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nature of international conflict under repeated interaction.
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1 Introduction

In the economics of conflict and international relations literature, the standard
game-theoretic model of conflict is a one-shot contest game, in which states si-
multaneously and independently make investments (e.g., weapons) to increase
their probability of winning a prize (e.g., a disputable resource).1 In the Nash
equilibrium, even when partial resource destruction is modeled as a deterrent to
conflict, there are positive levels of arming and open conflict, and part of the
resource is destroyed in the fight, leading to an inefficient outcome. All states
could be better off if they chose not to arm and peacefully split the resource.
If the game is augmented with a bargaining and settlement stage after arming
decisions, the destruction associated with open conflict can be mitigated, but un-
less such destruction is unrealistically high, inefficient arming persists. In other
words, the equilibrium that is robust to changes in the destruction of resources
associated with open conflict consists of armed peace and negotiated settlement,
and only when open conflict destroys the vast majority of the resources can effi-
cient equilibria be sustained. Thus, in realistic scenarios, there is positive arming,
and the model has the structure of a prisoner’s dilemma (often referred to as a
security dilemma in international relations), which could open the door for more
cooperative outcomes to be sustained if repeated interactions are allowed.2

Repeated interactions among states are a reasonable environment to explore
for at least four reasons. First, in many cases, there are few relevant states or
blocs of states involved in an international dispute. Drawing an analogy with
firms’ behavior, collusion tends to be easier to sustain with a smaller number of
firms involved. Second, states are long-lived entities, which suggests the impor-
tance of considering dynamic interactions. Third, states tend to have powerful
incentives to plan and act through diplomacy and coordination, given that mis-
takes could lead to serious consequences (e.g., war). Finally, states usually have
the capabilities to make contingent plans and act strategically (e.g., diplomats

1See Hirshleifer (1989) for an important seminal work and Garfinkel and Skaperdas (2007) for
a comprehensive survey of the literature in the economics of conflict. This is also the standard
rent-seeking model (Tullock (1980) and Nitzan (1994)).

2The model’s structure best fits disputes over resources or territories that are both highly
valuable and insecurely held—situations where formal ownership or control is not universally
recognized and remains subject to challenge. Historical examples include the Korean Peninsula,
where both North and South claim legitimacy over the entire territory, the Falkland Islands
dispute between the United Kingdom and Argentina, and oil-rich borderlands such as the
Iran–Iraq frontier. These contests are sustained by the inability to institutionalize a permanent
settlement and by the perception that control of the prize yields long-term strategic or economic
advantage. Similar dynamics also appear in access disputes over strategic maritime routes like
the Suez Canal or the South China Sea, where shifts in commercial and military importance
keep the stakes alive.
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and military experts). Thus, international relations should be an excellent can-
didate for applying the folk theorem and related results for infinitely repeated
games to sustain more cooperative outcomes (see, for example, Keohane (1986),
Oye (1986), and Kydd (2015), chapter 8).3

Indeed, if the standard model of conflict is repeated infinitely and if states
are patient enough, disarmed peace can be sustained as a subgame perfect equi-
librium, presenting us with a conundrum. In a one-shot contest game model of
conflict, the equilibrium is either open conflict (when a negotiated settlement is
not possible) or armed peace (when a negotiated settlement is possible). If con-
flict is modeled as a repeated contest game, the set of equilibrium payoffs can
range from the efficient outcome of disarmed peace (assuming states are patient)
to the same highly inefficient equilibria of the one-shot game. There is, therefore,
a wider range of more cooperative equilibria in repeated interactions. In inter-
national relations, however, diplomacy is often viewed as the key mechanism to
navigate these equilibria. Through diplomatic channels, states are expected to
be capable of eliminating dominated equilibria and converging toward the most
favorable equilibrium payoffs. Given these premises, one would anticipate that
this dynamic version of the standard one-shot contest game would naturally lead
to a state of disarmed peace, provided states are patient enough.

The empirical reality, however, presents a stark contrast to these theoreti-
cal expectations. Despite the theoretical possibility of achieving unarmed peace
through repeated interactions and diplomatic efforts, the historical record is re-
plete with instances of ongoing arming, arms races, and even outright war. If
conflict is modeled as an infinite repetition of the standard one-shot contest game,
the only way to rationalize these events is to attribute them to diplomatic failures.
For example, disarmed peace in odd periods and open conflict in even periods
can be sustained as a subgame perfect equilibrium, which can be interpreted as
diplomacy failing in even periods. We do not deny the possibility of historical in-
stances of diplomatic failures, but we think that the discrepancy between theory
and reality suggests a more fundamental gap in the existing models of conflict.
Therefore, in our analysis we give diplomacy the benefit of the doubt and assume
that states always find a way to avoid payoff-dominated equilibria. Alternatively,
our analysis can be seen as an effort to rationalize some of the historical record
on conflict using an infinite horizon dynamic contest game, even when diplomacy
fully exhausts all the possibilities of cooperation.

The paper introduces a comprehensive model that provides a nuanced expla-
nation for the persistent occurrence of arming and conflict despite the theoretical

3One might even argue that if these results do not apply to interactions among states, there
should be little hope that they will apply to other strategic interactions, such as firms trying
to organize collusion or commoners solving the tragedy of the commons.
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predictions of disarmament and peace under infinitely repeated interactions and
fully effective diplomacy. Our model incorporates the foundational aspects of
the standard contest game and extends it by introducing dynamic elements that
more accurately reflect the complexities of international relations. First, we al-
low states to interact repeatedly over time. Second, after observing each other’s
military power, states can agree on a settlement rule such that each country gets
a fraction of the resource. If no settlement is reached, open conflict occurs, an
open conflict occurs, and a portion of the resource is destroyed. Third, there is
an exogenously and randomly determined opportunity that the victor of an open
conflict can eliminate the other state at an additional fixed cost.4 Moreover, we
distinguish between two cases, whether this elimination of the rival is permanent
or temporary.5 Finally, we introduce a randomly determined disputable resource;
that is, the resource’s value is stochastic and varies from period to period.6

With these technologies, we obtain several novel results. First, we establish
an impossibility result: if the elimination of the rival is permanent, greater pa-
tience (high δ) makes unarmed peace harder to sustain, and in the limit (δ → 1),
open conflict with extremely high arming becomes unavoidable. Second, the cost

4Elimination technologies vary in form but share the property of decisively removing a
rival’s ability to contest the resource in the near future. At the extreme, the nuclear bombings
of Hiroshima and Nagasaki illustrate a near-permanent elimination capability, in which the
destruction severely reduced Japan’s industrial capacity for an extended period and effectively
curtailed its ability to project military power thereafter. Other cases include large-scale forced
deportations, as with post-World War II expulsions of ethnic Germans from Eastern Europe,
or the Soviet dismantling of German industry in occupied zones. More commonly, elimination
has been temporary: the destruction of Iraq’s military capacity during the 1991 Gulf War, for
example, was followed by a decade of rebuilding, or the temporary incapacitation of Argentina’s
navy after the Falklands War, which nonetheless did not end its claim to the islands.

5Temporary elimination occurs when the defeated side eventually recovers its strength and
re-enters the contest. This was evident after Napoleon’s exile to Elba in 1814, followed by his
return during the Hundred Days; after the initial North Korean retreat in late 1950, which
was reversed by Chinese intervention and a renewed offensive; and after the Iran–Iraq War’s
alternating phases of exhaustion and renewed fighting in the 1980s. In these cases, the re-
source—whether territorial control, political authority, or strategic advantage—remains con-
testable, and the defeated side invests in rearmament or strategic alliances to mount a comeback,
producing cycles of peace and conflict rather than a single, decisive end to hostilities.

6When the value of the disputed resource fluctuates unpredictably, sudden increases can
destabilize otherwise cooperative equilibria. The Suez Crisis of 1956 illustrates how geopolitical
shifts and rising commercial importance of the canal spurred military escalation. The 1973
Yom Kippur War coincided with the global oil crisis, amplifying the stakes for Middle Eastern
territory and control over oil supply routes. Similar patterns have emerged in sub-Saharan
Africa’s mineral-rich zones, where discoveries of valuable deposits—such as coltan in the Demo-
cratic Republic of Congo—triggered sudden increases in arming and conflict intensity. In these
cases, the “random” shock to resource value creates strong short-term incentives to arm, even
in environments otherwise conducive to sustained peace.
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of elimination plays a central role: there are threshold values—dependent on
other parameters–above which moderate levels of patience can sustain tempo-
rary or permanent cooperation, particularly when the elimination technology is
only temporary. In this temporary elimination case, cooperation becomes cycli-
cal, producing recurring patterns of peace, conflict, and, at times, heavy arming
followed by temporary elimination. Finally, when the value of the contestable
resource fluctuates, the model also generates arms races (e.g., a cold war) as part
of the broader cycle of peace and conflict.

While most elements in our model have been individually examined in the
literature, they have not previously been integrated into a single framework. Our
contribution is to systematically combine repeated interactions, stochastic re-
source values, strategic settlement negotiations, and the possibility of a decisive
elimination, yielding a more robust and multi-dimensional understanding of con-
flict dynamics. This unified approach recovers standard results as special cases
while clarifying the mechanisms behind a variety of outcomes. For example, cy-
cles of escalation and de-escalation with temporary elimination emerge when the
discount factor is moderately high. Even without the elimination technology, the
interaction between repeated play and random resource values can generate cy-
cles of armed and unarmed peace without culminating in open conflict. As noted
by Powell (1993), Skaperdas and Syropoulos (1996), and McBride and Skaperdas
(2006), elimination opportunities can explain open conflict. Our model extends
this insight: in an infinite dynamic game, permanent elimination with high pa-
tience produces a single conflict followed by perpetual unarmed peace, whereas
non-permanent elimination allows for recurrent cycles of armed peace, conflict,
temporary defeat, and eventual resurgence.

The paper contributes to two bodies of literature in two subjects of study:
game-theoretic models of conflict in economics and security competition in inter-
national relations.

There are several papers that have formalized the idea that open conflict dif-
fers from settlement under the shadow of conflict because it changes the future
bargaining power of the parties (see Fearon, 1995, for a seminal formalization of
this idea). Settlement is rationalized by the idea that open conflict is destruc-
tive, so parties are better off not engaging in it. For instance, the notion that
the victor of an open conflict can eliminate its enemy is one possible such mech-
anism. Skaperdas and Syropoulos (1996) and Garfinkel and Skaperdas (2000)
introduce elimination opportunities but only consider a two-period model. Pow-
ell (1993) and McBride and Skaperdas (2006) explore an infinite game but restrict
the analysis to Markov perfect equilibria. Our first contribution to this literature
is to explore an environment in which the classical folk theorem has a serious
chance—in the sense that without introducing the elimination technology, states
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can sustain unarmed peace equilibria. Our second contribution is to address
one potentially unrealistic prediction of these models (including our version with
permanent elimination), namely, that after one country eliminates its enemy, un-
armed peace persists forever. McBride and Skaperdas (2006) consider that several
battles might be necessary to finally eliminate an enemy, which explains arming
after open conflict. Still, once the enemy has been finished off, unarmed peace
persists. Our model with temporary elimination, in contrast, allows for recurrent
periods of peace and conflict.

Other papers have also studied infinite horizon dynamic models of conflict.
Yared (2010) develops an asymmetric repeated game in which an aggressive coun-
try seeks concessions from a non-aggressive country. Temporary wars might occur
after a period of escalating demands to incentivize the non-aggressive country
to make concessions. Asymmetric information plays a key role because when
concessions are not made, the aggressive country does not know if the non-
aggressive country is able to make them. Instead, we focus on large symmetric
conflicts—i.e., when both countries have the capacity to attack and even annihi-
late each other—and consider environments with perfect information.7 Acemoglu
et al. (2012) study an infinite horizon dynamic model of resource war in which
a resource-poor country might consider attacking a resource-rich country. The
model can generate open conflict (i.e., war) but only in period t = 0. Acemoglu
and Wolitzky (2014) generate an equilibrium with cycles of conflict but use a very
different modeling approach. They consider an overlapping-generations model
with incomplete information in which two groups play a coordination game, and
each group does not know if the other consists of good or bad types. Cooperative
actions might be wrongly misperceived, starting a cycle of conflict until agents
realize that the conflict began by mistake and give cooperation a renewed oppor-
tunity. In contrast, in our model, there is complete information, and we assume
that diplomacy can eliminate any misperception or coordination failure.

Our study is also related to international relations and the well-known de-
bate between realists and liberals. A simple way of describing the realist school
in international relations is that, for realists, international politics is predomi-
nantly a prisoner’s dilemma among countries (e.g., Mearsheimer, 2001). From
this perspective, the standard game-theoretic model of conflict as a one-shot con-
test game can be interpreted as a formalization of the fundamental realist view of
international relations as a security dilemma. The problem, of course, is that one
can start with a one-shot contest game/security dilemma and, through repeated
interactions, end up with disarmed peace sustained, for example, by grim-trigger

7While imperfect information, say regarding the rival’s arming, is possible, countries have
intelligence systems that allow them to have a reasonably good idea of the capacity of others’
military power.
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strategies (e.g., Keohane, 1986). In other words, the folk theorem provides a the-
oretical link between a realist world and highly liberal cooperative outcomes. The
conundrum is that this extreme liberal prediction is rarely observed in practice.
Why?

Our model explores several answers to this question. Bargaining, even in a
one-shot game, can prevent open conflict. Nevertheless, arming is typically part of
the equilibrium. In fact, only extremely high destructive costs from open conflict
could rationalize an unarmed equilibrium. In a repeated game, the destruction
level required for disarmed peace interacts with the degree of patience, implying
that war and inefficient arming can only be prevented when states are highly
patient.

When the elimination technology is permanent, high patience makes long-
standing disarmed peace unsustainable. Some cooperation is still possible in
states of the world where elimination is not feasible, but as soon as the oppor-
tunity to eliminate arises, open conflict becomes inevitable for patient states. A
drawback of this equilibrium is that, after the victor eliminates its enemy, dis-
armed peace persists forever. When elimination is only temporary, however, this
no longer holds as δ → 1. In equilibrium, open conflict grants the victor only
temporary control over the disputed resource. Eventually, the defeated country
recovers, and the resource becomes contestable again. Thus, there is room for
both temporary and permanent cooperation. Nevertheless, some arming is often
necessary, meaning that security competition and war cannot be fully eradicated
from the international system.

Another feature of our model—less damaging to the disarmed peace prediction
when states are patient—is that, without the elimination technology, stochastic
resource values can generate cycles of arming and disarming without open conflict,
even for highly patient states. In this context, when the disputed resource’s value
is high, and thus the temptation to deviate from disarmed peace increases, arming
escalation becomes necessary to sustain peace.8 This feature reinstates some of
the properties of the one-shot security dilemma in the infinite dynamic contest
game. However, as states become sufficiently patient, disarmed peace can still
be sustained. That is, the extreme liberal prediction does not fully disappear.
More importantly, the fundamental logic of the folk theorem persists, even when
stochastic fluctuations in the value of the disputed resource require countries to
accept arming escalation when the stakes are high.

The rest of the paper is organized as follows. Section 2 introduces the stochas-
tic model. Section 3 solves a simpler version of the model, without the elimination

8Bellicose rhetoric may also escalate in such periods. One possible explanation is that
each country needs to signal to its rival that arming has been increased to meet the new
circumstances, which is important to sustain the most cooperative possible equilibrium.
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technology. We break down the study of the elimination technology in two main
cases: we analyze permanent elimination in Section 4 and temporary elimination
in Section 5. Section 6 adds stochastic resources to the analysis. Finally, Section
7 presents our conclusions.

2 A Dynamic Model of Conflict with Destruction

We depart from the standard model of conflict by adding several elements that
will help explain more realistic features observed historically, especially in the
last century. We pay special attention to an exogenous randomly determined
opportunity that the victor of an open conflict can eliminate the other player at
an additional fixed cost; moreover, we distinguish between two cases, whether
elimination is permanent or not. Due to the random realization of states that
affect the payoffs and actions, we study a stochastic game.9

In each period, countries i = 1, 2 seek access to a disputable resource R.
These countries choose a level of military power denoted by Gi ≥ 0 (for guns)
that fully depreciates by next period. Given a profile of military powers (G1, G2),
the probability of winning a conflict is:

πi(Gi, Gj) =

{
Gi

Gi+Gj
, Gi +Gj > 0

1
2
, Gi = Gj = 0

The perishable resource will be replaced by a new stock R in each period. After
countries observe the profile of military power (G1, G2), they decide whether to
settle (Si ∈ {0, 1}). If countries settle (S = S1S2 = 1), they receive πi(Gi, Gj)R
of the resource.10 If countries do not settle (S = 0), this necessarily starts an
open conflict, a fraction 1− θ of the resource is destroyed, and country i obtains
R with probability πi(Gi, Gj) and nothing with probability 1− πi(Gi, Gj).11

At the beginning of each period, before deciding Gi, a random state is realized
which gives the victor of an open conflict, say i, the opportunity to pay an addi-
tional cost X to eliminate the loser (i.e., country j). This exogenous opportunity

9This is a slight extension of a repeated game. Although there is repeated interaction, there
is no unique stage game, since payoffs and actions depend on different realizations of state
variables.

10Although there are other allocation rules, this particular one is the most natural. Moreover,
we assume that the settlement rule S is decided independently and simultaneously and that it is
fully enforceable. That is, we do not model the possible advantages of a unilateral unexpected
aggression after settlement.

11Note that, conditional on R, payoffs are deterministic under settlement, while payoffs are
stochastic under open conflict. Expected payoffs, nevertheless, look similar due to the assump-
tion that the probability of winning a war equals the share obtained during settlement.
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arrives with a probability ϕ, and it is common knowledge. The opportunity to
eliminate is realized before the decision to spend on military power Gi, but the
decision to eliminate is made after winning the conflict. Since the decision to
eliminate may or may not be taken, we need to be explicit about this action
being taken. We use a random variable Z to denote whether an opportunity to
eliminate has arrived (Z = 1) or not (Z = 0). Moreover, we denote by Wi = 1 if
a country decides to eliminate and Wi = 0 otherwise.

After an elimination occurs, the next period, the game transitions to a state in
which the previous conflict’s victor can claim all the resources at zero cost. More
formally, when an elimination occurs, the game transitions to an uncontestable
state (C = 0). Periods in which the resource can be contested will be labeled
contestable states and denoted by C = 1. At the end of each period in an uncon-
testable state, with probability γ, the game will transition back to a contestable
state and the loser of the previous conflict will be able to contest the resource
again. With 1− γ, the game will remain in the uncontestable state next period.

Since no decisions are taken at an uncontestable state, to simplify the notation,
we will not explicitly model the payoffs and actions in such states. Let ai =
(Gi, Si,Wi) be the actions taken by player i in contestable states and ψ = (Z,C)
the profile of states. Then, each country’s instant payoff when C = 1 is:

ui(ai, aj, ψ) = πi(Gi, Gj)
[
SR + (1− S)θR− (1− S)ZWiX

]
−Gi, (1)

for i and j = 1, 2. After the opportunity to eliminate is realized and used, as
long as C = 0 remains, all subsequent payoffs will be R for the victor of the most
recent open conflict and zero for the vanquished country. After the state returns
to C = 1, the payoff will be given by (1) once again.

Countries discount future payoffs by a factor 0 ≤ δ < 1. Given a stream of
actions ati = (Gt

i, S
t
i ,W

t
i ) from each country at each period, {ati}∞t=0, and states

ψt = (Zt, Ct), {ψt}∞t=0, the (normalized) payoff of the supergame is:

(1− δ)
∞∑
t=0

δtE
[
ui(a

t
i, a

t
j, ψ

t)
]
,

where the expectation is taken over states and actions. In this supergame, a
history at the beginning of period t is a sequence of all action profiles and states
up to period t:12

ht =
{
(a01, a

0
2, ψ

0), (a11, a
1
2, ψ

1), . . . , (at−1
1 , at−1

2 , ψt−1)
}
,

12To simplify notation, we can say that even in state C = 0, countries can take actions.
However, such actions do not affect the payoffs.
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for t ≥ 1 and h0 = ∅ in the initial period, and we assume that the game starts at
a contestable state.

Since all information is public in this game, the equilibrium concept is subgame
perfect equilibrium (SPE). We restrict attention to symmetric equilibria.13

3 Equilibrium with No Elimination

To better understand the dynamics of the game, we build up in complexity by
solving simpler scenarios first. In this section, we start by solving the one-shot
game and then consider the repeated game without stochastic states. In both
cases, we do not allow the winner of an open conflict to eliminate its rival.

3.1 One-shot Game

There are no actions to be taken in uncontestable states. Thus, we refer to the
case when δ = 0, the current state is contestable, and there is no opportunity
to eliminate as the one-shot game.14 Note that even in the one-shot game, we
still need to use subgame perfection as the equilibrium concept, as the level of
guns (G1, G2) is first decided and observed and then the settlement stage follows
(S1, S2), which leads to either peace or conflict (i.e., no settlement necessarily
translates into to open conflict). This, in turn, means that interesting equilibria
can arise even in this simple case. In order to understand possible equilibria, we
relate how countries react to observing anticipated or unanticipated arming by the
opponent. These reactions have strong implications on the type of equilibria that
can arise. After stating the results, we will also have a discussion of implications
and interpretations.

First, we note that for any profile of guns choices (G1, G2), settlement (i.e.,
S1S2 = 1) and no settlement (i.e., S1S2 = 0) can both be Nash equilibrium
outcomes. Moreover, settlement always Pareto dominates no settlement. In this
sense, the post-arming subgame has the structure of a coordination problem. Two
reasonable selection criteria are the following norms. Under the non-cooperative
norm, S1S2 = 0 for all (G1, G2). Under the cooperative norm, S1S2 = 1 for

13Since there are effectively no actions being taken in uncontestable states, we consider that
as part of a “symmetric” equilibrum, as long as actions and payoffs are ex-ante symmetric in
contestable states. Moreover, there could be equilibria in which a country, say i, obtains a larger
share of the resources. As long as the other country, j, gets a payoff higher than its minmax,
that can be an equilibrium. We ignore such equilibria because they do not add relevance or
insight to the study, but greatly increase the space of possible equilibria.

14Since there are no incentives to “invest” in the elimination of an enemy, it is trivial to see
that the elimination option will never be taken, as long as the cost is positive X > 0.
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all (G1, G2). That is, under the non-cooperative norm, there is always open
conflict. In contrast, under the cooperative norm, there is never an open con-
flict as the countries always reach an agreement. Finally, it is possible to have
arming-dependent selection criteria. In particular, under the conditional cooper-
ative norm, S1S2 = 1 for all (G1, G2) such that Gi ≤ Ĝ for some equilibrium Ĝ
and S1S2 = 0, otherwise.

The following proposition summarizes the subgame perfect Nash equilibrium
gun levels under each selection criterion.

Proposition 1. Assume that δ = 0.

1. Under the non-cooperative norm (i.e., players coordinate in S1S2 = 0 for
all (G1, G2)). Then, the equilibrium level of arming is GN = θR/4 and the
associated payoff is V N = θR/4.

2. Under the cooperative norm (i.e., players coordinate in S1S2 = 1 for all
(G1, G2)). Then, the equilibrium level of arming is GN = R/4 and the
associated payoff is V N = R/4.

3. Under the conditional cooperative norm:

(a) If θ ≤ 1/2, then the most cooperative equilibrium level of arming is
GP = 0 and the associated payoff is V P = R/2.

(b) If θ > 1/2, then the most cooperative equilibrium level of arming is
GSB ∈ (0, θR/4], where GSB is the unique solution to F (G) = −2G+
2
√
GθR+

(
1−2θ
2

)
R = 0, and the associated payoff is V SB = R/2−GSB.

Proof. See the Appendix.

The equilibrium described in Proposition 1.1 is identical to the Nash equilib-
rium of the standard one-shot contest game when no settlement stage is included.
The non-cooperative norm can be interpreted as the total lack of trust as players
expect that they will never be able to coordinate in the Pareto-superior settle-
ment equilibrium, regardless of their guns choices. This makes the settlement
stage completely irrelevant. For international relations, one possible interpreta-
tion is that this is a situation in which countries do not have a diplomatic channel
that can be used to reach a negotiated settlement.

The equilibrium described in Proposition 1.2 is the equilibrium usually stressed
when the standard one-shot contest game is augmented with a settlement stage.
The idea is that regardless of gun choices, countries can always use diplomacy
and peaceful negotiations to settle the dispute, divide the disputed resource ac-
cording to the winning probabilities, avoid the destruction associated with open
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conflict, and enforce the agreement with guns. In other words, players will always
coordinate in the Pareto-superior settlement equilibrium. Thus, armed peace can
always be achieved. 15

The equilibrium described in Proposition 1.3 is often overlooked in the litera-
ture, but it is interesting because it anticipates the opportunities for cooperation if
the game is repeated infinitely and also suggests that diplomacy can be a double-
edged sword. To see the opportunities for cooperation, note that the equilibrium
in Proposition 1.3 involves a lower level of arming and a higher payoff than the
equilibrium in Propositions 1.1 or 1.2. The reason is that the conditional co-
operative norm leverages the multiplicity of equilibrium in the settlement stage
to enact more cooperative behavior in gun choices. Specifically, the conditional
cooperative norm ’punishes’ high levels of arming with the Pareto-inferior no set-
tlement equilibrium and ’rewards’ low levels of arming with the Pareto-superior
settlement equilibrium. When the destruction associated with open conflict is
high (formally, θ ≤ 1/2), this is enough to induce disarmed peace. When the de-
struction associated with open conflict is low (formally, θ ≤ 1/2), fully disarmed
peace is not an equilibrium, but a lower level of arming than in Proposition 1.1
can still be sustained.

To see the double-edged sword nature of diplomacy, note that the conditional
cooperative norm can be interpreted as ’offering’ a diplomatic solution when
arming is low but also ’threatening’ with open conflict when arming is high. From
this perspective, the problem of the noncooperative norm in Proposition 1.1 is
the total lack of diplomacy (no carrots), while the problem of the cooperative
norm in Proposition 1.2 is an excessive attachment to diplomacy (no sticks).

Finally, note that when θ = 1 (that is, if there is no destruction associated
with open conflict), all the norms induce the same equilibrium, that is, GN =
R/4. Thus, when there is no advantage of a settled agreement over open conflict
because conflict is not destructive, the conditional cooperative norm cannot use
the destruction of open conflict as a threat to reduce arming.

15Note an odd prediction of the one-shot rent-seeking game. The equilibrium level of arming
is lower under open conflict (GN = θR/4) than under settlement (GN = R/4). One possibility
is to replace the rent-seeking model (1) by the following guns vs. butter model:

ui(ai, aj , ψ) = πi(Gi, Gj)
[
SR+ (1− S)θ − (1− S)ZWiX

]
(B1 +B2) ,

where Bi = Ri −Gi for i = 1, 2. Under this specification and assuming that 1/3 < R1/R2 < 3,
the equilibrium level of arming is GN = R/4, where R = R1 + R2, which does not depend on
S. The associated equilibrium payoffs (V N = [S + (1−S)θ]R/4) are identical for both models.
It is perfectly possible to redo all our analysis, replacing the rent-seeking model for this guns
vs. butter model. Results will persist.
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3.2 Repeated Game

Now we consider a standard repeated environment (i.e., without stochastic states).
Thus, the opportunity to eliminate never arrives (ϕ = 0). In addition, an open
conflict destroys a proportion 1−θ of the resources; as a consequence, since there
is no opportunity to eliminate, a settlement equilibrium always dominates an
open conflict equilibrium. Thus, we ignore equilibria without settlement on the
equilibrium path.

Under the previous considerations, we can utilize a standard folk theorem
to characterize the best attainable equilibrium. The mechanism that allows for
such cooperative equilibrium is also standard: countries behave nicely to each
other under the credible threat that if anyone ever deviates from such cooperative
equilibrium, the next period both countries will revert to an inefficient one-period
equilibrium allocation and remain there forever (i.e., grim-trigger strategies).

From Proposition 1, there are three possible equilibria to consider as punish-
ment for a deviation. The most severe is the equilibrium described in Proposi-
tion 1.1. Under a non-cooperative norm, both countries play GN = θR/4 and
S1 = S2 = 0, which gives instant payoffs of V N = θR/4. The equilibrium
described in Proposition 1.2 is slightly less severe as players continue to avoid
open conflict on the punishment path. Specifically, under a cooperative norm,
both countries play GN = R/4 and S1 = S2 = 1, which gives instant payoffs of
V N = R/4. It is also worth noting that Proposition 1.1 includes Proposition 1.2
(setting θ = 1). Finally, the equilibrium described in Proposition 1.3 is the least
severe one and, hence, the least effective in inducing cooperation. Consequently,
we will not consider it as a punishment path. In conclusion, we will employ the
non-cooperative norm equilibrium in Proposition 1.1 to punish deviations starting
in the next period.

To further induce cooperation, a deviation can also be immediately punished
by open conflict, which yields a payoff of θR. In summary, a deviation triggers not
only a permanent reversion to the worst one-period non-cooperative equilibrium
starting next period, but also an immediate switch to the non-cooperative norm.16

The best attainable allocation is the efficient allocation GP = 0. The pay-
off from remaining in this efficient equilibrium is R/2, as nothing is wasted in
guns and the resource is equally split. However, given that both countries have
zero military power, an arbitrarily small deviation by one country would greatly
improve its “bargaining power” at virtually zero cost. The other country will
immediately react switching to open conflict. Thus, the one-shot deviation pay-
off would be θR. Finally, as prescribed by the equilibrium, starting in the next

16This immediate switch to the non-cooperative norm selects the worst possible Nash equi-
librium, i.e., S1 = S2 = 0, in the settlement stage.
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period, both countries will play the equilibrium in Proposition 1, which gives
instant payoff of θR/4. Thus, to sustain the efficient equilibrium in a repeated
game, the discount factor δ has to satisfy:

R

2
≥ (1− δ)θR + δ

θR

4
(2)

What if condition (2) is not satisfied? One can see, from Equation (2), that by
investing virtually zero resources in guns, a country could secure all the resources
when deviating from the cooperative equilibrium. A second best GSB ∈ (0, θR/4)
can still be sustained in the repeated game. The reason is that if GSB > 0, the
potential deviation would not be as profitable during settlement talks. Following
this idea, the second best payoff is: R/2 − GSB, which is an equilibrium as
long as this payoff is better than a one-shot deviation and then reverting to the
equilibrium in Proposition 1.1 forever. Thus, this equilibrium requires:

R

2
−GSB ≥ (1− δ)

(
gD(GSB, θR)

GSB + gD(GSB, θR)
θR− gD(GSB, θR)

)
+ δ

θR

4
(3)

where gD(G, θR) =
√
θRG − G is the static best-response to G given resources

θR.17 Then:

Proposition 2. Assume that δ ≥ 0.

1. If θ ≤ 2
4−3δ

, then the first-best payoff V P = R/2 characterized by unarmed
peace GP = 0 can be attained as an equilibrium of the repeated game.

2. If θ > 2
4−3δ

, then the second-best payoff V SB = R/2 − GSB > R/4 with

military power GSB ∈
(
0,
(
1−δ
2−δ

)2
θR

)
is sustainable as an equilibrium of

the repeated game. Moreover, GSB is the unique solution to F (G) =

− (2− δ)G+2 (1− δ)
√
GθR+

[
2−(4−3δ)θ

4

]
R = 0 and

(
1−δ
2−δ

)2
θR ≤ θR

4
(with

strict inequality for δ > 0).

Proof. See the Appendix.

It is interesting to compare Propositions 1 and 2. Not surprisingly, repeated
interactions can support more cooperation than in the one-shot game when in the
latter we consider either a non-cooperative norm (as in Proposition 1.1) or a fully
cooperative norm (as in Proposition 1.2). More interesting is that repeated inter-
actions also open the door for more cooperation than the one-shot game under

17Formally, the solution to maxg πi(g,G)θR− g is gD(G, θR) =
√
θRG−G.
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the conditional cooperative norm. To illustrate this, assume that open conflict is
not destructive (i.e., θ = 1). Then, if δ ≥ 2/3, unarmed peace can be sustained
as an equilibrium of the repeated game, while the conditional cooperative norm
in Proposition 1.3 cannot improve in V N = R/4.

A more systematic way to compare Propositions 1.3 and 2 is to observe that
the higher the value of δ, the more likely the first-best payoff can be sustained as
an equilibrium, and the higher the second-best payoff when the first-best cannot
be sustained. Moreover, Proposition 2 is identical to Proposition 1.3 when δ =
0. Thus, the equilibrium in Proposition 2 always dominates the equilibrium in
Proposition 1.3 for δ = 0.

Summarizing, depending on the parameters, in the best equilibrium, there
is either eternal unarmed peace or a repeated settlement with small military
spending. Thus, repeated interactions open the door for substantial international
cooperation and even the possibility of a Utopian fully peaceful world. This
hardly corresponds to the historical record. In reality, we observe cycles of peace,
arm races, and serious instances of open conflict. In Section 6.1 we show that
adding stochastic states can accommodate arm races within the best equilibrium
path, which might help explain the rise of tensions in a cold war equilibrium,
but not instances of open conflict. So far, the only possibility to obtain open
conflict is to shut down repeated interactions and either assume that conflict is
not destructive or that countries follow a strict non-cooperative norm, which are
not reasonable assumptions. Nevertheless, under those assumptions, we obtain
an unrealistic result, namely, open conflict always prevails.

4 Equilibrium with Permanent Elimination

In this section, we study the main feature of the model: the possibility of an
elimination. Specifically, with probability ϕ > 0, if countries go to open conflict,
the winner has the opportunity to eliminate the loser at a cost X, who thereafter
will not be able to contest the resource. This elimination opportunity greatly in-
creases the complexity of the model. To better understand the basic interactions,
in this section we consider the case in which the elimination is permanent (γ = 0)
and the contested resource is not stochastic.

We consider two types of cooperative equilibria: permanent and temporary
cooperation. In an equilibrium with permanent cooperation, countries always
choose settlement no matter if open conflict allows the victor to eliminate the loser
or not. In an equilibrium with temporary cooperation, settlement is sustained
only when the victor of an open conflict will not be able to eliminate the loser.

For both types of equilibria, we characterize the best attainable equilibrium.
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The mechanism that allows for such cooperative equilibrium is related but not
identical to the grim-trigger strategy. Similarly to the grim-trigger strategy, coun-
tries stick to the cooperative path under the credible threat that if anyone ever
deviates from such cooperative equilibrium, the next period both countries will
revert to the worst equilibrium with open conflict. Moreover, as we stipulated
in the repeated game, we consider that a deviation is immediately punished by
open conflict. In contrast to the grim-trigger strategy, when the victor can elim-
inate the loser, not every deviation can be effectively punished. In particular,
if a country deviates from Si = 1 to Si = 0 when Z = 1, it might be the case
that one of the countries is wiped out and hence there is no possible future pun-
ishment. Nevertheless, it is useful to start the analysis characterizing the most
severe equilibrium punishment (i.e., the worst possible equilibrium under open
conflict) that countries can threaten to revert starting next period if the resource
is still contestable.

4.1 Punishment Equilibria

To determine the lowest possible equilibrium payoffs under the possibility of open
conflict, we note that the non-cooperative norm should be used as it leads to the
lowest possible payoffs. Moreover, we also note that there is no unilateral prof-
itable deviation from S1 = S2 = 0 because settlement requires that both players
agree S1 = S2 = 1. Thus, under the non-cooperative norm, in contestable states
(no player has been eliminated yet), there will be open conflict. The following
lemma characterizes the worst possible equilibrium under the non-cooperative
norm. When Z = 0, open conflict will be used in this equilibrium. In contrast,
when Z = 1, depending on the parameters, sometimes the lowest equilibrium
payoff is attained by using the elimination option after an open conflict and
sometimes the lowest equilibrium payoff is attained by not using the elimination
option. Since elimination is an absorbing state, we compute the most severe
credible punishment starting on a contestable state.

Lemma 1. Under the non-cooperative norm.18 Let X̄ = [(4−θ)(1−δ)+3ϕδ]δR
(1−δ)[4(1−δ)+3ϕδ]

and
RWO = θR−X + δR

1−δ
.

1. Suppose that X > X̄. Then, the worst equilibrium is GN = θR/4 for Z = 0
and GN = θR/4 and no elimination for Z = 1. The associated punishment
expected payoff is V PU = V N = θR

4
.

2. Suppose that X ≤ X̄. Then, the worst equilibrium is GN = θR/4 for Z = 0

18That is, assume that in every contestable state, S1S2 = 0 for all (G1, G2) and Z.
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and GWO = RWO/4 and eliminate the loser for Z = 1. The associated

punishment expected payoff is V PU = V WO =
(1−δ)[(1−ϕ)θR+ϕRWO]

4(1−δ+ϕδ)
.

Proof. See the Appendix.

In words, there are two possible equilibria to consider. In one equilibrium,
countries never use the elimination option. This equilibrium is just the eter-
nal repetition of the equilibrium in Proposition 1.1 or, which is the same, the
punishment used in Proposition 2 to sustain cooperation. In the second equilib-
rium, countries use the elimination option whenever it is available (that is, when
Z = 1). In this equilibrium, the first time that Z = 1 the victor eliminates the
loser, and the game permanently transitions to an uncontestable state in which
the victor takes all the resource in every period. Moreover, there is a unique Nash
equilibrium level of arming. To see this, assume that countries expect to use the
elimination option. Then, country i’s expected payoff is given by:

ui (Gi, G−1) = πi (Gi, G−1) [(1− δ) (θR−X) + δR]− (1− δ)Gi

Thus, the unique Nash equilibrium level of arming is Gi = GWO = RWO/4 =(
θR−X + δR

1−δ

)
/4 for i = 1, 2.19

Depending on the parameter values, only one or both of these equilibria exist.
In particular, for X greater than a threshold, only the first equilibrium exists, for
intermediate values of X both equilibria exist, and for X below a threshold only
the second equilibrium exists. Moreover, we show that whenever both equilibria
exist, the one that generates lower payoffs is the equilibrium in which countries
use the elimination option.

The intuition behind the proof of Lemma 1 is simple. When the cost of using
the elimination technology is high (formally X > X̄), countries are not interested
in using it, and, hence, the worst possible equilibrium is identical to the equilib-
rium punishment in Proposition 2. In contrast, when the cost of the elimination
technology is low (formally X ≤ X̄), both countries are willing to use it if they
expect the other country to do the same. Moreover, in such circumstances, the
lower payoff equilibrium is always the one in which the victor eliminates the loser.

4.2 Cooperation Strategies and Payoffs

Next, we explore cooperative equilibria in contrast to those described in Lemma
1. We start with permanent cooperation, i.e., when countries choose to settle

19X ≤ X̄ ensures that −X+ δR
1−δ > 0 and, hence, GWO > GN = θR/4 > 0. See the Appendix

for more details.
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regardless of whether the elimination option is available or not. In particular,
consider the following strategy to sustain permanent cooperation.

Definition 1. Permanent cooperation strategy.

• Cooperation phase: Suppose that no deviation has occurred. If Z = 0, play
G (0) and S = 1; while if Z = 1, play G (1) and S = 1.

• Punishment phase for Z = 0: Any deviation from G (0) and S = 1 triggers,
starting in the next period, the worst equilibrium in Lemma 1. In addition,
a deviation from G (0) triggers an open conflict immediately.

• Punishment phase for Z = 1:

– Deviation from S = 1: If this leads to an elimination, this deviation
cannot be punished. If it does not lead to an elimination, it triggers,
starting in the next period, the worst possible equilibrium in Lemma 1.

– Deviation from G (1): This is immediately punished with S = 0 and
eliminate the loser if elimination is an optimal choice for the victor
and, in case it is not, starting in the next period, with the worst possible
equilibrium in Lemma 1.

– To determine whether the use of the elimination technology is an op-
timal choice, the victor assumes that, starting in the next period, the
worst possible equilibrium in Lemma 1 will be played.

Suppose that countries are following the permanent cooperation strategy with
G (0) ∈

[
0, θR

4

)
and G (1) ∈

[
0, θR

4

)
and that no country deviates. Then:

V PC (0) = (1− δ)

(
R

2
−G (0)

)
+ δ

[
ϕV PC (1) + (1− ϕ)V PC (0)

]
V PC (1) = (1− δ)

(
R

2
−G (1)

)
+ δ

[
ϕV PC (1) + (1− ϕ)V PC (0)

]
Thus, for Z = 0, each country obtains R/2 − G (0) and in the next period
with probability ϕ we have Z = 1 and with probability 1 − ϕ we have Z = 0.
Similarly, for Z = 1, each country obtains R/2 − G (1), and in the next period
with probability ϕ we have Z = 1 and with probability 1 − ϕ we have Z = 0.
Solving for the above equations, the expected payoffs for each state Z = 0, 1 are
given by:

V PC (0) =
R

2
− (1− δϕ)G (0)− δϕG (1) (4)

V PC (1) =
R

2
− (1− δ + δϕ)G (1) + δ (1− ϕ)G (0) (5)
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For some parameter values, it will not be possible to sustain permanent co-
operation, but countries will still be able to sustain cooperation only when the
victor will not be able to eliminate the loser. In particular, consider the following
strategy to sustain temporary cooperation:

Definition 2. Temporary cooperation strategy.

• Cooperation phase for Z = 0: Suppose that no deviation has occurred.
Then, play G (0) and S = 1.

• Punishment phase for Z = 0: Any deviation from G (0) and S = 1 triggers,
starting in the next period, the worst equilibrium in Lemma 1. In addition,
a deviation from G (0) triggers an open conflict immediately.

• No cooperation for Z = 1: Play GWO, S = 0 and eliminate.

Suppose that countries are following the temporary cooperation strategy with
G (0) ∈

[
0, θR

4

)
and that no country deviates. Then:

V TC (0) = (1− δ)

(
R

2
−G (0)

)
+ δ

[
ϕV TC (1) + (1− ϕ)V TC (0)

]
V TC (1) =

1

2
[(1− δ) (θR−X) + δR]− (1− δ)GWO

Thus, for Z = 0, each country obtains R/2 − G (0) and in the next period with
probability ϕ we have Z = 1 and with probability 1−ϕ we have Z = 0. For Z = 1,
countries fight an open conflict, the victor obtains θR and pays the elimination
cost X in the present; and obtains R forever. The loser gets nothing. Both
countries invest GWO in guns. Solving for the above equations, the expected
payoffs for each state Z = 0, 1 are given by:

V TC (0) =
(1− δ)

(
R
2
−G (0) + δϕRWO

4

)
1− δ + δϕ

(6)

V TC (1) =
(1− δ)RWO

4
(7)

4.3 Optimal Deviations and Sustainability Conditions

The following lemma characterizes the optimal deviation and the associated devi-
ation rewards for a country that chooses to stop following the cooperation strate-
gies.
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Lemma 2. Suppose that countries are following either the permanent cooperation
strategy with G (0) ∈

[
0, θR

4

)
and G (1) ∈

[
0, θR

4

)
or the temporary cooperation

strategy with G (0) ∈
[
0, θR

4

)
.

1. Assume that Z = 0. Then, the most profitable deviation is

gD (G(0), θR) =
√
θRG(0)−G(0)

The associated deviation payoff is given by:

V D (G(0)) = (1− δ)uD (G(0), θR) + δV PU

where uD (G(0), θR) = gD(G(0),θR)
G(0)+gD(G(0),θR)

θR− gD (G(0), θR) and V PU is given
by Lemma 1.

2. Assume that Z = 1. Let X̄ = [(4−θ)(1−δ)+3ϕδ]δR
(1−δ)[4(1−δ)+3ϕδ]

and RWO = θR−X + δR
1−δ

.

(a) Suppose that X > X̄. Then, the most profitable deviation is

gD (G(1), θR) =
√
θRG(1)−G(1),

inducing countries to fight an open conflict, after which the victor will
not eliminate the loser. The associated deviation payoff is given by:

V D (G(1)) = (1− δ)uD (G(1), θR) + δ
θR

4

where uD (G(1), θR) = gD(G(1),θR)
G(1)+gD(G(1),θR)

θR− gD (G(1), θR)

(b) Suppose that X ≤ X̄. Then, the most profitable deviation is

gD
(
G(1), RWO

)
=

√
RWOG(1)−G(1),

inducing countries to fight an open conflict, after which the victor will
eliminate the loser. The associated deviation payoff is given by:

V D (G(1)) = (1− δ)uD
(
G(1), RWO

)
where uD

(
G(1), RWO

)
=

gD(G(1),RWO)
G(1)+gD(G(1),RWO)

RWO − gD
(
G(1), RWO

)
Proof. See the appendix.
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Note that depending on the cost X, the most profitable deviation may or may
not include the use of the elimination technology. In particular, as X grows,
deviating from a more efficient equilibrium will not lead to the elimination of the
loser in that period or the punishment periods that follow.

Combining Lemmas 1 and 2, we obtain sustainability conditions for some
degree of cooperation in equilibrium. In particular, to sustain as an equilibrium
the permanent cooperation strategy with G (0) , G (1) ∈

[
0, θR

4

)
it must be the

case that:
F PC,Z (G (0) , G (1)) := V PC (Z)− V D (G(Z)) ≥ 0 (8)

for Z = 0, 1.
To sustain as an equilibrium the temporary cooperation strategy with G (0) ∈[

0, θR
4

)
it must be the case that:

F TC (G (0)) := V TC (0)− V D (G(0)) ≥ 0 (9)

4.4 Impossibility of Avoiding Open Conflict for δ → 1

Before we fully characterize cooperative equilibria, it is imperative to explore what
happens with sustainability conditions for cooperative equilibria when δ → 1.
After all, as we have shown in Proposition 2, when there is no technology that
allows the elimination of the rival, unarmed peace can be sustained for δ ≥ 2

3
.

The following proposition provides the answer.

Proposition 3. Suppose that δ → 1. Then, it is impossible to sustain a per-
manent cooperative equilibrium, but it is always possible to sustain a temporary
cooperative equilibrium. Moreover, a temporary cooperative equilibrium is not
Pareto efficient (regardless of whether δ < 1 or δ → 1).

Proof. See the Appendix.

The intuition behind Proposition 3 is as follows. When δ → 1, it is impossible
to deter a deviation when Z = 1. The reason is that the elimination technology
works as an investment that becomes more attractive as countries become more
patient. At the same time, the certainty that cooperation will breakdown when
there is a chance of eliminating the rival does not block cooperation while Z = 0.
The reason is that there is no advantage in switching to open conflict when it is
not possible for the victor to eliminate the loser.

It is worth recalling the path predicted by a temporary cooperative equilib-
rium. Countries cooperate, avoiding open conflict and possibly reducing arming
levels while they cannot eliminate their enemy, but as soon as the elimination
opportunity arrives, an instance of open conflict is inevitable. Thereafter, the
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victor takes full control of the disputed resource, and disarmed peace prevails for-
ever. In other words, what might appear to be patient players cooperating forever
(à la folk theorem) reveals only temporary cooperation that suddenly switches to
full-fledged war to permanently settle the dispute.

Finally, to see that a temporary equilibrium is not Pareto efficient, note that
in any temporary equilibrium whenever Z = 0 countries invest G (0) ≥ 0; the
first time that Z = 1 they invest GWO > 0; and, thereafter, there is zero
investment in guns. Thus, even if a temporary cooperative equilibrium with
G (0) = 0 can be sustained, in such an equilibrium there is a positive invest-
ment in guns the first time that Z = 1. In contrast, for δ < 1, efficiency re-
quires zero investment in guns along the equilibrium path. For δ → 1, we have
limδ→1 V

TC (0) = limδ→1 V
TC (1) = R/4, while efficiency allows each country to

obtain Vi = R/2.

4.5 Full Characterization of Cooperative Equilibria

Beyond analyzing the limit case as δ → 1–arguably the most interesting and coun-
terintuitive scenario–we also fully characterize the set of equilibria for all discount
factors. To do so, we distinguish between two cases: high and low elimination
costs. In addition, when multiple equilibria arise, we compare them using the
ex-ante expected payoff induced by each equilibrium as our evaluation criterion.
That is, we assume diplomacy is fully effective in the sense that, for any form of
cooperation (whether permanent or temporary), it identifies and implements the
best possible outcome that can be sustained as an equilibrium. However, even
under this optimistic assumption, diplomacy may not always suffice to achieve
ideal outcomes. Formally, in the case of permanent cooperation, we focus on the
cooperative equilibrium that maximizes:

V PC = ϕV PC (1) + (1− ϕ)V PC (0)

subject to sustainability constraints F PC,Z (G (0) , G (1)) ≥ 0 for Z = 0, 1, that
is, equation (8).

And for temporary cooperation, we look for the equilibrium that maximizes:

V TC = ϕV TC (1) + (1− ϕ)V TC (0)

subject to sustainability constraint F TC (G (0)) ≥ 0 (that is, equation (9)).
It is useful to distinguish two possible situations, namely, high- and low-

elimination cost. The following proposition considers the case in which the cost
of elimination is high.

Proposition 4. Suppose that X > X̄.
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1. If θ ≤ 2
4−3δ

, then permanent complete cooperation, i.e., disarmed peace with
G(Z) = 0 for Z = 0, 1 can be sustained.

2. If θ > 2
4−3δ

, then the best possible cooperative equilibria that can be sus-
tained is permanent partial cooperation (i.e., armed peace) with GPC ∈(
0,
(
1−δ
2−δ

)2
θR

)
for Z = 0, 1, where GPC is the unique solution to F (G) =

− (2− δ)G+2 (1− δ)
√
GθR+

[
2−(4−3δ)θ

4

]
R = 0 and

(
1−δ
2−δ

)2
θR ≤ θR

4
(with

strict inequality for δ > 0).

Proof. See the Appendix.

Proposition 4 is almost identical to Proposition 2. Perhaps not surprisingly,
if the elimination cost is high enough, countries are not willing to use the elimi-
nation technology, and hence the most severe punishment they can use to deter
a deviation from the cooperative path is to revert to the one-shot equilibrium
under the non-cooperative norm forever. In other words, the logic of the folk the-
orem is reinstated. There is, however, a subtle difference between Propositions
4 and 2. Note that the additional condition X > X̄ is required for Proposition
4. Crucially, this condition does not hold for δ high enough. In particular, note
that it never holds when δ → 1.

Next, we study the more interesting case, that is, when the elimination cost is
low. The following proposition summarizes the results.

Proposition 5. Suppose that X ≤ X̄ and let X̄low = θR +
[2δ− 2−2δ+δϕ

1−δ+δϕ ]R
2(1−δ)

and
X̄high = θR + (2δ−1)

2(1−δ)
R.

1. Suppose that either θ ≤ 1−2δ
2(1−δ)

or 1−2δ
2(1−δ)

< θ ≤ 4(1−δ)+3ϕδ
2(1−δ)(4−3δ+3ϕδ)

and X ≥
X̄high. Then, permanent complete cooperation, i.e., disarmed peace with
G (Z) = 0 for Z = 0, 1, can be sustained.

2. Suppose that 1−2δ
2(1−δ)

< θ ≤ 4(1−δ)+3ϕδ
2(1−δ)(4−3δ+3ϕδ)

and X̄low < X < X̄high. Let

Ḡ (0) =
(

1−δ
2−δ−ϕδ

)2

θR < GN , Ḡ (1) =
(

1−δ
2−2δ+δϕ

)2

RWO < GWO, and

Ĝ (1) ∈
(
0, Ḡ (1)

)
be the unique solution to F PC,1 (0, G (1)) = 0.

(a) If Ĝ (1) ≤ F PC,0 (0, 0) /δϕ, then the best possible permanent cooperative
equilibrium that can be sustained is partial cooperation with G (0) = 0
and G (1) = Ĝ (1).
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(b) If Ĝ (1) > F PC,0 (0, 0) /δϕ, then the best possible permanent cooperative
equilibrium that can be sustained is partial cooperation with G (0) ∈(
0, Ḡ (0)

)
and G (1) ∈

(
Ĝ (1) , Ḡ (1)

)
given by the unique solution to

F PC,0 (G (0) , G (1)) = F PC,1 (G (0) , G (1)) = 0 that satisfies:

∂F PC,0 (G (0) , 0)

∂G (0)

∂F PC,1 (0, G (1))

∂G (1)
> δ2 (1− ϕ)ϕ.

3. If θ ≤ 2
4−3δ+3ϕδ

, then the best temporary cooperative equilibrium that can be
sustained is G (0) = 0.

4. If θ > 2
4−3δ+3ϕδ

, then the best temporary cooperative equilibrium that can

be sustained is G (0) ∈
(
0,
(

1−δ+δϕ
2−δ+δϕ

)2

θR

)
given by the unique solution to

F TC (G (0)) = 0. Moreover,
(

1−δ+δϕ
2−δ+δϕ

)2

θR < GN = θR
4

.

Proof. See the Appendix.

Proposition 5.1 states that even when X ≤ X̄ (from Lemma 1), it could still
be possible to sustain the first-best allocation G (Z) = 0 for Z = 0, 1. Why
is a country not willing to deviate and play open conflict, win the war with
probability 1, and then eliminate the loser? There are two reasons. First, during
open conflict, a fraction 1−θ of the resource is destroyed. Second, the elimination
costs X may still be too high to deviate from cooperation, even when it is not
high enough to be an equilibrium under the non-cooperative norm. That is,
when θ ≤ 1−2δ

2(1−δ)
, the destruction of open conflict is severe enough to discourage

a deviation even if elimination was costless.20 For 1−2δ
2(1−δ)

< θ ≤ 4(1−δ)+3ϕδ
2(1−δ)(4−3δ+3ϕδ)

, if
elimination were costless, a country would always be willing to deviate. However,
if the cost of elimination is high enough, it is still the case that no country finds
profitable to deviate from complete permanent cooperation in order to eliminate
its rival.

What happens if complete permanent cooperation cannot be sustained? In the
spirit of Propositions 2 and 4, Proposition 5.2 shows that a second-best allocation
with permanent but partial cooperation can be sustained, provided that open
conflict is destructive enough and the cost of elimination is not too low. An
interesting feature of the equilibria described in Proposition 5.2 is that gun choices

20More formally, under complete permanent cooperation a country obtains R/4, while if it
deviates to open conflict and then eliminate its rival it gets (θR−X)+δR. Thus, for θ ≤ 1−2δ

2(1−δ) ,
deviation does not pay.
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fluctuate to sustain cooperation. For example, when Ĝ (1) ≤ F PC,0 (0, 0) /δϕ,
in the best permanent cooperative equilibrium, there is disarmed peace when
elimination is not possible but positive arming when the victor can eliminate the
lower. Another interesting feature of Proposition 5.2 is that it is never optimal to
organize permanent cooperation with positive arming for Z = 0 and no arming
for Z = 1. In other words, some arming is always required to avoid open conflict
when the victor has the chance to permanently eliminate the loser.

From Proposition 3 we already know that when δ → 1, it is not even possi-
ble to sustain the second-best allocation characterized in Proposition 5.2. More
precisely, the following corollary characterizes when open conflict is unavoidable.

Corollary 1. Open conflict is unavoidable if and only if

X ≤

{
X̄ θ > 4(1−δ)+3ϕδ

2(1−δ)(4−3δ+3ϕδ)

X̄low
1−2δ
2(1−δ)

< θ ≤ 4(1−δ)+3ϕδ
2(1−δ)(4−3δ+3ϕδ)

(10)

Moreover:
1. The lower the cost of elimination technology (X lower) and the higher the

chances that countries can use it (ϕ higher), the less likely open conflict can be
avoided.

2. The destructiveness of open conflict has a non-monotonic effect on the
likelihood of open conflict. Initially, as destructiveness declines (θ higher), open
conflict becomes more likely, but eventually further reductions in destructiveness
make open conflict easier to avoid.

Proof. See the Appendix.

That open conflict is unavoidable does not imply that there is no room for
temporary cooperation. In fact, Propositions 5.3 and 5.4 fully characterize the
best temporary cooperative equilibrium in which countries only cooperate when
Z = 0 but switch to open conflict when the opportunity to eliminate the rival
arrives (i.e., for Z = 1). It is worth mentioning that, unlike permanent cooper-
ation, it is always possible to sustain some level of temporary cooperation. The
intuition behind this result is simple. Even if there is no hope of avoiding open
conflict when Z = 1, countries still have incentives to cooperate when Z = 0
because they can temporarily avoid the destruction associated with open conflict
and the cost of high levels of arming.

An interesting exercise is how the expectation that cooperation will not sur-
vive when Z = 1 affects the level of cooperation when Z = 0. Note that the
threshold in Proposition 5.3 (i.e., 2

4−3δ+3ϕδ
) is strictly decreasing in ϕ. Thus,

as the probability that the elimination technology will be available increases (a
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higher ϕ), it is less likely that in a temporary cooperative equilibrium no arming
can be sustained when Z = 0. It is also easy to prove that when θ > 2

4−3δ+3ϕδ
,

G (0) is strictly increasing in ϕ. Thus, as the probability that the elimination
technology will be available increases, less cooperation can be sustained when
such technology is not available.21

Proposition 5 offers a much richer and realistic set of possibilities than Proposi-
tion 4. First, cooperation might require increasing and decreasing arming choices.
Thus, the model is compatible with hot periods in which security competition in-
tensifies and calmer periods in which countries deescalate tensions. Moreover,
rising arming and tensions are not necessarily the prelude to war, but rather a
mechanism to secure cooperation. Second, sometimes open conflict is unavoid-
able, because winning a decisive war that permanently eliminates the rival is
extremely tempting. In these circumstances, countries cooperate until the elimi-
nation opportunity arrives, when they fight a full-fledged open war that perma-
nently settles the dispute; thereafter, disarmed peace persists.

4.6 Permanent versus Temporary Cooperation

Proposition 5 fully characterizes the best possible permanent and temporary equi-
librium, respectively, but it does not compare them with each other. There are
three situations to consider: When complete permanent cooperation can be sus-
tained, there is no need to compare it with a temporary cooperative equilibrium
because complete permanent cooperation always induces a higher expected pay-
off than any other equilibrium. When neither complete nor partial permanent
cooperation can be sustained, there is nothing to compare. The best possible
equilibrium is the temporary cooperative equilibrium described in Propositions
5.3 and 5.4. Finally, the only non-trivial case where a comparison is meaning-
ful is when partial permanent cooperation is possible, but complete permanent
cooperation is not. In this setting, the comparison is not redundant, since tem-
porary cooperation is always feasible. The following proposition undertakes this
comparison.

Proposition 6. Suppose that 1−2δ
2(1−δ)

< θ ≤ 4(1−δ)+3ϕδ
2(1−δ)(4−3δ+3ϕδ)

and X̄low < X <

X̄high. Then, partial permanent cooperation induces higher ex-ante expected payoff
than temporary cooperation if and only if

∆ =

[
F PC,0 (0, 0)− δϕGPC (1)− δ (1− ϕ)GPC (0)

− (1−δ)
1−δ+δϕ

[
F TC (0)− δ (1− ϕ)GTC (0)

] ]
≥ 0

21This also implies that gun choices in Proposition 4 are always lower than gun choices in
Propositions 5.3 and 5.4.
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where

F PC,0 (0, 0) =
R

2
− (1− δ) θR−

(1− δ) δ
[
θR + ϕ

(
−X + δR

1−δ

)]
4 (1− δ + ϕδ)

F TC (0) =
2− θ (4− 3δ + 3ϕδ)

4
R

GPC (0) and GPC (1) are given by Proposition 5.2 and GT (0) by Propositions 5.3
and 5.4. Moreover, if θ > 2

4−3δ+3ϕδ
and Ĝ (1) ≤ F PC,0 (0, 0) /δϕ, ∆ ≥ 0, while if

θ ≤ 2
4−3δ+3ϕδ

and Ĝ (1) > F PC,0 (0, 0) /δϕ, ∆ < 0.

Proof. See the Appendix.

The more interesting result in Proposition 6 is that it is not always the case
that partial permanent cooperation dominates temporary cooperation. In fact, if
θ ≤ 2

4−3δ+3ϕδ
and F PC,0 (0, 0) < 0, it is better to cooperate only when Z = 0. The

reason is that inducing cooperation for Z = 0 and Z = 1 might require very high
levels of arming compared to those needed to induce cooperation only for Z = 0.
Thus, avoiding open conflict, even when sustainable, is not necessarily the best
alternative.

To summarize, the elimination technology offers a substantial departure from
the results in more standard setups that allow for folk theorem rosy predictions.
First, open conflict and associated destruction are unavoidable when δ → 1.
Second, avoiding open conflict, when possible, might require a fluctuation in
arming choices. Finally, even if countries can escape open conflict, they may
choose not to do so because the benefits from post-war eternal peace outweigh
the additional costs in arming needed to discourage open conflict.

There is, however, one very unrealistic feature in the temporary cooperative
equilibrium described in Propositions 5 and 6. Because elimination is an ab-
sorbing state (permanent elimination), after the first instance of open conflict,
the resource becomes non disputable, and hence there is disarmed peace forever
after. In the next section, we relax the assumption of permanent elimination to
obtain more realistic results. Since we are still interested in equilibria with open
conflict, we will focus on situations in which the elimination cost is low.

5 Equilibrium with Temporary Elimination

Suppose that γ > 0. Then, there is a chance that countries return to contestable
states even after a country has been eliminated. This does not affect choices in
uncontestable states, where the victor still collects R without investing anything
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in guns, but makes the elimination technology less attractive (because now with
probability γ the resource will again be contestable). Fortunately, to characterize
the best possible equilibrium when γ > 0 we can employ the same approach as
we used in Section 4. Thus, we start the analysis characterizing the most severe
equilibrium punishment (i.e., the worst possible equilibrium under open conflict)
that countries can threaten to revert to punish a deviation from the cooperative
path.

Lemma 3. Under the non-cooperative norm.22 Let X̄ (γ) = [(4−θ)(1−δ+δγ)+3δϕ]δR
(1−δ+δγ)[4(1−δ+δγ)+3δϕ]

and RWO (γ) = θR−X + δR
1−δ+δγ

.

1. Suppose that X > X̄ (γ). Then, the worst equilibrium is GN = θR
4

for Z = 0
and GN = θR

4
and no elimination for Z = 1. The associated punishment

expected payoff is V PU = V N = θR
4

.

2. Suppose that X ≤ X̄ (γ). Then, the worst equilibrium is GN = θR
4

for
Z = 0 and GWO (γ) = RWO(γ)

4
and elimination for Z = 1. The associated

punishment expected payoff is V PU = V WO (γ) =
(1−δ+δγ)[ϕRWO(γ)+(1−ϕ)θR]

4[1−δ(1−ϕ−γ)]
.

Proof. See the Appendix.

Lemma 3 is a generalization of Lemma 1.23 When the cost of using the elimi-
nation technology is greater than X̄ (γ), the most severe punishment is the static
Nash equilibrium under no settlement. In contrast, when the cost of using the
elimination technology is less than X̄ (γ), the most severe punishment includes
the use of the elimination technology whenever available.

As in Section 4, better equilibria can be sustained than those in Lemma 3. It
is straightforward to adapt the permanent and temporary cooperation strategies
(definitions 1 and 2, respectively) to deal with the possibility that γ > 0. All we
need to do is to use Lemma 3 instead of Lemma 1 in the punishment phases.

Computing expected payoffs under these cooperation strategies is also straight-
forward. Suppose that countries are following the permanent cooperation strategy
with G (0) ∈

[
0, θR

4

)
and G (1) ∈

[
0, θR

4

)
and that no country deviates. Since un-

der this strategy, the game never transitions to the non-contestable state, the
expected payoffs for each contestable state are still given by (4) and (5). Thus:

V PC (1, 0) =
R

2
− (1− δϕ)G (0)− δϕG (1)

V PC (1, 1) =
R

2
− (1− δ + δϕ)G (1) + δ (1− ϕ)G (0)

22That is, assume that in every contestable state, S1S2 = 0 for all (G1, G2) and Z.
23Formally, for γ = 0, we have X̄ (0) = barX and RWO (0) = RWO.
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Intuitively, if countries are cooperating in each contestable state, the elimination
technology is never used, and hence, no country is ever temporarily eliminated,
which implies that the probability that a defeated country comes back has no
effect on expected payoffs.

In contrast, when countries are following a temporary cooperation strategy,
the game will eventually transition to the uncontestable state, then move back
again to the contestable state, and so on. Therefore, for γ > 0,(6) and (7) do not
apply anymore. Suppose that countries are following the temporary cooperation
strategy with G (0) ∈

[
0, θR

4

)
and that no country deviates. Let V TC (1, Z)

denote the payoff in a contestable state C = 1 with Z = 0, 1, and V TC (0, w)
and V TC (0, l) the payoffs in the uncontestable state C = 0 for the winner and
the loser, respectively. Then:

V TC (1, 0) = (1− δ)

(
R

2
−G (0)

)
+ δV TC (1)

V TC (1) = ϕV TC (1, 1) + (1− ϕ)V TC (1, 0)

V TC (1, 1) =
(1− δ) (θR−X) + δV TC (0, w)

2
+
δV TC (0, l)

2
− (1− δ)GWO (γ)

V TC (0, w) = (1− δ)R + δ
[
γV TC (1) + (1− γ)V TC (0, w)

]
V TC (0, l) = δ

[
γV TC (1) + (1− γ)V TC (0, l)

]
Thus, when the resource is contestable and Z = 0, each country obtains R/2 −
G (0) and in the next period the resource will also be contestable. In particular,
with probability ϕ the state will be (C = 1, Z = 1) and with probability 1 − ϕ,
it will be (C = 1, Z = 0). When the resource is contestable and Z = 1, countries
fight an open conflict; the winner obtains θR and pays the elimination cost X in
the present; and, in the next period, the game transitions to the uncontestable
state. The loser gets nothing in the present. Both countries invest GWO in
guns. If the resource is not contestable, the winner gets R at no cost in the
present period, and in the next period the game switches to the contestable state
with probability γ. The loser gets nothing in the present. Solving for the above
equations, the expected payoffs for C = 1 and Z = 0, 1 are given by:

V TC (1, 0) =
(1− δ + δγ − ϕδ2γ)

(
R
2
−G (0)

)
+ δϕRWO(γ)

4

1− δ (1− γ − ϕ)

V TC (1, 1) =
(1−δ+δγ)(1−δ)RWO(γ)

4
+ (1− ϕ) δ2γV TC (1, 0)

1− δ + δγ − δ2γϕ

The following lemma characterizes optimal deviations from cooperation strate-
gies.
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Lemma 4. Suppose that countries are following either the permanent cooperation
strategy with G (0) ∈

[
0, θR

4

)
and G (1) ∈

[
0, θR

4

)
or the temporary cooperation

strategy with G (0) ∈
[
0, θR

4

)
. Assume that X ≤ X̄ (γ).

1. Assume that Z = 0. Then, the most profitable deviation is gD (G(0), θR) =√
G(0)θR−G(0). The associated deviation payoff is given by:

V D (G (0)) = (1− δ)uD (G(0), θR) + δV WO (γ)

where uD (G(0), θR) = gD(G(0),θR)
G(0)+gD(G(0),θR)

θR− gD (G(0), θR).

2. Assume that Z = 1. Then, the most profitable deviation is

gD
(
G(1), RWO (γ)

)
=

√
G(1)RWO (γ)−G(1),

which induces an open conflict, after which the victor eliminates the loser.
The associated deviation payoff is given by:

V D (G(1)) = (1− δ)uD
(
G(1), RWO (γ)

)
+
γδ2V WO (γ)

1− δ + δγ

where uD
(
G(1), RWO (γ)

)
=

gD(G(1),RWO(γ))
G(1)+gD(G(1),RWO(γ))

RWO (γ)−gD
(
G(1), RWO (γ)

)
.

Proof. See the Appendix.

Lemma 4 is a generalization of Lemma 2 when X ≤ X̄ (γ). That is, we
focus on the more interesting case in which the most severe punishment uses the
elimination technology.

Combining Lemmas 3 and 4 we can generalize sustainability constraints (8)
for permanent cooperation and (9) for temporary cooperation. In particular, to
sustain as an equilibrium the permanent cooperation strategy with G (0) , G (1) ∈[
0, θR

4

)
it must be the case that:

F PC,Z
γ (G (0) , G (1)) = V PC (1, Z)− V D (G(Z)) ≥ 0 (11)

for Z = 0, 1. To sustain as an equilibrium the temporary cooperation strategy
with G (0) ∈

[
0, θR

4

)
it must be the case that:

F TC
γ (G (0)) = V TC (1, 0)− V D (G(0)) ≥ 0 (12)

The following proposition characterizes sustainability constraints (11) when
δ → 1.
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Proposition 7. Suppose that γ > 0 and δ → 1. Then, permanent complete
cooperation, i.e., disarmed peace with G (Z) = 0 for Z = 0, 1, can be sustained.

Proof. See the Appendix.

Note the difference with Proposition 3. While for γ = 0, δ → 1 makes disarmed
peace unsustainable, for γ > 0, we recover sustainability for the Pareto efficiency
allocation. The reason behind this difference is that for γ = 0, if countries play
G (1) = 0, it would be extremely tempting to deviate. A defector will win the
open conflict with probability 1 and permanently eliminate its enemy at virtually
no cost, obtaining R in perpetuity. In contrast, when γ > 0, the defector will
collect R only until the game moves back to a contestable state, at which point the
defector will be punished with the equilibrium described in Lemma 3.2. Moreover,
this punishment equilibrium could be really severe given that for Z = 1, the victor
of the open conflict always chooses to use the elimination technology.

However, Proposition 7 does not imply that for γ > 0, it is always possible to
avoid open conflict and the use of elimination technology. In fact, we obtain a
generalization of Proposition 5, which implies that although temporary coopera-
tion can always be sustained, permanent cooperation might not be sustainable.
Moreover, we also obtain a generalization of Proposition 6, which implies that
even when partial permanent cooperation is sustainable, countries might obtain
a higher expected payoff with temporary cooperation.

Proposition 8. Suppose that γ ≥ 0 and X ≤ X̄ (γ) = [(4−θ)(1−δ+δγ)+3δϕ]δR
(1−δ+δγ)[4(1−δ+δγ)+3δϕ]

.
There are thresholds θ̄PC

low , θ̄PC
high, θ̄TC, X̄low (γ), and X̄high (γ) such that:

1. Suppose that θ ≤ θ̄PC
low , or θ̄PC

low < θ ≤ θ̄PC
high and X ≥ X̄high (γ). Then,

permanent complete cooperation, i.e., disarmed peace with G (Z) = 0 for
Z = 0, 1, can be sustained as an equilibrium.

2. Suppose that θ̄PC
low < θ ≤ θ̄PC

high and X̄low (γ) < X < X̄high (γ). Let Ḡ (0) =(
1−δ

2−δ−ϕδ

)2

θR < GN , Ḡ (1) =
(

1−δ
2−2δ+δϕ

)2

RWO (γ) < GWO (γ), and Ĝ (1) ∈(
0, Ḡ (1)

)
be the unique solution to F PC,1

γ (0, G (1)) = 0.

(a) If Ĝ (1) ≤ F PC,0
γ (0, 0) /δϕ, then the best possible permanent cooperative

equilibrium that can be sustained is partial cooperation with G (0) = 0
and G (1) = Ĝ (1).

(b) If Ĝ (1) > F PC,0
γ (0, 0) /δϕ, then the best possible permanent cooperative

equilibrium that can be sustained is partial cooperation with G (0) ∈
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(
0, Ḡ (0)

)
and G (1) ∈

(
Ĝ (1) , Ḡ (1)

)
given by the unique solution to

F PC,0
γ (G (0) , G (1)) = F PC,1

γ (G (0) , G (1)) = 0 that satisfies:

∂F PC,0
γ (G (0) , 0)

∂G (0)

∂F PC,1
γ (0, G (1))

∂G (1)
> δ2 (1− ϕ)ϕ.

3. If θ ≤ θ̄TC, then the best temporary cooperative equilibrium that can be
sustained is G (0) = 0.

4. If θ > θ̄TC, then the best temporary cooperative equilibrium that can be
sustained is G (0) > 0 given by the unique solution to F TC

γ (G (0)) = 0.
Moreover, G (0) < GN = θR

4
.

Proof. See the Appendix.

As we have already mentioned, Proposition 8 is a generalization of Proposition
5 for any γ. Crucially, when γ > 0 it is still the case that for some parameter
values it is not possible to sustain permanent cooperation, while it is always
possible to sustain temporary cooperation. In other words, sometimes open con-
flict is unavoidable, but countries can always benefit from temporary cooperation
when they cannot use the elimination technology.24 More precisely, we have the
following corollary.

Corollary 2. Suppose that γ > 0. Open conflict is unavoidable if and only if

X ≤
{
X̄ (γ) if θ > θ̄PC

high

X̄low (γ) if θ̄PC
low < θ ≤ θ̄PC

high

(13)

Moreover:
1. The lower the cost of the elimination technology (X lower), the less likely

open conflict can be avoided.
2. The destructiveness of open conflict has a non-monotonic effect on the

likelihood of open conflict. Initially, as destructiveness declines (higher θ), open
conflict becomes more likely, but eventually further reductions in destructiveness
make open conflict easier to avoid.

3. If θ > θ̄PC
high, an increase in γ makes open conflict less likely.

Proposition 8 does not compare permanent versus temporary equilibria. There
are three situations to consider: When θ ≤ θ̄PC

low , or θ̄PC
low < θ ≤ θ̄PC

high and

24Of course that while for γ = 0, the region of the parameter space for which disarmed peace
can be sustained never covers the case δ → 1; for γ > 0, it always includes it.
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X ≥ X̄high (γ), disarmed peace can be sustained (Proposition 8.1), and this is
clearly the best possible cooperative equilibrium. When θ̄PC

low < θ ≤ θ̄PC
high and

X ≤ X̄low (γ) or θ > θ̄PC
high, neither complete nor partial permanent cooperation

can be sustained, and, therefore, the best possible equilibrium is the temporary
cooperative equilibrium described in Propositions 8.3 and 8.4. Finally, when
θ̄PC
low < θ ≤ θ̄PC

high and X̄low (γ) < X < X̄high (γ) only partial but not complete per-
manent cooperation can be sustained (Proposition 8.2). Temporary cooperation
can always be sustained (Propositions 8.3 and 8.4). The following proposition
characterizes this comparison.

Proposition 9. Suppose that θ̄PC
low < θ ≤ θ̄PC

high and X̄L (γ) < X < X̄H (γ).
Then, partial permanent cooperation induces higher ex-ante expected payoff than
temporary cooperation if and only if

∆ =

[
F PC,0
γ (0, 0)− δϕGPC (1)− δ (1− ϕ)GPC (0)

− (1−δ+δγ)
1−δ(1−γ−ϕ)

[
F TC
γ (0)− δ (1− ϕ)GTC (0)

] ]
≥ 0

where

F PC,0
γ (0, 0) =

R

2
− (1− δ) θR−

δ (1− δ + δγ)
[
ϕRWO (γ) + (1− ϕ) θR

]
4 [1− δ (1− ϕ− γ)]

F TC
γ (0) =

[
1− δ (1− γ)− ϕδ2γ

(1− δ + δγ)

]
R

2

−
[
(1− δ + δγ) δ (1− ϕ) + 4 (1− δ) [1− δ (1− ϕ− γ)]

4 (1− δ + δγ)

]
θR

GPC (0) and GPC (1) are given by Proposition 8.2 and GTC (0) by Propositions
8.3 and 8.4. Moreover, if θ > θ̄TC and Ĝ (1) ≤ F PC,0

γ (0, 0) /δϕ, ∆ ≥ 0, while if
θ ≤ θ̄TC and Ĝ (1) > F PC,0

γ (0, 0) /δϕ, ∆ < 0.

Proof. See the Appendix.

Proposition 9 is a generalization of Proposition 6 for any γ. In particular,
even when γ > 0 (which reduces the incentives to use the elimination technology)
and permanent cooperation can be sustained, countries might obtain a higher
expected payoff engaging in open conflict and only restricting cooperation for
Z = 0.

To summarize, if we introduce the possibility that a country can only tem-
porarily eliminate its rival, the model can generate several instances of open
conflict without compromising any of the key results in Section 4. There are
instances in which open conflict is unavoidable. When avoidable, countries might
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need to modify arming choices to discourage deviations of the cooperative equilib-
rium. Finally, even when diplomacy is fully effective and countries coordinate in
the best possible cooperative equilibrium, and it is possible to avert open conflict,
countries may choose to periodically engage in open and only restrict cooperation
to states in which the elimination technology is not available.

6 Stochastic Resource Values and Non-aggressive
Escalation

When the contested resource is not stochastic, the model can capture two forms of
escalations. First, in the permanent cooperation equilibrium described in Propo-
sition 8.2, case (a), countries increase their arming choices when Z = 1 (i.e.,
when the elimination technology is available) to deter open conflict. This is an
instance of non-aggressive escalation. Second, in the temporary cooperative equi-
librium described in Propositions 8.2 and 8.3, countries increase their gun choices
when Z = 1, in preparation for a full-fledged open war that temporarily settles
the dispute. This is an instance of aggressive escalation. Note that both forms
of escalation cannot simultaneously occur in equilibrium. The reason is simple.
Either countries can and are willing to avoid open conflict when Z = 1 or they
do not. In the first scenario, a non-aggressive escalation might take place when
Z = 1. Otherwise, there will be an aggressive escalation for Z = 1.

This section explores an alternative mechanism for non-aggressive escalations.
Specifically, we incorporate random fluctuations in resource levels, alternating
between high-stakes and low-stakes realizations, R = H,L with q ∈ (0, 1) de-
noting the probability that R = H. By itself, this extension is not capable of
inducing open conflict, but combined with the elimination technology it adds an
interesting feature, namely, non-aggressive and aggressive escalations along the
same temporary cooperation equilibrium path.

6.1 Stochastic Resources Without the Elimination Tech-
nology

As a benchmark, we start by assuming ϕ = 0, that is, the opportunity to eliminate
never arrives.

It is immediate to extend Proposition 1 for the case with stochastic resources.
In particular, under the non-cooperative norm (i.e., when countries coordinate in
S1 = S2 = 0 for all (G1, G2)), the unique static Nash equilibrium level of arming
is GN (R) = θR/4 and the associated payoff is V N (R) = θR/4, where R = L,H.
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Thus, the expected payoff from the static Nash equilibrium in this stochastic
version of the game will be V N = θE/4, where E (R) = qH + (1− q)L.

For δ > 0 better equilibria than GN (L) when R = L and GN (H) when
R = H can be sustained. To do so, assume that countries employ the following
permanent cooperation strategy: If no deviation has occurred, the countries play
G (L) ∈

[
0, GN (L)

)
and settle the dispute when R = L and G (H) ∈

[
0, GN (H)

)
and settle the dispute when R = H. Any deviation triggers, starting in the next
period, the static Nash equilibrium under the non-cooperative norm. In addition,
a deviation in gun choices triggers an open conflict immediately.

If countries play the permanent cooperation strategy with G (L) and G (H)
and nobody deviates, expected payoffs are given by:

V PC (R) = (1− δ)

(
R

2
−G (R)

)
+ δ

[
qV PC (H) + (1− q)V PC (L)

]
for R = L,H. Solving for the above equations, we obtain V PC (L) and V PC (H).

A deviation can occur in either state L or H. Optimal deviations payoffs are
given by:

V D (G (R)) = (1− δ)

(
g (G (R) , θR)

G (R) + g (G (R) , θR)
θR− g (G (R) , θR)

)
+ δV N

for R = L,H.
Thus, to sustain the permanent cooperation strategy with G (L) and G (H) it

must be the case that:

FR (G (L) , G (H)) = V PC (R)− V D (G (R)) ≥ 0. (14)

for R = L,H.
As in the two previous sections, we focus on the best sustainable cooperative

equilibrium, that is, we look for the equilibrium that maximizes ex-ante expected
payoff

V PC = qV PC (H) + (1− q)V PC (L) =
E (R)

2
− qG (H)− (1− q)G (L)

subject to sustainability constraints FR (G (L) , G (H)) ≥ 0 for R = L,H, that
is, equation (14). The following proposition summarizes the results.

Proposition 10. Assume that the disputable resource is stochastic and ϕ = 0.

1. Suppose that θ ≤ θ̄ (H) = 2(1−δ)H+2δ[qH+(1−q)L]
4(1−δ)H+δ[qH+(1−q)L]

. Then, permanent complete
cooperation, i.e., disarmed peace with G(R) = 0 for R = H,L, is an equi-
librium of the stochastic game. The associated first-best expected payoff is
V P = E (R) /2.
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2. Suppose that θ > θ̄ (H). Let Ĝ (H) be the unique solution to

FH (0, G (H)) = 0

(a) If Ĝ (H) ≤ FL (0, 0) /δq, then the best possible cooperative equilibrium
that can be sustained is partial cooperation with G (L) = 0 and G (H) =
Ĝ (H).

(b) If Ĝ (H) > FL (0, 0) /δq, then the best possible cooperative equilibrium
that can be sustained is partial cooperation with G (L) > 0 and G (H) >
Ĝ (H) given by the unique solution to:

FL (G (L) , G (H)) = FH (G (L) , G (H)) = 0

that satisfies:

∂FL (G (L) , 0)

∂G (L)

∂FH (0, G (H))

∂G (H)
> δ2q (1− q) .

Proof. See the Appendix.

Proposition 10 is a generalization of Proposition 2 for the case of stochastic re-
source values. In the best cooperative equilibrium, there is either eternal unarmed
peace or armed peace with reduced military spending compared to one-shot Nash
equilibrium arming levels. When θ ≤ θ̄ (H) (which always holds when countries
are patient enough), there is unarmed peace regardless of the value of disputable
resources. Otherwise, arming is required to sustain a peaceful settlement when
the disputable resource is high.

The most interesting result is Proposition 10.2, case (a). Countries understand
that when the stakes are high (R = H), temptation is also high and therefore
they cannot commit to unarmed peace. However, countries also understand that
“guns flexing” does not mean they must start an open conflict and become eternal
enemies. Thus, when the stakes are low (R = L), countries can trust each other
and follow the unarmed peace allocation. Crucially, this arms race when R = H
is necessary to avoid a deviation that would trigger open conflict. In other words,
stochastic resource values provide a simple mechanism to capture non-aggressive
escalations and de-escalations.

In summary, allowing for a stochastic disputable resource does not lead to open
conflict, but it explains periods of more and less intense arming and security
competition. However, note that the fundamental result of the folk theorem
persists. With enough patience, unarmed peace can be sustained.

36



6.2 Stochastic Resources With the Elimination Technology

To finalize our analysis, we allow the combination of stochastic resources and
stochastic opportunities to eliminate the rival. To characterize the best possible
equilibrium, we employ a similar approach that we used in Sections 4 and 5. We
use the worst possible equilibrium under open conflict as a threat to sustain more
cooperative equilibria. As in Section 5, we focus on the case with low elimina-
tion cost, and hence the most severe punishment uses the elimination technology
whenever it is available. A permanent cooperation strategy is a strategy in which
countries settle in every contestable state, that is, for all Z = 0, 1 and R = H,L.
A temporary cooperation strategy refers to a strategy in which countries always
settle for Z = 0 (that is, when Z = 0 and R = H,L) but engage in open conflict
for at least one state in which the elimination technology is available (that is,
either for (Z,R) = (1, H) or (Z,R) = (1, L)). If in state (1, R) with R ∈ {H,L}
countries do not cooperate, they choose GWO (γ) = RWO (γ) /4 and the victor
always eliminates the loser, where

RWO (γ) = θR−X +
δE (R)

1− δ + δγ

. A full characterization of the best cooperative equilibrium is possible, but not
particularly informative. Instead, the following proposition focuses on some of
the most interesting results.

Proposition 11. Assume that the disputable resource is stochastic, ϕ > 0, and
X ≤ E

[
X̄ (γ)

]
= [(4−θ)(1−δ+δγ)+3δϕ]δE(R)

(1−δ+δγ)[4(1−δ+δγ)+3δϕ]
.

1. Suppose that γ = 0 and δ → 1. Then, it is impossible to sustain a permanent
cooperative equilibrium.

2. Suppose that γ > 0 and δ → 1. Then, permanent complete cooperation,
i.e., disarmed peace with G(Z,R) = 0 for all Z = 0, 1 and R = H,L can be
sustained.

3. Suppose that γ ≥ 0 and δ < 1. There are thresholds θPC(H) and XPC(H)
such that if θ > θPC(H) and X < XPC(H), it is impossible to sustain
permanent cooperation.

4. Let F TC,0,R (G (0, L) , G (0, H)) denote the sustainability constraint for state
Z = 0 and R when countries use a temporary cooperation strategy (without
cooperation for Z = 1). There is a threshold θ̄TC (H) such that:

(a) Suppose that θ ≤ θ̄TC (H). Then, the best temporary cooperative
equilibrium (without cooperation for Z = 1) that can be sustained is
G (0, R) = 0 for R = H,L.
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(b) Suppose that θ > θ̄TC (H) and Ĝ (0, H) ≤ (1−δ+δγ+δϕ)FTC,0,L(0,0)
δ(1−δ+δγ)(1−ϕ)q

. Then
the best temporary cooperative equilibrium (without cooperation for Z =
1) that can be sustained is G (0, L) = 0 and G (0, H) = Ĝ (0, H), where
Ĝ (0, H) is the unique solution to

F TC,0,H (0, G (0, H)) = 0

(c) Suppose that θ > θ̄TC (H) and Ĝ (0, H) > (1−δ+δγ+δϕ)FTC,0,L(0,0)
δ(1−δ+δγ)(1−ϕ)q

. Then
the best temporary cooperative equilibrium (without cooperation for Z =
1) that can be sustained G (0, L) > 0 and G (0, H) > Ĝ (0, H) given by
the unique solution to:

F TC,0,H (G (0, L) , G (0, H)) = F TC,0,L (G (0, L) , G (0, H)) = 0

that satisfies[
∂F TC,0,H

∂G (0, H)

] [
∂F TC,0,L

∂G (0, L)

]
>

(1− δ + δγ)2 δ2 (1− ϕ)2 q (1− q)

(1− δ + δγ + δϕ)2

Proof. See the Appendix.

Proposition 11.1 considers the case in which the uncontestable state is an
absorbing state (γ = 0). For this case, we can extend the result of Proposition
3. For δ → 1, it is impossible to sustain cooperation when the elimination option
is available. To understand the logic behind this result, consider the problem
faced by a country that chooses to deviate from cooperation in order to use the
elimination technology.

max
Gi

ui (Gi, G−i) = πi(Gi, Gj) [(1− δ) (θR−X) + δE (R)]− (1− δ)Gi,

The solution to this problem is Gi = gD
(
G−i, R

WO (0)
)

and the associated payoff
is

uDi = (1− δ)
(
RWO (0)− 2

√
RWO (0)G−i +G−i

)
Thus,

lim
δ→1

uDi = lim
δ→1

(1− δ)RWO (0) = E (R) .

That is, when δ → 1, we have uDi → E (R), which is an extremely tempting de-
viation. Intuitively, as countries become very patient, they have the opportunity
to permanently eliminate the rival and fully capture the resource at virtually no
cost.
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In contrast, if the uncontestable state is not absorbing (γ > 0), Proposition
11.2 extends the result of Proposition 7. As δ → 1, it is possible to sustain
disarmed peace as an equilibrium. Indeed, the payoff of a country that deviates
from cooperation when the elimination opportunity is available is given by:

uDi = (1− δ)
(
RWO (γ)− 2

√
RWO (γ)G−i +G−i

)
+

δ2γV PU

1− δ + δγ

where V PU is the punishment payoff. Thus,

lim
δ→1

uDi = lim
δ→1

(1− δ)RWO (γ) + lim
δ→1

δ2γV PU

1− δ + δγ
= 0 + lim

δ→1
V PU

That is, when δ → 1, there is no immediate reward for defecting and the deviation
payoff converges to the punishment payoff, which is lower than the expected payoff
under cooperation. Intuitively, as countries become very patient, the short-term
gains from temporarily eliminating the rival are worthless, and all that matters
is that in the long term countries will enter in an eternal war, only interrupted
with sporadic episodes of disarmed peace after one of the countries temporarily
eliminates the other.

The possibility of sustaining disarmed peace as an equilibrium when γ > 0 and
δ → 1 should not be misinterpreted as implying that open conflict can always
be avoided when δ > 0. In fact, Proposition 11.3 shows that for δ > 0 but
sufficiently low, it might be impossible to avoid open conflict when Z = 1 and
R = H. The idea is that for δ < 1, countries might still have incentives to start a
war to temporarily eliminate the rival if θ is high enough (that is, the destruction
of war is not that severe) and X is low enough (that is, it is cheap to temporarily
eliminate the rival country).

Even when permanent cooperation cannot be sustained, this does not fully
eliminate the possibilities for cooperation. For example, Proposition 11.4 charac-
terizes the best possible temporary cooperative equilibrium in which countries do
not cooperate when the elimination technology is available (that is, when Z = 1).
In particular, note the equilibrium described in Proposition 11.4 case (b), which is
characterized by periods of unarmed peace (when (Z,R) = (0, L)), armed peace
with settlement (when (Z,R) = (0, H)), and open conflict (when Z = 1). On this
equilibrium path, there are two types of escalations. When Z = 0 and R = H,
countries escalate their arming choices to discourage open conflict (an instance of
nonaggressive escalation). In contrast, for Z = 1, countries escalate their arming
choices in preparation for open conflict (an example of aggressive escalation).

Proposition 11.4 case (b) offers a more realistic perspective on international
relations. First, when the elimination technology is not possible, there is room
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for some international cooperation. Second, when stakes are high arming must
be scaled up, but this does not trigger a spiral of arming or open conflict (nonag-
gressive escalation). Third, when the elimination technology is available, open
conflict cannot be avoided (aggressive escalation) but conflict does not settle dis-
putes forever. Eventually, the defeated country reemerged and a new cycle of
armed peace and open conflict starts all over again.

7 Conclusions

Departing from a standard static security dilemma game, we develop an infinitely
repeated dynamic game that allows for more cooperative outcomes than the static
Nash equilibrium. Since international relations–particularly through diplomacy–
should be a prime setting for applying the folk theorem to reach payoff-dominated
equilibria, one might expect nations to sustain optimal outcomes. This reasoning,
however, leads to an overly optimistic and unrealistic prediction: that with suffi-
ciently patient actors, eternal unarmed peace can be sustained as an equilibrium.
To bring the model’s predictions closer to the historical record, we introduce
two additional features: an elimination opportunity and a randomly determined
disputable resource. These modifications generate equilibrium paths that alter-
nate periods of unarmed peace, armed peace with settlement, and open conflict.
Importantly, in our dynamic model, opportunities for international cooperation
never vanish entirely, but eternal unarmed peace becomes far less likely.

There are many possible extensions to our analysis; we highlight four.
First, we have ignored coalition formation, which plays a crucial role in inter-

national relations and could either expand or restrict the range of cooperative
outcomes.

Second, we have not differentiated between offensive and defensive technologies
or weapons, a distinction that could affect the likelihood of armed peace versus
open conflict.

Third, we have modeled weapons as perishable goods, whereas in reality they
often last for years. Relaxing this assumption would complicate the dynamics of
conflict but could yield richer results, including more realistic arms races.

Finally, within our framework, there is room for improving the way we model
interactions in non-contestable periods and the transition for returning to the con-
testable states. We have assumed that during non-contestable states, the victor
has full power; it obtains R at no cost. We have also assumed that the transition
back to the contestable state is completely random. Thus, there is nothing that
the victor or the loser can do to affect outcomes during non-contestable states or
the probability that the losers will come back.
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Relaxing the first assumption is not that complicated. For example, we can
assume that the loser faces a higher cost of guns and, hence, will keep a lower share
of the disputed resource. This will add some complications to the computation of
expected payoffs during non-contestable periods, but the main logic of our model
will persist.

Relaxing the second assumption might be more complicated, but one simple
possibility is to assume that by investing in guns the victor and/or the loser can
affect the probability that the loser will come back: in fact, making γ endogenous.
Provided that these investments do not fully eliminate the incentives to wipe out
the rival, the main logic of our model will persist.

In summary, these changes will not seriously affect our results and add an im-
portant element of realism to our model, namely, arming during non-contestable
states.
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A.1 One-shot Game

This Appendix presents the proof of Proposition 1.

Proposition 1 Assume that δ = 0.

1. Under the non-cooperative norm (i.e., players coordinate in S1S2 = 0 for all (G1, G2)), the equilib-
rium level of arming is GN = θR/4 and the associated payoff is V N = θR/4.

2. Under the cooperative norm (i.e., players coordinate in S1S2 = 1 for all (G1, G2)), the equilibrium
level of arming is GN = R/4 and the associated payoff is V N = R/4.

3. Under the conditional cooperative norm:

(a) If θ ≤ 1/2, then the most cooperative equilibrium level of arming is GP = 0 and the associated
payoff is V P = R/2.

(b) If θ > 1/2, then the most cooperative equilibrium level of arming is GSB ∈ (0, θR/4], where
GSB is the unique solution to F (G) = −2G + 2

√
GθR +

(
1−2θ

2

)
R = 0, and the associated

payoff is V SB = R/2−GSB.
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Proof : Let
ui (G1,G2, S1, S2) = πi (G1, G2) [S1S2R+ (1− S1S2) θR]−Gi

Settlement stage : Suppose that players have already selected (G1, G2). If θ = 1, then settlement
decisions played no role. Formally, ui (G1,G2, S1, S2) = πi (G1, G2)R − Gi for all (S1, S2). So, assume
that θ < 1. There are two possible Nash equilibria, namely, S1 = S2 = 0 (i.e., no settlement) and
S1 = S2 = 1 (i.e., settlement). To prove that S1 = S2 = 0 is a Nash equilibrium, note that there is no
unilateral deviation because even if one player deviates to S1 = 1, there is no settlement. To prove that
S1 = S2 = 1 is a Nash equilibrium, note that if a player deviates, there is no settlement, and hence,
each player obtains πi (G1, G2) θR−Gi < πi (G1, G2)R−Gi. Finally, Si = 0 and S−i = 1 is not a Nash
equilibrium. To prove this, note that if −i deviates to, it obtains πi (G1, G2)R−Gi > πi (G1, G2) θR−Gi.

Guns choices stage : If θ = 1, regardless of the cooperation norm, it is always the case that
ui (G1,G2, S1, S2) = πi (G1, G2)R−Gi. Then, the unique Nash equilibrium profile of guns is G1 = G2 =
GN = R/4. The associated equilibrium payoff is V N = R/4. If θ < 1, there are three cases to consider:

Case 1 : Suppose that the non-cooperative norm prevails. That is, players coordinate in S1S2 = 0
for all (G1, G2). Then, ui (G1,G2) = πi (G1, G2) θR − Gi. Thus, the unique Nash equilibrium profile of
guns is G1 = G2 = GN = θR/4. The associated equilibrium payoff is V N = θR/4.

Case 2 : Suppose that the cooperative norm prevails. That is, players coordinate in S1S2 = 1 for all
(G1, G2). Then, ui (G1,G2) = πi (G1, G2)R − Gi. Thus, the unique Nash equilibrium profile of guns is
G1 = G2 = GN = R/4. The associated equilibrium payoff is V N = R/4.

Case 3 : Suppose that a conditional cooperative norm prevails. That is, players coordinate in
S1S2 = 1 for all (G1, G2) ∈ [0, G] × [0, G] and S1S2 = 0 for all (G1, G2) ∈ (G,R] × (G,R], where
G ∈ [0, θR/4). Suppose that players select G1 = G2 = G. Then,

uCi = ui (G,G, 1, 1) =
R

2
−G

If player i deviates a play Gi > G, its optimal deviation is given by

arg max
Gi
{ui (Gi,G, 0, 0) = πi (Gi, G) θR−Gi}

Solving we obtain that the most profitable deviation for player i is gD (G, θR) =
√
GθR −G. Note that

gG (G, θR) > G if and only if G < θR/4, which always holds. Then, the associated deviation payoff is
given by:

uDi =
gD (G, θR)

gD (G, θR) +G
θR− gD (G, θR)

Player i does not have an incentive to deviate if and only if uCi ≥ uDi or, which is equivalent,

F (G) = −2G+ 2
√
GθR+

(
1− 2θ

2

)
R ≥ 0

To obtain the most cooperative equilibrium, we solve

max
G∈[0,θR/4)

{
uCi =

R

2
−G

}
s.t. : F (G) = −2G+ 2

√
GθR+

(
1− 2θ

2

)
R ≥ 0

2



There are two cases to consider
Case 3.a : Suppose that θ ≤ 1/2. Then, F (0) ≥ 0 and, hence, the solution to the above optimization

problem is GP = 0.
Case 3.b: Suppose that θ > 1/2. Then, F (0) < 0, limG→θR/4 F (G) = (1− θ)R/2 > 0 and

F ′ (G) = −2 +
√
θR/G > 0. Thus, there is a unique GSB ∈ [0, θR/4) such that F (0) < 0 for all

G ∈
(
0, GSB

)
, F
(
GSB

)
= 0, and F (G) > 0 for all G ∈

(
GSB, θR/4

)
. Therefore, the unique solution to

the above optimization problem is GSB.
This completes the proof of Proposition 1. �

A.2 Repeated Game

This section presents the proof of Proposition 2.

Proposition 2 Assume that δ ≥ 0.

1. If θ ≤ 2
4−3δ , then the first-best payoff V P = R/2 characterized by unarmed peace GP = 0 can be

attained as an equilibrium of the repeated game.

2. If θ > 2
4−3δ , then the second-best payoff V SB = R/2 − GSB > R/4 with military power GSB ∈(

0,
(

1−δ
2−δ

)2
θR

)
is sustainable as an equilibrium of the repeated game. Moreover, GSB is the unique

solution to

F (G) = − (2− δ)G+ 2 (1− δ)
√
GθR+

[
2− (4− 3δ) θ

4

]
R = 0

and
(

1−δ
2−δ

)2
θR < θR

4 .

Proof : Consider the following cooperation strategy. Players play G1 = G2 = G ∈ and S1 = S2 = 1,
provided that no deviation has occurred. If a player deviates from this, starting in the next period, players
reverse to the equilibrium described in Proposition 1.1 forever. Moreover, a deviation from Gi = G is
immediately punished with S1 = S2 = 0. If both player use this strategy, the payoff of player i is given
by:

V C
i =

R

2
−G

If player i deviates, it optimal deviation

arg max
Gi∈[0,θR/4]

{
(1− δ) [πi (Gi, G) θR−Gi] + δV N

}
where V N = θR/4. Solving, we obtain that the most profitable deviation for player i is gD (G, θR) =√
GθR−G. Thus, the associated deviation payoff is given by:

V D
i = (1− δ)

[
gD (G, θR)

gD (G, θR) +G
θR− gD (G, θR)

]
+ δ

θR

4
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Player i does not have an incentive to deviate if and only if V C
i ≥ V D

i or, which is equivalent,

F (G) = − (2− δ)G+ 2 (1− δ)
√
GθR+

[
2− (4− 3δ) θ

4

]
R ≥ 0

To obtain the most cooperative equilibrium, we solve

max
G∈[0,θR/4)

{
V C
i =

R

2
−G

}
s.t. : F (G) = − (2− δ)G+ 2 (1− δ)

√
GθR+

[
2− (4− 3δ) θ

4

]
R ≥ 0

There are two cases to consider:
Case 3.a : Suppose that θ ≤ 2

4−3δ . Then, F (0) ≥ 0 and, hence, the solution to the above optimization
problem is GP = 0.

Case 3.b: Suppose that θ > 2
4−3δ . Then, F (0) = [2−(4−3δ)θ]R

4 < 0 and F
(
θR
4

)
=

(1−θ)R
2 > 0. Moreover, ∂F (G)

∂G = − (2− δ) + (1− δ)
√

θR
G , which implies that

∂F (G)
∂G > 0 if G <(

1−δ
2−δ

)2
θR,∂F∂G

((
1−δ
2−δ

)2
θR

)
= 0, and ∂F (G)

∂G < 0 if G >
(

1−δ
2−δ

)2
θR. Finally, note that

(
1−δ
2−δ

)2
θR < θR

4 .

Thus, there is a unique GSB ∈
(

0,
(

1−δ
2−δ

)2
θR

)
such that F (0) < 0 for all G ∈

(
0, GSB

)
, F
(
GSB

)
= 0,

and F (G) > 0 for all G ∈
(
GSB, θR/4

)
. Therefore, the unique solution to the above optimization

problem is GSB.
This completes the proof of Proposition 2. �

A.3 Permanent Elimination

This section presents the proofs of Lemmas 1 and 2, Propositions 3, 4, and 5, and Corollary 1.

Lemma 1 Under the non-cooperative norm.1 Let X̄ = [(4−θ)(1−δ)+3φδ]δR
(1−δ)[4(1−δ)+3φδ] and R

WO = θR−X + δR
1−δ .

1. Suppose that X > X̄. Then, the worst equilibrium is GN = θR
4 for Z = 0 and GN = θR

4 and no
elimination for Z = 1. The associated punishment expected payoff is V PU = V N = θR

4 .

2. Suppose that X ≤ X̄. Then, the worst equilibrium is GN = θR
4 for Z = 0 and GWO = RWO

4
and eliminate the loser for Z = 1. The associated punishment expected payoff is V PU = V WO =
(1−δ)(φRWO+(1−φ)θR)

4(1−δ+φδ) .

Proof : Suppose that both players will always select S1 = S2 = 0. If S−i = 0, there will be open
conflict regardless of Si. Thus, in the settlement stage there is no unilateral profitable deviation from
S1 = S2 = 0. Then, for Z = 0 we have

V PU
i (0) = max

GPUi (0)>0

{
(1− δ)

[
πi (0) θR−GPUi (0)

]
+ δV PU

i

}
1That is, assume that in every contestable state, S1S2 = 0 for all (G1, G2) and Z.
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where πi (0) =
GPUi (0)

GPU1 (0)+GPU2 (0)
. For Z = 1 we have:

V PU
i (1) = max

Gi(1)>0

{
πi (1)

[
(1− δ) θR+ V PU

i (1, w)
]

+ (1− πi (1))V PU
i (1, l)− (1− δ)GPUi (1)

}
V PU
i (1, w) = max

Wi∈{0,1}

{
Wi (− (1− δ)X + δR) + (1−Wi) δV

PU
i

}
V PU
i (1, l) = (1−W−i) δV PU

i

where πi (1) =
GPUi (1)

GPU1 (1)+GPU2 (1)
and V PU

i is the expected value of the game, that is:

V PU
i = φV PU

i (1) + (1− φ)V PU
i (0)

We look for a symmetric equilibrium in which V PU
i = V PU for both players. Thus, in equilibrium,

there are only two possible situations to consider; either − (1− δ)X + δR ≥ δV PU and, hence, Wi = 1
for i = 1, 2, or − (1− δ)X + δR < δV PU and, hence, Wi = 0 for i = 1, 2.

Equilibrium with elimination : Assume that, in equilibrium, − (1− δ)X+ δR ≥ δV PU . Then, we
have:

V PU
i (1) = max

GPUi (1)>0

{
(1− δ)

(
πi (1)RWO −GPUi (1)

)}
Vi (0) = max

GPUi (0)>0

{
(1− δ)

[
πi (0) θR−GPUi (0)

]
+ δV PU

}
V PU = φVi (1) + (1− φ)Vi (0)

where RWO = θR−X+ δR
1−δ . For Z = 1, the unique Nash equilibrium gun profile is GPU1 (1) = GPU2 (1) =

GWO = RWO/4, which implies V PU
i (1) = (1− δ)RWO/4. For Z = 0, the unique Nash equilibrium gun

profile is GPU1 (1) = GPU2 (2) = GN = θR/4, which implies that V PU
i (0) =

(1−δ)(θR+δφRWO)
4[1−δ(1−φ)] . Therefore:

V PU = V WO =
(1− δ)

(
φRWO + (1− φ) θR

)
4 (1− δ + φδ)

Finally, we must verify that − (1− δ)X + δR ≥ δV PU , which holds if and only if

X ≤ [(4− θ) (1− δ) + 3φδ] δR

(1− δ) [4 (1− δ) + 3φδ]

Moreover, note that − (1− δ)X + δR ≥ δV PU implies that RWO = θR − X + δR
1−δ > 0, and hence,

GWO = RWO/4 > 0.
Equilibrium without elimination : Assume that, in equilibrium, − (1− δ)X+δR ≤ δV PU . Then,

we have:

Vi (Z) = max
GPUi (Z)>0

{
(1− δ)

[
πi (Z) θR−GPUi (Z)

]
+ δV PU

}
for Z = 0, 1

V PU = φVi (1) + (1− φ)Vi (0)
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Solving, we have that the unique Nash equilibrium gun profile is GPU1 (Z) = GPU2 (Z) = GN = θR/4 for
Z = 0, 1, which implies,

V PU
i (0) = V PU

i (1) = V PU =
θR

4

Finally, we must verify that − (1− δ)X + δR ≤ δV PU , which holds if and only if

X ≥ (4− θ) δR
4 (1− δ)

Note that [(4−θ)(1−δ)+3φδ]δR
(1−δ)[4(1−δ)+3φδ] > (4−θ)δR

4(1−δ) . Thus, we have three possible cases to consider:

Case 1 : If X < (4−θ)δR
4(1−δ) , then the only equilibrium is GPU1 (0) = GPU2 (0) = θR/4 for Z = 0 and

GPU1 (1) = GPU2 (1) = RWO/4 and W1 = W2 = 1 for Z = 1. Thus, the equilibrium discounted expected
payoff is V PU = V WO.

Case 2 : If X > X̄, then the only equilibrium is GPU1 (0) = GPU2 (0) = θR/4 for Z = 0 and
GPU1 (1) = GPU2 (1) = θR/4 and W1 = W2 = 0 for Z = 1. Thus, the equilibrium discounted expected
payoff is V PU = V N = θR

4 .

Case 3 : If (4−θ)δR
4(1−δ) ≤ X ≤ X̄, then there are two possible equilibria, described in cases 1 and 2,

respectively. V WO < V N if and only if X > δ(1−θ)R
(1−δ) . Moreover, note that

δ(4−θ)R
4(1−δ) > δ(1−θ)R

(1−δ) , which

implies that V WO < V N for all (4−θ)δR
4(1−δ) ≤ X ≤ X̄. Thus, whenever both equilibria exist, the equilibrium

described in case 1 is more severe.
This completes the proof of Lemma 1. �

Lemma 2 Suppose that countries are following either the permanent cooperation strategy with G (0) ∈[
0, θR4

)
and G (1) ∈

[
0, θR4

)
or the temporary cooperation strategy with G (0) ∈

[
0, θR4

)
.

1. Assume that Z = 0. Then, the most profitable deviation is gD (G(0), θR) =
√
G(0)θR−G(0). The

associated deviation payoff is given by:

V D (G(0)) =
gD (G(0), θR)

gD (G(0), θR) +G(0)
θR− gD (G(0), θR) + δV PU

where V PU is given by Lemma 1.

2. Assume that Z = 1.

(a) Suppose that X > X̄. Then, the most profitable deviation is gD (G(1), θR) =
√
G(1)θR−G(1),

inducing countries to fight an open conflict, after which the victor will not eliminate the loser.
The associated deviation payoff is given by:

V D (G(1)) =
gD (G(1), θR)

gD (G(1), θR) +G(1)
θR− gD (G(1), θR) +

δθR

4 (1− δ)
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(b) Suppose that X ≤ X̄. Then, the most profitable deviation is gD
(
G(1), RWO

)
=
√
G(1)RWO−

G(1), inducing countries to fight an open conflict, after which the victor will eliminate the
loser. The associated deviation payoff is given by:

V D (G(1)) =
gD
(
G(1), RWO

)
gD (G(1), RWO) +G(1)

RWO − gD
(
G(1), RWO

)
Proof : Suppose that Z = 0.
Deviation in the settlement stage : Suppose that (G1 (1) , G2 (1)) is given and S1 = S2 = 1.

Consider a unilateral deviation to open conflict, i.e., Si = 0. Then, the expected payoff of player i under
this deviation is given by:

Vi (0) = (1− δ) (πi (0) θR−Gi (0)) + δV PU

where πi (1) = G1(1)
G1(1)+G2(1) . But if player i chooses Si = 1, then it gets Vi (0) = (1− δ) (πi (0)R−Gi (0))+

δV C , where V C ≥ V PU is the expected payoff under cooperation. Therefore, for Z = 0, players do not
have an incentive to unilateraly deviate to open conflict.

Deviation in the gun choice : Suppose that (G1 (0) , G2 (0)) is given. If i deviates, its expected
payoff will be given by:

arg max
Gi

{
V D
i = (1− δ)

(
Gi

Gi +G−i (0)
θR−Gi

)
+ δV PU

}
where V PU is the punishment payoff. Note that regardless of V PU , the most profitable deviation for
player i is

gD (G−i (0) , R) =
√
G−i (0) θR−G−i (0)

Thus, the associated deviation payoff is given by:

V D
i = (1− δ)

(
gD (G−i (0) , R)

gD (G−i (0) , R) +G−i (0)
θR− gD (G−i (0) , R)

)
+ δV PU

Suppose that Z = 1.
Deviation in the settlement stage : Suppose that (G1 (1) , G2 (1)) is given and S1 = S2 = 1.

Consider a deviation to open conflict, i.e., Si = 0. Then, the expected payoff of player i under this
deviation is given by:

V D
i = πi (1) [(1− δ) θR+ Vi (1, w)] + [1− πi (1)]Vi (1, l)− (1− δ)Gi (1)

Vi (1, w) = max
Wi∈{0,1}

{
Wi [− (1− δ)X + δR] + (1−Wi) δV

PU
}

Vi (1, l) = (1−W−i) δV PU

where πi (1) = Gi(1)
G1(1)+G2(1) and V

PU is the punishment payoff. From Lemma 1, there are two cases to
consider.
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Case 1 : Suppose that X > X̄. Then, V PU = V N = θR
4 . Therefore, − (1− δ)X+ δR < δV PU if and

only if − (1− δ)X + δR < δ θR4 , which holds if and only if X > (4−θ)δR
4(1−δ) . Since X̄ > (4−θ)δR

4(1−δ) , X > (4−θ)δR
4(1−δ)

always holds. Thus, Wi = W−i = 0 and, hence,

V D
i = (1− δ) [πi (1) θR−Gi (1)] + δ

θR

4

Case 2 : Suppose that X ≤ X̄. Then, V PU = V WO. Therefore, − (1− δ)X + δR ≥ δV PU if only if
− (1− δ)X + δR ≥ δ (1−δ)θR+φ[−(1−δ)X+δR]

4(1−δ+φδ) , which always holds for X ≤ X̄. Thus, Wi = W−i = 1 and,
hence,

V D
i = (1− δ)

[
πi (1)

(
θR−X +

δR

1− δ

)
−Gi (1)

]
Deviation in the gun choice : Since any deviation in guns choices will be immediately punished

with open conflict, we must consider the two cases above.
Case 1 : Suppose that X > X̄. Then, the optimal deviation for player i is given by:

arg max
Gi

{
V D
i = (1− δ)

(
Gi

Gi +G−i (1)
θR−Gi

)
+ δ

θR

4

}
Solving, we obtain that the most profitable deviation for player i is

gD (G−i (1) , R) =
√
G−i (1) θR−G−i (1)

Thus, the associated deviation payoff is given by:

V D (G−i (1)) = (1− δ)
[

gD (G−i (1) , R)

gD (G−i (1) , R) +G−i (1)
θR− gD (G−i (1) , R)

]
+ δ

θR

4

Case 2 : Suppose that X ≤ X̄. Then, the optimal deviation for player i is given by:

arg max
Gi

{
V D
i = (1− δ)

(
Gi

Gi +G−i (1)
RWO −Gi

)}
where RWO = θR−X + δR

1−δ . Solving, we obtain that the most profitable deviation for player i is

gD
(
G−i (1) , RWO

)
=
√
G−i (1)RWO −G−i (1) ,

Thus, the associated deviation payoff is given by:

V D (G−i (1)) = (1− δ)
[

gD
(
G−i (1) , RWO

)
gD (G−i (1) , RWO) +G−i (1)

RWO − gD
(
G−i (1) , RWO

)]
Selecting G1 (Z) = G2 (Z) for Z = 1, 2, we obtain Lemma 2. This completes the proof of Lemma 2.

�

Proposition 3 Suppose that δ → 1. Then, it is impossible to sustain a permanent cooperative equilib-
rium, but it is always possible to sustain a temporary cooperative equilibrium. Moreover, a temporary
cooperative equilibrium is not Pareto effi cient (regardless of whether δ < 1 or δ → 1).
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Proof : In the proof of Proposition 5 we show that the permanent cooperation strategy with G (0) ∈[
0, θR4

)
and G (1) ∈

[
0, θR4

)
can be sustained as an equilibrium if and only if FPC,0 (G (0) , G (1)) ≥ 0 and

FPC,0 (G (0) , G (1)) ≥ 0. In particular, we need:

FPC,1 (G (0) , G (1)) =

[
− (2− 2δ + δφ)G (1) + 2 (1− δ)

√
G (1)RWO

−δ (1− φ)G (0) + R
2 − (1− δ)RWO

]
≥ 0

where RWO = θR−X + δR
1−δ .Note that:

lim
δ→1

FPC,1 (G (0) , G (1)) = −
[
R

2
+ φG (1) + (1− φ)G (0)

]
< 0

Thus, when δ → 1, FPC,1 (G (0) , G (1)) < 0 and, hence, it is not possible to sustain a permanent
cooperative equilibrium.

In the proof of Proposition 5 we show that the temporary cooperation strategy with G (0) ∈[
0,
(

1−δ+δφ
2−δ+δφ

)2
θR

]
can be sustained if and only if F TC (G (0)) ≥ 0, where

F TC (G (0)) =

[
− (2− δ + δφ)G (0) + (1− δ + δφ) 2

√
G (0) θR

+
[

2−θ(4−3δ+3φδ)
4

]
R

]
≥ 0

Note that:

lim
δ→1

F TC (G (0)) = − (1 + φ)G (0) + 2φ
√
G (0) θR+

[
2− θ (1 + 3φ)

4

]
R

Hence:

lim
δ→1

F TC (0) =

[
2− θ (1 + 3φ)

4

]
R

lim
δ→1

F TC
(
θR

4

)
=

(1− θ)R
2

> 0

Thus, if θ ≤ 2
1+3φ , then limδ→1 F

TC (0) ≥ 0 and, hence, it is possible to sustain a temporary coop-

erative equilibrium with G (0) = 0. On the contrary, if θ > 2
1+3φ , then limδ→1 F

TC (0) < 0. Since

limδ→1 F
TC (G (0)) is strictly increasing in G (0) for all G (0) ∈

[
0, θR4

]
and limδ→1 F

(
θR
4

)
> 0, there

must exist G (0) ∈
(
0, θR4

)
such that limδ→1 F

TC (G (0)) > 0. Thus, a temporary cooperative equilibrium
with G (0) ∈

(
0, θR4

)
can be sustained.

This completes the proof of Proposition 3. �

Proposition 4 Suppose that X > X̄.

1. If θ ≤ 2
4−3δ , then permanent complete cooperation, i.e., disarmed peace with G(Z) = 0 for Z = 0, 1

can be sustained.
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2. If θ > 2
4−3δ , then the best possible cooperative equilibria that can be sustained is permanent partial

cooperation (i.e., armed peace) with GPC ∈
(

0,
(

1−δ
2−δ

)2
θR

)
for Z = 0, 1, where GPC is the unique

solution to

F (G) = − (2− δ)G+ 2 (1− δ)
√
GθR+

[
2− (4− 3δ) θ

4

]
R = 0

and
(

1−δ
2−δ

)2
θR < GN = θR

4 .

Proof : Suppose that countries are following the permanent cooperation strategy with G (0) ∈
[
0, θR4

)
and G (1) ∈

[
0, θR4

)
and that no country deviates. Then, the expected payoffs for each state Z = 0, 1 are

given by:

V PC (0) = (1− δ)
(
R

2
−G (0)

)
+ δ

[
φV PC (1) + (1− φ)V PC (0)

]
V PC (1) = (1− δ)

(
R

2
−G (1)

)
+ δ

[
φV PC (1) + (1− φ)V PC (0)

]
Solving we have:

V PC (0) =
R

2
−G (0) + δφ [G (0)−G (1)]

V PC (1) =
R

2
−G (1) + δ (1− φ) [G (1)−G (0)]

Sustainability for Z = 0. Suppose that Z = 0 and player i deviates from cooperation. From Lemma
2, the most profitable deviation for player i is gD (G(0), θR) =

√
G(0)θR − G(0) and the associated

deviation payoff is given by:

V D (G(0)) = (1− δ)
[

gD (G(0), θR)

gD (G(0), θR) +G(0)
θR− gD (G(0), θR)

]
+ δV PU

From Lemma 1, X > X̄, implies that V PU = V N = θR
4 . Thus, player i does not have an incentive to

deviate if and only if V PC (0) ≥ V D (G (0)) or, which is equivalent,

FPC,0 (G(0), G(1)) =

= − (2− δ − δφ)G(0) + 2 (1− δ)
√
G(0)θR− δφG (1) +

[2− (4− 3δ) θ]R

4
≥ 0

Sustainability for Z = 1. Suppose that Z = 1 and player i deviates from cooperation. From Lemma
2, the most profitable deviation for player i is gD (G(1), θR) =

√
G(1)θR−G(1) and the associated payoff

is given by:

V D (G(1)) = (1− δ)
[

gD (G(1), θR)

gD (G(1), θR) +G(1)
θR− gD (G(1), θR)

]
+ δV PU
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From Lemma 1, X > X̄ implies that V PU = V N = θR
4 . Thus, player i does not have an incentive to

deviate if and only if V PC (0) ≥ V D (G (0)) or, which is equivalent,

FPC,1 (G(0), G(1)) =

= − (2− 2δ + δφ)G(1) + 2 (1− δ)
√
G(1)θR− δ (1− φ)G (0) +

[2− (4− 3δ) θ]R

4
≥ 0

Best possible permanent cooperation equilibrium : To determine the best possible cooperative
equilibrium, we solve

max
G(0)≥0,G(1)≥0

{
φV PC (1) + (1− φ)V PC (0) =

R

2
− φG (1)− (1− φ)G (0)

}
s.t. : FPC,0 (G(0), G(1)) ≥ 0 and FPC,1 (G(0), G(1)) ≥ 0

We start proving the following three results.
Result 1: If a solution exists, it must satisfy G (0) ∈

[
0, Ḡ (0)

]
and G (1) ∈

[
0, Ḡ (1)

]
, where

Ḡ (0) =
(

1−δ
2−δ−φδ

)2
θR < θR

4 and Ḡ (1) =
(

1−δ
2−2δ+δφ

)2
θR < θR

4 .

Proof : Take the derivative of FPC,0 (G(0), G(1)) with respect to G (0) and G (1):

∂FPC,0 (G(0), G(1))

∂G (0)
= − (2− δ − δφ) + (1− δ)

√
θR

G (0)
,
∂F 0 (G (0) , G (1))

∂G (1)
= −δφ

Thus, limG(0)→0
∂FPC,0(G(0),G(1))

∂G(0) = ∞, ∂F
PC,0(G(0),G(1))

∂G(0) > 0 for all G (0) ∈
(
0, Ḡ (0)

)
,
∂FPC,0(Ḡ(0),G(1))

∂G(0) =

0, and ∂FPC,0(G(0),G(1))
∂G(0) < 0 for all G (0) > Ḡ (0). Thus, FPC,0 (G(0), G(1)) is strictly increasing in G (0)

for all G (0) ∈
[
0, Ḡ (0)

]
, strictly decreasing in G (0) for all G (0) ≥ Ḡ (0). Since ∂FPC,0(G(0),G(1))

∂G(1) < 0 for

all G (0), FPC,0 (G(0), G(1)) is strictly decreasing in G (1).
Similarly, take the derivative of FPC,1 (G(0), G(1)) with respect to G (0) and G (1):

∂FPC,1 (G(0), G(1))

∂G (0)
= −δ (1− φ) ,

∂FPC,1 (G(0), G(1))

∂G (1)
= − (2− 2δ + δφ) +

√
θR−X + δR

1−δ
G (1)

Thus, it is easy to verify that FPC,1 (G(0), G(1)) is strictly increasing in G (1) for all G (1) ∈
[
0, Ḡ (1)

]
,

strictly decreasing in G (1) for all G (1) ≥ Ḡ (1), and strictly decreasing in G (0).
Suppose that (G (0) , G (1)) satisfies FPC,0 (G(0), G(1)) ≥ 0 and FPC,1 (G(0), G(1)) ≥ 0 and

G (0) > Ḡ (0). Then, for G∗ (0) ∈
[
Ḡ (0) , G (0)

)
we also have FPC,0 (G∗ (0) , G (1)) ≥ 0 and

FPC,1 (G∗ (0) , G (1)) ≥ 0. Thus, (G (0) , G (1)) is not a solution. Similarly, suppose that (G (0) , G (1))
satisfies FPC,0 (G(0), G(1)) ≥ 0 and FPC,1 (G(0), G(1)) ≥ 0 and G (1) > Ḡ (1). Then, for G∗ (1) ∈[
Ḡ (1) , G (1)

)
we also have FPC,0 (G (0) , G∗ (1)) ≥ 0 and FPC,1 (G (0) , G∗ (1)) ≥ 0. Thus, (G (0) , G (1))

is not a solution. Therefore, any solution must satisfy G (0) ∈
[
0, Ḡ (0)

]
and G (1) ∈

[
0, Ḡ (1)

]
. �

Result 2: FPC,0 and FPC,1 are quasiconcave functions for all (G (0) , G (1)) ∈ <2
+.

Proof : Note that FPC,0 (G(0), G(1)) ≥ c can be written as FPC,0 (G(0), G(1)) =
1
δφ

[
FPC,0 (G (0) , 0)− c

]
−G (1) ≥ 0, where

FPC,0 (G (0) , 0) = − (2− δ − δφ)G (0) + 2 (1− δ)
√
G (0) θR+

[2− (4− 3δ) θ]R

4
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Note that FPC,0 (G (0) , 0) is strictly concave in G (0) for all G (0), which implies that
1
δφ

[
FPC,0 (G (0) , 0)− c

]
is also strictly concave in G (0) for all G (0) and c. Thus, it must be the

case that
{

(G (0) , G (1)) : G (1) ≤ 1
δφ

[
FPC,0 (G (0) , 0)− c

]}
is a convex set for every c. Therefore,{

(G (0) , G (1)) : FPC,0 (G(0), G(1)) ≥ c
}
is a convex set for all c, which implies that FPC,0 (G(0), G(1))

is quasiconcave.
Similarly, FPC,1 (G(0), G(1)) ≥ c can be written as FPC,1 (G(0), G(1)) ≥ 0 =

1
δ(1−φ)

[
FPC,1 (0, G(1))− c

]
−G (0) ≥ 0, where

FPC,1 (0, G(1)) = − (2− 2δ + δφ)G (1) + 2 (1− δ)
√
G (1) θR+

[2− (4− 3δ) θ]R

4

Note that FPC,1 (0, G(1)) is strictly concave in G (1) for all G (1), which implies that
1

δ(1−φ)

[
FPC,1 (0, G(1))− c

]
is also strictly concave in G (1) for all G (1) and c. Thus, it must be the

case that
{

(G (0) , G (1)) : G (0) ≤ 1
δ(1−φ)

[
FPC,1 (0, G(1))− c

]}
is a convex set for every c. Therefore,{

(G (0) , G (1)) : FPC,1 (G(0), G(1)) ≥ c
}
is a convex set for all c, which implies that FPC,1 (G(0), G(1))

is quasiconcave. �
Since the objective function is linear and the constraints are quasiconcave, the following Kuhn-Tucker

conditions are suffi cient for a global maximum.

− (1− φ) + λ0

[
− (2− δ − δφ) + (1− δ)

√
θR

G (0)

]
− λ1δ (1− φ) + µ0

L − µ0
H = 0

−φ− λ0δφ+ λ1

[
− (2− 2δ + δφ) + (1− δ)

√
θR

G (1)

]
+ µ1

L − µ1
H = 0

λ0 ≥ 0, FPC,0 (G (0) , G (1)) ≥ 0, λ0FPC,0 (G (0) , G (1)) = 0

λ1 ≥ 0, FPC,1 (G (0) , G (1)) ≥ 0, λ1FPC,1 (G (0) , G (1)) = 0

µ0
L ≥ 0, G (0) ≥ 0, µ0

LG (0) = 0

µ0
H ≥ 0, Ḡ (0)−G (0) ≥ 0, µ0

H

[
Ḡ (0)−G (0)

]
= 0

µ1
L ≥ 0, G (1) ≥ 0, µ1

LG (1) = 0

µ1
H ≥ 0, Ḡ (1)−G (1) ≥ 0, µ1

H

[
Ḡ (1)−G (1)

]
= 0

Case 1 : Suppose that G (0) = G (1) = 0. Solving we obtain: µ0
H = µ1

H = 0, λ0 = λ1 = 0,
µ0
L = (1− φ), µ1

L = φ, FPC,0 (0, 0) ≥ 0 and FPC,1 (0, 0) ≥ 0. Thus, we must check that FPC,0 (0, 0) =

FPC,1 (0, 0) = [2−(4−3δ)θ]R
4 ≥ 0, which holds if and only if θ ≤ 2

4−3δ .
Case 2 : Suppose that G (0) ∈

(
0, Ḡ (0)

)
and G (1) = 0. Solving we obtain: µ0

L = µ0
H = µ1

H = 0,

λ1 = 0, λ0 = (1− φ)
[
− (2− δ − δφ) + (1− δ)

√
θR
G(0)

]−1
> 0, µ1

L = φ
(
1 + λ0δ

)
> 0, FPC,0 (G (0) , 0) = 0

and FPC,1 (G (0) , 0) ≥ 0. Since FPC,0 (G (0) , 0) is strictly increasing in G (0) for all G (0) ∈
[
0, Ḡ (0)

]
,
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at most, there is one solution to FPC,0 (G (0) , 0) = 0. Moreover, there is a solution that satisfies G (0) ∈(
0, Ḡ (0)

)
if and only if FPC,0 (0, 0) < 0 and FPC,0

(
Ḡ (0) , 0

)
> 0. Note, however, that FPC,0 (0, 0) < 0

implies FPC,1 (0, 0) < 0 and FPC,1 (0, 0) < 0 implies FPC,1 (G (0) , 0) < 0 because FPC,1 (G (0) , 0) is
strictly decreasing in G (0). Thus, FPC,0 (0, 0) < 0 is incompatible with FPC,1 (G (0) , 0) ≥ 0. Summing
up, there is no solution such that G (0) ∈

(
0, Ḡ (0)

)
and G (1) = 0.

Case 3 : Suppose that G (0) = 0 and G (1) ∈
(
0, Ḡ (1)

)
. Solving we obtain: µ0

H = µ1
L = µ1

H = 0, λ0 =

0, µ0
L = (1− φ) + λ1δ (1− φ) > 0, λ1 = φ

[
− (2− 2δ + δφ) + (1− δ)

√
θR
G(1)

]−1
> 0, FPC,1 (0, G (1)) = 0

and FPC,0 (0, G (1)) ≥ 0. Since FPC,1 (0, G (1)) is strictly increasing in G (1) for all G (1) ∈
[
0, Ḡ (1)

]
, at

most, there is one solution to FPC,1 (0, G (1)) = 0. Moreover, there is a solution that satisfies G (1) ∈(
0, Ḡ (1)

)
if and only if FPC,1 (0, 0) < 0 and FPC,1

(
0, Ḡ (1)

)
> 0. Note, however, that FPC,1 (0, 0) < 0

implies FPC,0 (0, 0) < 0 and implies FPC,0 (0, G (1)) < 0 because FPC,0 (0, G (1)) is strictly decreasing in
G (1). Thus, FPC,1 (0, 0) < 0 is incompatible with FPC,0 (0, G (1)) ≥ 0. Summing up, there is no solution
such that G (0) = 0 and G (1) ∈

(
0, Ḡ (1)

)
.

Case 4 : Suppose that G (0) ∈
(
0, Ḡ (0)

)
and G (1) ∈

(
0, Ḡ (1)

)
. Solving, we obtain: µ0

L = µ1
L =

µ0
H = µ1

H = 0, and

λ0

[
− (2− δ − δφ) + (1− δ)

√
θR

G (0)

]
− λ1δ (1− φ) = (1− φ)

−λ0δφ+ λ1

[
− (2− 2δ + δφ) + (1− δ)

√
θR

G (1)

]
= φ

The above system of linear equations has a solution if and only if[
− (2− δ − δφ) + (1− δ)

√
θR

G (0)

][
− (2− 2δ + δφ) + (1− δ)

√
θR

G (1)

]
6= δ2φ (1− φ)

A solution must satisfy [λ0 > 0 and λ1 > 0] or [λ0 < 0 and λ1 < 0]. λ0 > 0 and λ1 > 0 if and only if[
− (2− δ − δφ) + (1− δ)

√
θR

G (0)

][
− (2− 2δ + δφ) + (1− δ)

√
θR

G (1)

]
> δ2φ (1− φ)

λ0 > 0 and λ1 > 0 implies that FPC,0 (G (0) , G (1)) = 0, and FPC,1 (G (0) , G (1)) = 0, which implies

that G(1) − G(0) =
√
θR
[√

G(1)−
√
G(0)

]
. Thus, it must be the case that G(1) = G(0) = GPC .

Therefore, we must find GPC such that FPC,0
(
GPC , GPC

)
= FPC,1

(
GPC , GPC

)
= F

(
GPC

)
= 0, where

F (G) = − (2− δ)G+ 2 (1− δ)
√
GθR+

[2− (4− 3δ) θ]R

4

F (0) = [2−(4−3δ)θ]R
4 < 0 if and only θ > 2

4−3δ .
∂F (G)
∂G = − (2− δ) + (1− δ)

√
θR
G , which implies that

∂F (G)
∂G > 0 for G <

(
1−δ
2−δ

)2
θR, ∂F∂G

((
1−δ
2−δ

)2
θR

)
= 0, and ∂F (G)

∂G < 0 for G >
(

1−δ
2−δ

)2
θR. Also note that
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(
1−δ
2−δ

)2
θR < Ḡ (Z) < θR

4 for all Z. Finally, F
(
θR
4

)
= (1−θ)R

2 > 0, which implies that F
(
Ḡ (Z)

)
> 0 and

F

((
1−δ
2−δ

)2
θR

)
> 0. Therefore, there are two possible situations to consider. If θ ≤ 2

4−3δ , F (G) > 0

for all G ∈
(
0, θR4

)
. Thus, there is no solution such that G (0) ∈

(
0, Ḡ (0)

)
and G (1) ∈

(
0, Ḡ (1)

)
. On

the contrary, if θ > 2
4−3δ , then there is a unique G

PC ∈
(

0,
(

1−δ
2−δ

)2
θR

)
such that F (0) < 0 for all

G ∈
(
0, GPC

)
, F
(
GPC

)
= 0, and F (G) > 0 for all G ∈

(
GPC , Ḡ (Z)

)
. Finally, we must check that GPC

satisfies [
− (2− δ − δφ) + (1− δ)

√
θR

GPC

][
− (2− 2δ + δφ) + (1− δ)

√
θR

GPC

]
> δ2φ (1− φ)

or, which is equivalent,

H
(
GPC

)
= 2 (2− δ)GPC − (4− 3δ)

√
GPCθR+ (1− δ) θR > 0,

Since H (G) > 0 for all G ∈
[
0,
(

1−δ
2−δ

)2
θR

]
, H

(
GPC

)
> 0 always holds.

Summing up, G (0) = G (1) = GPC , where GPC ∈
(

0,
(

1−δ
2−δ

)2
θR

)
is the unique solution to F (G) = 0

is a solution if and only if θ > 2
4−3δ .

Case 5 : Suppose that G (0) = Ḡ (0) or G (1) = Ḡ (1). If G (0) = Ḡ (0), we have µ0
L = 0 and, hence,

(1− φ) + λ1δ (1− φ) + µ0
H = 0, a contradiction because λ1 ≥ 0 and µ0

H ≥ 0. If G (1) = Ḡ (1), we have
µ1
L = 0 and, hence φ+ λ0δφ+ µ1

H = 0, a contradiction because λ0 ≥ 0 and µ1
H ≥ 0.

This completes the proof of Proposition 4. �

Proposition 5 Suppose that X ≤ X̄. Let

X̄low = θR+

[
2δ − 2−2δ+δφ

1−δ+δφ

]
R

2 (1− δ) and X̄high = θR+
(2δ − 1)

2 (1− δ)R

1. Suppose that θ ≤ 1−2δ
2(1−δ) or 1−2δ

2(1−δ) < θ ≤ 4(1−δ)+3φδ
2(1−δ)(4−3δ+3φδ) and X ≥ X̄high. Then, permanent

complete cooperation, i.e., disarmed peace with G (Z) = 0 for Z = 0, 1, can be sustained.

2. Suppose that 1−2δ
2(1−δ) < θ ≤ 4(1−δ)+3φδ

2(1−δ)(4−3δ+3φδ) and X̄low < X < X̄high. Let Ḡ (0) =
(

1−δ
2−δ−φδ

)2
θR <

GN , Ḡ (1) =
(

1−δ
2−2δ+δφ

)2
RWO < GWO, and Ĝ (1) ∈

(
0, Ḡ (1)

)
be the unique solution to

FPC,1 (0, G (1)) = 0.

(a) If Ĝ (1) ≤ FPC,0 (0, 0) /δφ, then the best possible permanent cooperative equilibrium that can
be sustained is partial cooperation with G (0) = 0 and G (1) = Ĝ (1).
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(b) If Ĝ (1) > FPC,0 (0, 0) /δφ, then the best possible permanent cooperative equilibrium that can

be sustained is partial cooperation with G (0) ∈
(
0, Ḡ (0)

)
and G (1) ∈

(
Ĝ (1) , Ḡ (1)

)
given by

the unique solution to

FPC,0 (G (0) , G (1)) = FPC,1 (G (0) , G (1)) = 0

that satisfies:
∂FPC,0 (G (0) , 0)

∂G (0)

∂FPC,1 (0, G (1))

∂G (1)
> δ2 (1− φ)φ.

3. If θ ≤ 2
4−3δ+3φδ , then the best temporary cooperative equilibrium that can be sustained is G (0) = 0.

4. If θ > 2
4−3δ+3φδ , then the best temporary cooperative equilibrium that can be sustained is G (0) ∈(

0,
(

1−δ+δφ
2−δ+δφ

)2
θR

)
given by the unique solution to F TC (G (0)) = 0. Moreover,

(
1−δ+δφ
2−δ+δφ

)2
θR <

GN = θR
4 .

Proof Parts 1 and 2: Suppose that countries are following the permanent cooperation strategy
with G (0) ∈

[
0, θR4

)
and G (1) ∈

[
0, θR4

)
and that no country deviates. Then, the expected discounted

payoffs for each state Z = 0, 1 are given by:

V PC (0) =
R

2
−G (0) + δφ [G (0)−G (1)]

V PC (1) =
R

2
−G (1) + δ (1− φ) [G (1)−G (0)]

Sustainability for Z = 0: Suppose that Z = 0 and player i deviates from cooperation. From Lemma
2, the most profitable deviation for player i is gD (G(0), θR) =

√
G(0)θR − G(0) and the associated

deviation payoff is given by:

V D (G(0)) = (1− δ)
[

gD (G(0), θR)

gD (G(0), θR) +G(0)
θR− gD (G(0), θR)

]
+ δV PU

From Lemma 1, X ≤ X̄, implies that V PU = V WO. Thus, player i does not have an incentive to deviate
if and only if V PC (0) ≥ V D (G (0)) or, which is equivalent,

FPC,0 (G(0), G(1)) =

− (2− δ − δφ)G(0) + 2 (1− δ)
√
G(0)θR− δφG (1) + FPC,0 (0, 0) ≥ 0

where

FPC,0 (0, 0) =
R

2
− (1− δ) θR−

(1− δ) δ
[
φRWO + (1− φ) θR

]
4 (1− δ + φδ)

Sustainability for Z = 1: Suppose that Z = 1 and player i deviates from cooperation. From
Lemma 2, the most profitable deviation for player i is gD

(
G(1), RWO

)
=
√
G(1)RWO − G(1), which

leads to open conflict and wipe-out. The associated deviation payoff is given by:

V D (G(1)) = (1− δ)
[

gD
(
G(1), RWO

)
gD (G(1), RWO) +G(1)

RWO − gD
(
G(1), RWO

)]
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Thus, player i does not have an incentive to deviate if and only if V PC (1) ≥ V D (G (1)) or, which is
equivalent,

FPC,1 (G (0) , G (1)) =

= − (2− 2δ + δφ)G (1) + 2 (1− δ)
√
G (1)RWO − δ (1− φ)G (0) + FPC,1 (0, 0) ≥ 0

where

FPC,1 (0, 0) =
R

2
− (1− δ)RWO

Best possible permanent cooperation equilibrium : To determine the best possible permanent
cooperative equilibrium, we solve

max
G(0)≥0,G(1)≥0

{
φV PC (1) + (1− φ)V PC (0) =

R

2
− φG (1)− (1− φ)G (0)

}
s.t. : FPC,0 (G(0), G(1)) ≥ 0 and FPC,1 (G(0), G(1)) ≥ 0

Result 1: If a solution to exist, it must satisfy G (0) ∈
[
0, Ḡ (0)

]
and G (1) ∈

[
0, Ḡ (1)

]
, where

Ḡ (0) =
(

1−δ
2−δ−φδ

)2
θR < θR

4 and Ḡ (1) =
(

1−δ
2−2δ+δφ

)2
RWO < RWO

4 .

Proof : Take the derivative of F 0 (G (0) , G (1)) with respect to G (0) and G (1):

∂FPC,0 (G (0) , G (1))

∂G (0)
= − (2− δ − δφ) + (1− δ)

√
θR

G (0)
,
∂FPC,0 (G (0) , G (1))

∂G (1)
= −δφ

Thus, limG(0)→0
∂FPC,0(G(0),G(1))

∂G(0) = ∞, ∂F
PC,0(G(0),G(1))

∂G(0) > 0 for all G (0) ∈
(
0, Ḡ (0)

)
,
∂FPC,0(Ḡ(0),G(1))

∂G(0) =

0, and ∂FPC,0(G(0),G(1))
∂G(0) < 0 for all G (0) > Ḡ (0). Thus, FPC,0 (G (0) , G (1)) is strictly increasing in G (0)

for all G (0) ∈
[
0, Ḡ (0)

]
, strictly decreasing in G (0) for all G (0) ≥ Ḡ (0). Since ∂FPC,0(G(0),G(1))

∂G(1) < 0 for

all G (0), FPC,0 (G (0) , G (1)) is strictly decreasing in G (1).
Similarly, take the derivative of FPC,1 (G (0) , G (1)) with respect to G (0) and G (1):

∂FPC,1 (G (0) , G (1))

∂G (0)
= −δ (1− φ) ,

∂FPC,1 (G (0) , G (1))

∂G (1)
= − (2− 2δ + δφ) +

√
RWO

G (1)

This, it is easy to verify that FPC,1 (G (0) , G (1)) is strictly increasing in G (1) for all G (1) ∈
[
0, Ḡ (1)

]
,

strictly decreasing in G (1) for all G (1) ≥ Ḡ (1), and strictly decreasing in G (0).
Suppose that (G (0) , G (1)) satisfies FPC,0 (G (0) , G (1)) ≥ 0 and FPC,1 (G (0) , G (1)) ≥ 0 and

G (0) > Ḡ (0). Then, for G∗ (0) ∈
[
Ḡ (0) , G (0)

)
we also have FPC,0 (G∗ (0) , G (1)) ≥ 0 and

FPC,1 (G∗ (0) , G (1)) ≥ 0. Thus, (G (0) , G (1)) is not a solution. Similarly, suppose that (G (0) , G (1))
satisfies FPC,0 (G (0) , G (1)) ≥ 0 and FPC,1 (G (0) , G (1)) ≥ 0 and G (1) > Ḡ (1). Then, for G∗ (1) ∈[
Ḡ (1) , G (1)

)
we also have FPC,0 (G (0) , G∗ (1)) ≥ 0 and FPC,1 (G (0) , G∗ (1)) ≥ 0. Thus, (G (0) , G (1))

is not a solution. Therefore, any solution must satisfy G (0) ∈
[
0, Ḡ (0)

]
and G (1) ∈

[
0, Ḡ (1)

]
. �

Result 2: FPC,0 (G (0) , G (1)) and FPC,1 (G (0) , G (1)) are quasiconcave functions for all
(G (0) , G (1)) ∈ <2

+.
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Proof : Note that FPC,0 (G (0) , G (1)) ≥ c can be written as FPC,0 (G (0) , G (1)) =
1
δφ

[
FPC,0 (G (0) , 0)− c

]
−G (1) ≥ 0, where

FPC,0 (G (0) , 0) = − (2− δ − δφ)G (0) + 2 (1− δ)
√
G (0) θR+ FPC,0 (0, 0)

Note that FPC,0 (G (0) , 0) is strictly concave in G (0) for all G (0), which implies that
1
δφ

[
FPC,0 (G (0) , 0)− c

]
is also strictly concave in G (0) for all G (0) and c. Thus, it must be the

case that
{

(G (0) , G (1)) : G (1) ≤ 1
δφ

[
FPC,0 (G (0) , 0)− c

]}
is a convex set for every c. Therefore,{

(G (0) , G (1)) : FPC,0 (G (0) , G (1)) ≥ c
}
is a convex set for all c, which implies that FPC,0 (G (0) , G (1))

is quasiconcave. Similarly, FPC,1 (G (0) , G (1)) ≥ c can be written as FPC,1 (G (0) , G (1)) =
1

δ(1−φ)

[
FPC,1 (0, G (1))− c

]
−G (0) ≥ 0, where

FPC,1 (0, G (1)) = − (2− 2δ + δφ)G (1) + 2 (1− δ)
√
G (1)RWO + FPC,1 (0, 0)

Note that FPC,1 (0, G (1)) is strictly concave in G (1) for all G (1), which implies that
1

δ(1−φ)

[
FPC,1 (0, G (1))− c

]
is also strictly concave in G (1) for all G (1) and c. Thus, it must be the

case that
{

(G (0) , G (1)) : G (0) ≤ 1
δ(1−φ)

[
FPC,1 (0, G (1))− c

]}
is a convex set for every c. Therefore,{

(G (0) , G (1)) : FPC,1 (G (0) , G (1)) ≥ c
}
is a convex set for all c, which implies that FPC,1 (G (0) , G (1))

is quasiconcave. �
Result 3: If FPC,1 (0, 0) ≥ 0, then FPC,0 (0, 0) ≥ 0.

Proof : FPC,0 (0, 0) ≥ 0 if and only if R[1−2(1−δ)θ]
2(1−δ) ≥ δV WO = φRWO+(1−φ)θR

4(1−δ+φδ) . FPC,1 (0, 0) ≥ 0 if and

only if R[1−2(1−δ)θ]
2(1−δ) ≥ −X + δR

1−δ . X ≤ X̄ implies that −X + δR
1−δ ≥ δV WO. Therefore, FPC,1 (0, 0) ≥ 0

implies FPC,0 (0, 0) ≥ 0. �
Since the objective function is linear and the constraints are quasiconcave, the following Kuhn-Tucker

conditions are suffi cient for a global maximum.

− (1− φ) + λ0

[
− (2− δ − δφ) + (1− δ)

√
θR

G (0)

]
− λ1δ (1− φ) + µ0

L − µ0
H = 0

−φ− λ0δφ+ λ1

[
− (2− 2δ + δφ) + (1− δ)

√
RWO

G (1)

]
+ µ1

L − µ1
H = 0

λ0 ≥ 0, F 0 (G (0) , G (1)) ≥ 0, λ0F 0 (G (0) , G (1)) = 0

λ1 ≥ 0, F 1 (G (0) , G (1)) ≥ 0, λ1F 1 (G (0) , G (1)) = 0

µ0
L ≥ 0, G (0) ≥ 0, µ0

LG (0) = 0

µ0
H ≥ 0, Ḡ (0)−G (0) ≥ 0, µ0

H

[
Ḡ (0)−G (0)

]
= 0

µ1
L ≥ 0, G (1) ≥ 0, µ1

LG (1) = 0

µ1
H ≥ 0, Ḡ (1)−G (1) ≥ 0, µ1

H

[
Ḡ (1)−G (1)

]
= 0

There are several cases to consider:
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Case 1 : Suppose that G (0) = G (1) = 0. Solving, we obtain: λ0 = µ0
H = 0, µ0

L = 1−φ, λ1 = µ1
H = 0,

µ1
L = φ, FPC,0 (0, 0) ≥ 0, and FPC,1 (0, 0) ≥ 0. Since FPC,1 (0, 0) ≥ 0 implies FPC,0 (0, 0) ≥ 0, we must
check that FPC,1 (0, 0) ≥ 0. FPC,1 (0, 0) ≥ 0 if and only if R[1−2(1−δ)θ]

2(1−δ) ≥ −X+ δR
1−δ or, which is equivalent,

X ≥ X̄high = [2δ−1+2(1−δ)θ]R
2(1−δ) . If θ ≤ 1−2δ

2(1−δ) , this constraint always holds because X > 0. If θ > 1−2δ
2(1−δ)

we need to check that [2δ−1+2(1−δ)θ]R
2(1−δ) ≤ X̄, which holds if and only if θ ≤ 4(1−δ)+3φδ

2(1−δ)(4−3δ+3φδ) . Summing up,

G (0) = G (1) = 0 is a solution if and only if [θ ≤ 1−2δ
2(1−δ) ] or [X ≥ X̄high and 1−2δ

2(1−δ) < θ ≤ 4(1−δ)+3φδ
2(1−δ)(4−3δ+3φδ) ].

Case 2 : Suppose that G (0) ∈
(
0, Ḡ (0)

)
and G (1) = 0. Solving we obtain: µ0

L = µ0
H = µ1

H = 0,

λ1 = 0, λ0 = (1− φ)
[
− (2− δ − δφ) + (1− δ)

√
θR
G(0)

]−1
> 0, µ1

L = φ
(
1 + λ0δ

)
> 0, FPC,0 (G (0) , 0) = 0

and FPC,1 (G (0) , 0) ≥ 0. Since FPC,0 (G (0) , 0) is strictly increasing in G (0) for all G (0) ∈
[
0, Ḡ (0)

]
,

at most, there is one solution to FPC,0 (G (0) , 0) = 0. Moreover, there is a solution that satisfies
G (0) ∈

(
0, Ḡ (0)

)
if and only if FPC,0 (0, 0) < 0 and FPC,0

(
Ḡ (0) , 0

)
> 0. Note, however, that

FPC,0 (0, 0) < 0 implies FPC,1 (0, 0) < 0 (due to Result 3) and FPC,1 (0, 0) < 0 implies FPC,1 (G (0) , 0) <
0 (because FPC,1 (G (0) , 0) is strictly decreasing in G (0)). Thus, FPC,0 (0, 0) < 0 is incompatible with
FPC,1 (G (0) , 0) ≥ 0. Summing up, there is no solution such that G (0) ∈

(
0, Ḡ (0)

)
and G (1) = 0.

Case 3 : Suppose that G (0) = 0 and G (1) ∈
(
0, Ḡ (1)

)
. Solving we obtain: µ0

H = µ1
L = µ1

H = 0, λ0 =

0, µ0
L = (1− φ) + λ1δ (1− φ) > 0, λ1 = φ

[
− (2− 2δ + δφ) + (1− δ)

√
RWO

G(1)

]−1

> 0, FPC,1 (0, G (1)) = 0

and FPC,0 (0, G (1)) ≥ 0. Since FPC,1 (0, G (1)) is strictly increasing in G (1) for all G (1) ∈
[
0, Ḡ (1)

]
, at

most, there is one solution to FPC,1 (0, G (1)) = 0. Moreover, there is a solution that satisfies G (1) ∈(
0, Ḡ (1)

)
if and only if FPC,1 (0, 0) < 0 and FPC,1

(
0, Ḡ (1)

)
> 0. FPC,1 (0, 0) < 0 if and only if

X < θR + (2δ−1)
2(1−δ)R; while F

PC,1
(
0, Ḡ (1)

)
> 0 if and only if X > θR +

(
2δ− 2−2δ+δφ

1−δ+δφ

)
2(1−δ) R. Therefore, we

need θR +

(
2δ− 2−2δ+δφ

1−δ+δφ

)
2(1−δ) R < X < θR + (2δ−1)

2(1−δ)R. Thus, we must check that θR + (2δ−1)
2(1−δ)R > 0, which

holds if and only if θ > 1−2δ
2(1−δ) . We must also check that θR + (2δ−1)

2(1−δ)R ≤ X̄, which holds if and only

if θ ≤ 4(1−δ)+3φδ
2(1−δ)(4−3δ+3φδ) . Finally, we must verify that the unique solution to F

PC,1 (0, G (1)) = 0 satisfies

FPC,0 (0, G (1)) ≥ 0 or, which is equivalent, that G (1) ≤ FPC,0 (0, 0) /δφ. Summing up, G (0) = 0
and G (1) = Ĝ (1) ∈

(
0, Ḡ (1)

)
, where Ĝ (1) is the unique solution to FPC,1 (0, G (1)) = 0 is a solution

if and only if 1−2δ
2(1−δ) < θ ≤ 4(1−δ)+3φδ

2(1−δ)(4−3δ+3φδ) , θR +

(
2δ− 2−2δ+δφ

1−δ+δφ

)
2(1−δ) R < X < θR + (2δ−1)

2(1−δ)R, and Ĝ (1) ≤
FPC,0 (0, 0) /δφ.

Case 4 : Suppose that G (0) ∈
(
0, Ḡ (0)

)
and G (1) ∈

(
0, Ḡ (1)

)
. Solving, we obtain: µ0

L = µ1
L =

µ0
H = µ1

H = 0, and

λ0

[
− (2− δ − δφ) + (1− δ)

√
θR

G (0)

]
− λ1δ (1− φ) = (1− φ)

−λ0δφ+ λ1

[
− (2− 2δ + δφ) + (1− δ)

√
RWO

G (1)

]
= φ
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The above system of linear equations has a solution if and only if[
− (2− δ − δφ) + (1− δ)

√
θR

G (0)

][
− (2− 2δ + δφ) + (1− δ)

√
RWO

G (1)

]
6= δ2φ (1− φ)

A solution must satisfy [λ0 > 0 and λ1 > 0] or [λ0 < 0 and λ1 < 0]. λ0 > 0 and λ1 > 0 if and only if[
− (2− δ − δφ) + (1− δ)

√
θR

G (0)

][
− (2− 2δ + δφ) + (1− δ)

√
RWO

G (1)

]
> δ2φ (1− φ) (1)

λ0 > 0 and λ1 > 0 implies that FPC,0 (G (0) , G (1)) = 0, and FPC,1 (G (0) , G (1)) = 0. Thus, we must
solve the following system of equations:

FPC,0 (G (0) , 0)− δφG (1) = 0

FPC,1 (0, G (1))− δ (1− φ)G (0) = 0

We need FPC,1
(
0, Ḡ (1)

)
> 0 or, otherwise, FPC,1 (0, G (1)) < 0 for all G (1) ∈

[
0, Ḡ (1)

]
and, hence, there

is no solution to the above system of equations satisfying G (0) > 0. Also assume that FPC,1 (0, 0) < 0.
Otherwise, the solution is G (0) = G (1) = 0 (see case 1). Since FPC,1 (0, G (1)) is strictly increasing in
G (1) for all G (1) ∈

[
0, Ḡ (1)

]
, for a solution of the above system of equations to satisfy G (0) > 0 it must

be the case that G (1) > Ĝ (1), where Ĝ (1) is the unique solution to FPC,1 (0, G (1)) = 0. Define

Q (G (1)) = FPC,0
(
FPC,1 (0, G (1))

δ (1− φ)
, 0

)
− δφG (1)

Since FPC,1 (0, G (1)) is strictly concave in G (1) and FPC,0 (G (0) , 0) is strictly concave in G (0), Q (G (1))
is strictly concave in G (1). Moreover, note that

lim
G(1)→Ĝ(1)

∂Q (G (1))

∂G (1)
= lim

G(1)→Ĝ(1)

∂FPC,0
(
FPC,1(0,G(1))

δ(1−φ) , 0
)

∂G (0)

∂FPC,1 (0, G (1))

∂G (1)

1

δ (1− φ)
− δφ


=

(
lim

G(0)→0

∂FPC,0 (0, 0)

∂G (0)

) ∂FPC,1
(

0, Ĝ (1)
)

∂G (1)

1

δ (1− φ)
− δφ

where
∂FPC,1(0,Ĝ(1))

∂G(1) > 0 and limG(0)→0
∂FPC,0(0,0)

∂G(0) = ∞. Thus, for G (1) → Ĝ (1), Q (G (1)) is strictly

increasing, which implies that Q (G (1)) is either strictly increasing for all G (1) ∈
[
Ĝ (1) , Ḡ (1)

]
or, it

is strictly increasing for all G (1) ∈
[
Ĝ (1) , Gm

]
, adopts a maximum at G (1) = Gm, and it is strictly

decreasing for all G (1) ∈
[
Gm, Ḡ (1)

]
. Thus, there are 5 possible situations to consider:

Case 4.a : Suppose that Q
(
Ĝ (1)

)
> 0 and Q (G (1)) is strictly increasing for all G (1) ∈[

Ĝ (1) , Ḡ (1)
]
. Then, there is no solution to Q (G (1)) = 0.
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Case 4.b: Suppose thatQ
(
Ĝ (1)

)
> 0 andQ (G (1)) is strictly increasing for allG (1) ∈

[
Ĝ (1) , Gm

]
,

adopts a maximum at G (1) = Gm, and it is strictly decreasing for all G (1) ∈
[
Gm, Ḡ (1)

]
. Then,

there is at most one solution to Q (G (1)) = 0, which exists if and only if Q
(
Ḡ (1)

)
≤ 0. Note,

however, that for such a solution it must be the case that ∂Q(G(1))
∂G(1) ≤ 0, which holds if and only if

∂FPC,0
(
FPC,1(0,G(1))

δ(1−φ) ,0

)
∂G(0)

∂FPC,1(0,G(1))
∂G(1) ≤ δ2 (1− φ)φ, a violation of (1).

Case 4.c: Suppose that Q
(
Ĝ (1)

)
= 0. Assume that Q (G (1)) is strictly increasing for all G (1) ∈[

Ĝ (1) , Ḡ (1)
]
. Then, the unique solution to Q (G (1)) = 0 is G (1) = Ĝ (1), which implies G (0) = 0, a

contradiction. Assume that Q (G (1)) is strictly increasing for all G (1) ∈
[
Ĝ (1) , Gm

]
, adopts a maximum

at G (1) = Gm, and it is strictly decreasing for all G (1) ∈
[
Gm, Ḡ (1)

]
. If Q

(
Ḡ (1)

)
≤ 0, then there are

two solutions to Q (G (1)) = 0. One solution is G (1) = Ĝ (1), which implies, G (0) = 0, a contradiction.
For the other solution, it must be the case that ∂Q(G(1))

∂G(1) ≤ 0, which violates (1). If Q
(
Ḡ (1)

)
> 0, then

the unique solution to Q (G (1)) = 0 is G (1) = Ĝ (1), which implies G (0) = 0, a contradiction.

Case 4.d : Suppose that Q
(
Ĝ (1)

)
< 0 and Q (G (1)) is strictly increasing for all G (1) ∈[

Ĝ (1) , Ḡ (1)
]
. Then, there is at most one solution to Q (G (1)) = 0, which exists if and only if

Q
(
Ḡ (1)

)
> 0. Moreover, for this solution it must be the case that ∂Q(G(1))

∂G(1) > 0.

Case 4.e : Suppose thatQ
(
Ĝ (1)

)
< 0 andQ (G (1)) is strictly increasing for allG (1) ∈

[
Ĝ (1) , Gm

]
,

adopts a maximum at G (1) = Gm, and it is strictly decreasing for all G (1) ∈
[
Gm, Ḡ (1)

]
. If Q (Gm) < 0,

then there is no solution to Q (G (1)) = 0. If Q (Gm) = 0. Then, the unique solution to Q (G (1)) = 0 is
G (1) = Gm. If Q (Gm) > 0 and Q

(
Ḡ (1)

)
< 0, then there are two solutions to Q (G (1)) = 0 one with

G (1) < Gm and another with G (1) > Gm. Note, however, that for the solution with G (1) > Gm we
have ∂Q(G(1))

∂G(1) < 0, which violates (1). Thus, only the solution with G (1) < Gm satisfies the Kuhn-Tucker

conditions. Finally, if Q (Gm) > 0 and Q
(
Ḡ (1)

)
> 0, there is a unique solution to Q (G (1)) = 0 for

which ∂Q(G(1))
∂G(1) > 0.

Summing up, G (0) ∈
(
0, Ḡ (0)

)
and G (1) ∈

(
0, Ḡ (1)

)
given by the unique solution to

FPC,0 (G (0) , G (1)) = 0, and FPC,0 (G (0) , G (1)) = 0 that satisfies ∂F
0(G(0),0)
∂G(0)

∂F 1(0,G(1))
∂G(1) > δ2 (1− φ)φ is

a solution if and only if FPC,1 (0, 0) < 0, FPC,1
(
0, Ḡ (1)

)
> 0, andQ

(
Ĝ (1)

)
< 0, where Ĝ (1) ∈

(
0, Ḡ (1)

)
is the unique solution to FPC,1 (G (1) , 0) = 0. In case 3 we have already proved that FPC,1 (0, 0) < 0 and

FPC,1
(
0, Ḡ (1)

)
> 0 if and only if 1−2δ

2(1−δ) < θ ≤ 4(1−δ)+3φδ
2(1−δ)(4−3δ+3φδ) , θR+

(
2δ− 2−2δ+δφ

1−δ+δφ

)
2(1−δ) R < X < θR+ (2δ−1)

2(1−δ)R.

Finally, Q
(
Ĝ (1)

)
= FPC,0

(
FPC,1(0,G̃(1))

δ(1−φ) , 0

)
− δφĜ (1) = FPC,0 (0, 0) − δφĜ (1). Thus, Q

(
Ĝ (1)

)
< 0

if and only if Ĝ (1) > FPC,0 (0, 0) /δφ.
Case 5 : Suppose that G (0) = Ḡ (0) or G (1) = Ḡ (1). If G (0) = Ḡ (0), we have µ0

L = 0 and, hence,
(1− φ) + λ1δ (1− φ) + µ0

H = 0, a contradiction because λ1 ≥ 0 and µ0
H ≥ 0. If G (1) = Ḡ (1), we have

µ1
L = 0 and, hence φ+ λ0δφ+ µ1

H = 0, a contradiction because λ0 ≥ 0 and µ1
H ≥ 0.

This completes the proof of Parts 1 and 2. �
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Proof of Parts 3 and 4: Suppose that countries are following the temporary cooperation strategy
with G (0) ∈

[
0, θR4

)
and that no country deviates. Then, the expected discounted payoffs for each state

Z = 0, 1 are given by:

V TC (0) = (1− δ)
(
R

2
−G (0)

)
+ δ

[
φV TC (1) + (1− φ)V TC (0)

]
V TC (1) = (1− δ) R

WO

4

Solving, we obtain:

V TC (0) =
(1− δ)

(
R
2 −G (0) + δφ

4 R
WO
)

1− δ (1− φ)

Sustainability for Z = 0: Suppose that Z = 0 and player i deviates from cooperation. From Lemma
2, the most profitable deviation for player i is gD (G(0), θR) =

√
G(0)θR−G(0) and the associated payoff

is given by:

V D (G (0)) = (1− δ)
[

gD (G(0), θR)

gD (G(0), θR) +G(0)
θR− gD (G(0), θR)

]
+ δV PU

From Lemma 1, if X ≤ X̄, implies that V PU = V WO. Thus, player i does not have an incentive to
deviate if and only if V TC (0) ≥ V D (G (0)) or, which is equivalent,

F TC (G (0)) =

− (2− δ + δφ)G (0) + 2 (1− δ + δφ)
√
G (0) θR+ F TC (0) ≥ 0

where

F TC (0) =

[
2− θ (4− 3δ + 3φδ)

4

]
R

Best possible temporary cooperation equilibrium : To determine the best possible temporary
cooperative equilibrium, we solve

max
G(0)≥0

{
φV TC (1) + (1− φ)V TC (0) =(

1−δ
1−δ+δφ

) [
φRWO

4 + (1− φ) R2 − (1− φ)G (0)
] }

s.t.: F TC (G (0)) ≥ 0

There are two cases to consider:
Case 1 : Suppose that θ ≤ 2

4−3δ+3φδ . Then, F
TC (0) ≥ 0 and, hence, G (0) = 0 is the solution to the

above maximization problem.
Case 2 : Suppose that θ > 2

4−3δ+3φδ . Then, F
TC (0) < 0. Moreover, ∂F

TC(G(0))
∂G(0) = − (2− δ + δφ) +

(1− δ + δφ)
√

θR
G(0) . Thus, F

TC (G (0)) is strictly increasing in G (0) for all G (0) ∈
[
0,
(

1−δ+δφ
2−δ+δφ

)2
θR

]
and strictly decreasing in G for all G ∈

[(
1−δ+δφ
2−δ+δφ

)2
θR, θR4

]
. Moreover,

(
1−δ+δφ
2−δ+δφ

)2
θR ≤ θR

4 , with strict
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inequality for δ < 1. Finally, note that F TC
((

1−δ+δφ
2−δ+δφ

)2
θR

)
= (1−δ+δφ)2

2−δ+δφ θR +
[

2−θ(4−3δ+3φδ)
4

]
R > 0.

Thus, the solution to the above maximization problem is G (0) ∈
(

0,
(

1−δ+δφ
2−δ+δφ

)2
θR

)
given by the unique

solution to F TC (G (0)) = 0. �

Corollary 1 Open conflict is unavoidable if and only if

X ≤

 X̄ = [(4−θ)(1−δ)+3φδ]δR
(1−δ)[4(1−δ)+3φδ] if θ > 4(1−δ)+3φδ

2(1−δ)(4−3δ+3φδ)

X̄low = θR+

[
2δ− 2−2δ+δφ

1−δ+δφ

]
R

2(1−δ) if 1−2δ
2(1−δ) < θ ≤ 4(1−δ)+3φδ

2(1−δ)(4−3δ+3φδ)

Moreover:

1. The lower the cost of elimination technology (X lower) and the higher the chances that countries
can use it (φ higher), the less likely open conflict can be avoided.

2. The destructiveness of open conflict has a non-monotonic effect on the likelihood of open conflict.
Initially, as destructiveness declines (θ higher), open conflict becomes more likely, but eventually
further reductions in destructiveness make open conflict easier to avoid.

Proof : From Proposition 5.2, it is not possible to sustain a permanent cooperative equilibrium if
and only if [ 1−2δ

2(1−δ) < θ ≤ 4(1−δ)+3φδ
2(1−δ)(4−3δ+3φδ) and X ≤ X̄low] or [θ >

4(1−δ)+3φδ
2(1−δ)(4−3δ+3φδ) and X ≤ X̄].

Clearly, the lower the cost of the elimination technology (the lower X), the more likely that both of
these conditions hold.

Rearranging terms we have that we have that it is not possible to sustain a permanent cooperative
equilibrium if and only if

X ≤

 X̄ = [(4−θ)(1−δ)+3φδ]δR
(1−δ)[4(1−δ)+3φδ] if φ > 2(1−δ)(2−4θ+3θδ)

2θ(1−δ)−1

X̄low = θR+

[
2δ− 2−2δ+δφ

1−δ+δφ

]
R

2(1−δ) if φ ≤ 2(1−δ)(2−4θ+3θδ)
2θ(1−δ)−1

Note that X̄low and X̄ are both strictly increasing in φ. Moreover, X̄low < X̄ for φ ≤ 2(1−δ)(2−4θ+3θδ)
2θ(1−δ)−1 .

Thus, an increase in φ makes the above inequality more likely to hold.
Finally, note that X̄low is strictly increasing in θ, while X̄ is strictly decreasing in θ. Moreover,

X̄low < X̄ for θ ≤ 4(1−δ)+3φδ
2(1−δ)(4−3δ+3φδ) . Thus, an increase in θ, makes open conflict becomes more likely if

θ < 4(1−δ)+3φδ
2(1−δ)(4−3δ+3φδ) and less likely if θ ≥

4(1−δ)+3φδ
2(1−δ)(4−3δ+3φδ) .

This completes the proof of Corollary 1. �

Proposition 6 Suppose that 1−2δ
2(1−δ) < θ ≤ 4(1−δ)+3φδ

2(1−δ)(4−3δ+3φδ) and X̄low < X < X̄high. Then, partial
permanent cooperation induces higher ex-ante expected payoff than temporary cooperation if and only if

∆ =

[
FPC,0 (0, 0)− δφGPC (1)− δ (1− φ)GPC (0)

− (1−δ)
1−δ+δφ

[
F TC (0)− δ (1− φ)GTC (0)

] ]
≥ 0
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where

FPC,0 (0, 0) =
R

2
− (1− δ) θR−

(1− δ) δ
[
θR+ φ

(
−X + δR

1−δ

)]
4 (1− δ + φδ)

F TC (0) =
2− θ (4− 3δ + 3φδ)

4
R

GPC (0) and GPC (1) are given by Proposition 5.2 and GT (0) by Propositions 5.3 and 5.4. Moreover, if
θ > 2

4−3δ+3φδ and Ĝ (1) ≤ FPC,0 (0, 0) /δφ, ∆ ≥ 0, while if θ ≤ 2
4−3δ+3φδ and Ĝ (1) > FPC,0 (0, 0) /δφ,

∆ < 0.

Proof : The ex-ante expected payoff under partial permanent cooperation is given by:

V PC =
R

2
− φGP (1)− (1− φ)GP (0)

where GPC (0) and GPC (1) are given by Proposition 5.2.
The ex-ante expected payoff under temporary cooperation is given by:

V TC = φV TC (1) + (1− φ)V TC (0)

where V TC (0) =
(1−δ)

(
R
2
−GTC(0)+ δφRWO

4

)
1−δ(1−φ) and V TC (1) = (1−δ)RWO

4 . Therefore, we obtain:

V TC =
(1− δ)

[
φ
4R

WO + (1− φ)
(
R
2 −G

TC (0)
)]

1− δ + δφ

where GTC (0) is given by Proposition 5.3 or Proposition 5.4.
V PC ≥ V TC if and only if

FPC,0 (0, 0)− δφGPC (1)− δ (1− φ)GPC (0) ≥
(1− δ)

[
F TC (0)− δ (1− φ)GTC (0)

]
1− δ + δφ

where

FPC,0 (0, 0) =
R

2
− (1− δ) θR−

(1− δ) δ
[
θR+ φ

(
−X + δR

1−δ

)]
4 (1− δ + φδ)

F TC (0) =
2− θ (4− 3δ + 3φδ)

4
R

Note that 1−2δ
2(1−δ) ≤

2
4−3δ+3φδ ≤

4(1−δ)+3φδ
2(1−δ)(4−3δ+3φδ) with strict inequalities if δ > 0. So, there are several

cases to consider:
Case 1 : Suppose that 1−2δ

2(1−δ) < θ ≤ 2
4−3δ+3φδ , X̄low < X < X̄high, and Ĝ (1) ≤ FPC,0 (0, 0) /δφ, where

Ĝ (1) ∈
(
0, Ḡ (1)

)
is the unique solution to FPC,1 (G (1) , 0) = 0. Then, from Proposition 5.2.a, the best

possible permanent cooperative equilibria that can be sustained is partial cooperation with GPC (0) = 0
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and GPC (1) = Ĝ (1). From Proposition 5.3, the best temporary cooperative equilibria that can be
sustained is GTC (0) = 0. Therefore, V PC ≥ V TC if and only if

FPC,0 (0, 0)− δφĜ (1) ≥ (1− δ)F TC (0)

1− δ + δφ

Moreover, note that θ ≤ 2
4−3δ+3φδ implies F

TC (0) > 0.

Case 2 : Suppose that 2
4−3δ+3φδ < θ ≤ 4(1−δ)+3φδ

2(1−δ)(4−3δ+3φδ) , X̄low < X < X̄high, and Ĝ (1) ≤
FPC,0 (0, 0) /δφ, where Ĝ (1) ∈

(
0, Ḡ (1)

)
is the unique solution to FPC,1 (G (1) , 0) = 0. Then, from

Proposition 5.2.a, the best possible permanent cooperative equilibria that can be sustained is partial
cooperation with GPC (0) = 0 and GPC (1) = Ĝ (1). From Proposition 5.4, the best temporary cooper-

ative equilibria that can be sustained is GTC (0) ∈
(

0,
(

1−δ+δφ
2−δ+δφ

)2
θR

)
given by the unique solution to

F TC (G (0)) = 0. Therefore, V PC ≥ V TC if and only if

FPC,0 (0, 0)− δφĜ (1) ≥
(1− δ)

[
F TC (0)− δ (1− φ)GTC (0)

]
1− δ + δφ

Since Ĝ (1) ≤ FPC,0 (0, 0) /δφ, and θ > 2
4−3δ+3φδ implies F

TC (0) < 0, the above inequality always holds.

Case 3 : Suppose that 1−2δ
2(1−δ) < θ ≤ 2

4−3δ+3φδ , θR+ X̄low < X < X̄high, and Ĝ (1) > FPC,0 (0, 0) /δφ,

where Ĝ (1) ∈
(
0, Ḡ (1)

)
is the unique solution to FPC,1 (G (1) , 0) = 0. Then, from Proposition 5.2.b, the

best possible permanent cooperative equilibria that can be sustained is partial cooperation withGPC (0) >
0 and GPC (1) > Ĝ (1) given by the unique solution to FPC,0 (G (0) , G (1)) = FPC,1 (G (0) , G (1)) =

0 that satisfies ∂FPC,0(G(0),0)
∂G(0)

∂FPC,1(0,G(1))
∂G(1) > δ2 (1− φ)φ. From Proposition 5.3, the best temporary

cooperative equilibria that can be sustained is GTC (0) = 0. Therefore, V PC ≥ V TC if and only if

FPC,0 (0, 0)− δφGPC (1)− δ (1− φ)GPC (0) ≥ (1− δ)F TC (0)

1− δ + δφ

Since GPC (1) > Ĝ (1) > FPC,0 (0, 0) /δφ, and θ ≤ 2
4−3δ+3φδ implies F

TC (0) > 0, the above inequality
never holds.

Case 4 : Suppose that 2
4−3δ+3φδ < θ ≤ 4(1−δ)+3φδ

2(1−δ)(4−3δ+3φδ) , X̄low < X < X̄high, and Ĝ (1) >

FPC,0 (0, 0) /δφ, where Ĝ (1) ∈
(
0, Ḡ (1)

)
is the unique solution to FPC,1 (G (1) , 0) = 0. Then, from

Proposition 5.2.b, the best possible permanent cooperative equilibria that can be sustained is partial co-
operation with GPC (0) > 0 and GPC (1) > Ĝ (1) given by the unique solution to FPC,0 (G (0) , G (1)) =

FPC,1 (G (0) , G (1)) = 0 that satisfies ∂FPC,0(G(0),0)
∂G(0)

∂FPC,1(0,G(1))
∂G(1) > δ2 (1− φ)φ. From Proposition 5.4,

the best temporary cooperative equilibria that can be sustained is GT (0) ∈
(

0,
(

1−δ+δφ
2−δ+δφ

)2
θR

)
given by

the unique solution to F TC (G (0)) = 0. Therefore, V PC ≥ V TC if and only if

FPC,0 (0, 0)− δφGPC (1)− δ (1− φ)GPC (0) ≥
(1− δ)

[
F TC (0)− δ (1− φ)GTC (0)

]
1− δ + δφ

Moreover, θ > 2
4−3δ+3φδ implies F

TC (0) < 0.
This completes the proof of Proposition 6. �
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A.4 Temporary Elimination

This section presents the proof of Lemmas 2 and 3 and Propositions 7, 8, and 9.

Lemma 3 Under the non-cooperative norm.2 Let X̄ (γ) = [(4−θ)(1−δ+δγ)+3δφ]δR
(1−δ+δγ)[4(1−δ+δγ)+3δφ] and R

WO (γ) = θR −
X + δR

1−δ+δγ .

1. Suppose that X > X̄ (γ). Then, the worst equilibrium is GN = θR
4 for Z = 0 and GN = θR

4 and no
elimination for Z = 1. The associated punishment expected payoff is V PU = V N = θR

4 .

2. Suppose that X ≤ X̄ (γ). Then, the worst equilibrium is GN = θR
4 for Z = 0 and GWO (γ) = RWO(γ)

4
and eliminate the loser for Z = 1. The associated punishment expected payoff is V PU = V WO (γ) =
(1−δ+δγ)[φRWO(γ)+(1−φ)θR]

4(1−δ)[1−δ(1−φ−γ)] .

Proof : Suppose that when the resource is contestable both players always select S1 = S2 = 0. If
S−i = 0, there is open conflict regardless of Si. Thus, in the settlement stage there is no unilateral
profitable deviation from S1 = S2 = 0.

When the resource is contestable and elimination is not possible, the expected discounted payoff of
player i is given by:

V PU
i (C = 1, Z = 0) = max

Gi(0)>0

{
(1− δ)

[
πi (0) θR−GPUi (0)

]
+ δV PU

i (C = 1)
}

where πi (0) =
GPUi (0)

GPU1 (0)+GPU2 (0)
and V PU

i (C = 1) is the expected value of the game conditional on the

resource being contestable, i.e.,

V PU
i (C = 1) = (1− φ)V PU

i (C = 1, Z = 0) + φV PU
i (C = 1, Z = 1)

When the resource is contestable and elimination is possible, the expected discounted payoff of player
i is given by:

V PU
i (C = 1, Z = 1) = max

Gi(1)>0

{
πi (1)

[
(1− δ) θR+ V PU

i (w)
]

+ (1− πi (1))V PU
i (l)− (1− δ)GPUi (1)

}
V PU
i (w) = max

Wi∈{0,1}

{
Wi

[
− (1− δ)X + δV PU

i (C = 0, w)
]

+ (1−Wi) δV
PU
i (C = 1)

}
V PU
i (l) = W−iδV

PU
i (C = 0, l) + (1−W−i) δV PU

i (C = 1)

where πi (1) =
GPUi (1)

GPU1 (1)+GPU2 (1)
.

Finally, when the resource is not contestable, the expected discounted payoff of player i is given by:

V PU
i (C = 0, w) = (1− δ)R+ δ

[
(1− γ)V PU

i (C = 0, w) + γV PU
i (C = 1)

]
V PU
i (C = 0, l) = δ

[
(1− γ)V PU

i (C = 0, l) + γV PU
i (C = 1)

]
2That is, assume that in every contestable state, S1S2 = 0 for all (G1, G2) and Z.
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Solving for V PU
i (C = 0, w) and V PU

i (C = 0, l) as a function of V PU
i (C = 1) we have:

V PU
i (C = 0, w) =

(1− δ)R+ γδV PU
i (C = 1)

1− δ (1− γ)
, Vi (C = 0, l) =

δγV PU
i (C = 1)

1− δ (1− γ)

Also note that Wi = 1 if and only if − (1− δ)X + δV PU
i (C = 0, w) ≥ δV PU

i (C = 1). Introduing
V PU
i (C = 0, w) we have that Wi = 1 if and only if

−X +
δR

1− δ (1− γ)
≥ δV PU

i (C = 1)

1− δ (1− γ)

We look for a symmetric equilibrium in which V PU
i (C = 1) = V PU for both players. Thus, in

equilibrium, there are only two possible situations to consider; either −X + δR
1−δ(1−γ) ≥

δV PU

1−δ(1−γ) and,

hence, Wi = 1 for i = 1, 2, or −X + δR
1−δ(1−γ) <

δV PU

1−δ(1−γ) and, hence, Wi = 0 for i = 1, 2.

Equilibrium with elimination : Assume that, in equilibrium, −X + δR
1−δ(1−γ) ≥

δV PU

1−δ(1−γ) . Then,
we have:

V PU
i (C = 1, Z = 0) = max

Gi(1)>0

{
(1− δ)

[
πi (0) θR−GPUi (0)

]
+ δV PU

}
V PU
i (C = 1, Z = 1) = max

Gi(1)>0

{
(1− δ)

[
πi (1)RWO (γ)−GPUi (1)

]
+

δ2γV PU

1− δ + δγ

}
V PU = (1− φ)V PU

i (C = 1, Z = 0) + φV PU
i (C = 1, Z = 1)

where RWO (γ) = θR −X + δR
1−δ+δγ . For Z = 1, the unique Nash equilibrium guns profile is GPU1 (1) =

GPU2 (1) = GWO (γ) = RWO (γ) /4, which implies V PU
i (C = 1, Z = 1) = (1−δ)RWO(γ)

4 + δ2γV PU

1−δ+δγ . For

Z = 0, the unique Nash equilibrium guns profile is GPU1 (1) = GPU2 (2) = GN = θR/4, which implies that
V PU
i (C = 1, Z = 0) = (1−δ)θR

4 + δV PU . Therefore,

V PU = V WO (γ) =
(1− δ + δγ)

[
φRWO (γ) + (1− φ) θR

]
4 [1− δ (1− φ− γ)]

Finally, we must verify that −X + δR
1−δ(1−γ) ≥

δV PU

1−δ(1−γ) , which holds if and only if

X ≤ X̄ (γ) =
[(4− θ) (1− δ + δγ) + 3δφ] δR

(1− δ + δγ) [4 (1− δ + δγ) + 3δφ]

Moreover, note that −X + δR
1−δ+δγ ≥

δV PU

1−δ(1−γ) implies that R
WO (γ) = θR−X + δR

1−δ+δγ > 0, and hence,

GWO (γ) = RWO (γ) /4 > 0.
Equilibrium without elimination : Assume that, in equilibrium, −X+ δR

1−δ(1−γ) <
δV PU

1−δ(1−γ) . Then,
we have:

V PU
i (C = 1, Z) = max

Gi(0)>0

{
(1− δ)

[
πi (Z) θR−GPUi (Z)

]
+ δV PU

}
for Z = 0, 1

V PU = (1− φ)V PU
i (C = 1, Z = 0) + φV PU

i (C = 1, Z = 1)
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Solving, we have that the unique Nash equilibrium guns profile is GPU1 (Z) = GPU2 (Z) = GN = θR/4 for
Z = 0, 1, which implies,

V PU
i (C = 1, Z) = V PU =

θR

4

Finally, we must verify that −X + δR
1−δ(1−γ) <

δV PU

1−δ(1−γ) , which holds if and only if

X >
(4− θ) δR

4 (1− δ + δγ)

Note that X̄ (γ) = [(4−θ)(1−δ+δγ)+3δφ]δR
(1−δ+δγ)[4(1−δ+δγ)+3δφ] >

(4−θ)δR
4(1−δ+δγ) . Thus, we have three possible cases to consider:

Case 1 : If X̄ (γ) < (4−θ)δR
4(1−δ+δγ) , then the only equilibrium is G

PU
1 (0) = GPU2 (0) = θR/4 for Z = 0 and

GPU1 (1) = GPU2 (1) = RWO (γ) /4 and W1 = W2 = 1 for Z = 1. Thus, the equilibrium expected payoff is
V PU = V WO (γ).

Case 2 : If X > X̄ (γ), then the only equilibrium is GPU1 (0) = GPU2 (0) = θR/4 for Z = 0 and
GPU1 (1) = GPU2 (1) = θR/4 and W1 = W2 = 0 for Z = 1. Thus, the equilibrium discounted expected
payoff is V PU = V N = θR

4 .

Case 3 : If (4−θ)δR
4(1−δ+δγ) ≤ X ≤ X̄ (γ), then there are two possible equilibria, described in cases 1 and

2, respectively. V WO (γ) < V N if and only if X > δ(1−θ)R
(1−δ+δγ) . Moreover, note that

(4−θ)δR
4(1−δ+δγ) >

δ(1−θ)R
(1−δ+δγ) ,

which implies that V WO (γ) < V N for all (4−θ)δR
4(1−δ+δγ) ≤ X ≤ X̄ (γ). Thus, whenever both equilibria exist,

the equilibrium described in case 1 is more severe.
This completes the proof of Lemma 3. �

Lemma 4 Suppose that countries are following either the permanent cooperation strategy with G (0) ∈[
0, θR4

)
and G (1) ∈

[
0, θR4

)
or the temporary cooperation strategy with G (0) ∈

[
0, θR4

)
. Assume that

X ≤ X̄ (γ).

1. Assume that Z = 0. Then, the most profitable deviation is gD (G(0), θR) =
√
G(0)θR−G(0). The

associated deviation payoff is given by:

V D (G (0)) = (1− δ)
[

gD (G (0) , R)

gD (G (0) , R) +G (0)
θR− gD (G (0) , R)

]
+ δV WO (γ)

2. Assume that Z = 1. Then, the most profitable deviation is gD
(
G(1), RWO (γ)

)
=
√
G(1)RWO (γ)−

G(1), which leads to open conflict and wipe-out. The associated deviation payoff is given by:

V D (G(1)) = (1− δ)
[

gD
(
G(1), RWO (γ)

)
gD (G(1), RWO (γ)) +G(1)

RWO (γ)− gD
(
G(1), RWO (γ)

)]
+
γδ2V WO (γ)

1− δ + δγ

Proof : Suppose that countries are following either the permanent cooperation strategy with G (0) ∈[
0, θR4

)
and G (1) ∈

[
0, θR4

)
or the temporary cooperation strategy with G (0) ∈

[
0, θR4

)
.

Suppose that C = 1 and Z = 0.
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Deviation in the settlement stage : Consider a unilateral deviation to open conflict, i.e., Si = 0.
Then, the expected payoff of player i under this deviation is given by:

Vi (C = 1, Z = 0) = (1− δ)
[
θR

2
−G (0)

]
+ δV PU

where V PU = V WO (γ). But if player i chooses Si = 1, then it gets Vi (0) = (1− δ)
[
R
2 −G (0)

]
+ δV C ,

where V C ≥ V PU is the expected payoff under cooperation. Therefore, for Z = 0, players do not have
an incentive to unilateraly deviate to open conflict.

Deviation in the gun choice : If i deviates, its expected payoff will be given by:

arg max
Gi

{
V D
i = (1− δ)

[
Gi

Gi +G (0)
θR−Gi

]
+ δV WO (γ)

}
The most profitable deviation for player i is gD (G (0) , R) =

√
G (0) θR − G (0). Thus, the associated

deviation payoff is given by:

V D (G (0)) = (1− δ)
[

gD (G (0) , θR)

gD (G (0) , θR) +G (0)
θR− gD (G (0) , θR)

]
+ δV WO (γ)

Suppose that Z = 1.
Deviation in the settlement stage : Consider a deviation to open conflict, i.e., Si = 0. Then, the

expected payoff of player i under this deviation is given by:

V D
i (C = 1, Z = 1) = πi (1) [(1− δ) θR+ Vi (w)] + [1− πi (1)]Vi (l)− (1− δ)Gi (1)

Vi (w) = max
Wi∈{0,1}

{
Wi [− (1− δ)X + δVi (C = 0, w)] + (1−Wi) δV

PU
}

Vi (l) = W−iδVi (C = 0, l) + (1−W−i) δV PU

Vi (C = 0, w) =
(1− δ)R+ γδV PU

1− δ + δγ

Vi (C = 0, l) =
γδV PU

1− δ + δγ

where πi (1) = 1/2 and V PU is the punishment payoff. Since X ≤ X̄ (γ), we have V PU = V WO (γ).

Therefore, − (1− δ)X + δVi (C = 0, w) ≥ δV PU if only if −X + δR
1−δ+δγ ≥

δVWO(γ)
1−δ+δγ , which always holds

for X ≤ X̄ (γ). Thus, Wi = W−i = 1 and, hence,

V D
i (C = 1, Z = 1) = (1− δ)

[
πi (1)RWO (γ)−G (1)

]
+
γδ2V WO (γ)

1− δ + δγ

Deviation in the gun choice : Since any deviation in guns choices will be immediately punished
with open conflict and X ≤ X̄ (γ), the optimal deviation for player i is given by:

arg max
Gi

{
V D
i =

Gi
Gi +G (1)

RWO (γ)−Gi +
γδ2V WO (γ)

1− δ + δγ

}
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Solving, we obtain that the most profitable deviation for player i is gD
(
G (1) , RWO (γ)

)
=√

G (1)RWO (γ)−G (1). Thus, the associated deviation payoff is given by:

V D (G (1)) = (1− δ)
[

gD
(
G (1) , RWO (γ)

)
gD (G (1) , RWO (γ)) +G (1)

RWO (γ)− gD
(
G (1) , RWO (γ)

)]
+
γδ2V WO (γ)

1− δ + δγ

This completes the proof of Lemma 4. �

Proposition 7 Suppose that γ > 0 and δ → 1. Then, permanent complete cooperation, i.e., disarmed
peace with G (Z) = 0 for Z = 0, 1, can be sustained.

Proof : In the proof of Proposition 8 we show that the permanent cooperation strategy with G (0) ∈[
0, θR4

)
and G (1) ∈

[
0, θR4

)
can be sustained as an equilibrium if and only if

FPC,0 (G(0), G(1)) =

− (2− δ − δφ)G(0) + 2 (1− δ)
√
G(0)θR− δφG (1) + FPC,0 (0, 0) ≥ 0

and

FPC,1 (G(0), G(1)) =

− (2− 2δ + δφ)G (1) + 2 (1− δ)
√
G (1)RWO (γ)− δ (1− φ)G (0) + FPC,1 (0, 0) ≥ 0

where

FPC,0 (0, 0) =
R

2
− (1− δ) θR−

δ (1− δ + δγ)
[
φRWO (γ) + (1− φ) θR

]
4 [1− δ (1− φ− γ)]

FPC,1 (0, 0) =
R

2
− (1− δ)RWO (γ)−

γδ2
[
φRWO (γ) + (1− φ) θR

]
4 [1− δ (1− φ− γ)]

RWO (γ) = θR−X +
δR

1− δ + δγ
.

Take the limit of FPC,0 (0, 0) and FPC,1 (0, 0) when δ → 1:

lim
δ→1

FPC,0 (0, 0) =
[φ+ (2− θ) γ]R+ γφX

4 (φ+ γ)
> 0

lim
δ→1

FPC,1 (0, 0) =
[φ+ (2− θ) γ]R+ γφX

4 (φ+ γ)
> 0

Thus, when δ → 1, FPC,0 (0, 0) > 0 and FPC,1 (0, 0) > 0, which implies the permanent cooperation
strategy with G (0) = G (1) = 0 can be sustained as an equilibrium. This completes the proof of
Proposition 7. �

Proposition 8 Suppose that γ ≥ 0 and X ≤ X̄ (γ) = [(4−θ)(1−δ+δγ)+3δφ]δR
(1−δ+δγ)[4(1−δ+δγ)+3δφ] . There are thresholds θ̄

PC
low ,

θ̄PChigh, θ̄
TC , X̄low (γ), and X̄high (γ) such that:
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1. Suppose that θ ≤ θ̄PClow or θ̄
PC
low < θ ≤ θ̄PChigh and X ≥ X̄high (γ). Then, permanent complete coopera-

tion, i.e., disarmed peace with G (Z) = 0 for Z = 0, 1, can be sustained.

2. Suppose that θ̄PClow < θ ≤ θ̄PChigh and X̄low (γ) < X < X̄high (γ). Let Ḡ (0) =
(

1−δ
2−δ−φδ

)2
θR <

GN , Ḡ (1) =
(

1−δ
2−2δ+δφ

)2
RWO (γ) < GWO (γ), and Ĝ (1) ∈

(
0, Ḡ (1)

)
be the unique solution to

FPC,1 (0, G (1)) = 0.

(a) If Ĝ (1) ≤ FPC,0 (0, 0) /δφ, then the best possible permanent cooperative equilibrium that can
be sustained is partial cooperation with G (0) = 0 and G (1) = Ĝ (1).

(b) If Ĝ (1) > FPC,0 (0, 0) /δφ, then the best possible permanent cooperative equilibrium that can

be sustained is partial cooperation with G (0) ∈
(
0, Ḡ (0)

)
and G (1) ∈

(
Ĝ (1) , Ḡ (1)

)
given by

the unique solution to

FPC,0 (G (0) , G (1)) = FPC,1 (G (0) , G (1)) = 0

that satisfies:
∂FPC,0 (G (0) , 0)

∂G (0)

∂FPC,1 (0, G (1))

∂G (1)
> δ2 (1− φ)φ.

3. If θ ≤ θ̄TC , then the best temporary cooperative equilibrium that can be sustained is G (0) = 0.

4. If θ > θ̄TC , then the best temporary cooperative equilibrium that can be sustained is G (0) ∈(
0,
{

(1−δ)[1−δ(1−γ−φ)]
(2−δ+δφ)(1−δ+δγ)−2δ2γφ

}2
θR

)
given by the unique solution to F TC (G (0)) = 0. Moreover,{

(1−δ)[1−δ(1−γ−φ)]
(2−δ+δφ)(1−δ+δγ)−2δ2γφ

}2
θR < GN = θR

4 .

Proof of parts 1 and 2: Suppose that countries are following the permanent cooperation strategy
with G (0) ∈

[
0, θR4

)
and G (1) ∈

[
0, θR4

)
and that no country deviates. Then, the expected discounted

payoffs for each state Z = 0, 1 are given by:

V PC (C = 1, Z = 0) = (1− δ)
[
R

2
−G (0)

]
+ δ

[
(1− φ)V PC

i (C = 1, Z = 0) + φV PC
i (C = 1, Z = 1)

]
V PC (C = 1, Z = 1) = (1− δ)

[
R

2
−G (1)

]
+ δ

[
(1− φ)V PC

i (C = 1, Z = 0) + φV PC
i (C = 1, Z = 1)

]
Solving, we obtain:

V PC (C = 1, Z = 0) =
R

2
−G (0) + δφ [G (0)−G (1)]

V PC (C = 1, Z = 1) =
R

2
−G (1) + δ (1− φ) [G (1)−G (0)]
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Sustainability for Z = 0: Suppose that Z = 0 and player i deviates from cooperation. Then,
from Lemma 4, the most profitable deviation for player i is gD (G(0), θR) =

√
G(0)θR − G(0) and the

associated deviation payoff is given by:

V D (G (0)) = (1− δ)
[

gD (G (0) , θR)

gD (G (0) , θR) +G (0)
θR− gD (G (0) , θR)

]
+ δV WO (γ)

Thus, player i does not have an incentive to deviate if and only if V PC (C = 1, Z = 0) ≥ V D (G (0)) or,
which is equivalent,

FPC,0 (G(0), G(1)) =

− (2− δ − δφ)G(0) + 2 (1− δ)
√
G(0)θR− δφG (1) + FPC,0 (0, 0) ≥ 0

where

FPC,0 (0, 0) =
R

2
− (1− δ) θR−

δ (1− δ + δγ)
[
φRWO (γ) + (1− φ) θR

]
4 [1− δ (1− φ− γ)]

Sustainability for Z = 1: Suppose that Z = 1 and player i deviates from cooperation. From
Lemma 4, the most profitable deviation for player i is gD

(
G(1), RWO (γ)

)
=
√
G(1)RWO (γ) − G(1),

which induces an open conflict, after which the victor eliminates the loser. The associated deviation
payoff is given by:

V D (G (1)) = (1− δ)
[

gD
(
G (1) , RWO (γ)

)
gD (G (1) , RWO (γ)) +G (1)

RWO (γ)− gD
(
G (1) , RWO (γ)

)]
+
γδ2V WO (γ)

1− δ + δγ

Thus, player i does not have an incentive to deviate if and only if V PC (C = 1, Z = 1) ≥ V D (G (1)) or,
which is equivalent,

FPC,1 (G(0), G(1)) =

− (2− 2δ + δφ)G (1) + 2 (1− δ)
√
G (1)RWO (γ)− δ (1− φ)G (0) + FPC,1 (0, 0) ≥ 0

where

FPC,1 (0, 0) =
R

2
− (1− δ)RWO (γ)−

γδ2
[
φRWO (γ) + (1− φ) θR

]
4 [1− δ (1− φ− γ)]

Best possible permanent cooperation equilibrium : To determine the best possible permanent
cooperative equilibrium, we solve

max
G(0)≥0,G(1)≥0

{
φV PC (C = 1, Z = 1) + (1− φ)V PC (C = 1, Z = 0)

= R
2 − φG (1)− (1− φ)G (0)

}
s.t. : FPC,0 (G(0), G(1)) ≥ 0 and FPC,1 (G(0), G(1)) ≥ 0

Let Ḡ(0) =
(

1−δ
2−δ−δφ

)2
θR and Ḡ (1) =

(
1−δ

2−2δ+δφ

)2
RWO (γ). Following the same precedure that we

used in the proof of Proposition 5, we that there is no solution such that G (0) > Ḡ(0) or Ḡ(1) > Ḡ (1),
and that FPC,0 and FPC,1 are quasiconcave functions for all (G (0) , G (1)).
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Since the objective function is linear and the constraints are quasiconcave, the following Kuhn-Tucker
conditions are suffi cient for a global maximum.

− (1− φ) + λ0

[
− (2− δ − δφ) + (1− δ)

√
θR

G (0)

]
− λ1δ (1− φ) + µ0

L − µ0
H = 0

−φ− λ0δφ+ λ1

[
− (2− 2δ + δφ) + (1− δ)

√
RWO (γ)

G (1)

]
+ µ1

L − µ1
H = 0

λ0 ≥ 0, F 0 (G (0) , G (1)) ≥ 0, λ0F 0 (G (0) , G (1)) = 0

λ1 ≥ 0, F 1 (G (0) , G (1)) ≥ 0, λ1F 1 (G (0) , G (1)) = 0

µ0
L ≥ 0, G (0) ≥ 0, µ0

LG (0) = 0

µ0
H ≥ 0, Ḡ (0)−G (0) ≥ 0, µ0

H

[
Ḡ (0)−G (0)

]
= 0

µ1
L ≥ 0, G (1) ≥ 0, µ1

LG (1) = 0

µ1
H ≥ 0, Ḡ (1)−G (1) ≥ 0, µ1

H

[
Ḡ (1)−G (1)

]
= 0

There are several cases to consider:
Case 1 : Suppose that G (0) = G (1) = 0. Solving, we obtain: λ0 = µ0

H = 0, µ0
L = 1−φ, λ1 = µ1

H = 0,
µ1
L = φ, FPC,0 (0, 0) ≥ 0, and FPC,1 (0, 0) ≥ 0. Since FPC,1 (0, 0) ≥ 0 implies FPC,0 (0, 0) ≥ 0, we must
check that FPC,1 (0, 0) ≥ 0. FPC,1 (0, 0) ≥ 0 if and only if

X ≥ X̄hight (γ) =
(1− δ + ρ) θR

1− δ + φρ
+

δR

(1− δ + δγ)
− R

2 (1− δ + φρ)

where ρ = γδ2

4[1−δ(1−φ−γ)] . If θ ≤ θ̄
PC
low , where

θ̄PClow =
(1− δ + δγ)− 2δ (1− δ + φρ)

2 (1− δ + ρ) (1− δ + δγ)

this constraint always holds because X > 0. If θ > θ̄PClow we need to check that X̄hight (γ) ≤ X̄ (γ), which
holds if and only if θ ≤ θ̄PChigh, where

θ̄PChigh =
4 (1− δ + δγ) + 3δφ

2 (1− δ + ρ) [4 (1− δ + δγ) + 3δφ] + 2δ (1− δ + φρ)

Summing up, G (0) = G (1) = 0 is a solution if and only if [θ ≤ θ̄PClow ] or [X ≥ X̄hight (γ) and θ̄PClow < θ ≤
θ̄PChigh].

Case 2 : Suppose that G (0) ∈
(
0, Ḡ (0)

)
and G (1) = 0. Solving we obtain: µ0

L = µ0
H = µ1

H = 0,

λ1 = 0, λ0 = (1− φ)
[
− (2− δ − δφ) + (1− δ)

√
θR
G(0)

]−1
> 0, µ1

L = φ
(
1 + λ0δ

)
> 0, FPC,0 (G (0) , 0) = 0

and FPC,1 (G (0) , 0) ≥ 0. Since FPC,0 (G (0) , 0) is strictly increasing in G (0) for all G (0) ∈
[
0, Ḡ (0)

]
,
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at most, there is one solution to FPC,0 (G (0) , 0) = 0. Moreover, there is a solution that satisfies
G (0) ∈

(
0, Ḡ (0)

)
if and only if FPC,0 (0, 0) < 0 and FPC,0

(
Ḡ (0) , 0

)
> 0. Note, however, that

FPC,0 (0, 0) < 0 implies FPC,1 (0, 0) < 0 (due to Result 3) and FPC,1 (0, 0) < 0 implies FPC,1 (G (0) , 0) <
0 (because FPC,1 (G (0) , 0) is strictly decreasing in G (0)). Thus, FPC,0 (0, 0) < 0 is incompatible with
FPC,1 (G (0) , 0) ≥ 0. Summing up, there is no solution such that G (0) ∈

(
0, Ḡ (0)

)
and G (1) = 0.

Case 3 : Suppose that G (0) = 0 and G (1) ∈
(
0, Ḡ (1)

)
. Solving we obtain: µ0

H = µ1
L = µ1

H = 0, λ0 =

0, µ0
L = (1− φ)+λ1δ (1− φ) > 0, λ1 = φ

[
− (2− 2δ + δφ) + (1− δ)

√
RWO(γ)
G(1)

]−1

> 0, FPC,1 (0, G (1)) =

0 and FPC,0 (0, G (1)) ≥ 0. Since FPC,1 (0, G (1)) is strictly increasing in G (1) for all G (1) ∈
[
0, Ḡ (1)

]
,

at most, there is one solution to FPC,1 (0, G (1)) = 0. Moreover, there is a solution that satisfies G (1) ∈(
0, Ḡ (1)

)
if and only if FPC,1 (0, 0) < 0 and FPC,1

(
0, Ḡ (1)

)
> 0. FPC,1 (0, 0) < 0 if and only if

X < X̄hight (γ); while FPC,1
(
0, Ḡ (1)

)
> 0 if and only if X > X̄low (γ), where

X̄low (γ) =

[
(1− δ + δφ) (1− δ + ρ) + ρ (1− δ)

(1− δ + δφ) (1− δ + ρφ) + ρφ (1− δ)

]
θR+

+
δR

(1− δ + δγ)
− (2− 2δ + δφ)R

2 [(1− δ + δφ) (1− δ + ρφ) + ρφ (1− δ)]

Therefore, we need X̄low (γ) < X < X̄hight (γ). Thus, we must check that X̄hight > 0, which holds if
and only if θ > θ̄PClow . We must also check that X̄hight (γ) ≤ X̄ (γ), which holds if and only if θ ≤ θ̄PChigh.
Finally, we must verify that the unique solution to FPC,1 (0, G (1)) = 0 satisfies FPC,0 (0, G (1)) ≥ 0 or,
which is equivalent, that G (1) ≤ FPC,0 (0, 0) /δφ.

Summing up, G (0) = 0 and G (1) = Ĝ (1) ∈
(
0, Ḡ (1)

)
, where Ĝ (1) is the unique solution to

FPC,1 (0, G (1)) = 0 is a solution if and only if θ̄PClow < θ ≤ θ̄PChigh, X̄low (γ) < X < X̄hight (γ), and

Ĝ (1) ≤ FPC,0 (0, 0) /δφ.
Case 4 : Suppose that G (0) ∈

(
0, Ḡ (0)

)
and G (1) ∈

(
0, Ḡ (1)

)
. Solving, we obtain: µ0

L = µ1
L =

µ0
H = µ1

H = 0, and

λ0

[
− (2− δ − δφ) + (1− δ)

√
θR

G (0)

]
− λ1δ (1− φ) = (1− φ)

−λ0δφ+ λ1

[
− (2− 2δ + δφ) + (1− δ)

√
RWO

G (1)

]
= φ

The above system of linear equations has a solution if and only if[
− (2− δ − δφ) + (1− δ)

√
θR

G (0)

][
− (2− 2δ + δφ) + (1− δ)

√
RWO

G (1)

]
6= δ2φ (1− φ)

A solution must satisfy [λ0 > 0 and λ1 > 0] or [λ0 < 0 and λ1 < 0]. λ0 > 0 and λ1 > 0 if and only if[
− (2− δ − δφ) + (1− δ)

√
θR

G (0)

][
− (2− 2δ + δφ) + (1− δ)

√
RWO

G (1)

]
> δ2φ (1− φ) (2)
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λ0 > 0 and λ1 > 0 implies that FPC,0 (G (0) , G (1)) = 0, and FPC,1 (G (0) , G (1)) = 0. Thus, we must
solve the following system of equations:

FPC,0 (G (0) , 0)− δφG (1) = 0

FPC,1 (0, G (1))− δ (1− φ)G (0) = 0

We need FPC,1
(
0, Ḡ (1)

)
> 0 or, otherwise, FPC,1 (0, G (1)) < 0 for all G (1) ∈

[
0, Ḡ (1)

]
and, hence, there

is no solution to the above system of equations satisfying G (0) > 0. Also assume that FPC,1 (0, 0) < 0.
Otherwise, the solution is G (0) = G (1) = 0 (see case 1). Since FPC,1 (0, G (1)) is strictly increasing in
G (1) for all G (1) ∈

[
0, Ḡ (1)

]
, for a solution of the above system of equations to satisfy G (0) > 0 it must

be the case that G (1) > Ĝ (1), where Ĝ (1) is the unique solution to FPC,1 (0, G (1)) = 0. Define

Q (G (1)) = FPC,0
(
FPC,1 (0, G (1))

δ (1− φ)
, 0

)
− δφG (1)

Since FPC,1 (0, G (1)) is strictly concave in G (1) and FPC,0 (G (0) , 0) is strictly concave in G (0), Q (G (1))
is strictly concave in G (1). Moreover, note that

lim
G(1)→Ĝ(1)

∂Q (G (1))

∂G (1)
= lim

G(1)→Ĝ(1)

∂FPC,0
(
FPC,1(0,G(1))

δ(1−φ) , 0
)

∂G (0)

∂FPC,1 (0, G (1))

∂G (1)

1

δ (1− φ)
− δφ


=

(
lim

G(0)→0

∂FPC,0 (0, 0)

∂G (0)

) ∂FPC,1
(

0, Ĝ (1)
)

∂G (1)

1

δ (1− φ)
− δφ

where
∂FPC,1(0,Ĝ(1))

∂G(1) > 0 and limG(0)→0
∂FPC,0(0,0)

∂G(0) = ∞. Thus, for G (1) → Ĝ (1), Q (G (1)) is strictly

increasing, which implies that Q (G (1)) is either strictly increasing for all G (1) ∈
[
Ĝ (1) , Ḡ (1)

]
or, it

is strictly increasing for all G (1) ∈
[
Ĝ (1) , Gm

]
, adopts a maximum at G (1) = Gm, and it is strictly

decreasing for all G (1) ∈
[
Gm, Ḡ (1)

]
. Thus, there are 5 possible situations to consider:

Case 4.a : Suppose that Q
(
Ĝ (1)

)
> 0 and Q (G (1)) is strictly increasing for all G (1) ∈[

Ĝ (1) , Ḡ (1)
]
. Then, there is no solution to Q (G (1)) = 0.

Case 4.b: Suppose thatQ
(
Ĝ (1)

)
> 0 andQ (G (1)) is strictly increasing for allG (1) ∈

[
Ĝ (1) , Gm

]
,

adopts a maximum at G (1) = Gm, and it is strictly decreasing for all G (1) ∈
[
Gm, Ḡ (1)

]
. Then,

there is at most one solution to Q (G (1)) = 0, which exists if and only if Q
(
Ḡ (1)

)
≤ 0. Note,

however, that for such a solution it must be the case that ∂Q(G(1))
∂G(1) ≤ 0, which holds if and only if

∂FPC,0
(
FPC,1(0,G(1))

δ(1−φ) ,0

)
∂G(0)

∂FPC,1(0,G(1))
∂G(1) ≤ δ2 (1− φ)φ, a violation of (2).

Case 4.c: Suppose that Q
(
Ĝ (1)

)
= 0. Assume that Q (G (1)) is strictly increasing for all G (1) ∈[

Ĝ (1) , Ḡ (1)
]
. Then, the unique solution to Q (G (1)) = 0 is G (1) = Ĝ (1), which implies G (0) = 0, a
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contradiction. Assume that Q (G (1)) is strictly increasing for all G (1) ∈
[
Ĝ (1) , Gm

]
, adopts a maximum

at G (1) = Gm, and it is strictly decreasing for all G (1) ∈
[
Gm, Ḡ (1)

]
. If Q

(
Ḡ (1)

)
≤ 0, then there are

two solutions to Q (G (1)) = 0. One solution is G (1) = Ĝ (1), which implies, G (0) = 0, a contradiction.
For the other solution, it must be the case that ∂Q(G(1))

∂G(1) ≤ 0, which violates (2). If Q
(
Ḡ (1)

)
> 0, then

the unique solution to Q (G (1)) = 0 is G (1) = Ĝ (1), which implies G (0) = 0, a contradiction.

Case 4.d : Suppose that Q
(
Ĝ (1)

)
< 0 and Q (G (1)) is strictly increasing for all G (1) ∈[

Ĝ (1) , Ḡ (1)
]
. Then, there is at most one solution to Q (G (1)) = 0, which exists if and only if

Q
(
Ḡ (1)

)
> 0. Moreover, for this solution it must be the case that ∂Q(G(1))

∂G(1) > 0.

Case 4.e : Suppose thatQ
(
Ĝ (1)

)
< 0 andQ (G (1)) is strictly increasing for allG (1) ∈

[
Ĝ (1) , Gm

]
,

adopts a maximum at G (1) = Gm, and it is strictly decreasing for all G (1) ∈
[
Gm, Ḡ (1)

]
. If Q (Gm) < 0,

then there is no solution to Q (G (1)) = 0. If Q (Gm) = 0. Then, the unique solution to Q (G (1)) = 0 is
G (1) = Gm. If Q (Gm) > 0 and Q

(
Ḡ (1)

)
< 0, then there are two solutions to Q (G (1)) = 0 one with

G (1) < Gm and another with G (1) > Gm. Note, however, that for the solution with G (1) > Gm we
have ∂Q(G(1))

∂G(1) < 0, which violates (2). Thus, only the solution with G (1) < Gm satisfies the Kuhn-Tucker

conditions. Finally, if Q (Gm) > 0 and Q
(
Ḡ (1)

)
> 0, there is a unique solution to Q (G (1)) = 0 for

which ∂Q(G(1))
∂G(1) > 0.

Summing up, G (0) ∈
(
0, Ḡ (0)

)
and G (1) ∈

(
0, Ḡ (1)

)
given by the unique solution to

FPC,0 (G (0) , G (1)) = 0, and FPC,0 (G (0) , G (1)) = 0 that satisfies ∂F
0(G(0),0)
∂G(0)

∂F 1(0,G(1))
∂G(1) > δ2 (1− φ)φ is

a solution if and only if FPC,1 (0, 0) < 0, FPC,1
(
0, Ḡ (1)

)
> 0, andQ

(
Ĝ (1)

)
< 0, where Ĝ (1) ∈

(
0, Ḡ (1)

)
is the unique solution to FPC,1 (G (1) , 0) = 0. In case 3 we have already proved that FPC,1 (0, 0) < 0
and FPC,1

(
0, Ḡ (1)

)
> 0 if and only if θ̄PClow < θ ≤ θ̄PChigh, X̄low (γ) < X < X̄hight (γ). Finally,

Q
(
Ĝ (1)

)
= FPC,0

(
FPC,1(0,G̃(1))

δ(1−φ) , 0

)
− δφĜ (1) = FPC,0 (0, 0) − δφĜ (1). Thus, Q

(
Ĝ (1)

)
< 0 if and

only if Ĝ (1) > FPC,0 (0, 0) /δφ.
Case 5 : Suppose that G (0) = Ḡ (0) or G (1) = Ḡ (1). If G (0) = Ḡ (0), we have µ0

L = 0 and, hence,
(1− φ) + λ1δ (1− φ) + µ0

H = 0, a contradiction because λ1 ≥ 0 and µ0
H ≥ 0. If G (1) = Ḡ (1), we have

µ1
L = 0 and, hence φ+ λ0δφ+ µ1

H = 0, a contradiction because λ0 ≥ 0 and µ1
H ≥ 0.

Proof of parts 3 and 4: Suppose that countries are following the temporary cooperation strategy
with G (0) ∈

[
0, θR4

)
and that no country deviates. Then, the expected discounted payoffs for each state

Z = 0, 1 are given by:

V TC (C = 1, Z = 0) = (1− δ)
(
R

2
−G (0)

)
+ δV TC (C = 1)

V TC (C = 1) = (1− φ)V TC (C = 1, Z = 0) + φV TC (C = 1, Z = 1)

V TC (C = 1, Z = 1) = (1− δ) R
WO (γ)

4
+
δ2γV TC (C = 1)

1− δ (1− γ)
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Solving we obtain:

V TC (C = 1, Z = 0) =
(1− δ)

[
1− φδ2γ

1−δ(1−γ)

] (
R
2 −G (0)

)[
1− φδ2γ

1−δ(1−γ) − δ (1− φ)
] +

(1− δ) δφR
WO(γ)

4[
1− φδ2γ

1−δ(1−γ) − δ (1− φ)
]

V TC (C = 1) =
(1− φ)V TC (C = 1, Z = 0) + (1− δ)φR

WO(γ)
4

1− φδ2γ
1−δ(1−γ)

Sustainability for Z = 0: Suppose that Z = 0 and player i deviates from cooperation. From Lemma
4, the most profitable deviation for player i is gD (G(0), θR) =

√
G(0)θR−G(0) and the associated payoff

is given by:

V D (G (0)) = (1− δ)
[

gD (G (0) , θR)

gD (G (0) , θR) +G (0)
θR− gD (G (0) , θR)

]
+ δV WO (γ)

Thus, player i does not have an incentive to deviate if and only if V TC (C = 1, Z = 0) ≥ V D (G (0)) or,
which is equivalent,

F TC (G (0)) =

−
[

(2− δ) (1− δ + δγ) + (1− δ − δγ) δφ

(1− δ + δγ)

]
G(0)

+
2 (1− δ) [1− δ (1− γ − φ)]

(1− δ + δγ)

√
G(0)θR+ F TC (0)

where

F TC (0) =

[
1− δ (1− γ)− φδ2γ

(1− δ + δγ)

]
R

2

−
[

(1− δ + δγ) δ (1− φ) + 4 (1− δ) [1− δ (1− φ− γ)]

4 (1− δ + δγ)

]
θR

Best possible temporary cooperation equilibrium : To determine the best possible temporary
cooperative equilibrium, we solve

max
G(0)≥0

{
(1− φ)V TC (C = 1, Z = 0) + φV TC (C = 1, Z = 1) =

(1−δ)(1−δ+δγ)
1−δ(1−γ−φ)

[
(1− φ)

(
R
2 −G (0)

)
+ φRWO(γ)

4

] }
s.t.: F TC (G (0)) ≥ 0

There are two cases to consider:
Case 1 : Suppose that θ ≤ θ̄TC =

2[1−δ(1−γ)−φδ2γ]
(1−δ+δγ)δ(1−φ)+4(1−δ)[1−δ(1−φ−γ)] . Then, F

TC (0) ≥ 0 and, hence,
G (0) = 0 is the solution to the above maximization problem.

Case 2 : Suppose that θ > θ̄TC . Then, F TC (0) < 0. Moreover,
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∂F TC (G (0))

∂G (0)
= −

[
(2− δ) (1− δ + δγ) + (1− δ − δγ) δφ

(1− δ + δγ)

]
+

(1− δ) [1− δ (1− γ − φ)]

(1− δ + δγ)

√
θR

G(0)

Thus, F TC (G (0)) is strictly increasing in G (0) for all G (0) ∈
[
0, G̃ (0)

]
and strictly decreasing in G for

all G ∈
[
G̃ (0) , θR4

]
, where

G̃ (0) =

{
(1− δ) [1− δ (1− γ − φ)]

[(2− δ) (1− δ + δγ) + (1− δ − δγ) δφ]

}2

θR

Moreover, G̃ (0) ≤ θR
4 , with strict inequality for δ < 1. Finally, note that

F TC
(
G̃ (0)

)
> 0

Thus, the solution to the above maximization problem is G (0) ∈
(

0, G̃ (0)
)
given by the unique solution

to F TC (G (0)) = 0.
This completes the proof of Proposition 8. �

Corollary 2 Suppose that γ > 0. Open conflict is unavoidable if and only if

X ≤
{
X̄ (γ) if θ > θ̄PChigh
X̄low (γ) if θ̄PClow < θ ≤ θ̄PChigh

Moreover:

1. The lower the cost of the elimination technology (X lower), the less likely open conflict can be
avoided.

2. The destructiveness of open conflict has a non-monotonic effect on the likelihood of open conflict.
Initially, as destructiveness declines (higher θ), open conflict becomes more likely, but eventually
further reductions in destructiveness make open conflict easier to avoid.

3. If θ > θ̄PChigh, an increase in γ makes open conflict less likely.

Proof : From Proposition 8, open conflict cannot be avoided if and only if [θ > θ̄PChigh and X ≤ X̄ (γ)]
or [θ̄PClow < θ ≤ θ̄PChigh and X ≤ X̄low (γ)].

Clearly, the lower the cost of the elimination technology (the lower X), the more likely that both of
these conditions hold.

Note that X̄low (γ) is strictly increasing in θ, while X̄ (γ) is strictly decreasing in θ. Moreover,
X̄low (γ) < X̄ (γ) for θ ≤ θ̄PChigh. Thus, an increase in θ, makes open conflict becomes more likely if
θ < θ̄PChigh and less likely if θ ≥ θ̄PChigh.
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Finally, suppose that θ > θ̄PChigh. Note that X̄ (γ) is strictly decreasing in γ. Thus, for θ > θ̄PChigh, an
increase in γ makes open conflict less likely.

This completes the proof of Corollary 2. �

Proposition 9 Suppose that θ̄PClow < θ ≤ θ̄PChigh and X̄low (γ) < X < X̄high (γ). Then, partial permanent
cooperation induces higher ex-ante expected payoff than temporary cooperation if and only if

∆ =

[
FPC,0 (0, 0)− δφGPC (1)− δ (1− φ)GPC (0)

− (1−δ+δγ)
1−δ(1−γ−φ)

[
F TC (0)− δ (1− φ)G (0)

] ]
≥ 0

where

FPC,0 (0, 0) =
R

2
− (1− δ) θR−

δ (1− δ + δγ)
[
φRWO (γ) + (1− φ) θR

]
4 [1− δ (1− φ− γ)]

F TC (0) =

[
1− δ (1− γ)− φδ2γ

(1− δ + δγ)

]
R

2

−
[

(1− δ + δγ) δ (1− φ) + 4 (1− δ) [1− δ (1− φ− γ)]

4 (1− δ + δγ)

]
θR

GPC (0) and GPC (1) are given by Proposition 8.2 and GT (0) by Propositions 8.3 and 8.4. Moreover, if
θ > θ̄TC and Ĝ (1) ≤ FPC,0 (0, 0) /δφ, ∆ ≥ 0, while if θ ≤ θ̄TC and Ĝ (1) > FPC,0 (0, 0) /δφ, ∆ < 0.

Proof : The ex-ante expected payoff under partial permanent cooperation is given by:

V PC =
R

2
− φGPC (1)− (1− φ)GPC (0)

where GPC (0) and GPC (1) are given by Proposition 8.2.
The ex-ante expected payoff under temporary cooperation is given by:

V TC =
(1− δ)

[
(1− φ)

(
R
2 −G

T (0)
)

+ φRWO(γ)
4

]
1− φδ2γ

1−δ(1−γ) − δ (1− φ)

=
(1− δ + δγ)

[1− δ (1− γ − φ)]

[
(1− φ)

(
R

2
−GTC (0)

)
+
φRWO (γ)

4

]
where GTC (0) is given by Proposition 8.3 or Proposition 8.4.

V PC ≥ V TC if and only if

FPC,0 (0, 0)− δφGPC (1)− δ (1− φ)GPC (0) ≥
(1− δ + δγ)

[
F TC (0)− δ (1− φ)GTC (0)

]
1− δ (1− γ − φ)

where

FPC,0 (0, 0) =
R

2
− (1− δ) θR−

δ (1− δ + δγ)
[
φRWO (γ) + (1− φ) θR

]
4 [1− δ (1− φ− γ)]
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and

F TC (0) =

[
1− δ (1− γ)− φδ2γ

(1− δ + δγ)

]
R

2

−
[

(1− δ + δγ) δ (1− φ) + 4 (1− δ) [1− δ (1− φ− γ)]

4 (1− δ + δγ)

]
θR

Note that θ̄PClow < θ̄TC < θ̄PChigh. So, there are several cases to consider:

Case 1 : Suppose that θ̄PClow < θ ≤ θ̄TC , X̄low (γ) < X < X̄high (γ), and Ĝ (1) ≤ FPC,0 (0, 0) /δφ,
where Ĝ (1) ∈

(
0, Ḡ (1)

)
is the unique solution to FPC,1 (G (1) , 0) = 0. Then, from Proposition 8.2.a,

the best possible permanent cooperative equilibria that can be sustained is partial cooperation with
GPC (0) = 0 and GPC (1) = Ĝ (1). From Proposition 8.3, the best temporary cooperative equilibria that
can be sustained is GTC (0) = 0. Therefore, V PC ≥ V TC if and only if

FPC,0 (0, 0)− δφĜ (1) ≥ (1− δ + δγ)F TC (0)

1− δ (1− γ − φ)

Moreover, note that θ ≤ θ̄TC implies F TC (0) > 0.
Case 2 : Suppose that θ̄TC < θ ≤ θ̄PChigh, X̄low (γ) < X < X̄high (γ), and Ĝ (1) ≤ FPC,0 (0, 0) /δφ,

where Ĝ (1) ∈
(
0, Ḡ (1)

)
is the unique solution to FPC,1 (G (1) , 0) = 0. Then, from Proposition 8.2.a,

the best possible permanent cooperative equilibria that can be sustained is partial cooperation with
GPC (0) = 0 and GPC (1) = Ĝ (1). From Proposition 8.4, the best temporary cooperative equilibria
that can be sustained is GTC (0) ∈ (0, θR) given by the unique solution to F TC (G (0)) = 0. Therefore,
V PC ≥ V TC if and only if

FPC,0 (0, 0)− δφĜ (1) ≥
(1− δ + δγ)

[
F TC (0)− δ (1− φ)GTC (0)

]
1− δ (1− γ − φ)

Since Ĝ (1) ≤ FPC,0 (0, 0) /δφ, and θ > θ̄TC implies F TC (0) < 0, the above inequality always holds.
Case 3 : Suppose that θ̄PClow < θ ≤ θ̄TC , X̄low (γ) < X < X̄high (γ), and Ĝ (1) > FPC,0 (0, 0) /δφ,

where Ĝ (1) ∈
(
0, Ḡ (1)

)
is the unique solution to FPC,1 (G (1) , 0) = 0. Then, from Proposition 8.2.b, the

best possible permanent cooperative equilibria that can be sustained is partial cooperation withGPC (0) >
0 and GPC (1) > Ĝ (1) given by the unique solution to FPC,0 (G (0) , G (1)) = FPC,1 (G (0) , G (1)) =

0 that satisfies ∂FPC,0(G(0),0)
∂G(0)

∂FPC,1(0,G(1))
∂G(1) > δ2 (1− φ)φ. From Proposition 8.3, the best temporary

cooperative equilibria that can be sustained is GTC (0) = 0. Therefore, V PC ≥ V TC if and only if

FPC,0 (0, 0)− δφGPC (1)− δ (1− φ)GPC (0) ≥ (1− δ + δγ)F TC (0)

1− δ (1− γ − φ)

Since GPC (1) > Ĝ (1) > FPC,0 (0, 0) /δφ, and θ ≤ θ̄TC implies F TC (0) ≥ 0, the above inequality never
holds.

Case 4 : Suppose that θ̄TC < θ ≤ θ̄PChigh, X̄low (γ) < X < X̄high (γ), and Ĝ (1) > FPC,0 (0, 0) /δφ,

where Ĝ (1) ∈
(
0, Ḡ (1)

)
is the unique solution to FPC,1 (G (1) , 0) = 0. Then, from Proposition 8.2.b, the

best possible permanent cooperative equilibria that can be sustained is partial cooperation withGPC (0) >
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0 and GPC (1) > Ĝ (1) given by the unique solution to FPC,0 (G (0) , G (1)) = FPC,1 (G (0) , G (1)) = 0

that satisfies ∂F
PC,0(G(0),0)
∂G(0)

∂FPC,1(0,G(1))
∂G(1) > δ2 (1− φ)φ. From Proposition 8.4, the best temporary cooper-

ative equilibria that can be sustained is GT (0) ∈ (0, θR) given by the unique solution to F TC (G (0)) = 0.
Therefore, V PC ≥ V TC if and only if

FPC,0 (0, 0)− δφGPC (1)− δ (1− φ)GPC (0) ≥
(1− δ + δγ)

[
F TC (0)− δ (1− φ)GTC (0)

]
1− δ (1− γ − φ)

Moreover, θ > θ̄TC implies F TC (0) < 0.
This completes the proof of Proposition 9. �

A.5 Stochastic Resource Values

This section presents the proofs of Propositions 10 and 11.

Proposition 10 Assume that φ = 0.

1. Suppose that θ ≤ θ̄ (H) = 2(1−δ)H+2δ[qH+(1−q)L]
4(1−δ)H+δ[qH+(1−q)L] . Then, permanent complete cooperation, i.e.,

disarmed peace with G(R) = 0 for R = H,L, is an equilibrium of the stochastic game. The
associated first-best expected payoff is V P = E (R) /2.

2. Suppose that θ > θ̄ (H). Let Ḡ (L) =
(

1−δ
2−δ−δq

)2
θL < GN (L), Ḡ (H) =

(
1−δ

2−2δ+δq

)2
θH < GN (H)

and Ĝ (H) ∈
(
0, Ḡ (H)

)
be the unique solution to FH (0, G (H)) = 0.

(a) If Ĝ (H) ≤ FL (0, 0) /δq, then the best possible cooperative equilibrium that can be sustained is
partial cooperation with G (L) = 0 and G (H) = Ĝ (H).

(b) If Ĝ (H) > FL (0, 0) /δq, then the best possible cooperative equilibrium that can be sustained is

partial cooperation with G (L) ∈
(
0, Ḡ (L)

)
and G (H) ∈

(
Ĝ (H) , Ḡ (H)

)
given by the unique

solution to:
FL (G (L) , G (H)) = FH (G (L) , G (H)) = 0

that satisfies:
∂FL (G (L) , 0)

∂G (L)

∂FH (0, G (H))

∂G (H)
> δ2q (1− q) .

Proof : Suppose that countries are following the cooperation strategy with G (L) ∈
[
0, θL4

)
and

G (H) ∈
[
0, θH4

)
and that no country deviates. Then, the expected payoffs are given by:

V C (R) = (1− δ)
(
R

2
−G (R)

)
+ δ

[
qV PC (H) + (1− q)V PC (L)

]
for R = H,L. Solving for V C (H) and V C (L) we have:
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V C (H) = (1− δ) H
2

+
δE (R)

2
− (1− δ + δq)G (H)− δ (1− q)G (L)

V C (L) = (1− δ) L
2

+
δE (R)

2
− (1 + δq)G (L)− δqG (H)

where E (R) = qH + (1− q)L.
Sustainability : Suppose that the resource is R = H,L and player i deviates from cooperation. To

determine the most profitable deviation for player i we must solve:

max
Gi

{
V D
i = (1− δ) (πi (Gi, G (R)) θR−Gi) + δV N

}
where πi (Gi, G (R)) = Gi

Gi+G(R) and V
N = θE (R) /4. Thus, player i’s most profitable deviation is

gD (G(0), θR) =
√
G(0)θR−G(0)

and the associated deviation payoff is given by:

V D (G (R)) = (1− δ)
(
θR− 2

√
G (R) θR+G (R)

)
+
δθE (R)

4

Player i does not have an incentive to deviate if and only if V C (R) ≥ V D (G (R)) or, which is equivalent,
FR (G (L) , G (H)) ≥ 0 for R = H,L, where

FH (G (L) , G (H)) = − (2− 2δ + δq)G (H) + 2 (1− δ)
√
G (H) θH − δ (1− q)G (L) + FPC,H (0, 0)

FL (G (L) , G (H)) = − (2− δ + δq)G (L) + 2 (1− δ)
√
G (L) θL− δqG (H) + FPC,L (0, 0)

FR (0, 0) =
(1− δ)R (1− 2θ)

2
+
δ (2− θ)E (R)

4
for R = H,L

Best possible permanent cooperation equilibrium : To determine the best possible permanent
cooperative equilibrium, we solve

max
G(H),G(L)

{
V C = qV C (H) + (1− q)V C (L)

= E(R)
2 − qG (H)− (1− q)G (L)

}
s.t.: FH (G (L) , G (H)) ≥ 0 and FL (G (L) , G (H)) ≥ 0

Using the same procedure that we used in the proof of Proposition 5, we have the following results:
Result 1: If a solution exists, it must satisfy G (L) ∈

[
0, Ḡ (L)

]
and G (H) ∈

[
0, Ḡ (H)

]
, where

Ḡ (L) =
(

1−δ
2−δ−δq

)2
θL < θL

4 and Ḡ (H) =
(

1−δ
2−2δ+δq

)2
θH < θH

4 .

Result 2: FH (G (L) , G (H)) and FL (G (L) , G (H)) are quasiconcave functions for all
(G (L) , G (H)) ∈ <2

+.
Result 3: If FH (0, 0) ≥ 0, then FL (0, 0) ≥ 0. Proof : FH (0, 0) ≥ 0 if and only if θ ≤ θ̄ (H) =

2(1−δ)H+2δE(R)
4(1−δ)H+δE(R) , while F

L (0, 0) ≥ 0 if and only if θ ≤ θ̄ (L) = 2(1−δ)L+2δE(R)
4(1−δ)L+δE(R) . Moreover, θ̄ (H) ≤ θ̄ (L)

with strict inequality if δ ∈ (0, 1).
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Since the objective function is linear and the constraints are quasiconcave, the following Kuhn-Tucker
conditions are suffi cient for a global maximum.

−q + λH

[
− (2− δ − δq) + (1− δ)

√
θH

G (H)

]
− λLδ (1− q) + µHm − µHM = 0

− (1− q)− λHδq + λL

[
− (2− 2δ + δφ) + (1− δ)

√
θL

G (L)

]
+ µLm − µLM = 0

λH ≥ 0, FH (G (L) , G (H)) ≥ 0, λHFH (G (L) , G (H)) = 0

λL ≥ 0, FL (G (L) , G (H)) ≥ 0, λLFL (G (L) , G (H)) = 0

µHm ≥ 0, G (H) ≥ 0, µHmG (H) = 0

µHM ≥ 0, Ḡ (H)−G (H) ≥ 0, µHM
[
Ḡ (H)−G (H)

]
= 0

µLm ≥ 0, G (L) ≥ 0, µLmG (L) = 0

µLM ≥ 0, Ḡ (L)−G (L) ≥ 0, µLM
[
Ḡ (L)−G (L)

]
= 0

There are several cases to consider:
Case 1 : Suppose that G (H) = G (L) = 0. Then, λL = λH = µHM = µLM = 0, µHm = q,

µLm = (1− q), FH (G (L) , G (H)) ≥ 0 and FL (G (L) , G (H)) ≥ 0. Since FH (G (L) , G (H)) ≥ 0 implies
FL (G (L) , G (H)) ≥ 0, we mjust check FH (G (L) , G (H)) ≥ 0, which holds if and only if θ ≤ θ̄ (H).
Summing up, G (H) = G (L) = 0 is a solution if and only if θ ≤ θ̄ (H).

Case 2 : Suppose that G (L) ∈
(
0, Ḡ (L)

)
and G (H) = 0. Then, µHM = µLm = µLM = 0, λH = 0,

µHm = λLδ (1− q) + q > 0, λL = (1− q)
[
− (2− 2δ + δφ) + (1− δ)

√
θL
G(L)

]−1
> 0, FL (G (L) , 0) = 0, and

FH (G (L) , 0) ≥ 0. Since FL (G (L) , 0) is strictly increasing in G (L) for all G (L) ∈
[
0, Ḡ (L)

]
, at most,

there is one solution to FL (G (L) , 0) = 0. Moreover, there is a solution that satisfies G (L) ∈
(
0, Ḡ (L)

)
if

and only if FL (0, 0) < 0 and FL
(
Ḡ (L) , 0

)
> 0. Note, however, that FL (0, 0) < 0 implies FH (0, 0) < 0

(due to Result 3) and FH (0, 0) < 0 implies FH (G (L) , 0) < 0 (because FH (G (L) , 0) is strictly decreasing
in G (L)). Thus, FL (0, 0) < 0 is incompatible with FH (G (L) , 0) ≥ 0. Summing up, there is no solution
such that G (L) ∈

(
0, Ḡ (L)

)
and G (H) = 0.

Case 3 : Suppose that G (L) = 0 and G (H) ∈
(
0, Ḡ (H)

)
. Then, µLM = µHm = µHM = 0, λL = 0,

λH =
[
− (2− δ − δq) + (1− δ)

√
θH
G(H)

]−1
q > 0, µLm = (1− q) + qλHδ > 0, FH (0, G (H)) = 0, and

FL (0, G (H)) ≥ 0. Since FH (0, G (H)) is strictly increasing in G (H) for all G (H) ∈
[
0, Ḡ (H)

]
, at

most, there is one solution to FH (0, G (H)) = 0. Moreover, there is a solution that satisfies G (H) ∈(
0, Ḡ (H)

)
if and only if FH (0, 0) < 0 and FH

(
0, Ḡ (H)

)
> 0. FH (0, 0) < 0 if and only if θ > θ̄ (H).

FH
(
0, Ḡ (H)

)
> 0 if and only if

θ <
2 (1− δ)H + 2δE (R)

4(1−δ+δq)(1−δ)H
(2−2δ+δq) + δE (R)

which always holds because the right hand side of the above inequality is always greater than or equal
1. Finally, we must verify that the unique solution to FH (0, G (H)) = 0 satisfies FL (0, G (H)) ≥ 0 or,
which is equivalent, that G (H) ≤ FL (0, 0) /δq.
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Summing up, G (L) = 0 and G (H) = Ĝ (H) ∈
(
0, Ḡ (H)

)
, where Ĝ (H) is the unique solution to

FH
(
0, Ḡ (H)

)
= 0 is a solution if and only if θ > θ̄ (H) and Ĝ (H) ≤ FL (0, 0) /δφ.

Case 4 : Suppose that G (L) ∈
(
0, Ḡ (L)

)
and G (H) ∈

(
0, Ḡ (H)

)
. Then, µHm = µHM = µLm = µLM = 0

λH

[
− (2− δ − δq) + (1− δ)

√
θH

G (H)

]
− λLδ (1− q) = q

−λHδq + λL

[
− (2− 2δ + δφ) + (1− δ)

√
θL

G (L)

]
= 1− q

The above system of linear equations has a solution if and only if[
− (2− δ − δq) + (1− δ)

√
θH

G (H)

][
− (2− 2δ + δq) + (1− δ)

√
θL

G (L)

]
6= δ2q (1− q)

A solution must satisfy [λH > 0 and λL > 0] or [λH < 0 and λL < 0]. λH > 0 and λL > 0 if and only if[
− (2− δ − δq) + (1− δ)

√
θH

G (H)

][
− (2− 2δ + δq) + (1− δ)

√
θL

G (L)

]
> δ2q (1− q)

λH > 0 and λL > 0 implies that FH (G (L) , G (H)) = 0, and FL (G (L) , G (H)) = 0. Thus, we must
solve the following system of equations:

FH (0, G (H))− δ (1− q)G (L) = 0

FL (G (L) , 0)− δqG (H) = 0

Following the same procedure that we used in the proof of Proposition ..., we have: G (L) ∈(
0, Ḡ (L)

)
and G (H) ∈

(
Ĝ (H) , Ḡ (H)

)
given by the unique solution to FH (G (L) , G (H)) = 0, and

FL (G (L) , G (H)) = 0 that satisfies ∂FH(G(L),G(H))
∂G(H)

∂FL(G(L),G(H))
∂G(L) > δ2 (1− q) q is a solution if and only

if FH (0, 0) < 0, FH
(
0, Ḡ (H)

)
> 0, and Ĝ (H) > FL (0, 0) /δq, where Ĝ (H) is the unique solution to

FH (0, G (H)) = 0. Moreover, FH (0, 0) < 0 if and only if θ > θ̄ (H) and FH
(
0, Ḡ (H)

)
> 0 always holds.

Case 5 : Suppose that G (L) = Ḡ (0) or G (H) = Ḡ (H). If G (L) = Ḡ (0), we have µLm = 0 and,
hence, (1− q) + λHδq + µLM = 0, a contradiction because λH ≥ 0 and µLM ≥ 0. If G (H) = Ḡ (H), we
have µHm = 0 and, hence q + (1− q)λLδ + µHM = 0, a contradiction because λL ≥ 0 and µHM ≥ 0.

This completes the proof of Proposition 10. �

Proposition 11 Assume that X ≤ E
[
X̄ (γ)

]
= [(4−θ)(1−δ+δγ)+3δφ]δE(R)

(1−δ+δγ)[4(1−δ+δγ)+3δφ] .

1. Suppose that γ = 0 and δ → 1. Then, it is impossible to sustain a permanent cooperative equilibrium.

2. Suppose that γ > 0 and δ → 1. Then, permanent complete cooperation, i.e., disarmed peace with
G (Z,R) = 0 for all Z = 0, 1 and R = H,L can be sustained.
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3. There are thresholds θ̄PC (H) and X̄PC (H) such that, if θ > θ̄PC (H) and X < X̄PC (H), it is
impossible to sustain permanent cooperation.

4. There is a threshold θ̄TC (H) such that:

(a) Suppose that θ ≤ θ̄TC (H). Then, the best temporary cooperative equilibrium (with no cooper-
ation for Z = 1) that can be sustained is G (0, R) = 0 for R = H,L.

(b) Suppose that θ > θ̄TC (H) and Ĝ (0, H) ≤ (1−δ+δγ+δφ)FTC,0,L(0,0)
δ(1−δ+δγ)(1−φ)q . Then the best tem-

porary cooperative equilibrium (with no cooperation for Z = 1) that can be sustained is
G (0, L) = 0 and G (0, H) = Ĝ (0, H) ∈

(
0, Ḡ (0, H)

)
, where Ĝ (0, H) is the unique solution to

F TC,0,H (0, G (0, H)) = 0.

(c) Suppose that θ > θ̄TC (H) and Ĝ (0, H) > (1−δ+δγ+δφ)FTC,0,L(0,0)
δ(1−δ+δγ)(1−φ)q . Then the best temporary

cooperative equilibrium (with no cooperation for Z = 1) that can be sustained G (0, L) ∈(
0, Ḡ (0, L)

)
and G (0, H) ∈

(
Ĝ (0, H) , Ḡ (0, H)

)
given by the unique solution to:

F TC,0,H (G (0, L) , G (0, H)) = F TC,0,L (G (0, L) , G (0, H)) = 0

that satisfies[
∂F TC,0,H (G (0, L) , G (0, H))

∂G (0, H)

] [
∂F TC,0,L (G (0, L) , G (0, H))

∂G (0, L)

]
>

(1− δ + δγ)2 δ2 (1− φ)2 q (1− q)
(1− δ + δγ + δφ)2

Proof :
Punishment equilibrium: Suppose that in a contestable state countries always playGN (R) = θR/4

and S = 0 when Z = 0 and GWO (R) = RWO (γ) /4 =
(
θR−X + δE(R)

1−δ+δγ

)
/4, S = 0 and W = 1 when

Z = 1. Then, expected payoffs for each state are given by:

V PU (1, 0, R) = (1− δ)
(
θR

2
−GN (R)

)
+ δV PU (1) for R = H,L

V PU (1, 1, R) =
(1− δ) (θR−X) + δV PU (0, w)

2
+
δV PU (0, l)

2
− (1− δ)GWO (R) for R = H,L

V PU (1) = φE
[
V TC (1, 1, R)

]
+ (1− φ)E

[
V TC (1, 0, R)

]
V PU (0, w) = (1− δ)E (R) + δ

[
γV PU (1) + (1− γ)V PU (0, w)

]
V PU (0, l) = δ

[
γV PU (1) + (1− γ)V PU (0, l)

]
where E (R) = qH + (1− q)L. Solving for the uncontestable states, we obtain:

V PU (0, w) =
(1− δ)E (R) + δγV PU (1)

1− δ + δγ
and V PU (0, l) =

δγV PU (1)

1− δ + δγ

Introducing these expressions into the contestable states value functions, we obtain:

V PU (1, 0, R) = (1− δ) θR
4

+ δV PU (1) for R = H,L

V PU (1, 1, R) =
(1− δ)RWO (γ)

4
+
δ2γV PU (1)

1− δ + δγ
for R = H,L
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Taking expectations, we have:

E
[
V PU (1, 0, R)

]
= (1− δ) θE (R)

4
+ δV PU (1) for R = H,L

E
[
V PU (1, 1, R)

]
=

(1− δ)E
[
RWO (γ)

]
4

+
δ2γV PU (1)

1− δ + δγ
for R = H,L

V PU (1) = φE
[
V TC (1, 1, R)

]
+ (1− φ)E

[
V TC (1, 0, R)

]
where E

[
RWO (γ)

]
= θE (R)−X + δE(R)

1−δ+δγ . Solving we obtain:

V PU (1) = E
[
V WO (γ)

]
=

(1− δ + δγ)
[
(1− φ) θE (R) + φE

[
RWO (γ)

]]
4 (1− δ + δγ + δφ)

For this to be an equilibrium we need:

− (1− δ)X + δV PU (0, w) ≥ δV PU (1)

which holds if and only if

X ≤ E
[
X̄ (γ)

]
=

[(4− θ) (1− δ + δγ) + 3δφ] δE (R)

(1− δ + δγ) [4 (1− δ + δγ) + 3δφ]

Proof of parts 1, 2 and 3:
Permanent cooperation : Suppose that countries play the permanent cooperation strategy with

G (Z,R) ∈
[
0, θR4

)
for Z = 0, 1, and R = H,L and that no country deviates. Then, the expected payoffs

for each state are given by:

V PC (1, Z,R) = (1− δ)
(
R

2
−G (Z,R)

)
+ δV PC (1) for R = H,L and Z = 0, 1

V PC (1) = φE
[
V PC (1, 1, R)

]
+ (1− φ)E

[
V PC (1, 0, R)

]
Solving for V PC (1), we have:

V PC (1) =
E (R)

2
− φE (G (1, R))− (1− φ)E (G (0, R))

where E (G (Z,R)) = qG (Z,H) + (1− q)G (Z,L).
Optimal deviations from permanent cooperation :
Suppose that Z = 0. Then, the optimal deviation

gD (G (0, R) , θR) =
√
G (0, R) θR−G (0, R)

and the associated expected payoffs are:

V D (G (0, R)) = (1− δ)
[
πD (G (0, R)) θR− gD (G (0, R) , θR)

]
+ δV PU (1)
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where πD (G (0, R)) = gD(G(0,R),θR)
G(0,R)+gD(G(0,R),θR)

and V PU (1) = E
[
V WO (γ)

]
. Therefore:

V D (G (0, R)) = (1− δ)
[
θR− 2

√
G (0, R) θR+G (0, R)

]
+ δE

[
V WO (γ)

]
Suppose that Z = 1. Then, in order to compute the optimal deviation we must solve the following

problem:

V D (G (1, R)) = max
GD

{
π
(
G (1, R) , GD

)
[(1− δ) (θR−X) + δV (0, w)]

+
[
1− π

(
G (1, R) , GD

)]
δV (0, l)− (1− δ)GD

}
V (0, w) = (1− δ)E (R) + δ

[
γV PU (1) + (1− γ)V (0, w)

]
V (0, l) = δ

[
γV PU (1) + (1− γ)V (0, l)

]
where V (0, w) = (1−δ)E(R)+δγV PU (1)

1−δ+δγ , V (0, l) = δγV PU (1)
1−δ+δγ , and V PU (1) = E

[
V WO (γ)

]
. Solving for GD

we have that the optimal deviation is given by:

gD
(
G (1, R) , RWO (γ)

)
=
√
G (1, R)RWO (γ)−G (1, R)

and the associated deviation payoffs are:

V D (G (1, R)) = (1− δ)
[
RWO (γ)− 2

√
G (1, R)RWO (γ) +G (1, R)

]
+
δ2γE

[
V WO (γ)

]
1− δ + δγ

Sustainability constraints for permanent cooperation : Suppose that players are playing a
permanent cooperation strategy with guns choices G = (G (Z,R)) for Z = 0, 1 and R = H,L, where
G (Z,R) ∈

[
0, θR4

)
. Then, for this strategy to be an equilibrium it must be the case that:

FPC,Z,R (G) = V PC (1, Z,R)− V D (G (Z,R)) ≥ 0

for Z = 0, 1 and R = H,L or, which is equivalent,

FPC,0,R (G) = (1− δ)
(
R

2
−G (0, R)

)
+ δV PC (1)

−
[
θR− 2

√
G (0, R) θR+G (0, R)

]
− δE

[
V WO (γ)

]
≥ 0

and

FPC,1,R (G) = (1− δ)
(
R

2
−G (1, R)

)
+ δV PC (1)

− (1− δ)
[
RWO (γ)− 2

√
G (1, R)RWO (γ) +G (1, R)

]
−
δ2γE

[
V WO (γ)

]
1− δ + δγ

≥ 0

where

V PC (1) =
E (R)

2
− φE (G (1, R))− (1− φ)E (G (0, R))

E
[
V WO (γ)

]
=

(1− δ + δγ)
[
(1− φ) θE (R) + φE

[
RWO (γ)

]]
4 (1− δ + δγ + δφ)
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RWO (γ) = θR−X +
δR

1− δ + δγ

E
[
V WO (γ)

]
=

(1− δ + δγ)
[
(1− φ) θE (R) + φE

[
RWO (γ)

]]
4 (1− δ + δγ + δφ)

δ2γ

(1− δ + δγ)

[(1− δ + δγ) [θE (R)− φX] + φδE (R)]

4 (1− δ + δγ + δφ)

γθE (R)− γφX + φE (R)

4 (γ + φ)

E (R)

4

γ
[
θE (R)− φX + δE(R)

1−δ+δγ

]
4 (γ + φ)

γθE (R)− γφX + φE (R)

4 (γ + φ)

Sustainability of permanent cooperation when δ → 1:
Suppose that γ = 0. Take the limit of FPC,1,R (G) when δ → 1:

lim
δ→1

FPC,1,R (G) = V PC (1)−E (R) < 0

Thus, for γ = 0, when δ → 1, it is impossible to sustain a permanent cooperative equilibrium.
Suppose that γ > 0 and consider G = 0, that is complete permanent cooperation. Take the limit of

FPC,0,R (0) when δ → 1:

lim
δ→1

FPC,0,R (0) =
E (R)

2
− lim
δ→1

E
[
V WO (γ)

]
=
E (R)

2
− (θγ + φ)E (R)− γφX

4 (γ + φ)
> 0

Take the limit of FPC,1,R (0) when δ → 1:

lim
δ→1

FPC,1,R (0) =
E (R)

2
− lim
δ→1

[
(1− δ)RWO (γ)

]
− lim
δ→1

δ2γE
[
V WO (γ)

]
1− δ + δγ

=
E (R)

2
− (θγ + φ)E (R)− γφX

4 (γ + φ)
> 0

Thus, provided that γ > 0, G (Z,R) = 0 for Z = 0, 1 and R = H,L can be sustained as an equilibrium
when δ → 1.
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Imposibility of avoiding open conflict for γ > 0. Let

Ḡ (0, H) =

[
1− δ

2 (1− δ) + δ (1− φ) q

]2

θH

Ḡ (0, L) =

[
1− δ

2 (1− δ) + δ (1− φ) (1− q)

]2

θL

Ḡ (1, H) =

[
1− δ

2 (1− δ) + δφq

]2

HWO (γ)

Ḡ (1, L) =

[
1− δ

2 (1− δ) + δφ (1− q)

]2

LWO (γ)

It is easy to prove that FPC,1,H (G) is strictly increasing in G (1, H) for all G (1, H) ≤ Ḡ (1, H) and
strictly decreasing in G (1, H) for all G (1, H) ≥ Ḡ (1, H). It is also easy to prove that FPC,1,H (G)
is strictly decreasing in G (0, H), G (0, L), and G (1, L). Consider guns choices

(
Ḡ (1, H) ,0

)
, that

is, G (1, H) = Ḡ (1, H) and G (1, L) = G (0, L) = G (0, H) = 0. Note that FPC,1,H
(
Ḡ (1, H) ,0

)
≥

FPC,1,H (G) for all G. Therefore, if FPC,1,H
(
Ḡ (1, H) ,0

)
< 0, then FPC,1,H (G) < 0 for any G and,

hence, if countries are playing a permanent cooperation strategy, it is impossible to avoid a deviation
when (Z,R) = (1, H). Moreover, FPC,1,H

(
Ḡ (1, H) ,0

)
< 0 if and only if

X < X̄PC (H) =
2 [aH + bE (R)] θ − (1− δ)H + δE (R)

2 (a+ b)
+

δE (R)

1− δ + δγ

where

a =
(1− δ) (1− δ + δφq)

2 (1− δ) + δφq
, b =

δ2γ

4 (1− δ + δγ + δφ)

and X̄ (H) > 0 if and only if

θ > θ̄PC (H) =
(1− δ + δγ) [(1− δ)H + δE (R)]− 2 (a+ b) δE (R)

2 (1− δ + δγ) [aH + bE (R)]

Summing up, if θ > θ̄PC (H) and X < X̄PC (H), it is impossible to sustain permanent cooperation.
Proof of part 4:
Temporary cooperation with no cooperation for Z = 1: Suppose that countries play the

temporary cooperation strategy with G (0, R) ∈
(
0, θR4

)
for R = H,L and that no country deviates.

Then, the expected payoffs for each state are given by:

V TC (1, 0, R) = (1− δ)
(
R

2
−G (0, R)

)
+ δV TC (1)

V TC (1, 1, R) =
(1− δ) (θR−X) + δV TC (0, w)

2
+
δV TC (0, l)

2
− (1− δ)GWO (R)

V TC (1) = φE
[
V TC (1, 1, R)

]
+ (1− φ)E

[
V TC (1, 0, R)

]
V TC (0, w) = (1− δ)E (R) + δ

[
γV TC (1) + (1− γ)V TC (0, w)

]
V TC (0, l) = δ

[
γV TC (1) + (1− γ)V TC (0, l)

]
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Solving for the uncontestable states, we obtain:

V TC (0, w) =
(1− δ)E (R) + δγV TC (1)

1− δ + δγ
and V TC (0, l) =

δγV TC (1)

1− δ + δγ

Introducing these expressions into the contestable states value functions, we obtain:

V TC (1, 0, R) = (1− δ)
(
R

2
−G (0, R)

)
+ δV TC (1)

V TC (1, 1, R) =
(1− δ)RWO (γ)

4
+
δ2γV TC (1)

1− δ + δγ

V TC (1) = φE
[
V TC (1, 1, R)

]
+ (1− φ)E

[
V TC (1, 0, R)

]
Taking expectations, we obtain:

E
[
V TC (1, 0, R)

]
= (1− δ)

[
E (R)

2
−E [G (0, R)]

]
+ δV TC (1)

E
[
V TC (1, 1, R)

]
=

(1− δ)E
[
RWO (γ)

]
4

+
δ2γV TC (1)

1− δ + δγ

Solving for V TC (1) we have:

V TC (1) =
(1− δ + δγ)

1− δ + δγ + δφ

{
φ
E
[
RWO (γ)

]
4

+ (1− φ)

[
E (R)

2
−E [G (0, R)]

]}

Optimal deviations from temporary cooperation with no cooperation for Z = 1: Suppose
that Z = 0. Then, the optimal deviation is

gD (G (0, R) , θR) =
√
G (0, R) θR−G (0, R)

and the associated expected payoffs are:

V D (G (0, R)) = (1− δ)
[
πD (G (0, R)) θR− gD (G (0, R) , θR)

]
+ δV PU (1)

where πD (G (0, R)) = gD(G(0,R),θR)
G(0,R)+gD(G(0,R),θR)

and V PU (1) = E
[
V WO (γ)

]
. Therefore:

V D (G (0, R)) = (1− δ)
[
θR− 2

√
G (0, R) θR+G (0, R)

]
+ δE

[
V WO (γ)

]
Sustainability constraints for temporary cooperation with no cooperation for Z = 1:

Suppose that countries play the temporary cooperation strategy with guns choices G (0, L) , G (0, H).
For this strategy to be an equilibrium it must be the case that:

F TC,0,R (G (0, L) , G (0, H)) = V TC (1, 0, R)− V D (G (0, R)) ≥ 0
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or, which is equivalent,

F TC,0,R (G (0, L) , G (0, H)) = (1− δ)
(
R

2
−G (0, R)

)
+ δV TC (1)

− (1− δ)
[
θR− 2

√
G (0, R) θR+G (0, R)

]
− δE

[
V WO (γ)

]
≥ 0

where

V TC (1) =
(1− δ + δγ)

1− δ + δγ + δφ

{
φ
E
[
RWO (γ)

]
4

+ (1− φ)

[
E (R)

2
−E [G (0, R)]

]}

E
[
V WO (γ)

]
=

(1− δ + δγ)
[
(1− φ) θE (R) + φE

[
RWO (γ)

]]
4 (1− δ + δγ + δφ)

Best possible temporary cooperation equilibrium with no cooperation for Z = 1. To deter-
mine the best possible temporary cooperation equilibrium with no cooperation for Z = 1, we solve

max
G

{
V TC (1)

}
subject to: F TC,0,R (G (0, L) , G (0, H)) ≥ 0 for R = H,L

Using the same procedure that we used in the proof of Proposition 5, we have the following results:
Result 1: If a solution exist, it must satisfy G (0, L) ∈

[
0, Ḡ (0, L)

]
and G (0, H) ∈

[
0, Ḡ (0, H)

]
,

where

Ḡ (0, L) =

 1− δ
2 (1− δ) + δ(1−δ+δγ)(1−φ)(1−q)

1−δ+δγ+δφ

2

θL <
θL

4

Ḡ (0, H) =

 (1− δ)
2 (1− δ) + δ(1−δ+δγ)(1−φ)q

1−δ+δγ+δφ

2

θH <
θH

4
.

Result 2: F TC,0,H (G (0, L) , G (0, H)) and F TC,0,L (G (0, L) , G (0, H)) are quasiconcave functions for
all (G (0, L) , G (0, H)) ∈ <2

+.
Result 3: If F TC,0,H (0, 0) ≥ 0, then F TC,0,L ≥ 0. Proof : F TC,0,R (0, 0) ≥ 0 if and only if θ ≤

θ̄TC (R), where

θ̄TC (R) =
(1− δ)R+ δ(1−δ+δγ)(1−φ)E(R)

(1−δ+δγ+δφ)

2 (1− δ)R+ δ(1−δ+δγ)(1−φ)E(R)
2(1−δ+δγ+δφ)

=
2 (1− δ)R (1− δ + δγ + δφ) + 2δ (1− δ + δγ) (1− φ)E (R)

4 (1− δ)R (1− δ + δγ + δφ) + δ (1− δ + δγ) (1− φ)E (R)

Moreover, θ̄TC (H) ≤ θ̄TC (L) with strict inequality if δ ∈ (0, 1).
Since the objective function is linear and the constraints are quasiconcave, the following Kuhn-Tucker

conditions are suffi cient for a global maximum.
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−q + λH

[
−2 (1− δ)− δ (1− δ + δγ) (1− φ) q

1− δ + δγ + δφ
+ (1− δ)

√
θH

G (0, H)

]

−λL (1− δ + δγ) δ (1− φ) (1− q)
1− δ + δγ + δφ

+ µHm − µHM = 0

− (1− q) + λL

[
−2 (1− δ)− δ (1− δ + δγ) (1− φ) (1− q)

1− δ + δγ + δφ
+ (1− δ)

√
θL

G (0, L)

]

−(1− δ + δγ) δ (1− φ) q

1− δ + δγ + δφ
λH + µLm − µLM = 0

λH ≥ 0, F TC,0,H (G (0, L) , G (0, H)) ≥ 0, λHF TC,0,H (G (0, L) , G (0, H)) = 0

λL ≥ 0, F TC,0,L (G (0, L) , G (0, H)) ≥ 0, λLF TC,0,L (G (0, L) , G (0, H)) = 0

µHm ≥ 0, G (H) ≥ 0, µHmG (H) = 0

µHM ≥ 0, Ḡ (H)−G (H) ≥ 0, µHM
[
Ḡ (H)−G (H)

]
= 0

µLm ≥ 0, G (L) ≥ 0, µLmG (L) = 0

µLM ≥ 0, Ḡ (L)−G (L) ≥ 0, µLM
[
Ḡ (L)−G (L)

]
= 0

There are several cases to consider:
Case 1 : Suppose that G (0, H) = G (0, L) = 0. Then, λL = λH = µHM = µLM =

0, µHm = q, µLm = (1− q), F TC,0,H (G (0, L) , G (0, H)) ≥ 0 and F TC,0,L (G (0, L) , G (0, H)) ≥
0. Since F TC,0,H (G (0, L) , G (0, H)) ≥ 0 implies F TC,0,L (G (0, L) , G (0, H)), we mjust check
F TC,0,H (G (0, L) , G (0, H)) ≥ 0, which holds if and only if θ ≤ θ̄TC (H). Summing up, G (0, H) = G (0, L)
is a solution if and only if θ ≤ θ̄TC (H).

Case 2 : Suppose that G (0, L) ∈
(
0, Ḡ (0, L)

)
and G (0, H) = 0. Then, µHM = µLm = µLM = 0, λH = 0,

µHm = q + λL (1−δ+δγ)δ(1−φ)(1−q)
1−δ+δγ+δφ > 0,

λL = (1− q)
[
−2 (1− δ)− δ (1− δ + δγ) (1− φ) (1− q)

1− δ + δγ + δφ
+ (1− δ)

√
θL

G (0, L)

]−1

> 0,

FL (G (L) , 0) = 0, and F TC,0,H (G (0, L) , 0) ≥ 0. Since F TC,0,L (G (0, L) , 0) is strictly increasing in
G (0, L) for all G (0, L) ∈

[
0, Ḡ (0, L)

]
, at most, there is one solution to F TC,0,L (G (0, L) , 0). More-

over, there is a solution that satisfies G (0, L) ∈
(
0, Ḡ (0, L)

)
if and only if F TC,0,L (0, 0) < 0 and

F TC,0,L
(
Ḡ (0, L) , 0

)
> 0. Note, however, that F TC,0,L (0, 0) < 0 implies F TC,0,H (0, 0) < 0 (due to Re-

sult 3) and F TC,0,H (0, 0) < 0 implies F TC,0,H (G (0, L) , 0) < 0 (because F TC,0,H (G (0, L) , 0) is strictly
decreasing in G (0, L)). Thus, F TC,0,L (0, 0) < 0 is incompatible with F TC,0,H (G (0, L) , 0) ≥ 0. Summing
up, there is no solution such that G (0, L) ∈

(
0, Ḡ (0, L)

)
and G (0, H) = 0.

Case 3 : Suppose that G (0, L) = 0 and G (0, H) ∈
(
0, Ḡ (0, H)

)
. Then, µLM = µHm = µHM = 0, λL = 0,

λH =

[
−2 (1− δ)− δ (1− δ + δγ) (1− φ) q

1− δ + δγ + δφ
+ (1− δ)

√
θH

G (0, H)

]−1

q > 0
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µLm = 1 − q + (1−δ+δγ)δ(1−φ)q
1−δ+δγ+δφ λH > 0, F TC,0,H (0, G (0, H)) = 0, and F TC,0,L (0, G (0, H)) ≥ 0. Since

F TC,0,H (0, G (0, H)) is strictly increasing in G (0, H) for all G (0, H) ∈
[
0, Ḡ (0, H)

]
, at most, there is one

solution to F TC,0,H (0, G (0, H)) = 0. Moreover, there is a solution that satisfies G (0, H) ∈
(
0, Ḡ (0, H)

)
if

and only if F TC,0,H (0, 0) < 0 and F TC,0,H
(
0, Ḡ (0, H)

)
> 0. F TC,0,H (0, 0) < 0 if and only if θ > θ̄TC (H).

F TC,0,H
(
0, Ḡ (0, H)

)
> 0 if and only if

θ <
(1− δ) H2 + δ(1−δ+δγ)(1−φ)2E(R)

4(1−δ+δγ+δφ)[
1−δ+ δ(1−δ+δγ)(1−φ)q

1−δ+δγ+δφ

]
(1−δ)H

2(1−δ)+ δ(1−δ+δγ)(1−φ)q
1−δ+δγ+δφ

+ δ(1−δ+δγ)(1−φ)E(R)
4(1−δ+δγ+δφ)

which always holds because the right hand side of the above inequality is always greater than or equal 1.
Finally, we must verify that the unique solution to F TC,0,H (0, G (0, H)) = 0 satisfies

F TC,0,L (0, G (0, H)) = F TC,0,L (0, 0)− δ (1− δ + δγ) (1− φ) q

1− δ + δγ + δφ
G (0, H) ≥ 0

or, which is equivalent, that G (0, H) ≤ (1−δ+δγ+δφ)FTC,0,L(0,0)
δ(1−δ+δγ)(1−φ)q .

Summing up, G (0, L) = 0 and G (0, H) = Ĝ (0, H) ∈
(
0, Ḡ (0, H)

)
, where Ĝ (0, H) is the unique

solution to F TC,0,H (0, G (0, H)) = 0 is a solution if and only if θ > θ̄TC (H) and Ĝ (0, H) ≤
(1−δ+δγ+δφ)FTC,0,L(0,0)

δ(1−δ+δγ)(1−φ)q .

Case 4 : Suppose that G (0, L) ∈
(
0, Ḡ (0, L)

)
and G (0, H) ∈

(
0, Ḡ (0, H)

)
. Then, µHm = µHM = µLm =

µLM = 0,

[
∂F TC,0,H (G (0, L) , G (0, H))

∂G (0, H)

]
λH − (1− δ + δγ) δ (1− φ) (1− q)

1− δ + δγ + δφ
λL = q

−(1− δ + δγ) δ (1− φ) q

1− δ + δγ + δφ
λH +

[
∂F TC,0,L (G (0, L) , G (0, H))

∂G (0, L)

]
λL = (1− q)

The above system of linear equations has a solution if and only if[
∂F TC,0,H (G (0, L) , G (0, H))

∂G (0, H)

] [
∂F TC,0,L (G (0, L) , G (0, H))

∂G (0, L)

]
6= (1− δ + δγ)2 δ2 (1− φ)2 q (1− q)

(1− δ + δγ + δφ)2

A solution must satisfy [λH > 0 and λL > 0] or [λH < 0 and λL < 0]. λH > 0 and λL > 0 if and only if[
∂F TC,0,H (G (0, L) , G (0, H))

∂G (0, H)

] [
∂F TC,0,L (G (0, L) , G (0, H))

∂G (0, L)

]
>

(1− δ + δγ)2 δ2 (1− φ)2 q (1− q)
(1− δ + δγ + δφ)2

λH > 0 and λL > 0 implies that

F TC,0,H (G (0, L) , G (0, H)) = F TC,0,L (G (0, L) , G (0, H)) = 0

Thus, we must solve the following system of equations:

52



F TC,0,H (0, G (0, H))− δ (1− δ + δγ) (1− φ) (1− q)
1− δ + δγ + δφ

G (L) = 0

F TC,0,L (G (0, L) , 0)− δ (1− δ + δγ) (1− φ) q

1− δ + δγ + δφ
G (H) = 0

Following the same procedure that we used in the proof of Proposition ..., we have:

G (0, L) ∈
(
0, Ḡ (0, L)

)
and G (0, H) ∈

(
Ĝ (0, H) , Ḡ (0, H)

)
given by the unique solution to

F TC,0,H (G (0, L) , G (0, H)) = 0, and F TC,0,L (G (0, L) , G (0, H)) = 0 that satisfies[
∂F TC,0,H (G (0, L) , G (0, H))

∂G (0, H)

] [
∂F TC,0,L (G (0, L) , G (0, H))

∂G (0, L)

]
>

(1− δ + δγ)2 δ2 (1− φ)2 q (1− q)
(1− δ + δγ + δφ)2

is a solution if and only if F TC,0,H (0, 0) < 0, F TC,0,H
(
0, Ḡ (0, H)

)
> 0, and Ĝ (0, H) >

(1−δ+δγ+δφ)FTC,0,L(0,0)
δ(1−δ+δγ)(1−φ)q , where Ĝ (0, H) is the unique solution to F TC,0,H (0, G (0, H)) = 0. Moreover,

F TC,0,H (0, 0) < 0 if and only if θ > θ̄TC (H) and F TC,0,H
(
0, Ḡ (H)

)
> 0 always holds.

Case 5 : Suppose that G (0, L) = Ḡ (0, L) or G (0, H) = Ḡ (0, H). If G (0, L) = Ḡ (0, 0), we have
µLm = 0 and, hence, (1− q) + λH (1−δ+δγ)δ(1−φ)q

1−δ+δγ+δφ + µLM = 0, a contradiction because λH ≥ 0 and µLM ≥ 0.

If G (0, H) = Ḡ (0, H), we have µHm = 0 and, hence q + λL (1−δ+δγ)δ(1−φ)(1−q)
1−δ+δγ+δφ + µHM = 0, a contradiction

because λL ≥ 0 and µHM ≥ 0.
This completes the proof of Proposition 11. �
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