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The traditional view among labor and economic historians is that the rise of the steam-

powered factory encouraged “deskilling”. That is, labor previously supplied by a skilled artisan 

using simple hand tools was displaced by special-purpose machinery powered inanimately and 

tended by a semi-skilled operative while unskilled workers performed various complementary 

tasks, such as shoveling coal to “feed” steam engines or moving partially finished goods or raw 

materials from one part of the shop floor to another. To be sure, the construction and installation 

of special-purpose machinery and its maintenance and repair required skilled mechanics but the 

substitution of semi- and unskilled dominated and the demand for skilled artisans relative to 

semi-skilled operatives and unskilled labor fell with the rise of the mechanized factory (Goldin 

and Katz 1998). 

According to Andrew Ure, an early commentator,  

“[t]he principle of the factory system … is, to substitute mechanical 

science for hand skill, and the partition of a process into its essential 

constituents, for the division or graduation of [labor] among artisans. On 

the handicraft plan … skilled [labor] was usually the most expensive 

element of production.... but on the automatic plan, skilled [labor] gets 

progressively superseded, and will, eventually, be replaced by mere 

overlookers of machines” (Ure 1835, p. 20).1  

                                                           
1 After 1890 electricity began to displace steam, and capital and skilled labor became relative 

complements as electrical power allowed factory owners to dispense with large numbers of 

unskilled workers (Goldin and Katz 1998). 
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More recently, Katz and Margo (2014) use occupational information from the US 

population censuses to investigate aggregate de-skilling in American manufacturing during the 

second half of the nineteenth century.2 They further classify manufacturing workers into four 

categories – white collar, skilled blue collar, semi-skilled operatives, and unskilled laborers. 

Between 1850 and 1910, the skilled blue-collar share declined by 17 percentage points and the 

share of operatives and common labor increased by 7 percentage points – clear evidence of 

production de-skilling in the traditional sense (see Katz and Margo, 2014, Table 1.4).3   

Data from the federal censuses of manufacturing show that, over the second half of the 

nineteenth century the share of establishments using steam power increased substantially (Atack, 

Bateman et al. 2008), suggesting that trends in de-skilling and mechanization were coincident. 

However, the establishment-level data from the censuses of manufacturing during the second 

                                                           
2 The Census of Population began collecting occupational data in 1850 but did not specifically 

collect information on the industry of employment until 1910 (although the number of persons in 

household working in agriculture, commerce, or manufactures was reported in 1820). However, 

the handwritten occupation titles given on the original enumeration forms are sufficiently 

detailed that it is possible to classify workers into the manufacturing sector with a high degree of 

accuracy; see Katz and Margo (2014). 

3 The decrease in the skilled blue-collar share was not offset fully by the rise in the semi-

skilled/operative share because the white-collar share also increased. Katz and Margo attribute 

the relative increase in white collar workers to the rise in scale – larger establishments were more 

complex to manage, requiring much more record-keeping and scheduling (hence, more white-

collar workers) than did the artisan shop.  
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half of the nineteenth century provide no direct information on worker occupations or production 

tasks.4 Nor is it possible to link the manufacturing returns directly to the population census, 

because the latter did not ask specifically where individuals worked. Hence, census data per se 

cannot address whether mechanized factories used relatively less skilled labor overall, and 

specifically for those production operations that were inanimately powered.  

To investigate the role, if any, that mechanization played in de-skilling, we turn to an 

entirely different source, the U.S. Commissioner of Labor’s 13th Annual Report (U.S. 

Department of Labor. 1899) on Hand and Machine Labor (hereafter HML study). We have 

recently digitized these data and made them amenable to quantitative analysis (Atack, Margo et 

al. 2023). This report was  ordered by the U.S. Congress in 1894 to “investigate and report upon 

the effect of the use of machinery upon … the relative productive power of hand and machine 

labor” (U.S. Congress 1894). To this end, the Department’s agents collected detailed data on the 

manufacture of several hundred highly specific manufactured products using the “machine 

methods” of most modern mechanized factory at the individual task level, recording the 

production operations from start to finish (U.S. Congress 1894, 1: 11). They then collected the 

same kind of information for the exact same product (or as close as possible) from 

establishments using the hand methods then “going out of use” (while remarking upon “the 

extent of the hand method of production, even at the present time”) (U.S. Congress 1894, 1: 6). 

                                                           
4 The Census of Manufactures began collecting data on inanimate power use in 1850 along with 

some information on worker age and gender. However, the available information is too coarse to 

directly address the de-skilling hypothesis, and there are other reasons why gender and age might 

be correlated with inanimate power use (see Katz and Margo 2014). 
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From these data, the HML staff generated a crosswalk linking the operations across the two 

production methods ordered from the tasks in the machine method of production to hand. This  

allows us to compare the occupations (as well as worker characteristics like age and gender) of 

those performing the equivalent tasks in traditional hand manufacture with those under machine 

production.  

For each task, the HML staff recorded the occupation(s) of those performing it.  These 

ranged from general titles such as “blacksmith” and “laborer” to particular occupations such as 

“drop forger” and “shank polisher.”  We have used these occupational titles to map the activity 

into codes based on those used by the 1950 Census, a coding scheme that traces its lineage back 

to the work of Alba Edwards for the 1910 Census who devised it as a means of classifying 

workers according the skill levels required by their jobs (United States. Bureau of the Census., 

Hunt et al. 1915; Edwards 1917).  Using our codes, we allocate occupation titles into one of four 

bins – non-professional white collar, skilled artisans, semi-skilled operatives; and unskilled 

laborer. Our procedures are described in greater detail in Appendix A.   

Based upon these allocations, we compute the share of production time performed by 

workers with these different skill levels separately for hand and machine production. For this 

purpose, we focus on the set of operations that overlapped between hand and machine 

production, for a sample size of 4,405 operations. We create a variable, De-Skill that equals one 

if the share of time performed by semi-skilled operatives and common labor in the operation 

exceeds the share so performed under hand labor. Our first finding is that the mean value of De-

Skilling is 0.356, implying that in 36 percent of the matched operations, less skilled labor time 

was used in machine production than in hand production – clear evidence that de-skilling 
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accompanied the transition from the artisan shop to the mechanized factory, as the traditional 

account maintains.  

Our main analysis commences with ordinary least squares (OLS) regressions of De-Skill 

with fixed effects for the specific individual goods (called “units” in the HML study).5 We find 

that (1) the more frequent use of inanimate power under machine labor is positively and 

significantly associated with higher de-skilling but that (2) this effect accounted for just 7 percent 

of the mean value (0.355) of De-Skill. Further probing using an instrumental variables estimator 

suggests that the OLS effect of mechanization is biased downwards compared with the true 

causal impact, but the “percent explained” of the mean value of De-Skill using our preferred IV 

coefficient is relatively modest -- about 15 percent. In short, while mechanization played a causal 

role in de-skilling, that role was quantitatively small – a surprising finding, given the importance 

attributed to mechanization in the traditional historical accounts.  

To explore additional factors behind de-skilling we follow the procedure adopted in 

Atack, Margo, and Rhode (2022) in modifying our base regression to include additional 

variables, among which are measures of the division of labor. It is natural to consider division of 

labor as a factor behind de-skilling because the very essence of division of labor is dividing up 

operation tasks among separate workers rather than having them performed by a single more 

skilled artisan. Conceptually, as a factor behind de-skilling, the division of labor is distinct from 

mechanization, because it could occur independently, for example, in response to transportation 

improvements (Atack, Haines et al. 2011). There is sufficient information in the HML study to 

                                                           
5 The empirical analyses in this paper complement our study of labor productivity differences 

between hand and machine labor in the HML study data; see Atack, Margo, and Rhode (2022).  
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construct measures of the division of labor at the unit level and so we include these in our 

modified regression specification. These show that increases in the division of labor are strongly 

associated with higher levels of de-skilling. Overall, we find that the additional factors, 

particularly the division of labor, to be far more important than mechanization per se in 

explaining de-skilling. This conclusion is important, because the trend towards greater division 

of labor was clearly underway well before the widespread diffusion of inanimate power in the 

decades following the Civil War (Fenichel 1966; Atack, Bateman et al. 1980).  

 

The Hand and Machine Labor Study: A Brief Introduction 

In this section we present a brief introduction to the Hand and Machine Labor study, 

along with a discussion of the information on occupations. Further details on the study can be 

found in our prior work (Atack, Margo et al. 2019; Atack, Margo et al. 2022; Atack, Margo et al. 

2023).  

Published in two volumes totaling approximately 1,600 pages, the HML study described 

the operations, or tasks involved in the production of what the study called “units”. These units 

were quantities of highly specific products such as “50 dozen regular taper, triangular saw files, 

4 inches long, tapering 23/64 inch” (U.S. Department of Labor. 1899, 1: 241-6 and 2: 1026-9). 

For each unit,  production was standardized between the two modes to industry norms by making 

adjustments solely to the aggregate time. The report covered 672 units in various economic 

sectors, 626 (units 28–653) of which were in manufacturing and are our focus here. Although the 

products in the study cover a wide array of industries (2-digit SIC codes 20–39) they are not a 

representative sample of manufacturing output at the time (see Atack, Margo et al. 2022, online 

Appendix, Table 1). The core of these manufacturing data is contained in a series of tables 
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stretching across both the left and righthand pages of Volume Two, covering over 1,100 pages 

and set in small type in 13 columns (some of which contain multiple entries). An example of part 

of one of these tables is given in Figure 1. 

For each unit, the HML staff actually collected production data from four establishments, 

two of which used “hand labor” methods and two “machine labor” methods.6  To guide the 

collection efforts, the 1894 HML survey instructions noted: “Roughly characterized hand labor 

was the system of the last century and machine labor is the system of this…” (United States. 

Commissioner of Labor. 1894, Instruction form, DL 405, BLS Scrapbook, emphasis added).  

Further, the survey instructions stipulated “The machine schedule should be made for factories 

where the most highly developed machinery is in use, and the hand schedule should be for 

establishments using the most old fashioned and primitive of hand methods." (United States. 

Commissioner of Labor. 1894, Supplemental Instruction No. 2, DL 416, BLS Scrapbook).7 

Almost all data on machine labor pertained to the 1890s. For hand labor, however, the 

staff relied primarily on historical data prior to the 1890s, one unit as early as 1813 although 

about a quarter were approximately contemporaneous with the machine methods.8 

                                                           
6 The staff chose “the better and more complete” accounting of each mode of production for the 

published report (U.S. Department of Labor. 1899, 1: 13). 

7 Or as Wright put it, between the “most modern machine method[s]” compared with the “old 

fashioned hand process … in vogue before the general use of automatic or power machines” 

(U.S. Department of Labor. 1899, 1: 11). 

8 A small number of observations (15) on hand labor used data from foreign countries. These are 

excluded from our analysis.  
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The principal goal of the HML study was to measure differences in production times for 

specific operations, and overall, for each unit, between machine and hand labor. The data on 

production times collected by the staff demonstrated that machine labor was, on average, 

significantly more productive than hand labor – to complete the same production operation, it 

took machine labor, on average, just 17 percent of the time as hand labor (Atack, Margo, and 

Rhode 2022).  

Although the productivity advantage of machine labor was substantial, regression 

analysis in Atack, Margo, and Rhode (2022) shows that only a surprisingly small percentage of 

the advantage – between a quarter and a third, depending on the estimation method -- can be 

attributed directly to the use of powered machinery. The main reason why is that about half of 

the production operations under machine labor did not use inanimate power, yet somehow 

workers performed these tasks more quickly than their counterparts did using hand labor 

methods. Further analysis showed that much of this higher productivity in the non-mechanized 

operations under machine labor can be attributed to other differences between the production 

methods, especially the greater use of division of labor. This greater use of division of labor in 

the factory is closely related to the concept of de-skilling. Our previous work, however, did not 

attempt to measure de-skilling directly. To show how this can be done, we first describe the 

collection and reporting of occupations in the HML study. 

 

Occupations in the HML Study 

Volume Two of the HML study reports the hand and machine production data at the 

operation level, providing a brief description of operations in the order in which they were 

performed; and a variety of additional information, including the occupational title of the worker 
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and the time spent by the worker performing the operation. These data lie at the heart of our 

analysis in this paper. Specifically, we are interested in whether the time spent on the same 

operation in machine labor utilized less “skilled” labor than under hand labor. To operationalize 

this, we need to first classify workers by skill level. 

We began by extracting a list of all unique occupation titles appearing in our digitized 

version of the HML study, regularizing their spelling, and making all singular. Where multiple 

occupations were reported, we adjusted accordingly. Thus, the occupation of “canner and 

labeler” was treated as two different occupations (with possibly different skill sets): “canner” and 

“labeler” whereas a “shank and toe nailer” was simply classified as a nailer (who happened to 

nail two different parts of a shoe together) and treated as one skill set.9  Despite our best efforts, 

this remains almost certainly imperfect, as it was for census officials at the time.10  For example, 

was a “cementer and channel layer” different from a “channel cementer”?  We decided “yes” so 

                                                           
9 When a person was listed with two or more occupations in HMLS, we ensured that there was a 

singular occupational entry for each occupation. If not, one was created. For example, “Shaft and 

Pole trimmer” was separated into “shaft trimmer” (of which there already were a number so 

identified) and “pole trimmer” (of which there were none prior to our parsing). The skill set used 

for classification is primarily defined by “trimmer”. 

10 For example, “this indefiniteness in certain occupations makes their accurate return and 

classification impossible…[and] the great difficulty of securing absolutely correct returns from 

persons who are ignorant, indifferent, or not trained in making accurate statement, or who, as a 

matter of fact, do not know the precise nature of the occupations followed…” (United States and 

Hunt 1914, 5). 
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this affects our occupational counts but, since the skill levels were the same, it has no impact 

upon our deskilling metric.11  We identified 1,703 different occupations in the HMLS after 

eliminating those occupations that were compounded by “and” but for which individual 

occupations were also recorded.12   

We then used the work of Alba Edwards for the 1910 Census (United States. Bureau of 

the Census 1910; United States and Hunt 1914; United States and Hunt 1914; United States. 

Bureau of the Census., Hunt et al. 1915) and its expansions and elaboration (see Appendix A) to 

classify the various occupational titles into four categories—non-professional white collar; 

skilled blue collar (including foremen/forewomen); semi-skilled blue collar/operative; and 

common (unskilled) laborer. Because the HML study focused on the “shop floor” —that is, on 

the actual production of the good, rather than the management of the enterprise in which 

production took place – there were hardly any with occupations in the white-collar category 

although these were not totally absent (like proofreader, shipping clerk or bookkeeper). Where a 

particular person had two or more distinct occupations, we assigned them the higher skill rating. 

Thus, for example, the person whose occupation was given as “matcher and foreman” was 

assigned the supervisory code for a foreman rather than the operative code for a matcher. Our 

procedures are described in greater detail in Appendix A.13 

                                                           
11 Similarly, we kept gendered occupational titles separate (for example, dairyman v. dairymaid). 

12 The “cementer and channel layer,” for example, was instead recorded both as a “cemernter” 

and as a “channel layer” in our occupational statistics. 

 
13 For an earlier classification, see Hunt (1897). Hunt used four major categories: A. Proprietor 

Class --which included farmers; B. Clerical -- including foreman and weighers and measurers; C. 
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Once we had the occupational classifications and associated skill levels, we computed the 

occupational shares of production time under machine labor and hand labor. This is done using 

the HML crosswalk, and our associated concepts of an operation “block” and an operation 

“block link”, as described in Atack, Margo, and Rhode (2022). Specifically, an operation block 

is a collection of production operations of size H (for hand labor) or M (for machine labor). H 

and M are non-negative integers and refer to the number of separate operations in the block such 

that the intermediate good entering and exiting the block is in the exact same stage of 

completion. A block link is a mapping, designated H:M, between the hand (H) and machine (M) 

blocks. We transcribed these mappings from the unit-specific tables in the report that were put 

together by the HML staff, that is, the HML crosswalk.  

Table 1 shows the distribution of the block links in the regression sample that we use, 

along with relevant sample statistics. There are no 0:1 or 1:0 block links in the regression sample 

because the former represented hand operations that were no longer performed under machine 

labor, and the latter represented novel machine operations that were not performed under hand 

                                                           
Skilled Workers – including most manufacturing occupations; and D. Laborers. This mapping 

lumps most manufacturing workers, both skilled and semi-skilled, together. Edward’s innovation 

was to break semi-skilled operative workers out from both skilled and unskilled raw labor in his 

so-called “social-economic” groups. In the “deskilling” debate, which focus on the shift away 

from craft-based production, such distinctions are crucial. Lumping craft-trained workers with 

operatives, as Hunt largely does, would hide key changes. Edward’s treatment of operatives 

accords with Katz and Margo (2014, p. 17). It also better reflects the historical debate and our 

intent. 
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labor.14 The block links that are relevant for our regression analysis are those that overlapped 

between the two methods—1:1, 1:M, H:1, and H:M—as these are the operations that represent 

the equivalent intermediate output, according by the HML staff. The table shows the average 

fractions using steam, water, or mechanized (that is, using steam and/or water) for each block 

link type under machine labor. As in Atack, Margo, and Rhode (2022), the mechanization 

measures are “one-touch” or extensive margin estimates—that is, if any operation within the 

machine block used inanimate power, we code the block link as “mechanized.” 

There are 4,405 block links in the sample that we use for our regression analysis (see the 

next section). Approximately 78 percent of these are 1:1 block links – that is singular tasks under 

hand labor that the HML staff also matched up to single tasks under machine labor. 

Approximately half (48.4 percent) of these blocks were mechanized under machine labor, using 

our one-touch measure.15 The remaining 22 percent of the block links (N = 993) consisted of 

operations that underwent some degree of task reorganization and restructuring under machine 

labor compared with hand labor. Three-quarters (743/993) were 1:M or H:M, in which one or 

                                                           
14 In the sample of units studied in this paper, there were 329 1:0 block links—hand operations 

no longer performed under machine labor—and 3,275 0:1 block links—novel machine 

operations. Many of these latter blocks, for example, were associated with steam power 

production (like “furnishing power”). Atack, Margo, and Rhode (2019) provides a detailed 

discussion of these block links framed within Acemoglu and Restrepo’s (2018) model of 

automation.  

15 By “mechanized”, we mean inanimately powered using a “one-touch” measure—that is to say, 

if any task within the block used inanimate power, the block itself was inanimately powered.  
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more hand operations were mapped into M machine operations. Overall, these were the most 

mechanized (79.9 percent) block links.16 Although less common than 1:M or H:M block links, 

the H:1 links were also highly mechanized (74 percent). All told, about 55 percent of the block 

links were mechanized under machine labor. 

Once we have the block links, we can compute the share of production time in the block 

performed by each category of labor, by production method. This allows us to compute the 

variable, De-Skill, as follows: 

 

De-Skill = 1{∆ (share of production time using semi-skilled operative + common labor) >0} 

 

where ∆ is the difference between machine and hand labor. That is, De-Skill is a dummy variable 

taking the value 1 if the share of production time performed by semi-skilled operatives and 

common labor in the machine labor block exceeded the share in the corresponding block in the 

hand labor block; 0 otherwise.17 We focus on a discrete measure of deskilling as this allows 

more direct, cleaner tests of the hypotheses.  

                                                           
16 The figure is a weighted average of the mean mechanization rates of the 1:M and H:M block 

links. 

17 There is a small (less than 3 percent) of blocks for which we observe “up-skilling”. There are 

too few of these to analyze separately, and they are simply grouped with the 0 values of the 

dependent variable. 
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The final column of Table 1 shows the mean values of De-Skill, overall, and by block 

link type. The overall mean is 0.355 implying that, in approximately 36 percent of the block-

links, relatively more use was made of common labor and operatives under machine labor than 

under hand labor – direct, unambiguous evidence of de-skilling in the traditional sense. It is also 

clear from the table that de-skilling was more frequent in the more complex block links 

compared with the 1:1 block links. As noted above, these more complex links were, on average, 

more mechanized, suggestive of a positive connection between greater use of powered 

machinery and de-skilling. The implications of this are addressed next through an econometric 

analysis of the block link data. 

   

De-Skilling at the Operation Block Level: The Role of Mechanization 

We estimate regressions of De-Skill using the sample of 4,405 block links that are 

matched between hand and machine labor through the HML crosswalk. Our goal is to measure 

the mean difference in De-Skill between the mechanized (inanimately powered) and non-

mechanized operations within the same production units, controlling for various factors. We 

present OLS estimates first followed by an instrumental variable analysis. The discussion in the 

text focuses on our base specification (equation 1, immediately below).  

 

OLS Estimation:     

Our base regression specification is given by equation 1:  

 

[Eq. 1]: De-Skill (a, j) = β(j) + γ(a) + λ*Mechanized (a,j) + ε (a,j) 

 



17 
 

The index j refers to the unit, and a to the block link. The β(j) are unit fixed effects. We include 

these because the manufactured goods produced by the various units were very different (such as 

circular saw blades vs. shoes) and there is no reason to believe that de-skilling would be the same 

across all products, controlling for the extent of mechanization. The β(j)’s differences such as the 

total number of workers in machine vs. hand labor, the year(s) to which the data pertain, and so 

on between the hand and machine labor establishments were the same for all block links within 

each unit. Because the unit fixed effects soak up all unit level differences, we cannot include any 

unit level differences in [eq. 1].18  Our base specification also includes dummy variables for the 

block link types, γ(a), to control for the complexities introduced by multi-operation grouped 

tasks, which comprise about a quarter of the blocks.19   

Table 2 reports the value of the coefficient λ for the single mechanization variable, 

Mechanized, which is the “one-touch” measure of mechanization of a machine labor block 

introduced in the previous section. While “mechanized” means that either steam or waterpower 

was used somewhere in the block, the overwhelming majority used steam. The reason for the 

single mechanization variable is discussed later in the paper. OLS identification of λ is achieved 

through the variation in Mechanized across block links within units. We expect to see that 

mechanization is positively associated with de-skilling, implying that λ > 0.  

Why should λ be positive? The hypothesis is that mechanization promoted a greater 

degree of division of labor. As Joseph Roe (1926, 31) put it discussing the contributions of 

                                                           
18 Later in the paper we substitute four-digit SIC industry codes for the unit fixed effects, which 

allows us to include unit level variables in the regression. 

19The values of β(j) and γ(a) are available on request. The left-out block-link dummy is 1:1.  
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machines by Bentham and Brunel in the Portsmouth shipyard, “these machines were thoroughly 

modern in their conception and constituted a complete range of tools, each performing its part in 

a definite series of operations. By this machinery ten unskilled men did the work of 110 skilled 

workmen”.  

Economic theory provides support for Roe’s argument. In Chaney and Ossa’s (2013) 

model of a “production chain” – essentially analogous to the HML’s ordering of production tasks 

-- the optimal division of labor is decreasing in the fixed costs to workers of acquiring the skills 

to perform various operations. All else equal, a reduction in fixed costs increases the profitability 

to the establishment of dividing up production tasks among more workers; in our view, use 

special-purpose inanimate powered machinery reduces the skills necessary to perform the tasks, 

thereby enabling greater division of labor (see also Becker and Murphy 1992).  

Table 2 shows the OLS estimate of λ, 0.044, which is significant at the 5 percent level 

(s.e. = 0.018). The table also shows the percent of the mean value of De-Skill accounted for 

(“explained”) by mechanization, which is the estimate of λ multiplied by the mean value of 

Mechanized, divided by the mean value of De-Skill. The percent explained is 6.8 percent [= 

((0.044 x 0.552)/0.355) x 100 percent]. By construction, the remaining gap (93.2 percent) is 

explained collectively by the coefficients of the unit level and block link dummies. 

 

Instrumental Variables Estimation 

The results in Table 2 support the conventional wisdom that mechanization promoted de-

skilling. However, while positive and statistically significant, the mechanization effect is 

quantitatively small, suggesting that mechanization per se may not have been a major factor 

behind de-skilling, a surprising result.  
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At this point it is worth asking if the OLS estimate of λ is affected by endogeneity bias. 

The HML staff did not randomly assign inanimate power and associated special purpose 

machinery to the specific machine labor operations that used them. That decision was made by 

someone in the original establishment, presumably an owner or manager, and presumably 

because this mechanization was expected to be profitable.  

To assess the magnitude, if any, of endogeneity bias, we need an instrumental variable 

(IV) for Mechanized at the block link level. We follow the same identification strategy used in 

Atack, Margo, and Rhode (2022). This makes use of the textual descriptions of production 

operations appearing in the “General Table – Production by Hand and Machine Methods” in the 

column titled “Work Done,” organized by unit number and production method, in Volume Two 

of the HML study, to construct an instrumental variable (see Figure 1).20  We briefly describe the 

construction steps here (additional details can be found in Atack, Margo, and Rhode (2022)). 

First, we extracted all unique occurrences of gerunds appearing in the “Work Done” columns.21  

The first word in these descriptions is almost always a gerund describing the principal action 

                                                           
20 As a follow-up exercise, in May 2023, we inquired of a new LLM model—ChatGTP—

whether each of these activities “could be mechanized using the technologies of 1895.” The 

results were not reliable as different inquiries regarding the same gerund produced different 

answer sand the model hallucinated into existence a series on automatic machines that did not, in 

fact, exist.  

21 A gerund is an English verb to which “-ing” has been appended. These function as a noun in 

grammatical context.  
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taking place in the operation, so we call this the “principal gerund.”22 Next, a member of our 

research term with expertise in the history of technology was given just the list of gerunds and 

asked to sort them into two bins without consulting the HML study.23  Based solely on the 

expert’s knowledge of the history, activities described by the gerunds where the expert believed 

there was some technical feasibility of mechanization worldwide by the end of the nineteenth 

century were sorted into one bin (bin #1), while those for which there was very little or none 

were sorted into the other (bin #0).  

Table 3 (taken from Atack, Margo, and Rhode 2022) shows the distribution of the five 

most common principal gerunds for the hand blocks in the 1:1 and 1:M block links in the 

regression sample, grouped by bin #0 (little or no technical feasibility of mechanization) versus 

bin #1 (some technical feasibility). The five most common activities in bin #0 were “making”, 

“putting”, “overseeing”, “finishing”, and “marking.”   For each, human judgement played a 

substantial role, and the requirements of the activity were idiosyncratic. Conversely, the five 

                                                           
22 Additional gerunds, if present, are always closely related to the main activity described by the 

principal gerund – the principal gerund is, in other words, the textual equivalent of a sufficient 

statistic. 

23As discussed in Atack, Margo, and Rhode (2022), the list of gerunds was produced from a 

digitized version of the HML text. Because some gerunds can describe very different activities 

depending on a single letter – for example, “striping” vs. “stripping” – on rare occasions the 

expert was forced to consult the printed version of the HML study to be sure that the distinction 

was also present in the original text and not somehow garbled in the digitization, but the expert 

did not contemplate the text preceding or following the gerund in question.  
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most common activities in bin #1 were “cutting”, “sewing”, “smoothing”, “stitching”, and 

“conveying”. These are all repetitive activities for which special-purpose machinery had been 

invented in the nineteenth century.  

As discussed in our earlier article, the motivation for the instrument derives from 

Acemoglu’s and Restrepo’s (2018) canonical model of automation. By the late nineteenth 

century, science and engineering had advanced to the point where the mechanization of certain 

physical activities – as captured by the relevant gerunds – was technically feasible. Conditional 

on the unit to be manufactured, therefore, the fraction of operations that, in principle, could be 

mechanized under machine labor depends on the classification of the relevant gerunds into the 

two bins. Variation in the classification corresponds to variation in the cost of mechanization; 

this variation is, by construction, exogenous, because it depends on technical feasibility, which is 

beyond the control of the owner or manager deciding on whether to mechanize or not, implying 

that our instrument satisfies the exclusion restriction.24    

                                                           
24 For the 1:1 and 1:M block links there is a one-to-one mapping from the two bins to our IV, 

which is the “one-touch” analog to Mechanization, MECHABLE = 1 if principal gerund was 

sorted into bin #1, or 0 (if sorted into bin #0). For the H:1 and H:M block links there is an 

intermediate step in the construction of the IV because when H > 1 there may be more than one 

principal gerund. In the intermediate step we construct a weighted average of technical feasibility 

of mechanization for each principal gerund in the H operations in the hand block, where the 

weight is the share of time devoted to the operation in the overall time in the hand block. If the 

weighted average exceeds zero, MECHABLE = 1 for the overall block link. Note that, because 

we have one instrument, we can only have one endogenous variable (Mechanized). 
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Table 4 shows the results for the IV estimation of Eq. 1. The first stage coefficient of 

MECHABLE, 0.316 (s.e. = 0.020), is positive (as it should be) and the associated Kleibergen-

Paap F-statistic (240.7) indicates that the instrument is very strong (p-value = 0.00001). The 

2SLS estimate of λ, 0.096, is positive and significant (s.e. = 0.0.038) and about twice as large in 

magnitude as the OLS estimate.25  If we repeat the decomposition exercise using the 2SLS 

estimate, the percent explained by mechanization is about 15 percent, compared with 7 percent 

for OLS.  

The IV estimate indicates that the OLS bias is downward. Measurement error could cause 

a downward bias, but this is almost certainly not present here given the careful nature of the 

HML study and the fact that our measure of mechanization is “one-touch” – that is, we only 

require that the HML staff to have correctly observed the use of inanimate power. A more 

plausible explanation is reverse causality. In Atack, Margo, and Rhode (2022) we showed the 

OLS estimation of [eq. 1] produced upward bias in the estimate of λ when the dependent variable 

was the difference in production times between hand and machine labor. Our explanation is, 

when mechanization was a choice variable – as it clearly was in the establishments contributing 

their data to the HML study -- use of inanimate power was more likely when it was more 

profitable, and it was more profitable if the savings in production time was especially large. But 

if this is true, the share of production time that is mechanized under machine labor will be 

smaller than if mechanization were randomly assigned, an unobservable factor that will bias De-

                                                           
25 Note, however, that the 95 percent confidence interval around the 2SLS estimate of λ (0.021, 

0.170), includes the OLS estimate so we cannot reject the hypothesis that the 2SLS and OLS 

estimates are the same. 
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Skill towards zero. Correcting for this bias results in a larger estimate of λ when IV is used 

instead of OLS.  

 

De-Skilling: The Role of Factors Other than Mechanization 

While mechanization did have a positive causal impact on de-skilling at the production 

operation level, most of the higher level of de-skilling under machine labor cannot be explained 

directly by greater mechanization. What, then, accounts for the unexplained portion?  

To answer this question, we follow the strategy in Atack, Margo, and Rhode (2022), 

which uses the detailed descriptions of the goods produced to map the HML units into 70+ four-

digit SIC codes. We substitute these SIC code dummies for the unit fixed effects, which results 

in equation 2. 

 

[Eq. 2]: ∆ De-Skill = η(s) + γ(a) + λ*Mechanized (a,j) +X(j)*γ+ ε (a,j) 

 

The η(s) are coefficients of the 4-digit SIC fixed effects. Because eq. 2 does not include 

unit fixed effects, we can add continuous or dummy variables, X(j), at the unit level. Coefficients 

of the unit level variables are identified by variation across units within the 4-digit SIC codes. 

The unit variables of interest are not available for all units in the original regression sample, the 

sample size for eq. 2, about 3,900 block-links, is smaller than the sample size in Table 1 (see 

Atack, Margo et al. 2022).  

OLS estimates of λ and β and the associated percent explained calculations are shown in 

Table 5. It is reassuring that the point estimate of λ, 0.049, is close that obtained using the eq. 1 

specification with the Table 5 sample with unit fixed effects, suggesting that the combination of 
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the 4-digit SIC dummies and particular unit level variables does an acceptable job of capturing 

the relevant variation in the data.26   

Our main interest is the role of the division of labor. We include two measures of the 

division of labor – (1) the ln of the total number of production operations in manufacturing the 

unit and (2) the share of the number of operations performed by the average worker. The number 

of operations is available from the Volume One tables in the HML report. The Appendix B 

shows how we can combine unit level information in the report with the operations level data to 

construct the share measure. The hypothesis of interest is that greater overall division of labor led 

to more de-skilling, so we expect the coefficient of the first variable to be positive and of the 

second variable to be negative. We also control for two other “scale” variables, the number of 

different workers employed in producing the unit, and a “quantity production” dummy.27   

Our main finding is that coefficient of the percent of tasks performed by the average 

worker is negative, highly significant, and large in absolute value, accounting for 40 percent of 

the mean value of De-skill. The mean value of this variable, -0.397, is negative, indicating that, 

under machine labor, the average number of operations performed by the average worker was 

                                                           
26 See the notes to Table 5. We say “acceptable” because the adjusted-R square with 4-digit SIC 

codes (0.411) accounts for about 81 percent as much of the variance compared with the eq.1 

specification for the same sample (adjusted R-square = 0.510).  

27 We cannot measure the division of labor at the block link level for all observations in the 

regression sample because to do so we would need the names of the individual workers which 

were not included in the published study. However, we can measure the division of labor at the 

unit level; see the Appendix B. 
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much smaller than under hand labor – that is, a far higher degree of division of labor. Once we 

control for the number of workers and the fraction of tasks performed by the average worker, the 

impact of an increase in the number of tasks to be performed is positive, but very small, and 

statistically insignificant.  

We know that Carroll D. Wright, who guided the study in his role as the first U.S. 

Commissioner of Labor, considered a high degree of division of labor to be an essential feature 

of machine labor methods where “matters are so arranged that every workman has his particular 

work to perform, generally but a small portion of that which goes to the completion of the article 

to be produced” (U.S. Department of Labor. 1899, 1: 11). To the extent that some production 

tasks required less “skill” than others, a higher degree of division of labor should be associated 

with a higher level of de-skilling, but there is no inherent reason that the effect would be 

quantitatively large. The various nineteenth century American censuses of manufacturing never 

attempted to measure the division of labor directly, and its presence (and potential impact on 

productivity) in census data can only be inferred from variation across establishments in the 

number of workers. To our knowledge, the HML study is the only data source for nineteenth 

century US manufacturing for which direct measures of the division of labor can be constructed.  

 If we estimate the regression just with the number of workers, the coefficient is positive, 

highly significant, and large in magnitude, and by itself accounts for nearly half of the mean 

value of De-Skill. However, including the other three variables cuts the coefficient of the number 

of workers by nearly 60 percent in size, although it remains positive and statistically significant. 

The other scale variable, Volume Production, measures the difference between machine and hand 

labor using a dummy variable indicating whether the actual machine or hand quantity produced 

exceeded a critical cutoff level where substantial scale economies from the adoption of “flow” or 
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“mass” production scheduling might have operated, leading to additional de-skilling (Hounshell 

1984; Scranton 1997). 28  

Quantity production clearly was more common under machine labor, as indicated by the 

positive mean value (0.139) of the dummy variable. If, after controlling for the number of 

workers, quantity production per se enhanced de-skilling, the coefficient of the dummy variable 

should be positive. It is, 0.021, but the estimate is insignificant and its explanatory power in 

terms of accounting for the mean value of De-Skill is negligible. This suggests that the number of 

workers, once we control for the fraction of tasks performed by the average worker, is mainly 

capturing additional effects of a greater division of labor on De-Skill, rather than larger volume 

production. 

The HML staff also collected data on average daily hours. Over the nineteenth century, 

there was a downward trend in average daily hours; on average, daily hours were shorter in the 

machine labor establishments (Atack and Bateman 1992; Atack, Bateman et al. 2003). If less 

skilled workers were able to maintain work effort continuously for longer periods of time, we 

would see a positive association between average daily hours and de-skilling – and the 

coefficient, indeed, is positive. However, the explanatory power of the variable is slight and, in 

fact, negative, because average daily hours was shorter under machine labor.  

                                                           
28While the ideal cutoff should be guided by historical examples and discussion, the relevant 

literature provides no operational guidance. The threshold we adopted was the quantity 

associated with the 75th percentile of the machine labor distribution, 1,500; see Atack, Margo, 

and Rhode (2022). 
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The HML staff attempted to assess the quality differences in goods produced by the 

machine and hand units in the surveyed establishments. For the most part, they concluded there 

was either no meaningful difference or a difference in favor of the machine labor version of the 

good. That said, if the hand product were of better quality, we might expect a greater level of 

skill involved in its construction, and hence a higher value of de-skilling when the good was 

made by machine labor. The coefficient is positive, but insignificant, and its explanatory power 

in accounting for the mean value of De-Skill is very small.  

We include the difference in the observation year between machine and hand labor in the 

regression. This difference is almost always positive, and the mean is 27, indicating that, on 

average, the hand labor data were older than the machine labor data by 27 years. The coefficient 

of this variable is negative, 0.015, and significant at the 10 percent level (s.e. = 0.010), indicating 

that the older the hand labor data was relative to machine labor, the greater the relative use of 

skilled labor in hand production of the unit, other factors held constant. This pattern makes sense 

because earlier hand labor establishments were likely closer to the “old-fashioned” methods that 

Wright had in mind for the study. 

We cannot and do not claim that the coefficients of these unit level variables reflect 

causal impacts, and we have no way of instrumenting them individually. Still, the mere fact that 

we can include these measures at all in the regression goes far beyond what is possible with other 

nineteenth century data. All told, the unit level variables account for 74 percent of the mean 

value of De-Skill, compared with 6 percent for mechanization per se.  
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Concluding Remarks 

Economic historians have long believed that de-skilling occurred during the first 

industrial revolution but have been largely stymied in measuring its extent or determining if the 

diffusion of inanimate power was primarily responsible. In the American case, the key problem 

is that the US manufacturing censuses during the nineteenth century did not measure de-skilling 

directly; while it is possible to document the occupations of manufactured workers using census 

data, it is not possible to link the occupations to data on use of inanimate power. 

This paper has turned to an entirely different source, the Department of Labor’s 1899 

Hand and Machine Labor study. The HML study allows us to measure de-skilling directly at the 

production operation level and relate it to the use of inanimate power. We find de-skilling was 

quite common in the mechanized factory of the late nineteenth century compared with traditional 

artisan hand production, and that greater use of inanimate power led to greater de-skilling. 

However, the magnitude of the mechanization effect was relatively modest.  

De-skilling was part and parcel of a vast growth in the division of labor over the 

nineteenth century. While we cannot measure the change in division of labor continuously over 

the nineteenth century, it is clear from the HML study that this change was strongly correlated 

with growth in establishment size, where size is measured by the number of workers. Our 

regression analysis of the HML data show that de-skilling was strongly increasing in the number 

of workers, in main part because the division of labor was increasing in the number of workers.  

The HML study did not investigate why the division of labor increased in the transition 

from hand to machine labor but there is little doubt that the transportation revolution was a 

critical factor (Atack, Haines et al. 2011). The transportation revolution increased market access 

and in so doing, made a larger scale of operation more profitable – as the saying (from Adam 
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Smith) goes, “the division of labor is limited by the extent of market”. As the division of labor 

increased, workers became more specialized in production, and the “average worker” was a 

convex combination of individuals performing different operations according to comparative 

advantage, more productive than a single artisan performing all tasks from start to finish. 

Compared with such artisans, the typical nineteenth century factory operative had much less to 

learn on the job, lowering the costs of supplying labor to manufacturing. Although advances in 

technology and emerging complementarity with capital increased the skill demands on factory 

workers, this calculus remained the same until well into the twentieth century when the forces of 

automation eventually caught up, making operatives highly vulnerable to displacement by 

machinery (Goldin and Katz 1998; Acemoglu and Restrepo 2018). 

 

  



30 
 

Table 1: Distribution and Sample Statistics by Block-Link Type: Regression Sample 

Block Link 

Type 

(Hand:Machine) 

Number of 

Block 

Links 

Mean 

Fraction 

Steam, 

Machine 

Labor 

Mean 

Fraction 

Water, 

Machine 

Labor 

Mean 

Fraction 

Mechanized, 

Machine 

Labor 

Mean 

Value,  

De-Skill 

1:1 3,412 0.460 0.025 0.484 0.323 

1:M, M > 1 619 0.732 0.055 0.784 0.489 

H:1, H > 1 250 0.704 0.052 0.744 0.416 

H:M, H, M> 1 124 0.815 0.073 0.879 0.460 

Total, 

Regression 

Sample 

4,405 0.522 0.032 0.552 0.356 

 

 

Source: computed from digitized HML study (U.S. Department of Labor. 1899).  

Notes: Block links are defined as follow -- 1:1: a single hand labor operation is mapped to a 

single machine labor operation; 1:M, M> 1: a single hand labor operation is mapped to a block of 

M machine operations, M> 1; H:1, H> 1: A block of H (>1) hand operations is mapped to a 

single machine labor operation; H:M: A block of H hand labor operations is mapped to a block 

of M machine labor operations, H and M > 1. Mechanized = 1 if machine block used steam or 

waterpower or both; see text. NA: not applicable.  
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Table 2: OLS Regression and Decomposition Analysis of De-Skill 

Variable Coefficient Mean Value of 
Independent Variable 

Percent Explained of 
Mean Value of De-
Skill 

Mechanized 0.044 
(0.018) 

0.552 6.7% 

Adjusted R-Square 0.670   
 

Source: see Table 1. 

Notes: The decomposition (“Percent Explained of Mean Value of De-Skill”) is computed by 

multiplying the regression coefficient of Mechanized (0.044) by the mean value of Mechanized 

(0.552) and dividing the product (0.024) by the mean value of De-skill (0.356) = (0.024)/(0.356) 

= 0.067, or 6.7 percent. The sample size for the regression is 4.,405 block links. The regression 

also includes dummy variables for block link types and for units (see the text). Standard errors 

are clustered at the unit level. Sample means are from Table 1.  
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Table 3: The Top-Five Activities (Principal Gerunds) in Hand Production, 1:1 and 1:M 

Block-Links in the Regression Sample: Bin #0 versus Bin #1 

Bin #0 Number Bin #1 Number 

Making 156 Cutting 597 

Overseeing 141 Sewing 136 

Putting 121 Smoothing 77 

Finishing 38 Stitching 76 

Marking 34 Conveying 73 

Total count in Bin #0  690 Total count in Bin #1 2,968 

 

Source: see Table 1 and Atack, Margo, and Rhode (2022).  

Notes:  The table shows the distribution of the five most common principal gerunds classified 

into bin #1 (some feasibility of mechanization) versus bin #0 (little or no feasibility of 

mechanization) for the 1:1 and 1:M block links in the regression sample.  
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Table 4: 2SLS Regression and Decomposition Analysis of ∆ De-Skill 

Variable Coefficient Mean Value of 
Independent Variable 

Percent Explained of 
Mean Value of De-
Skill 

First stage, 
MECHABLE 

0.315 
(0.020) 

0.820  

Kleibergen-Paap F-
Statistic 

240.7   

2SLS, Mechanized 0.096 
(0.038) 

0.552 14.9% 

 

Notes: The decomposition (“Percent Explained of Mean Value of De-Skill”) is computed by 

multiplying the 2SLS regression coefficient of Mechanized (0.096) by the mean value of 

Mechanized (0.552) and dividing the product (0.053) by the mean value of De-Skill (0.356) = 

(0.053)/(0.356) = 0.149, or 14.9 percent. The sample size is 4,405 block links. The first stage and 

2SLS regressions also includes dummy variables for block link types and for units (see the text). 

The Kleibergen-Paap F-statistic refers to the instrumental variable MECHABLE. Standard errors 

are clustered at the unit level. Sample means of De-Skill and Mechanized are from Table 1.  
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Table 5: OLS Regression of ∆ De-skill with 4-Digit SIC Code Dummies 

Variable Coefficient Coefficient Mean Value of 
Independent 

Variable 

Percent Explained 
at Sample Mean of 

∆ Ln T 
Mechanized 0.052 

(0.019) 
0.040 

(0.018) 
0.554 5.8% 

Unit Level 
Difference, 
Machine – Hand 
Labor:  

    

Ln (# of Workers) 0.103 
(0.016) 

0.041 
(0.014) 

1.848 19.9 

Ln (# of 
Operations) 

 0.018 
(0.022) 

0.472   2.2 

Fraction of Total 
Operations 
Performed by the 
Average Worker  

    

  -0.399 
(0.069) 

-0.397 41.6 

   Volume 
Production 

-0.016 
(0.027) 

0.021 
(0.029) 

     0.138   0.8 

 Ln (Daily Hours 
of Operation) 

-0.0004 
(0.189) 

 0.166 
(0.175) 

   -0.030   -1.3 

 Hand Unit Quality 
Better 

-0.005 
(0.043) 

0.054 
(0.054) 

0.030 0.4 

Year of   
Observation 

0.003 
(0.010) 

0.015 
(0.010) 

2.7 10.6 

Percent Explained 
by Unit Level 
Variables  

   74.2 

Percent Explained, 
Unit Level + 
Percent 
Mechanized 

   80.0 

Adjusted R-Square 0.539 0.566     
 

Source: see Table 1.  

Notes: Sample size is 3,876 block links because of missing data on some unit level variables (see 

text). Mean value of ∆ De-Skill for this sample is 0.554. Regression includes 4-digit SIC code 
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dummies and block link dummies (coefficients not reported). Coefficient of Mechanized = 0.049 

(s.e. = 0.020) with SIC code and block-link dummies. Volume Production is the difference 

between two dummy variables, (Volume_Machine – Volume_Hand). Volume_Machine 

(Volume_Hand) = 1 if actual quantity>1,500; 0 otherwise. Hand Better = 1 if HML staff judged 

the product made by the hand labor establishment to be of better quality than the machine labor 

establishment. Standard errors are clustered at the unit level. 
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Figure 1: Verso and Recto Pages of part of the Hand and Machine Labor Table for Unit 71 
Showing Raw Data and the HML-generated Crosswalk 

  

 

Source: (U.S. Department of Labor. 1899, 2: 820-1) 

 

Crosswalk 



Appendix A: Coding Occupations 

In preparation for the Thirteenth Census in 1910, the Bureau of the Census had 

undertaken an extensive review of the occupational returns from 1900 for several states 

eventually extracting some 16-18,000 different occupational titles. These were then culled to 

about 13,000 although the Bureau opined “it is safe to estimate that, on the whole, there are at 

least two designations for each occupation, and hence the index does not contain over 7,000 or 

8,000 separate and distinct occupations.” This culled list would be provided to enumerators for 

the 1910 Census to serve as a guide although it was deemed “far from being all-inclusive, and 

will need to be supplemented by the addition of the new occupations returned in 1910” (United 

States. Bureau of the Census 1910, iii).  

Subsequently, the Bureau produced a large Census volume on the Occupation Statistics 

(United States and Hunt 1914) along with a shorter summary Bulletin on the same (United States 

and Hunt 1914), observing “the value of occupation statistics is dependent very largely upon the 

form in which the occupations are classified” (United States and Hunt 1914, 17). The Bureau 

would follow up on this observation beginning with a monograph “Index to Occupations: 

Alphabetical and Classified” written by Alba Edwards who categorized the occupations into 215 

main occupations and occupation groups, 84 of which were further subdivided to produce 428 

separate occupations and occupation groups (U.S. Department of Commerce. Bureau of the 

Census, Hunt et al. 1915). Edwards (1917, 645 and Table 1) subsequently regrouped and refined 

these into 9 groups which he termed “Social-Economic Groups”: 

 
1.  proprietors, officials, and managers; 

2. clerks and kindred workers; 

3. skilled workers; 
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4. semiskilled workers; 

5. laborers; 

6. servants; 

7. public officials; 

8. semiofficial public employees; 

9. professional persons. 

Since the HML study focuses solely upon manufacturing production, all workers in it fall into 

Edwards’ categories 1-5. 

We have chosen to further collapse these groups down to four by treating those 

businesses with just a solitary worker—their proprietor—as an employee/skilled worker rather 

than proprietor. Thus, for example, the shoemaker—the only worker in the Hand method of Unit 

71 (see Figure 1) was assigned to group 3 of Edward’s classification rather than to group 1. 

Almost all workers identified in the HML study fall into groups 3-5 although a small number 

with occupations like bookkeeper, counter and clerk were classified into group 2.  

Two of Edwards’ occupational categories explicitly contain the term “skill” although 

Edwards definition of the word is very narrow and specific: “properly applied only to those 

occupations in which the expenditure of muscular force is one of the chief characteristics. Within 

this field, those occupations have been considered skilled …  [requiring] … a long period of 

training, or an apprenticeship … and … a degree of judgment, and manual dexterity”. Extending 

this line of argument, he classified “semiskilled” occupation as those for which “only a short 

period or no period of preliminary training is necessary, and which in their pursuance call for 

only a moderate degree of judgment or of manual dexterity.” He classified as “Laborers” or 

“unskilled” occupations requiring “no special training, judgment, or manual dexterity, but supply 
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mainly muscular strength in the performance of course, heavy work,” that is, by inference, the 

lacked skill (Edwards 1917, 646).1  Clerical workers, professionals, and the like had other skills 

and attributes unrelated to the physical demands of their work.  They would, in time, be referred 

to as “white collar” workers to indicate that their clothes would remain unsoiled by their labor.2   

Over the years, Edwards’ skill-based groups evolved and were further refined.  For 

example, the Department of Labor’s Employment Service prepared a dictionary of occupational 

titles with the objective of establishing broad groups of occupations requiring similar skills and 

abilities (U.S. Department of Labor. Employment Service 1939). It was followed by an 

alphabetical index of occupations and industries for the Sixteenth Census (1940) again authored 

by Edwards (United States. Department of Commerce. Bureau of the Census. and Edwards 1940) 

and similar volumes were produced to accompany subsequent censuses.3   

In particular, the index prepared for the 1950 Census {United States. Department of 

Commerce. Bureau of the Census., 1950 #2277, also available on-line at 

https://usa.ipums.org/usa/resources/volii/Occupations1950.pdf} was used by IPUMS to generate 

their “OCC1950” variable found in all IPUMS census samples from 1850 onwards 

(https://usa.ipums.org/usa-action/variables/OCC1950#codes_section).  Moreover, the 

characteristics identified by Edwards (training, dexterity, exercise of judgment, physical 

                                                           
1 This categorization also apparently stood the test of time, see Edwards (1938, p. 3) 

 
2  Wikipedia credits the term “white collar” to Upton Sinclair, beginning in the 1930s.  The 

phrase does not appear in Edwards’ work so far as we can tell. 

 
3 See, for example, https://www.census.gov/topics/employment/industry-

occupation/guidance/indexes.html (visited May7, 2023). 

https://usa.ipums.org/usa/resources/volii/Occupations1950.pdf
https://usa.ipums.org/usa-action/variables/OCC1950#codes_section
https://www.census.gov/topics/employment/industry-occupation/guidance/indexes.html
https://www.census.gov/topics/employment/industry-occupation/guidance/indexes.html
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strength) were subsequently elaborated and extended by the U.S. Bureau of Employment 

Security in their detailed survey of the skills, training, and personal characteristics based on a 

sampling of workers performing 4,000 jobs (United States. Department of Labor. Bureau of 

Employment Security. 1956).4  

We sought to link the HMLS occupational titles in a similar manner to standard skill 

classifications.  This proved challenging because many of the occupation titles in the HMLS 

were highly specific to the production processes described (and indeed many were closely 

related to the gerunds defining the task activities).  Another problem was that some titles were 

common across units and industries but referred to fundamentally different activities.   

The first problem derived from extensive sub-division of activities to the task level by the 

HMLS; the second problem from lumping (or at least linguistic lumping) of similar actions and 

activities but involving, say, different materials (e.g. metal v wood).   

Our initial attempts to mechanically link either to the published census or to the 

occupational text from the manuscript micro sampled data proved infeasible.  In the former case, 

the HMLS has far more occupational titles than the published census and displays a wider range 

of skill requirements.  In the latter case, the textual descriptions of occupations as recorded by 

the original enumerators and as transcribed by later data entry personnel was often incomplete 

even when almost certainly referring to the same specific occupation.   

Consequently, instead of using mechanical linkage methods, the research team used their 

expertise to locate the titles in occupational lists/dictionaries, particularly the U.S. Department of 

                                                           
4 For a use of these latter data in the context of tasks, focusing on the early twentieth century 

when electricity was replacing the steam engine as the prime mover, see Gray (2013). 
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Labor’s Dictionary of Occupational Titles which sought to define the activities associated with 

specific jobs, much of it based upon direct observation or job analyses (U.S. Department of 

Labor. Employment Service 1939, iii).5  They then assigned what they determined was the best 

match code using the 1950 codes (United States. Department of Commerce. Bureau of the 

Census. 1950) to the HMLS occupational titles.  In assigning these codes, like the IPUMS coding 

with “OCC1950,” we endeavored to match skill level and function over time.  Thus, for 

example, a stagecoach driver or a wagon driver was classified as “bus and truck drivers” in 

“OCC1950". 

To determine the appropriate 1950 occupational code, we initially created a Pivot Table 

in Excel on the transcribed occupations in the HML tables.  This provided us with a list and 

count of the unique occupational titles and enabled us to identify plurals (and remove), spelling 

variations, and to separate and reallocate those workers with two or more jobs lumped together 

by “and” into the singular versions of each.  This generated a list of 1,703 different occupational 

titles in the HMLS. 

Two team members completed the coding task independently.  Based on broad metrics, 

their initial assignments agreed in about 94 percent of cases.  The residual 6 percent of 

disagreements were resolved quickly, without issue.   

                                                           
5 This was the first such dictionary for U.S, occupations.  The British had developed one similar 

for their industries and country-specific terminology more than a decade earlier (Great Britain. 

Ministry of Labor 1927). 
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The most common occupation was “machine hand” (coded as semi-skilled: 6900).  The 

ten most common unique occupations that we identified along with their respective share of the 

over 22,000 tasks reported are shown in Table A.1.6  

Where the term “assistant” or “helper” was appended to the search term, we treated these 

individuals as someone with the same skill set as specified in the occupational title but who had 

not yet been assigned full responsibility and independence as a skilled worker, placing them in 

IPUMS 4-digit coding for Apprentices, 6020-6150. These are persons in-training to be skilled 

craftsmen and thus treated as semi-skilled. This scheme differs somewhat from that used in the 

1950 Alphabetical Index (United States. Department of Commerce. Bureau of the Census. 1950). 

where helpers are classified as 690 (=operatives rather than apprentices). Both, however, are 

coded as semi-skilled which is the important result.  

As a final cross-check, we also compared our occupational classifications against the 

wage distribution to identify potential problematic cases requiring further review, but we did not 

directly use wages to assign skill classifications.  

  

                                                           
6 The apparent importance of “watchmaker” reflects the subdivision of watchmaking tasks in the 

HMLS data rather than the actual number of watchmakers. 
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Table A.1 
The Ten Most Common Occupations by Task in the Hand and Machine Labor Study 

Occupation Share of Tasks reporting this Occupation  

Machine hand 5.4% 

Foreman 4.5% 

Watchmaker 3.1% 

Engineer 2.5% 

Fireman 2.4% 

Cutter 2.3% 

Blacksmith 1.9% 

Sawyer 1.9% 

Shoemaker 1.8% 

Laborer 1.5% 
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Appendix B: Measuring the Division of Labor in the HML Study 

Compared with other sources on nineteenth century manufacturing, such as the Census of 

Manufactures, a unique feature of the HML study is that it provides direct evidence on the 

division of labor. This is because the study reported information about each production operation 

in the manufacturing of the unit, including the number of workers performing the operation. In 

addition, the study reported the number of different workers employed in producing the unit. 

With these two pieces of information, we can construct two unit-level measures of the division of 

labor – the number of distinct operations involved in producing the unit and the proportion of 

operations performed by the average worker.  

To fix ideas, let X be the quantity of the good to be produced, S = {s1, …, sn} be the list 

of n operations involved in producing X, and S* to consist of all proper subsets of S except for 

the empty set, plus S itself. Initially, we take S as given – that is, we abstract from any economic 

decision involved in dividing overall production into more or fewer than n operations. 

Next, we define D to be a mapping from S* to W, D(S*) → W, where is a list of the 

workers employed to produce X. We say that “division of labor” has occurred if (i) every 

operation in S appears in at least one element in the mapping (ii) at least one element in the 

mapping is a proper subset of S. The first requirement is the essentiality requirement – to 

produce X, each operation in S must be performed by some worker. The second requirement 

rules out that every worker is mapped to S itself, which would mean that no worker specializes in 

a subset of S. 

For example, suppose N = 4 (that is, four operations) must be performed to produce X, 

and suppose there are two workers. In this case, there are 15 subsets in S*, one of which is S. 

Suppose that D = {(1, 2), (3, 4)}, so that worker #1 performs the first two operations (1, 2) and 
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the second worker performs the final two (3, 4). D is a valid mapping because all operations are 

performed and neither worker is mapped to S itself, so division of labor has occurred. 

Conversely, suppose that worker #1 performs (1, 2, 3, 4) and so, too, does worker #2. In this 

case, both workers replicate each other; no division of labor has occurred. An intermediate 

example would be worker #1 performing (1, 2, 3) and worker #2 performing (3, 4) – both 

workers perform the third operation, but this is the only one in common between them. 

As the examples in the previous paragraph illustrate, in any valid mapping D – that is, 

when division of labor is occurring – the extent of specialization across workers may be 

incomplete or complete. It is incomplete if there is some overlap in the tasks performed by 

different workers. In the final example, imagine that the penultimate task is “finishing” and the 

final task is “packaging”. The first worker performs operations #1 through #3, while the second 

performs operations #3 and #4, so both do finishing (operation #3) but only the second worker 

does packaging (#4). By contrast, specialization is complete if there is no overlap of tasks – as in 

the first example, where the first worker performs operations #1 and #2 and the second worker 

performs #3 and #4.  

For any given S, there is a maximal degree of specialization in which each worker 

performs one and only one task. A necessary (but not sufficient) condition for maximal 

specialization is that the number of distinct workers be at least as large as N, the number of tasks 

in S. However, there may be tasks which require more than one worker – for example, because a 

machine is used that requires two operators – or there may be tasks which are replicated to 

generate the requisite flow of production. To continue with the previous example, suppose that 

there are now 6 workers. Worker #1 performs operation #1 and worker #2 performs operation 

#2; workers #3 and #4 perform operation #3 and workers #5 and #6 perform operation #4. Even 
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though the number of workers exceeds the number of operations, specialization is maximal 

because the mapping D is still one to one, except for the intensive margin on operations #3 and 

#4. This intensive margin might reflect the nature of the machines used in tasks #3 and #4, which 

may require more than one worker to operate properly.  

With the above discussion in mind, how might the division of labor be quantified? As a 

step towards answering this question note that we can represent M by a matrix whose elements 

m(j, k) index workers (j) and operations (k) to which they are assigned. A variety of functions 

defined over the m (j, k) could serve as summary statistics of the division of labor. The statistics 

could be equally weighted across workers or weighted by the amount of time needed to complete 

the operation or the degree of skill required to perform it.  

To construct such statistics, however, we must be able to construct the mapping M – that 

is, allocate specific workers to specific tasks. As previously noted, although the HML survey 

form did identify which workers performed which operations, this level of detail was suppressed 

in the published study, and the original survey forms are no longer extent. Despite this limitation, 

it is possible to compute an average measure of the division of labor for the overall unit. This 

statistic is P(n), the proportion of operations performed by the average worker: 

P(n) = ([∑ (number of workers assigned to operation k)] /Total number of different workers)/n 

To see this statistic in action, consider the above example where n = 4, there are two 

distinct workers, the first performing tasks #1-3 and the second performing tasks #3-4, and both 

performing tasks #9 and #10. In this example, the summand in the numerator will be 5; this is 

divided by 2, the number of distinct workers, and then further divided by 4, the number 

operations. The result is 0.625 – the average worker performs 63 percent of the operations in 
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producing the good. In the econometric analysis in the final section of the paper, we use P(n) and 

n as the two measures of the division of labor. 
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