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1 Introduction

Rare disaster risk has been proposed as a possible explanation for long-standing asset-pricing
puzzles, such as the equity premium and volatility puzzles. This explanation has received
increased attention in recent years. Studies have attempted to justify the equity premium as
a rational compensation for disaster risk (Rietz 1988). Barro (2006) extends this approach
to account for the observed equity premium using realistic risk aversion parameters.

Gabaix (2012), Gourio (2008), and Wachter (2013) model time-varying disaster risk as a
key mechanism driving time-varying asset expected returns to help explain several puzzles in
asset markets, such as the excess volatility puzzle, the predictability of equity market returns
by price dividend ratios, the cross-sectional predictability of stock returns, and the term
spread puzzle. The authors argue time-varying probability or severity of rare disasters can
significantly affect asset prices and returns and that these effects can help explain observed
anomalies that are otherwise difficult to reconcile with standard financial models.

The theory that high expected market equity returns derive from rare disaster risks sug-
gests a natural cross-sectional implication: that an asset such as gold that provides high
returns when a rare disaster occurs is a good hedge and, thus, should have low expected
returns. For example, in the ICAPM Merton (1973), state variables that capture future
investment opportunities can predict returns incrementally to CAPM beta.

A behavioral perspective suggests a similar implication for a different reason: overweight-
ing of the prospect of an extreme disaster. For example, investors may overestimate the
probability of disaster because of its high salience. Alternatively, investors may overweight
low probabilities, as in cumulative prospect theory, and extreme disasters are rare. If in-
vestors overweight extreme disasters, then investors will overvalue assets whose value is in-

creasing in the probability of disaster. So stocks with higher sensitivity to disaster prospects



will earn lower expected returns.

We test here whether assets with high exposure to disaster risk tend to have lower expected
returns. Our focus is on war-related disaster risk. This emphasis aligns with Barro (2006)
and Hirshleifer, Mai, and Pukthuanthong (2023). Barro (2006) bases disaster probabilities
on World War I, the Great Depression, and World War II. Although the Great Depression
had profound global economic effects, Barro (2006) argues that in the 20" century, wars
have had greater effects on the world economy than economic contractions. Hirshleifer,
Mai, and Pukthuanthong (2023) find that war risk has greater predictive power than other
sources of disaster risk, such as economic recessions or pandemics, for aggregate stock and
bond market returns. Our study examines whether the war risk measure of Hirshleifer, Mai,
and Pukthuanthong (2023) can be applied to predict cross-sectional variation in expected
returns.

A key challenge to testing the effects of disaster risk on asset pricing is that measures
of such risk are noisy since major disasters are rare. On average, a country experiences an
international political crisis once every 15 years, a full-scale war once every 74 years, and an
internal conflict once every 119 years (Berkman, Jacobsen, and Lee 2011).

In this paper, rather than realized war events, we focus on variation in investor attention
to war risk as reflected in news media. Textual news material contains information about
current expectations (Gentzkow and Shapiro 2010; Mullainathan and Shleifer 2005). We test
for the effect of war perceptions on the cross section of expected stock returns. Since media
attention to war risk shifts continually, there is a large sample of variation in our measure
of war risk perceptions. Our approach, therefore, circumvents the issue of a limited sample
size inherent in the use of realized rare disasters.

Specifically, our approach is based on Hirshleifer, Mai, and Pukthuanthong (2023), who



construct a war risk topic (hereafter, War) from The New York Times (NYT) since 1871.
They apply a novel semisupervised topic modeling method called Seeded Latent Dirichlet
Allocation (sLDA) developed by Lu et al. (2011) to extract topics from news. The sLDA
method allows them to perform a rolling estimation using the information available only then.
This allows them to avoid look-ahead bias, a core issue for testing asset return predictability.
In addition, the technique allows them to adjust their semantic changes over time.

We construct a War factor (hereafter, WarFac) as a shock to the news-based War index
and its traded version by forming a factor mimicking portfolio. We find that the War factor
satisfies the conditions of the protocol for factor identification of Pukthuanthong, Roll, and
Subrahmanyam (2019) and passes the three-pass test proposed by Giglio and Xiu (2021),
consistent with WarFac being a priced risk factor.

In cross-sectional tests, the set of test assets is crucial (Giglio, Xiu, and Zhang 2021). A
low dimensionality of test assets favors the factors constructed by corresponding character-
istics (Lewellen, Nagel, and Shanken 2010). To address these concerns, we employ a large
set of test assets that span various dimensions of characteristics based on both direct sorting
and machine learning construction, both obtained from public sources and constructed by
us:

[1] 138 long-short portfolios from Hou, Xue, and Zhang (2020) (hereafter, HXZ),

[2] 1372 single-sorted portfolios from HXZ,

[3] 904 single-sorted portfolios from Chen and Zimmermann (2022) (hereafter, CZ),

[4] 360 machine learning-based nonlinear portfolios from Bryzgalova, Pelger, and Zhu

(2020),
[5] our own constructed 128 long-short portfolios, and

[6] our own constructed 2190 nonlinear portfolios.



We find that WarFac exhibits a stable and statistically significant return premium when
applied to diverse cross sections of test assets. It is noteworthy that WarFac excels in pricing
returns of the machine learning-based nonlinear portfolios of Bryzgalova, Pelger, and Zhu
(2020) (hereafter, ML-based nonlinear portfolios). Using these ML-based nonlinear portfo-
lios as test assets, WarFac, as a stand-alone factor model, outperforms various distinguished
factor models, explaining 49% of the variance in the test assets. Furthermore, WarFac consis-
tently generates the lowest and statistically insignificant common pricing error (the intercept)
for these ML-based nonlinear portfolios compared to other benchmarks. For example, the
alphas are 0.4% for WarFac as a solo factor model versus 3%, an average of alphas from the
four asset pricing factor model benchmarks that we consider. When we incorporate WarFac
into multi-factor benchmarks, the common cross-sectional pricing error dramatically shrinks
from 3% to close to zero. Furthermore, when pricing ML-based nonlinear portfolios, WarFac
has the most significant cross-sectional sensitivity of mean returns to loadings (in rational
settings, the market price of risk; more generally, the return premium slope). Also, this
sensitivity for WarFac is approximately two to four times higher for the ML-based portfolios
in magnitude than for other asset classes.

Bryzgalova, Pelger, and Zhu (2020) find that ML-based nonlinear portfolios capture com-
plex interactions among many characteristics and nonlinear effects of characteristics on re-
turns. They argue that their test assets are more challenging to price than conventional
cross sections. Uniquely among factor models, as far as we know, WarFac prices these as-
sets very well. These results provide support for the theories that disaster risk commands

a negative risk premium or that, for behavioral reasons, more disaster sensitive stocks are

"When pricing ML-based nonlinear portfolios, WarFac’s return premium slope stands at -36%, compared
to -17% for HXZ’s long-short portfolios, -8% for HXZ’s single-sorted portfolios, and -17% for CZ’s single-
sorted portfolios.



more overpriced.

Within the literature on disaster risks and news, Manela and Moreira (2017) (henceforth,
MM) apply a machine learning approach to construct a news-based measure of uncertainty
from the front page of Wall Street Journal (WSJ) from 1890, called NVIX, and Caldara and
lacoviello (2022) construct a geopolitical risk index from news using dictionary approach.
After controlling for their measures, WarFac provides incremental predictive power, resulting
in a negative and significant return premium.? Hirshleifer, Mai, and Pukthuanthong (2023)
further discuss the differences between these measures in aggregate market prediction.

Bybee et al. (2023) use traditional unsupervised LDA on news content to fit contempora-
neous financial and macroeconomic variables and to forecast both macroeconomic variables
and the aggregate stock market return. Bybee, Kelly, and Su (2023) construct asset pricing
factors from news media text and find that their news factors price 78 anomaly portfolios
and 25 portfolios sorted on size and book-market.

Our paper differs from Bybee, Kelly, and Su (2023) in three main ways. First, Bybee,
Kelly, and Su (2023) develop a set of six traded factors from 180 news topics, whereas we
construct one factor from the War topic to test the effects of rare disaster risk. Second, as
test assets and benchmarks, Bybee, Kelly, and Su (2023) use 78 anomaly portfolios and 25
portfolios sorted on size and book-market and benchmark pricing performance against the
Fama-French six-factor model (Fama and French 2018). In contrast, we use six sets of test
assets covering hundreds of characteristics and benchmark our single-factor model against
four prominent factor models. Third, Bybee, Kelly, and Su (2023) use an unsupervised topic

model to extract topics from economic news in the WSJ from 1984 to 2017, while we apply a

2In contrast, these two media-based uncertainty measures do not yield significant return premiums as
the disaster risk model implies. For details, see Subsection 5.1.



semisupervised topic model to extract war risk from all news in the NYT from 1871 to 2019.3
The key advantage of our semisupervised approach is that War is available in real-time, so
that our tests are not subject to look-ahead bias.

Notably, ours is the first study to examine whether an empirical measure of rare disaster
risks captured by War receives a return premium over a broad cross section of assets. Our
results confirm this prediction, while recognizing that there is also a possible behavioral
interpretation of this relationship.

As discussed earlier, War predicts aggregate time series stock and bond returns out of
sample. This paper tests whether war risk, as captured by the War factor, predicts the cross
section of expected returns. An existing literature studies whether downside tail risk or time
varying volatility helps predict the cross section of expected returns. Our study differs in
the following ways.

First, some studies focus on volatility rather than disaster risk. In contrast with the
volatility beta investigated by Chang, Christoffersen, and Jacobs (2013) and Cremers, Halling,
and Weinbaum (2015), our war risk measure focuses on left-tail outcomes.

Second, several studies test for the effects of asymmetries between upside and downside
risk. Harvey and Siddique (2000) find that assets that make the portfolio returns more
left-skewed have higher expected returns. According to Ang, Chen, and Xing (2006), the
downside risk is priced more heavily than the upside risk.

Our approach differs in focusing on changes in the perceived probabilities of future down-
side market states rather than the realized downside market states used to calculate their
downside beta. Our research is more closely related to the literature on tail risk and jump

risk estimation for explaining the cross section of expected returns. Kelly and Jiang (2014)

3We use our War index from 1926 to 2019 in asset pricing tests (data on portfolio returns becomes
available in 1926).



use realized returns for tail risk estimation. In contrast, we adopt an approach using news
data.

A series of studies, including Santa-Clara and Yan (2010), Bollerslev and Todorov (2011),
Christoffersen, Jacobs, and Ornthanalai (2012), Andersen, Fusari, and Todorov (2015), Cre-
mers, Halling, and Weinbaum (2015), and Lu and Murray (2019) apply options data to
measure jump risk. These approaches are powerful but subject to data limitations. The
options data are more reflective of jumps or movements that occur at a high frequency but
capture few of the very rare but most devastating events. The options data are available for
less than 30 years, while our study utilizes 160 years of data since the newspaper’s inception.
As emphasized by Lundblad (2007), since stock returns are highly volatile, it is crucial to
consider long-time series data to test for return predictability reliably.

Our approach offers a distinctive and complementary perspective to these methodologies.
WarFac measure provides insights into real-time market perceptions and beliefs concerning
future disaster risk, as it is grounded in evidence from media discussion. Asset prices are
determined by current market perceptions, which may or may not be unbiased estimates of
subsequent realizations. So tests based on proxies for market perceptions get more directly
at the immediate determinants of asset prices.

Lastly, Gourio (2008) develops a theory to explain the ability of disaster risk to explain the
cross section of expected returns. Empirically, he does not find a significant return premium,
which he attributes to having a poor estimator of disaster risk. Berkman, Jacobsen, and
Lee (2011) use crisis event counts to test whether disaster risk prices the Fama-French 30

industry portfolios. They benchmark against the Fama-French three factors.* In contrast,

4When we extend to 49 industry portfolios, WarFac outperforms the crisis and war count factors of
Berkman, Jacobsen, and Lee (2011) as detailed in Subsection 5.2. In unreported results, we find that the
crisis and war count factors from Berkman, Jacobsen, and Lee (2011) yield significant positive return premia
when pricing the six sets of test assets discussed above, inconsistent with the rational rare disaster asset



we consider a much more extensive set of test assets as discussed above and benchmark
our pricing results against the leading factor models such as the Fama-French six-factor
model (FF6), the Stambaugh and Yuan (2017) mispricing factor model (M4), the Daniel,
Hirshleifer, and Sun (2020) composite behavioral and rational factor model (DHS), and the

Hou et al. (2021) g-factor model (Q5).

2 Method and Data

This paper uses the sSLDA model (Lu et al. 2011) to extract specific news discourse topics.
We follow the setup in Hirshleifer, Mai, and Pukthuanthong (2023), who study the ability of
2 disaster- and 12 non-disaster-focused topics to predict aggregate market returns and find
strong performance of War. In this paper we use of War to develop predictors of the cross
section of stock returns.

In this section, we briefly discuss the setup and implementation of their method and the
news data used to extract the topics. A more extended intuitive description is provided in
Hirshleifer, Mai, and Pukthuanthong (2023); we provide a detailed description in Internet

Appendix A.1.

2.1 Stochastic Topic Models

In topic models, each document is modeled as being generated in a three-step stochastic
process (Blei 2012; Steyvers and Griffiths 2007). In the first step, a vector is randomly
selected for each document that indicates the probabilities of different topics in the document.

This is called the document-topic distribution. Next, for each word position in the document,

pricing models which predict negative return premia.



we randomly pick a topic from this document-topic distribution. Finally, at this position, we
randomly select a word from the distribution of words for the selected topic. This process is
repeated for all word positions in the document.

For each topic, the vector of probabilities of different words is global and is called the
topic-word distribution. The document-topic and topic-word distributions are characterized
by latent parameters we need to estimate. We use statistical methods to infer the topic
weights underlying each document from word frequencies in a collection of documents.

The most widely used topic model is latent Dirichlet allocation (LDA) introduced by
Blei, Ng, and Jordan (2003) and further developed by Griffiths and Steyvers (2004). Under
LDA, the document-topic distribution (again, a vector of probabilities over the topics) for a
given document and topic-word distribution (again, a vector of probabilities over the words)
for a given topic each is randomly selected from a prior Dirichlet distribution characterized
by a pre-specified hyperparameter. Under this hierarchical setup, we can use a Bayesian
estimation technique called Gibbs sampling to infer the document-topic and topic-word dis-
tributions for each document and topic.

Estimating the document-topic distribution is of interest because it gives us the proportion
of document content related to each topic. Aggregated over documents, this gives an estimate
at any given time of how heavily media discourse is focused on different topics.

Under the traditional unsupervised LDA model, the researcher must pre-specify the num-
ber of topics, and the model is free to cluster words into topics. In contrast, in this paper,
we follow Hirshleifer, Mai, and Pukthuanthong (2023) in studying specified topics of eco-
nomic interest. We therefore apply a recent extension to the LDA model called seeded latent
Dirichlet allocation (sLDA), which allows users to give domain knowledge in the form of seed

words to guide the clustering of words into predefined topics.



In addition to giving users control over topic content, sSLDA produces consistent thematic
content across different estimations, another advantage over the unsupervised LDA model.
This feature is crucial as it facilitates rolling estimations of the model to avoid look-ahead
bias and account for language changes over time. As discussed in Subsection 2.3 below,
every month ¢, we use the rolling 10 years (including month ¢) of news data to estimate the
sLDA model. This estimation scheme allows us to use only available data to estimate topic
weights, avoiding the look-ahead bias of using future news data in estimating current topic
weights. Moreover, under rolling estimations, words clustered into topics change monthly
based on their usage at each estimation date, allowing for language changes over time. See

Internet Appendix A.1 for more details about LDA and sLDA.

2.2 Seed Words

A key component of an sLDA model is the set of seed words representing the prior knowl-
edge of each topic. As emphasized by Watanabe and Zhou (2020), a dictionary of seed words
must be carefully chosen based on field-specific knowledge independent of word frequencies
in the text collection. Our seed words for War include conflict, tension, terrorism, war.® In
addition to War, Hirshleifer, Mai, and Pukthuanthong (2023) also study Pandemic and 12
economic topics drawn with slight modifications from Shiller (2019) and include one addi-
tional “garbage collector” to absorb everything else in the news unrelated to these topics.%

See Table A.1 for each topic’s list of lemmatized seed words.”

°In the setup of LDA, “tension(s)” tends not to be assigned to War in documents that talk little about
war (such as articles about tension headaches) and to be assigned to War in documents that talk a lot about
war (such as articles about international tensions).

6The other topics include Panic, Confidence, Frugality, Conspicuous Consumption, Monetary Standard,
Technology Replacing Jobs, Real Estate Boom, Real Estate Crashes, Stock Market Bubbles, Stock Market
Crashes, Boycotts, Evil Business, and Wage and Labor Unions.

7“Lemmatization” removes word endings such as s, es, ing, ed.
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Barro (2006) also uses information about war to estimate the parameters of his model. He
finds that war risk explains the equity premium puzzle. As mentioned in the introduction,
War outperforms the other topics in predicting stocks and bond returns both in- and out-

of-sample. Based on this past evidence, we focus on War in this paper.

2.3 Estimation

Figure 1 illustrates the rolling estimation scheme used in the paper. At the end of each
month ¢, we run the sLDA model using all news data over the past 120 months (months
t—119 to t). We use ten years of news data in the monthly estimation to balance the amount
of news data required to estimate the model and computational costs. On average, every
ten years of historical data consists of around 460,000 articles, sufficient to reliably extract
the topic weights at the time of estimation.

During each monthly estimation, we use Gibbs sampling to estimate the vector of topic
weights for each document in month ¢. We compute the global monthly weights of each topic
as the average weight of each topic across all articles in month ¢, weighted by the length of
each article. See Internet Appendix A.2 for more details of the estimation.

Although ten years of news articles are used to estimate the model each month, the final
topic weights in month ¢ are computed from the news articles of that month only. The final
output of the estimation process is a time series of monthly weights for each of the 14 topics.
The topic of interest in this paper is War, whose time series is used to construct the War

factor used in our asset pricing tests.
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2.4 News Data

We exploit the richness of full newspaper texts using articles since the beginning of the
NYT’s inception. We remove articles with limited relevant content, such as those that
contain mostly numbers, names, or lists. We then conduct the standard text processing
steps.®

After the cleaning steps, for each month ¢, we create a document term matrix containing
all articles over the past ten years up to the current month. Each row of the matrix is
an article, each column is a term, and each entry is the count of that term in the article.
The document-term matrix and topic-based seed words are input into the sLDA model to
estimate monthly topic weights, as described in the preceding section.

Since 1871, the NYT has published over 6.8 million news articles with an average monthly
of 3,800. (Data are missing for September and October 1978 due to strikes.) Over 1871-
2019, articles come in at an average length of 493 ngrams, including unigrams (one-word
term), bigrams (two-word terms), and trigrams (three-word terms). Figure A.1 plots our

sample’s monthly counts and average length of NYT articles.

3 Textual Discourse about War Risk

We next describe the War index constructed by sLDA. We first discuss the words clustered
into the War topic by sLDA and its evolution over more than 100 years.

During each monthly estimation, we keep the 30 words with the highest probabilities in
the War topic as the output of the sSLDA model. In Figure 2, we plot the word cloud of

these War words: the higher the frequency of a word over time, the bigger its size in the

8We follow the text cleaning procedure described in Internet Appendix A of Hirshleifer, Mai, and Puk-
thuanthong (2023).
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plot. The words clustered into the War topic are consistent with the initial seed words. The
most important words for War over time are conflict, war, government, state, tension, and
malitary.

Panel A of Figure 3 shows that War spiked in the 1870s during the Reconstruction period
following the American Civil War and surged again during the 1890s, marked by the Spanish-
American War and Philippine-American War. War reached its highest level since the start
of the sample during World War I and remained low during the 1920s and 1930s before
surging again during World War II.

In Panel B of Figure 3, we zoom in on the last 30 years of the sample and identify the
ten articles with the most significant contributions to the ten highest monthly scores of War
hikes since 1990. Panel B of Figure 3 shows that War spiked during the Gulf War in the early
1990s and again after the 9/11 terrorist attacks in 2001. In recent years, War has remained
high, particularly from 2014 to 2018, reflecting the period of international tensions, including
the nuclear weapons development and tests by North Korea. A detailed description of the

statistics for all extracted topics is provided in Hirshleifer, Mai, and Pukthuanthong (2023).

4 War Discourse and the Cross Section of Expected
Returns

In the next subsection, we discuss the theoretical background. Then, in Subsection 4.2,
we present the asset pricing framework. The last three subsections discuss test assets and

results.
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4.1 Theoretical Background

Hirshleifer, Mai, and Pukthuanthong (2023) provide evidence that War positively predicts
the aggregate stock market return. This section tests whether a factor based on War can
be used to predict the cross section of expected stock returns. We test whether loadings on
this factor are negative return predictors.

Such a relationship is implied by rational models of rare disaster risks (Barro 2006, 2009)
as discussed in Gourio (2008). In such a setting, investors require a risk premium for bearing
greater war risk (beyond the standard CAPM premium for beta), perhaps because of a
stochastically varying investment opportunity set (Merton 1973). Stocks that provide high
returns during periods of high War risk provide a hedge for aggregate consumption and
therefore command low return premia.

Such a relationship is also a consequence of a behavioral perspective in which investors
overweight war prospects. This implication builds on models in which imperfect rationality
affects the cross section of expected returns. In the model of Daniel, Hirshleifer, and Subrah-
manyam (2001) when there are imperfectly rational investors as well as rational arbitrageurs,
in equilibrium mispricing generates cross-sectional return predictability, and behavioral fac-
tors are priced. As pointed out byKozak, Nagel, and Santosh (2018), the covariance structure
and expected returns of individual assets are linked, which places bounds upon the Sharpe
ratios of behavioral factors. This leads to deviations from the cross sectional asset pricing
model that would apply under perfect rationality (see, e.g., Daniel, Hirshleifer, and Sun
(2020)).

Specifically, major disasters are highly salient, and the psychology of attention suggests
that people overestimate the probabilities of salient events. Also, under cumulative prospect

theory preferences, investors overweight low probabilities. This implies that rare risks (in-
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cluding the risk of war) are overweighted. In either case, investors overvalue assets that will
do well in the event of war, as investors place a high value on the fact that such assets are
good hedges. Such stocks will subsequently tend to earn low returns. In contrast, stocks
that are negatively sensitive to war prospects (i.e., will do poorly in the event of war) will
be undervalued and tend to earn high returns. So expected returns across stocks tend to
decrease with the loadings on the War factor. Higher loadings mean that a stock is less
negatively (or more positively) sensitive to the war risk that investors are pessimistic about.
In other words, factor loadings proxy for mispricing.

Gourio (2008) derives a framework for testing the cross-sectional implications of rare
disaster premia. He defines rare disasters as the states of the economy when the monthly
market returns are below 10%, or the annual consumption growth is lower than -2.3%. Gourio
(2008) does not find empirical support for the cross-sectional version of the rare disaster risk
model. However, extant measures of variation in rare disaster risk that are based on ex-post
realizations, such as that used in Gourio (2008), have small sample sizes. This limits the
power to identify effects.’

We use news data to capture investors’ perceptions of disaster risk, as extracted in our
War index. We test for the ability of our War factor in a linear factor model to price
characteristic-sorted portfolios from July 1972 to December 2016 and industry portfolios
from 1926 to 2018.1°

9Gourio (2008) use the returns during 9/11, natural disasters, and low consumption. He argues that if
there are large risk premia for rare disasters, industries that did well on 9/11 (e.g., defense, tobacco, gold,
shipping and railroad, coal) should have low return premia. On average, industries that did poorly (e.g.,
transportation, aerospace, cars, leisure) should have high return premia.

10We start our sample period for characteristic-sorted portfolios in July 1972 since it is when the DHS
factors are available. The sample ends in December 2016 because the mispricing factors of Stambaugh and
Yuan (2017) and the ML-based portfolios of Bryzgalova, Pelger, and Zhu (2020) are available through 2016.
The pricing results for our War factor are robust for the sets of portfolios available until October 2019, the
end of our War index.
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4.2 Asset Pricing Framework

Let the realization at date t of the War factor be denoted WarFac;. To capture factor

pricing, we propose the following SDF for excess returns that are affine in WarFac;:
SDF, =1—bx WarFac. (1)

The no-arbitrage condition for an asset i’s return over the riskfree rate is

0=E|R;,SDF,]

E [Re bx RS WarF cov (Rff’t,WarFact)
[ - Vari arFacy) x var (WarFac;) (2)
AWar ~ ~ -
6i,Wa,7'

E[RS,] = Awar X Biwar,

where Rf, is the excess return of asset ¢ at time ¢, 5; ., denotes the exposure of asset i to
the War factor, and Ay, is the cross-sectional return premium slope associated with the
War factor. Alternatively, the behavioral interpretation of A measures the extent to which
assets with higher sensitivity to war prospects are overvalued relative to stocks with lower
sensitivity.

To estimate B;war, and Awer, we conduct the standard two-pass test (Cochrane 2005,
Chapter 12). First, for each asset i« = 1,..., N, we estimate the risk exposures from the

time-series regression:
e /
R, = o + Bi,th + €ty (3)

where F} presents a vector of risk factors. Then, to estimate the cross-sectional return

premium slope associated with factors F}, we perform a cross-sectional regression of time-
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series average excess returns, E [Rf,t]v on risk factor exposures:
E[R”?,t} :MR,i:)‘O+Bz{,f/\f+ei fOI’izl,...,N. (4)

We obtain estimates of the cross-sectional return premium slope A and the common
cross-sectional pricing error (intercept) Ag. Under rational factor pricing, the intercept (\g)
is predicted to be zero. Under either the rational factor pricing or behavioral pricing theories,
the return premium slope (\y) is predicted to be substantial and stable across different cross
sections of test assets.

In our estimates, we report the t-statistics computed with the corrected standard errors
of Shanken (1992). The variable e; captures the pricing error, predicted to be zero under
rational factor pricing. To measure the size of pricing errors, we report the cross-sectional
R*(= 1 —02/0? ) and mean absolute pricing error MAPE (= |e|). Under rational factor
pricing, the R? should be 1, and MAPE should be 0, so the estimated R? and MAPE measure
how well the model fits the data. We also report the p-value of the Chi-squared test that all
pricing errors are jointly zero (Cochrane 2005, Chapter 12).

Following He, Kelly, and Manela (2017), we construct our War factor, denoted as WarFac,
as the innovation from an AR(1) model of War. We estimate the shock to the War in levels,

ug, and convert this to a growth rate by dividing it by the lagged War: '*

Wary = po+ p x War,_1 +u; and (5)
u
WarFac, = Wa—:‘t_f (6)

11We use data on our War index from January 1926 to October 2019 to estimate the coefficients of the
AR(1) process because data on portfolio returns first became available in 1926. Our results are not sensitive
to the different choices of this sample. Using the whole sample from 1871 to 2019 or using log difference to
construct the WarFac yield similar results.
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4.3 Test Assets

We consider a large set of test assets constructed from a wide range of characteristics,
including:1%13

[1] 138 long-short anomaly portfolios from Hou, Xue, and Zhang (2020) (HXZ),

[2] 1372 single-sorted portfolios from HXZ,

[3] 904 single-sorted portfolios from Chen and Zimmermann (2022) (CZ),

[4] 360 ML-based nonlinear portfolios from Bryzgalova, Pelger, and Zhu (2020),

[5] Our own constructed 128 long-short anomaly portfolios based on HXZ,

[6] Our own constructed 2190 non-linear portfolios.'4

To explore whether WarFac is an economy-wide factor that helps explain various anomaly
portfolios, we include a variety of testing assets, both traditional and complex.'> We include
groups of test assets in sequence. First, we start with test assets based on anomaly charac-
teristics, including the 138 long-short portfolios from HXZ: momentum, value versus growth,
investment, trading frictions, intangibles, and profitability. Second, we include all their 1372
single-sorted portfolios from 1972 to 2016 to span a large return space. Third, we consider
a different set of 904 single-sorted portfolios in CZ. Fourth, we include 360 ML-based non-
linear portfolios from Bryzgalova, Pelger, and Zhu (2020). They argue that their ML-based
nonlinear portfolios address critical problems of conventional sorts, including complex in-

teractions, the curse of dimensionality, repackaging, and duplication. They conclude that

12T ewellen, Nagel, and Shanken (2010) show that conventional double-sorted portfolios, exposed to a
few characteristics, often present a low hurdle for asset pricing models due to their strong embedded factor
structure.

13For all sets of test assets, we require the portfolios to have non-missing data from July 1972 to December
2016, so the number of portfolios used in our study may be smaller than that in the original papers.

14The data and code are available upon request from the authors. We will make them publicly available
once the paper is accepted for publication.

15See Internet Appendix D for the detailed construction and the coverage of our testing assets.
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the ML-based nonlinear portfolios present a new way of building better cross sections of
portfolios that can be used in structural and reduced-form models. Fifth, we construct our
characteristics-sorted portfolios according to the characteristics developed by HXZ. We use
these portfolios as another testing asset set for a robustness check. Finally, we build non-
linear portfolios based on three polynomials. See Internet Appendix D.2 for a description of

how these anomaly portfolios are constructed.

4.4 Pricing Results: WarFac versus Factor Models

This subsection describes the pricing effectiveness of WarFac as compared with the factors in
several well-known factor models: the Fama-French six-factor model (FF6), the Stambaugh
and Yuan (2017) mispricing factor model (M4), the Daniel, Hirshleifer, and Sun (2020)
composite behavioral and rational factor model (DHS), and the Hou et al. (2021) g-factor
model (Q5). It is infeasible to compare all existing factor models; therefore, we concentrate
on several prominent models with different factors and motivations. FF6 is based on firm
characteristics, M4 targets anomaly portfolios, DHS incorporates short- and long-term be-
havioral factors, and Q5 is grounded in an investment CAPM. We conduct the two-pass test
presented in equations (3) and (4) to estimate factor return premia and to assess model fit.

The first set of test assets that we consider are the 138 long-short anomaly portfolios
from HXZ in Panel A of Table 1. We examine the performance of WarFac on its own and
then test whether introducing WarFac as an additional factor to the FF6, M4, DHS, and Q5
factor models provides incremental explanatory power.

In the first column with WarFac, the slope of the relation between returns and WarFac
loadings is negative and significant at the 1% level (t = —2.74). Its monthly return premium

is -17.25%. In a rational rare disaster risk setting, the negative sign implies that assets
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providing high returns during high war risk periods are good hedges of war risk and command
a lower return premium. In a behavioral setting, the negative sign indicates that such assets
are overpriced by investors who overweight the prospect of war.

WarFac has a monthly standard deviation of 14% over 1972-2016, so its first-stage betas
are much smaller than those produced by traded factors. As a result, the return premium
per loading unit (its price of risk under rational factor pricing) is much larger than that of
the other traded factors.

WarFac maintains its significance even after introducing other factors to the model.
Lewellen (2022) argues including extra factors in a model, even ones that are not incre-
mentally priced, can improve estimates of individual alphas and increase the power of asset-
pricing tests. In the last specification, when we include all factors from standard factor
models, WarFac yields a return premium of -8.9%, significant at the 1% level. The intro-
duction of WarFac to the FF6 factor model leads to an increase in the model explanatory
power (R?) by 9%. Adding WarFac to M4, DHS, and Q5 results in a respective increase in
the explanatory power of 6%, 16%, and 2%. When considered as a solo factor, WarFac has
an R? of 44% and an MAPE of 0.27%, while FF6, M4, DHS, and Q5 have R*’s of 59%, 65%,
51%, and 77% and MAPESs of 0.21%, 0.20%, 0.24%, 0.15%, respectively. These findings
indicate that WarFac provides a good model fit even as a solo factor. However, we reject the
null that pricing errors are jointly zero under all models.

We next evaluate the performance of WarFac in pricing the 1372 single-sorted portfolios
from HXZ as test assets in Panel B of Table 1. The monthly return premium for WarFac is
reduced by more than half, from -17% to -8%, and the absolute t-statistic diminishes from
2.67 to 2.36. This indicates that WarFac provides better pricing of the long-short anomaly

portfolios. Furthermore, including WarFac in the factor models results in an increase of

20



approximately 4% in their explanatory power. However, as a single-factor model, WarFac
does not fit these portfolios well, as its R? is only 18% compared to 42%, 43%, 34%, and 55%
provided by FF6, M4, DHS, and Q5, respectively. In the last column of Panel B, WarFac
yields a return premium of 4.7%, significant at the 1% level, when tested against all factors.
For this set of test assets, MAPEs of all models are around 0.1%, and under all models
except FF6, we fail to reject the null that pricing errors are jointly zero.

Panel C reports the results for the 904 single-sorted portfolios of Chen and Zimmermann
(2022). This set of test assets is gaining popularity in the literature because it does not rely
on any underlying benchmark factor model, such as FF6 or Q5. WarFac, as a solo factor, has
a return premium of -17.2%, significant at the 1% level, and explains 27% of cross-sectional
variation in expected returns of this set of assets. The return premium of WarFac remains
significant at the 1% level after including other factor models or a model consisting of all
other factors combined. Adding WarFac to M4 increases the R? from 12% to 34%.

When the test assets are the 360 ML-based nonlinear portfolios, WarFac yields a return
premium of -36% per month and an insignificant common pricing error (intercept), as seen
in the first column in Panel D of Table 1. Remarkably, the monthly return premium for
loadings on WarFac increases (in absolute magnitude) to -57%, -47%, -49%, and -48% after
including FF6, M4, DHS, and Q5. Furthermore, including WarFac enhances the explanatory
power (R?) of the FF6, M4, DHS, and Q5 models by 27%, 21%, 28%, and 11%, respectively,
and reduces the MAPEs of these models by 0.07% on average. For this set of test assets, the
explanatory power of the WarFac as a single-factor model is 49%, which is higher than FF6
(41%), M4 (40%), DHS (35%), and lower than Q5 (58%). Moreover, the addition of War to
the multifactor benchmark models substantially reduces the average cross-sectional pricing

error or intercept from prominent factor models, from 3.25% to close to zero on average.
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When all factors are included, WarFac has a return premium of 21%, significant at the 1%
level. Also, by adding WarFac to FF6, DHS, and Q5, we fail to reject the null that the
pricing errors are jointly zero.

These findings indicate that WarFac effectively prices various assets—especially the ML-
based nonlinear portfolios. The ML-based nonlinear portfolios capture complex interactions
among many characteristics and the nonlinear effects of characteristics on returns, making
them more challenging to price than conventional sets of test assets.

To evaluate the robustness of our findings, we perform additional tests using our con-
structed long-short and nonlinear portfolios as test assets. Our 128 long-short anomaly
portfolios are constructed similarly to those in HXZ. Our 2190 nonlinear portfolios are con-
structed from the characteristics of up to three polynomials (see Internet Appendix D). The
results of these additional test assets are reported in Table B.1 in Internet Appendix B.
Overall, the results are robust to using these other test asset sets. WarFac is significant and
provides the most additional information for pricing to DHS, followed by FF6, M4, and Q5.

In summary, we find that WarFac prices a wide range of test assets, and assets that
pay off during high war risk periods are either overpriced on average or are good hedges,
thereby earning low return premia. WarFac prices long-short and nonlinear portfolios very
well. It contributes to the explanatory power of the benchmark models by approximately
20% when pricing 360 ML-based nonlinear portfolios and 128 long-short anomaly portfolios.
This finding suggests that War is a valuable addition to the benchmark models for pricing

a diverse range of assets.
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4.5 Pricing Results: WarFac versus Individual Factors

In the preceding subsection, we show that WarFac performs well in pricing a wide range
of test assets as a solo factor. In this subsection, we examine whether any factor from
benchmark factor models has similar pricing performance. To do so, we perform the two-
pass tests with 15 individual factors, including our 2 War related factors and 13 traded
factors from benchmark factor models.

The WarFac mimicking portfolio is constructed as the fitted value from a projection of
WarFac onto basis assets (see Section 6 for details). Table 2 shows that WarFac, the WarFac
mimicking portfolio, and CMA (Conservative Minus Aggressive—an investment factor from
FF6) are the only factors that consistently produce a significant return premium across all
six sets of test portfolios. In 4 out of 6 sets of test assets (except single-sorted portfolios
from HXZ and our own constructed nonlinear portfolios), R? produced by WarFac is higher
than that of all traded factors. For the ML-based portfolios from Bryzgalova, Pelger, and
Zhu (2020), WarFac’s R? (49%) is nearly double the largest R? produced by a traded factor
(CMA at 28%). The MAPE results are consistent with those of R%.

Overall, the results from Table 2 indicate that it is not easy for any traded factor to per-
form well in pricing our collection of test portfolios. This further strengthens our conclusion

that WarFac is a strong risk factor.

5 War Discourse versus Other Uncertainty Indexes

This section tests whether WarFac has additional pricing power beyond other recently in-

troduced news-based and event-based uncertainty indexes.
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5.1 War Discourse versus Other Media-Based Uncertainty In-

dexes

The preceding section reports that War innovations negatively predict returns across various
test portfolios. Recent literature has introduced news-based disaster risks, most notably the
news implied volatility (NVIX) from Manela and Moreira (2017) and the geopolitical risks
(GPR) from Caldara and Iacoviello (2022).' This section investigates whether WarFac
contains information beyond these two measures by performing horse-race cross-sectional
return prediction tests.

We conduct the cross-sectional tests with the factors constructed from War, NVIX?2,
and geopolitical risks (GPR).'” We construct these factors using equation (6). As reported
in Table 3, across all three sets of test assets, the economic and statistical magnitudes of
WarFac remain almost unchanged in the presence of NVIX? and GPR factors, implying War
presents distinct information. Meanwhile, NVIX? and GPR command positive risk premia
when used alone though their economic and statistical significance varies across test assets.
When tested against WarFac, the NVIX? and GPR factors are completely subsumed across
three groups of test assets.

Overall, these findings indicate that WarFac is a cross-sectional return predictor, consis-
tent with the predictions of the rare disaster models (Barro 2006; Gabaix 2012; Gourio 2008)
or with overweighting of disaster risk, and contains valuable information not captured by

other empirical measures of rare disaster risks.

16We thank the authors of these papers for making their data available.
1"We use NVIX? to be consistent with the original paper.
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5.2 War Discourse versus Crisis Event Counts: Pricing Industry

Returns

We next investigate whether the news-based WarFac prices industry portfolios. Berkman,
Jacobsen, and Lee (2011) measure empirical disaster risks by counting the number of crisis
events each month.'® They argue that the raw realized number of crisis events is a good proxy
for investors” perception of rare disaster risks. The authors show that factors constructed
from crisis event counts price the Fama-French 30 industry portfolios with negative return
premiums. We test here whether WarFac has incremental predictive power beyond real-world
crisis factors.

Following Berkman, Jacobsen, and Lee (2011), we construct all event-based and news-
based crisis-related factors as residuals from AR(1) processes on crisis event count, war event
count, and our War index separately. Then, every month ¢, to estimate crisis betas, we run
the time series regression of portfolio returns on the crisis factor and control for the market

(MKT), size (SMB), and value (HML) factors as follows:
RS = i+ Bu Xy + BYFETMKT, + B5MBSMB, + BHMYHML, + €y, (7)

where R, is the excess return of portfolio ¢ over month ¢t —59 to month ¢, and X is either the
War factor (WarFac), the crisis event count factor (CrisisFac), or the war event count factor
(CWarFac). To mitigate the effect of outliers on crisis betas, following Berkman, Jacobsen,
and Lee (2011), each month, we cross-sectionally rank crisis betas [; into quintiles and
rescale the ranks so that the variable lies between 0 and 1. Next, to compute the monthly

return premiums, we run the monthly cross-sectional regression of portfolio returns onto the

18The data is updated to 2018 and available at https://sites.duke.edu/icbdata/.
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previous month’s betas computed in the previous step:
RS, = Aot + MBigm1 + NETBMET + WM BIME 4 NIMEREME + ¢y, (8)

where the )\; are the estimates of factor return premiums in month ¢. Finally, to compute the
unconditional factor return premiums, we take time-series averages of the \; and evaluate
statistical significance using Newey and West (1987) standard errors.

In Panel A of Table 4, the test assets are 30 industry portfolios. The sample period is
from July 1926, when the returns data are first available, to December 2018, the end of the
crisis event sample. As in Table 9 of Berkman, Jacobsen, and Lee (2011), CrisisFac and
CWarFac have negative monthly return premiums of about -0.3%. WarFac also yields a
negative return premium of -0.24%, significant at the 5% level. In the last column, when
we include all three crisis factors, both WarFac and CrisisFac have equal negative return
premiums of 0.3%, significant at the 5% level. In contrast, the return premium of CWarFac
is only -0.21%, significant at the 10% level.

In Panel B, we evaluate a larger number of test assets—49 industry portfolios. For this
set of test assets, when used alone, WarFac and CrisisFac each yield similar return premiums
of -0.25%, significant at the 5% level. In contrast, the return premium of CWarFac is not
significant. In the last column, Warfac dominates the other two event-based crisis factors
when all three crisis factors are included.

Overall, we find a factor based upon our news-based War variable prices industry port-
folios with a negative return premium. This effect is strong and incremental to what is

captured by the event-based crisis factors from previous literature.
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6 The War Factor-Mimicking Portfolio

Our previous analysis constructs WarFac as a shock from the first-order autoregressive pro-
cess. This is a computationally simple approach, but the resulting factor is non-traded.
Non-traded factors may contain noise unrelated to returns, which attenuates beta estimates
of all assets in the first-pass time series regressions and inflates the return premium slope
(market price of risk in rational settings) estimates in the second-pass cross-sectional regres-
sion (Adrian, Etula, and Muir 2014). As discussed in Subsection 4.4, the estimated return
premium for WarFac loadings is economically substantial at around -22% per month across
test assets. Still, this estimate may be inflated due to noise.

In this section, we form a traded version of the WarFac or the WarFac mimicking portfolio
by projecting WarFac onto the space of excess returns. WarFac mimicking portfolio is in
the form of a traded return. Compared to the shock, the mimicking portfolio captures the
exposure of assets to War risk and provides insights into the potential alpha and Sharpe ratio
generated by the WarFac loadings. The drawback is that constructing this portfolio requires
more data and computational resources and may be subject to misspecification or estimation
errors. We present the WarFac mimicking portfolio results to ensure robust conclusions and

address the issue of inflated estimates of the return premium slope discussed above.

6.1 Construction of WarFac Mimicking Portfolio

Adrian, Etula, and Muir (2014) suggest that most non-traded factors are combinations of
a factor mimicking portfolio (FMP) and noise, and exhibit inflated return premium slope
(“market price of risk”) owing to noise and measurement errors that are uncorrelated with

returns. To tackle the inflation estimation issue of non-traded factors, they advocate con-
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structing FMPs and re-performing tests. The FMP represents a linear projection of the
non-traded asset on the return space and carries the same pricing information as the original
factor (Cochrane 2005, Chapter 6).

To construct WarFac mimicking portfolio, following the time-series approach of Adrian,

Etula, and Muir (2014), we project our nontraded WarFac onto the space of excess returns:
WarFac, = a+ 'R + ¢, (9)

where R€ is the vector of excess returns on 30 portfolios consisting of 10 equal-weighted
portfolios sorted on the market value of equity, 10 equal-weighted portfolios sorted on book-
market ratio, and 10 value-weighted portfolios sorted on past 12-month returns (i.e., mo-
mentum) downloaded from Ken French’s website.! We follow Cooper and Priestley (2011)
and Pukthuanthong, Roll, and Subrahmanyam (2019) in using the equal-weighted returns on
the size and book-market portfolios because equal-weighted returns on these characteristics
have more variation and span a larger portion of the return space than do the value-weighted
ones. Using these portfolios also enables us to use a long time series from 1926 to 2019 to
construct a portfolio that mimics Warfac since data on these portfolios are available from
1926.
We then define the WarFac Mimicking Portfolio (WMP) as the fitted value.

~

WMP, = 3R, (10)

where f is estimated via OLS from 1926 to 2019.20

Panel A of Table 5 reports the summary statistics of WMP and other traded factors

19]deally, the error ¢, is orthogonal to the space of returns so that the covariance of any asset with WarFac
is identical to its covariance with the mimicking portfolio, defined as the fitted value of the regression.

20Even though WarFac is missing in September and October 1978 due to strikes at the NYT, we calculate
WMP without a gap from 1926 to 2019. After estimating the projection coefficient B using WarFac, we
apply B to non-missing portfolio data.
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over 1972-2016. WMP has a monthly average return of -0.87%, consistent with the negative
return premium estimate for WarFac, and a monthly standard deviation of return of 3.26%,
yielding an absolute annualized Sharpe ratio of 0.92. The absolute Sharpe ratio of WMP is
lower than that of PEAD (1.16) and R_EG (1.53) and higher than those of the remaining

factors.

6.2 Spanning Tests

We first examine whether WMP expands the efficient frontier by running spanning tests of

WMP on benchmark factor models. Specifically, we run the following time series regression:
WMP, =a+ B F, +e, (11)

where F; is the vector of traded factors. As reported in Panel B of Table 5, WMP has
a monthly alpha of around 0.6%, significant at the 1% level, when tested against each or
all factor models together. This result indicates that WMP can be combined with the
corresponding benchmark factors to generate a portfolio that mean-variance dominates the
benchmark factors (Back 2018, page 143). Furthermore, all factors combined explain only

22% of the time-series variation of WMP.

6.3 Pricing Results: WMP versus Factor Models

To test the performance of War in explaining the cross section of expected returns, we
investigate the pricing performance of the WarFac mimicking portfolio WMP using the
same test assets we use in the previous sections. We report the results for 138 long-short
anomaly portfolios from HXZ, 1372 single-sorted portfolios from HXZ, 904 single-sorted

portfolios from CZ, and 360 ML-based nonlinear portfolios in Table 6. The results for our
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128 own-constructed anomaly portfolios and our 2,190 own-constructed nonlinear portfolios
are reported in Table B.2.

In a single-factor model with WMP, the return premium for loadings on war risk is
negative across test assets, all significant at the 1% level. The monthly return premium for
loadings on WMP is -1% for the 138 anomaly characteristic portfolios from HXZ, -0.86%
for the 1372 single-sorted portfolios from HXZ, -1.35% for the 904 single-sorted portfolios
from CZ, -2.51% for the 360 ML-based nonlinear portfolios, -1.19% for our own-constructed
128 anomaly characteristic portfolios, and -1.35% for our 2019 own-constructed nonlinear
portfolios. Hence, the absolute return premium for loadings on war risk is, on average, 1.4%
per month (or 16.6% per annum) across test assets. Except for when WMP is tested against
M4 and Q5 on the 138 anomaly characteristic portfolios from HXZ and against all factors
on the 360 ML-based portfolios, the risk premia of WMP remains significant at least the
5% level in all other specifications across all sets of test assets. As a solo-factor model, the
average R? for WMP across six sets of test assets is 28%. Our result remains robust using
our own constructed long-short and nonlinear portfolios.

These results indicate that the pricing power of WMP constructed from 30 portfolios
aligns closely with that of the WarFac generated from a shock in the first-order autoregressive

process.

7 Robustness Check: Return Premium of War Factor

Our pricing results so far are based on standard two-pass tests. To check the robustness of
our results, in this section, we implement two recently introduced methods to identify factor

risk premium: the protocol of factor identification proposed by Pukthuanthong, Roll, and
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Subrahmanyam (2019) and the three-pass test by Giglio and Xiu (2021).

7.1 Protocol of Factor Identification

We now investigate the extent to which the WarFac Mimicking Portfolio (WMP) qualifies
as a priced risk factor by the criteria set forth by Pukthuanthong, Roll, and Subrahmanyam
(2019). They assert that a priced risk factor must be related to the covariance matrix of
returns, be priced in the cross section of returns, and yield a reward-to-risk ratio reasonable
enough to be consistent with risk pricing. We present a detailed exposition of these criteria
in Internet Appendix C.2!

The protocol of factor identification applies only to tradable factors. Hence, to use the
protocol, a nontraded factor such as the shock to War index must be converted into a
tradable version by constructing a mimicking portfolio. Essentially, the first condition of
Pukthuanthong, Roll, and Subrahmanyam (2019) examines whether a factor is in the SDF,
i.e., is associated with aggregate risk. The second condition ensures a factor is priced and
commands a return premium. When factors are unrelated to the covariance matrix or not
in the SDF but still demand significant risk premia, it implies that these factors capture
some risks that are not directly related to the underlying economic state variables or in-
vestors’ preferences. As reported in Table C.1 and Table C.2, WMP passes these conditions,

consistent with it being a priced risk factor.

21Surpassing these hurdles makes it more plausible that the factor’s performance reflects priced risk.
However, it does not rule out the possibility that its performance derives from behavioral effects (i.e., market
inefficiency).
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7.2 Three-Pass test

Our second robustness check applies the three-pass test proposed by Giglio and Xiu (2021),
designed for estimating an observable factor’s risk premium when not all factors in the model
are specified or observed.

The test has three steps. First, a principal component analysis is conducted to extract
an optimal number of latent factors spanning the return space of a given set of test assets.
Second, the risk premia of these latent factors are estimated via a cross-sectional regression
of average asset returns onto asset exposures to these latent factors. Third, the observable
factor is regressed onto the latent factors via a time-series regression. The product of the
risk premia of latent factors estimated in the second step and the slopes of the time-series
regression from the third step identifies the risk premia of the observable factor. Giglio and
Xiu (2021) apply their three-pass test to a set of traded and non-traded factors and find that
most non-traded factors are not priced in a large cross section of asset returns because they
contain a lot of noise.

We apply the three-pass test to WMP and other traded factors from the four prominent
factor models discussed above and report the results in Table 7. WMP, MOM, and FIN
are the only factors having a significant estimated risk premia across all six test asset sets.
However, the estimated risk premium of FIN is only significant at 10% in two sets of test
assets. Even though other traded factors do not consistently yield significant estimated risk
premia across all sets of test assets, for all of the factors across all test assets, we reject the
null that they are weak factors according to the test of weak factors proposed by Giglio and
Xiu (2021) (reported in the last row of each panel of Table 7).

Overall, the three-pass test results and the protocol for factor identification reported in

the previous subsection are consistent with WMP and MOM being priced risk factors for all
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test assets studied in this paper.

8 Conclusion

This paper constructs a war factor based on the measure of War media textual discourse
proposed by Hirshleifer, Mai, and Pukthuanthong (2023) to evaluate shared predictions
of theories of rare disaster risk and behavioral theories of the mispricing of factors when
investors overweight the prospect of rare disasters. We find that loadings on the war factor,
WarFac, strongly predict the cross section of stock returns and provide strong incremental
predictive power relative to existing factor models. These findings apply across a broad
range of test assets.

The return premium for loadings on WarFac is negative. In a rational asset pricing
approach in which investors dislike rare disasters, investors value the hedge provided by
assets that pay off more when the risk of war is greater. In such a setting, the higher the
factor loading, the less risky the stock, implying a lower expected return.

Our findings are also consistent with behavioral-based approaches, such as a setting in
which investors overestimate the probability of war owing to the salience of rare disasters,
or in which investors overweight low probabilities as in cumulative prospect theory. Such
overweighting of war prospects implies undervaluation of stocks negatively sensitive to war
risk and overvaluation of positively sensitive stocks. Thus, stocks with high loadings on
WarFac should have low expected returns.

Our evidence suggests that War is not subsumed by the news-implied volatility (NVIX)
of Manela and Moreira (2017) and the geopolitical risk (GPR) of Caldara and lacoviello

(2022). WarFac demands a significant negative risk premium even when all factors, such
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as FF6, M4, Q5, and DHS, are included in the same regression. This finding is consistent
with the prediction of Gabaix (2012) that equities that provide good returns during high-risk
periods of rare disasters require lower returns to compensate for the risk cross-sectionally.
Overall, our findings support the notion that rare disasters are important for asset pricing,
either because they imply large rational risk premia or because investors tend to overweight
the prospect of rare disasters. Our results further imply that a particular kind of disaster,

war, is crucial for explaining the cross section of expected asset returns.
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Figure 1. Estimation Scheme

This figure plots the rolling estimation scheme for the sLDA model. Every month ¢, news articles in the
previous 120 months (including month ¢) are used to estimate the SLDA model, and then articles in month
t are used to compute topic weights in that month.

Use articles in month ¢ to compute topic weights 6; in month ¢
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Use a 120-month rolling window to estimate the topic-word distributions ¢y

Figure 2. Narrative Contents

This figure plots the frequencies of n-grams related to War over time. Frequencies are constructed according
to the sLDA model described in Section 2, and the size of each n-gram indicates its frequency. The sample
period is from January 1871 to October 2019.
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Figure 3. Time Series of the War Index

This figure plots the time series of the War Risk index constructed according to the sSLDA model described in
Section 2. The gray-shaded areas represent NBER-defined recessions. Panel A plots the index from January
1871 to October 2019, and Panel B the ten articles that have contributed significantly to ten monthly heights
of War from January 1990 to October 2019.
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Table 1
War Factor and Risk Premium

This table presents the results from the second-pass cross-sectional regressions of average portfolio returns
on factor betas:

Rfy = X+ B s As +ei,

where Rf’t is the time-series average return of portfolio ¢, §; ¢ is the vector of factor exposures of portfolio ¢
estimated via a multivariate time-series regression of portfolio returns onto factors, and Ay is the vector of
factor risk premiums. Test assets include long-short portfolios from Hou, Xue, and Zhang (2020) in Panel
A, single-sorted portfolios from Hou, Xue, and Zhang (2020) in Panel B, single-sorted portfolios from Chen
and Zimmermann (2022) in Panel C, and ML-based nonlinear portfolios from Bryzgalova, Pelger, and Zhu
(2020) in Panel D. “WarFac” is the scaled innovations in War; “MKT, SMB, HML, RMW, CMA, MOM”
are Fama and French (2018) six factors; “MKT, SMB, MGMT, PERF” are Stambaugh and Yuan (2017)
mispricing factors; “PEAD, FIN” are Daniel, Hirshleifer, and Sun (2020) behavioral factors; and “R-MKT,
R_-ME, R_IA, R.ROE, R.EG” are Hou et al. (2021) Q5 factors. Reported are monthly risk premium A and
t-statistic with Shanken (1992) correction. R? is cross-sectional R? in percentages, MAPE is mean absolute
pricing error in percentages, and p(PE = 0) is the p-value of the Chi-squared test that pricing errors are
jointly zero. N is the number of test portfolios, and T is the number of months. The sample is from July
1972 to December 2016. *, **, and *** denote significance at the 10%, 5%, and 1% levels respectively.

Panel A: Long-Short Portfolios from Hou, Xue, and Zhang (2020)

1) (2) (3) (4) (5) (6) () (8) 9) (10)
Tntercept 0.24 FFF 016 ¥F% (.15 FFF 0,09 FFF .10 FFF (.15 FFF Q.14 FFF Q11 PP .10 FFF (.07 P
(3.93) (7.08) (4.81) (3.23) (3.00) (4.67) (3.60) (2.78) (2.74) (3.01)
WarFac -17.25 ¥ 16.00 FFF 13,60 FRF 1827 ®RE g4 Rk g8
(-2.74) (-4.81) (-4.56) (-3.32) (-2.53) (-3.27)
MKT 0.48 0.89 ®% 1,14 ¥xx 0.41 0.69 * 1.05 ** 0.65 *
(1.50) (2.51) (2.98) (1.01) (1.65) (2.01) (1.88)
SMB 0.05 -0.02 -0.00 -0.05 0.18
(0.30) (-0.15) (-0.02) (-0.26) (0.98)
HML 0.27 0.29 0.55
(1.60) (1.41) (3.04)
RMW 0.28 ** 0.23 0.19
(2.27) (1.62) (1.42)
CMA 0.54 5 0.51 % 0.18
(4.91) (3.95) 1.50)
MOM 0.61 %% 0.77 % 0.52 **
(2.91) (3.40) (2.36)
MGMT 0.71 ##* 0.57 *#* 0.66 **
(4.50) (3.17) (3.54)
PERF 0.47 * 0.58 ** -0.07
(1.93) (2.07) (-0.26)
PEAD 0.36 ** 0.55 ** 0.45 5
(2.19) (2.49) (2.96)
FIN 0.96 *** 0.79 *#* 0.89 **x
(4.64) (3.32) (3.78)
R.MKT 0.66 * 0.58
(1.87) (1.59)
R.ME 0.25 0.29 * 0.28 *
(1.48) (1.65) (1.70)
RIA 0.44 #x% 0.39 ¥#% (.36 *Hx
(3.66) (3.20) (2.77)
R.ROE 0.33 ** 0.35 ** 0.43 5
2.40) (2.49) (3.15)
R.EG 0.80 *#* 0.70 %86 0,75 Frx
(6.05) (4.63) (6.11)
R? 44 59 65 51 77 68 71 67 79 83
MAPE 0.27 0.21 0.20 0.2 0.15 0.18 0.18 0.19 0.15 0.13
p(PE =0) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
N 138 138 138 138 138 138 138 138 138 138
T 532 532 532 532 532 532 532 532 532 532




Table 1

War Factor and Risk Premium (Cont.)

Panel B: Single-Sorted Portfolios from Hou, Xue, and Zhang (2020)

1) @) () 4) (5) (6) (7) ®8) 9) (10)
Intercept 0.72 %% 043 %% 025 -0.22 0.35 0.42 * 0.23 -0.28 0.33 0.23
(3.45) (2.12) (1.11) (-0.81) (1.55) (1.92) (0.94) (-0.92) (1.39) (1.01)
WarFac -8.42 ** B8O KRE 5 @3 MK T AT RRE 4 G4 Rk g 60 R
(-2.36) (-4.77) (-4.62) (-4.07) (-3.76) (-3.82)
MKT 0.16 0.34 0.84 ** 0.17 0.36 0.91 ** 0.39
(0.55) (1.08) (2.47) (0.56) (1.11) (2.44) (1.27)
SMB 0.16 0.20 0.12 0.15 0.20
(1.08) (1.31) (0.85) (0.98) (1.35)
HML 0.30 ** 0.31 ** 0.50 **
(1.98) (1.98) (3.23)
RMW 0.18 0.20 * 0.16
(1.56) (1.65) (1.36)
CMA 0.20 ** 0.22 ** 0.18 *
(2.06) (2.25) (1.80)
MOM 0.58 ** 0.63 ** 0.45 **
(2.84) (3.07) (2.22)
MGMT 0.46 ** 0.44 5 0.38 **
(2.89) (2.69) (2.55)
PERF 0.47 ** 0.51 ** 0.29
(2.12) (2.25) (1.35)
PEAD 0.32 % 0.40 ** 0.37
(2.13) (2.50) (3.19)
FIN 0.57 5 0.59 ** 0.57 *5x
(2.84) (2.83) (2.86)
RMKT 0.24 0.27
(0.77) (0.84)
R.ME 0.34 ** 0.34 ** 0.26 *
(2.29) (2.27) (1.83)
RIA 0.27 ** 0.27 ** 0.26 **
(2.43) (2.33) (2.62)
R_ROE 0.23 * 0.25 * 0.38
(1.76) (1.94) (3.04)
R.EG 0.61 ¥ 0.58 #F% (.61 ¥
(5.65) (5.25) (6.20)
R? 18 42 43 34 55 46 47 42 57 65
MAPE 0.11 0.09 0.09 0.09 0.08 0.08 0.08 0.09 0.08 0.07
p(PE =0) 1.00 0.01 0.17 0.56 0.96 0.96 1.00 1.00 1.00 1.00
N 1372 1372 1372 1372 1372 1372 1372 1372 1372 1372
T 532 532 532 532 532 532 532 532 532 532
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Table 1

War Factor and Risk Premium (Cont.)

Panel C: Single-Sorted Portfolios from Chen and Zimmermann (2022)

1 (2) () 4) () (6) (M (8) (9) (10)
Intercept 0.95 ** 0.93 *¥* 0.76 *** 1.59 *** 0.65 *** 0.67 *** 0.45 ** 0.74 *** 0.46 ** 0.30
(2.55) (5.93) (4.76) (7.04) (3.28) (3.62) (2.26) (2.62) (2.33) (1.28)
WarFac -17.20 ¥ S13.67 FFF 1460 ¥FF 0 _21.56 *¥** -10.54 *FF -9.91 ***
(-3.01) (-4.44) (-3.99) (-4.02) (-3.51) (-3.53)
MKT -0.40 -0.24 -0.77 *FE -0.11 0.13 0.09 0.30
(-1.56) (0.91) (-2.69) (-0.38) (0.45) (0.28) (0.98)
SMB 0.35 ** 0.47 *** 0.18 0.21 0.13
(2.32) (3.00) (1.19) (1.39) (0.79)
HML 0.30 ** 0.31 ** 0.57 ***
(2.05) (1.96) (3.34)
RMW -0.02 0.20 -0.02
(-0.11) (1.42) (-0.13)
CMA 0.84 *** 0.73 *** 0.41 ***
(7.00) (5.60) (2.93)
MOM 0.56 ** 0.82 *** 0.77 ***
(2.48) (3.57) (3.26)
MGMT 0.66 *** 0.71 *** 0.65 ***
(3.84) (3.46) (3.51)
PERF 0.58 ** 0.83 *** 1.04 ***
(2.39) (2.91) (4.40)
PEAD -0.04 0.50 * 0.38 *
(-0.20) (1.72) (1.76)
FIN 0.24 0.71 *** 1.42 ***
(1.10) (2.74) (5.19)
R_MKT -0.03 0.16
(-0.11) (0.58)
R_ME 0.40 *** 0.38 ** 0.35 **
(2.60) (2.46) (2.32)
RIA 0.42 *** 0.41 ** 0.65 ***
(2.58) (2.39) (4.17)
R_ROE 0.20 0.39 ** 0.86 ***
(1.04) (2.18) (4.68)
R_EG 1.48 ** 1.35 *** 1.70 *F*
(8.02) (6.83) (10.34)
R? 27 41 43 12 57 47 51 34 60 66
MAPE 0.17 0.14 0.14 0.19 0.12 0.14 0.13 0.16 0.12 0.11
p(PE =0) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
N 904 904 904 904 904 904 904 904 904 904
T 532 532 532 532 532 532 532 532 532 532
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Table 1

War Factor and Risk Premium (Cont.)

Panel D: ML-based Portfolios from Bryzgalova, Pelger, and Zhu (2020)

1) )] () () (5) (6) (M) 8) ) (10)
Intercept 043 339 6 3agter 4930k 911 vRE (97 0.35 -0.43 -0.01 -0.34
(0.52) (6.80) (7.51) (6.07) (2.73) (-0.24) (0.38) (-0.40) (-0.01) (-0.39)
WarFac -36.37 *¥* BE.T6 R ATAQ RRX 4864 FRK AT.6A FRX 0] 34w
(-2.79) (-3.38) (-3.51) (-3.42) (-3.39) (-2.85)
MKT 330 FHE 34 ¥rE 3.6 Wk 0.64 0.05 0.79 0.56
(-6.06) (-6.40) (-5.47) (0.55) (0.05) (0.74) (0.60)
SMB 0.18 0.12 071 0.0 B 0.0
(1.04) (0.64) (-2.35) (-3.12) (-0.24)
HML 1.31 % 081 * 0.66 *
(6.24) (L.77) (1.71)
RMW 0.20 1.28 ** 0.44
(0.95) (2.54) (1.15)
CMA 0.28 * 0.04 0.36
(1.81) (0.10) (1.09)
MOM 0.21 1.45 *+% 1.12 %%
(0.86) (3.42) (3.37)
MGMT 1.32 %% 1.00 ** -0.35
(7.13) (2.40) (-0.83)
PERF 0.03 0.95 1.68 **
(0.11) (1.55) (2.47)
PEAD -0.56 ** 0.66 0.60
(-2.09) (1.17) (0.99)
FIN 0.83 * 2.08 *¥* 2.51
(2.54) (3.46) (3.23)
RMKT -1.76 ** 0.50
(-2.17) (0.49)
RME -0.15 -0.16 0.22
(-0.66) (-0.51) (0.86)
RIA 0.24 0.27 0.11
(0.93) (0.76) (0.30)
R ROE 017 1.02 2.18
(-0.41) (2.32) (3.72)
R EG 3.39 1.71 % 3.69
(5.95) (2.16) (6.24)
R 49 41 40 35 58 68 61 63 69 87
MAPE 0.50 0.49 0.49 0.53 0.45 0.39 0.44 0.43 0.40 0.23
p(PE =0) 0.00 0.00 0.00 0.00 0.00 1.00 0.04 0.21 041 0.29
N 360 360 360 360 360 360 360 360 360 360
T 532 532 532 532 532 532 532 532 532 532
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Table 3
Cross-Sectional Tests: War versus NVIX? and GPR

This table presents the results from the second-pass cross-sectional regressions of average portfolio returns
on factor betas:

Ry = X+ B sAf +ei,

where Rf’t is the time-series average return of portfolio ¢, §; ¢ is the vector of factor exposures of portfolio ¢
estimated via a multivariate time-series regression of portfolio returns onto factors, and Ay is the vector of
factor risk premiums. Test assets include long-short portfolios from Hou, Xue, and Zhang (2020) in Panel
A, single-sorted portfolios from Hou, Xue, and Zhang (2020) in Panel B, single-sorted portfolios from Chen
and Zimmermann (2022) in Panel C, and ML-based nonlinear portfolios from Bryzgalova, Pelger, and Zhu
(2020) in Panel D. WarFac is the scaled innovations in War. NVIX2Fac is the scaled innovations in NVIX?
from Manela and Moreira (2017), and GPRFac is the scaled innovations in geopolitical risk (GPR) from
Caldara and Iacoviello (2022). Reported are monthly risk premium A and t-statistic with Shanken (1992)
correction. R? is cross-sectional R? in percentages, MAPE is mean absolute pricing error in percentages,
and p(PE = 0) is p-value of the Chi-squared test that pricing errors are jointly zero. N is the number of test
portfolios, and T is the number of months. The sample is from July 1972 to March 2016. *, ** and ***
denote significance at the 10%, 5%, and 1% levels respectively.

Panel A: Long-Short Portfolios from Hou, Xue, and Zhang (2020)

(1) (2) (3) (4)
Intercept 0.25 *#k (.22 Fkx (18 HH* 0.16 ***
(4.26) (5.70) (5.46) (3.25)
WarFac -16.52 *** -14.90 **
(-2.71) (-2.05)
NVIX2Fac 11.13 ** -2.05
(2.44) (-0.28)
GPRFac 18.16 ** 10.86
(2.00) (0.93)
R? 40 19 9 60
MAPE 0.29 0.34 0.36 0.22
p(PE =0) 0.00 0.00 0.00 0.00
N 138 138 138 138
T 522 522 522 522
Panel B: Single-Sorted Portfolios from Hou, Xue, and Zhang (2020)
(1) (2) (3) (4)
Intercept 0.71 *** .92 FFk (.70 *** 0.84 ***
(3.37) (4.66) (3.68) (3.68)
WarFac -8.34 ** -7.68 ***
(-2.33) (-2.72)
NVIX2Fac 5.35 0.18
(1.29) (0.04)
GPRFac 6.85 1.73
(1.58) (0.42)
R? 17 8 3 24
MAPE 0.11 0.12 0.12 0.11
p(PE =0) 1.00 4800 0.00 1.00
N 1372 1372 1372 1372

T 522 522 522 522




Table 3

Cross-Sectional Tests: War versus NVIX? and GPR (Cont.)

Panel C: Single-Sorted Portfolios from Chen and Zimmermann (2022)

(1) (2) (3) (4)
Intercept 0.89 ** 1.38 *** 1.02 H** 1.14 H**
(2.48) (6.09) (5.14) (3.39)
WarFac -16.14 *** -12.96 **
(-2.98) (-2.03)
NVIX2Fac 8.96 * 0.49
(1.83) (0.07)
GPRFac 17.04 4.23
(1.36) (0.49)
R? 25 12 6 32
MAPE 0.17 0.19 0.19 0.16
p(PE =0) 0.00 0.00 0.00 0.00
N 904 904 904 904
T 522 522 522 522
Panel D: ML-Based Portfolios from Bryzgalova, Pelger, and Zhu (2020)
(1) (2) (3) (4)
Intercept 0.35 2.71 *** 0.92 *** 1.93 ***
(0.44) (8.28) (3.42) (2.78)
WarFac -36.13 *** -29.73 **
(-2.76) (-2.04)
NVIX2Fac 32.13 *** 19.95
(4.15) (1.20)
GPRFac 32.15 -19.90
(1.47) (-0.77)
R? 45 29 4 57
MAPE 0.54 0.59 0.69 0.45
p(PE =0) 0.00 0.00 0.00 0.00
N 360 360 360 360
T 522 522 522 522
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Cross-Sectional Tests:
Every month, we run the following cross-sectional regression:

RS = Xot + MeBi—1 + AETBYET + XM

Table 4

SMB
it—1

T AfMLG

War versus Crisis Events

HML
it—1 T €it,

where Rf, is the excess return portfolio ¢ in month ¢, 5,_; is the vector of portfolio betas concerning our War
factor (WarFac), a crisis count factor (CrisisFac), and a war count factor (CWarFac) studied in Berkman,
Jacobsen, and Lee (2011), market factor (MKT), value factor (HML), and size factor (SMB) computed over a
rolling 60-month window. A; is the vector of risk premiums in month ¢. Reported are the time series averages
of risk premiums A with ¢-statistics computed using Newey and West (1987) standard errors. The last row
reports the time series average of the cross-sectional R2s. Both risk premiums and R?s are in percentage
points. Panel A (B) reports the Fama-French 30 (49) industry portfolio results. The sample period is from
July 1926 to December 2018. *, ** and *** denote significance at the 10%, 5%, and 1% levels respectively.

Panel A: 30 Industry Portfolios

(1) (2) (3) (4)
Intercept 0.85 *** 0.85 *** 0.74 *%* 0.81 ***
(4.77) (4.95) (4.20) (4.46)
WarFac -0.24 ** -0.30 **
(-2.00) (-2.32)
CrisisFac -0.37 Hok* -0.30 **
(-3.20) (-2.30)
CWarFac -0.26 ** -0.21 *
(-2.31) (-1.79)
MKT -0.12 -0.11 0.13 0.06
(-0.63) (-0.58) (0.59) (0.27)
SMB 0.14 0.09 0.08 0.13
(1.29) (0.83) (0.72) (1.12)
HML 0.16 0.17 0.14 0.16
(1.35) (1.38) (1.11) (1.26)
R? 21 20 19 22

20



Table 4
Cross-Sectional Tests: War versus Crisis Events (Cont.)

Panel B: 49 Industry Portfolios

(1) 2) G) (4
Intercept 0.68 *** 0.71 *** 0.73 *** 0.68 ***
(4.20) (4.44) (4.63) (4.40)
WarFac -0.25 ** -0.35 *¥**
(-2.19) (-2.94)
CrisisFac -0.24 ** -0.20 *
(-2.48) (-1.75)
CWarFac -0.09 -0.15
(-0.80) (-1.27)
MKT 0.06 0.04 0.14 0.17
(0.32) (0.22) (0.73) (0.91)
SMB 0.11 0.09 0.10 0.12
(1.17) (0.97) (0.92) (1.13)
HML 0.23 ** 0.21 ** 0.22 ** 0.26 **
(2.11) (1.97) (2.02) (2.26)
R? 17 17 16 19
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Table 5
War Mimicking Portfolio: Summary Statistic and Spanning Test (Cont.)

Panel B: Spanning Test

(1) (2) 3) 4) (5)
Alpha (%)  -0.52 ¥%% 055 *FF 066 *FF 058 FFK (59 FE
(-3.51) (-3.35) (-3.72) (-3.82) (-3.95)
MKT -0.05 -0.04 -0.03 -0.04
(-1.16) (-0.87) (-0.71) (-1.00)
SMB -0.10 -0.15 ** 0.18
(-1.44) (-2.21) (0.73)
HML -0.32 *Hx -0.43 %
(-3.69) (-4.05)
RMW 0.02 -0.01
(0.28) (-0.11)
CMA -0.37 *xx -0.51 **
(-3.17) (-2.45)
MOM -0.08 -0.04
(-1.53) (-0.73)
MGMT -0.39 ¥ 0.33 **
(-3.38) (2.51)
PERF -0.02 -0.19 **
(-0.33) (-2.36)
PEAD -0.05 -0.05
(-0.40) (-0.48)
FIN -0.20 ** -0.05
(-2.47) (-0.53)
R_MKT -0.01
(-0.13)
R_ME 013 % -0.20
(-2.16) (-0.85)
RIA S0.58 ¥FF 0,02
(-4.49) (0.12)
R_ROE 0.14 * 0.28 **
(1.70) (2.45)
R_EG -0.10 -0.05
(-1.01) (-0.47)
R2(%) 18 7 4 13 22
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Table 6
War Mimicking Portfolio and Risk Premium

This table presents the results from the second-pass cross-sectional regressions of average portfolio returns
on factor betas:

Rfy = X+ B s As +ei,

where Rf’t is the time-series average return of portfolio ¢, §; ¢ is the vector of factor exposures of portfolio ¢
estimated via a multivariate time-series regression of portfolio returns onto factors, and Ay is the vector of
factor risk premiums. Test assets include long-short portfolios from Hou, Xue, and Zhang (2020) in Panel
A, single-sorted portfolios from Hou, Xue, and Zhang (2020) in Panel B, single-sorted portfolios from Chen
and Zimmermann (2022) in Panel C, and ML-based nonlinear portfolios from Bryzgalova, Pelger, and Zhu
(2020) in Panel D. “WMP” is the mimicking portfolio of WarFac; “MKT, SMB, HML, RMW, CMA, MOM”
are Fama and French (2018) six factors; “MKT, SMB, MGMT, PERF” are Stambaugh and Yuan (2017)
mispricing factors; “PEAD, FIN” are Daniel, Hirshleifer, and Sun (2020) behavioral factors; and “R-MKT,
R_-ME, R_IA, R.ROE, R.EG” are Hou et al. (2021) Q5 factors. Reported are monthly risk premium A and
t-statistic with Shanken (1992) correction. R? is cross-sectional R? in percentages, MAPE is mean absolute
pricing error in percentages, and p(PE = 0) is p-value of the Chi-squared test that pricing errors are jointly
zero. N is the number of test portfolios, and T is the number of months. The sample is from July 1972 to
December 2016. *, ** and *** denote significance at the 10%, 5%, and 1% levels, respectively.

Panel A: long-short Portfolios from Hou, Xue, and Zhang (2020)

(1) (2) (3) (4) (5) (6) (7) (8) 9) (10)
Intercept 0.23 FFF .16 **  0.14 ¥F  0.09 FFF 010 BF 016 PF 0.14 FFF (.10 FF .09 FF 0,07
(5.67) (7.08) (4.74) (3.12) (2.99) (6.72) (5.27) (3.52) (3.28) 3.03
WMP -0.99 -1.28 #FF .48 -0.88 %F  -0.52 -1.06
(-2.99) (-3.20) (-1.08) (-2.32) (-1.15) (-2.68)
MKT 0.42 0.85 %% 1,04 ¥ 0.51 0.87 ** 0.76 ** 0.72 **
(1.32) (2.44) (2.70) (1.56) (2.53) (2.23) (2.13)
SMB 0.03 -0.05 -0.09 -0.08 0.08
(0.21) (-0.29) (-0.53) (-0.43) (0.45)
HML 0.26 0.20 0.52 ¥
(1.57) (1.16) (3.03)
RMW 0.28 ** 0.23 * 0.20
(2.27) (1.83) (1.58)
CMA 0.54 *#* 0.57 *#* 0.18
(4.93) (5.09) (1.59)
MOM 0.57 ¥ 0.58 ¥ 0.38 *
(2.75) (2.79) (1.79)
MGMT 0.70 *#* 0.67 *¥* 0.71 %#*
(4.48) (4.27) (3.95)
PERF 0.44 * 0.46 * -0.12
(1.82) (1.90) -0.43)
PEAD 0.33 ** 0.42 *¥* 0.48 ¥
(2.06) (2.74) (3.38)
FIN 0.97 *¥* 0.81 ¥#* 0.77 *¥*
(4.65) (4.02) (3.42)
RMKT 0.62 * 0.66 *
(1.78) (1.83)
RME 0.22 0.19 0.11
(1.26) (0.97) (0.63)
RIA 0.44 ¥ 042 #¥% 0.4 B
(3.69) (3.93) (3.42)
R_ROE 0.31 ** 0.31 ** 0.40 ***
(2.28) (2.22) (3.00)
R_EG 0.78 *#* 0.78 ¥4 (.82
(5.96) (5.83) (6.87)
R? 29 59 65 52 76 60 65 59 76 80
MAPE 0.32 0.21 0.20 0.24 0.15 0.21 0.20 0.22 0.15 0.14
p(PE =0) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
N 138 138 138 138 138 138 138 138 138 138
T 534 534 534 534 534 534 534 534 534 534




Table 6

War Mimicking Portfolio and Risk Premium (Cont.)

Panel B: Single-Sorted Portfolios from Hou, Xue, and Zhang (2020)

1) @) () 4) (5) (6) (7) ®8) 9) (10)
Intercept 0.66 ¥ 045 %%  0.26 017 0.36 046 ** 027 0.07 0.31 0.26
(3.36) (2.23) (1.14) (-0.63) (1.63) (2.23) (1.17) (0.30) (1.36) (1.22)
WMP -0.87 ¥ 070 R QTR K .00 FRE Q.77 FHE 0,66 FH
(-2.64) (-3.34) (-2.76) (-2.82) (-2.90) (-3.01)
MKT 0.11 0.31 0.76 ** 0.10 0.28 0.50 0.32
(0.38) (0.98) (2.23) (0.33) (0.90) (1.54) (1.10)
SMB 0.14 0.18 0.09 0.09 0.15
(0.94) (1.16) (0.62) (0.60) (1.00)
HML 0.31 ** 0.28 * 0.49 ¥
(2.01) (1.84) (3.23)
RMW 0.18 0.17 0.15
(1.56) (1.46) (1.29)
CMA 0.20 ** 0.21 ** 0.17 *
(2.07) (2.14) (1.70)
MOM 0.55 0.56 0.39 *
(2.70) (2.75) (1.92)
MGMT 0.46 ¥ 0.34 ** 0.39 **
(2.91) (2.35) (2.67)
PERF 0.44 ** 0.51 ** 0.23
(2.02) (2.33) (1.07)
PEAD 0.30 ** 0.41 ¥ 0.37
(2.03) (2.88) (3.31)
FIN 0.58 *5 0.51 ** 0.47 **
(2.92) (2.53) (2.41)
RMKT 0.20 0.25
(0.65) (0.81)
R.ME 0.31 ** 0.23 0.20
(2.09) (1.59) (1.41)
RIA 0.28 ** 0.22 ** 0.25 **
(2.47) (2.11) (2.55)
R_ROE 0.22 * 0.20 0.34 5
(1.67) (1.54) (2.69)
R.EG 0.60 ¥ 0.59 *F% (.64 ¥
(5.61) (5.39) (6.57)
R? 2 42 43 35 55 43 46 46 57 63
MAPE 0.10 0.09 0.09 0.09 0.08 0.09 0.08 0.08 0.08 0.07
p(PE =0) 0.00 0.00 0.02 0.13 0.71 0.00 0.05 0.45 0.87 1.00
N 1372 1372 1372 1372 1372 1372 1372 1372 1372 1372
T 534 534 534 534 534 534 534 534 534 534
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Table 6

War Mimicking Portfolio and Risk Premium (Cont.)

Panel C: Single-Sorted Portfolios from Chen and Zimmermann (2022)

1) )] () () (5) (6) (@) (8) 9) (10)
Intercept 0.67 ** 0.95 FFF Q.80 FFF 153 FE Q67 PR Q78 FFE 066 FFF (.62 FFF 057 FFF 030
(2.58) (6.15) (5.07) (7.08) (3.45) (5.27) (4.36) (3.73) (3.15) (1.44)
WMP -1.34 SLBTRRE 119 RRR 18D RRR 093tk ] 47 B
(-4.13) (-4.17) (-3.91) (-5.40) (-2.48) (-3.91)
MKT 045 * -0.31 -0.73 *¥x -0.25 -0.16 -0.05 0.28
(-1.74) (-1.17) (-2.62) (-1.01) (-0.62) (-0.18) (0.98)
SMB 0.32 ** 0.43 ##% 0.16 0.27 * 0.08
(2.09) (2.79) (1.11) (1.80) (0.51)
HML 0.31 ** 0.27 * 0.49
(2.10) (1.84) (2.87)
RMW -0.02 0.05 -0.13
(-0.18) (0.40) (-0.93)
CMA 0.84 5 0.70 0.36 **
(7.04) (6.24) (2.69)
MOM 0.53 ** 0.62 ** 0.54 **
(2.34) (2.84) (2.29)
MGMT 0.65 *** 0.48 #* 0.68 ***
(3.79) (2.70) (3.82)
PERF 0.55 ** 0.70 5 0.85 **¥
(2.26) (3.06) (3.65)
PEAD -0.03 0.61 *** 0.33
(-0.14) (3.28) (1.63)
FIN 0.26 0.56 ** 1.18 *#*
(1.15) (2.53) (4.62)
RMKT -0.08 0.02
(-0.29) (0.09)
RME 0.35 ** 0.29 ** 0.22
(2.28) (1.96) (1.47)
RIA 0.42 0.34 ** 0.69
(2.61) (2.16) (4.58)
R_ROE 0.17 0.21 0.82
(0.92) (1.19) (4.69)
R.EG 1.47 *#% 141 %86 169 e
(8.06) (7.43) (10.77)
R? 33 41 43 13 57 44 45 45 57 65
MAPE 0.16 0.14 0.14 0.19 0.12 0.14 0.14 0.14 0.12 0.11
p(PE =0) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
N 904 904 904 904 904 904 904 904 904 904
T 534 534 534 534 534 534 534 534 534 534
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Table 6

War Mimicking Portfolio and Risk Premium (Cont.)

Panel D: ML-Based Portfolios from Bryzgalova, Pelger, and Zhu (2020)

1) @) () () (5) (6) (@) 8) ) (10)
Intercept  -0.04 3.35 FFF 306 FRE 419 R 9 ]] ¥R (g 141 % 070 * 133% 039
(-0.11) (6.80) (7.47) (5.99) (2.74) (-0.43) (4.19) (1.80) (2.55) (0.50)
WMP -2.50 SAGLFRE 28R FRE 290 FFE 169 FF _0.78
(-4.85) (-5.65) (-5.46) (-6.84) (-2.31) (-0.69)
MKT 330 FRE 395 RRE 383 0.32 -1.30 ¥ 10.70 -0.29
(-6.11) (-6.43) (-5.45) (0.70) (-3.39) (-1.52) (-0.37)
SMB 0.17 0.11 046 %% 045 ¥r* 0.02
(1.00) (0.59) (-2.48) (-2.80) (0.10)
HML 1.31 *xr 0.78 5 0.58
(6.32) (3.45) (1.41)
RMW 0.21 1.22 ¥ 0.53
(1.00) (5.53) (1.38)
CMA 0.30 ** -0.39 * 0.46
(1.96) (-1.66) (1.58)
MOM 0.18 0.72 #* 0.81 **
(0.76) (2.83) (2.34)
MGMT 1.34 e 0.83 -0.11
(7.23) (3.77) (-0.25)
PERF 0.03 0.43 1.28 *
(0.09) (1.52) (1.72)
PEAD -0.53 ** -0.06 0.57
(-2.07) (-0.25) (0.87)
FIN 0.77 ** 1.80 *¥* 2.96
(2.26) (6.92) (3.38)
RMKT -1.79 ** -0.98 *
(-2.21) (-1.78)
RME -0.20 -0.30 0.08
(-0.87) (-1.36) (0.29)
RIA 0.26 0.13 0.16
(1.02) (0.53) (0.44)
R_ROE -0.19 0.03 1.66 **
(-0.48) (0.08) (2.52)
R EG 3.37 #¥* 3.01 %% 4,66 F
(5.96) (6.75) (6.00)
R? 31 41 40 34 58 52 45 a7 59 85
MAPE 0.61 0.49 0.49 0.54 045 0.45 047 0.48 0.45 0.25
p(PE = 0) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.85
N 360 360 360 360 360 360 360 360 360 360
T 534 534 534 534 534 534 534 534 534 534
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