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1 Introduction

For investors, gold is an asset without a yield. This raises the question how they should value

gold. Because gold is used as an investment asset, it is believed to be worth more than its

fundamental value as jewelry or as productive input. But how much more? This paper tries

to answer these questions with an approach based on no-arbitrage principles that can be

tightly disciplined by empirical evidence. While inspired by quantitative general equilibrium

modeling, implementing the approach is similar to applying methods for pricing �xed income

instruments.

Gold is attractive as a store of value in times of low and negative real interest rates. In

these times, investors looking for stores of value bid up its price. When interest rates go up

again, the price of gold declines again. However, this is not the whole story. Even in times

when investors are not holding gold, the prospect that they could enter the market bids up

the valuation for those who use it as jewelry or a conductor. In addition, when investors are

holding gold, they take into account that gold�s valuation by users who derive utility from

its good looks and conductivity puts a lower �oor to the price at which they can sell their

gold. In other words, gold can be viewed as a substitute for real bonds and like such bonds

its value moves with real interest rates. However, gold also has option value. Because of

gold�s potentially long duration, this option value could be very high.

To be more speci�c, gold is an asset whose value moves negatively with real interest rates,

just like a bond. From investors�perspective, gold has an embedded put option because they

can sell to users at some �oor price. This �oor depends on the state of the economy, but is

higher than the investors own valuation in that state. This �oor or strike price also takes

into account the probability that investors will want to buy gold again in the future. In this

paper, I formalize this claim. The key feature that distinguishes gold from a tradable asset

such as a stock or a bond is that some buyers are not getting a yield or a service �ow from

the asset beyond the return due to the change in the price.

My approach combines two popular valuation equations: present discounted value of cash
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�ows and rational bubbles. Each one taken separately has serious shortcomings for valuing

an asset like gold. Measuring the value of gold�s utility �ows is elusive. Rational bubbles have

typically non-unique values and are appealed to as a residual relative to some fundamental

value. Combined however, the two equations become a pricing tool that has similar properties

as �xed income derivative pricing models. I implement the approach quantitatively with a

one-factor term structure model for real yields. Many term structure models with useful

properties have been developed and can be used to implement this approach for high levels

of precision.

As a starting point, I document the empirical relation between gold prices and real US

Treasury yields since the late 1970s. The real price of gold and real yields are strongly

negatively correlated, but this correlation is driven by periods with low rates. When rates

were high, the correlation has been weak. My model is naturally suited to display this

nonlinear relation because investors only enter the gold market when rates are low enough.

Basic model properties are derived for a two-state example that can be solved in closed

form. For the general Markov chain speci�cation, I show how the equilibrium can be rep-

resented as a dynamic operator and prove that under some conditions there exist a unique

�xed point. This allows for a computationally e¢ cient solution algorithm that is applicable

to rich speci�cations.

For a quantitative analysis of the model, I use a version of the Vasicek term structure

model calibrated to real US Treasury yields. For the benchmark calibration, the expected

value of the price of gold is more than trice the value gold would have in the absence of

investor participation in the gold market. When the model is �tted to match 10-year real

yields for 1980-2020, the price of gold reproduces well the salient �uctuations since about

2007. An extension of the model to include the e¤ects of the real USD exchange rate improves

the model �t for the period before 2007. As an additional application, the model is used to

study gold futures prices. The ratio of model implied futures prices to spot prices behaves

nonlinearly, and the model is able to capture key patterns of CME Comex gold futures prices
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from about 1990 onwards.

In the literature, there are not many equilibrium models speci�cally designed for pricing

gold. Barro and Misra (2015) and Huang and Kilic (2019) present and study empirical

properties of equilibrium models with a representative agent and rare disasters. Di¤erent

from these two, my model features the interaction between investors and users, and I focus on

the role of interest rate movements. The model of Barro and Misra (2015) features constant

risk-free interest rates; Huang and Kilic (2019) do not consider the interaction between

interest rates and gold prices. Velde and Weber (2000) study the stability and welfare

properties of bimetallic monetary systems within a dynamic general equilibrium model.

Some recent empirical studies on gold prices have emphasized the link between real gold

prices and real Treasury rates, in particular Johnson (2014) and Erb, Harvey and Viskanta

(2020). I show that for a more extended sample period the link between real gold prices and

real rates is weaker unconditionally and that it is driven by periods with low real rates.

Asset pricing models with agents that are heterogenous in preferences and market access

have been studied for instance by Basak and Cuoco (1998), Barro et al. (2020), Chabakauri

(2015), Chan and Kogan (2002), Chien, Cole and Lustig (2012), Gârleanu and Panageas

(2015), and Ehling et al. 2018. Unlike in these papers, my model starts from an exogenously

speci�ed stochastic discount factor. While more limited in scope than a fully speci�ed general

equilibrium model, the model presented here o¤ers the �exibility to closely match empirical

interest rate behavior.

There is a long tradition for pricing assets with stochastic discount factors, for instance

�xed income securities (Vasicek (1977), Cox, Ingersoll, and Ross (1985) or currencies (Backus,

Foresi, and Telmer (2001)). My model starts from a stochastic discount factor and adds

minimal economic structure to capture the interaction between di¤erent types of agents.

Bubbles have been put forth to explain di¤erences between the prices and the fundamental

values of assets, see for instance Blanchard and Watson (1982), Abreu and Brunnermeier

(2003), and Allen, Morris, and Postlewaite (1993). In my model, gold has no fundamental
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value to investors except as a store of value. Gold has a fundamental value to those who

use it as jewelry or productive input, and this value increases as investors�buy up some of

gold�s supply.

Commodity futures prices have been studied in dynamic term structure models, for in-

stance Schwartz (1997), Casassus and Collin-Dufresne (2005) and Le and Zhu (2013), and

in structural equilbrium models, for instance, Routledge, Seppi, and Spatt (2000), Acharya,

Lochstoer and Ramadorai (2013) and Basak and Pavlova (2016). My model combines ele-

ments from both approaches: a �exible term structure model and the equilibrium interaction

of two types of agents.

In a related paper, Jermann (2021) features a fully speci�ed general equilibrium model for

store of value assets with two types of agents. The modelling here is distinct in that investor

preferences do not need to be speci�ed and that gold is priced based on an exogenously given

stochastic discount factor.

The next section documents empirical properties of gold prices and real interest rates.

Section 3 presents the model, followed by a simple example that can be solved and charac-

terized in closed form. Section 5 considers the general model. The quantitative analysis is

in section 6. Gold futures are studied in section 7.

2 Gold prices and real treasury rates

This section presents empirical properties of the relation between gold prices and real interest

rates. I con�rm the negative relation documented in Johnson (2014) and Erb, Harvey and

Viskanta (2020) for an extended sample. However, the negative relation is not very strong

over the longer sample periods considered here, namely 1975-2020 and 1980-2020 for 1-year

and 10-year maturities, respectively.1 I document a new stylized fact: the negative relation

between the price of gold and real rates is produced in the periods when rates are low. When

11975 marks the end of restrictions on US private gold investments�in place since 1933. The o¢ cial US
gold peg was ended in 1971.
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rates are high, the relation is very weak.

Average monthly prices of gold for 1975.1 to 2020.12 are computed from the daily gold

�xing in the London Bullion Market. The price of gold is de�ated by the CPI-U. 1-year

and 10-year constant maturity Treasury rates are combined with in�ation forecasts from the

Survey of Professional Forecaster extended with additional data for the 10-year horizon from

Blue Chip Economic Indicators for 1979.10 to 1991.9.2 Starting with 2003.1, 10-year TIPS

rates are used for the 10-year real rates.
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Figure 1: Gold and real Treasury yields.

Figure 1 displays the time-series of the real price of gold (scaled to 10 at 1975.1) alongside

2Data is from the Federal Reserve Bank of St. Louis and the Federal Reserve Bank of Philadelphia. The
sample length is limited by the availability of in�ation forecasts.
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the 1-year and 10-year real rates, including TIPS, each for their available sample periods.

Yields are in general lower after 2000 and gold prices higher. It can be visually detected

that the negative relation is also present at higher frequencies. For instance, starting around

2019, gold and yields have sharply moved in opposite directions. Around 2012-13, gold prices

are at very high levels and 10-year rates are at their lowest since the beginning of the sample

period. Before and after 1985 there are periods of approximately three years each where

gold and yields clearly move in opposite directions.

Figure 2 shows the scatter plots of real gold prices (scaled to 1 at 1975.1) against 1-year

and 10-year rates, respectively. For the 10-year rates, TIPS are used after 2003. From

this perspective, it is clear that the negative relation between the price of gold and yields

is situated in the low yield region. Linear regression lines as well as piece-wise linear and

6th-degree polynomials models are included in the plots.

To isolate high-frequency behavior, I run regressions of percentage changes in the gold

price against changes in yields. The regressions are run separately for low-yield periods and

high-yield periods. The cuto¤s are set so as to produce samples with the lowest 33.3% or

50% of the yields, respectively. Table 1 reports the slope coe¢ cients and adjusted R20s.

Most striking are the high R20s for the 10-year rates in the regressions based on the periods

with the lowest 33.3% of yields. For the monthly changes the R2 is 0.35, for annual changes

the R2 is 0.65. Such high numbers make it clear that long-term real rates can be considered

the main driver of gold prices during the low-rate periods. During high-rate periods the

correlation between changes in gold prices and yields is typically lower, for monthly changes

the correlation disappears. The slope coe¢ cients reported in the table con�rm the visual

impression from Figure 2 with the highest sensitivities when rates were the lowest.
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Figure 2. Real Gold Prices against Real Yields. 1975.1-2020.12

and 1979.10-2020.12 for 1-year and 10-year yields, respectively.
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Treasury maturity 1-year 10-year
monthly annual monthly annual

33:3% cuto¤
�yt, yt < y� �3:2�� �8:7��� �14:1��� �19:3���
�yt, yt � y� �0:8� �1:1 0:2 �4:7��
R2adj :03 :01 :21 :00 :35 �:00 :65 :11
50% cuto¤
�yt, yt < y� �1:1� �3:4� �6:3��� �10:0��
�yt, yt � y� �1 �1:6 0:6 �5:1���
R2adj :01 :01 :04 :01 :10 �:00 :19 :19
Full sample
�yt; 8yt �1:0�� �2:5 �0:9 �6:8���
R2adj :01 :03 :00 :19

Table 1: Regression of log-percentage changes in real gold prices on yield changes conditional
on low or high yield levels. Results for monthly and annual changes are reported. The yield
cuto¤s for the 1-year rate are are -0.1 percent (33.3% cuto¤) and 1.35 percent (50% cuto¤),
for the 10-year rate 1.73 percent (33.3% cuto¤) and 2.5 percent (50% cuto¤). Signi�cance
levels are given as *** (p<.01), ** (p <.05), and * (p<.1).

3 Model

Time is discrete with an in�nite horizon. The model features two types of buyers of gold:

Investors and users.3 From investors�perspective, the price of gold pt satis�es the following

no-arbitrage relation

pt � EtMt;t+1pt+1; (1)

withMt;t+1 the stochastic discount factor (SDF). Equation (1) holds with equality for periods

when investors are holding the asset; with inequality when investors are not holding the asset.

It is assumed that investors cannot short gold with users. Investors face no restrictions on the

�nancial contracts they trade with each other. Equation (1) is a valuation equation for an

3The notion that gold has very distinct groups of buyers is consistent with the Gold Value Framework, a
regression-based approach disseminated by the World Gold Council (2021), WGC. According to WGC, total
above-ground stocks of gold (end 2021) are 205,238 tonnes, with jewelry 46%, bar and coins (incl. ETFs)
22%, central banks 17%, and other 15%.
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asset without a yield. If the equation always holds with equality, this would be the standard

equation for a rational bubble. The problem with a bubble is that it should be worth zero,

or an arbitrary number if one accepts the belief that in the long run the price is increasing

exactly at the right rate. In this model, there is a unique value for the price because the

investors� pricing equation sometimes holds with inequality. I assume that investors are

active in other �nancial markets, in particular, in �xed income and derivative markets. The

SDF connects the price of gold to the prices in other �nancial markets.

Users derive utility from their gold holdings in each period, and the marginal valuation

of this utility in terms of the numeraire good is given by vt. From their perspective, the price

satis�es the present value relation

pt = vt + �Etpt+1: (2)

Users are assumed to be risk neutral with a constant discount factor 0 < � < 1. It is

assumed that users are not the marginal pricers in �xed income and derivative markets.

Knowing the process for vt and �, the price can be determined from users�valuation alone.

However, it is not clear how vt could be measured.

Equilibrium requires that both equations hold. A key insight is that when the two

equations are combined, the model can determine the users�utility value vt for the times

and states of nature when both buyers are in the market. Therefore, we do not need a

priori knowledge of all values of vt. Values for vt are only needed for those times and states

when users are alone holding the asset. As a starting point, we can set the marginal utility

when users are holding the entire supply of gold to a constant v > 0. If we are interested

in how much the store of value property adds to the fundamental value, then v is just a

normalization parameter.

As a requirement for an equilibrium we assume decreasing marginal utility for gold.

Speci�cally, we require that equilibrium values are bounded from below by the autarchy
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value

vt � v: (3)

In addition to the economic reason for this constraint, it also serves to eliminate possible

multiple equilibriums.

To accommodate long-run growth in the real price of gold we can let users autarchy

utility grow at a deterministic rate 
. With utility evolving as 
tv with time t the price

of gold inherits the same deterministic trend. The pricing equations can be rewritten for

a detrended price of gold which is stationary and therefore numerically tractable. In this

case, the discount factor in equation (2) becomes �
, and in equation (1) the parameter 


multiplies pt+1 which is then interpreted as the detrended price level.

To summarize, an equilibrium is an exogenously given process for Mt;t+1, parameters

(�; 
; v), and processes pt and vt for which equation (1), (2) and (3) hold. There are

many ways to represent the process Mt;t+1. I study the model with a process speci�ed

as a �nite-state Markov chain. With enough states, this is a very �exible speci�cation, and

my numerical approach developed below can handle a large number of states.

Rearranging the pricing equations o¤ers intuition about key model mechanisms. Based

on this, the model suggests an interpretation of gold as a real bond with a put option. The

investors�pricing equation (1) can be rewritten as

pt �
Etpt+1

Y
(1)
t

+ covt (Mt;t+1; pt+1)

with Y (1)t the one-period gross real interest rate. A lower current interest rate Y (1)t and

lower future interest rates raise the current price of gold, like for a zero-coupon bond. The

sensitivity of the price of gold to the interest rate depends on how long the equation is

expected to hold with equality. This can be viewed as gold�s duration. From a physical

perspective, this duration in�nite. With the investors�pricing equation at times holding

with inequality, the e¤ective duration is �nite.
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Combining the two valuation equations for a period when investors are in the gold market,

the price of gold can be written as

pt = EtMt;t+1max [Et+1Mt+1;t+2pt+2; vt+1 + �Et+1pt+2] : (4)

The equation shows that gold has an option-like payo¤. From investors�perspective, the

ability to sell gold to users sets a �oor on the price of gold, similarly to a put option.

The �oor price vt+1 + �Et+1pt+2 depends on users� future marginal utility and on future

equilibrium prices. As suggested by equation (4), increasing volatility in the discount factor

Mt+1;t+2, through the convexity of the max-operator, has a positive impact on the current

price of gold, just like the volatility of the underlying asset price contributes positively to

the value of an option.

4 Two-state example

To illustrate model properties, I start with a simple two-state Markov chain model. This

model can be solved analytically and uniqueness of the equilibrium can easily be shown.

In every period t, one of two states of nature is realized. Log real interest rates in state

1 and 2 are such that r1 < r2. A possible equilibrium would be such that in state 1, with a

low interest rate, investors are holding gold. In state 2, investors are out of the gold market.

The SDF is represented by a 2 by 2 matrix

M =

264 exp (�r1)��; exp (�r1) + �
�

�11
1��11

�
exp (�r2)��; exp (�r2) + �

�
�21
1��21

�
375 :

Element mi;j is the discount factor if at time t we are in state i and in time t + 1 in state

j. The innovation in the SDF, � > 0; determines the slope of the term structure.4 In this

4The requirement that the elements of M are positive limits admissible values for �. In the more general
case studied below the elements of M are speci�ed through the exponential function to guarantee positivity.
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case, the SDF has a negative innovation going into state 1 and this is the state with the low

interest rate which produces a capital gain for a two-period bond. This implies a positive risk

premium and the unconditional term structure is upward sloping. The transition probability

matrix is given as

� =

264 �11 1� �11

�21 1� �21

375 :
Clearly

Et (Mt;t+1) = [�: �M ] � 1 =

264 exp (�r1)

exp (�r2)

375 :
This is a property of many term structure models which conveniently allows one to directly

specify a process for the short rate.

Given that r1 < r2, I conjecture that investors�pricing equation holds with equality in

state 1 and with inequality in state 2. In this case, we have 3 unknowns (p1; p2; v1) and 3

equations

p1 = v1 + �
�11p1 + �
 (1� �11) p2

p2 = v + �
�21p1 + �
 (1� �21) p2

p1 = �11m11
p1 + (1� �11)m12
p2

for given parameters (�; 
; �ij;mij; v). It is easy to see that this linear system of equations

has in general a unique solution (except for knife-edge cases). Note the variables p and v are

detrended by 
t, for conciseness the notation does not acknowledge that.

For this solution to be an equilibrium, the initial conjecture that investors are not in the

market in state 2 needs to be veri�ed, that is

p2 > �21m21
p1 + �22m22
p2:
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We also need to check that users�marginal utility in state 1 satis�es

v1 > v:

Note also that with v1 > v, values for v in state 1 that are slightly higher would also produce

the same equilibrium outcome.

The existence of a solution with these properties depends on parameter values. Unique-

ness of this equilibrium can be checked by ruling out other candidate equilibriums. In this

two-state case, only two other equilibrium con�gurations are possible. Either investors are

out of the gold market in both states or they are in the market only in state 2. As part

of the following proposition, which solves this example in closed form, I show that these

alternative equilibrium con�gurations can be ruled out. An equilibrium where investors are

always pricing gold is ruled out by assuming enough discounting (see the N�state case below

for the exact condition).

Proposition 1 Assuming r1 < r2 and for a range of parameter values (�; 
;�; r1; r2) for

which there exists an equilibrium with investors in the gold market in state 1, the price of

gold in the two states is given by

p1 =

�
(1� �11) exp (�r1) + �11�
1=
 � �11 exp (�r1) + �11�

�
p2;

p2 =
v

1� �

h
1� �21

�
1� (1��11) exp(�r1)+�11�

1=
��11 exp(�r1)+�11�

�i ;
r1 < ln (
) < r2, p1 > p2 > p (with p = v= (1� �
) the price of gold for users in autarchy

forever), and this is the unique equilibrium (for a given set of parameter values).

The proof solves the equilibrium equalities algebraically and checks the inequality condi-

tions. See the appendix for details.

For marginal utility of gold to be higher in state 1, v1 > v, the interest rate is required to

be smaller than the trend growth rate in that state, r1 < ln (
). The two other equilibrium
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con�gurations would require r1 > ln (
), and therefore with r1 < ln (
) the equilibrium

computed here is unique. Without the requirement that v1 > v, uniqueness would not be

guaranteed.

Interestingly, gold prices in both states exceed what they would be if users are in autarchy

forever: p1 > p2 > p. In other words, the presence of investors buying and selling gold does

not only raise the average gold price but it raises gold prices in all states of nature. This

illustrates that even though users hold the entire supply of gold in state 2 they forecast

that investors will drive up the price of gold in state 1. This can also be explained by the

assumption of declining marginal utility of gold. Indeed, when investors buy up gold, this

reduces the supply to users and raises users�marginal utility. Investors�presence cannot

reduce marginal utilities below autarchy values.

Note also that the exact value for r2 is not relevant in equilibrium as long as it is high

enough so that investors do not want to buy gold in that state.

5 N-state Markov chain model

This section shows how an equilibrium can be de�ned as the �xed point of an operator. The

model can be solved numerically by iterating on this operator. Extending the guess and

verify approach used for the 2-state example for solving the N-state case is possible, but the

operator approach is more e¢ cient for rich speci�cations.

The environment is de�ned by (�; v;�;M) with 0 < � < 1 a scalar, v a N � 1 vector of

users utility values in autarchy when they hold the entire supply, and � and M the N �N

transition probability and SDF matrices. For notational compactness de�ne the element by

element multiplication �: �M � ~M:5

De�ne the operator T mapping N � 1 vectors p of positive real numbers into themselves
5The deterministic growth trend 
 can be introduced by replacing � by �
, and ~M by 
 ~M .
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as

Tp = max
�
v + ��p; ~Mp

�
: (5)

A �xed point of this operator, p� = Tp�; satis�es equation (1) and can be used to compute

the users�equilibrium marginal utility values

v� = (I � ��) p� � v (6)

to satisfy the users pricing equation (2) and the decreasing marginal utility assumption,

equation (3). Vice-versa, every equilibrium p is a �xed point of the operator T .

The operator T is monotone because all elements of � and M are positive; that is, for

p1 � p2 (de�ned as p1;i � p2;i for all i = 1::N), Tp1 � Tp2. T is not a contraction because

one-period interest rates are allowed to be negative in some states, and this implies ~Mj1 > 1

for some j, with ~Mj de�ned as a row vector of ~M . The following proposition presents a

su¢ cient condition for T to have a unique �xed point.

Proposition 2 For the space of N-dimensional vectors P � RN+ and the operator T de�ned

in equation (5) mapping elements from P into P , the K-stage operator TK is a contraction

if

max (�K1) < 1

with

�K � argmax
row

h
~M�K�1; ���K�1

i
1

starting with

�0 = I;

and its �xed point is the unique �xed point of T .

The proof combines standard steps with a discounting condition that is speci�c to the

operator T , see the appendix for details. The nonstandard discounting condition is needed
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to deal with the max function and to allow for some negative short-term interest rates.

This discounting property is embedded in the condition on the matrix �K de�ned in the

proposition. Intuitively, there needs to be enough discounting in the e¤ective discount factors

that are implied by the max function. The condition rules out explosive paths and "bubble"

solutions where investors are always pricing gold. This discounting condition can easily be

checked numerically even for large N , and the �xed point is computed by iterating on T

starting from some initial condition.

An alternative way to solve the model extends the guess and verify approach illustrated

with the two-state example to the N -state case. Partition states into a set I for which

investors are holding the asset and its complement Ic where users are in autarchy holding

all the gold. Solve for the candidate price and utility �ow vectors (p; v) satisfying

p = v + ��p

pj = ~Mjp for j 2 I

vj = vj for j 2 Ic

through matrix inversion. Verify that

pj > ~Mjp for j 2 Ic

vj > vj for j 2 I:

For N states, there are 2N possible partitions. Practically, for the one-factor model solved in

the quantitative section, fewer partitions are required. For instance, if states are ordered by

interest rates, de�ning I by a cuto¤ rate is typically su¢ cient. For richer speci�cations and

with a larger number of states, iterating on the Bellman operator is more e¢ cient because

there is no need to customize the selection of partitions corresponding to candidate solutions.
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6 Quantitative analysis

The model is evaluated with respect to its ability to produce the empirical properties doc-

umented in Section 2, speci�cally, a strong negative relation between long-term real rates

and gold prices which is limited to periods of low rates. After calibrating the model to a

one-factor term structure model and documenting some properties, a second factor is intro-

duced, the real exchange rate. The time series of gold prices produced by the model when

driven by these factors is compared to the historical series of gold prices.

The SDF Mt+1 is speci�ed as in a discrete-time version of the Vasicek term structure

model following Backus, Foresi and Telmer (1998). In that model, lnMt+1 = �y(1)t ��m"t+1�

at and y
(1)
t+1 = �yy

(1)
t + (1� �r) �y(1) + �y"t+1 with "t+1 IID normally distributed with mean

zero and variance one. This model has four free parameters
�
�y(1); �y; �y; �m

�
; at is used to

make sure that EtMt+1 = exp (rt). The �rst three parameters determine dynamics of the

short rate. The fourth, �m, is the price of risk parameter. This process is approximated

by a discrete Markov chain with 100 states following the Tauchen method. As calibration

targets, I choose the mean, standard deviation and �rst autocorrelation of the ten-year rate.

The price of risk parameter is set to match the unconditional spread between the ten-year

rate relative to the one-year rate.

As shown in Table 2, the model can match these four calibration targets perfectly. The

volatility of the short rate and its autocorrelation which were not separately targeted are

only slightly o¤.

In addition to the SDF, the model has two parameters that need to be calibrated, the

users� discount factor � and the trend growth rate of the price of gold 
. I set � =

exp
�
��y(1)

�
, implying the users discount at the same rate as investors on average. The trend

growth rate of the gold price 
 plays a crucial role for model properties. Barro and Misra

(2015) �nd an average growth rate of 1:1% for 1836-2011 with a one-standard deviation band

of (0:1%; 2:1%). In my model, with all other parameters as described, the highest growth

rate before gold prices tend to in�nity is somewhat above 
 = 1:009. Based on this, a
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Table 2: Calibration and Implied Real Interest Rates. Data are annual averages for 1980-
2020 based on U.S. Treasury bonds and TIPS.

Parameter Target

Mean y(1)t �y(1) :0137 E
�
y
(1)
t

�
Innovation Std y(1)t �y :0085 Std

�
y
(10)
t

�
AR(1) y(1)t �y :95 AR(1)

�
y
(10)
t

�
Price of risk �m �:323 E

�
y
(10)
t � y(1)t

�
Interest rates Data Model

y(1) y(10) y(1) y(10)

Mean 1:37 2:67 1:37 2:67
Std 2:38 1:93 2:73 1:93
AR(1) :90 :95 :95 :95

plausible range for this parameter is (1:001; 1:009). To more tightly identify this parameter,

I consider the sensitivity of the log growth price changes with respect to changes in the

10-year yields for periods with relatively low 10-year yields. As documented Table 1 gold

price changes are closely related to yield changes but only during periods of low rates, which

mostly correspond to the time after about 2003. For the 50% of realizations for the 10-year

rate that are below the average, this sensitivity equals �10:0 in the data. The model can

match this value with 
 = 1:0084, which is taken as the benchmark value.

Table 3 displays model properties for these parameter values and for various alternative

calibrations. For the benchmark calibration displayed in the �rst row, the standard deviation

of the logarithmic price changes, Std(ln p0=p), is 4:3%. This represents the �uctuations in

gold prices that come from real interest rate movements. Empirically, the unconditional

standard deviation in annual gold prices 1980-2020 is 14:8%. This implies that interest rate

movements transmitted to gold by investors were responsible for somewhat more than a

quarter of the gold price volatility. As documented below, during the more recent years

characterized by relatively lower interest rates, the share of gold price movements coming

from interest rate changes has been signi�cantly larger.

As shown by the second to last column, 71% of the time users are holding the entire
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Table 3: Model implications. 
 is the equilibrium trend gross growth rate of the price of
gold. � is the discount factor of the users.

E
�
p=p
�
Std(ln p) Std(ln p0=p) Prob(Ic) Sensitivity low y(10)


 = 1:0084 3:8 12:5 4:3 0:71 �10:0

 = 1:001 1:3 9:1 3:2 0:78 �7:7

 = 1:009 6:6 12:8 4:4 0:71 �10:2
Lower � = exp

�
��y(1)

�
=1:005 1:7 12:3 4:3 0:71 �9:7

Lower price of risk, �m=1:2 8:2 14:4 4:9 0:69 �10:7
More volatile rates, �y � 1:1 6:3 14:1 4:8 0:71 �10:1
More persist., AR(1) y(1)t = 0:98 2:3 22:4 4:9 0:78 �12:4

supply of gold with investors out of the gold market.

In the model, interest rate changes have a nonlinear impact on the price of gold. As

shown in Table 3, the average level of the price of gold is 3:8 times the level of the users�

autarchy value p, which would be the value if users would hold all the gold forever (and

investor would be forever out of the gold market). In other words, the fact that gold is an

investment asset and not just a commodity is responsible for more than two thirds of its

value.

The average level of the price of gold is sensitive to the selected values for 
. At 
 = 1:001,

which is the low end of my plausible range, investors add on average only 30% to the value

of gold. At the other end, with 
 = 1:009 gold is on average worth more than 6 times its

value without investors. As 
 increases, gold prices become more sensitive to interest rates.

Relatively moderate increases in the standard deviation of the gold price produce very large

increases in the level of the gold price. This illustrates the strong nonlinearity in the model;

declines in yields not only produce valuation e¤ects but also increase the sensitivity of the

price to yields, that is, the e¤ective duration increases.

The two panels on the left in Figure 3 further illustrate this mechanism. The �rst panel

on the left shows gold prices against 10-year real yields. The price of gold is scaled by gold�s

autarchy value (that is, if users were holding all gold forever). As is clear in the graph, with

low rates gold prices increase strongly, and even during periods of very high interest rates,

20



gold would be worth signi�cantly more than this autarchy value. The plot nicely illustrates

the option-like value pro�le from investors�perspective. The lower panel on the left displays

the sensitivity of the price of gold with respect to the 10-year real yield. This can be viewed

as gold�s duration. For instance, if the 10-year rate is at 0, gold�s duration is about 13 years

and it is strongly increasing as rates decline. The distribution of gold prices in the model

is far from normal or log-normal. The probability density function for the logarithms of

gold prices in the right upper panel displays strong positive skewness. This nonlinearity is

entirely endogenous to the model, as short rates are log-normally distributed.
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Figure 3: Model properties.

21



Maturity 10-year
Data �yt, yt < y� �19:3���
33:3% �yt, yt � y� �4:7��
50% �10:0��

�5:1���

Model �yt, yt < y� �12:1
33:3% �yt, yt � y� �2:6
50% �yt, yt < y� �10:0

�yt, yt � y� �2:4
RA Model �yt, yt < y� �19:2
33:3% �yt, yt � y� �13:9
50% �yt, yt < y� �18:4

�yt, yt � y� �13:7

Table 4: Regression of log-percentage changes in real gold prices on yields conditional on
low or high yield levels. Slope coe¢ cients are reported. RA stands for representative agent
economy. The cuto¤ levels y* are set to assign 33.3% or 50% of the observations to the low
yield sample, respectively. Signi�cance levels are given as *** (p<.01), ** (p <.05), and *
(p<.1).

Table 4 compares slope coe¢ cients from regressing annual changes in log gold prices on

changes in yields. Model implied gold prices are computed for the sequence of US 10-year

real yields 1980-2020. Because the state space is discrete, I am directly interpolating the

vector of gold prices relative to the vector of model implied 10-year yields. Consistent with

the data, the sensitivity of model implied gold prices to 10-year real yields is substantially

lower for periods with high yields. The model is calibrated to match the slope coe¢ cient of

�10:0 for the lower 50% of yields, for the corresponding higher 50% the model�s sensitivity

of �2:4 is somewhat lower then its empirical counterpart of �5:1.

The table also includes gold�s interest sensitivity for a representative agent (RA) model.

The RA model abstracts from the interaction between investors and users. The model is a

single equation where gold is priced with a constant utility �ow v

pt = v + EtMt;t+1pt+1:

The RA model cannot produce the strong nonlinearity in the sensitivity of gold prices to
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interest rates. The sensitivity when yields are high is excessively high. Nevertheless, the

RA also features a sensitivity of gold prices to interest rates that is declining in the level of

interest rates. In other words, the representative agent model features nonnegligble convexity.

Recalibrating the RA model with a lower trend growth rate 
 only weakly reduces the slope

coe¢ cients in the RA model. For instance, with 
 = 1, the slope coe¢ cients are �17:0 and

�12:6 with the 50% cuto¤ compared to �18:4 and �13:7 in the table corresponding to the

benchmark calibration 
 = 1:0084.

6.1 How well does the model explain gold prices since 1980?

The only driving factor considered so far is the investors� SDF which has been speci�ed

to match the term structure of real interest rates. Independently measuring variations in

the users�utility �ows, which could be another factor, would seem to be a hopeless task.

However, considering that gold users are to a large extent non-US residents who are not

using the USD as their numeraire creates a role for the real exchange to a¤ect the price of

gold.

6.1.1 Real exchange rates

Assume that users are non-US residents. For pricing gold in real USD terms, we need to

convert their utility �ow value measured in their own numeraire to real USD. In the model,

the users�autarchy utility �ow v is multiplied by the real exchange rate St, de�ned as real

USD per unit of the foreign good. The permanent autarchy valuation becomes

p
t
= Stv + �Etpt+1:

Represent the exchange rate as

St+1 = �t+1St
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with �t+1 the gross growth rate, which I assume follows an exogenous stochastic process.

Divide both sides by St, and denote gold prices scaled by the exchange rate as p̂t � pt=St,

bp
t
= v + �Et�t+1bpt+1: (7)

The pricing equation of the scaled gold price now includes the stochastic growth rates of

exchange rate �t+1 but is otherwise identical to the pricing equation in the model without

the exchange rate. The two equilibrium pricing equations, equations (1) and (2), are equally

unchanged except for the exchange rate changes �t+1 multiplying the scaled gold prices dated

t+ 1.

This model can be solved once a process for �t+1 is speci�ed. Here I consider a special

case. Assume exchange rate changes are uncorrelated with real interest rates, identically and

independently distributed with Et+1�t+1 = 1. It is easy to see that in this case �t+1 drops

out of equation (7) and the other equilibrium pricing equations of the model. This implies

that the solution for the scaled gold price bpt is identical to the solution for pt in the model
without the exchange rate. The only e¤ect of introducing the exchange rate is that we need

to multiply the scaled gold price by the exchange rate, so that the equilibrium gold price in

this two-factor model is Stbpt.
While this speci�cation is convenient, it is debatable whether empirically the real ex-

change follows exactly this multiplicative random walk and whether the growth rates are

exactly uncorrelated. In particular, there is a large literature on whether real exchange rates

have units roots which does not seem to have reached a consensus; for prominent examples

see Engel (2000) and Rogo¤ (1996). If the real exchange rate is stationary in the model, its

impact on the price of gold would be weaker. The random walk is a special case where the

present discounted value changes by the same percentage as the dividend growth (here the

utility �ow).
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6.1.2 Gold prices 1980-2020

As the real exchange rate, I use the Real Broad Dollar Index from the Board of Gover-

nors of the Federal Reserve System (US) retrieved from FRED, (RTWEXBGS, 2006-2020,

TWEXBPA 1980-2006).

Figure 4 displays model implications with and without the exchange rate. The average

of each series is normalized to 1. Clearly, the model driven by 10-year yields can capture

quite well the price movements in the later part of the sample from about 2007 onwards.

This is consistent with the regression evidence in Table 1 that shows a tight negative relation

between yields and gold prices when yields are low, which is predominantly in the later part

of the sample. For the period prior to about 2007, the model-implied gold price explains

little of the actual gold price �uctuations. This is also consistent with the regression evidence

showing only a weak connection between gold prices and real rates during these times when

rates were high.

Incorporating the real exchange rate helps the model in 2012 but not in 2020. For the time

period 1995- 2007, including the exchange clearly helps the model at medium frequencies.

Overall, the mechanisms and the factors represented in this model can reproduce a signi�cant

part of the gold price �uctuations since 2007.
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7 Gold futures

CME has deep markets for gold futures, and there is a long history of price data. In this

section, I derive model-implied futures prices and compare these to the data. The model is

shown to capture empirical properties which a representative agent model cannot.

Assume investors have access to one-period futures contracts at a price ft for delivery
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next period t+ 1. The payo¤ to the long side is

pt+1 � ft;

so that the futures price consistent with investors�stochastic discount factor equals

ft =
EtMt;t+1pt+1
EtMt;t+1

:

Intuitively the futures price is the expected future spot price weighted by investors marginal

valuations. Implicitly, for this to be an equilibrium price it is assumed that there are frictions

on users limiting the positions they can take.

If investors�gold pricing equation (1) holds with equality at t the spot price of gold is

connected to the futures price

pt = EtMt;t+1pt+1 = EtMt;t+1pt+1
EtMt;t+1

EtMt;t+1

=
ft

Y
(1)
t

;

where Y (1)t is the one-period gross interest rate. If investors�pricing equation holds with

inequality, then the spot price would be relatively higher than the right-hand side of the

equation. Combining these two cases, the ratio of the futures to the spot price adjusted for

interest satis�es
ft

ptY
(1)
t

� 1: (8)

Intuitively, this equation represents the cash-and-carry arbitrage and the frictions in the

model. Investors can always buy gold spot with borrowed funds and hedge it with a short

futures, and this limits the futures price to be no higher than the cost of carrying gold,

ptY
(1)
t . However, when investors are not holding gold they cannot take a short spot position.

In that case, the spot price including interest can be higher than the futures price. Based

on our previous analysis, when interest rates are low or negative, investors are likely to be

holding gold and therefore the futures to spot (including interest) ratio equals 1. With high
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real rates, this ratio is more likely to be smaller than 1.
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Figure 5

CME futures contracts are denominated in nominal dollar terms, the model so far has

been in real terms. Assuming the consumer price level is deterministic, the model�s futures

to spot ratio for a dollar-denominated contract is identical to the ratio derived for contracts

denominated in real terms, except that the interest is now the nominal interest rate. I

compute the one-year futures to spot ratio from CME Comex futures prices by taking the

ratio of the contract with a maturity of between 12 and 13 months relative to the contract

that is expiring within a month. Instead of using the spot price from the London Bullion

Market this has the advantage of not introducing nonsynchronous prices. One-year interest
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rates are nominal Treasury rates.

Figure 5 displays historical futures ratios alongside model implied counterparts. The

model is �tted to either match the 1-year or the 10-year rates. Because the one-factor term

structure model cannot exactly �t both rates, there are some di¤erences between the two

model-implied series. Strikingly, the model produces the broad patterns of the data from

about 1990 onwards. Prior to about 2002 the model�s futures ratios are below one, after that

they are mostly equal to 1. Model and data diverge pre 1990s, which could indicate that

gold futures markets were less integrated with bond markets at that time.

For comparison, consider the representative agent (RA) setting where the futures ratio

satisi�es
ft

ptY
(1)
t

= 1� vt
pt
; (9)

that is, the futures ratio is lowered below 1 by the utility yield for holding gold, vt=pt.

This utility yield is equivalent to what is known as a convenience yield in the commodities

literature, see for instance Schwartz (1997) or Routledge, Seppi, and Spatt (2000). Figure

6 displays futures ratios from the RA model. The model is only driven by term structure

movements and the utility �ow vt is assumed to be deterministic. The model is never close

to the data and fails to generate empirically relevant patterns. Mostly, the model is about

2% below its empirical counterpart. To close this 2% gap, the growth rate 
 could be

recalibrated to a higher value.6 As discussed earlier, to reduce the excessive responsiveness

to interest rates the RA model should be calibrated to a lower (not higher) growth rate 
.

Abstracting form that, a higher 
 not only lowers v=pt but also stabilizes the futures ratio

and thus reduces the model�s ability to produce variations in this ratio. Essentially, the RA

model driven only by term structure movements cannot account in any signi�cant way for

the empirical behavior of the futures ratio. For the representative agent setting to match

the variations in the futures ratio would require large transitory movements in the marginal

6Iterating forward on the pricing equation of the RA model for a constant v implies pt=v =P1
j=0 


jEtMt;t+1+j ; illustrating the role of the only free parameter 
.
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utility vt.
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8 Conclusion

This paper values gold from an investor perspective by recognizing that users of gold as

jewelry or as a productive input put a lower �oor to the price of gold. This embeds an

option into gold whose strike price is implicitly derived by the users� price forecasts. A

model incorporating these ideas is presented, analytically characterized, and an e¢ cient

computational algorithm is developed. Motivated by the empirical evidence on the relation

between gold prices and real interest rates, the quantitative analysis is based on a term
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structure model calibrated to real US interest rates. The model can go a long way towards

replicating the time series of gold prices since about 2007. The model captures key patterns

of CME Comex gold futures prices from about 1990 onwards. The approach developed in

this paper can be extended to richer term structure models or discount factor speci�cations.
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Appendix A: Two state example (Proposition 1)

Assume r1 < r2 and that the investors�pricing equation holds in state 1. Rearranging

that equation gives

p1 =
(1� �11) exp (�r1) + �11�
1=
 � �11 exp (�r1) + �11�

p2:

Combining this with the users�pricing equation in state 2 gives the solutions for p2 in

the proposition.

For an equilibrium we require v1 > v. From the users�pricing equations in state 1 and 2

we get

p1 = v1 + �
�11p1 + �
 (1� �11) p2

v1 = (1� �
�11) p1 � �
 (1� �11) p2

p2 = v + �
�21p1 + �
 (1� �21) p2

v = (1� �
 (1� �21)) p2 � �
�21p1;

the requirement implies

v1 > v

(1� �
�11) p1 � �
 (1� �11) p2 > (1� �
 (1� �21)) p2 � �
�21p1

p1 > p2:

Imposing this to the �rst equation in this appendix implies

(1� �11) exp (�r1) + �11�
1=
 � �11 exp (�r1) + �11�

> 1

r1 < ln (
) :
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So, this is an additional requirement for this equilibrium to exist.

For the postulated equilibrium we also need that investors are out of the market in state

2, that is,

p2 > �21
m21p1 + �22
m22p2

p2 > �21
 (exp (�r2)��) p1 + (1� �21) 

�
exp (�r2) + �

�21
(1� �21)

�
p2

p2 >
�21 exp (�r2)� �21�

1=
 � (1� �21) exp (�r2)���21
p1

combined with the property 1 > p2
p1
shown above,

1 >
p2
p1
>

�21 exp (�r2)� �21�
1=
 � (1� �21) exp (�r2)���21

1 >
�21 exp (�r2)� �21�

1=
 � (1� �21) exp (�r2)���21

r2 > ln (
) :

Ruling out the other two equilibrium con�gurations.

In an equilibrium where autarchy forever is a solution we have

p
1
= p

2
=

v

1� �
 = p:

To rule out such an equilibrium we need that

p < �11m11
p+ �12m12
p

p < �11
 (exp (�r1)��) p+ (1� �11) 

�
exp (�r1) + �

�
�11

(1� �11)

��
p

r1 < ln 
;
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which we have already assumed for existence of the conjectured equilibrium.

For an equilibrium where investors are holding gold in state 2 but not in state 1, redoing

the analysis for the �rst candidate equilibrium would require r2 < r1, here we started with

the opposite assumption. The assumption of decreasing marginal utility, vt � vt, implies

that the price in an autarchy equilibrium, p = v
1��
 , is a lower bound to any equilibrium

price of gold; with strict inequality if investors enter the market in at least one state.

Appendix B: Proposition 2

The proof adapts Theorem 3.2., its Corrollary 2, and Theorem 3.3. in Stokey and Lucas

with Prescott (1989), SLP, with a more complex discounting property that is speci�c to the

operator presented in this paper and that is needed because of the max function and the

requirement that some one-period real interest rates are negative.

Two properties of the max function are used repeatedly to allow elements to be moved

from the inside to the outside of the max function. First, a constant a (positive or negative)

on both sides can be taken out of the max function,

max (X � a; Y � a) = max (X; Y )� a;

because the order of X and Y is not a¤ected by the constant.

Second, we can take a positive value a out of one side of the max function with inequality

max (X + a; Y ) � max (X; Y ) + a:

Proof. If X > Y then X + a > Y and the order cannot �ip so that the �rst element stays

the larger and

max (X + a; Y ) = max (X; Y ) + a

because in both cases we had X + a.
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If Y > X and Y > X + a, the order cannot �ip, the second element stays larger and we

have

max (X + a; Y ) < max (X; Y ) + a

because now the positive a matters.

If Y > X and Y < X + a, the order �ips, initially the �rst element was active and we

have X + a and now the second is active and we have Y + a, by assumption Y > X, so that

now a is added to a larger value. QED.

De�ne the matrix that selects among the two rows the one that produces a higher sum

of the elements

� = argmax
row

h
~M;��

i
1

for 1 a vector of 10s. Intuitively, this will include the rows of ~M for the states for which the

interest rate is negative, that is ~Mj1 > 1.

De�ne the corresponding selection matrix and its complement

I� =

266666664

1 1 1 1

0 0 0 0

:::

377777775
with 1 if row j of ~Mj1 is the larger and is included in �

I�: � ~M =

266666664

M1

0 0 0 0

:::

377777775
;
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and IC� the complement which selects the rows for which ��1 is larger. With this de�nition

h
I�: � ~M

i
+
�
IC� : � ��

�
= �:

With these preliminaries, consider evaluating the operator for an arbitrary price vector

p with the addition of a N � 1 vector a whose elements are an arbitrary positive constant

2 R+,

T (p+ a) = max
�
v + ��p+ ��a; ~Mp+ ~Ma

�
= max

�
v + ��p+ ��a� [I�: � ��] a; ~Mp+ ~Ma� [I�: � ��] a

�
+ [I�: � ��] a

= max
�
v + ��p+ ��a� [I�: � ��] a�

h
IC� : � ~M

i
a; ~Mp+ ~Ma� [I�: � ��] a�

h
IC� : � ~M

i
a
�

+ [I�: � ��] a+
h
IC� : � ~M

i
a

= max
�
v + ��p+

h
IC� : �

�
��� ~M

�i
a; ~Mp+

h
I�: �

�
~M � ��

�i
a
�

+ [I�: � ��a] +
h
IC� : � ~Ma

i
� max

�
v + ��p; ~Mp

�
+ [I�: � ��a] +

h
IC� : � ~Ma

i
+
h
IC� : �

h
��� ~M

ii
a+

h
I�: �

h
~M � ��

ii
a

= Tp +
h
I�: � ~M

i
a+

�
IC� : � ��

�
a

= Tp+ �a:

First and second steps add the same constants to both sides of the max function. The third

step does some algebra, and the fourth step takes out positive terms on both sides. The

inequality applies to each element of the vectors on both sides. The �fth step is algebra, and

last step is the de�nition of �.

For discounting, I need to show that

T (p+ a) � Tp+ �a � Tp+ �a
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for some 0 < � < 1. Because I want to allow negative interest rates, for some rows of ~Mj

�ja > a;

which goes against discounting. However, I can apply the operator K times, and for each

K the matrix �K changes (almost like (�)
K but not exactly). As a su¢ cient condition for

discounting, I am looking for a case where for K large enough

max (�K1) < 1;

with �K such that

TK (p+ a) � TKp+ �Ka:

For such a case, discounting applies for the K�stage operator and there is a unique �xed

point for TK and T , by Corrollary 2 (to Th. 3.2) in SLP.

To derive �K , in line with the previous calculations, we have

T 2 (p+ a) = max
�
v + ��(T [p+ a]) ; ~M (T [p+ a])

�
� max

�
v + ��(Tp+ �a) ; ~M (Tp+ �a)

�
= max

�
v + ��Tp+ ���a; ~MTp+ ~M�a

�
= max

�
v + ��Tp+ [���] a; ~MTp+

h
~M�
i
a
�

:::

� T 2p+ �2a

with

�2 � argmax
row

h
~M�; ���

i
1

and so on for K with

�K � argmax
row

h
~M�K�1; ���K�1

i
1
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starting with

�0 = I:

If this discounting property is satis�ed, a slightly modi�ed version of Th. 3.3. in SLP can

be used to proof that we have a contraction. Speci�cally, for any p1 and p2 2 P , for each

element j

p1;j � p2 j + kp1 � p2k

with k:k the sup norm. Moving to vectors

p1 � p2 + kp1 � p2k1:

Now apply TK to both sides

TKp1 � TK (p2 + kp1 � p2k1) � TKp2 + �K kp1 � p2k1

by monotonicity (�rst inequality) and under my discounting property for 0 < �K < 1 (second

inequality). Exchanging p1 and p2 implies

TKp2 � TKp1 + �K kp1 � p2k1:

Combining the last two inequalities



TKp1 � TKp2

 � �K kp1 � p2k ;
which is the property that de�nes a contraction.
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