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ABSTRACT

Agricultural extension programs often train a subset of farmers and rely on social networks for
knowledge dissemination. We evaluate this approach through a two-stage experiment of an
agronomy training program among Rwandan coffee farmers. The first stage randomized trainee
concentration at the village level; the second randomly selected participants within villages.
Training increased knowledge and self-reported adoption, with smaller effects on audited
adoption. At first glance, the program appeared effective: trained farmers had 4.6% higher yields
than non-trained applicants within the same village and stronger social ties with co-trainees.
However, knowledge did not diffuse, and control farmers with more treatment friends reduced
audited adoption and input use. Villages with high trainee concentrations showed suggestive
evidence of negative spillovers, likely due to competition for inputs — mulch, fertilizer, and labor.
Declines in control farmers’ yields account for treatment-control differences, raising concerns both
about this dissemination strategy and estimates that fail to consider potential negative spillovers.
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1 Introduction

Given the importance of agriculture for low-income economies, the successful adoption of
yield-enhancing technologies is critical for well-being, particularly in sub-Saharan Africa, where
agricultural productivity and technology use are increasingly behind global trends (Aker et al.
2022; Suri and Udry 2022; FAOSTAT 2022; Suri et al. 2024). Agricultural training could play an
important role in the diffusion of these technologies (Cole and Fernando 2012) and governments,

NGOs and firms spend considerable resources on it.

A common approach to organizing agricultural training in developing countries is to train
a select group of farmers in each community and rely on the organic spread of information
through their social networks. This strategy raises a number of related questions. First, how
well does this kind of information diffuse through social networks? Second, does treating
some farmers and not others place untreated farmers at some disadvantage, through a market
externality or some other form of crowding out? Third, does the group nature of the training
alter the structure of social networks and thus potentially disrupt or amplify the impact of
the intervention? If untrained farmers seek out training participants, the transmission of the
intervention could accelerate (Comola and Prina 2021). Indeed, recent evidence shows that
social networks can form strategically around new information sources (Derksen and Souza
2024). Conversely, if the intervention strengthens network ties among participants, it might
disadvantage non-participants. For example, when inputs are limited, stronger ties between
trained farmers could facilitate resource sharing within this group, potentially excluding others
(Banerjee et al. 2021). Importantly, direct comparisons between trained and untrained farmers
would then overstate the benefits of agricultural training by failing to account for these or other

negative externalities.

While a growing literature studies the diffusion of agricultural innovation through social
networks, the results of existing experimental studies are mixed, suggesting that diffusion may
depend on a variety of factors, including the simplicity of the technology (Chandrasekhar et al.
2022), how novel it is (Bridle et al. 2019), how profitable it is (Magnan et al. 2015), and the
identity of the early adopters (Beaman et al. 2021).! Meanwhile, the potential for market and
network externalities has not, to our knowledge, yet been investigated.

In this paper, we seek to fill this gap with an experiment conducted among coffee farmers in
Rwanda. We designed a two-stage randomized controlled trial (RCT) and collected detailed
social network data both pre- and post-intervention to: (i) assess the impact of an agronomy
training program on the structure of social networks, (ii) test whether information shared during
training spreads through existing networks, and (iii) estimate spillovers (positive or negative)
to untrained farmers. We find evidence of endogenous network rewiring in response to the
program, little evidence of knowledge diffusion within social and geographic networks, and
consistent signs of negative spillovers to control farmers. These spillovers likely occurred

through the crowding out of inputs in limited supply: soil inputs (fertilizers and mulch) and

!For recent reviews of this literature, see Suri and Udry (2022) and Suri et al. (2024).



hired labor. We conclude that a naive comparison of treatment and control farmers within a

village would seriously overestimate the program’s benefits.

The program, designed and conducted by a leading international NGO, was an intensive
agronomy training offered to coffee farmers to help them improve their yields. To measure
direct and indirect impacts, the design follows the approach of Crépon et al. (2013). First, we
collected interest in the program from coffee farmers. Second, we randomly varied treatment
concentration at the village level across 27 villages: in approximately one third of the villages,
25% of farmers who subscribed were selected for the treatment group, in another third, 50%, and
in the final third, 75%. Finally, the 1,594 farmers who signed up for the program were randomly
assigned to treatment and control groups according to the proportions assigned in each village.

The selected farmers received monthly instruction modules for the first year, followed by
six refresher modules during the second year. These modules covered topics such as nutrition,
pest and disease management, weed control, mulching, rejuvenation and pruning, shade man-
agement, soil and water conservation, and record keeping. The farmers were organized into
groups based on geographical proximity and picked a lead farmer, whose plot was used for

demonstrations of the agricultural practices.

We collected ten (including four post-treatment) rounds of surveys to measure the impacts
of the training on farmers’ knowledge and adoption of the practices as well as on their yields. To
measure both diffusion effects and any impact on social connections, we collected the names of
farmers to whom the head or spouse in each household talked about growing coffee, before and
after the intervention. We use these data to build complete social network maps of all coffee-
growing households in the subdistrict, covering more than 3,000 households in 29 villages. We
also collected GPS coordinates of plots and households to construct two measures of neighbors:

people farmers live close to and people who have coffee plots next to their own coffee plots.

From the household surveys, we construct an index of knowledge and an index of (self-
reported) adoption of improved agricultural practices. We also measure the use of soil inputs
(mulch and fertilizers), labor inputs, and yields. From the audit data, we construct an index of

adoption of improved agricultural practices, and a measure of leaf health or nutrition.

Our analysis yields five main findings. First, the agronomy training program fostered
new social ties among treatment farmers, particularly in villages with 75% treatment farmers.
Almost all these links came from connections with co-trainees within a training group, without
significantly affecting interactions between treatment and control farmers. Of the 0.336 new
friends gained by treatment farmers — a 28% increase over baseline — 0.319 were from the
same training group. In contrast, the networks of control farmers appear to have been largely

unaffected by the program.

Second, within villages, treatment farmers have greater knowledge (+1.24 SD) and self-
reported adoption of practices (+0.32 SD) than control farmers, but differences in observable
adoption outcomes are small. Tree audits indicate slightly greater adoption of the new practices
among treatment farmers (+0.02 SD) and higher leaf health (+0.032 SD), with no significant

differences in input use (measured by an index of labor days, mulch use, and amount of fertilizer



applied). Yields of treatment farmers are 4.6% higher than those of control farmers though this
effect is only significant at the 10% level. Importantly, these within-village comparisons could
be either an overestimate or an underestimate of the actual treatment effects if the program had
positive or negative spillovers on the control group. Either of those would violate the SUTVA

assumption.

Third, we find no evidence of information diffusion to untrained farmers through pre-
existing networks. We exploit exogenous variation in the number of farmers’ friends who were
assigned to the treatment group (conditional on the total number of friends at baseline) to
examine whether the agronomic practices taught during training sessions diffuse to individuals
with whom treatment farmers reported discussing coffee production at baseline. Using this
variation, we find no evidence of spillovers to friends in the control group in terms of knowledge
or adoption. Strikingly, we find that control farmers connected to more treatment farmers at
baseline have significantly lower input use and lower adoption. Applying a similar strategy for
geographic neighbors, we find no evidence of diffusion of the program’s effects to neighbors

either.

Fourth, we leverage the exogenous variation in village-level treatment shares created by
our experimental design to test whether the concentration of treatment farmers in a village
influences outcomes for control farmers. The results suggest large negative spillovers: control
farmers’ yields are 17% lower in villages with 75% treatment farmers than in 25% villages. The
observed difference between treatment and control farmers on yields is actually negative in
villages with few (25%) treatment farmers, and becomes more positive in villages with more
treatment farmers. Due to the small number of villages, the p-values based on randomization
inference are often larger than 5%, but overall, this suggests that the apparent positive impact of
the program on yields from our within-village analysis is accounted for by lower yields among
control farmers in high treatment intensity villages, rather than by an increase in the yields of

treatment farmers relative to what they would have experienced without the program.

There is suggestive evidence that these apparent perverse effects on yields in the control
group were caused by input crowd-out in villages with higher treatment concentration. For both
soil inputs and hired labor, a consistent pattern emerges: very small and insignificant differences
between treatment and control farmers in low intensity (25%) villages, while in high intensity
(75%) villages a gap appears, driven by decreased input use among control farmers. Further
evidence supporting the labor channel comes from wage impacts. Daily wage rates are higher
in villages with 50% and 75% treatment concentration, with weeding wages, the most affected
category, rising by 3% and 6%, respectively. While the limited number of villages in the study

reduces precision, a regular pattern of results emerges, indicative of higher demand for labor.

Finally, we examine the supply side of the labor market. Treatment farmers work more
days on other households’ coffee farms, with this effect intensifying in villages with higher
treatment densities; in villages with 75% treatment intensity, they work nearly five times as
many days as control farmers. Combined with the program-induced social network changes and

our findings on spillovers in labor and soil input use, all of which are particularly pronounced in



75% villages, this indicates that the inputs crowd-out mechanism may have involved reciprocal
labor arrangements among treatment farmers, potentially related to the sourcing and application

of inputs such as mulch and fertilizers.

The fact that the training program does not increase the yields of treatment farmers but
decreases those of control farmers suggests that training some farmers but not others may
have inadvertently lowered aggregate output by increasing input misallocation. To provide
suggestive evidence of this channel, we present estimates of a coffee production function, with
labor and fertilizer as the main inputs. A fully robust estimate of the production function is
beyond the scope of this paper, but simple descriptive regressions suggest that, consistent with
other estimates (Zhang et al. 2017; Kurniawan et al. 2024), the production function has decreasing
returns to fertilizer, in particular NPK, and labor, and no differences between treatment and
control farmers. Input re-allocation is thus unlikely to have increased efficiency in aggregate

coffee production in this sample.

Taken together, our findings offer a cautionary tale regarding the traditional model of social
learning in agriculture. The agronomy training program shifted the allocation of scarce resources
from control to treatment farmers, perhaps due to the increased concentration of social networks
among treatment farmers. These results suggest that the canonical model, which assumes static
networks and straightforward knowledge diffusion, may not fully capture the complexities of
real-world agricultural settings. The fact that this may have been missed without a village-level
randomization also calls for caution in the evaluation of agricultural extension programs. More
broadly, we conclude that any strategy that involves helping some people and not others may

backfire when markets are imperfect and poorly integrated.

Our study makes two main contributions. First, it is among the few to document endogenous
network responses to a randomized intervention. Notable exceptions include Banerjee et al.
(2021), Hefs et al. (2021), and Derksen and Souza (2024). Banerjee et al. (2021) show that access
to microfinance causes social networks to shrink, with reductions in informal lending and
risk-sharing even among non-borrowers. Similarly, Hefs et al. (2021) document fewer social
links in villages that were randomly assigned to a community-driven development program
in The Gambia, which they attribute to the unequal distribution of program benefits. In an
experiment in Malawian schools, Derksen and Souza (2024) find that randomizing access to
an information resource (Wikipedia) significantly reshaped social networks, with most of the
new links formed between treatment and control pairs. In contrast, our findings reveal that the
agronomy training program primarily increased social ties among treatment farmers, almost
exclusively within their training groups, with no significant increase in connections between
treatment and control farmers. While Derksen and Souza (2024) attribute the formation of
new links to information-sharing, this explanation seems less relevant in our context. Instead,
the strengthening of social ties among co-trainees likely facilitated resource sharing, while the

control group was deprived of any benefits of the training program.

Second, to our knowledge, this study is the first to document (negative) market spillovers

from an agricultural training intervention. Our finding that limited access to inputs may



have hindered farmers from fully adopting the trained agronomic practices or experiencing
positive spillovers aligns with the results of Jones et al. (2022), who show that labor constraints
impeded the adoption of another productivity-enhancing technology, irrigation, in the context
of Rwandan agriculture. In a different context, Crépon et al. (2013) demonstrate that job-
training programs can increase employment for participants but displace non-participants by
intensifying competition in the French labor market. Finally, Hef3 et al. (2021) show how the
unequal distribution of benefits from a development program can reduce economic interactions
within networks (likely driven by elite capture). Taken together, these findings and our own
highlight that, in settings with imperfect markets or unequal access to resources, development

interventions can inadvertently exacerbate inequalities or harm non-participants.

2 Background and Program Description

2.1 Context: Rural Rwanda

Coffee is Rwanda’s most important export crop, contributing about US$62 million in export
earnings per year (NISR 2019). Production is dominated by 500,000 smallholder producers
(OCIR-Café 2008). Intensifying coffee production and increasing the sector’s productivity were
key targets of the government’s strategic plan for boosting agricultural development. Rwanda
has ideal growing conditions for coffee, but agronomic practices were poor. For example, the
national rate of chemical fertilizer consumption per cultivated hectare was 4KG in 2009, below
the sub-Saharan African average of 9 to 11 KG per hectare (ROR 2009).

2.2 The Intervention: Agronomy Training Program

The context for our study is a large agronomy training program for small-scale coffee farmers,
aimed at improving the health of coffee trees and ultimately yields. TechnoServe, an international
agri-business NGO, conducted agricultural training programs in several coffee growing regions
in East Africa between 2010 and 2015. This study focuses on the agronomy program in one
sub-district in Southern Rwanda, run between February 2010 and October 2011.

The program focused on improving tree health and productivity through a series of labor-
intensive practices. These included a balanced nutritional program using both organic and
inorganic additives, such as homemade compost and a chemical fertilizer containing nitrogen,
phosphorus, and potassium (NPK 22-12-6). It also involved integrated pest management
and effective weed control through hand weeding and mulch application, with mulching
additionally serving to maintain moisture and reduce soil erosion. No input subsidies were
provided; instead, farmers were trained to apply these practices independently, without external
support. Appendix A provides a more detailed description of the practices covered and the

expected impacts as outlined by the NGO’s agronomists.

The training sessions took place once a month for eleven months in the first year, and

TechnoServe delivered an additional six review sessions the following year. The trainings



were conducted with groups of approximately thirty farmers and took place on the plot of a
designated “focal farmer”. The focal farmers were chosen partly because of the accessibility of
their coffee plot but were also meant to be respected members of the local community and have

an enthusiasm for learning.

The training itself was conducted by a Farmer Trainer (there were four in total), each of
whom supported approximately 10 of these focal farmer groups. These farmer trainers received
monthly training from an agronomist for each module, together with lesson plans and activities.
They delivered the training to each group on a plot of approximately forty trees (the focal

farmer’s demonstration plot), with all practical work done by the farmers in the training group.

The sub-district in which our study is located comprises 29 villages. Once TechnoServe
decided to train in this sub-district, they advertised the program. The farmer trainers were
then assigned to visit the villages over a week to register the interested farmers, visiting each
village at least twice. Farmers who did not have coffee farms were not allowed to register for
the program and only one person per household was allowed to register. In total, 1594 farmers
registered interest in the program. Although the program was advertised in all 29 villages in the

sub-district, only farmers from 27 of those villages registered to join the program.

3 Experimental Design and Data

3.1 Experimental Design

The 1594 farmers who registered for the program were randomized into a treatment and a
control group in two steps. First, we randomly varied treatment concentration at the village
level: in approximately one third of villages, 25% of farmers who signed up were assigned to
treatment, in another third, 50%, and in the final third, 75%. In the second step, the 1,594 farmers
who signed up for the program were allocated to treatment and control following the assigned
proportions in each village. 855 farmers were assigned to the treatment group to receive the

agronomy training and 739 farmers were assigned to the control.

Farmers were assigned to training groups in their village, or in the village nearest to their
location if the number of treatment farmers in their village was less than the minimum size for
a training group. In larger villages, treatment farmers were split into two or three groups for
training, based on geographical convenience. This split was not randomized. Once assigned to
a training group, farmers were expected to remain in the same group throughout the duration

of the program.

Attendance rates of each training session are reported in Appendix Table A6, categorized by
village treatment concentration group. During the first year of training, farmers in the treatment
group attended an average of around 8 out of the 11 meetings (an attendance rate of about
73%). Overall, attendance was slightly higher in villages with a greater proportion of farmers
offered training: the average attendance rate was 69% in 25% concentration villages, 72% in 50%

concentration villages, and 74% in 75% concentration villages.



3.2 Data

We designed extensive data collection activities over the course of almost three years. In total,
we collected ten rounds of survey data, in addition to a pre-program census. As we describe
in detail in Appendix B, different modules were asked in different survey waves, and in some
rounds we surveyed not just treatment and control households, but all the coffee farmers in the
29 villages of the sub-district in which our sample is located. We collected data on these farmers
to be able to map full social networks for the coffee farmers in the RCT sample. However,
because the non-RCT sample is not a random subset of all the coffee farmers in these villages,

we omit them from our analysis of the diffusion of results.

In addition to survey data, our enumerators also audited the coffee plots. We were concerned
that asking farmers several times about their adoption patterns may result in them erroneously
reporting positive adoption simply because they were asked about it repeatedly. For the audits,
TechnoServe agronomists trained our field staff to recognize the relevant set of agronomy
practices. The field staff were then given an algorithm of which trees (they were to pick five) to
inspect on each plot. These audits only cover tree health and observable practices and were not

designed to directly observe or measure fertilizer or labor use, so they cannot speak to these.

We use this data to construct the following indices of correlated outcomes:

1. Knowledge: this index is the simple average of fifteen standardized measures of what
a farmer knows. It includes whether the farmer knows each of the ten methods used
to control insects, pests and other diseases and how they should be used and whether
the farmer knows each of five different fertilizers that should be used for optimal tree

nutrition.

2. Self-reported adoption: this index is the mean of nine standardized measures of adoption
of best agronomic practices. Since these are collected using survey questions, this index
measures self-reported as opposed to observed adoption. It includes whether the farmer
adopted each of eight methods used to control insects, pests and other diseases, and
whether the farmer kept a compost heap. We do not include the indicator of whether
farmers kept record books here because the farmer trainers checked these at every session,
so they were well kept throughout the study period. Record-keeping is also not an

agronomic practice as such, and thus does not have a counterpart in the tree audits data.

3. Adoption, audits: this index is the mean of eight standardized measures of what the
farmer adopts as per the observed tree audits. This index includes two measures of inte-
grated pest management (whether old and dry berries are removed, whether the bark is
smoothed or banded to control white borer), whether the tree canopy was mulched,
whether the dripline was weeded, and four measures of pruning (removal of dead
branches, removal of branches touching the ground, removal of crossing branches, removal

of unwanted suckers).



4. Leaf health, audits: this index is the mean of three standardized measures of leaf health
from the tree audits. It includes: whether there are signs of the leaves yellowing, whether
the leaves are curling and whether there are signs of the leaves rusting. We changed the
sign of the variable so that any increase in the index would indicate an improvement in

tree nutrition (i.e. a decrease in the prevalence of leaf defects).

5. Inputs: this index is the mean of five standardized measures of input use. These are total
household labor days, total non-household (paid and unpaid) labor days, KGs of compost,
KGs of NPK, and the share of coffee plots on which the household applied mulch. This is

based entirely on farmer self-reports.

To measure social networks comprehensively, we collected the names of farmers to whom
the head or spouse in each household talked about growing coffee - “coffee friends” - before and
after the intervention. We use these data to build complete social network maps of all coffee-
growing households in the sub-district, covering more than 3,000 households in 29 villages. We
also collected GPS coordinates of plots and households to construct two measures of neighbors:
people farmers live close to and people who have coffee plots next to their own coffee plots. The
resulting social networks include a mix of farmers in the treatment group, control group, and

those who were not interested in participating in the program.

4 Results

4.1 Program Impacts on Social Networks

This section examines the impact of the training on farmers’ reported social network links to
other farmers with whom they discuss coffee. We analyze the total number of “coffee friends”
reported by each farmer, both across different geographical areas (within our outside the farmer’s
village) and for friends with different treatment statuses. The effects could a priori follow several
directions; treatment farmers might have formed new friendships during the training sessions
or found it more beneficial to interact with other treatment farmers, potentially reducing their
interactions with control farmers. Such a shift could have limited the latter’s opportunities for
learning and risk-sharing. Conversely, control farmers might have sought out treatment farmers

(Comola and Prina 2021) and created new friendships to gain information.

Table 1 displays the results. Panel A, which reports effects on total friends, shows that
treatment households gain 0.336 friends who were also chosen for training (a 28% increase over
baseline), far more than their (insignificant) increase in friendships with control group members.
In other words, the program increases the share of the average treatment household’s social
network that is also part of the treatment group. By contrast, control group households gain no
new friends from either the treatment or control groups. Both treatment and control households
report fewer friends outside the group of farmers who signed up for the training (“non-sample

friends”).



If social networks change due to the training groups, the largest impact will be on friends
from the same village - we examine this in Panel B. Treatment households indeed gain most
friends within village (0.360), and in Panel D we see that virtually all (0.319) of this increase in
within-village treatment friends can be attributed to additional friends from the same training
group. Appendix Table A8 further reveals that the formation of these new links among treat-
ment households is especially pronounced in villages with a higher treatment concentration,

particularly those where 75% of the sample households were assigned to treatment.

The control group also increases treatment friends within a village relative to baseline by
0.0988 friends. However, the control group gains a similar number (0.0893) of control friends
within village as well. Thus it appears that farmers who signed up for the training (both
treatment and control), a group likely more focused on coffee farming, strengthened within-
village links among themselves over time. This comes at the cost of decreasing friendships
outside the village: Panel C shows that both treatment and control households dropped outside-
village links, with the strongest effects being on contacts with non-sample households outside
the village. This effect is statistically the same between treatment and control households, and
independent of the fraction of treatment households within a village (see Appendix Table AS),
indicating that it is likely due to a time trend rather than a program effect.

In sum, the social impact of the training appears to have been primarily to create new
friendships among farmers attending the same training meetings. There is no evidence that the
control group actively formed new connections with treatment individuals to benefit from their

increased coffee knowledge.

4.2 Within-Village Treatment Effects and Social Diffusion

Our experiment’s central hypothesis is grounded in a canonical model of social learning, which
hinges on two key elements: treatment effects and social diffusion. We test both elements in
turn and present the results in Table 2. Panel A reports within-village estimates of treatment
effects, defined as the mean treatment-control difference in outcomes within villages, obtained

by running the following specification:

Yije = v + 0¢ + BTreat;; + € (1)

where y;;; is the outcome for household i in village j in survey round ¢, Treat;; is a dummy
variable for whether the household was randomly assigned to the agronomy training program,
v, are a set of village fixed effects and d; are survey round fixed effects.> We use OLS regressions
for all indexed outcomes and a Poisson regression for the yields outcome, clustering standard
errors at the household level. Throughout the paper, we use Poisson regressions for all outcomes
with a non-negligible share of zeros and a long right tail, as this approach aligns with the
distributional properties of such variables. As can be seen in Appendix Table Al, we find

balance between treatment and control households across a wide variety of baseline outcomes

2We use all survey rounds collected after June 2011 as our endline, namely rounds 6-9 (see Appendix B for details
on the module coverage of each survey round).
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(the p-value on the joint F-test is 0.999). Appendix Table A7 shows that we had 3% of attrition in
our sample between baseline and the final endline, with no evidence of differential attrition by

treatment status. To increase precision, we control for baseline outcomes selected by post-double
selection LASSO (Belloni et al. 2014).

This specification compares treatment and control farmers within the same village. For 3 to
be interpreted as a treatment effect, we would need to assume SUTVA, or the lack of any impact
on control households. This would be invalid if information did indeed diffuse to the control
group (in which case the treatment effect on knowledge would be underestimated), or if there
were negative externalities on the control for some outcomes (in which case the treatment effect

would be overestimated). We examine this assumption in detail below.

Panel A of Table 2 reports the treatment effects, 3, for measures of knowledge and adoption
of agronomic practices, input use, and yields. The first two columns report significant differences
between treatment and control farmers on knowledge and self-reported adoption of the practices:
treatment farmers have a 1.24 standard deviation (henceforth SD) higher knowledge index and

a 0.32 SD higher self-reported adoption index than control farmers within their village.

The tree audits data are an important complement to the self-reports, as they allow us to test
whether the treatment group’s higher reported adoption is actually visible in practice (column 3),
and whether it translates into noticeably healthier-looking trees (column 4). Column 3 shows a
small but significant within-village treatment effect on the adoption index constructed from the
tree audits data (+0.02 SD). Column 4 of Table 2 suggests that the trees of treatment farmers are
better nourished: the audits data reveal a 0.032 SD lower index of tree disease (yellow, curling,

or rusting leaves) among treatment farmers.

Column 5 shows within-village treatment effects on the input quantities index. While
treatment farmers report using slightly more inputs (Iabor, mulch, and fertilizer) on their coffee
plots, with an increase of 0.034 SD, this effect is not statistically significant. Column 6 shows that
yields are approximately 4.6% higher in the treatment group compared to the control group,
although this estimate is only significant at the 10% level.

Taken together, the results in Panel A of Table 2 indicate that while the treatment led to sig-
nificantly higher knowledge and self-reported adoption of agronomic practices, the differences
in observable adoption outcomes are much smaller, with no significant differences in input use

and a marginally significant effect on yields.3

In Panel B of Table 2, we analyze the diffusion of information through treatment farmers’
networks as measured prior to the intervention. Our focus is on two types of networks: base-
line “coffee friends” and neighbors. This section emphasizes baseline friends, but the results
for diffusion through neighbors (household and plot) are broadly consistent and reported in
Appendix Table A13. The identification strategy leverages exogenous variation in the number
of treatment friends, controlling for the total number of RCT-sample friends (i.e. who entered

the treatment lottery). We interact these network variables with the household’s own treatment

3Appendix Table A9, which reports the estimates of the same regressions as in Panel A but without controlling
for baseline covariates, shows that the coefficients are very similar for all outcomes, but not significant.
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status to examine whether the effects differ between the control and treatment groups. Panel B

therefore reports the results of the following specification:

Yijt = o+ PoNumTreatFriends;j + doNumFriends;;
+ fiTreat;j x NumTreatFriends;j + 61Treat;; x NumFriends;; +v; + 0t + €5t (2)

where y;;; is the outcome for household i in village j in survey round t, NumT'reat F'riends;;
is the number of treatment friends of household ¢ at baseline, and NumFriends;; is their total
number of baseline RCT-sample friends. As in Panel A, we cluster standard errors at the
household level and we control for baseline outcomes selected by post-double selection LASSO;

Appendix Table A9 shows the results of running the regression without controls.

The estimates in columns 1 and 2 report the diffusion effect of treatment friends on knowl-
edge and self-reported adoption. The coefficient estimate in the second row of column 1 indicates
that there is no diffusion of knowledge about agronomic practices to the control group. Consis-
tent with this finding, column 2 (self-reported adoption) shows no spillover of actual practices
to the control group, which is further corroborated by the absence of effects on leaf health and
yields in columns 4 and 6, respectively. Additional results reported in Appendix Table A10
also support the absence of knowledge dissemination from the treatment to the control group,
using the control farmers” assessments of whether they learned something new about each of

the trained practices from a treatment farmer.

The significantly negative coefficients in the second row of columns 3 and 5 are surprising.
These indicate that for an average farmer in the control group, having one more friend in the
treatment group decreases the tree audit outcomes index by 0.057 SD and the inputs index by
0.042 SD.* Appendix Table A11, which disaggregates the audited adoption index by component,
shows that control farmers with more treatment friends have fewer mulched and pruned trees
and less weeded plots. Similarly, Appendix Table A12 indicates that these control farmers use
less mulch (although this result is only significant at the 10% level), apply less chemical fertilizer
(NPK), and hire less labor. The fact that control farmers apply fewer best practices (or apply
them less intensively) and use fewer inputs if they have more links to treatment farmers at
baseline suggests that the program may have had negative spillovers on control farmers. Our

later analyses show further evidence of this mechanism at the village level.

In the fourth row of Panel B, we interact the number of treatment friends with household
treatment status. The estimates suggest that any positive diffusion through baseline networks
is confined to links within the treatment group itself. The coefficient on the interaction with
treatment is positive and statistically significant for leaf health: column 4 shows that, for the
average treatment farmer, each additional treatment friend leads to a 0.034 SD increase in the
leaf health index. In contrast, the positive interaction between treatment status and the number

of treatment friends merely offsets the negative effect of treatment friends on audited program

4Appendix Table A13, which shows similar results on neighbors of treatment farmers to Table 2, Panel B, also
include negative effects on the audits adoption index.
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adoption (column 3) and input use (column 5). Finally, we observe no effect of additional

treatment friends on yields for the treatment group (column 6).

In summary, Table 2 highlights two key takeaways. First, we find smaller treatment effects on
observed adoption compared to self-reported adoption in our basic within-village specification,
with no significant effects on input use or yields at conventional levels. Second, we find no
evidence of diffusion of the taught practices through baseline social networks in the control
group. This lack of diffusion may stem from the effects not being large enough to spread, or
alternatively, information sharing about the taught practices may have been more likely to occur
within the newly formed network of co-trainees, as the program increased social links amongst
them (Table 1) but not with control farmers. Finally, the negative network effects on inputs
and audited adoption, which are present within the control group but much weaker among
treatment farmers, suggest the potential for negative spillovers mediated by increased social

network connections between trained individuals.” We now turn to this question.

4.3 Spillovers by Village Treatment Concentration

Next, we exploit the fact that our experimental design also generated exogenous variation in
the village share of farmers assigned to treatment. We use this to examine heterogeneity in
program impacts by village treatment concentration. In Table 3, we regress the same outcomes
as in Table 2 on treatment status, indicators for 50% and 75% treatment concentration villages
respectively, and their interaction with treatment status, controlling for survey round fixed
effects. Throughout this section, we use OLS regressions for indexed and binary outcomes, and
Poisson regressions for outcomes capturing quantities (yields in Table 3, fertilizer quantities
in Table 4, and labor days in Table 5), clustering standard errors at the village level. Given
the small number of villages, we also report p-values for the exact null hypothesis, using a
randomization inference algorithm that takes the experimental design into account.® To address
any baseline imbalances across village groups (Appendix Tables A2-A5), we include baseline

covariates selected using post-double selection LASSO in all regressions.

Panel A of Table 3 shows the aggregate effects of treatment concentration, while Panel B
shows the interactions of the village-level concentrations with treatment status. At the bottom of
each panel, we report the results of several hypothesis tests, including comparisons of coefficients
for the 50% and 75% treatment concentration indicators and their interactions with treatment,
as well as tests of treatment effects within each village group. Generally, our estimates are
not precise enough to statistically distinguish between the effects of 50% and 75% treatment
concentration; hence, we highlight in the text only the p-values for cases where the null of equal

impacts is rejected.

>To avoid repetition, we use “trained” and “treatment” interchangeably throughout the text. “Trained” refers to
farmers selected for the training, regardless of attendance.

%Here, randomization inference involves 1,000 permutations of the sample. First, village-level treatment intensi-
ties are shuffled across villages, and then treatment-control status is assigned to households based on the re-assigned
village proportions. Randomization inference is then conducted using the ritest Stata command (Hef3 2017).

13



The effects reported in Panel A represent the net impacts of the program at the village
level. We find little evidence of aggregate improvements in audited adoption or yields, despite
increased knowledge and self-reported adoption of farming techniques in higher-intensity
villages. The knowledge index increases significantly with the share of the village assigned to
treatment, consistent with the findings in Table 2, Panel A, where treatment effects on knowledge
are evident, and the higher share of treatment households in 75% villages naturally leads to
a larger effect. Effects on self-reported adoption are positive for both 50% and 75% treatment
shares, with the 75% concentration showing a larger magnitude (the randomization inference

p-value of the test of equal effects is 0.19).

We do not see a monotonic relationship between effect sizes and village treatment shares
for any of the other outcomes in Panel A. Importantly, the aggregate impact of treating 50% or
75% of farmers on yields is negative and insignificant (column 6), despite the larger number of

farmers enrolled in the training in higher-intensity villages.

Panel B decomposes these net aggregate effects by household treatment status. The top
row of columns 1 and 2 confirms the existence of “pure” treatment effects (i.e., in villages least
confounded by spillovers) on knowledge and self-reported adoption. Column 1 also shows a
larger gap in knowledge between treatment and control groups in villages with 75% treatment
concentration villages, and columns 2 and 3 show that the treatment-control gaps in adoption
(both self-reported and as measured by the audits index) are larger in 75% and 50% villages
compared to 25% villages, although these differences are not significant. These results are

consistent with the absence of positive knowledge spillovers to the control group.

While the average within-village treatment effects reported in columns 4-6 of Table 2, Panel
A are all positive, the estimates in columns 4-6 of Panel B of Table 3 suggest that these results are
driven by negative input and yield spillover effects on the control group in villages with higher
treatment intensity. In these columns, we see a triple pattern of results that is consistent across
virtually all subsequent outcomes related to input use, tree health, and yields. First, we find
no positive treatment effects in 25% concentration villages in the top row. The yield estimate
in column 6 is even negative, though it does not survive randomization inference (p=0.243).
Second, the exact opposite is true in 75% treatment villages: in these areas, treatment households
use significantly (p=0.02) more inputs and have significantly higher yields (p=0.08).” Third,
there is no significant difference between treatment households in 75% villages and control
households in 25% villages.® Thus the positive estimated effects in high-intensity villages
seem more likely to be due to negative spillovers among the control group, rather than (for
instance) increasing returns to training among treatment farmers. This is further supported by
the estimates on the audited adoption index, which follow a similar pattern (column 3). These
results are consistent with the individual-level spillover regressions, where we found negative
(and significant) spillovers on program adoption and input use of control farmers who had more

friends in the treatment group.

"The “p: Treatment + Treatment x 75% T=0" row reports the test of this hypothesis.
8The “p: Treatment + 75% T + Treatment x 75% T=0" row reports the test of this hypothesis.
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Appendix Table Al14, which disaggregates the estimates in Table 3 for the audits and leaf
health indices, shows that spillovers are most pronounced for mulching, weeding, and yellowing
of leaves. For example, in villages with 75% treatment intensity, the village indicator coefficients
for mulching and weeding are negative for the control group, while the interaction terms
with treatment are highly positive, with p-values of 0.010 for mulching and 0.034 for weeding,
respectively. Additionally, yellowing of leaves, an objective measure of tree nutrition, is worse
among the control group in 75% treatment villages (p=0.070), while the interaction term with
treatment is highly positive (p=0.095). These outcomes reflect treatment-control gaps in the
adoption of practices that require applying soil inputs (mulch and fertilizer) and which are

labor-intensive.

Why might higher treatment densities result in reduced input use, poorer leaf health, and
lower yields for control farmers? One explanation is that increased demand for inputs from
treatment farmers may have crowded out access for control farmers due to limited supply.
To better understand the program’s effects on input use, we then evaluate spillovers in soil
inputs (mulch and fertilizers) and labor separately. The results of these additional analyses are

presented in Tables 4 and 5.

Soil Inputs. Table 4 reports the results of the same specification used in Table 3, but focusing
on outcomes related to the use of soil inputs: mulch, compost and NPK. Column 1 reports
results on the index of standardized outcomes, while columns 2-7 report effects on each outcome

separately.

Panel A indicates no aggregate program impacts on input use across varying village treat-
ment intensities. In contrast, Panel B demonstrates the exact same pattern of results consistent
with negative spillovers as in columns 3-6 of Table 3. Treatment effects are insignificant in 25%
intensity villages, yet become larger and sometimes significant in villages with 75% intensity.
Again, these results seem driven by decreased input use among control farmers in villages

where many of their peers were trained.

Column 1 shows this pattern for the index of soil input use, where treatment effects in 75%
villages are statistically significant (p=0.00). The treatment-control differences in 75% villages
are also larger than in 50% villages (p=0.08 for the test of equal interactions with treatment).
Breaking this down by components of the index, we find that results are strongest in mulch
application (column 2) and the quantities of compost and NPK used (columns 5 and 7) in villages
with higher treatment concentrations, particularly in the 75% group. For mulch, measured only
at the extensive margin, we observe negative coefficients for the 50% and 75% treatment intensity
indicators, alongside positive coefficients for their interactions with treatment (p=0.061 for the
75% interaction). This finding aligns with the audit index components results in Appendix
Table A14, which show significantly more mulching under tree canopies in the treatment group

compared to the control in 75% villages.

Columns 3-7 focus on compost and fertilizers. Columns 3, 4, and 6 present the results
of OLS regressions on extensive margin outcomes of fertilizer use (columns 3 and 6) and an

audit-based indicator of adherence to agronomy program standards (column 4). Columns 5 and
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7 report the results of Poisson regressions on the total quantities of compost and NPK applied,
respectively. For compost, there is no evidence of differential effects by village group on the
first two outcomes (columns 3 and 4). However, column 5 reveals a pattern similar to that for
mulch, with increasing gaps in intensive margin compost use between treatment and control
groups as the treatment share rises, and the treatment effect becomes statistically significant in
75% villages (p=0.05).

Columns 6 and 7 examine NPK use. Similarly to compost, we find no evidence of differential
effects for NPK at the extensive margin (column 6). However, for intensive margin use, column
7 shows a large treatment-control gap in total kilograms of NPK applied in villages with 75%
treatment concentration. Here, the treatment effect in 75% villages is close to significant at

conventional levels (p=0.06).

Labor Use. The next input we examine is labor. Many of the trained practices are labor-
intensive, and since farmers grow coffee alongside other food crops, the demands on household
members’ time can quickly accumulate. Over two-thirds of the households in our RCT sample
hired labor to assist with at least some coffee-related tasks during the study period. Evidence
from Jones et al. (2022) shows that labor constraints significantly restrict the adoption of irrigation
in Rwanda, highlighting labor market frictions as another potential source of negative spillovers
on the control group in villages with higher treatment intensities. To examine whether labor
is being crowded out in these villages, we run Poisson regressions on total labor days, first
pooling across all tasks (column 1) and then separately for the most labor-intensive activities in
our data - mulching, fertilizing, weeding, and harvesting - and all other tasks. Additionally, we
distinguish between household and non-household labor, the latter encompassing both paid

and unpaid, hired labor.’

The results are presented in Table 5. Panel A shows variation in the effects of 50% and
75% village shares across tasks and labor types. While some estimates are significant based
on conventional standard errors, none remain so under the more conservative randomization
inference. Still, there is suggestive evidence of increased hired labor days in 75% villages

(column 2), particularly for mulching, fertilizing, and other tasks (columns 4, 6, and 12).

Once again, negative spillovers appear in Panel B, most prominently with the total days
of non-household labor (column 2), showing the same pattern of results found in yields, leaf
health, and soil inputs. There is essentially no treatment effect in 25% intensity villages, yet in
75% villages, trained farmers hire more labor than control farmers (though this is marginally sig-
nificant at p=0.12). And again, this result seems driven by a negative effect on the control group.
The opposite effect is observable for household labor (column 1), which control households

appear to use more as the treatment intensity of the village increases.

Examining total days separately by task shows that the 75% concentration effects on hired
labor seem to be driven by mulching (column 4), fertilizing (column 6) and harvesting (col-

umn 10), although the effects on mulching and fertilizing are not significant. The effects on

“Most non-household labor was compensated through wages or piece-rate payments; however, households also
engaged unpaid labor for certain tasks, often providing non-monetary remuneration such as meals. In our endline
survey rounds, 24.8% of non-household labor days in our RCT sample involved unpaid labor.
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weeding labor are more mixed; here the impact on non-household hired labor use is largest in
25% concentration villages, though still positive in the 75% group. We find clear evidence of
treatment-control gaps in the number of hired labor days for harvesting, the most labor-intensive

task, in higher-intensity villages, with a highly significant and large effect in 75% villages.

Since harvesting labor has a nearly one-to-one relationship with harvested quantities, it is
not surprising that the yield results observed in Table 3, column 6, reappear in our analysis of
harvest labor. Within 25% concentration villages, treatment households use (insignificantly)
less labor than controls. However, in 75% concentration villages, treatment households employ
significantly more labor (p=0.01). This effect is driven by fewer workers hired by control
households (p=0.047). In contrast, the effects on household labor are much smaller and even
reversed in 75% villages (albeit insignificant), suggesting that the program effects operate
through labor market transactions between households, rather than simply reducing labor

demand.

Figure 1 illustrates the differences in the use of non-household and household labor between
treatment and control groups in 75% villages, where the labor market effects are strongest. We
observe that treatment farms employ more non-household labor than control farms (Panel B)
but show either the opposite trend or no difference in household labor, with the exception of
mulching (Panel A). The key takeaway is that treatment farms in higher-intensity treatment
villages shift towards hiring more labor, potentially crowding out labor inputs for control
households. These differences are partially compensated by offsetting changes in household

labor, limiting the effects on the total amount of labor used.

Wages. A natural test of the input crowd-out hypothesis is to examine whether increased
demand for inputs causes treatment farmers to bid up input prices. We investigate this in the
next table, focusing on wages paid to hired labor, as price data for soil inputs are unavailable.
Compost and mulch are primarily home-produced or collected by farmers, while NPK was

initially provided free by the government.”

Table 6 presents the results of five OLS regressions on daily wage rates at the household-task
level. In column 1, we stack observations for all tasks for which at least one household reported
hiring external labor at a daily rate, trimming the top 1% to remove implausibly high values. In
columns 2—4, the outcome is household-level daily wages paid per survey round for the four
most labor-intensive tasks examined in Table 5. Column 1 includes controls for round and task

fixed effects, while columns 2—4 control for round fixed effects.

The broad takeaway from this table is that the daily wage rates are higher in villages with
50% and 75% treatment concentration compared to 25% villages. Weeding, the task for which
households hire the most external labor (column 4), and the stacked regression estimates (column
1) provide the most compelling evidence of higher daily wages in villages with greater treatment

concentration.

During our study, however, the government phased out its direct provision of NPK due to logistical challenges,
transitioning to a system where coffee washing stations facilitated input provision. Under this new system, NPK was
no longer free and was typically offered on credit, leading to a sharp decline in its use between 2011 and 2012 (from
298 reported users in our RCT sample in 2011 to 126 users in 2012).

17



Column 1 shows that daily wage rates are, on average, 22.19 RWF higher in 50% villages
and 32.48 RWF higher in 75% villages compared to 25% villages. These correspond to a 3.4%
and 4.9% increase relative to the mean daily rate in 25% villages, respectively. The 75% village
effect is robust to randomization inference (p=0.034). Column 4 shows that daily wage rates
for weeding are, on average, 19.41 RWF higher in 50% villages and 40.71 RWF higher in 75%
villages (p=0.028), corresponding to a 3% and 6% increase relative to the mean in 25% villages.

The effects of treatment intensities on daily wage rates for mulching (column 2), fertilizing
(column 3), and harvesting (column 5) are less conclusive, although most coefficient estimates

are positive, except for the 50% intensity effect for harvesting.

These wage patterns corroborate the idea that the program increased demand for hired
labor. Together with the results in Tables 4 and 5, they support the interpretation that the
negative spillovers shown in Table 3 stem from input crowd-out in the control group in villages
with higher treatment concentration. Even without statistical significance for some results, the
consistent direction of effects across multiple outcomes — soil inputs, labor days, and wages —

reinforces our confidence in this interpretation.

Labor Supply. Finally, we examine the supply side of the labor market using data on the
number of days household members worked outside their own household. Table 7 presents
village-level regression results for three outcomes: total days worked (column 1), days worked

on other farmers’ coffee plots (column 2), and days spent on non-coffee labor (column 3).

Panel A indicates that households in higher-intensity villages spend more time working
outside their own households overall. This increase seems to be driven by non-coffee labor,
as the estimates for coffee labor in column 2 are negative, while those for other types of labor
in column 3 are positive. Breaking these results down by treatment status in Panel B reveals
intriguing patterns in coffee labor: treatment farmers are more likely to work on other farmers’
coffee plots in 25% villages (though this effect is not statistically significant), and this tendency
becomes stronger with higher treatment intensity (column 2, Panel B, p=0.16). In contrast, the
control group spends considerably less time working on other farmers’ coffee plots (p=0.113) in

higher-intensity villages, which likely explains the overall negative effects in Panel A.

These findings suggest that trained farmers may be more inclined to hire one another over
members of the control group. This pattern could arise from program-induced changes in social
networks (Table 1), particularly in 75% villages, where new connections between co-trainees are
most prevalent (Appendix Table A8). The sharing of resources among treatment farmers may
also contribute to this dynamic, which aligns with our finding of spillovers in input use (Table 4).
For example, farmers might engage in reciprocal labor arrangements or assist one another with
tasks such as sourcing inputs (e.g., mulch or compost) or performing labor-intensive activities.
Although our labor supply data do not allow us to disaggregate the effects by specific tasks to
further isolate these mechanisms, these results suggest that resource constraints might interact

with social network effects to shape program outcomes.
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5 Agricultural Production Function Estimation

The effects of village-level treatment concentrations in Tables 3-5 suggest a reallocation of inputs
from control to treatment farmers in villages with higher treatment concentration. The impact of
these transfers on aggregate output and efficiency is a priori ambiguous. If the treatment causes
an increase in productivity among the treatment farmers, then such a reallocation would increase
efficiency by assigning more inputs to the farmers who can use them most productively. Similarly,
if the coffee production function has locally increasing returns to inputs, then concentrating
those inputs in a selected group would also increase aggregate output. Conversely, if production
functions are concave in inputs and training has no productivity effect, then concentrating more
inputs among the treatment may increase misallocation. To understand which scenario is most
likely, we estimate the parameters of the coffee cherry production function. Since we have
few priors about its functional form, we approximate the production function using a flexible
polynomial in labor, capital, and number of trees. Since we are also agnostic about the ways in
which training might have altered farmers” production functions, we allow its parameters to
have two possible values: one for the control and pre-training treatment farmers, and another

for the post-training farmers (indexed by ¢ in the equation below):

Yit = oy + Bl reesy + BgtTreeS?t + B3¢ Labory + ﬁ4tLabori2t
+ B5s: NPK;; + BﬁtNPKiQt + BuTreesgLabory + BsilreesiyN P Ky 3)
+ ﬁgtLabO’l“itNPKit + ﬁlOtLabOT‘Z’jNPKitTT‘SESit + €3t

The estimation of this production function is complicated because the assumptions underly-
ing many structural approaches to productivity estimation are unlikely to be satisfied. As Shenoy
(2021) shows, when producers are subject to binding constraints on input use, the single-index
assumption upon which control-function approaches to production function estimation rely is
no longer satisfied. For Rwandan coffee farmers, who are subject to both financing constraints
and limited availability of fertilizer, production functions assuming unlimited access to inputs
are likely mis-specified. Furthermore, there is insufficient correlation in input use across seasons
to employ a dynamic panel approach in which past input use would serve as an instrument for

future input choices. We therefore estimate the production function via OLS.

Results of the production function estimation are displayed in Figure 2, with sub-figure 2a
showing the association between NPK and output, and sub-figure 2b showing the association
between labor and output. In both cases, the relationship is concave. For NPK, this is consistent
with the findings of agronomic experiments on the effects of fertilizer on coffee yields (Zhang
et al. 2017; Kurniawan et al. 2024). The slope of the NPK production function appears somewhat
steeper for low amounts of fertilizer; however an F-test of the null hypothesis that the slopes are
equal for treatment/control groups fails to reject (p=0.32). The magnitude of predicted output
is very similar across treatment groups, suggesting that training had little effect on overall

productivity, consistent with the lack of evidence of significant adoption of new practices.
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Taken together, the evidence from the coffee cherry production function does not support
the hypothesis that the reallocation of inputs across farmers increased aggregate productivity.

Rather, given the declining returns, it seems that it may have exacerbated misallocation.

6 Conclusions

This paper evaluates a common strategy to diffuse agricultural innovation and knowledge: a
“cascade” model where some farmers get trained first, with the hope that the innovation will
diffuse among their social contacts. Our results suggest that, at least in our context in Rwanda,

this strategy is not particularly effective.

First, the hypothesized mechanism for information diffusion is undermined by the finding
that the program increased social links only between co-trainees in the treatment group. While
this does not imply that treatment farmers ceased interacting with the control group entirely, it is
likely that they focused their “chats over coffee” — discussions about farming practices — with
the other farmers with whom they attended the trainings. Second, although knowledge of best
agronomic practices increased among treatment farmers, we find no evidence that treatment
farmers shared their new knowledge with control households they were socially connected to
or lived close to. Third, the consistent evidence that control households experienced negative
spillovers when they were socially connected to more treatment households, as well as in
high treatment concentration areas, suggests that much of the 4.6% higher yields of treatment
farmers compared to the control group that we observe at endline is the result of these negative

spillovers, rather than a net gain for the treatment farmers.

One possible interpretation of these results is that the treatment group did not experience
sufficiently high returns to the taught practices to induce them to encourage control farmers
in their information networks to adopt these techniques (Magnan et al. 2015). Indeed, the
small effect we find from the tree audits on treatment farmers” own adoption suggests that they

probably did not undertake enough of these new practices to see a meaningful difference.

Another possibility is that information provision alone was not sufficient to unleash the
yield-boosting potential of these agronomic practices. The negative spillovers we find on control
farmers appear to stem from input crowd-out in a context of limited supply, as seen in lower
soil input use, reduced reliance on hired labor, and rising wages. These supply constraints may
have also inhibited the treatment group farmers from taking full advantage of the techniques
taught in the trainings. This finding complements those of Jones et al. (2022), who show that

labor market failures constrained the adoption of irrigation in another part of rural Rwanda.

More broadly, there is now growing evidence that the low productivity observed in much of
African agriculture is not the result of any one single constraint; rather, different combinations
of constraints seem to bind for different farmers (Suri and Udry 2022). Existing studies set in
Kenya have shown that intervention packages targeting multiple constraints (e.g. by combining
training with financial support, input supply, and marketing assistance) can be effective at

increasing adoption of new crops (Ashraf et al. 2009) or fertilizer and improved practices,
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ultimately increasing yields and profits (Deutschmann et al. 2019). Promising avenues for future
research include asking how these multiple constraints interact with information frictions and

the complexities of social learning.

What is clear is that in a context where input markets are imperfect and not well integrated,
the strategy of training some farmers and not others creates distortions that may outweigh any
gain of the training. Furthermore, those distortions may give the misleading impression that the
program is effective. This evidence suggests that this widely practiced strategy likely needs to

be re-evaluated.
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Figure 1: Mean labor days by task and treatment status, in 75% villages.
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Notes: This figure shows the mean number of total labor days used by treatment and control groups in 75% treatment concentration
villages, disaggregated by task and type of labor (household versus non-household, where the latter = unpaid + paid). We
compute these means from the estimates in Table 5.
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Figure 2: Coffee Cherry Production Function

(a) Relationship between Coffee Cherry Output and NPK Use
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Figures show output of coffee cherries as a function of input quantity, using coefficients estimated from Equation
3. The relationship between output and each input quantity is plotted from 0 to the 99th percentile of that input
intensity in the data, with other input quantities set to their mean values.
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Table 1: Program Impacts on Social Networks.

1) () 3) 4)
Trained Control Non-sample .
Friends Friends Friends All Friends
Panel A: Friends in All Villages
Treat x Post 0.336 0.030 -0.164 0.201
[0.057] [0.052] [0.051] [0.119]
Control x Post 0.034 0.022 -0.150 -0.095
[0.064] [0.060] [0.047] [0.112]
T-C p. value 0.000 0.897 0.831 0.005
Baseline mean 1.196 1.004 1.567 3.766
Observations 3156 3156 3156 3156
Panel B: Friends in Own Village
Treat x Post 0.360 0.0870 -0.00119 0.446
[0.0516] [0.0466] [0.0394] [0.104]
Control x Post 0.0988 0.0893 0.0392 0.227
[0.0542] [0.0563] [0.0428] [0.110]
T-C p. value 0.000 0.970 0.408 0.025
Baseline mean 1.196 1.004 1.567 3.766
Observations 3156 3156 3156 3156
Panel C: Friends Outside Own Village
Treat x Post -0.0238 -0.0572 -0.163 -0.244
[0.0191] [0.0155] [0.0268] [0.0408]
Control x Post -0.0650 -0.0677 -0.189 -0.322
[0.0216] [0.0127] [0.0284] [0.0370]
T-C p. value 0.209 0.488 0.570 0.214
Baseline mean 1.196 1.004 1.567 3.766
Observations 3156 3156 3156 3156
Panel D: Friends in Same Training Group
Treat x Post 0.319
[0.0629]
Baseline mean 0.412
Observations 1678

Notes: Standard errors clustered by household in brackets. All specifications control for village fixed
effects and for whether the household was selected for training (Treatment/Control status). All columns
use household-level data from the baseline and round 9 social network surveys. (see Appendix B). The
outcome variable in column (1) is the count of a household’s friends selected for training. The outcome
variable in column (2) is the count of friends who applied for training but were not selected. The outcome
variable in column (3) is the count of friends who did not apply for training. The outcome variable in
column (4) is the sum of (1)+(2)+(3).
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Table 2: Within-Village Treatment Effects and Diffusion through Baseline Social Networks.

Self- Inputs
Knowledge reported AQOptlon Lee.1f health index Yield
ind dopti index, index, (labor + (kg /tree)
fdex acoption audits audits mulch + g/ tree
index -
fertilizers)
1 2 @) (4) ©) (6)
Panel A
Treatment 1.243 0.321 0.020 0.032 0.034 0.045
[0.060] [0.036] [0.010] [0.010] [0.023] [0.027]
Control mean -0.000 0.000 -0.000 0.000 0.001 2.724
Observations 4622 4622 47618 47618 6157 6154
Panel B
Treatment 1.279 0.331 0.039 -0.071 -0.115 0.081
[0.092] [0.051] [0.015] [0.016] [0.043] [0.047]
Number of treatment friends -0.023 -0.006 -0.057 0.003 -0.042 -0.029
[0.029] [0.024] [0.007] [0.007] [0.019] [0.018]
Number of sample friends 0.007 0.021 0.034 -0.018 0.019 0.055
[0.017] [0.014] [0.005] [0.005] [0.013] [0.013]
Treatment X num. treatment friends 0.035 -0.004 0.029 0.034 0.060 -0.001
[0.059] [0.035] [0.009] [0.009] [0.033] [0.022]
Treatment X num. sample friends -0.031 -0.002 -0.021 0.012 0.019 -0.009
[0.042] [0.025] [0.007] [0.007] [0.020] [0.016]
Control mean 0.682 0.179 0.001 0.014 0.039 2.724
Mean T friends 1.596 1.596 1.596 1.596 1.596 1.596
Mean tot. friends 2.925 2.925 2.925 2.925 2.925 2.925
Observations 4622 4622 47618 47618 6157 6154

Notes: Standard errors clustered by household are in brackets. All specifications control for village and round fixed
effects. All columns use data from endline rounds, i.e. rounds 6 through 9 (see Appendix B). For columns (1)-(4),
we use data from rounds 6, 8 and 9 only as we did not collect best practices data in round 7. In column (1), we use
self-reported knowledge data. In column (2), we use self-reported adoption data. In column (3)-(4), we use tree-level
audit data. Column (5) represents the average of five variables, each standardized using the Control group mean and
standard deviation: total household labor days, total non-household labor days, the share of coffee plots where the
household applied mulch, kilograms of compost, and kilograms of NPK. In columns (1)-(5), for ease of interpretation,
we also normalize each index by its Control group mean and SD. In column (6), we apply a Poisson regression to the
outcome. All regressions control for baseline covariates selected via post-double selection LASSO.
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Table 3: Impacts of Village Treatment Concentration.

Self- . Input index
Knowledge reported A(.ioclftlon Le?f gealth Sabor + Yield
index adoption mn E."X’ mn e.X’ mulch + (kg/tree)
. audits audits -
index fertilizers)
1) 2 3 4 5) (6)
Panel A
50% T in village 0.194 0.038 0.005 0.059 -0.016 -0.081
[0.097] [0.086] [0.049] [0.041] [0.088] [0.074]
(0.410) (0.715) (0.950) (0.167) (0.867) (0.497)
75% T in village 0.696 0.166 -0.046 -0.016 -0.008 -0.038
[0.143] [0.103] [0.062] [0.038] [0.077] [0.110]
(0.000) (0.102) (0.501) (0.744) (0.946) (0.752)
Sample mean, 25% villages 0.056 0.037 0.018 -0.002 0.027 2.967
p-value: 50%=75% 0.00 (0.01) 0.11(0.19) 0.41(0.47) 0.02(0.06) 0.92(0.92) 0.70(0.71)
Observations 4622 4622 47618 47618 6157 6154
Panel B
Treatment 1.139 0.286 -0.082 -0.050 -0.022 -0.115
[0.245] [0.079] [0.100] [0.042] [0.053] [0.042]
(0.000) (0.000) (0.206) (0.416) (0.771) (0.243)
50% T in village -0.081 -0.038 -0.017 0.021 -0.026 -0.126
[0.046] [0.100] [0.061] [0.046] [0.085] [0.067]
(0.756) (0.739) (0.835) (0.673) (0.813) (0.307)
75% T in village -0.109 -0.053 -0.138 -0.087 -0.141 -0.192
[0.064] [0.115] [0.092] [0.043] [0.067] [0.131]
(0.705) (0.663) (0.100) (0.187) (0.200) (0.157)
Treatment X 50% T in village -0.007 0.013 0.083 0.101 0.031 0.149
[0.280] [0.122] [0.112] [0.064] [0.064] [0.084]
(0.967) (0.900) (0.296) (0.204) (0.755) (0.218)
Treatment X 75% T in village 0.314 0.102 0.176 0.127 0.191 0.280
[0.286] [0.093] [0.109] [0.039] [0.080] [0.078]
(0.197) (0.371) (0.049) (0.145) (0.071) (0.040)
Control mean, 25% villages 0.056 0.037 0.037 0.004 0.020 2.967
p-value: 50% T=75% T 0.70(0.92) 0.88(0.91) 0.14(0.14) 0.01(0.11) 0.13(0.30) 0.59 (0.64)
p-value: Treat x 50% T = Treat x 75% T 0.11 (0.12) 0.40(0.38) 0.12(0.21) 0.63 (0.74) 0.02 (0.07) 0.18(0.31)
p: Treatment + Treatment x 50% T=0 0.00 (0.00) 0.00 (0.00) 0.98(0.99) 0.23(0.25) 0.81(0.89) 0.64 (0.66)
p: Treatment + 50% T + Treatment x 50% T=0 0.00 (0.00) 0.01 (0.01) 0.83(0.82) 0.14(0.15) 0.84 (0.84) 0.36 (0.48)
p: Treatment + Treatment x 75% T=0 0.00 (0.00) 0.00(0.00) 0.02(0.11) 0.00(0.21) 0.00 (0.02) 0.01 (0.08)
p: Treatment + 75% T + Treatment x 75% T=0 0.00 (0.00)  0.00 (0.00) 0.52(0.55) 0.81(0.83) 0.73(0.79) 0.81 (0.84)
Observations 4622 4622 47618 47618 6157 6154

Notes: Standard errors clustered by village are in brackets, and randomization inference p-values are in parentheses
below these. Each panel concludes with p-values for various linear restriction tests, with those in parentheses
corresponding to the randomization inference results. All specifications control for round fixed effects. All columns
use data from endline rounds, i.e. rounds 6 through 9 (see Appendix B). For columns (1)-(4), we use data from rounds
6,8 and 9 only as we did not collect best practices data in round 7. In column (1), we use self-reported knowledge
data. In column (2), we use self-reported adoption data. In column (3)-(4), we use tree-level audit data. Column (5)
represents the average of five variables, each standardized using the Control group mean and standard deviation:
total household labor days, total non-household labor days, the share of coffee plots where the household applied
mulch, kilograms of compost, and kilograms of NPK. In columns (1)-(5), for ease of interpretation, we also normalize
each index by its Control group mean and SD. In column (6), we apply a Poisson regression to the outcome. All

regressions control for baseline covariates selected via post-double selection LASSO.
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Table 4: Impacts of Village Treatment Concentration on Soil Inputs Use.

Has a
Soil inputs Used Used proper Compost
index mulch compost ~ compost  (Baskets) Used NPK - NPK (KG)
heap
) @ ®3) 4 ©) (6) @)
Panel A
50% T in village 0.005 -0.034 0.046 -0.005 -0.060 -0.006 0.156
[0.072] [0.069] [0.032] [0.010] [0.080] [0.019] [0.258]
(0.942) (0.699) (0.134) (0.789) (0.696) (0.773) (0.486)
75% T in village -0.028 -0.048 0.004 0.006 0.045 -0.011 0.049

[0.073] [0.057] [0.034] [0.019] [0.135] [0.016] [0.234]
(0.739) (0.561) (0.905) (0.749) (0.796) (0.531) (0.827)

Sample mean, 25% villages 0.035 0.543 0.502 0.171 56.891 0.073 0.950

p-value: 50%=75% 0.65 (0.65) 0.85(0.85) 0.05(0.15) 0.56(0.54) 0.38(0.49) 0.70(0.74) 0.44 (0.61)

Observations 6157 6149 6157 4615 6157 6157 6157

Panel B

Treatment 0.040 -0.006 0.019 0.041 -0.156 0.016 0.332
[0.070] [0.024] [0.033] [0.026] [0.107] [0.014] [0.392]
(0.576) (0.843) (0.524) (0.127) (0.442) (0.276) (0.397)

50% T in village -0.018 -0.048 0.051 -0.013 -0.101 -0.006 0.156

[0.078] [0.063] [0.036] [0.022] [0.066] [0.021] [0.365]
(0.840) (0.560) (0.139) (0.542) (0.597) (0.725) (0.597)

75% T in village -0.180 -0.109 -0.009 -0.003 -0.270 -0.019 -0.425
[0.076] [0.042] [0.035] [0.026] [0.105] [0.018] [0.338]
(0.066) 0.177) (0.815) (0.905) (0.195) (0.356) (0.251)
Treatment X 50% T in village 0.027 0.030 -0.020 -0.004 0.154 -0.006 -0.139

[0.080] [0.036] [0.044] [0.039] [0.118] [0.016] [0.465]
(0.788) (0.477) (0.610) (0.923) (0.576) (0.758) (0.779)

Treatment X 75% T in village 0.176 0.085 0.005 -0.016 0.510 0.000 0.375
[0.084] [0.040] [0.042] [0.031] [0.186] [0.016] [0.426]
(0.075) (0.061) (0.901) (0.657) (0.061) (0.991) (0.484)
Control mean, 25% villages 0.035 0.543 0.502 0.171 57.234 0.069 0.856
p-value: 50% T=75% T 0.04 (0.09) 0.31(0.44) 0.01(0.13) 0.74(0.72) 0.08(0.38) 0.48 (0.50) 0.02 (0.13)
p-value: Treat x 50% T = Treat x 75% T 0.01 (0.08) 0.18(0.18) 0.53(0.52) 0.72(0.70) 0.03(0.13) 0.56 (0.73) 0.09 (0.27)
p: Treatment + Treatment x 50% T=0 0.08(0.23) 0.35(0.33) 0.96(0.95) 0.21(0.06) 0.98(0.99) 0.18(0.35) 0.44 (0.48)
p: Treatment + 50% T + Treatment x 50% T=0 0.50 (0.59) 0.74 (0.79) 0.20 (0.14) 0.16(0.24) 0.18 (0.54) 0.85(0.85) 0.30 (0.21)
p: Treatment + Treatment x 75% T=0 0.00 (0.00) 0.01 (0.01) 0.38(0.44) 0.13(0.31) 0.02(0.05) 0.03(0.26) 0.00 (0.06)
p: Treatment + 75% T + Treatment x 75% T=0 0.64 (0.69) 0.61 (0.71) 0.70(0.66) 0.28 (0.27) 0.57 (0.63) 0.85(0.86) 0.36 (0.27)
Observations 6157 6149 6157 4615 6157 6157 6157

Notes: Standard errors clustered by village are in brackets, and randomization inference p-values are in parentheses
below these. Each panel concludes with p-values for various linear restriction tests, with those in parentheses
corresponding to the randomization inference results. All specifications control for round fixed effects and use data
from endline rounds, i.e. rounds 6 through 9 (see Appendix B). Columns 1, 2, 3, 4 and 6 show the results of OLS
regressions. Columns 5 and 7 show the results of Poisson regressions where the outcome is the amount of compost
and NPK applied, respectively, by the household on their coffee farm. All regressions control for baseline covariates
selected via post-double selection LASSO.
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Table 5: Impacts of Village Treatment Concentration on Labor Days.

Total labor days Mulching Fertilizing Weeding Harvesting All other tasks
HH non-HH HH non-HH HH non-HH HH non-HH HH non-HH HH non-HH
) 2 ®) 4) ©®) (6) @) ®) ) (10) (11) (12)
Panel A
50% T in village 0.007 -0.080 -0.073 -0.206 0.052 -0.072 0.072 0.123 -0.072 -0.187 -0.015 -0.162
[0.079] [0.135] [0.116] [0.290] [0.152] [0.155] [0.040] [0.084] [0.093] [0.255] [0.132] [0.173]
(0.929) (0.681) (0.499) (0.557) (0.702) (0.920) (0.429) (0.336) (0.491) (0.645) (0.906) (0.535)
75% T in village 0.025 0.043 -0.051 0.217 0.014 0.520 0.124 0.097 -0.037 -0.080 0.040 0.115
[0.065] [0.130] [0.092] [0.337] [0.150] [0.248] [0.073] [0.093] [0.075] [0.283] [0.096] [0.204]
(0.751) (0.825) (0.658) (0.595) (0.923) (0.276) (0.130) (0.449) (0.710) (0.837) (0.732) (0.663)
Sample mean, 25% villages 34.620 4.082 3.842 0.339 6.324 0.381 7.192 1.198 9.466 1.545 7.795 0.619
p-value: 50%=75% 0.75(0.80) 0.38(0.49) 0.81(0.84) 0.07(0.22) 0.66(0.76) 0.01(0.10) 0.43 (0.59) 0.81(0.81) 0.70(0.74) 0.74(0.74) 0.59 (0.65) 0.15(0.23)
Observations 6157 6157 6157 6157 6157 6157 6157 6157 6157 6157 6157 6157
Panel B
Treatment -0.090 0.085 -0.100 -0.127 0.174 -0.000 -0.076 0.582 -0.173 -0.412 -0.232 0.190
[0.078] [0.121] [0.122] [0.404] [0.173] [0.288] [0.066] [0.211] [0.101] [0.197] [0.074] [0.179]
(0.222) (0.772) (0.396) (0.826) (0.169) (0.999) (0.438) (0.067) (0.044) (0.222) (0.005) (0.593)
50% T in village -0.020 0.006 -0.103 -0.140 0.141 -0.044 0.067 0.375 -0.147 -0.193 -0.080 -0.020
[0.082] [0.168] [0.116] [0.351] [0.143] [0.212] [0.047] [0.138] [0.109] [0.328] [0.145] [0.222]
(0.821) (0.977) (0.410) (0.766) (0.345) (0.924) (0.466) (0.052) (0.165) (0.657) (0.526) (0.949)
75% T in village 0.083 -0.269 -0.022 -0.106 0.222 0.130 0.193 0.056 -0.030 -0.848 0.031 0.093
[0.078] [0.181] [0.116] [0.573] [0.166] [0.454] [0.091] [0.170] [0.093] [0.273] [0.115] [0.231]
(0.403) (0.367) (0.880) (0.863) (0.206) (0.867) (0.078) (0.830) (0.807) (0.047) (0.792) (0.799)
Treatment X 50% T in village 0.098 -0.217 0.108 -0.078 -0.252 -0.057 0.047 -0.717 0.239 0.227 0.251 -0.374
[0.087] [0.160] [0.147] [0.435] [0.189] [0.368] [0.081] [0.239] [0.112] [0.295] [0.091] [0.286]
(0.264) (0.564) (0.478) (0.916) (0.132) (0.946) (0.672) (0.061) (0.027) (0.613) (0.012) (0.440)
Treatment X 75% T in village -0.021 0.342 0.026 0.499 -0.392 0.496 -0.046 -0.284 0.104 1.243 0.167 -0.085
[0.098] [0.236] [0.165] [0.546] [0.202] [0.405] [0.085] [0.241] [0.118] [0.301] [0.101] [0.347]
(0.830) (0.457) (0.872) (0.579) (0.035) (0.634) (0.730) (0.488) (0.365) (0.012) (0.110) (0.878)
Control mean, 25% villages 34.926 3.895 3.886 0.349 5.891 0.367 7.204 0.980 9.787 1.630 8.157 0.569
p-value: 50% T=75% T 0.16 (0.28) 0.19(0.36) 0.52(0.58) 0.95(0.95) 0.43(0.63) 0.68(0.75) 0.18(0.25) 0.04(0.23) 0.28(0.32) 0.05(0.15) 0.37(0.39) 0.67 (0.80)
p-value: Treat x 50% T = Treat x 75% T 0.10 (0.18)  0.01(0.13) 0.55(0.58) 0.15(0.45) 0.27(0.41) 0.13(0.51) 0.19(0.43) 0.00(0.21) 0.08 (0.18) 0.00 (0.01) 0.34(0.38) 0.44 (0.57)
p: Treatment + Treatment x 50% T=0 0.84 (0.89) 0.21(0.55) 0.92(0.92) 0.21(0.69) 0.31(0.45) 0.80(0.92) 0.54(0.72) 0.18(0.51) 0.17(0.27) 0.40(043) 0.72(0.74) 0.41(0.56)
p: Treatment + 50% T + Treatment x 50% T=0 0.89 (0.90) 0.30 (0.57) 0.43 (0.41) 0.32(0.44) 0.71(0.67) 0.71(0.86) 0.32(0.71) 0.08(0.19) 0.40(0.46) 0.14(0.36) 0.65 (0.60) 0.26 (0.52)
p: Treatment + Treatment x 75% T=0 0.07 (0.10)  0.04 (0.12) 0.51(0.50) 0.31(0.50) 0.03 (0.10) 0.08 (0.40) 0.02(0.17) 0.01(0.26) 0.26 (0.38) 0.00 (0.01) 0.34 (0.38) 0.73 (0.77)
p: Treatment + 75% T + Treatment x 75% T=0 0.69 (0.74) 0.28 (0.46) 0.30(0.43) 0.46(0.56) 0.98 (0.98) 0.02(0.23) 0.27(0.44) 0.01(0.03) 0.25(0.36) 0.96(0.96) 0.75(0.78)  0.42 (0.49)
Observations 6157 6157 6157 6157 6157 6157 6157 6157 6157 6157 6157 6157

Notes: Standard errors clustered by village are in brackets, and randomization inference p-values are in parentheses below these. Each panel concludes
with p-values for various linear restriction tests, with those in parentheses corresponding to the randomization inference results. All specifications control
for round fixed effects and use data from endline rounds, i.e. rounds 6 through 9 (see Appendix B). All columns show the results of Poisson regressions
and control for baseline covariates selected via post-double selection LASSO.



Table 6: Impacts of Village Treatment Concentration on Wages.

All stacked Mulching Fertilizing  Weeding Harvesting
1) 2) 3) 4) 6)
50% T in village 22.191 23.218 27.969 19.410 -20.684
[9.113] [31.475] [11.447] [14.347] [15.502]
(0.177) (0.426) (0.108) (0.335) (0.368)
75% T in village 32.480 26.678 25.031 40.713 16.551
[14.097] [31.045] [16.051] [14.422] [16.937]
(0.034) (0.367) (0.174) (0.028) (0.496)

Sample mean, 25% villages ~ 656.337 680.680 693.041 647.184 643.251
p-value: 50%=75% 0.47 (0.62) 0.88(0.91) 0.85(0.89) 0.20(0.28) 0.05(0.10)
Observations 2459 267 544 665 409

Notes: Standard errors clustered by village are in brackets, and randomization inference p-values are in parentheses
below these. The table concludes with p-values for the linear restriction test of equal effects of the 50% and 75%
village treatment intensities, with those in parentheses corresponding to the randomization inference results. Here,
the randomization inference permutations are applied to the restricted set of 1,041 households out of 1,594 in our
sample who report hiring any external labor to work on their coffee farm in exchange for daily wages. All columns
use data from endline rounds, i.e. rounds 6 through 9 (see Appendix B) and report the results of OLS regressions.
Piece rate payments are excluded from the sample. In column (1), all household-task-level average daily wage values
are included except the top 1%, to remove implausibly high values. In columns 2-4, the outcome is household-level
average daily wages paid per survey round per task. Column 1 controls for round and task fixed effects. Controls
2-4 control for round fixed effects. All regressions control for baseline covariates selected via post-double selection
LASSO.
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Table 7: Impacts of Village Treatment Concentration on Labor Supply.

Total labor
days Labor days, Labor days,
outside of coffee other
HH
1) 2) (©)
Panel A
50% T in village 0.156 -0.611 0.175
[0.089] [0.371] [0.093]
(0.143) (0.212) (0.115)
75% T in village 0.203 -0.382 0.218
[0.081] [0.442] [0.085]
(0.056) (0.461) (0.045)
Sample mean, 25% villages 3.855 0.135 3.721
p-value: 50%=75% 0.56 (0.67) 0.59 (0.60) 0.60 (0.71)
Observations 4710 4710 4710
Panel B
Treatment 0.010 0.219 0.001
[0.178] [0.618] [0.191]
(0.950) (0.828) (0.997)
50% T in village 0.092 -1.001 0.114
[0.098] [0.567] [0.103]
(0.505) (0.159) (0.410)
75% T in village 0.110 -1.650 0.137
[0.130] [0.668] [0.133]
(0.531) (0.113) (0.431)
Treatment X 50% T in village 0.119 0.546 0.118
[0.208] [0.920] [0.223]
(0.575) (0.681) (0.581)
Treatment X 75% T in village 0.116 1.329 0.108
[0.213] [0.778] [0.227]
(0.621) (0.406) (0.645)
Control mean, 25% villages 3.839 0.125 3.713
p-value: 50% T=75% T 0.89 (0.92) 0.38(0.50) 0.86 (0.89)
p-value: Treat x 50% T = Treat x 75% T 0.98 (0.99) 0.35(0.56) 0.95 (0.96)
p: Treatment + Treatment x 50% T=0 0.23(0.31) 0.26(0.31) 0.30 (0.35)
p: Treatment + 50% T + Treatment x 50% T=0 0.05 (0.11) 0.64 (0.70)  0.05 (0.10)
p: Treatment + Treatment x 75% T=0 0.28 (0.39) 0.00(0.16) 0.37 (0.47)
p: Treatment + 75% T + Treatment x 75% T=0 0.01 (0.05) 0.83 (0.87)  0.01 (0.05)
Observations 4710 4710 4710

Notes: Standard errors clustered by village are in brackets, and randomization inference p-values are
in parentheses below these. All specifications control for round fixed effects. Each panel concludes
with p-values for various linear restriction tests, with those in parentheses corresponding to the
randomization inference results. All regressions use data from rounds 6, 7, and 8 (we did not collect
this module in the final endline survey, round 9). All columns show the results of Poisson regressions
and control for baseline covariates selected via post-double selection LASSO.
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APPENDIX

A  TechnoServe’s Agronomy Best Practices
The agronomy training program covered the following eight basic modules:

* Rejuvenation and pruning to produce new and productive wood. A multi-stem un-capped

system was promoted.

¢ Nutrition: a balanced nutritional program based on organic and inorganic additives, with
the exact requirements determined by soil analysis. In the sub-district where our program
evaluated took place, this included a combination of homemade compost and NPK (nitrogen,
phosphorus, and potassium) as the main recommended chemical fertilizer. The specific type of

NPK recommended for coffee in the area was 22-12-6.
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¢ Integrated pest management: multiple techniques to manage pests and diseases, such as correct
nutrition, tree management, biological control, traps etc. Selective pesticides used as a last resort,

but safe use of pesticides promoted.

* Weed control: management of weeds through mulching, hand weeding and/or cover crops.
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¢ Soil and water conservation: use of a number of techniques such as mulching, terracing and

water traps to control soil erosion and maintain soil fertility. Encourage the management of

water resources through conservation zones.
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e Shade: use of the correct level (20-40%) of shade to reduce tree stress, conserve moisture, increase

organic matter and increase biodiversity.

* Record keeping: maintenance of records of inputs, outputs, profit and loss in a record book.

The schedule of the modules covered in the training was as follows:

February 2010: Record Keeping

March 2010: Integrated Pest Management (IPM)

April 2010: Coffee Nutrition

May 2010: Coffee Harvesting
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June 2010: Weed control

July 2010: Mulching

August 2010: Pruning and Rejuvenation
September 2010: Safe use of pesticides
October 2010: Composting

November 2010: Erosion control

December 2010: Coffee Shade Management

January 2011 to October 2011: Review
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B Data Details

D1. Survey Data

From December 2009 to October 2012, we conducted ten rounds of surveys. These surveys mostly
focused on the 1,594 farmers who were part of the experiment: the RCT-sample farmers. However,
given the social networks focus of the study, we wanted to map the full social networks of the RCT-
sample farmers. Therefore, alongside the baseline in December 2009, we also conducted a full census
of the 5,198 farming households in all 29 villages of the the sub-district, including many who had not
signed up for the study. Out of these, we focused on the 57% who had grown or harvested coffee in the
year prior to the census, given the training program was targeted to coffee alone and it takes five years
for coffee trees to grow once they have been planted. This meant that there were an additional 1,327
coffee farmers in the sub-district who did not register for the agronomy training program. Throughout,
we refer to these farmers as the non-RCT-sample farmers, implying they grow coffee and live in the
same subdistrict as the RCT-sample farmers but are neither treatment nor control farmers for the

agronomy program.

The data collection was split into modules that covered different aspects of the household’s
behavior. The modules covered household demographics, detailed plot level data for coffee as well
as all other crops (including harvests, sales, labor and other inputs), coffee plot performance, coffee
farming activities and practices, a consumption module, household finance and social networks for
the household head and the spouse. In the social networks module, we asked both the household head
and spouse who their friends were (with no limit on the number that could be listed). In addition, we
asked which of these friends grew coffee and which they spoke to about coffee. Throughout the paper,
we define friends as being “coffee friends”, the friends that respondents in the sample report talking

to about coffee.

Not every round of data collection covered the same modules and not every module in a given
round covered all farmers. We collected fewer rounds of data for the farmers in the non-RCT-sample.
Appendix D5 and D6 show a schedule of which modules were collected in which rounds, separately
for the farmers in the RCT-sample and for those in the non-RCT-sample, as well as the timing of each
survey wave. The first nine rounds of surveys took place every 2-3 months over the course of the
program (recall that the training was run monthly between February 2010 and October 2011), and the
tenth and final round took place in September-October 2012.

D2. Audit Data

One of our adoption measures was constructed from plot and tree inspections data, collected using
plot and tree audits. Field staff visited each coffee plot of all the coffee farmers in the sub-district and
inspected five trees, looking for signs of adoption of the agronomic practices covered in the training.
The enumerators were given specific instructions on how to pick the five trees on each plot. They
were instructed to start at the corner of the coffee plot closest to the farmer’s house and walk in the
direction of the opposite corner. They were then to inspect the second tree into the field, walk to the
middle of the field and inspect the tree in the middle. Starting from the middle, the field staff was to
walk towards the other two corners of the field and inspect the second tree in each direction. The field
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staff was then to walk back to the middle of the field and continue on the original path and inspect the
second to last tree in the field. For each tree, the field staff would also note the GPS coordinates of
each tree. Different variables were collected at different levels (the household level, the plot level and

the tree level):

* Household level: We collected data on two practices that were also observed by the field staff, in
particular
1. whether the household kept record books
2. whether the household has a compost heap
* Plot level: we collected data on three practices at the plot level, in particular
1. whether the farmer had used any methods to control for soil erosion (such as using stabiliz-
ing grasses, water traps, etc.)
2. whether there were any shade tress on the plot
3. whether the farmer had grown other crops among the coffee
* Tree level: the audit data covered twelve different practices for each of the five trees per plot that
were inspected. The practices were:
. Whether the tree had any antestia (an insect)
. how many leaves were yellowing

. how many leaves were curling

. use of mulch

1

2

3

4

5. evidence of weeding
6. evidence of rejuvenation

7. evidence of pruning

8. evidence of integrated pest management

9. whether the tree had any berry borers (an insect)
10. evidence of damage from white borers

11. evidence of scales or mealy bugs or mould

12. signs of leaf rust

D3. Weigh Scale Data

Starting in March 2011, we distributed weigh scales to all the farmers in the RCT-sample for them
to keep accurate counts of their coffee harvests. The bulk of the coffee harvest arrives in May and
June. Starting in March 2011 and through June 2012, every month we distributed a yield calendar
to the farmers in the RCT-sample for them to record daily harvests for that month. An example of
a yield calendar is shown in Appendix D7. The farmers were given instructions on how to use the
weigh scale and how to record their coffee harvests on the calendars. At the end of every month, we

collected up the calendars and distributed new ones for the following month.
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D5. RCT-Sample Modules

The timing of the ten survey rounds of surveys was as follows:

1.

10.

December 2009 to January 2010

. April 2010 to May 2010

. July 2010

September 2010 to October 2010

. November 2010

. January 2011 to February 2011

June 2011 to July 2011

. October 2011

. January 2012 to February 2012

September 2012 to October 2012
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D6. Non-RCT-Sample Modules
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D7. Yield Calendars

HHID: VILLAGE: NAME:
LOCATION:
HOW MANY KILOGRAMS DID YOU HARVEST TODAY?
/ 1. Hang the scale to a fix and stable place ;
2. Hang the bag (with the cherries in it) to the scale ;
3. Read the number on the scale.
Write here the coffee Write here the coffee harvest that you are going to
MAY (05) DAY harvest that you have just sell and indicate the type of coffee (cherries, wet or
weighed dry parch)

1 1-MAY-2012 TUESDAY Kg Kg
2 2-MAY-2012 WEDNESDAY Kg Kg
3 3-MAY-2012 THURSDAY Kg Kg
4 4-MAY-2012 FRIDAY Kg Kg
5 5-MAY-2012 SATURDAY Kg Kg
6 6-MAY-2012 SUNDAY Kg Kg
7 7-MAY-2012 MONDAY Kg Kg
8 8-MAY-2012 TUESDAY Kg Kg
9 9-MAY-2012 WEDNESDAY Kg Kg
10 10-MAY-2012 THURSDAY Kg Kg
11 11-MAY-2012 FRIDAY Kg Kg
12 12-MAY-2012 SATURDAY Kg Kg
13 13-MAY-2012 SUNDAY Kg Kg
14 14-MAY-2012 MONDAY Kg Kg
15 15-MAY-2012 TUESDAY Kg Kg
16 16-MAY-2012 WEDNESDAY Kg Kg
17 17-MAY-2012 THURSDAY Kg Kg
18 18-MAY-2012 FRIDAY Kg Kg
19 19-MAY-2012 SATURDAY Kg Kg
20 20-MAY-2012 SUNDAY Kg Kg
21 21-MAY-2012 MONDAY Kg Kg
22 22-MAY-2012 TUESDAY Kg Kg
23 23-MAY-2012 WEDNESDAY Kg Kg
24 24-MAY-2012 THURSDAY Kg Kg
25 25-MAY-2012 FRIDAY Kg Kg
26 26-MAY-2012 SATURDAY Kg Kg
27 27-MAY-2012 SUNDAY Kg Kg
28 28-MAY-2012 MONDAY Kg Kg
29 29-MAY-2012 TUESDAY Kg Kg
30 30-MAY-2012 WEDNESDAY Kg Kg
31 31-MAY-2012 THURSDAY Kg Kg
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C Additional Tables and Figures

Table A1: Balance Checks: Treatment vs. Control Households.

Control Mean Treatment Coeff. Std Error P-value

Head, Years of Schooling 3.615 -.061 146 .678
Female Headed Household 32 .025 013 .075
Household Size 5.035 -.037 141 794
Average Schooling of Household 3.211 103 .09 264
Yield, total KGs per tree 783 .017 .04 .682
Total Trees 240.385 1.294 11.616 912
Fraction Unproductive Trees 305 -.012 014 .398
Cut Stems 102 -.009 .014 .546
Book Keeping Done 028 -.007 .007 .356
Removed Dead Branches 771 -.043 018 .023
Removed Suckers 913 -.018 011 131
Removed Weeds 992 -.005 .004 .256
Applied Compost 716 .017 024 485
Applied NPK 178 0 015 997
Applied Lime .019 .01 .01 .336
Applied Pesticides 767 -.022 .019 264
Applied Mulch 878 -.022 016 179
p-value of joint F-test 9998

Notes: All specifications control for village fixed effects. Robust standard errors.
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Table A2: Inter-village Balance Checks: Treatment Concentration Groups.

25% Mean 50% coeff. 50% S.E. p-val 75% coeff. 75%S.E. p-val p:50%=75%

Head, Years of Schooling 3.75 -.229 .239 .348 -35 211 109 .62
Female Headed Household .35 -.041 .031 .195 -.018 .03 567 511
Household Size 5.01 .01 196 .96 .002 15 991 .959
Average Schooling of Household 3.36 -.226 2 27 -.045 .233 .848 .319
Yield, total KGs per tree .83 -.031 .065 .643 -129 .07 077 .253
Total Trees 228.29 3.304 31212 917 53.676 40.582 197 282
Fraction Unproductive Trees 27 .037 .036 322 .077 .021 .001 264
Cut Stems .09 .015 .023 .518 .021 .025 405 776
Book Keeping Done .03 0 .007 .996 -.005 .006 451 424
Removed Dead Branches 77 -.036 .028 199 -.026 .036 466 .806
Removed Suckers .92 -.03 .028 294 -.019 .022 392 .689
Removed Weeds .99 -.001 .008 .902 .002 .007 739 674
Applied Compost .76 -.085 .034 .018 -.008 .031 .805 .075
Applied NPK 19 -.056 .057 .342 .029 .055 601 164
Applied Lime .02 .004 .015 811 .004 .01 742 .996
Applied Pesticides 77 -.05 .052 .341 .017 .056 759 276
Applied Mulch .89 -.059 .033 .088 -.013 .026 628 142
p-value of joint F-test .2522 .0556

Notes: Standard errors are clustered by village. This table compares mean outcomes across different village
groups without distinguishing between treatment and control status.

Table A3: Intra-village Balance Checks: Treatment vs. Control within 25% villages.

Control Mean Treatment Coeff. Std Error P-value

Head, Years of Schooling 3.875 -.466 268 126
Female Headed Household 344 034 027 .256
Household Size 4.993 079 33 819
Average Schooling of Household 3.333 109 237 .659
Yield, total KGs per tree .808 .082 142 581
Total Trees 217.404 42.206 20.726 .081
Fraction Unproductive Trees 268 .005 .04 .896
Cut Stems 092 -.021 018 295
Book Keeping Done .035 -.035 .007 .001
Removed Dead Branches 784 -.049 .043 291
Removed Suckers 929 -.031 026 273
Removed Weeds 989 0 014 976
Applied Compost 738 .089 .039 .058
Applied NPK 202 -.029 .035 445
Applied Lime 014 027 .026 335
Applied Pesticides 773 .002 .056 966
Applied Mulch .89 .018 .03 561
p-value of joint F-test .0049

Notes: Standard errors are clustered by village.
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Table A4: Intra-village Balance Checks: Treatment vs. Control within 50% villages.

Control Mean Treatment Coeff. Std Error P-value

Head, Years of Schooling 3.556 -.061 236 .803
Female Headed Household 31 .002 018 908
Household Size 4.98 .085 204 .686
Average Schooling of Household 3.086 .097 129 471
Yield, total KGs per tree 796 .005 054 922
Total Trees 235.002 -6.819 10.615 537
Fraction Unproductive Trees 313 -.015 017 395
Cut Stems 112 -.02 .025 437
Book Keeping Done .03 -.007 011 .549
Removed Dead Branches 756 -.042 .024 113
Removed Suckers .894 -.006 .02 757
Removed Weeds 99 -.003 .006 .595
Applied Compost .67 011 043 .808
Applied NPK 147 -.015 021 .502
Applied Lime 013 .023 012 .093
Applied Pesticides 726 -.006 024 817
Applied Mulch 852 -.032 024 21

p-value of joint F-test .6889

Notes: Standard errors are clustered by village.
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Table A5: Intra-village Balance Checks: Treatment vs. Control within 75% villages.

Control Mean Treatment Coeff. Std Error P-value

Head, Years of Schooling 3.251 205 173 269
Female Headed Household 296 .052 .019 .023
Household Size 5.224 -.279 247 291
Average Schooling of Household 3.235 107 164 531
Yield, total KGs per tree 71 -.012 047 801
Total Trees 293.822 -15.845 26.538 .567
Fraction Unproductive Trees 359 -.018 024 475
Cut Stems .099 .012 .024 .625
Book Keeping Done .013 011 011 319
Removed Dead Branches 776 -.042 .036 .269
Removed Suckers 921 -.025 .013 .092
Removed Weeds 1 -.011 .006 101
Applied Compost 77 -.023 .031 493
Applied NPK .197 .035 .017 .076
Applied Lime .039 -.02 016 261
Applied Pesticides .836 -.06 024 .038
Applied Mulch 908 -.034 .028 26

p-value of joint F-test .0042

Notes: Standard errors are clustered by village.

Table A6: Attendance Rates, by Training Session and Village Treatment Concentration.

Mean attendance rate

25%T 50%T 75% T

Integrated Pest Management
Nutrition

Harvesting

Weeding

Mulching

Pruning and Rejuvenation
Pesticide use

Composting

Erosion Control

Shade

Nutrition Review
Harvesting Review
Sustainability

Composting Review
Pruning and Rejuvenation Review

.694
.663
724
.663
.694
612
.694
.643
724
.653
704
735
704
765
735

743
744
727
.659
705
702
708
.685
679
672
774
725
748
754
741

761
737
759
723
741
737
715
.699
717
.686
768
701
765
72
761

Notes: Session-specific average attendance rates for each village treatment concentration group. In total
there were 38 training groups attended by the treatment group (from 27 villages). All sessions were taught
on (one of) the coffee plot(s) of the training group’s assigned focal farmer by a TechnoServe farmer trainer.

Sessions are listed in chronological order.
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Table A7: Attrition Rates by Treatment Status.

Control Treatment Difference

Mean Mean Coeff.
[s.d.] [s.d.] [s.e.]
Survey round 1) 2) 3)

6 0.034 0.034 0.003
[0.181] [0.181] [0.009]

7 0.041 0.036 —0.005
[0.197] [0.187] [0.011]

8 0.035 0.034 0.000
[0.184] [0.181] [0.010]

9 0.034 0.034 0.003
[0.181] [0.181] [0.009]

Notes: Column 1 presents the attrition rate for Control households
by endline survey round, Column 2 for Treatment households.
Column 3 reports the coefficient from a regression of attrition on a
treatment dummy, but also includes village fixed effects. Standard
errors clustered at the village level in brackets.

Table A8: Program Impacts on Social Networks by Village Treatment Concentration.

1) @) ®)
Treatment friends, Same village Different village
same village friends friends
Treatment 0.0644 0.205* -0.0366
[0.0727] [0.100] [0.0685]
Treatment x post 0.121 0.222 -0.221*
[0.117] [0.239] [0.108]
Control x post 0.0255 0.246 -0.352%**
[0.0579] [0.144] [0.0574]
50% T x Treatment x post 0.228 0.163 -0.0827
[0.146] [0.295] [0.118]
75% T x Treatment x post 0.300** 0.316 0.0113
[0.142] [0.291] [0.111]
50% T x Control x post 0.142 0.0797 0.0583
[0.105] [0.261] [0.0670]
75% T x Control x post 0.0714 -0.249 0.0307
[0.167] [0.266] [0.0690]
25% T village mean 0.651 3.399 0.857
p-value: Treatment x 50% T X post = Treatment x 75% T X post 0.577 0.544 0.164
p-value: Control x 50% T X post = Control x 75% T X post 0.697 0.280 0.671
Observations 3156 3156 3156

Notes: Standard errors clustered by household in brackets. All specifications control for village fixed effects and use
household-level data from the baseline and round 9 social network surveys (see Appendix B). Column (1) is the number
of a household’s friends residing in their village who were selected for training (Table 1, Panel B, column 1). Column
(2) is the total count of friends from their village (Table 1, Panel B, column 4). Column 3 is the total number of friends
residing outside their village (Table 1, Panel C, column 4).
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Table A9: Within-village Treatment Effects and Diffusion through Baseline Social Networks, without controls.

Self- Inputs
Knowledge reported A(.ioptlon Le;.lf health index Yield
ind donti index, index, (labor + (ke /tree)
& acoption audits audits mulch + g/tree
index -
fertilizers)
1) 2 ®) (4) () (6)
Panel A
Treatment 1.239 0.329 0.019 0.043 0.052 0.041
[0.075] [0.041] [0.030] [0.028] [0.039] [0.047]
Control mean -0.000 0.000 -0.000 0.000 0.001 2.724
Observations 4622 4622 47618 47618 6157 6154
Panel B
Treatment 1.259 0.342 0.031 -0.053 -0.140 0.056
[0.114] [0.060] [0.044] [0.040] [0.064] [0.076]
Number of treatment friends -0.013 0.002 -0.058 0.000 -0.048 -0.012
[0.033] [0.025] [0.021] [0.019] [0.033] [0.033]
Number of sample friends 0.024 0.044 0.041 -0.013 0.077 0.040
[0.018] [0.015] [0.013] [0.012] [0.021] [0.021]
Treatment X num. treatment friends 0.018 -0.018 0.026 0.042 0.030 -0.005
[0.069] [0.040] [0.028] [0.026] [0.056] [0.039]
Treatment X num. sample friends -0.017 0.004 -0.017 0.005 0.048 -0.004
[0.049] [0.030] [0.020] [0.017] [0.033] [0.026]
Control mean 0.682 0.179 0.001 0.014 0.039 2.724
Mean T friends 1.596 1.596 1.596 1.596 1.596 1.596
Mean tot. friends 2.925 2.925 2.925 2.925 2.925 2.925
Observations 4622 4622 47618 47618 6157 6154

Notes: Standard errors clustered by household are in brackets. All specifications control for village and round fixed
effects and use data from endline rounds, i.e. rounds 6 through 9 (see Appendix B). For columns (1)-(4), we use data
from rounds 6, 8 and 9 only as we did not collect best practices data in round 7. In column (1), we use self-reported
knowledge data. In column (2), we use self-reported adoption data. In column (3)-(4), we use tree-level audit data.
Column (5) represents the average of five variables, each standardized using the Control group mean and standard
deviation: total household labor days, total non-household labor days, the share of coffee plots where the household
applied mulch, kilograms of compost, and kilograms of NPK. In columns (1)-(5), for ease of interpretation, we also
normalize each index by its Control group mean and SD. In column (6), we apply a Poisson regression to the outcome.

Table A10: Learning Spillovers on Control Farmers.

Learned something new about [practice] from a Treatment farmer

. s Integrated Removal of Removal of Removal of . Removal of
. Fertilizing  Fertilizing . branches  Opening of
Weeding Mulching ~ Pest Man- dead unwanted . old/dry
(manure) (NPK) touching Centers .
agement  branches suckers berries
the ground
) 2 ®) G ©®) (6) ?) ® © (10)
Num. treatment friends 0.000 -0.021 -0.014 0.014 -0.003 -0.017 0.013 -0.020 0.002 0.003
[0.011] [0.016] [0.016] [0.011] [0.014] [0.016] [0.013] [0.016] [0.012] [0.011]
Num. sample friends 0.003 0.011 0.008 -0.008 0.004 0.007 -0.008 0.009 -0.005 -0.004
[0.006] [0.010] [0.010] [0.006] [0.009] [0.010] [0.008] [0.010] [0.007] [0.007]
Outcome mean 0.052 0.143 0.140 0.104 0.092 0.099 0.092 0.108 0.088 0.078
R-squared 0.040 0.030 0.060 0.050 0.040 0.040 0.050 0.050 0.040 0.030
Observations 694 694 694 694 694 694 694 694 694 693

Notes: Standard errors clustered by household in brackets. All specifications control for village FE. Control group
only. The outcome is constructed from a module collected in the final endline survey (round 9) asking farmers to
reflect on how much they have learned about each practice since baseline.
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Table A11: Within-village Treatment Effects and Social Diffusion:
Audits Adoption and Leaf Health Index Components.

Removed

Tree canopy Dripline is Removed branches Opened Removed {{emoved Tree barkis Few signs Few curled Few yellow
has mulch ~ weeded dead touching centers unwanted - old am.:l dry smoothed  of leaf rust leaves leaves
branches suckers berries
the ground
[©) 2 [©) 4 ®) 6) ) ®) © (10) (11)
Panel A

Treatment 0.035 0.030 0.002 -0.004 -0.004 0.001 -0.018 0.001 0.017 0.003 0.007
[0.005] [0.005] [0.005] [0.003] [0.005] [0.005] [0.005] [0.002] [0.004] [0.004] [0.004]

Control mean 0.549 0.583 0.330 0.911 0.434 0.437 0.408 0.041 0.273 0.194 0.152
Observations 47598 47453 47617 47616 47616 47617 47618 47613 47595 47603 47593

Panel B

Treatment 0.034 0.050 -0.004 0.012 -0.005 -0.012 -0.015 -0.003 -0.012 -0.033 -0.016
[0.008] [0.008] [0.007] [0.004] [0.008] [0.008] [0.008] [0.003] [0.007] [0.006] [0.006]

Number of treatment friends -0.022 -0.013 -0.010 0.004 -0.014 -0.030 -0.004 -0.013 0.002 0.001 0.002
[0.004] [0.004] [0.003] [0.002] [0.004] [0.004] [0.004] [0.002] [0.003] [0.003] [0.003]
Number of sample friends 0.016 0.015 0.004 0.000 0.006 0.016 0.001 0.004 -0.009 -0.005 -0.003
[0.002] [0.002] [0.002] [0.001] [0.002] [0.002] [0.002] [0.001] [0.002] [0.002] [0.002]

Treatment X num. treatment friends 0.020 0.020 0.001 -0.001 0.005 0.007 0.004 -0.000 0.018 0.000 0.011
[0.004] [0.005] [0.004] [0.003] [0.005] [0.005] [0.005] [0.002] [0.004] [0.004] [0.003]

Treatment X num. sample friends -0.011 -0.017 0.001 -0.005 -0.002 -0.000 -0.003 0.002 -0.001 0.011 0.001
[0.003] [0.003] [0.003] [0.002] [0.003] [0.003] [0.003] [0.001] [0.003] [0.003] [0.002]

Control mean 0.564 0.592 0.333 0.908 0.429 0.434 0.400 0.041 0.283 0.193 0.153
Mean T friends 1.596 1.596 1.596 1.596 1.596 1.596 1.596 1.59 1.596 1.596 1.596
Mean tot. friends 2.925 2.925 2.925 2.925 2.925 2.925 2925 2.925 2.925 2.925 2.925
Observations 47598 47453 47617 47616 47616 47617 47618 47613 47595 47603 47593

Notes: Standard errors clustered by household in brackets. All specifications control for village and round fixed
effects. All columns use data from endline rounds 6, 8, 9 at the household-plot-tree-round level. Columns 1-8
constitute the components of the Audits Adoption index in column 3 of Table 2. Columns 9-11 are the components of
the Leaf Health index in column 4 of Table 2. All regressions control for baseline covariates selected via post-double
selection LASSO.

Table A12: Within-village Treatment Effects and Social Diffusion: Inputs Index Components.

Total
Used Compost NPK (KG) Total HH non-HH
mulch (Baskets) labor days
labor days
1) ) 3) 4) )
Panel A
Treatment 0.035 0.053 0.434 -0.061 -0.007
[0.012] [0.050] [0.104] [0.031] [0.098]
Control mean 0.502 55.195 0.921 36.438 3.915
Observations 6149 6157 6157 6157 6157
Panel B
Treatment 0.043 0.164 -0.057 -0.066 -0.004
[0.018] [0.085] [0.158] [0.046] [0.141]
Number of treatment friends -0.016 -0.071 -0.244 -0.022 -0.240
[0.009] [0.053] [0.083] [0.026] [0.090]
Number of sample friends 0.011 0.061 0.097 0.013 0.202
[0.005] [0.032] [0.052] [0.013] [0.058]
Treatment X num. treatment friends 0.006 0.067 0.178 0.058 0.322
[0.011] [0.065] [0.126] [0.030] [0.135]
Treatment X num. sample friends -0.006 -0.052 0.027 -0.030 -0.178
[0.008] [0.045] [0.086] [0.018] [0.080]
Control mean 0.510 59.592 1.110 35.757 4.307
Mean T friends 1.596 1.596 1.596 1.596 1.596
Mean tot. friends 2.925 2.925 2.925 2.925 2.925
Observations 6149 6157 6157 6157 6157

Notes: Standard errors clustered by household in brackets. All specifications control for village and round fixed
effects. All columns use data from endline rounds 6, 8, 9 at the household-plot-tree-round level. Each column is a
component of the Inputs index in column 5 of Table 2. All regressions control for baseline covariates selected via
post-double selection LASSO. Columns 2-5 show the results of Poisson regressions.
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Table A13: Diffusion via Geographic Neighbors.

Self- Input
Knowledge reported Aqoptlon Lejaf health qu'antltles Yield
index adoption index, index, index (kg/tree)
°P audits audits (labor + &
index s
fertilizers)
@) @) ®) @ ©) (6)
Panel A: Treatment neighbors
Num. treatment HH neighbors 0.019 0.016 -0.055 -0.007 0.001 -0.001
[0.025] [0.029] [0.008] [0.008] [0.024] [0.022]
Num. sample HH neighbors -0.019 -0.005 0.020 -0.002 0.009 0.005
[0.015] [0.016] [0.005] [0.005] [0.013] [0.015]
Outcome mean -0.004 -0.002 0.000 0.000 0.002 2.739
Observations 2122 2122 21390 21390 2826 2825
Panel B: Treatment plot neighbors
Num. treatment plot neighbors 0.024 0.028 -0.008 0.006 -0.004 0.039
[0.018] [0.016] [0.005] [0.004] [0.014] [0.012]
Num. sample plot neighbors -0.015 -0.019 0.000 -0.006 0.009 -0.021
[0.011] [0.010] [0.003] [0.003] [0.009] [0.007]
Outcome mean -0.001 0.001 -0.001 -0.001 0.003 2.734
Observations 2131 2131 21450 21450 2838 2837

Notes: Standard errors clustered by household are in brackets. All specifications control for village and round fixed
effects. All columns use data from endline rounds, i.e. rounds 6 through 9 (see Appendix B). For columns (1)-(4),
we use data from rounds 6, 8 and 9 only as we did not collect best practices data in round 7. In column (1), we use
self-reported knowledge data. In column (2), we use self-reported adoption data. In column (3)-(4), we use tree-level
audit data. Column (5) represents the average of five variables, each standardized using the Control group mean and
standard deviation: total household labor days, total non-household labor days, the share of coffee plots where the
household applied mulch, kilograms of compost, and kilograms of NPK. In columns (1)-(5), for ease of interpretation,
we also normalize each index by its Control group mean and SD. In column (6), we apply a Poisson regression to the
outcome. All regressions control for baseline covariates selected via post-double selection LASSO.
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Table A14: Impacts of Village Treatment Concentration on Audits Adoption

and Leaf Health Index Components.

Signs that

Branches

Centers

Bark is

T Dripline is  tree was re- Dead touching opened  Unwanted oud an.d smoothed Few signs Few signs .
ree canopy letely juvenated branches the ground  (crossin, Suckers dry berries Berry borer or banded of curlin, Few signs
has mulch “OTPetey ) have been 8 s are traps used yellowing & of leaf rust
weeded  in past 6-7 havebeen branches  removed to control on leaves
removed removed . on leaves
years removed  removed) white borer
O @ G @ ) (6) @ ® ©) (10) 11 12) (13)
Panel A

50% T in village -0.055 -0.005 -0.002 0.044 -0.016 0.032 0.011 0.017 -0.001 -0.007 0.002 0.008 0.028

[0.071] [0.037] [0.015] [0.019] [0.014] [0.023] [0.026] [0.019] [0.009] [0.013] [0.014] [0.021] [0.041]

(0.526) (0.916) (0.865) (0.050) (0.545) (0.263) (0.660) (0.500) (0.908) (0.613) (0.889) (0.696) (0.567)

75% T in village -0.017 -0.018 -0.007 0.020 -0.011 -0.018 -0.011 -0.001 -0.004 -0.014 -0.017 -0.015 0.008

[0.064] [0.043] [0.014] [0.023] [0.022] [0.027] [0.029] [0.023] [0.011] [0.011] [0.013] [0.018] [0.032]

(0.845) (0.708) (0.629) (0.394) (0.715) (0.543) (0.670) 0.979) (0.691) (0.336) (0.283) (0.494) (0.897)

Sample mean, 25% villages 0.602 0.607 0.851 0311 0918 0.425 0.437 0.397 0.022 0.049 0.165 0.197 0.268
p-value: 50%=75% 0.60 (0.65) 0.76 (0.79)  0.69 (0.71) 0.22(0.27) 0.82(0.88) 0.01(0.06) 0.24 (0.38) 0.44 (0.46) 0.74(0.77) 0.62(0.61) 0.12(0.19) 0.18(0.25) 0.63 (0.69)

Observations 47598 47453 47603 47617 47616 47616 47617 47618 31853 47613 47593 47603 47595

Panel B

Treated HH -0.032 -0.018 -0.015 -0.011 -0.003 -0.016 -0.021 -0.032 -0.014 -0.000 -0.026 -0.011 -0.010

[0.023] [0.033] [0.040] [0.025] [0.009] [0.024] [0.021] [0.033] [0.013] [0.019] [0.014] [0.016] [0.023]

(0.306) (0.520) (0.457) (0.673) (0.790) (0.558) (0.388) 0.172) (0.105) (1.000) (0.159) (0.586) (0.684)

50% T in village -0.079 -0.015 -0.005 0.042 -0.013 0.025 0.016 0.017 -0.014 -0.008 -0.011 0.005 0.012

[0.064] [0.037] [0.019] [0.018] [0.017] [0.022] [0.030] [0.024] [0.011] [0.014] [0.017] [0.024] [0.041]

(0.344) (0.751) (0.768) (0.090) (0.635) (0.406) (0.561) (0.538) (0.157) (0.605) (0.508) (0.820) (0.822)

75% T in village -0.083 -0.070 -0.001 0.004 -0.010 -0.024 -0.048 -0.003 -0.012 -0.022 -0.037 -0.032 -0.013

[0.060] [0.043] [0.020] [0.019] [0.021] [0.034] [0.043] [0.027] [0.011] [0.010] [0.015] [0.021] [0.038]

0.372) (0.153) (0.956) (0.875) (0.756) (0.505) (0.123) (0.930) (0.262) 0.213) (0.070) (0.227) (0.807)

Treatment X 50% T in village 0.064 0.029 0.013 0.010 -0.005 0.022 -0.002 0.015 0.032 0.003 0.041 0.013 0.038

[0.033] [0.042] [0.045] [0.032] [0.014] [0.026] [0.028] [0.043] [0.014] [0.021] [0.018] [0.025] [0.027]

(0.104) (0.432) (0.610) (0.788) (0.778) (0.541) (0.961) (0.610) (0.004) (0.871) (0.086) (0.642) 0.171)

Treatment X 75% T in village 0.108 0.082 0.002 0.028 0.000 0.018 0.063 0.024 0.020 0.011 0.044 0.030 0.035

[0.026] [0.036] [0.045] [0.038] [0.013] [0.033] [0.041] [0.040] [0.016] [0.020] [0.016] [0.017] [0.026]

(0.010) (0.034) (0.960) (0.448) (0.982) (0.618) (0.077) (0.485) (0.099) (0.550) (0.095) (0.299) (0.287)

Control mean, 25% villages 0.602 0.607 0.851 0311 0918 0425 0.437 0.397 0.022 0.049 0.165 0.197 0.268
p-value: 50% T=75% T 0.95(0.97) 0.08(0.27) 0.88(0.86) 0.07(0.23) 0.88(0.91) 0.09(0.17) 0.09(0.04) 0.53(0.52) 0.65(0.89) 028(0.41) 0.07(0.25) 0.11(0.16) 0.58 (0.62)
p-value: Treat x 50% T = Treat x 75% T 0.11(0.26) 0.08(0.12) 0.72(0.64) 0.64(0.60) 0.75(0.75) 0.89(0.93) 0.10(0.05) 0.84(0.79) 0.18(0.29) 0.42(0.60) 0.83(0.90) 0.43(0.48) 0.86 (0.90)
p: Treatment + Treatment x 50% T=0 0.14(0.19) 0.62(0.57) 0.92(0.88) 0.95(0.94) 0.52(045) 056(0.77) 0.17(0.26) 0.54(0.36) 0.00 (0.01) 0.74(0.81) 0.14(0.31) 0.95(0.95) 0.01(0.11)
p: Treatment + 50% T + Treatment x 50% T=0 0.53 (0.60)  0.94 (0.96) 0.64 (0.68) 0.05(0.11) 0.12(0.43) 0.15(0.33) 0.81(0.78) 0.99(0.99) 0.70(0.64) 0.66 (0.70) 0.83(0.84) 0.80(0.80) 0.33(0.38)
p: Treatment + Treatment x 75% T=0 0.00 (0.02) 0.00(0.02) 0.55(0.49) 0.59(0.51) 0.78(0.81) 0.91(0.93) 0.24(0.10) 0.74(0.71) 0.39 (0.43) 0.10(0.35) 0.06(0.32) 0.13(0.37) 0.11(0.24)
p: Treatment + 75% T + Treatment x 75% T=0 0.92(0.94) 0.90 (0.90) 0.28 (0.37) 0.41(0.39) 0.59 (0.67) 0.38(0.51) 0.85(0.84) 0.67(0.68) 0.67(0.54) 0.38(0.48) 0.22(0.27) 0.50(0.55) 0.72(0.84)

Observations 47598 47453 47603 47617 47616 47616 47617 47618 31853 47613 47593 47603 47595

Notes: Standard errors clustered by household in brackets, with randomization inference p-values in parentheses below
those. Each panel concludes with p-values for various linear restriction tests, with those in parentheses corresponding to
the randomization inference results. All specifications control for round fixed effects. All columns use data from endline
rounds 6, 8, 9 at the household-plot-tree-round level. Columns 1-8 constitute the components of the Audits Adoption index
in column 3 of Table 3. Columns 9-11 are the components of the Leaf Health index in column 4 of Table 3. All regressions
control for baseline covariates selected via post-double selection LASSO.
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