE and ω. We will entertain this possibility below.
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5.1 A Model of Deviations from Bayesian Updating

The framework in section 2 shows that a key question is whether the odds-ratios

pr

(
ωi = 1|sA

i , sE
ir

)
pr (ωi = 0|sA

i , sE
ir)

and
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)
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differ from each other. Recall that Bayes’ rule implies that
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. (4)

We now consider a set of models of belief updating to describe systematic deviations from
this benchmark. In our model, the human correctly interprets their own signal when AI
assistance is not available but errs when both sA

i and sE
ir are observed. As we will show below,

AI assistance nonetheless unambigiously improves performance for a subset of parameters
within this family.
The first class of biases that we consider, arises when the two terms on the right-hand side of
equation (4) are incorrectly weighted. Following Grether (1980; 1992), we parametrize this
type of error using the following parsimonious functional form:

log
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+ dr log
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)
πr (ωi = 0|sE

ir)
, (5)

where br, dr ≥ 0. The Bayesian (with correct beliefs) is a special case with br = dr = 1. While
this linear form is restrictive, it has been useful for documenting several empirical regularities
showing deviations from Bayesian updating like base-rate neglect and under inference (see
Benjamin, 2019, for a review).
We will say that the human exhibits automation bias if br > dr, and automation neglect if
br < dr. As a motivation for this nomenclature, observe that when br > dr, the human
over-weights the AI signal relative to their own. In the specific case when dr = 1, the agent
overshoots when updating the posterior odds relative to a Bayesian. Analogously, if br < dr,
then the human under-weights the AI signal relative to their own. We say that the human
exhibits own-information neglect if dr < 1 and own-information bias if dr > 1, where the
cutoff value of one is based on the Bayesian benchmark. Own-information biases are similar
to base-rate biases, but apply to beliefs given the expert’s signals instead of unconditional
population rates (see Griffin and Tversky, 1992; Kahneman and Tversky, 1973).
A second class of deviations we consider will allow for models in which decision-makers do
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not correctly account for the dependence between sA
i and sE

ir, which we call signal dependence
neglect. For example, if humans act as-if sA

i and sE
ir are independent conditional on ωi even

if they are not, then their posterior beliefs can be written as

log
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)
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ir)
, (6)

where br and dr are allowed to differ from 1 as above. In the case when the signals are jointly
multivariate normal and br = dr = 1, signal dependence neglect yields correlation neglect as
defined in (Enke and Zimmermann, 2019).25 More generally, we will consider models that
vary the conditioning set in the first term on the right-hand side and the dimension of sA

i

in the first term on the right-hand side. The specific examples are motivated and discussed
further in section 5.3 below.

We intend the functional form above as descriptions of humans’ updating rules and will
remain agnostic about underlying mechanisms and micro-foundations. In particular, we
remain silent on whether our participants are Bayesians that are utilizing the incorrect joint
distribution of

(
ωi, sA

i , sE
ir

)
when updating their beliefs or if they are non-Bayesians. The

former type of model, known as a quasi-Bayesian model,26 can generate automation bias
or neglect as well as correlation biases.27 An implicit assumption in our model, and likely
other micro-foundations for the functional forms above as well, is that the signal acquired
by the human is invariant to the provision of AI assistance. Whether additional training,
or experience with the AI can correct deviations from the benchmark model is therefore
something that we leave for future work.

Nonetheless, the models above will prove useful for our purposes. From a theoretical per-
spective, they will help outline the types of deviations that potentially decrease decision
quality. From an empirical perspective, they help understand the drivers of the treatment
effects documented earlier and turn out to be a good approximation to the data from the
experiment.

25If sA
i and sE

ir are unidimensional with
(
sA

i , sE
ir

)
∼ N (0, Σr), then the covariance matrix Σr is a sufficient

statistic for the posterior probability that ωi = 1 given the signals if ωi = 1
{

sA
i + sE

ir ≥ εi

}
and εi is

independent of
(
sA

i , sE
ir

)
.

26See Rabin (2013) for a definition and Barberis et al. (1998); Rabin (2002); Rabin and Vayanos (2010) for
examples.

27To see this, assume that pr
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)
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functional form in equation (5) for any br as long as dr = 1. The derivation of equation (6) is similar. In
contrast to automation bias/neglect and correlation biases, own-information bias/neglect cannot be derived
in a quasi-Bayesian model because we assume that pr

(
ωi|sE

ir

)
= πr

(
ωi|sE
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)
.
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Figure 4: Comparing decisions with and without AI assistance – Bayesian with correct beliefs
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Note: The figure shows the decision criterion of a Bayesian with and without AI assistance and where their decisions agree and

disagree. Shaded regions show the regions in which AI improves or worsens decision making.

5.2 Implications for Human-AI Collaboration

We now show that the types of deviations described above have implications for when AI
assistance unambiguously improves human performance. The results will also illustrate the
utility of the simple functional forms in equations (5) and (6). This subsection drops the i

and r indices for simplicity of notation.

It is useful to start by considering the decisions with and without AI assistance for a Bayesian
decision maker. Figure 4 illustrates the realizations of sA for which the optimal decision with
AI assistance differs from the the decision without AI assistance for a fixed crel. The horizontal
and vertical axes respectively represent log π(ω=1|sE)

π(ω=0|sE) and log π(sA|ω=1,sE)
π(sA|ω=0,sE) . As shown by the

vertical dashed line, the decision-maker would take the action 1 if and only if log π(ω=1|sE)
π(ω=0|sE)

exceeds log crel. The solid line represents the analogous boundary for a Bayesian who has
access to AI assistance. Observe that the decisions a Bayesian makes as a function of the
signals sA and sE cannot be improved without additional information. Thus, a Bayesian with
correct beliefs and access to both signals improves upon the no AI action in the vertically
shaded region.

Now consider humans that may deviate from this benchmark model. A human who takes
a given action without AI assistance a∗

No AI = a∗
(
sE; pr

)
, but a different action with AI

assistance (so that a∗
No AI ̸= a∗

AI) makes a worse decision if a∗
AI = a∗

(
sA, sE; pr

)
disagrees with
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the Bayesian’s decision a∗
Bayesian = a∗

(
sA, sE; πr

)
with AI assistance. This follows because,

in the binary action setup, only one of the decisions can agree with the Bayesian decision. In
all other cases, the human’s decision is weakly improved for the signal realization

(
sA, sE

)
.

In other words, a human whose decision changes upon receiving the AI signal sA is better
off with AI assistance only if the change agrees with the Bayesian decision. The human is
unambiguously better off if this property holds for all signals.

Our first result states that a human who deviates from the benchmark model because they
only exhibits automation neglect is unambiguously better off with AI assistance.

Proposition 1. Suppose that the human’s posterior is described by equation (5).

(i) If the human only exhibits automation neglect (b < 1, d = 1), then for all pairs of signal
realizations

(
sA, sE

)
, and any crel, the human attains weakly higher expected payoff V (s) with

AI assistance.

(ii) In all other cases (b > 1 or d ̸= 1), for any crel, there exist log-likelihood ratios log π(sA|ω=1,sE)
π(sA|ω=0,sE)

and log π(ω=1|sE)
π(ω=0|sE) such that the human attains lower expected payoff V (s) with AI assistance.

See appendix A for the proof.

Figure 5a illustrates the case without own-information bias or neglect by setting d = 1 but
allows for either automation bias or neglect by setting b ̸= 1. The two dashed lines represent
cutoffs analogous to those in figure 4 for humans with automation bias and automation
neglect. Although a human that only exhibits automation neglect under-responds to the AI
information, their beliefs move towards a Bayesian decision-makers but does not overshoot
it. Whenever her decision changes, it agrees with the Bayesian’s. In contrast, if the human
exhibits automation bias, they errs for moderately informative AI signals with intermediate
values of log π(sA|ω=1,sE)

π(sA|ω=0,sE) because they over-reacts. At high enough values of this log-likelihood
ratio, both the Bayesian and the human exhibiting automation bias would take the same
action.

In the case when there is either own-information bias or neglect (d ̸= 1), it is always possible
for the payoff with AI to be lower than the payoff without AI assistance. In our model, this
occurs because providing the AI signal generates a bias in how the expert uses their own
information. Figure 5b illustrates the result (for d > 1 and b < 1). Relative to the analogous
line in figure 5a, the intercept of the dashed line is not equal to log crel. The vertically striped
triangle depicts combinations of the log-likelihood ratios above in which the biased expert
achieves a higher payoff without AI. In these cases, the expert takes the correct action without
AI assistance but incorrectly uses their own information with AI assistance, resulting in an
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Figure 5: Comparison with Bayesian decisions
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Note: This figure shows the where the decisions of an expert as a function of the signals disagree with the Bayesian in cases

with and without AI assistance. Panel (a) shows automation bias and neglect (absent own-information bias and neglect). Panel

(b) shows a decision maker who exhibits both automation neglect and own-information bias.

error. Hence, in the presence of own-information bias or neglect, AI assistance can result in
worse decision for some signals.
We next consider a decision-maker with a different type of bias, namely, one in which the
decision-maker exhibits signal dependence neglect. Perhaps not surprisingly, our next result
shows that this type of bias on its own can result in worse decisions with AI assistance:

Proposition 2. Suppose that the human exhibits signal dependence neglect so that the pos-
terior belief is described by equation (6). For any value of b > 0, d > 0, and crel > 0, the
there exist log-likelihood ratios log π(sA|ω=1,sE)

π(sA|ω=0,sE) and log π(sA|ω=1)
π(sA|ω=0) such that the human attains

lower expected payoff V (s) with AI assistance.

Compared to the models of only automation/own-information bias/neglect, signal depen-
dence neglect adds another dimension of potential mistakes to those illustrated in the figures
above. The result bears resemblance to those in Enke and Zimmermann (2019), which showed
that in a multivariate normal model with positively correlated signals, correlation neglect re-
sults in over-reaction to signals and verified this hypothesis in lab experiments. Proposition
2 differs in that it allows for general signal distributions and for signal dependence neglect to
co-exist with automation and own-information bias/neglect. This extension is essential for a
naturalistic environment like ours because the experimenter does not have full control over
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the signal structure. The general signal structure makes it difficult to characterize mistakes
in terms of over or under-updating, unlike in the case of a multivariate normal model. Even
when b = d = 1 so that automation or own-information bias/neglect are not relevant, an
examination of equations (4) and (5) reveals that whether or not a decision-maker exhibits
under- or over-updating depends on the difference between log π(sA|ω=1,sE)

π(sA|ω=0,sE) and log π(sA|ω=1)
π(sA|ω=0) .

The propositions above have important implications for the design of human-AI collaboration,
which we consider in section 6. Specifically, we study an AI designer who only has access to
the AI signal sA and must decide on one of the three modes of delegation – utilize only the
AI prediction, delegate the case to the human, or provide AI assistance to a human expert.
The results show that other than in the case when automation neglect is the only relevant
bias, the designer must learn the types of biases as well as the distribution of π

(
sA, sE|ω

)
to

determine which delegation modality yields the best decision.

5.3 Estimating Deviations from Bayesian Updating

We now turn to an empirical implementation of the model above. The analysis in this section
will be based on designs 2 and 3 because they allow us to observe the same participant make
decisions under all information-conditions on a given case. Start by considering an empirical
analog to equation (5):
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+ εir, (7)

where we have omitted heterogeneity across radiologists in br and dr. Appendix C.5.6 dis-
cusses radiologist heterogeneity in our estimates. Two of the terms in this equation are
directly elicited in the experiment: the probability in the second term on the right-hand side,
πr(ωi = 1|sE

ir), is equal to the radiologists’ assessment in the treatment arm where the subjects
read cases without AI assistance and the term pr(ω = 1|sA

ir, sE
ir) in the dependent variable is

the assessment in the treatment arm with AI. The “update term,” given by log πr(sA
ir|ωi=1,sE

ir)
πr(sA

ir|ωi=0,sE
ir)

will be estimated and substituted into the equation above.

There are three challenges in estimating the update term. The first challenge is that it is
a ratio of conditional densities. We address this issue by rewriting it using Bayes’ rule as
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follows:
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If sE
ir can be constructed or controlled for, then we can estimate the first term on the right-

hand side using data on ωi and sA
ir via a binary response model. This estimation is possible

because the signal from the AI that the humans receive is isomorphic to the vector of predicted
probabilities for the various diseases observed. The second term in this equation has been
elicited.

This brings us to the second challenge – constructing sE
ir when estimating πr

(
ωi = 1|sA

ir, sE
ir

)
because we do not observe it directly. Let ci be the patient case associated with case-
pathology i and I (ci) be the set of case-pathologies associated with case ci. If sE

ir is unidimen-
sional and πr

(
ωi| sE

ir

)
is monotonic in sE

ir, then πr

(
ωi| sE

ir

)
is a valid control variable. How-

ever, we want to allow for the possibility that the radiologist evaluates a case holistically and
uses signals across pathologies. Under the assumption that sA

i ⊥ sE
ir

∣∣∣ ωi,
(
πr

(
ωi′| sE

i′r

))
i′∈I(ci)

,

the vector of probabilities for all pathologies reported by r for case i, denoted
(
πr

(
ωi′ | sE

i′r

))
i′∈I(ci)

,
is a valid control variable. In this multi-dimensional case, a sufficient condition is that sE

ir is
invertible in

(
πr

(
ωi′| sE

i′r

))
i′∈I(ci)

. Our empirical specifications will therefore employ multi-
variate proxy controls for sE

ir using elicited probability assessments for multiple pathologies.

To allow for flexible interactions between sA
i and sE

ir while avoiding over-fitting, we estimate
πr

(
ωi = 1|sA

ir, sE
ir

)
using a pathology-specific random forest that predicts ωi using the vector

of predicted probabilities for all pathologies for case ci reported by radiologist r without
AI assistance, the vector of predicted probabilities for case ci the AI algorithm produces,
and summaries of the patient clinical history when made available to the radiologist, and
participant-specific fixed-effects. The hyper-parameters of the random forest are chosen by
grouped k-fold cross-validation, where we ensure that each patient case appears in only one
fold to avoid overfitting to the patient case. Further details of the training procedure are
described in appendix C.5.2.

The third challenge is the potential for measurement error, particularly in the form that
radiologists’ signal sE

ir when elicited without AI might differ from their signal when given AI
assistance. Classical measurement error arising from this source would lead to attenuation
bias in the coefficient estimates. To address this issue, we will construct instruments sE

ir using
the reported probabilities of the other radiologists in our experiment.

With these solutions in hand, we would like to assess whether humans exhibit signal depen-
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dence neglect when updating beliefs. As prefaced earlier, although the humans’ and AI’s
signals are not conditionally independent given the ground truth, humans may act as-if they
are. We will therefore estimate and select between models that vary the set of signals condi-
tioned on in the update term. For example, in the case when radiologists behave as if sA

i and
sE

ir are independent conditional on ωi, the update term drops the conditioning on sE
ir. We can

vary the pathologies across the set of models considered when constructing I (ci).28 Including
these models in our selection approach will also tell us whether radiologists’ assessments are
separable across different pathologies.

The correct model of behavior satisfies the conditional moment restriction E
[
εirt| sE

i,−r, sA
i

]
=

0, where sE
i,−r collects the signals of the radiologists other than r in our experiment. For

estimation, we utilize unconditional moment restrictions based on functions of sE
i,−r and

sA
i that closely mimic the terms in equation (7). Our instruments include log π(ωi=1|sA

i )
π(ωi=0|sA

i ) ,

and leave-one-out averages of log π(ωi=1|sA
i ,sE

ir′)
π(ωi=0|sA

i ,sE
ir′) for radiologists other than r that use various

proxies for sE
ir′ based on different sets of pathologies I (ci) that are conditioned on.29 Empirical

analogs of the resulting moment conditions are used to estimate the model using GMM.

We will employ the model-selection procedure proposed in Andrews and Lu (2001) to select
between non-nested models. This method utilizes the J-statistic of the GMM objective
function, which is adjusted for the number of moments and parameters that are included
in the model. The selection criterion, MMSC-BIC, penalizes models that reject a greater
number of moment restrictions.

5.4 Results

Table 3 presents estimates from six models, which is a subset of the models we consider.30

The first three models do not utilize clinical history when made available to the participants
to construct the proxy for sE

ir whereas the last three models do. We consider three models
in each of these two sets by varying I (ci). The first corresponds to the case when the signal
sA

i only includes the focal pathology and is conditionally independent of sE
ir given ωi. The

28The conditionally independent case corresponds to the extreme case in which I (ci) = ∅, whereas the
Bayesian model includes all pathologies.

29Specifically, we construct fourteen instruments. The first is a constant and the second is the average of
log π( ωi=1|sE

ir′)
π( ωi=0|sE

ir′) for all r′ ̸= r. The remaining twelve construct the average of log π( ωi=1|sir′ )
π( ωi=0|sir′ ) for all r′ ̸= r by

varying the conditioning variables sir. The different sets of conditioning variables in sir are presented in the
second panel of appendix table C.21. These sets are used because they are the relevant terms in at least one
of the models that we consider in the testing procedure.

30See table C.20 in the appendix for the results from all models. Results from all pathologies with AI are
qualitatively similar (see table C.21).
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second allows for dependence between sA
i and sE

ir given ωi, but only through π
(

ωi| sE
ir

)
for

the focal pathology and potentially clinical history. The third utilizes the correct update
term constructed using all available AI predictions and the vector of probabilities π

(
ωi| sE

ir

)
for all pathologies. Setting b = d = 1 and the constant to 0 in this last case corresponds to
Bayesian updating with correct beliefs.

The results from this exercise point to two types of errors in radiologists’ use of AI signals. The
first type of error is that radiologists neglect signal dependence even though AI predictions
and radiologists’ signals are highly correlated after conditioning on the ground truth (see
appendix table C.18). This conclusion follows because we select the model in column 1,
which uses an update term based on equation (6) and therefore does not control for sE.
Another implication of the selected model is that radiologists do not incorporate information
across different pathologies since only the focal pathology is relevant. This result validates
our previous analysis that analyzes each pathology separately.

Second, across different models, including all models that are not selected, we estimate that
radiologists exhibit automation neglect. However, radiologists do not exhibit substantial own-
information bias or neglect since the estimated value of d is close to 1 in all specifications.
Accounting for measurement error in estimating this model is important, as versions that do
not do so estimate d significantly less than 1 (appendix C.5.3) .

Connecting these observations back to our theoretical discussion in section 2, the parame-
ters are such that radiologists will not benefit unambiguously from access to the AI signal,
primarily because of signal dependence neglect.
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Table 3: Model Selection: Top Level with AI – IVGMM

(1) (2) (3) (4) (5) (6)
Automation Bias (b) 0.29 0.34 0.35 0.19 0.27 0.35

(0.02) (0.03) (0.03) (0.02) (0.02) (0.03)
Own Info Bias (d) 1.10 1.08 1.05 1.07 1.06 1.05

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Constant 0.40 0.40 0.37 0.31 0.33 0.36

(0.03) (0.04) (0.04) (0.03) (0.03) (0.04)
Focal sA ✓ ✓ ✓ ✓ ✓ ✓
Other sA ✓ ✓
Focal sE ✓ ✓ ✓ ✓
Other sE ✓ ✓
Clinical History sE ✓ ✓ ✓
J-Statistic 18.23 16.86 0.17 4.3 10.7 0.09
MMSC-BIC -23.96 -21.12 -8.27 -12.57 -10.39 -8.35
Number of Moments 13 12 5 7 8 5
Observations 11420 11420 11420 11420 11420 11420
R-Squared 0.50 0.49 0.52 0.46 0.48 0.52

Note: This table summarizes estimates of b and d for different specifications of the update term. The models differ by whether

the update term conditions on the signal sE of the pathology at hand, the AI’s and the radiologist’s signal of other pathologies

as well as the information that is provided in the clinical history of a patient. Each model is estimated via GMM. The reported

MMSC-BIC statistic adjusts the J-statistic for the number of included parameters, awarding bonus terms for models with fewer

parameters (see Andrews and Lu (2001) for details). This table presents a subset of the models that we select from. The full

set of models included in the selection procedure are presented in table C.20. The update term is estimated via random forest

as described in appendix section C.5.2. Standard errors are clustered at the radiologist level.

These deviations also explain the heterogeneous conditional average treatment effects docu-
mented in section 4. Figure 6 shows the treatment effect of AI on the deviation from ground
truth of our radiologists along with three different models under which we compute the same
treatment effects: the Bayesian benchmark, the model in equation (5) where radiologists use
the correct updating term, and the selected model from table 3. As expected, the Bayesian
would benefit significantly from gaining access to the AI signal. In fact, as indicated by the
large reductions in the deviation from the ground truth, there is significant potential value
in combining the human and the AI signal. Imposing the model in equation (5) with the
correct updating term – column (6) – reduces these improvements and moves the implied
treatment effects closer to the data. However, we see that throughout the entire signal range
of sA, such a decision-maker would still unambiguously benefit from gaining access to the AI.
Only when we impose the selected update term, under which radiologists do not account for
the dependence of signals, does the model generate the observed negative treatment effect
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Figure 6: Model Treatment Effects
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Note: This graph shows the observed conditional treatment effects of providing radiologists access to AI (Human+AI) and

compares those to three different model-implied treatment effects: giving AI access to a Bayesian decision maker, giving AI

access to a decision maker who acts according to the empirical version of equation 5, both under the correct updating term and

when the decision maker treats the AI signal as conditionally independent.

conditional on intermediate AI predictions as in our treatment effect analysis. We see that
such a model closes even more of the gap between the Bayesian treatment effects and the
observed treatment effects.

It is significant that the model presented above is able to replicate the pattern of conditional
treatment effects even though it is restrictive – it imposes linearity in log-odds and does
not allow for heterogeneity in b and d across radiologists. Appendix C.5.5 investigates the
linearity restriction in equation (7). We estimate a boosted tree that predicts the dependent
variable in the equation using the same two independent variables in the equation. We
find that the empirical analog to the relevant boundary of the decision-regions depicted in
figure 5 is well-approximated using a linear model. Appendix C.5.6 investigates heterogeneity
– it presents estimates that allow for b and d to vary with radiologists. We find that the
estimated distributions of br and dr are centered close to the point estimates above, with most
of the estimated distributions of br and dr in the range [0.1, 0.4] and [1.0, 1.2] respectively.
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Thus, consistent with the conclusions above, we find evidence for automation neglect, but no
meaningful own-information bias or neglect. These results suggest that the estimated model
represents a good approximation to the experimental data.

Taken together, the results indicate that while there are large potential gains from combining
radiologists’ assessments with AI predictions, biases in radiologists’ use of AI assistance
undercuts these gains. We find that radiologists exhibit both automation-neglect and signal
dependence neglect. These mistakes lead to no better diagnostic performance when provided
with AI assistance. One approach for addressing this issue is to provide radiologists with
better training, an avenue we leave for future research. A second approach is to design better
collaborative systems that are built on predicting the types of cases in which human experts
outperform AI predictions and vice-versa, and the types of cases in which AI-assisted humans
do best, an issue we turn to next.

6 Designing Human-AI Collaboration

We now consider the design of collaborative systems between AI and radiologists. The designs
we consider restrict attention to systems that use the AI signal to delegate a case to one of
three modalities – radiologists alone, the AI alone, or the radiologist with access to the AI.
As a warm-up for this exercise, it is useful to examine the predictive performance of the
different modalities, conditional on sA (see figure 7). Recall from the conditional treatment
effect analysis, radiologists’ assessments improve with AI in the lowest and the two highest
bins of AI signals. Figure 7 also shows that in two out of three ranges in which the AI improves
radiologists’ decision-making that its own performance is even better than the performance
of the radiologists with AI.

However, this figure misses the differences in the human time costs across modalities. Our
analysis of the estimated treatment effects shows that radiologists take more time when
provided with AI predictions. Moreover, using AI predictions alone saves on costly human
effort. This points to the conclusion that in most cases where AI improves decision-making,
one is at least as well off by relying exclusively on AI prediction. But using only AI or never
assisting humans with AI predictions may come at the cost of performance in cases when
using the human alone is superior.

Motivated by these observations, we now examine if there is a trade-off between the marginal
costs of human effort and diagnostic performance.
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Figure 7: Model Deviation from Ground Truth
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Note: This figure shows the performance of the different modalities that we consider for the optimal collaborative system. Cases

are either decided by only the radiologist, only the AI, or the radiologist with access to the AI. The performance measures for

Human Only and Human + AI are constructed from our treatment effect analysis.
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6.1 Computing the Trade-off Between Decision Loss and Costs of Human Effort

Consider a policy τ(·) that chooses between full automation (AI), radiologist with access to
AI (E + AI), or radiologist without access to AI (E), as a function of the AI signal sA

i . The
optimal policy which minimizes the sum of the expected decision-loss (costs of false positives
and false negatives) and the monetized time cost of using human radiologists solves:

τ ∗(sA
i ) = arg min

τ∈{E,E+AI,AI}
−m · Viτ(sA

i ) + w · Ciτ(sA
i ). (8)

The first term contains the expected decision-loss from a modality given by Viτ(sA
i ) = E

[
Virτ(sA

i )
∣∣∣∣ sA

i

]
,

which is the expected diagnostic quality averaging over radiologists and cases given the modal-
ity, preferences for false positives and false negatives, and the AI signal. Preferences for false
positives and false negatives are allowed to vary by pathology but are the same across modal-
ities. We estimate these preferences using data on the binary treatment recommendations
of the radiologists in our experiment, given their probability assessments. Details of this
preference estimation step are available in appendix C.6. The average cost of false negatives
across pathologies is three times the cost of a false positive. Since we do not know the dollar
cost of a false negative (m), we will present results for varying values of m.

The second term in the objective function contains Ciτ(sA
i ) =

[
Cirτ(sA

i )
∣∣∣∣ sA

i

]
, which is the

expected radiologist time for a given modality. If the case is fully automated, this time
cost is zero and otherwise those time costs are based on our experimental estimates, which
show that radiologists spend more time on cases when presented with AI predictions. For
the interpretation of the magnitudes, we translate both radiologists’ expected time cost and
the expected decision loss into dollars. For the costs of radiologist time, we set w = $4 per
minute based on a payment of $10 per case and an average time per read of 2.5 minutes.

We solve this problem by training a classification tree that assigns the case to a modality
conditional on the AI signal sA,i. We use 55% of cases as training data for the decision tree,
20% of cases for validation, and 25% in the test set. For this exercise, we focus on two top-
level pathologies, cardiomediastinal abnormality, and airspace opacity. Finally, to quantify
the drawbacks of biased humans, we will contrast the solution from such a system when the
decisions under E + AI are as observed in the data with the system that uses the Bayesian
assessments for E + AI.

An important restriction in this formulation of the delegation problem is that the signal
received by the expert is exogeneous and does not respond to the availability of AI. This
assumption rules out models of endogenous information acquisition, for example, rational
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inattention as in Sims (2003). A potentially interesting aspect is whether a designer can lever-
age such endogenous responses by designing an information revelation policy that induces
effort. We leave such extensions that leverage insights from information design (Kamenica
and Gentzkow, 2011; Bergemann and Morris, 2019) to future work, but measure the total
amount of time taken by the experts in our experiment with and without AI assistance.

6.2 Results

Figure 8 shows a possibilities frontier for the trade-off between diagnostic quality against
decision time for the two top-level pathologies with AI, calculated by varying m. It also
shows the corner solutions where all cases are assigned to each of the modalities. The results
suggest that there are potential gains from the optimal delegation of cases. An unassisted
radiologist takes 2.7 minutes per case, or about $11, and incurs a relative decision loss of
approximately seven for both of the top level pathologies with AI assistance. By moving
to a solution on the frontier with a human expert – one whose assessments are as in our
experiment – the designer can reduce both decision loss and the time taken per case by
delegating many cases to the AI. The frontier with a Bayesian expert, as expected, is much
more favorable. Moreover, the frontier for both a Human and a Bayesian expert coincide
when the dollar cost of incorrect decisions (m) is small because the vast majority of cases are
assigned to the AI.

Figure 8: Loss-Time Frontier
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time versus decision loss. Panel (a) focuses on airspace opacity. Panel (b) focuses on cardiomediastinal abnormality.

Next, we investigate the proportion of decisions assigned to the three modalities as we vary
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m (figures 9 and 10). Both for the case where radiologists are Bayesian and the observed
behavior in our experiment, we find that the AI decides almost all cases if the cost of a false
negative – a missed diagnosis – is less than $100 per case. If radiologists acted as Bayesians
with correct beliefs, the share of cases that involve human-AI collaboration rises markedly
above a cost of $100, but even for costs as high as $10,000, this share does not exceed 50% for
airspace opacity and does not exceed 40% for cardiomediastinal abnormality. Moreover, under
Bayesian decision-making, the share of cases where only the radiologist decides is negligible
for both pathologies and the only reason for using an unassisted radiologist is to save on time
costs. When we conduct the same exercise and use the observed behavior of radiologists, we
find that humans are involved in approximately 50% of cases for airspace opacity if the cost
of a false positive is sufficiently large. For cardiomediastinal abnormality, the share of cases
with humans involved only reaches 10% for very large costs of false positives. Moreover, the
majority of cases where a radiologist is involved have the radiologist make decisions without
AI for both pathologies. A more complete assessment of the optimal combination of human
and machine decisions, therefore, confirms the intuition from above that cases are either
decided by the radiologist or the AI but not by both of them together.

Figure 9: Airspace Opacity Modality Shares
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Figure 10: Cardiomediastinal Abnormality Modality Shares
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negative in dollars, denoted m in the text, for cardiomediastinal abnormality Panel (a) focuses on a Bayesian decision maker.

Panel (b) focuses on a human decision-maker with decisions and time-taken as in our experiment.

6.3 Caveats

There are several caveats to the analysis here. The first is that any collaborative system may
change radiologists’ expectations about the difficulty of cases and adjust strategically to those
changing expectations. For example, if radiologists are only handed the most difficult cases,
they may exert more effort. We leave such strategic adjustments to a collaborative system
for future work. We also have not considered alternative mechanisms to elicit radiologists’
signals that may be less prone to errors. For instance, one may want to ask the radiologist to
submit their assessment before seeing the AI’s assessment and then combine both assessments
optimally ex-post. Finally, the solutions presented here treat pathologies as separable. This
case is relevant if there is a single pathology of interest.

7 Conclusion

AI is predicted to profoundly reshape the nature of work (see Felten et al., 2023). Humans
are likely to use AI as decision aids for many tasks not only in the long run but also in
the medium run for tasks that will ultimately be fully automated. A central question is
therefore how humans use AI tools and how tasks should be assigned. To understand the
benefits and pitfalls of human-machine collaboration, we conduct an experiment in which
radiologists are provided with AI assistance. Besides serving as an iconic example of a
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highly-skilled profession that is being transformed by AI, radiology also represents a large
class of professionals whose main job is a high-stakes classification task. Since we can simulate
radiologists’ normal workflow, this is an ideal setting for conducting such an experiment.

While the potential benefits of deploying AI assistance are large in our setting, biases in
humans’ use of AI assistance eliminate these potential gains. Even though the AI tool in our
experiment performs better than two thirds of radiologists, optimally combining their predic-
tions could substantially improve performance. Yet, we find that giving radiologists access
to AI predictions does not, on average, lead to higher performance. This average treatment
effect, however, masks systematic heterogeneity: providing AI does improve radiologists’ pre-
dictions and decisions for cases where the AI is certain, but not when uncertain. This latter
result – that prediction quality can be reduced for some range of AI signals – rejects Bayesian
updating with correct beliefs. We also describe systematic errors in belief updating – namely
radiologists exhibit automation neglect (e.g. radiologists weight the AI prediction relative
to their own) and treat the AI prediction and their own signals as independent even though
they are not. Moreover, radiologists take significantly more time to make a decision when
AI information is provided.

Together, these results have important implications for how to design the collaboration be-
tween humans and machines. Increased time costs and sub-optimal use of AI information
both work against having radiologists make decisions with AI assistance. In fact, an optimal
delegation policy that utilizes heterogeneity in treatment effects given the AI prediction sug-
gests that cases should either be decided by the AI alone or by the radiologist alone. Only a
small share of cases are optimally delegated to radiologists with access to AI. In other words,
we find that radiologists should work next to as opposed to with AI. To the extent that expert
decision makers generally under-respond to information other than their own (Conlon et al.,
2022) and incorporating additional information is cognitively costly, these insights may hold
in other settings where experts’ main job is a classification task.

There are several important considerations that are outside the scope of this work. One
question motivated by the unrealized potential gains of AI assistance we find is whether the
benefits from AI-specific training for radiologists and/or experience with AI are large. An-
swering these questions requires different experimental designs or longer-run studies. Another
important consideration is that the organization of human-AI collaboration may influence
experts’ incentives, to which they may respond strategically. Finally, any interaction with
AI will be mediated by organizational and regulatory incentives. Organizations may set
guidelines on how to use AI or provide feedback, and regulations may influence liability
implications. These issues are interesting avenues for future work.
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AI continues to evolve rapidly. This development is increasingly driven by large corporate
labs (Heston and Zwetsloot, 2020), which have resources that are unaffordable to academic
institutions. For these and other reasons, economists are unlikely to have a major role in
the technical development of AI tools. Our comparative advantage lies in studying how
humans interact with these tools and thereby help shape the institutions that guide their use
to ensure that this development is beneficial to society. Empirical analysis is a particularly
useful tool in this endeavor, especially if the algorithms themselves are a black-box and cannot
be understood from first principles.
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