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The arrival of new general purpose technologies (GPT) is a key driver of economic growth (Romer,

1990; Aghion and Howitt, 1992; Kogan et al., 2019, 2017). Yet as firms adapt their production

processes and organization in response to technological changes, this shift raises major concerns

about the impact on workers. For example, computer software and robots have displaced low-

and medium-skilled workers (Autor et al., 2003; Acemoglu and Restrepo, 2020), while the arrival

of the cotton-spinning machinery and electricity led to a complete re-organization of production

processes within firms (Fizsbein et al., 2020; Juhász et al., 2020). In recent years, the focus has

shifted to a new technological wave: artificial intelligence and related “big data” technologies.

AI is a prediction technology, and predictions are at the heart of decision-making under uncer-

tainty (Agrawal et al., 2019), making AI applicable to solve a variety of business problems with

different potential effects on labor. On the one hand, firms might use AI to automate high-skilled

tasks (Webb, 2020).1 On the other hand, investments in AI so far have been primarily associated

with product innovation (Babina et al., 2021), which can require complementary investments and

more educated workforces. Indeed, Babina et al. (2021) document that AI-investing firms expe-

rience increases in their overall employment—and it is an open question whether (and how) this

employment growth is associated with changes in labor composition.

In this paper, we examine whether firms that invest more heavily in AI technologies expe-

rience changes in labor composition and workforce organization. To date, in-depth empirical

understanding of the relationship between firms’ investments in new AI technologies and firms’

labor composition has remained elusive due to two key challenges: the difficulty of measuring

firm-level AI investments and the lack of granular data on firms’ labor composition and labor

organization (Seamans and Raj, 2018; Frank et al., 2019). Several recent papers make progress in

overcoming the first challenge by using firms’ job postings and worker resumes to identify the

hiring and stock of AI-skilled labor (Acemoglu et al., 2020; Babina et al., 2021; Alekseeva et al.,

2020; Abis and Veldkamp, 2020).2 The main contribution of this paper lies in overcoming the

second challenge. We use matched employer-employee U.S. data based on worker resumes, in-

cluding detailed information on both individual jobs and employees’ educational backgrounds.

Using these data, we construct firm-level measures of labor composition and workforce organiza-

tion, including employees’ educational backgrounds and hierarchical positions, and link them to

1For theoretical treatments of the impact of artificial intelligence technologies on labor displacement, see Korinek
and Stiglitz (2017), Acemoglu and Restrepo (2019b), and Agrawal et al. (2019).

2These measures are complementary to surveys of AI use by firms (Zolas et al., 2020; Acemoglu et al., 2022) and data
on AI-related patents (Alderucci et al., 2020).
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firm-level AI investments.

We find that firms that invest more in AI significantly shift towards more educated workforces,

with greater emphasis on STEM degrees. At the same time, AI-investing firms become less top-

heavy in terms of their organizational structure, with increasing shares of junior employees and

less emphasis on middle-management and senior roles. Overall, our findings suggest that in-

vestments in AI are associated with major changes in firms’ labor composition and organization,

translating into a broader shift towards more junior employees with high educational attainment

and technical expertise.

To construct workforce composition measures and assess their relationships to firms’ AI in-

vestments, we leverage a unique combination of datasets that capture both the stock of current

employees and the demand for new employees among U.S. firms. The stock of current employ-

ees at each point in time comes from a resume dataset provided by Cognism Inc, which offers

job histories for 535 million individuals globally. Cognism resume data offer a complementary

perspective to granular administrative firm-worker matched U.S. data, which contain individual

workers’ wages but do not feature comprehensive information on individual workers’ educational

backgrounds or job characteristics. Cognism resume data, while representing more than 63% of

full-time U.S. employment as of 2018, offer detailed job titles and descriptions (from which Cog-

nism infers hierarchical positions) and educational backgrounds including degree-granting insti-

tutions and majors. We complement the resume data with information on firms’ demand for new

workers from the job postings data provided by Burning Glass, which capture 180 million online

job vacancies. While job postings data have been instrumental in understanding how firms target

their new hiring, the resume data provide a full picture of what happens to the overall workforce

within firms—including new hires and potential displacement. Since our goal is to study the im-

pact of AI on AI-using firms rather than AI-producing firms, we exclude firms in the tech sectors,

which are likely to be producers of new AI tools.

We begin our analysis by describing how firm ex-ante labor composition predicts future growth

in firms’ AI investments. We adopt the novel measure of AI investments proposed by Babina et al.

(2021), based on firms’ AI-skilled human capital. The human-capital-based approach is motivated

by the heavy reliance of AI implementation on human expertise. The method first identifies skills

that are empirically related to principal AI technologies (machine learning, computer vision, and

natural language processing) from the Burning Glass job postings data and then uses the iden-

tified highly-AI-related skills to classify AI-related workers in the Cognism resume data. At the
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firm level, growth in AI investments is more pronounced among firms that initially have more

workers with doctoral degrees and STEM majors. This is in line with the evidence in Babina et al.

(2021), who find that firms with more technical workers and more educated workers are able to at-

tract AI talent more easily. The hierarchical structure of firms’ labor organization—as measured by

the shares of employees in junior, middle-management, and senior roles—does not significantly

predict growth in AI investments.

We next address our main question: whether AI investments are associated with changes in

labor composition and workforce organization. We consider three sets of outcomes related to

firms’ workforce composition and organization. First, motivated by the literature on technolo-

gies and firm organization (Acemoglu et al., 2007), we examine changes in firms’ organizational

structure using measures of organizational structure from the resume data. The relationship be-

tween technological investments and the relative weights of different hierarchical levels is ex ante

ambiguous. As highlighted by theoretical work (Garicano and Rossi-Hansberg, 2006; Bloom et

al., 2014), different types of technologies can have opposing effects on the need for managerial

layers. Second, we look at both workers’ education levels in the resume data and educational re-

quirements in the job postings data to test whether AI facilitates skill-biased technological change

(Autor et al., 1998; Machin and Van Reenen, 1998) or replaces high-skilled labor as predicted by

Webb (2020). Here, too, the predicted effect of AI is ex ante ambiguous, and we provide the first

systematic evidence of its direction. The shifts in labor composition are likely to go hand-in-hand

with changes to organizational structure, as Caroli and Van Reenen (2001) point out that flattening

hierarchical structures require higher human capital from each individual employee. Finally, we

use detailed information on workers’ majors and required skills to study how AI changes firms’

demand for different types of labor.

Our main empirical specification is a long-differences regression of changes in labor outcomes

from 2010 to 2018 on changes in the firm-level share of AI workers during the same period, follow-

ing the standard approach in settings with slow-moving processes like technological change (e.g.,

Acemoglu and Restrepo, 2020). As shown in Babina et al. (2021), AI investments accumulate grad-

ually over time and generate effects that are not immediate, making the long-differences strategy

well-suited for our setting. Furthermore, by taking first differences in independent and depen-

dent variables, the long-differences specification ensures that time-invariant firm characteristics

do not drive the results. To bolster the causal interpretations of the results, we include a rich set

of controls featuring industry fixed effects and firm-, industry-, and commuting-zone-level char-
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acteristics in 2010. All of our coefficient estimates are remarkably consistent across specifications

with and without these detailed controls. Moreover, none of our results are driven mechanically

due to the hiring of AI workers, and excluding those from the calculation of dependent variables

produces similar results. Finally, we show that our results are robust to using an instrumental

variable strategy based on an instrument that isolates the variation in firms’ AI investments that

is driven by the supply of AI-skilled labor.

In terms of hierarchical structure, we provide evidence that AI investments are associated with

firms becoming flatter, with higher shares of employees in entry-level or single-contributor roles

and fewer employees in either middle-management or senior roles. Specifically, a one-standard-

deviation change in the share of AI workers at a firm is associated with a 1.6% increase in the

share of junior employees from 2010 to 2018, while middle management declines by 0.8% and

senior management by 0.7%. This result is consistent with the channel suggested by Garicano and

Rossi-Hansberg (2006) and explored by Bloom et al. (2014), where reductions in costs of accessing

knowledge through improved data processing, such as AI technology, result in increased problem-

solving ability of employees at all levels, leading to increased span of control and less reliance on

top-heavy hierarchical structures.

In terms of labor composition, we observe a general upskilling trend associated with larger

AI investments. Firms that invest more in AI tend to increase their shares of workers with bach-

elors, masters, and doctoral degrees (correspondingly decreasing the share of workers without

college education). For example, a one-standard-deviation increase in the firm’s share of AI work-

ers translates into a 3.7% increase in the share of workers whose maximal educational attainment

is an associates or bachelors degree, a 2.9% increase in the share of workers whose maximal edu-

cational attainment is a masters degree, and a 0.6% increase in doctoral degrees. These increases

in educated workers correspond to a 7.2% decline in the share of workers without college educa-

tion. The upskilling shifts in education are also observed in the firms’ explicit labor demand in

the Burning Glass job postings, which feature both required education and required number of

years of prior experience for prospective job applicants. For example, a one-standard-deviation

increase in the share of AI workers is associated with a 0.5 additional year of required education

in the firm’s new job openings.

The additional demand for educated workers in AI-investing firms tends to concentrate in

technical fields. Leveraging the information on majors of the most recent degree for each individ-

ual employee in the resume data, we observe that AI investments are associated with a significant
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increase in the share of employees with majors in STEM degrees and a corresponding decline

in the share of employees with degrees in social science fields. Similarly, the skill requirements

in Burning Glass job postings reveal that AI-investing firms experience a significant increase in

demand for employees with skills in data analysis and IT, while decreasing their search for em-

ployees with skills in traditional operational fields such as finance and maintenance.

Our work contributes to the recent literature on the impact of AI technologies on the labor

market. Previous literature has conjectured that AI has the potential to displace some human

tasks, including high-skilled tasks (Acemoglu and Restrepo, 2019a; Webb, 2020; Frank et al., 2019;

Mihet and Philippon, 2019). Empirically, prior work made progress in measuring exposure to AI

at the occupation level (Felten et al., 2018; Brynjolfsson et al., 2018; Webb, 2020) and the impact

of AI on overall labor demand and employment at the firm level (Alderucci et al., 2020; Rock,

2019; Babina et al., 2021). Several papers look at the impact of AI on labor in specific settings,

such as financial analysts and startups (Grennan and Michaely, 2019; Abis and Veldkamp, 2020;

Cao et al., 2021; Gofman and Jin, 2020).3 Our work is closest to Acemoglu et al. (2021), who use

firms’ occupational structure to proxy for exposure to potential displacement by AI and explore

how this exposure relates to firms’ labor demand. By contrast, we study the effect of firms’ overall

AI investments—including applications of AI that aim to displace workers and those that do not

(e.g., AI-fueled product innovation in Babina et al. (2021)). Furthermore, we complement prior

work that looks at labor demand by examining changes in actual worker composition, including

new hires and departures.

Our paper is the first to document the relationship between the use of AI technologies and

workforce composition at the firm level. While Babina et al. (2021) show that AI investments in-

crease total firm employment, our evidence further shows that this increase is concentrated in

highly-educated workers and high-skill workers with STEM backgrounds and IT skills. A poten-

tial explanation for our findings is that AI-fueled product innovation—the main channel through

which AI investments power firm growth (Babina et al. (2021))—increases firms’ demand for com-

plementary skilled labor. These results contribute to the literature on the labor market effects of

general purpose technologies, which shows that technologies like IT and electricity favor high-

skilled labor but displace medium-skilled workers (Autor et al., 1998, 2003; Fizsbein et al., 2020;

Zator, 2019; Acemoglu and Restrepo, 2021). Bessen et al. (2022) find that IT investments are asso-

3Relatedly, other papers compare decision-making of humans and AI algorithms in various settings (e.g., D’Acunto
et al., 2019; Fuster et al., 2020; Jansen et al., 2020; Erel et al., 2021; Lyonnet and Stern, 2022).
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ciated with an increase in the returns to skill at the firm level. We show that AI investments are

associated with an overall increase in firms’ hiring of skilled labor, but these effects are heteroge-

neous. Demand for some high-skilled labor (e.g., STEM majors, IT skills) rises, while demand for

other medium-skilled or high-skilled labor (e.g., finance, maintenance) declines.

Our evidence on firms’ hierarchical structures also contributes to the literature on technology

adoption and firm organization (Hitt, 1999; Acemoglu et al., 2007; Bloom et al., 2014; McElheran

and Forman, 2019). We find that firms investing in AI technologies become less top-heavy, which

is similar to the previously-documented effect of IT but opposite to the effect of communication

technologies. The combination of our results linking AI to flatter organizational structure and in-

creased demand for skilled labor echoes the finding in Caroli and Van Reenen (2001) that there are

complementarities between organizational change and skilled employees. Our results therefore

support the notion that new technologies such as AI can be an important driver of skill-biased

organizational change.

Methodologically, we provide a new measure of firms’ organizational structure based on text

descriptions of jobs in worker resumes. This measure can be applied to all firms across all indus-

tries and complements previous survey-based measures of firm hierarchy (e.g., Rajan and Wulf,

2006; Bloom et al., 2012). More broadly, our method contributes to the growing literature that uses

textual analysis to measure job tasks and skills (Kogan et al., 2019; Fedyk and Hodson, 2019; Jiang

et al., 2021; Hansen et al., 2021).4

The remainder of the paper is organized as follows. We introduce our data in Section 1 and

detail our methodology for measuring AI investments and workforce composition in Section 2.

Section 3 explores how firms’ initial workforce composition predicts AI investments, while Section

4 presents our main results on the relationship between AI investments and changes in workforce

composition and organization. Section 5 concludes.

1 Data

To investigate how the composition and structure of firms’ workforces changes in firms that in-

vest more heavily in AI, we bring together two datasets. First, we take advantage of a unique

matched employer-employee dataset built from resumes and featuring individual employees’ de-

4Our methododology also contributes to the literature that uses information about firms’ employees to proxy for
intangible capital. See Eisfeldt and Papanikolaou (2013); Crouzet and Eberly (2019); Peters and Taylor (2017) for recent
examples of papers on intangible capital.
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tailed job descriptions and educational backgrounds. Second, we supplement the resume data

with a comprehensive dataset of job postings revealing firms’ demand for education and skills.

1.1 Employment profiles from Cognism

We leverage the employment profile (resume) dataset from Cognism, which offers matched employer-

employee data covering approximately 535 million individuals globally. These data are intro-

duced in detail in Fedyk and Hodson (2019) and Babina et al. (2021) and bring several key advan-

tages that complement existing administrative data. First, Cognism offers broad coverage in the

U.S. Appendix Figure A.1 compares the coverage of U.S. full-time employment in the Cognism

data against official numbers from the Bureau of Labor Statistics. Cognism captures 42% of all

U.S. employment in 2010 (the beginning of our sample), and the coverage steadily increases to

63% in 2018 (the end of our sample), with the average coverage being 53% across these years.5

Second, while Cognism does not have information on wages (as would be included, for ex-

ample, in the U.S. Census Bureau’s Longitudinal Employer-Household Dynamics program), the

Cognism data provide detailed information on individual workers’ occupations, job tasks, and

educational backgrounds—the kind of information that is not available in administrative data.

Specifically, for each individual, we observe the start and end dates of each job, the job title (often

along with a detailed job description), each job’s company name and location, the individual’s

educational record (with university names, degrees, and majors), as well as any patents, awards,

or publications that the individual chooses to include on the resume. This allows us to examine

how firms’ investments in new technologies, such as AI, interplay with granular changes in their

workforce composition, including employee educational attainment, specialization, and seniority.

Finally, the Cognism data also bring advantages relative to the job postings data that have been

previously used to understand the impact of AI on the labor markets (e.g., Alekseeva et al., 2020;

Acemoglu et al., 2020). Working directly with employee resumes enables us to see who is actually

working at each firm, rather than only firms’ demand for employees. As a result, we are able to

capture changes in the workforce composition that occur outside of new hiring (e.g., promotions,

onboarding of new employees through acquisitions, or layoffs of existing employees).

Cognism’s AI Research department leverages techniques from machine learning and natural

language processing, including named entity disambiguation and graph-based modeling meth-

5Although our Cognism data snapshot is from July 2021, we follow Tambe et al. (2020) and Babina et al. (2021) and
only use the years through 2018 to avoid potential noise from workers updating their resumes with a delay.
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ods, to further enrich the resume data by normalizing job titles and occupations, associating em-

ployees with functional divisions and teams within each firm, and identifying institutions, de-

grees, and majors from education records. We match employer names in the Cognism data to

the names of publicly traded firms in the Compustat dataset using the approach developed in

Fedyk and Hodson (2019). The matching of individual resumes to firm entities is performed dy-

namically to account for acquisitions and divestitures. We limit our attention to public firms with

data in Compustat in order to link individual employees to firms and include detailed controls for

other firm characteristics (e.g., sales, cash reserves, R&D expenditures, and markups). The data

cover 657 million US-based person-firm-year observations between 2007 and 2018, of which 120

million (18%) are matched to U.S. public firms. This is consistent with prior statistics showing

that publicly listed firms account for approximately 26% of overall U.S. employment (Davis et al.,

2006). The sample of 120 million person-firm-years matched to U.S. public firms corresponds to

19 million distinct individual employees.

We benchmark the resulting sample of Cognism employees at public firms against these firms’

employment in the Compustat database. Appendix Figure A.2 presents the median and interquar-

tile range of firm-level coverage rates for each year from 2010 to 2018. It is important to note that

our analyses are performed on U.S.-based employees in the Cognism data; however, U.S. pub-

lic firms do not report the number of U.S.-based employees and instead only report their global

employment numbers. Therefore, the coverage rate in Appendix Figure A.2 is lower than that in

Appendix Figure A.1, where the denominator consists of U.S.-based employment numbers. The

coverage rate in Appendix Figure A.2 is stable throughout our sample period, with the median

firm having around 30% of its global employment captured in the Cognism dataset, and the in-

terquartile range being 15-70%. Furthermore, Appendix Table A.1 reports the median coverage

rate in each industry sector for our Compustat-Cognism matched data. The industry median cov-

erage rates range from 18% (Health Care) to 52% (Finance and Insurance).

1.2 Job Postings from Burning Glass

The second dataset we use covers over 180 million job postings in the United States in 2007 and

2010–2018. The dataset is provided by Burning Glass Technologies (BG), which examines over

40,000 online job boards and company websites, collects the job postings data, parses them into a

machine-readable form, and uses the data to construct labor market analytics products. BG em-

ploys a sophisticated deduplication algorithm to avoid double-counting vacancies that post on
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multiple job boards. BG data are quite comprehensive, covering approximately 60–70% of all va-

cancies posted in the U.S., either online or offline.6 The data contain detailed information for each

job posting, including the job title, location, occupation, and employer name. Most importantly

for our paper, the job postings are tagged with (i) thousands of specific skills standardized from

the open text in each job opening, and (ii) specific requirements such as years of education and

experience.

We focus on jobs with non-missing employer names (approximately 65% of all job postings)

and at least one required skill (which corresponds to 93% of all job postings). Since we are inter-

ested in the composition of a firm’s core workforce, we drop job postings that are internships. We

match the employer firms in the remaining job postings to Compustat firms using fuzzy matching

after stripping out common endings such as “Inc." and “L.P.". For observations that do not match

exactly on firm name, we manually assess the top ten potential fuzzy matches based on the firm

name, industry, and location. Out of 112 million job postings with non-missing employer names

and skills, 42 million (38%) are matched to Compustat firms. This slightly over-represents em-

ployees of publicly listed firms, which constitute just over one fourth of U.S. employment in the

non-farm business sector (Davis et al., 2006).

1.3 Additional Data Sources

We merge the Cognism resume data and the Burning Glass job postings data to several additional

data sources. We collect commuting-zone-level wage and education data from the Census Ameri-

can Community Surveys (ACS) and industry-level wages and employment data from the Census

Quarterly Workforce Indicators (QWI). Firm-level operational variables (e.g., sales, cash, assets)

come from Compustat.

2 Methodology and Descriptive Statistics

2.1 AI Investments

We leverage the methodology proposed by Babina et al. (2021) to measure firms’ investments in

AI based on their intensity of AI-skilled hiring. The intuition is that successful implementation

and use of AI technologies by firms requires employees with expertise in AI methods. Since other

6See Hershbein and Kahn (2018) for a detailed description of the BG data, including their representativeness, which
is stable over time at the occupation level.
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inputs to AI, such as data and computing infrastructure, are complementary to AI-skilled labor,

our human-capital based measure allows us to capture the relative intensity of AI investments

across firms.7

In order to identify AI expertise, we take advantage of (i) the detailed information on required

skills in the job postings data and (ii) new, data-driven methodology for identifying AI-related

jobs. Previous methods for classifying job postings based on the presence of key terms from a pre-

specified list (e.g., Hershbein and Kahn, 2018; Alekseeva et al., 2020) are likely to suffer from both

Type I (incorrectly labeling tangentially-related employees as AI-related) and Type II (missing

real AI skills that did not make the initial dictionary) errors due to the arbitrariness of the list

of keywords. This is especially relevant in a quickly-evolving domain such as AI, where new

emerging skills can be easily missed. The methodology from Babina et al. (2021) circumvents these

challenges by learning the AI-relatedness of each of approximately 15,000 unique skills directly

from the job postings data, based on their empirical co-occurrence (within required lists of skills

across job postings) with unambiguous core AI skills. We then take the skills that are empirically

most related to the core AI skills and search for those in our resume data. Finally, we aggregate

the worker-level data to the firm-year level by calculating the share of the firm’s employees who

are AI-skilled.

More specifically, we start by measuring the AI-relatedness of each skill in the job postings

data by calculating that skill’s co-occurrence with Artificial Intelligence (AI) and its three main

sub-fields: machine learning (ML), natural language processing (NLP), and computer vision (CV):

wAI
s =

# of jobs requiring skill s and (ML, NLP, CV, or AI in required skills or in job title)
# of jobs requiring skill s

Intuitively, this measure captures how correlated each skill s is with the core AI skills. For example,

the skill “Recurrent Neural Network” has a value of 0.965, which means that 96.5% of job postings

that list “Recurrent Neural Network” as a required skill also require one of the core AI skills or con-

tain one of the core AI skills in the job title. Thus, a “Recurrent Neural Network” requirement in a

job posting is highly indicative of that job being AI-related. On the other hand, the AI-relatedness

measure of the skill “Microsoft Office” is only 0.003. In Appendix Table A.2 (reproduced from

Babina et al., 2021), we list the skills with the highest AI-relatedness measures—namely, the skills

that co-occur with the core AI skills in at least 70% of all job posting.

7It is possible that external AI software and solutions (e.g., IPSoft Amelia) may substitute for the hiring of AI-skilled
labor. However, Babina et al. (2021) shows that the use of external AI software solutions tends to be complementary to
internal AI hiring and incorporating those in the measure of AI investments yields similar results.
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In the Cognism resume data, we identify AI-skilled employees as those whose job positions

directly involve AI. We begin with the set of 67 keywords in Table A.2, which have the highest

skill-level AI-relatedness measures in the job postings data. We then consider every employment

record of each individual in the resume data and identify whether any of these AI-related terms

appear in: (i) the job title or description; (ii) any patents obtained during the year of interest or

the two following years (to account for the time lag between the work and the patent grant); (iii)

any publications during the year of interest or the following year; or (iv) any awards received

during the year of interest or the following year. If any of these conditions are met, then we

classify that employee at that firm in that year as AI-skilled. For example, jobs with titles such as

“senior machine learning developer” or publications such as “A new cluster-aware regularization

of neural networks" are identified as AI jobs.

To aggregate to the firm level, we use the number of AI-related employees and the number of

total employees at each firm in each year and compute the fraction of employees of that firm in

that year who are classified as AI-skilled. Given that our empirical analyses focus on U.S.-listed

firms, our firm-level measure focuses on the employees who are based in the U.S. Babina et al.

(2021) provide a detailed discussion of this measure, perform multiple validation exercises, and

offer detailed case studies of AI investments by individual firms in our sample. For the sake of

brevity, we do not reproduce that analysis in this paper.

2.2 Labor Composition

We use the resume data to examine three aspects of firms’ workforces: (i) educational attainment

in terms of college and post-graduate degrees; (ii) specialization in terms of college majors (e.g.,

STEM vs. humanities vs. social science); and (iii) hierarchical structure in terms of the composition

of employees across different levels of seniority. We describe the construction of each of these

variables in turn below.

Educational attainment

Cognism uses the educational information from the resumes to classify each individual at each

point in time based on that individual’s highest educational attainment to date. The categories

are: (i) no secondary education; (ii) associates degree; (iii) bachelors degree; (iv) masters degree

other than an MBA; (v) MBA; and (vi) doctoral degree (including Ph.D. and J.D. degrees). For
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each firm in our sample, we compute four educational attainment variables: (i) the share of em-

ployees in each year who have a college degree (either a bachelors or an associates), (ii) the share

of employees who have at least a masters degree, (iii) the share of employees who have a doctoral

degree, and (iv) the share of employees who do not have a college degree. Figure 1 plots the mean

of these four shares in the resume data for the sample of Compustat firms.

Educational specialization

Cognism extracts major information from individual’s education records and groups majors into

broad categories of (i) Humanities, (ii) Social Sciences, (iii) Science, Technology, Engineering, and

Mathematics (STEM), (iv) Fine Arts, and (v) Medicine. We take these broad categories and com-

pute, for each firm in each year, the share of current employees whose most recent degrees fall

in each category. Figure 2 plots the distribution of majors based on the most recent degree in the

resume data for the sample of Compustat firms.

Seniority

The Cognism data are enriched with state-of-the-art machine learning techniques to identify em-

ployees’ departments and seniority. First, over 20,000 individual job titles are classified manually

based on markers of seniority and department. The remaining job titles are then classified into

departments using a probabilistic language model and into seniority levels using an artificial neu-

ral network. There are six levels of seniority in total: (i) entry-level positions where individuals

start straight out of undergraduate or high school education, (ii) experienced staff in roles such

as individual senior contributor but not managing others, (iii) team leads who manage others but

have little to no company-level decision-making responsibility, (iv) middle management roles that

oversee several smaller teams, (v) leadership positions that head larger departments or business

segments, and (vi) executive-level leadership such as the Chief Executive Officer and Chief Oper-

ating Officer. Fedyk et al. (2021) perform an evaluation of Cognism’s seniority classification on the

sample of accounting firms by assessing the model’s output against a manually reviewed sample

of over 10,000 positions. They find that Cognism’s seniority classification has an accuracy rate of

over 95%. In this paper, we group the seniority levels into three broader bands: low (consisting of

entry-level positions and experienced individual contributors), medium (team leads and middle

management), and high (leadership and the executive level). Figure 3 plots the shares of work-

ers in each of these three seniority levels based on the resume data for the sample of Compustat
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firms. Overall, nearly 70% of employees are in junior-level or non-supervisory roles, with 20% in

mid-tier and 11% in senior management.

Other measures of firm organization structure, such as Rajan and Wulf (2006) and Guadalupe

and Wulf (2010), are typically based on surveys of firm managers and focus on the breadth and

depth of the hierarchy among managers. In particular, breadth is represented as the CEO’s span of

control, and depth is represented by the number of levels between the CEO and divisional man-

agers.8 Our measure is related to these measures: for example, flatter organizational hierarchy

(i.e., more entry level workers and fewer senior managers) is associated with more breadth and

less depth. In addition, our measure offers several advantages. First, it is based on the actual orga-

nizational structure of the firm, complementing the survey-based measures. Second, our measure

captures the composition of workers across all hierarchical levels, which provides a more holis-

tic picture of the firm’s organizational structure than the number of levels between the CEO and

lower-level managers or workers.

2.3 Labor Demand

We use the job postings data from Burning Glass to measure two aspects of firms’ labor demand:

(1) required education and experience and (2) required skills. Since these measures are calculated

from firms’ job postings, they only measure firms’ labor demand—the types of workers firms wish

to hire—instead of the types of workers working at each firm.

Required education and experience

For each job posting, Burning Glass codes the minimum years of required education and the mini-

mum years of required experience. 59% of job postings specify an educational requirement, which

averages 14.5 years of school. 52% of job postings specify a requirement for prior work experience

in related fields, which averages 4 years. Figure 4 plots the distribution of the number of years

of minimum education required and the number of years of minimum experience required (using

job postings that specify a given requirement). Hershbein and Kahn (2018) show that average edu-

cational requirements in Burning Glass align well with the education levels of employed workers

at the occupation and MSA levels.

8Other surveys, such as the World Management Survey, also measure the number of levels between the CEO and
entry-level workers.
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Skill clusters

Burning Glass groups all skills into one of 28 skill clusters. Skill clusters are groupings of skills

that have similar functionality, can be trained together, and/or frequently appear together in job

postings. For example, the skill “Python” belongs to the “Information Technology” skill cluster,

and the skill “Machine Learning” belongs to the “Analysis” skill cluster. Table 1 presents the top

five skills (i.e., skills appearing in the largest number of job postings) for each skill cluster.

For each job posting, we calculate the share of required skills that fall within each skill cluster.

For example, if a job posting requires “Python” and “Machine Learning,” then the share of the

“Information Technology” skill cluster and the share of the “Analysis” skill cluster are both 50%.

We then average these shares across all job postings of a given firm in a given year. This results in

a weighted share of job postings that require skills in each skill cluster.9 The shares of all 28 skill

clusters add up to one.

2.4 Descriptive Statistics

We present summary statistics for each of our measures of worker composition. We start by show-

ing the evolution of education levels and specialization of workers over time. Figure 5 plots the

share of workers in four education levels (undergraduate, masters, doctoral, and less than college)

based on the Cognism resume data over time. Figure 6 plots the share of workers in five major

fields (STEM, social science, fine arts, humanities, and medicine) based on the Cognism resume

data over time. For comparison, we also plot the distribution of education levels and majors of

U.S. workers in the Census American Community Survey (ACS), which is a 1% random sample of

the U.S. population, in each year between 2010 and 2018 in Appendix Figures A.3 and A.4. In both

Cognism and ACS, the share of workers in each education level is mostly flat over time, with an in-

tuitive slight upward trend in the share of workers with bachelor’s or master’s degrees and slight

downward trend in the share of workers with no post-secondary education. In both datasets, there

is a small increase in the share of workers with STEM majors and a small decrease in the share of

workers with social science majors. While Cognism offers slightly more comprehensive cover-

age of more educated workers and workers in STEM fields, our benchmarking exercises suggest

stable representativeness of the Cognism resume data across education categories and majors. Im-

9This is equivalent to weighting each skill required by a job posting by the inverse of the total number of skills
required by the job posting. We do not directly compute the share of job postings requiring skills in a skill cluster,
because generic skills like “communication” are required by most job postings, although they constitute a small part of
the job requirements for each job posting.
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portantly, there is no differential over-representation of highly-educated workers in some periods

versus others.

Next, we document the variation of workers’ education levels across geographic areas. Figure

7 considers the job postings data and shows the average required number of years of education in

each state. Intuitively, states such as Massachusetts and California have the highest demand for

educated workers.

We then look at the distribution of workers’ education levels and specialization across indus-

tries. Figure 8 plots the average share of workers with undergraduate, masters, and doctoral

degrees in the Cognism resume data for public firms in each of the 2-digit NAICS sectors. Firms

in the “Education Services” sector and the “Professional and Business Services” sector have the

highest shares of workers with undergraduate degrees, masters degrees, and doctoral degrees.

Figure 9 considers the distribution of workers’ educational majors across industries. We see in-

tuitive trends that help validate Cognism’s classification of educational majors: the tech sectors

(“Professional and Business Services” and “Information”) and the “Manufacturing” sector have

high shares of workers with STEM majors, “Finance/Insurance” and “Real Estate” have the high-

est shares of workers with social science majors (which include all business school degrees such as

MBAs), and the “Health Care” sector has the highest share of workers with degrees in medicine

fields.

Finally, Figure 10 considers the distribution of workers’ seniority levels across industries.

We observe that all industries have a pyramid structure, with the majority of workers in low-

seniority levels and a small percentage of workers in high-seniority levels. The only exceptions

are “Arts/Entertainment” and “Health Care,” which are top-heavy with more workers in senior

positions than in mid-level positions. Given the relative homogeneity of hierarchical structures

across diverse industry sectors, even small changes in the proportion of employees in different

levels is a meaningful indicator of shifts in a firm’s organizational structure.

3 Does Ex-ante Labor Composition Predict Growth in AI Investments?

We consider the determinants of firms’ investments in AI technologies and whether firms’ initial

labor composition can predict future AI investments. Theoretically, firms’ initial labor composi-

tion could affect both their demand for AI investments and their ability to invest in AI by attracting

AI talent. For example, Bresnahan (2019) and Agrawal et al. (2021a) argue that the degree of mod-
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ularity in the organizational structure of a firm could impact the firm’s ease of AI adoption. When

modularity is high, tasks are more independent, and there is less need for coordination; as a result,

it is easier to implement AI and change decision making in one part of the organization, as it does

not require changes elsewhere. In terms of employee specialization, Acemoglu et al. (2020) show

that establishments with occupations that are more exposed to AI technologies have a higher de-

mand for AI workers. And in terms of firms’ workforce education, Babina et al. (2021) document

that firms with alumni connections to universities that are historically strong in AI research invest

more in AI by being able to attract AI-trained students from those universities.

We are interested in understanding the use of AI technologies by a wide range of firms. In

order to not conflate this with the invention of new AI tools, we exclude firms in the tech sector

(2-digit NAICS 51 or 54) from our empirical analyses. In Table 2, we examine how ex ante worker

composition predicts future growth in firm-level AI investments by estimating the following cross-

sectional specification:

∆ShareAIWorkersi,[2010,2018] = βWorkerCompositioni,2010 + IndustryFE + εi, (1)

where ∆ShareAIWorkersi,[2010,2018] denotes the change in the share of firm i ’s AI-skilled employ-

ees from 2010 to 2018, standardized to mean zero and standard deviation one to streamline the

economic interpretation. All regressions include 2-digit NAICS industry fixed effects. The ex-

planatory variables include the following measures of ex-ante worker composition measured as

of 2010: the shares of workers in each seniority level in column 1, the shares of workers in each

education level in column 2, and the shares of workers in each major in column 3. To avoid multi-

collinearity, we omit the share of workers in the high seniority level in column 1, the share of

workers with no college degree in column 2, and the share of workers with medicine major in col-

umn 3. Column 4 considers seniority, educational attainment, and college majors simultaneously.

All continuous variables are winsorized at 1% and 99% to limit the influence of outliers. We weigh

the estimating equation by each firm’s total number of employees in the Cognism resume data in

2010 to account for potential differences in precision in the measurement of AI investments across

firms with different coverage.10

The results in Table 2 highlight that firms with more workers with doctoral degrees and more

10Since the numbers of worker resumes are correlated with firm size, this weighting scheme also roughly weights
firms in accordance to their contribution to the economy. Our results are also robust to weighting by Cognism’s cover-
age rate of Compustat employment in 2010.
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workers with STEM majors invest more in AI going forward. This is broadly consistent with the

evidence in Babina et al. (2021) that firms with more educated workforces and alumni connections

to AI-strong universities are able to attract AI talent more easily. The hierarchical structure of the

firm does not significantly predict AI investments.

4 Firms’ AI Investments and Changes in Labor Composition

We explore how the key aspects of firms’ labor composition change with firms’ investments in

AI. Firms that invest more in AI shift towards more educated workforces, with more emphasis on

STEM degrees and skills in analysis and IT. At the same time, AI-investing firms become less top-

heavy in terms of their hierarchies, with increasing shares of junior employees and less emphasis

on middle-management and senior roles.

4.1 AI Investments and Employee Seniority

We begin the analysis by examining whether firms that invest in AI become more top-heavy or

bottom-heavy in terms of their hierarchical structure. The direction of this shift is ex ante ambigu-

ous and an open empirical question. On the one hand, AI contributes to firm growth (Babina et

al., 2021), and as enterprises have grown in size over the 20th century, the share of employees in

managerial positions has risen dramatically (Radner, 1992). Thus, AI-fueled growth may result in

the continuation of this trend towards increased organizational complexity and increased need for

middle- and top-level managerial positions. For example, Caliendo et al. (2015) show that many

firms expand by adding layers of management. On the other hand, Garicano and Rossi-Hansberg

(2006) present a theoretical model where reductions in costs of accessing knowledge through im-

proved data processing (which is arguably the main effect of AI technology) result in increases in

the problem-solving ability of employees at all levels, leading to increased span of control and less

reliance on top-heavy hierarchical levels.

Previous technologies also had differing impacts on firm organization. Acemoglu et al. (2007)

show that firms investing in new information technologies are more likely to favor decentraliza-

tion. Bloom et al. (2014) find that information technology and communication technology have

opposing effects on firm organization: information technology is a decentralizing force allowing

workers and lower-level managers to handle more problems, while communication technology

decreases autonomy and is associated with more centralization.
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Empirically, we measure hierarchical flatness as the share of a firm’s overall employees who

are in more junior versus more senior positions: if firms become more top-heavy, increasing their

middle-management and senior roles, then the share of employees in senior positions will rise,

and vice versa. We link the changes in the shares of employees across levels to firms’ AI invest-

ments using long-differences regressions, which are standard in settings analyzing slow-moving

processes like technological progress (Acemoglu and Restrepo, 2020) and especially well-suited

to study AI investments, which are gradual over time and have non-immdiate effects (Babina et

al., 2021). Specifically, we regress firm-level changes in the share of junior, middle-ranked, and

senior employees from 2010 to 2018 on changes in AI investments proxied by the growth in the

share of AI workers. By taking first differences in independent and dependent variables, the long-

differences specification ensures that time-invariant firm characteristics do not drive the results.

In Table 3, we report the estimates from the following regression:

∆SeniorityLeveli,[2010,2018] = β∆ShareAIWorkersi,[2010,2018] +Controls
′
i,2010γ+ IndustryFE+ εi, (2)

where the main independent variable, ∆ShareAIWorkersi,[2010,2018], captures the change in the

share of AI workers in firm i from 2010 to 2018, standardized to mean zero and standard devi-

ation of one as in Table 2. IndustryFE are 2-digit NAICS fixed effects. As in Section 2.4, we focus

on firms in non-tech sectors, and weigh the estimating equation by each firm’s total number of

employees in the Cognism resume data in 2010. In columns 1, 3, and 5 we include only industry

fixed effects to examine the unconditional relationship between changes in AI investments and

employee seniority. In columns 2, 4, and 6, we add a rich set of controls proposed by Babina

et al. (2021) and measured at the start of the sample period in 2010: (i) firm-level characteristics

(log sales, cash/assets, R&D/Sales, log markup, and the log of the firm’s total number of jobs);

(ii) characteristics of the commuting zones (CZ) where each firm is located (the share of workers

in IT-related occupations, the share of college-educated workers, log average wage, the share of

foreign-born workers, the share of routine workers, the share of workers in finance and manu-

facturing industries, and the share of female workers); and (iii) the log industry-average wage.11

Summary statistics on key variables for the regression sample are provided in Appendix Table

A.3.

In columns 1 and 2 of Table 3, the dependent variable is the firm-level change in the share

11When firms span multiple commuting zones, we calculate commuting-zone-level variables as the weighted aver-
age, using numbers of Burning Glass job postings in each commuting zone as weights.
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of junior employees (i.e., employees in entry-level and single-contributor positions) from 2010 to

2018. In columns 3 and 4, the dependent variable is the firm-level change in mid-level employees

(i.e., team leads and middle managers), and columns 5 and 6 consider the firm-level change in se-

nior employees (department heads and top-level leadership). The results reveal that AI-investing

firms become flatter (or, more precisely, more bottom-heavy and less top-heavy). A one-standard-

deviation increase in AI investments is associated with a 1.6% increase in the share of junior em-

ployees, accompanied by a 0.8% decline in both mid-level employees and senior management.

Importantly, the results are almost identical with and without the inclusion of detailed ex-ante

firm-level, location-level, and industry-level controls in even columns, despite the adjusted R-

Squared rising significantly (nearly doubling for both the share of junior employees and the share

of senior employees). This makes it unlikely that the results are driven by ex-ante omitted firm

characteristics (Altonji et al., 2005; Oster, 2019). In Appendix Table A.4, we alternatively weigh the

regressions by the coverage rate in 2010 and find similar results.

One concern is that firms’ hierarchical structure may change as a result of firm growth and not

AI investments per se. For example, if the adjustment costs of hiring junior workers are lower, fast-

growing firms will likely expand by hiring junior employees. In Appendix Table A.5, we directly

control for firms’ sales growth from 2010 to 2018 in the regressions. While faster firm growth is

indeed correlated with an increase in the share of junior workers and a decrease in the share of

senior workers, the effects of AI investments remain unchanged conditional on firm growth. This

suggests that the effects are not mechanically driven by firm growth.

The magnitude of the results in Table 3 is economically meaningful, given that the cross-

sectional average change in the share of junior employees over the sample period is only 0.18%

(see Table A.3), and there has been no overall trend towards more junior employees across the

cross-section of U.S. public firms. AI-investing firms experience fast shifts towards more junior

employees and reductions in senior-lever employees. This is consistent with the theoretical pre-

diction of Garicano and Rossi-Hansberg (2006) and empirical evidence in Bloom et al. (2014) that

technologies that improve prediction and decision-making, such as AI, will give lower-level work-

ers more autonomy and require fewer managerial layers in firms.

4.2 AI Investments and Employee Educational Attainment

We leverage the detailed individual-level information in the resumes to study the association be-

tween changes in firm-level AI investment and the upskilling of the firms’ workforces in terms
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of the employees’ educational attainment. Educational attainment is a particularly relevant trend

to investigate in the context of firms’ AI investments, given the extensive labor economics liter-

ature on skill-biased technological change (Autor et al., 1998; Acemoglu and Autor, 2011; Autor

et al., 2003; Katz and Murphy, 1992). On the one hand, previous technologies such as IT have

increased the relative demand for college graduates. In the case of AI, Babina et al. (2021) show

that AI-investing firms engage in more product innovation, which may further increase firms’ de-

mand for skilled labor (Bresnahan et al., 2002). On the other hand, Webb (2020) predicts that AI

is more likely to replace high-skilled tasks performed by highly-educated workers than previous

technologies such as software and robots. Grennan and Michaely (2020) study the impact of AI on

a particular group of high-skilled workers—financial analysts,—and find that AI replaces some

technical tasks but increases the importance of soft skills. Furthermore, changes to organizational

hierarchies may induce shifts in labor composition, as flatter hierarchical structures could require

higher human capital from each individual employee (Caroli and Van Reenen, 2001).

In Table 4, we investigate the extent to which AI, as a technology, is associated with labor

shifts towards more educated workers. To do this, we estimate the regression in Equation 2 and

using the same independent variable and controls as in Table 3, but looking at the changes in

the share of workers in each education level as the outcome variable. To motivate our regression

specification for examining changes in firms’ low versus high-skilled workers, suppose that firms’

production function takes the following form: Q = AF(LH, LL, AI, X), where Q is output, A is

productivity, LH and LL are high-skilled and low-skilled labor respectively, AI is AI capital, and

X is other inputs, including physical capital. Assume that labor input Lj (j = H, L) is supplied

flexibly at wage W j, and other inputs are quasi-fixed. Following Caroli and Van Reenen (2001), we

consider a translog short-run cost function, and Shepard’s Lemma implies that the share of high-

skilled labor in total labor costs is: SHAREH = α ln(WH/WL) + βAI + γ ln Q. Assuming that

the production function is homothetic (which we relax later), then after taking the differences, we

get: ∆SHAREH
it = β∆AIit + Xi + ∆uit.12 Therefore, our long-differences specification approxi-

mately corresponds to the factor demand function, with a positive (or negative) coefficient β in a

regression of high-skilled workers on AI investment indicating that AI and high-skilled labor are

complements (or substitutes).

The results in Table 4 show that larger AI investments are associated with educational up-

12We can write the relative wages ln(WH/WL) as composed of industry-year dummies, firm fixed effects, and id-
iosyncratic shocks.
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skilling of the workforce. Using estimates from even columns when all controls are included, a

one-standard-deviation increase in AI investments is associated with a 3.7% increase in the share

of college-educated workers, a 2.9% increase in employees with masters degrees, and a 0.6% in-

crease in employees with doctoral degrees. Correspondingly, the share of employees with no

college education declines by a substantial 7.3%. Therefore, our results suggest that AI invest-

ments and high-skilled labor are complements. As with the results on seniority, the results on

educational attainment are nearly identical with (even columns) and without (odd columns) the

inclusion of detailed firm-level, location-level, and industry-level controls, indicating that these

findings are likely not driven by omitted firm, industry, or geographic characteristics. The results

are also interesting in light of relatively slow shifts in the educational makeup of the workforce

in general shown earlier in Figure 5. The share of workers with advanced degrees (masters and

doctoral) has remained practically flat from 2010 to 2018 in the overall workforce. By contrast,

the share of employees with advanced degrees (both masters and doctoral degrees) has risen sig-

nificantly in firms that have been investing in AI, suggesting that there is a reallocation of highly

educated workers away from non-AI investing firms and towards firms that invest more heavily

in AI.

The reason for the shift towards more educated workforces in AI-investing firms appears to

be, at least in part, increasing demand for educated and experienced employees on the firms’ side.

In Table 5, we complement the results from the Cognism resume data with an analysis of labor-

related outcomes measured using job postings data from Burning Glass. We estimate Equation 2

using the same independent variable and controls as in Tables 3 and 4, but with the dependent

variables being: (i) the change in the average number of years of education required in the firm’s

job postings from 2010 to 2018 (columns 1 and 2), and (ii) the change in the average number of

years of experience required in the firm’s job postings from 2010 to 2018 (columns 3 and 4).13 We

observe that firms that invest more in AI look for more educated and more experienced work-

forces. For example, a one-standard-deviation increase in the share of AI workers from 2010 to

2018 is associated with additional 0.52 years of educational experience (column 2), reinforcing the

increased educational attainment of actual workers that we observe in Table 4.

We perform a series of robustness tests in the Appendix. First, in Appendix Table A.6, we

exclude AI workers when calculating the share of workers in each education level (columns 1–6).

13The sample size is smaller than in Table 4, because not all firms in the Cognism resume data are matched to job
postings in Burning Glass data.
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This has little impact on the results, suggesting that the educational upskilling is not mechanically

due to the hiring of AI workers. Second, Appendix Table A.7 shows that the results are robust

when we alternatively weigh the regressions by our Cognism data coverage rate in 2010. Finally,

to account for potential non-homotheticity of the production function (i.e., the ratio of high-skilled

to low-skilled labor changes as firm expands), we control for firm sales growth from 2010 to 2018

in Appendix Table A.8 and find similar results.

4.3 AI Investments and Employee Specialization and Skills

We consider one additional aspect of the changing workforce of firms and its relationship to AI

investments: the importance of technical and non-technical skills. A number of recent studies

point out that technical employee skills are uniquely important to modern firms. For example,

Agrawal et al. (2021b)document that engineers and scientists are among the employees whose net

flows (arrivals and departures) are most predictive of the firm’s stock returns. Fedyk and Hodson

(2019) show that technologies such as IT in the early 2000s and data analysis in 2010s can even be

overvalued by corporate investors.

We use the resume data to observe whether AI investments are associated with broader

changes in the technical specialization of AI-investing firms. Specifically, in Table 6, we re-estimate

Equation 2 using the same independent variable and controls as in Tables 3 and 4, but with de-

pendent variables being: (i) the change in the share of employees whose most recent degree was

in a STEM field in columns 1 and 2, (ii) the change in the share of employees whose last degree

was in social science in columns 3 and 4, (iii) the change in the share of employees whose most

recent degree was in fine arts in columns 5 and 6, (iv) the change in the share of employees whose

last degree was in humanities in columns 7 and 8, and (iv) the change in the share of employees

whose last degree was in medicine in columns 9 and 10.

The results reveal that increased AI investments are associated with a general trend towards

more technically-skilled employees at the firm level. When all controls are included, a one-

standard-deviation increase in the share of AI workers at the firm is associated with a 1.9% in-

crease in the share of employees whose most recent degree is in STEM.14 This increase is offset

by declines in the shares of employees with backgrounds in social science (a decline of 1.1%), and

medicine (a smaller degree of 0.4%).

14This increase is not driven by the hiring of AI workers, who account for a small fraction of firms’ employees. In
Appendix Table A.6 columns 7 and 8, we exclude AI workers and find a similar increase in the share of workers in
STEM fields.
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Once again, we supplement our resume-based results with firms’ demand from Burning Glass

to see whether firms that invest more in AI start increasing their demand for technical skills more

generally. AI has been highlighted as a technology that can shift the skill requirements of the

workforce by Acemoglu et al. (2020), who also consider job postings and find that establishments

with more occupations that are highly exposed to AI are associated with both increased redundan-

cies in existing skills and more requirements of new skills. We focus on skill clusters, and for each

skill cluster in Burning Glass, we estimate Equation 2 with the same independent variable and

controls as in Tables 3–6, but with the dependent variable being the share of job postings within

each specific skill cluster. The results, reported in Table 7, show that the main skill shifts associated

with firms’ AI investments are (i) increased demand for data analysis skills, (ii) increased demand

for IT skills, and (iii) lower demand for maintenance skills. For example, a one-standard-deviation

increase in the share of AI workers at a given firm from 2010 to 2018 corresponds to that firm in-

creasing the share of its job postings requiring IT skills by 1.2%. These results suggest that AI skills

are complementary to IT skills and can substitute for maintenance skills. Interestingly, firms that

invest more heavily in AI do not reduce their demand for some of the skill groups that are most

often predicted to be replaced by AI, such as customer service, HR, and legal skills.15

Overall, we find that firm AI investments are associated with changing workforces and in-

creased importance of technical skills. (Babina et al., 2021) find that AI-fueled innovation is the

main channel through which AI investments seem to power firm growth to date. Our findings

are consistent with AI-fueled product innovation increasing firms’ demand for complementary

skilled labor in STEM and IT jobs, which are necessary to structure, store, and process data—a

crucial input for AI applications.

4.4 Instrumental Variable Estimates

In this section, we use an instrumental variable strategy based on firms’ ex-ante exposure to uni-

versities’ supply of AI graduates. The instrument was first used in Babina et al. (2021). The instru-

ment isolates variation in firms’ AI investments driven by the supply of AI-skilled labor, which

is a key input to AI. This mitigates concerns regarding reverse causality and potential bias from

unobserved demand shocks driving both firms’ AI investments and changes in firm organization

or workforce composition. The estimates are informative about the effects on firm organization

15This may be due to challenges in adopting AI for these tasks. For example, Tambe et al. (2019) identify complexity
of HR phenomena, small data sets, and fairness and legal constraints as main challenges in using AI techniques for HR
tasks.
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or workforce composition if firms invest more in AI due to increased access to AI-skilled labor.

In particular, we instrument firm AI investments using the variation in firms’ ex-ante exposure to

the supply of AI talent from universities that are historically strong in AI research. As argued in

Babina et al. (2021), academic research in AI has been ongoing for much longer than the commer-

cial interest in AI, and universities that are historically strong in AI research have been able to train

more AI-skilled graduates in recent years. As a result, firms’ preexisting connections to AI-strong

universities offer a plausibly exogenous source of variation in firms’ access to the supply of AI

talent during the 2010s boom in commercial interest in AI.

The instrument for firm i is: IVi = ∑u s2010
iu AIstrongu, where s2010

iu is the share of STEM workers

in firm i in 2010 who graduated from university u, and AIstrongu equals one if university u is

identified as an AI-strong university based on pre-2010 publications.16Two key concerns with our

instrument are that AI-strong universities may also be strong in computer science (CS) outside of

AI or generally be strong (highly-ranked) universities, which might affect firm outcomes through

channels other than AI investments. To address these concerns, we control for firms’ ex-ante

exposure to CS-strong universities ∑u s2010
iu CSstrongu and top-ranked universities ∑u s2010

iu Top10u,

where CSstrongu is the average pre-2010 share of (non-AI) CS researchers at university u, and

Top10u equals one if a university is among the top 10 universities ranked by the U.S. News &

World Report.

Appendix Tables A.9, A.10, and A.11 present the IV estimates. In each table, the odd columns

control for industry fixed effects and exposure to CS-strong and top-10 universities, and the even

columns additionally control for (i) baseline controls (firm-, industry-, and commuting-zone-level

controls), (ii) pre-period firm sales and employment growth between 2000 and 2008 to address

unobservable firm characteristics that might simultaneously drive firms’ growth trajectories and

their hiring of AI workers, and (iii) state fixed effects to control for local labor market character-

istics that might drive both firms’ AI hiring and their growth. In all specifications, the first-stage

F-statistics are above 10. Consistent with our main results using the long-differences specification,

we find that instrumented firm AI investments are associated with the flattening of organizational

hierarchy and upskilling of firms’ workforce (Appendix Tables A.9 and A.10). We also find that AI-

investing firms experience an increase in the share of STEM workers and a decrease in the share of

workers in social sciences, although these IV estimates are not statistically significant (Appendix

TableA.11). These results suggest that the patterns we document are not driven by unobserved

16Babina et al. (2021) describes the data used to construct the IV and performs validation exercises in more detail.
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demand shocks simultaneously affecting AI investments and firm organization or workforce, but

rather reflect the effects of AI investments due to supply shocks.

5 Conclusion

In this paper, we study the relationship between the use of AI technologies and workforce com-

position and organization at the firm level. We find that firms that initially have a more educated

workforce and higher emphasis on STEM workers are more likely to invest in AI. At the same

time, firm-level growth in AI investments is associated with an increasingly flatter hierarchical

structure, an increase in the share of workers with college degrees and advanced degrees, and a

further increase in the share of workers with STEM majors. Data on job postings reveal that firms

investing in AI technologies increase their demand for workers with more years of education and

workers with data analysis and IT skills.

Our evidence of major changes in firms’ workforce composition and organization accompany-

ing AI investments contributes to our understanding of how AI can transform firms’ organization

and production processes. As a predictive technology, AI improves individual employees’ ability

to make predictions and decisions, which increases the autonomy of workers and reduces the de-

mand for managerial positions. However, unlike previous automation technologies that displaced

routine tasks, AI investments are not associated with the reduction in demand for high-skilled

workers performing prediction tasks, instead increasing the share of high-skilled labor at the firm

level. Further understanding the interactions between AI technology, production processes, and

firm organization would be a fruitful area for future work.

Our evidence also helps to shed light on the impact of AI on the labor market. At the firm level,

AI is associated with increased demand for skilled labor and does not seem to displace tasks that

are commonly predicted to be replaced by AI, such as customer service, human resources, and

legal jobs. However, it remains an open question how these effects aggregate to the labor market

level, and it is possible that AI displaces jobs in non-AI-investing firms. Furthermore, our results

imply that there is a reallocation of skilled labor from non-AI-investing firms to AI-investing firms,

which might have important implications for sorting and between-firm inequality in the labor

market.
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Figure 1. Distribution of Education Levels in the Cognism Resume Data

This figure shows the fraction of workers in each education level (no college, college, master, and
doctoral) in the Cognism data. The four education levels are mutually exclusive and each worker
is counted once for their highest level of education. The sample includes all workers in Compustat
firms between 2010 and 2018.
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Figure 2. Distribution of Majors in the Cognism Resume Data

This figure shows the fraction of workers in each major (STEM, social science, fine arts, human-
ities, and medicine) in the Cognism data. STEM includes engineering (e.g., electrical, chemical,
mechanical), physical sciences (e.g., math, physics, chemistry, computer science, statistics), and
biological sciences (e.g., biology, pharmacology). The majors are mutually exclusive; for each
worker, we record the major of the most recent degree earned. The sample includes all workers in
Compustat firms between 2010 and 2018.
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Figure 3. Distribution of Seniority Levels in the Cognism Resume Data

This figure shows the fraction of workers in each seniority level (low, medium, and high) in the
Cognism data. The seniority levels are described in text. The sample includes all workers in
Compustat firms between 2010 and 2018.
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Figure 4. Distribution of Required Years of Education and Experience in the Burning Glass
Job Postings Data

This figure shows the fraction of job postings with the number of years of required education
(Panel (a)) or the number of years of required work experience (Panel (b)) in the Burning Glass job
postings data. The sample includes all job postings of Compustat firms between 2010 and 2018.
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Figure 5. Times Series of Workers’ Education Levels in the Cognism Resume Data

This figure shows the time series of workers’ education levels. Each line is the fraction of all
employees (across all public firms) with each highest education level (less than college, college,
master, or doctoral) in the Cognism resume data in a given year from 2010 to 2018.
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Figure 6. Times Series of Workers’ Majors in the Cognism Resume Data

This figure shows the distribution of workers’ majors over time. Each line is the fraction of all
employees (across all public firms) in each major (STEM, social science, fine arts, humanities, and
medicine) in the Cognism resume data in a given year from 2010 to 2018. STEM includes engi-
neering (e.g., electrical, chemical, mechanical), physical sciences (e.g., math, physics, chemistry,
computer science, statistics), and biological sciences (e.g., biology, pharmacology). The majors are
mutually exclusive; for each worker, we record the major of the most recent degree earned.
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Figure 7. Map of Average Required Years of Education in the Burning Glass Job Postings Data

This figure shows a heat map of the average required years of education across U.S. states. It plots
the average required years of education of job postings of public firms in each commuting zone
from 2010 to 2018.
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Figure 8. Education Level By Industry Sector in the Cognism Resume Data

This figure presents the share of workers in each highest level of education at the industry level,
based on the sample of public firms. For each sector (based on NAICS-2 digit industry codes), we
compute the share of workers with the highest level of education being less than college, college,
master, or doctoral in the Cognism resume data between 2010 and 2018.
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Figure 9. Distribution of Majors By Industry Sector in the Cognism Resume Data

This figure presents the share of workers in each major, based on the sample of public firms. For
each sector (based on NAICS-2 digit industry codes), we compute the share of workers in each
major (STEM, social science, fine arts, humanities, and medicine) in the Cognism resume data be-
tween 2010 and 2018. STEM includes engineering (e.g., electrical, chemical, mechanical), physical
sciences (e.g., math, physics, chemistry, computer science, statistics), and biological sciences (e.g.,
biology, pharmacology). The majors are mutually exclusive; for each worker, we record the major
of the most recent degree earned.
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Figure 10. Seniority Level By Industry Sector in the Cognism Resume Data

This figure presents the share of workers in each seniority level at the industry level, based on
the sample of public firms. For each sector (based on NAICS-2 digit industry codes), we compute
the share of workers in each seniority level (low, medium, or high) in the Cognism resume data
between 2010 and 2018.
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Table 1. Top Skills in Each Skill Cluster in the Burning Glass Job Posting Data

This table reports the top five skills required by the largest number of job postings in each skill cluster in the Burning Glass Job Posting
Data.

Administration Analysis Business Customer Service Engineering Finance Health Care
Scheduling Data Analysis Project Management Customer Service Mechanical Engineering Budgeting Patient Care

Administrative Support Data Collection Staff Management Customer Contact AutoCAD Accounting Cardiopulmonary Resuscitation (CPR)
Data Entry Business Intelligence Quality Assurance and Control Basic Mathematics Computer Engineering Customer Billing Lifting Ability

Appointment Setting SAS Supervisory Skills Cash Handling Simulation Financial Analysis Treatment Planning
Record Keeping Statistics Business Process Customer Checkout Civil Engineering Financial Reporting Advanced Cardiac Life Support 

Human Resources Information Technology Legal Marketing Sales Science Supply Chain
Occupational Health and Safety Microsoft Office Legal Compliance Marketing Sales Chemistry Store Management

Onboarding Microsoft Powerpoint Litigation Social Media Product Sales Biology Purchasing
Recruiting SQL Government Regulations Packaging Merchandising Physics Forklift Operation

Employee Training Java Legal Documentation Client Base Retention Business Development Experiments Procurement
Personal Protective Equipment Software Development Criminal Justice Facebook Sales Goals Laboratory Testing Inventory Management

Agriculture Construction Design Economics Education Utilities Environment
Snow Removal Estimating Adobe Photoshop Economics Teaching Natural Gas HAZMAT

Lawn Care Carpentry Microsoft Visio Public administration Training Programs Energy Management Hazardous Waste
Fertilizers Cost Estimation Graphic Design Economic Development Training Materials Power Distribution Environmental Science
Agronomy Construction Management Adobe Indesign Social Studies Technical Training Power Generation Water Treatment

Agribusiness Interior Design Adobe Acrobat Policy Analysis Special Education Energy Efficiency Natural Resources

Industry Knowledge Maintenance Manufacturing Media Personal Care Public Safety Religion
Retail Industry Knowledge Hand Tools Product Development Journalism Cooking Asset Protection Youth Ministry

Information Technology Industry Knowledge Plumbing Machinery Music Food Safety Surveillance Student Ministry
Biotechnology Predictive / Preventative Maintenance Welding Preparing Proposals Child Care Loss Control / Prevention Children's Ministry

Industrial Engineering Industry Expertise HVAC Six Sigma Proposal Writing Food Preparation Handling of Crisis Family Ministry
Asset Management Industry Knowledge Schematic Diagrams Manufacturing Processes Content Management Food Service Experience Emergency Services Religious Education
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Table 2. Initial Worker Composition and AI Investments

This table reports the coefficients from regressions of cross-sectional changes in AI investments by
U.S. public firms (in non-tech sectors) from 2010 to 2018 on the following ex-ante firm character-
istics measured in 2010: share of workers in each seniority level in column 1, share of workers in
each education level in column 2, and share of workers in each major (based on highest degree
earned) in column 3. Column 4 include all firm characteristics in columns 1 to 3. The dependent
variable is the growth in the share of AI workers from 2010 to 2018 using the resume data from
Cognism. Regressions are weighted by the number of Cognism resumes in 2010. All specifications
control for industry sector fixed effects. The dependent variable is normalized to have a mean of
zero and a standard deviation of one. Standard errors are clustered at the 5-digit NAICS industry
level and reported in parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and
1% levels, respectively.

∆ Share of AI Workers 2010-2018

(1) (2) (3) (4)

Share of Workers with Low Seniority, 2010 -0.211 -0.394
(0.393) (0.414)

Share of Workers with Medium Seniority, 2010 -0.443 -0.152
(0.407) (0.425)

Share of Workers with College Degree, 2010 -0.489** -0.457*
(0.232) (0.245)

Share of Workers with Master Degree, 2010 0.891** 0.590*
(0.402) (0.310)

Share of Workers with Doctor Degree, 2010 1.766** 2.933***
(0.819) (0.906)

Share of Workers with STEM Major, 2010 0.741** 1.238***
(0.326) (0.447)

Share of Workers with Social Science Major, 2010 -0.219 0.563**
(0.286) (0.232)

Share of Workers with Fine Arts Major, 2010 0.185 1.021
(0.661) (0.734)

Share of Workers with Humanities Major, 2010 1.321* 0.979
(0.694) (0.675)

Industry Sector FE Y Y Y Y
Adj R-Squared 0.096 0.134 0.125 0.158
Observations 1,218 1,218 1,216 1,216
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Table 3. AI Investments and Workers’ Seniority Levels

This table reports the coefficients from long-differences regressions of the change in the share of
workers in each seniority level from 2010 to 2018 on the contemporaneous firm-level changes in AI
investments among U.S. public firms (in non-tech sectors). The independent variable is the growth
in the share of AI workers from 2010 to 2018 based on the Cognism resume data, standardized to
mean zero and standard deviation of one. The dependent variables are the changes in the share
of workers in each seniority level (low in columns 1 and 2; medium in columns 2 and 4; and high
in columns 5 and 6) in the Cognism resume data. Regressions are weighted by the number of
Cognism resumes in 2010. All specifications control for industry sector fixed effects. Columns
2, 4, and 6 also include the baseline controls all measured as of 2010: firm-level characteristics
(log sales, cash/assets, R&D/sales, log markup, and log number of jobs, log industry wage, and
characteristics of the commuting zones where the firms are located (the share of workers in IT-
related occupations, the share of college-educated workers, log average wage, the share of foreign-
born workers, the share of routine workers, the share of workers in finance and manufacturing
industries, and the share of female workers). Standard errors are clustered at the 5-digit NAICS
industry level and reported in parentheses. *, **, and *** denote statistical significance at the 10%,
5%, and 1% levels, respectively.

∆ Share Seniority Low ∆ Share Seniority Middle ∆ Share Seniority High

(1) (2) (3) (4) (5) (6)

∆ Share AI Workers 0.015*** 0.016*** -0.007*** -0.008*** -0.007** -0.008**
(0.004) (0.004) (0.002) (0.002) (0.003) (0.003)

Industry Sector FE Y Y Y Y Y Y
Controls N Y N Y N Y
Adj R-Squared 0.175 0.334 0.170 0.232 0.170 0.314
Observations 1,218 1,218 1,218 1,218 1,218 1,218
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Table 4. AI Investments and Workers’ Education Levels

This table reports the coefficients from long-differences regressions of the change from 2010 to
2018 in the share of workers in each highest education level on the contemporaneous firm-level
changes in AI investments among U.S. public firms (in non-tech sectors). The independent vari-
able is the growth in the share of AI workers from 2010 to 2018 based on the Cognism resume data,
standardized to mean zero and standard deviation of one. The dependent variables are measured
using the Cognism resume data and represent the changes in the share of workers whose max-
imal attainment is a college degree in columns 1 and 2, the share of employees whose maximal
attainment is a masters degree in columns 3 and 4, the share of employees with doctoral degrees
in columns 5 and 6, and the share of employees with no college degree in columns 7 and 8. Re-
gressions are weighted by the number of Cognism resumes in 2010. All specifications control
for industry sector fixed effects. Columns 2, 4, 6, and 8 also include the baseline controls all mea-
sured as of 2010: firm-level characteristics (log sales, cash/assets, R&D/sales, log markup, and log
number of jobs, log industry wage, and characteristics of the commuting zones where the firms
are located (the share of workers in IT-related occupations, the share of college-educated work-
ers, log average wage, the share of foreign-born workers, the share of routine workers, the share
of workers in finance and manufacturing industries, and the share of female workers). Standard
errors are clustered at the 5-digit NAICS industry level and reported in parentheses. *, **, and ***
denote statistical significance at the 10%, 5%, and 1% levels, respectively.

∆ Share College ∆ Share Master ∆ Share Doctoral ∆ Share No College

(1) (2) (3) (4) (5) (6) (7) (8)

∆ Share AI Workers 0.033*** 0.037*** 0.027*** 0.029*** 0.007*** 0.006*** -0.068*** -0.073***
(0.012) (0.010) (0.004) (0.004) (0.001) (0.001) (0.014) (0.014)

Industry Sector FE Y Y Y Y Y Y Y Y
Controls N Y N Y N Y N Y
Adj R-Squared 0.099 0.199 0.107 0.216 0.155 0.211 0.115 0.215
Observations 1,218 1,218 1,218 1,218 1,218 1,218 1,218 1,218
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Table 5. AI Investments and Required Education and Experience in the Job Postings Data

This table reports the coefficients from long-differences regressions of the change from 2010 to 2018
in the average required education and experience on the contemporaneous firm-level changes in
AI investments among U.S. public firms (in non-tech sectors). The independent variable is the
growth in the share of AI workers from 2010 to 2018 based on the Cognism resume data, stan-
dardized to mean zero and standard deviation of one. The dependent variables are the average
required years of education in the Burning Glass job postings data in columns 1 and 2, and av-
erage required years of experience in the Burning Glass job postings data in columns 3 and 4.
Regressions are weighted by the number of Cognism resumes in 2010. All specifications control
for industry sector fixed effects. Columns 2 and 4 also include the baseline controls all measured as
of 2010: firm-level characteristics (log sales, cash/assets, R&D/sales, log markup, and log number
of jobs, log industry wage, and characteristics of the commuting zones where the firms are located
(the share of workers in IT-related occupations, the share of college-educated workers, log aver-
age wage, the share of foreign-born workers, the share of routine workers, the share of workers
in finance and manufacturing industries, and the share of female workers). Standard errors are
clustered at the 5-digit NAICS industry level and reported in parentheses. *, **, and *** denote
statistical significance at the 10%, 5%, and 1% levels, respectively.

∆ Years of Education ∆ Years of Experience

(1) (2) (3) (4)

∆ Share AI Workers 0.476** 0.516** 0.137* 0.061
(0.204) (0.217) (0.072) (0.078)

Industry Sector FE Y Y Y Y
Controls N Y N Y
Adj R-Squared 0.397 0.458 0.161 0.235
Observations 1,060 1,060 1,059 1,059
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Table 6. AI Investments and Workers’ Majors

This table reports the coefficients from long-differences regressions of the change in the share of workers in each major from 2010 to 2018
on the contemporaneous firm-level changes in AI investments among U.S. public firms (in non-tech sectors). The dependent variables
are the share of employees whose most recent degree was in a STEM field in columns 1 and 2, the share of employees whose last degree
was in social science in columns 3 and 4, the share of employees whose most recent degree was in fine arts in columns 5 and 6, the
share of employees whose last degree was in humanities in columns 7 and 8, and the share of employees whose last degree was in
medicine in columns 9 and 10. The majors are mutually exclusive; for each worker, we record the major of the most recent degree
earned. STEM includes engineering (e.g., electrical, chemical, mechanical), physical sciences (e.g., math, physics, chemistry, computer
science, statistics), and biological sciences (e.g., biology, pharmacology). The independent variable is the growth in the share of AI
workers from 2010 to 2018 based on the Cognism resume data, standardized to mean zero and standard deviation of one. Regressions
are weighted by the number of Cognism resumes in 2010. All specifications control for industry sector fixed effects. Columns 2, 4, 6,
8, and 10 also include the baseline controls all measured as of 2010: firm-level characteristics (log sales, cash/assets, R&D/sales, log
markup, and log number of jobs, log industry wage, and characteristics of the commuting zones where the firms are located (the share
of workers in IT-related occupations, the share of college-educated workers, log average wage, the share of foreign-born workers, the
share of routine workers, the share of workers in finance and manufacturing industries, and the share of female workers). Standard
errors are clustered at the 5-digit NAICS industry level and reported in parentheses. *, **, and *** denote statistical significance at the
10%, 5%, and 1% levels, respectively.

∆ Share STEM ∆ Share Social Science ∆ Share Fine Arts ∆ Share Humanities ∆ Share Medicine

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

∆ Share AI Workers 0.019*** 0.019*** -0.011*** -0.011*** -0.004 -0.003 -0.000 -0.001 -0.003*** -0.004***
(0.007) (0.006) (0.003) (0.003) (0.005) (0.003) (0.002) (0.001) (0.001) (0.001)

Industry Sector FE Y Y Y Y Y Y Y Y Y Y
Controls N Y N Y N Y N Y N Y
Adj R-Squared 0.122 0.216 0.092 0.208 0.127 0.206 0.218 0.258 0.110 0.148
Observations 1,216 1,216 1,216 1,216 1,216 1,216 1,216 1,216 1,216 1,216
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Table 7. AI Investments and Required Skills in the Job Postings Data

This table reports the coefficients from long-differences regressions of the change in the share of job postings requiring each skill cluster
from 2010 to 2018 on the contemporaneous firm-level changes in AI investments among U.S. public firms (in non-tech sectors). The
dependent variables are the change in the average share of required skills in each skill cluster across all the job postings of the firm. The
independent variable is the growth in the share of AI workers from 2010 to 2018 based on the Cognism resume data, standardized to
mean zero and standard deviation of one. Regressions are weighted by the number of Cognism resumes in 2010. All specifications con-
trol for industry sector fixed effects. All even-numbered columns also include the baseline controls all measured as of 2010: firm-level
characteristics (log sales, cash/assets, R&D/sales, log markup, and log number of jobs, log industry wage, and characteristics of the
commuting zones where the firms are located (the share of workers in IT-related occupations, the share of college-educated workers,
log average wage, the share of foreign-born workers, the share of routine workers, the share of workers in finance and manufactur-
ing industries, and the share of female workers). Standard errors are clustered at the 5-digit NAICS industry level and reported in
parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

∆ Share of Jobs w/ ∆ Share of Jobs w/ ∆ Share of Jobs w/ ∆ Share of Jobs w/ ∆ Share of Jobs w/ ∆ Share of Jobs w/ ∆ Share of Jobs w/
Administration Skill Analysis Skill Business Skill Customer Service Skill Engineering Skill Finance Skill Healthcare Skill

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

∆ Share AI Workers -0.001 -0.000 0.005*** 0.004*** 0.001 -0.003 -0.006 0.004 -0.000 -0.002 -0.007 -0.011** -0.003 -0.002
(0.001) (0.002) (0.001) (0.001) (0.003) (0.004) (0.005) (0.006) (0.002) (0.002) (0.005) (0.005) (0.003) (0.004)

Industry Sector FE Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Controls N Y N Y N Y N Y N Y N Y N Y
Adj R-Squared 0.062 0.094 0.264 0.306 0.094 0.146 0.222 0.349 0.038 0.123 0.059 0.178 0.046 0.100
Observations 1,099 1,099 1,099 1,099 1,099 1,099 1,099 1,099 1,099 1,099 1,099 1,099 1,099 1,099

∆ Share of Jobs w/ ∆ Share of Jobs w/ ∆ Share of Jobs w/ ∆ Share of Jobs w/ ∆ Share of Jobs w/ ∆ Share of Jobs w/ ∆ Share of Jobs w/
HR Skill IT Skill Legal Skill Marketing Skill Sales Skill Science Skill Supply Chain Skill

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

∆ Share AI Workers 0.001 -0.000 0.016** 0.012* -0.001 -0.000 0.003* 0.001 0.004 0.008 -0.000 -0.001 -0.006*** -0.002
(0.001) (0.002) (0.007) (0.007) (0.001) (0.001) (0.002) (0.003) (0.005) (0.006) (0.001) (0.001) (0.002) (0.003)

Industry Sector FE Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Controls N Y N Y N Y N Y N Y N Y N Y
Adj R-Squared 0.057 0.105 0.227 0.271 0.034 0.119 0.016 0.066 0.332 0.386 0.107 0.141 0.069 0.145
Observations 1,099 1,099 1,099 1,099 1,099 1,099 1,099 1,099 1,099 1,099 1,099 1,099 1,099 1,099
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∆ Share of Jobs w/ ∆ Share of Jobs w/ ∆ Share of Jobs w/ ∆ Share of Jobs w/ ∆ Share of Jobs w/ ∆ Share of Jobs w/ ∆ Share of Jobs w/
Agriculture Skill Construction Skill Design Skill Economics Skill Education Skill Utilities Skill Environment Skill

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

∆ Share AI Workers -0.000 -0.000* -0.001 -0.000 -0.001 -0.002 0.000 0.000 -0.001 -0.002* -0.001 -0.000 0.001 0.001
(0.000) (0.000) (0.000) (0.001) (0.001) (0.001) (0.001) (0.000) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Industry Sector FE Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Controls N Y N Y N Y N Y N Y N Y N Y
Adj R-Squared 0.074 0.107 0.055 0.083 0.169 0.352 0.081 0.176 0.068 0.103 0.023 0.081 0.181 0.192
Observations 1,099 1,099 1,099 1,099 1,099 1,099 1,099 1,099 1,099 1,099 1,099 1,099 1,099 1,099

∆ Share of Jobs w/ ∆ Share of Jobs w/ ∆ Share of Jobs w/ ∆ Share of Jobs w/ ∆ Share of Jobs w/ ∆ Share of Jobs w/
Industry Knowledge Skill Maintenance Skill Manufacturing Skill Media Skill Personal Care Skill Public Safety Skill

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

∆ Share AI Workers -0.001 0.002 -0.007*** -0.006*** -0.002* -0.002 0.001 0.001* 0.001 -0.000 -0.000 0.000
(0.003) (0.003) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.000) (0.001)

Industry Sector FE Y Y Y Y Y Y Y Y Y Y Y Y
Controls N Y N Y N Y N Y N Y N Y
Adj R-Squared 0.117 0.166 0.121 0.168 -0.002 0.028 0.099 0.108 0.161 0.239 0.154 0.248
Observations 1,099 1,099 1,099 1,099 1,099 1,099 1,099 1,099 1,099 1,099 1,099 1,099
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Figure A.1. Cognism Coverage Relative to U.S. Employment from BLS

This figure plots the fraction of overall full-time employees in the U.S. (based on information from
the Bureau of Labor Statistics) that are captured in the Cognism data in each year from 2010 to
2018.
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Figure A.2. Cognism Coverage of U.S. Public Firms’ Overall Employment

This figure plots the distribution of coverage of public firms’ employees in the Cognism data, for
each year from 2010 to 2018. Coverage is computed relative to total (global) employment numbers
reported by firms in Compsutat. For each year, the figure shows the median and the interquartile
range of firm-level coverage rates.
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Figure A.3. Times Series of Workers’ Education Levels in Census ACS

This figure plots the distribution of education levels for workers with positive earnings in the
Census American Community Survey (ACS). Each line is the fraction of workers with each highest
education level (less than college, some college or college degree, master’s degree, or doctoral
degree) in the ACS data in a given year from 2010 to 2018.
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Figure A.4. Times Series of Workers’ Majors in Census ACS

This figure plots the distribution of majors of bachelor’s degrees for workers with positive earn-
ings in the Census American Community Survey (ACS). Each line is the fraction of all workers
receiving their bachelor’s degrees in each major (STEM, social science, fine arts, humanities, and
medicine) in the ACS data in a given year from 2010 to 2018. STEM includes Environment and
Natural Resources, Computer and Information Sciences, Engineering, Engineering Technologies,
Biology and Life Sciences, Mathematics and Statistics, Physical Sciences, Nuclear, Industrial Ra-
diology, and Biological Technologies, Transportation Sciences and Technologies. The majors are
mutually exclusive.
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Table A.1. Median Coverage of U.S. Public Firms’ Employment in the Cognism Data by In-
dustry Sector

This table reports the median coverage of public firms’ employees in the Cognism data for each
industry sector. Coverage is computed relative to total (global) employment numbers reported
by firms in Compsutat. For each industry sector, the figure shows the median firm-level coverage
rate across all firm-year observations between 2010 and 2018.

Industry Sector Median Coverage Rate

Agriculture 20.09%
Mining 34.97%
Utilities 23.02%
Construction 35.26%
Manufacturing 23.88%
Wholesale 25.15%
Retail Trade 27.86%
Transportation/Warehousing 22.91%
Information 29.70%
Finance/Insurance 52.18%
Real Estate 48.29%
Prof & Business Services 36.41%
Admin Support 21.41%
Education Svcs 28.18%
Health Care 17.78%
Arts/Entertainment 37.22%
Accomodation & Food Services 22.41%
Other Services 20.37%
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Table A.2. Skills with Highest AI-Relatedness Measures in Burning Glass Job Postings

This table lists the top skills in the Burning Glass data ranked by the skill-level AI measure. For
each skill, we report the percentage of jobs requiring that skill that also require one of the four
core AI skills—artificial intelligence, machine learning, computer vision, and natural language
processing. For example, for jobs that require “Recurrent Neural Network (RNN),” 96.5% also
require one of the four core AI-skills. Only skills that appear in least 50 job postings are included.

# Skills AI-relatedness Score
1 Artificial Intelligence 1.000
2 Computer Vision 1.000
3 Machine Learning 1.000
4 Natural Language Processing 1.000
5 ND4J (software) 0.980
6 Kernel Methods 0.979
7 Microsoft Cognitive Toolkit 0.975
8 Xgboost 0.972
9 Sentiment Classification 0.971

10 Long Short-Term Memory (LSTM) 0.971
11 Libsvm 0.968
12 Semi-Supervised Learning 0.968
13 Recurrent Neural Network (RNN) 0.965
14 Word2Vec 0.956
15 MXNet 0.953
16 Caffe Deep Learning Framework 0.950
17 Autoencoders 0.949
18 MLPACK (C++ library) 0.942
19 Keras 0.941
20 Theano 0.938
21 Torch (Machine Learning) 0.932
22 Wabbit 0.929
23 Boosting (Machine Learning) 0.905
24 TensorFlow 0.904
25 Vowpal 0.903
26 Convolutional Neural Network (CNN) 0.897
27 Jung Framework 0.894
28 OpenNLP 0.894
29 Natural Language Toolkit (NLTK) 0.892
30 Unsupervised Learning 0.891
31 Dlib 0.891
32 Scikit-learn 0.889
33 Latent Semantic Analysis 0.889
34 Latent Dirichlet Allocation 0.889
35 Stochastic Gradient Descent (SGD) 0.881
36 Gradient boosting 0.872
37 Dimensionality Reduction 0.861
38 Deep Learning 0.859
39 DBSCAN (Density-Based Spatial Clustering of Applications with Noise) 0.855
40 AI ChatBot 0.844
41 Recommender Systems 0.842
42 Random Forests 0.840
43 Deeplearning4j 0.839
44 Support Vector Machines (SVM) 0.817
45 Unstructured Information Management Architecture 0.806
46 Apache UIMA 0.805
47 Maximum Entropy Classifier 0.799
48 Hidden Markov Model (HMM) 0.796
49 Pybrain 0.786
50 Computational Linguistics 0.780
51 Naive Bayes 0.768
52 H2O (software) 0.763
53 Expectation-Maximization (EM) Algorithm 0.763
54 WEKA 0.761
55 Clustering Algorithms 0.740
56 Matrix Factorization 0.739
57 Object Recognition 0.727
58 Classification Algorithms 0.721
59 Information Extraction 0.709
60 Image Recognition 0.706
61 Bayesian Networks 0.705
62 Supervised Learning (Machine Learning) 0.695
63 OpenCV 0.688
64 K-Means 0.683
65 Sentiment Analysis / Opinion Mining 0.679
66 Machine Translation (MT) 0.655
67 Neural Networks 0.640
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Table A.3. Summary Statistics

This table reports summary statistics for the sample of firms in our baseline regressions. All changes in variables are computed over
2010–2018. For each variable, we report the number of observations, the mean, the standard deviation, the median, and 1st, 5th, 10th,
25th, 75th, 90th, 95th, and 99th percentiles. The sample includes Compustat firms (in non-tech sectors) between 2010 and 2018.

Variable Name N Mean Std. Deviation p1 p5 p10 p25 p50 p75 p90 p95 p99

Change in share of AI workers 1218 .00079 .0025 -.0028 -.00028 0 0 0 .0005 .0021 .0044 .016
Change in share of workers with low seniority 1218 .0018 .055 -.13 -.084 -.065 -.029 -.00065 .028 .067 .1 .16
Change in share of workers with medium seniority 1218 .043 .044 -.08 -.031 -.0096 .02 .044 .068 .095 .11 .16
Change in share of workers with high seniority 1218 -.045 .033 -.16 -.11 -.088 -.059 -.04 -.023 -.01 -.0051 .015
Change in share of workers with college degree 1218 .062 .18 -.43 -.11 -.063 -.017 .031 .1 .21 .33 .97
Change in share of workers with master degree 1218 -.0012 .096 -.34 -.13 -.072 -.029 -.0054 .023 .082 .14 .35
Change in share of workers with doctoral degree 1218 .0014 .023 -.084 -.026 -.015 -.006 -.00047 .0047 .02 .042 .11
Change in share of workers without college degree 1218 -.063 .26 -1.3 -.46 -.31 -.13 -.025 .038 .13 .25 .83
Change in share of workers with STEM major 1216 .017 .092 -.29 -.13 -.083 -.024 .021 .06 .11 .17 .32
Change in share of workers with social science major 1216 -.016 .089 -.3 -.17 -.11 -.055 -.015 .021 .077 .13 .29
Change in share of workers with fine arts major 1216 -.0036 .031 -.13 -.057 -.034 -.014 -.00051 .0071 .024 .047 .1
Change in share of workers with humanities major 1216 -.0042 .035 -.12 -.056 -.039 -.019 -.0045 .0091 .032 .053 .13
Change in share of workers with medicine major 1216 .0087 .03 -.076 -.028 -.012 0 .0026 .013 .035 .063 .15
Change in average number of years of education (Burning Glass) 1060 -3.6 3.2 -14 -10 -8.4 -4.9 -2.7 -1.4 -.58 -.11 1.1
Change in average number of years of experience (Burning Glass) 1059 -.3 1.4 -5.5 -2.6 -1.9 -.94 -.2 .47 1.3 1.9 3
Change in share of job postings with administration skill 1099 .0088 .049 -.19 -.061 -.038 -.011 .0062 .029 .061 .088 .17
Change in share of job postings with analysis skill 1099 .0025 .018 -.076 -.024 -.013 -.0022 .0019 .0098 .021 .029 .057
Change in share of job postings with business skill 1099 -.0037 .07 -.29 -.12 -.079 -.034 .0022 .033 .072 .097 .16
Change in share of job postings with customer service skill 1099 .0067 .069 -.26 -.11 -.051 -.012 .0053 .029 .075 .12 .23
Change in share of job postings with engineering skill 1099 -.011 .052 -.31 -.11 -.05 -.01 0 .0053 .019 .035 .081
Change in share of job postings with finance skill 1099 -.011 .085 -.35 -.17 -.093 -.036 -.0031 .026 .069 .1 .22
Change in share of job postings with healthcare skill 1099 .0035 .053 -.23 -.07 -.029 -.0035 .0019 .012 .044 .084 .21
Change in share of job postings with HR skill 1099 .0062 .034 -.15 -.044 -.023 -.0039 .0059 .02 .039 .057 .12
Change in share of job postings with IT skill 1099 -.0073 .1 -.42 -.19 -.12 -.05 .0028 .045 .11 .14 .24
Change in share of job postings with legal skill 1099 .0012 .022 -.097 -.028 -.013 -.0036 .00059 .006 .018 .032 .095
Change in share of job postings with marketing skill 1099 .00085 .044 -.21 -.061 -.036 -.012 .0018 .018 .044 .065 .12
Change in share of job postings with sales skill 1099 -.0083 .1 -.36 -.19 -.11 -.039 -.002 .026 .083 .17 .32
Change in share of job postings with science skill 1099 -.0061 .041 -.27 -.053 -.025 -.0026 0 .0027 .011 .024 .1
Change in share of job postings with supply chain skill 1099 .013 .057 -.2 -.076 -.036 -.0057 .0079 .033 .08 .11 .22
Change in share of job postings with agriculture skill 1099 .00028 .0024 -.0084 -.00052 -.000048 0 0 7.4e-06 .00081 .0024 .016
Change in share of job postings with construction skill 1099 .0024 .016 -.065 -.014 -.0067 -.00099 .00031 .0045 .014 .026 .074
Change in share of job postings with design skill 1099 -.0015 .016 -.089 -.026 -.014 -.0041 .00013 .0042 .011 .017 .041
Change in share of job postings with economics skill 1099 .00039 .0044 -.019 -.0053 -.0022 -7.9e-06 .000014 .001 .0034 .0062 .02
Change in share of job postings with education skill 1099 .0005 .017 -.08 -.02 -.011 -.0033 .00052 .005 .012 .02 .067
Change in share of job postings with utilities skill 1099 -.002 .017 -.11 -.021 -.0058 -.00014 0 .00055 .0035 .01 .046
Change in share of job postings with environment skill 1099 .00033 .017 -.09 -.017 -.0055 -.00016 0 .0021 .0097 .018 .068
Change in share of job postings with industry knowledge skill 1099 -.0027 .039 -.16 -.076 -.037 -.012 0 .01 .027 .055 .14
Change in share of job postings with maintenance skill 1099 .013 .053 -.2 -.053 -.023 -.0029 .003 .026 .072 .11 .19
Change in share of job postings with manufacturing skill 1099 .0044 .044 -.19 -.061 -.031 -.0064 .001 .015 .05 .087 .15
Change in share of job postings with media skill 1099 .00046 .011 -.046 -.014 -.0091 -.0022 .00028 .0038 .0091 .016 .044
Change in share of job postings with personal care skill 1099 .0026 .023 -.084 -.01 -.0013 0 0 .00039 .0079 .025 .13
Change in share of job postings with public safety skill 1099 .000035 .0071 -.033 -.01 -.0032 -.000091 0 .0013 .0045 .008 .026
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Variable Name N Mean Std. Deviation p1 p5 p10 p25 p50 p75 p90 p95 p99

Share of AI workers in 2010 1218 .00054 .0025 0 0 0 0 0 .0002 .0011 .0022 .0099
Share of workers with low seniority in 2010 1218 .61 .1 .29 .42 .48 .56 .62 .68 .73 .75 .82
Share of workers with medium seniority in 2010 1218 .22 .087 .081 .12 .14 .17 .21 .26 .33 .41 .53
Share of workers with high seniority in 2010 1218 .16 .085 .026 .045 .063 .097 .15 .21 .27 .31 .43
Share of workers with college degree in 2010 1218 .43 .77 .08 .13 .16 .2 .29 .44 .7 1 2.3
Share of workers with master degree in 2010 1218 .21 .35 .02 .036 .047 .077 .13 .22 .4 .63 1.4
Share of workers with doctoral degree in 2010 1218 .038 .065 0 0 .0018 .009 .021 .042 .077 .13 .33
Share of workers without college degree in 2010 1218 .32 1.1 -2.7 -.73 -.16 .31 .55 .69 .78 .81 .88
Share of workers with STEM major in 2010 1216 .37 .21 0 .086 .13 .19 .33 .51 .69 .76 .86
Share of workers with social science major in 2010 1216 .49 .19 .087 .17 .23 .35 .5 .61 .74 .8 .91
Share of workers with fine arts major in 2010 1216 .047 .062 0 0 0 .01 .032 .062 .11 .14 .29
Share of workers with humanities major in 2010 1216 .061 .05 0 0 0 .029 .054 .083 .12 .14 .23
Share of workers with medicine major in 2010 1216 .037 .071 0 0 0 0 .014 .038 .095 .16 .39
Average number of years of education (Burning Glass) in 2010 1060 15 1.3 12 12 13 14 15 16 16 17 18
Average number of years of experience (Burning Glass) in 2010 1059 4.3 1.6 1.1 2 2.2 3.1 4.2 5.2 6.3 6.9 9.5
Share of job postings with administration skill in 2010 1099 .046 .05 0 0 0 .014 .034 .06 .096 .14 .26
Share of job postings with analysis skill in 2010 1099 .014 .02 0 0 0 .00014 .0074 .019 .033 .049 .097
Share of job postings with business skill in 2010 1099 .11 .083 0 0 .018 .059 .1 .15 .19 .23 .45
Share of job postings with customer service skill in 2010 1099 .064 .091 0 0 0 .013 .032 .076 .17 .24 .44
Share of job postings with engineering skill in 2010 1099 .042 .082 0 0 0 0 .0077 .052 .12 .19 .43
Share of job postings with finance skill in 2010 1099 .098 .12 0 0 .0019 .032 .067 .12 .23 .3 .5
Share of job postings with healthcare skill in 2010 1099 .04 .11 0 0 0 0 .0056 .023 .11 .22 .67
Share of job postings with HR skill in 2010 1099 .024 .049 0 0 0 .0009 .012 .029 .057 .089 .19
Share of job postings with IT skill in 2010 1099 .15 .14 0 0 .013 .059 .12 .2 .33 .43 .68
Share of job postings with legal skill in 2010 1099 .012 .021 0 0 0 0 .0054 .014 .028 .046 .13
Share of job postings with marketing skill in 2010 1099 .037 .062 0 0 0 .0069 .024 .048 .078 .11 .26
Share of job postings with sales skill in 2010 1099 .11 .13 0 0 0 .018 .057 .15 .29 .37 .54
Share of job postings with science skill in 2010 1099 .025 .068 0 0 0 0 .0011 .015 .068 .15 .38
Share of job postings with supply chain skill in 2010 1099 .047 .067 0 0 0 .005 .028 .063 .12 .16 .32
Share of job postings with agriculture skill in 2010 1099 .00074 .0081 0 0 0 0 0 0 .00026 .0018 .016
Share of job postings with construction skill in 2010 1099 .0082 .023 0 0 0 0 .0014 .0076 .02 .032 .099
Share of job postings with design skill in 2010 1099 .011 .027 0 0 0 0 .0049 .012 .026 .043 .12
Share of job postings with economics skill in 2010 1099 .0025 .0099 0 0 0 0 0 .0019 .0061 .011 .027
Share of job postings with education skill in 2010 1099 .011 .028 0 0 0 0 .0055 .012 .022 .037 .11
Share of job postings with utilities skill in 2010 1099 .01 .043 0 0 0 0 0 .0016 .02 .055 .19
Share of job postings with environment skill in 2010 1099 .0099 .048 0 0 0 0 0 .0038 .02 .046 .15
Share of job postings with industry knowledge skill in 2010 1099 .033 .049 0 0 0 .0061 .018 .043 .077 .11 .22
Share of job postings with maintenance skill in 2010 1099 .033 .056 0 0 0 0 .011 .043 .087 .13 .31
Share of job postings with manufacturing skill in 2010 1099 .04 .063 0 0 0 .00061 .014 .058 .11 .16 .28
Share of job postings with media skill in 2010 1099 .0081 .036 0 0 0 0 .0032 .0088 .016 .024 .065
Share of job postings with personal care skill in 2010 1099 .0081 .038 0 0 0 0 0 .00013 .0094 .04 .2
Share of job postings with public safety skill in 2010 1099 .0039 .015 0 0 0 0 0 .0018 .0081 .019 .067
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Table A.4. AI Investments and Workers’ Seniority Levels Weighted by Coverage Rate

This table reports the coefficients from long-differences regressions of the change in the share of
workers in each seniority level from 2010 to 2018 on the contemporaneous firm-level changes in
AI investments among U.S. public firms (in non-tech sectors). The independent variable is the
growth in the share of AI workers from 2010 to 2018 based on the Cognism resume data, stan-
dardized to mean zero and standard deviation of one. The dependent variables are the changes in
the share of workers in each seniority level (low in columns 1 and 2; medium in columns 2 and 4;
and high in columns 5 and 6) in the Cognism resume data. Regressions are weighted by the cov-
erage rate of firm employment in Cognism data in 2010, where the coverage rate is the number of
Cognism resumes divided by the total (global) employment numbers reported by firms in Comp-
sutat. All specifications control for industry sector fixed effects. Columns 2, 4, and 6 also include
the baseline controls all measured as of 2010: firm-level characteristics (log sales, cash/assets,
R&D/sales, log markup, and log number of jobs, log industry wage, and characteristics of the
commuting zones where the firms are located (the share of workers in IT-related occupations, the
share of college-educated workers, log average wage, the share of foreign-born workers, the share
of routine workers, the share of workers in finance and manufacturing industries, and the share of
female workers). Standard errors are clustered at the 5-digit NAICS industry level and reported in
parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

∆ Share Seniority Low ∆ Share Seniority Middle ∆ Share Seniority High

(1) (2) (3) (4) (5) (6)

∆ Share AI Workers 0.012*** 0.010*** -0.007*** -0.006*** -0.004*** -0.003**
(0.002) (0.002) (0.001) (0.001) (0.001) (0.001)

Industry Sector FE Y Y Y Y Y Y
Controls N Y N Y N Y
Adj R-Squared 0.078 0.134 0.115 0.141 0.097 0.137
Observations 1,218 1,218 1,218 1,218 1,218 1,218
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Table A.5. AI Investments and Workers’ Seniority Levels Controlling for Firm Growth

This table reports the coefficients from long-differences regressions of the change in the share of
workers in each seniority level from 2010 to 2018 on the contemporaneous firm-level changes in AI
investments controlling for contemporaneous firm sales growth among U.S. public firms (in non-
tech sectors). The independent variable is the growth in the share of AI workers from 2010 to 2018
based on the Cognism resume data, standardized to mean zero and standard deviation of one. The
dependent variables are the changes in the share of workers in each seniority level (low in columns
1 and 2; medium in columns 2 and 4; and high in columns 5 and 6) in the Cognism resume data.
Regressions are weighted by the number of Cognism resumes in 2010. All specifications control
for industry sector fixed effects and firm-level growth in log sales from 2010 to 2018. Columns
2, 4, and 6 also include the baseline controls all measured as of 2010: firm-level characteristics
(log sales, cash/assets, R&D/sales, log markup, and log number of jobs, log industry wage, and
characteristics of the commuting zones where the firms are located (the share of workers in IT-
related occupations, the share of college-educated workers, log average wage, the share of foreign-
born workers, the share of routine workers, the share of workers in finance and manufacturing
industries, and the share of female workers). Standard errors are clustered at the 5-digit NAICS
industry level and reported in parentheses. *, **, and *** denote statistical significance at the 10%,
5%, and 1% levels, respectively.

∆ Share Seniority Low ∆ Share Seniority Middle ∆ Share Seniority High

(1) (2) (3) (4) (5) (6)

∆ Share AI Workers 0.012*** 0.014*** -0.006** -0.007*** -0.005** -0.006**
(0.003) (0.003) (0.003) (0.002) (0.002) (0.002)

∆ Log Sales 0.027*** 0.019*** -0.008*** -0.004 -0.018*** -0.014***
(0.004) (0.004) (0.003) (0.004) (0.003) (0.003)

Industry Sector FE Y Y Y Y Y Y
Controls N Y N Y N Y
Adj R-Squared 0.291 0.376 0.188 0.227 0.296 0.386
Observations 1,218 1,218 1,218 1,218 1,218 1,218
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Table A.6. AI Investments and Workers’ Education Excluding AI Workers

This table reports the coefficients from long-differences regressions of the change in the share of
non-AI workers in each highest education level and the share of non-AI workers in STEM majors
from 2010 to 2018 on the contemporaneous firm-level changes in AI investments among U.S. pub-
lic firms (in non-tech sectors). The independent variable is the growth in the share of AI workers
from 2010 to 2018 based on the Cognism resume data, standardized to mean zero and standard
deviation of one. The dependent variables are measured using the Cognism resume data and rep-
resent the changes in the share of non-AI workers whose maximal attainment is a college degree
in columns 1 and 2, the share of non-AI workers whose maximal attainment is a masters degree
in columns 3 and 4, the share of non-AI workers with doctoral degrees in columns 5 and 6, and
the share of non-AI workers whose most recent degree was in a STEM field in columns 7 and 8.
STEM includes engineering (e.g., electrical, chemical, mechanical), physical sciences (e.g., math,
physics, chemistry, computer science, statistics), and biological sciences (e.g., biology, pharmacol-
ogy). Regressions are weighted by the number of Cognism resumes in 2010. All specifications
control for industry sector fixed effects. Columns 2, 4, 6, and 8 also include the baseline controls
all measured as of 2010: firm-level characteristics (log sales, cash/assets, R&D/sales, log markup,
and log number of jobs, log industry wage, and characteristics of the commuting zones where the
firms are located (the share of workers in IT-related occupations, the share of college-educated
workers, log average wage, the share of foreign-born workers, the share of routine workers, the
share of workers in finance and manufacturing industries, and the share of female workers). Stan-
dard errors are clustered at the 5-digit NAICS industry level and reported in parentheses. *, **,
and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

∆ Share College ∆ Share Master ∆ Share Doctoral ∆ Share STEM

(1) (2) (3) (4) (5) (6) (7) (8)

∆ Share AI Workers 0.031*** 0.035*** 0.026*** 0.027*** 0.006*** 0.006*** 0.016*** 0.016***
(0.012) (0.011) (0.004) (0.004) (0.001) (0.001) (0.004) (0.005)

Industry Sector FE Y Y Y Y Y Y Y Y
Controls N Y N Y N Y N Y
Adj R-Squared 0.096 0.197 0.100 0.209 0.141 0.197 0.158 0.204
Observations 1,218 1,218 1,218 1,218 1,218 1,218 1,216 1,216
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Table A.7. AI Investments and Workers’ Education Levels Weighted by Coverage Rate

This table reports the coefficients from long-differences regressions of the change in the share of
workers in each highest education level from 2010 to 2018 on the contemporaneous firm-level
changes in AI investments among U.S. public firms (in non-tech sectors). The independent vari-
able is the growth in the share of AI workers from 2010 to 2018 based on the Cognism resume data,
standardized to mean zero and standard deviation of one. The dependent variables are measured
using the Cognism resume data and represent the changes in the share of workers whose max-
imal attainment is a college degree in columns 1 and 2, the share of employees whose maximal
attainment is a masters degree in columns 3 and 4, the share of employees with doctoral degrees
in columns 5 and 6, and the share of employees with no college degree in columns 7 and 8. Re-
gressions are weighted by the coverage rate of firm employment in Cognism data in 2010, where
the coverage rate is the number of Cognism resumes divided by the total (global) employment
numbers reported by firms in Compsutat. All specifications control for industry sector fixed ef-
fects. Columns 2, 4, 6, and 8 also include the baseline controls all measured as of 2010: firm-level
characteristics (log sales, cash/assets, R&D/sales, log markup, and log number of jobs, log in-
dustry wage, and characteristics of the commuting zones where the firms are located (the share
of workers in IT-related occupations, the share of college-educated workers, log average wage,
the share of foreign-born workers, the share of routine workers, the share of workers in finance
and manufacturing industries, and the share of female workers). Standard errors are clustered
at the 5-digit NAICS industry level and reported in parentheses. *, **, and *** denote statistical
significance at the 10%, 5%, and 1% levels, respectively.

∆ Share College ∆ Share Master ∆ Share Doctoral ∆ Share No College

(1) (2) (3) (4) (5) (6) (7) (8)

∆ Share AI Workers 0.012** 0.013** 0.012*** 0.010*** 0.005** 0.005*** -0.030*** -0.028***
(0.006) (0.005) (0.003) (0.003) (0.002) (0.002) (0.008) (0.007)

Industry Sector FE Y Y Y Y Y Y Y Y
Controls N Y N Y N Y N Y
Adj R-Squared 0.048 0.085 0.045 0.081 0.056 0.086 0.060 0.097
Observations 1,218 1,218 1,218 1,218 1,218 1,218 1,218 1,218
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Table A.8. AI Investments and Workers’ Education Levels Controlling for Firm Growth

This table reports the coefficients from long-differences regressions of the change in the share of
workers in each highest education level from 2010 to 2018 on the contemporaneous firm-level
changes in AI investments controlling for contemporaneous firm sales growth among U.S. public
firms (in non-tech sectors). The independent variables include the growth in the share of AI work-
ers from 2010 to 2018 based on the Cognism resume data, standardized to mean zero and standard
deviation of one, and firm-level growth in log sales from 2010 to 2018. The dependent variables
are measured using the Cognism resume data and represent the changes in the share of workers
whose maximal attainment is a college degree in columns 1 and 2, the share of employees whose
maximal attainment is a masters degree in columns 3 and 4, the share of employees with doctoral
degrees in columns 5 and 6, and the share of employees with no college degree in columns 7 and
8. Regressions are weighted by the number of Cognism resumes in 2010. All specifications control
for industry sector fixed effects and firm-level growth in log sales from 2010 to 2018. Columns 2,
4, 6, and 8 also include the baseline controls all measured as of 2010: firm-level characteristics (log
sales, cash/assets, R&D/sales, log markup, and log number of jobs, log industry wage, and char-
acteristics of the commuting zones where the firms are located (the share of workers in IT-related
occupations, the share of college-educated workers, log average wage, the share of foreign-born
workers, the share of routine workers, the share of workers in finance and manufacturing indus-
tries, and the share of female workers). Standard errors are clustered at the 5-digit NAICS industry
level and reported in parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and
1% levels, respectively.

∆ Share College ∆ Share Master ∆ Share Doctoral ∆ Share No College

(1) (2) (3) (4) (5) (6) (7) (8)

∆ Share AI Workers 0.032*** 0.036*** 0.024*** 0.027*** 0.007*** 0.006*** -0.063*** -0.069***
(0.012) (0.011) (0.005) (0.004) (0.001) (0.001) (0.016) (0.015)

∆ Log Sales 0.009 0.018 0.023*** 0.016** 0.004*** 0.003*** -0.035** -0.037
(0.011) (0.020) (0.007) (0.008) (0.001) (0.001) (0.015) (0.026)

Industry Sector FE Y Y Y Y Y Y Y Y
Controls N Y N Y N Y N Y
Adj R-Squared 0.100 0.201 0.140 0.228 0.176 0.221 0.123 0.222
Observations 1,218 1,218 1,218 1,218 1,218 1,218 1,218 1,218
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Table A.9. AI Investments and Workers’ Seniority Levels: IV Estimates

This table estimates the relationship between AI investments and the change in the share of work-
ers in each seniority level from 2010 to 2018 for U.S. public firms (in non-tech sectors), where firm
AI investments are instrumented with ex-ante firm-level exposure to AI-skilled graduates from
AI-strong universities. The independent variable is the change in the share of AI workers from
2010 to 2018 based on the resume data. See the definition of the instrument in Section 4.4. The in-
dependent variable and the instrument are standardized to mean zero and standard deviation of
one. The dependent variables are the changes in the share of workers in each seniority level (low
in columns 1 and 2; medium in columns 2 and 4; and high in columns 5 and 6) in the Cognism
resume data. All specifications control for industry sector fixed effects and ex-ante exposure to
universities that are strong in computer science research as well as top 10 universities. Columns
2, 4, and 6 also control for firm-level characteristics in 2010 (log sales, cash/assets, R&D/sales, log
markup, and log number of resumes), log industry wage in 2010, characteristics of the commut-
ing zones where the firms are located in 2010 (the share of workers in IT-related occupations, the
share of college-educated workers, log average wage, the share of foreign-born workers, the share
of routine workers, the share of workers in finance and manufacturing industries, and the share
of female workers), firm-level changes in log sales and log employment from 2000 to 2008, and
state fixed effects. Regressions are weighted by the number of Cognism resumes in 2010. Stan-
dard errors are clustered at the 5-digit NAICS industry level and reported in parentheses. The
first-stage F-statistics of the instrument are reported for all specifications. *, **, and *** denote
statistical significance at the 10%, 5%, and 1% levels, respectively.

∆ Share Seniority Low ∆ Share Seniority Middle ∆ Share Seniority High

(1) (2) (3) (4) (5) (6)

∆ Share AI Workers 0.021 0.024* 0.001 -0.001 -0.019 -0.022**
(0.017) (0.015) (0.012) (0.014) (0.014) (0.010)

Industry FE Y Y Y Y Y Y
CS Control Y Y Y Y Y Y
Baseline Controls N Y N Y N Y
Control Pre-trend N Y N Y N Y
State FE N Y N Y N Y
F Statistic 11.9 11.5 11.9 11.5 11.9 11.5
Observations 1,090 840 1,090 840 1,090 840
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Table A.10. AI Investments and Workers’ Education Levels: IV Estimates

This table estimates the relationship between AI investments and the change in the share of work-
ers in each highest education level from 2010 to 2018 for U.S. public firms (in non-tech sectors),
where firm AI investments are instrumented with ex-ante firm-level exposure to AI-skilled gradu-
ates from AI-strong universities. The independent variable is the change in the share of AI workers
from 2010 to 2018 based on the resume data. See the definition of the instrument in Section 4.4.
The independent variable and the instrument are standardized to mean zero and standard devia-
tion of one. The dependent variables are measured using the Cognism resume data and represent
the changes in the share of workers whose maximal attainment is a college degree in columns 1
and 2, the share of employees whose maximal attainment is a masters degree in columns 3 and
4, the share of employees with doctoral degrees in columns 5 and 6, and the share of employees
with no college degree in columns 7 and 8. All specifications control for industry sector fixed
effects and ex-ante exposure to universities that are strong in computer science research as well
as top 10 universities. Columns 2, 4, 6, and 8 also control for firm-level characteristics in 2010
(log sales, cash/assets, R&D/sales, log markup, and log number of resumes), log industry wage
in 2010, characteristics of the commuting zones where the firms are located in 2010 (the share
of workers in IT-related occupations, the share of college-educated workers, log average wage,
the share of foreign-born workers, the share of routine workers, the share of workers in finance
and manufacturing industries, and the share of female workers), firm-level changes in log sales
and log employment from 2000 to 2008, and state fixed effects. Regressions are weighted by the
number of Cognism resumes in 2010. Standard errors are clustered at the 5-digit NAICS indus-
try level and reported in parentheses. The first-stage F-statistics of the instrument are reported
for all specifications. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels,
respectively.

∆ Share College ∆ Share Master ∆ Share Doctoral ∆ Share No College

(1) (2) (3) (4) (5) (6) (7) (8)

∆ Share AI Workers 0.089** 0.115*** 0.024 0.047** 0.007** 0.008* -0.119** -0.170***
(0.045) (0.040) (0.020) (0.021) (0.004) (0.004) (0.060) (0.056)

Industry FE Y Y Y Y Y Y Y Y
CS Control Y Y Y Y Y Y Y Y
Baseline Controls N Y N Y N Y N Y
Control Pre-trend N Y N Y N Y N Y
State FE N Y N Y N Y N Y
F Statistic 11.9 11.5 11.9 11.5 11.9 11.5 11.9 11.5
Observations 1,090 840 1,090 840 1,090 840 1,090 840
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Table A.11. AI Investments and Workers’ Majors: IV Estimates

This table estimates the relationship between AI investments and the change in the share of workers in each major from 2010 to 2018
for U.S. public firms (in non-tech sectors), where firm AI investments are instrumented with ex-ante firm-level exposure to AI-skilled
graduates from AI-strong universities. The independent variable is the change in the share of AI workers from 2010 to 2018 based on the
resume data. See the definition of the instrument in Section 4.4. The independent variable and the instrument are standardized to mean
zero and standard deviation of one. The dependent variables are the share of employees whose most recent degree was in a STEM field
in columns 1 and 2, the share of employees whose last degree was in social science in columns 3 and 4, the share of employees whose
most recent degree was in fine arts in columns 5 and 6, the share of employees whose last degree was in humanities in columns 7 and 8,
and the share of employees whose last degree was in medicine in columns 9 and 10. All specifications control for industry sector fixed
effects and ex-ante exposure to universities that are strong in computer science research as well as top 10 universities. Columns 2, 4, 6,
8, and 10 also control for firm-level characteristics in 2010 (log sales, cash/assets, R&D/sales, log markup, and log number of resumes),
log industry wage in 2010, characteristics of the commuting zones where the firms are located in 2010 (the share of workers in IT-related
occupations, the share of college-educated workers, log average wage, the share of foreign-born workers, the share of routine workers,
the share of workers in finance and manufacturing industries, and the share of female workers), firm-level changes in log sales and log
employment from 2000 to 2008, and state fixed effects. Regressions are weighted by the number of Cognism resumes in 2010. Standard
errors are clustered at the 5-digit NAICS industry level and reported in parentheses. The first-stage F-statistics of the instrument are
reported for all specifications. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

∆ Share STEM ∆ Share Social Science ∆ Share Fine Arts ∆ Share Humanities ∆ Share Medicine

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

∆ Share AI Workers 0.023 0.017 -0.012 -0.008 -0.010 -0.008 0.006 0.007 -0.007 -0.008
(0.022) (0.018) (0.020) (0.016) (0.006) (0.006) (0.005) (0.008) (0.006) (0.005)

Industry FE Y Y Y Y Y Y Y Y Y Y
CS Control Y Y Y Y Y Y Y Y Y Y
Baseline Controls N Y N Y N Y N Y N Y
Control Pre-trend N Y N Y N Y N Y N Y
State FE N Y N Y N Y N Y N Y
F Statistic 11.9 11.5 11.9 11.5 11.9 11.5 11.9 11.5 11.9 11.5
Observations 1,088 838 1,088 838 1,088 838 1,088 838 1,088 838
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