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1 Introduction

There is no shortage of reasons to suspect that the economies around us produce goods and

services in an inefficient manner. Many firms seem to enjoy market power, many contracts

look incomplete, and many policy actions (be they taxes and subsidies, regulations, or even

corruption) appear to sacrifice production efficiency in pursuit of other goals. These sources

of market failure result in misallocation because they cause the (value-adjusted) marginal

product of an input to differ across its uses in an economy. But how large are such differences

and their misallocative consequences?

In this paper we develop and apply new techniques for assessing the extent of misalloca-

tion among any given set of firms. Our methods leverage exogenous shocks to firms’ input

use (from shocks to either output demand or input supply) in order to quantify features

of the distribution of firms’ marginal products, for each input. This allows us to test for

the presence of misallocation and to estimate its welfare costs. Importantly, this is possible

without the need to assume that firms use technologies that share common features, an

assumption that is crucial for existing methods and may bias estimates of true marginal

product heterogeneity. We apply these new procedures to Ecuador’s construction industry,

in which a lottery component of the public procurement system generates random sources of

firm-level demand. Using such variation, we find that misallocation in this context appears

to be small (causing costs of 1.6%) and several times smaller than existing methods would

imply.

We begin in Section 2 by describing the economic environment that motivates our em-

pirical procedures. An econometrician observes a set of potentially multi-product firms pro-

ducing in a given initial cross-section. The goal is to test for and quantify misallocation—or

equivalently, departures from allocative efficiency of production (AEP)—in this cross-section.

To encompass prior work, we distinguish two notions of AEP. The first, which we term un-

constrained AEP (henceforth “U-AEP”), is generically necessary for Pareto efficiency. Such

an allocation requires that, for any firm and produced good or service, the ratio of the value

marginal product of any input to the input’s price—which we define as the “wedge” for that

firm-product-input—is equal to one no matter where the input is in use. The second notion
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is analogous but conditions on the aggregate amount of each input type that can be used

by the firms in question, as standard definitions of aggregate productivity do. An alloca-

tion consistent with this notion of constrained AEP (C-AEP) would feature wedges that are

equal to a common value across firms and products for each input type, but that value is

not necessarily one.

Assessing departures from either constrained or unconstrained AEP would be simple if

marginal products, and hence wedges, were observed. But a firm’s marginal products, by

definition, depend on its production function, which cannot be identified in the cross-section

if firms’ technologies differ in unknown respects. Existing methods overcome this challenge

by assuming that firms’ technologies share common features (such as their elasticity of scale).

But doing so may increase the risk of attributing observed differences in firm behavior to

apparent heterogeneity in wedges, rather than underlying differences in technology, affecting

the validity of inferences about the extent of misallocation.

By contrast, the methods we develop proceed by placing minimal restrictions on the

technologies that each firm uses, the demand or supply relations it faces, the extent of its

optimizing behavior, or the underlying sources of market failure that cause misallocation.1

This flexibility is possible for two reasons. First, we do not aim to identify each firm’s

wedge on each input and product. Instead, we focus on features of misallocation—such as

its existence or its welfare consequences—that are functions of the (arbitrarily weighted)

wedge distribution. Second, we observe that any wedge is simply the appropriately price-

adjusted “treatment effect” of a change in a firm’s input on its output. This implies that

exogenous variation in firm input use can be used to identify features of the distribution of

such treatment effects (and hence wedges), drawing on recent advances in the literature on

treatment effects estimation due to Masten and Torgovitsky (2016).

Intuitively, if a given allocation features C-AEP, for example, then, starting from this

allocation, the treatment effect of an exogenous change in any firm’s input use will be the

same anywhere in this economy. And if it features U-AEP, then these treatment effects

will be equal to one. Our procedures simply invert this intuition and ask what amount of

1The main substantive assumption we do require is that each firm uses a technology that is differentiable
at the point at which it is operating.
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misallocation is implied by the distribution of treatment effects that arises due to exogenous

input variation.

The techniques we develop can be applied to many contexts with different sources of

exogenous variation in firms’ input use. This can stem from demand shocks that firms

face, be it from the government, from other firms, or from consumers. For example, some

studies isolate quasi-experimental features of firms’ access to procurement contracts (e.g.,

Ferraz et al. (2015)), as we do in our empirical application.2 Equivalently, our method can be

applied using shifts in residual demand due to changes in the competitive environment—from

domestic entry, domestic expansion, or the arrival of competition from abroad.3 In addition

to demand-related shocks, exogenous variation in the supply of firms’ inputs can also be used,

such as (effective) subsidies to capital, labor, material inputs, and management services.4

Finally, the method can also be applied using variation that derives from assumptions about

the timing of firms’ information about changes in productivity, as used in the literature on

production function estimation.

We apply our new approach for assessing misallocation to the empirical context of

Ecuador. As detailed in Section 3, Ecuador’s public procurement system allocates certain

construction contracts (for specific projects at specific prices) by lottery, generating exoge-

nous variation in demand. We study the approximately 9,000 firms that took part in the

over 18,000 multi-participant procurement lotteries in our sample period (2008-2015). We

trace the response of both outputs and inputs to these random demand shocks by merging

the lottery contracts data with administrative tax records containing information on sales

and costs, firm-to-firm transaction values, as well as employer-employee matches. Compar-

2See also Lee (2017), Kroft et al. (2022), and Hvide and Meling (2023). Numerous studies have drawn on
other forms of exogenous variation in private demand, stemming from either domestic buyers—e.g. Bai et
al. (2022) and Amiti et al. (2023)—or foreign ones—e.g. Hummels et al. (2014), Atkin et al. (2017), Alfaro-
Ureña et al. (2022), and Demir et al. (forthcoming). Finally, Egger et al. (2022) use exogenous changes in
households’ incomes to study the behavior of nearby firms.

3For example, Goolsbee and Syverson (2008), Jensen and Miller (2018), and Busso and Galiani (2019)
study exogenous sources of domestic entry (both threatened and executed), and Amiti et al. (2019) and
Bergquist and Dinerstein (2020) do the same for expansions of domestic competitors. Similar variation can
derive from reductions in trade barriers, as exploited by e.g., De Loecker et al. (2016) and Felix (2021).

4Such shocks have been studied, for example, by de Mel et al. (2008), Kaboski and Townsend (2011),
Banerjee and Duflo (2014), Zwick and Mahon (2017), and Lane (forthcoming) for capital, by de Mel et al.
(2019) and Beerli et al. (2021) for labor, by Goldberg et al. (2010) and Boehm and Oberfield (2020) for
materials, and by Bloom et al. (2013) and Giorcelli (2019) for management services.
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ing these responses allows us to use the techniques described above to test for both forms of

allocative efficiency, and to estimate the cost of misallocation.

Our first set of results, in Section 4, begins with an event-study specification that reveals

the average time-path of output and input responses to a unit of randomly-determined

procurement lottery winnings. Firms rapidly scale up sales as well as labor and non-labor

inputs, with effects peaking about 6 months after the lottery and dissipating by 14 months.5

Cumulative sales responses are larger than cost responses by a factor of 1.15. Turning to

the heterogeneity in these responses, we observe little dispersion in either output or input

responses when grouping firms according to a variety of pre-determined firm characteristics,

such as baseline sales, profitability, or number of employees, despite the fact that firms

are highly heterogeneous along such dimensions. These descriptive findings are therefore

consistent with a setting in which wedges are larger than one (in violation of U-AEP) but

display limited dispersion across firms (consistent with C-AEP). However, these conclusions

could still mask firm-level heterogeneity in unobserved respects.

Section 5 therefore turns to a formal test for both forms of AEP that does not rely on the

ability to specify the sources of heterogeneity across firms and inputs. We implement these

tests via randomization inference to avoid relying on asymptotic inferential assumptions.

Results are consistent with the aforementioned descriptive analysis. The test for U-AEP—a

test for the null that all wedges equal one—resoundingly rejects, with a p-value less than

0.001. On the other hand, the test for C-AEP—which asks whether wedges take a common

value for each firm, within each input type—does not reject (p = 0.35).

In Section 6 we extend this analysis to estimate the cost of misallocation. We use weighted

moments of the wedge distribution to provide a second-order approximation to the cost of

misallocation, following Baqaee and Farhi (2020). Our results show a sales-weighted mean

of wedges across firms of 1.126 and a corresponding variance of wedges of 0.014. Even at

conservative values for elasticities of output demand and input supply, these point estimates

imply that the total cost of misallocation in this context is just 1.6%.

It may seem surprising that the estimated cost of misallocation in this context is so much

5These findings are generally consistent with Fadic (2020), who examines the Ecuadorian lottery system
studied here and documents temporary effects on revenues, labor payments, and assets of winning firms.
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smaller than the typically substantial costs estimated in the existing literature (discussed be-

low).6 However, as argued above, by placing only minimal restrictions on firms’ technologies,

it is natural that our procedure may arrive at a lower estimated amount of wedge dispersion.

To shed light on this, we can ask what our data would imply if we were to impose the as-

sumption that all firms have technologies that feature common rates of returns-to-scale, as

is common in the existing literature on misallocation. Applying this assumption to the same

data would lead to the conclusion that the firms in our setting exhibit substantially greater

wedge dispersion and a cost of misallocation that is generally an order of magnitude larger

(between 4 and 54 times larger across specifications).7 An interpretation of our findings is,

therefore, that the firms in our context truly have heterogeneous technologies—displaying,

at a minimum, heterogeneous degrees of returns-to-scale—and that procedures that restrict

such heterogeneity by assumption would overstate the extent of misallocation.

Prior work has focused on quantifying the allocative efficiency of inputs across firms for

some time. For example, Restuccia and Rogerson (2008) and Hsieh and Klenow (2009) offer

seminal contributions and Hopenhayn (2014) and Restuccia and Rogerson (2017) provide

reviews. As discussed above, the typical approach in existing work has been to leverage

parametric assumptions about firms’ production functions in order to estimate marginal

products, and hence wedges. Such an approach is invaluable if one hopes to identify a

separate wedge for every firm and input. However, it may lead to biased wedge estimates if

the specification of firms’ technologies is incorrect (for example, in terms of assumed returns-

to-scale as in Haltiwanger et al. (2018)) or understates cross-firm technological heterogeneity

(as emphasized in Gollin and Udry (2021), for example). Our approach focuses instead on

identifying features of the wedge distribution that are sufficient for our questions of interest:

whether all wedges equal one (in order to test for U-AEP), whether the wedge distribution

is degenerate for each input type (to test for C-AEP), and how large various weighted first

and second moments of the wedge distribution are (to quantify the cost of misallocation).

6For example, in their meta-analysis of 72 studies of misallocation, Bun et al. (2023) estimate that the
average cost of misallocation across studies deploying the production function-based approach referred to
here is 66%.

7These conclusions are similar across a range of robustness checks. They are also similar across sub-
samples of firms that differ in the extent of their participation in procurement lotteries, which mitigates a
potential concern that wedges on firms’ lottery sales may be smaller or less variable than those on firms’
other activities.
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To do so, we leverage insights from the Hall (1988, 2018) method of estimating markups.

Hall (2018), for example, uses a time-series regression of a U.S. sector’s output on a weighted

bundle of its inputs, with instrumental variables based on military purchases and oil price

fluctuations, to identify the sector’s markup under the assumption that the markup is con-

stant over time. We extend this idea in several directions. First, our techniques estimate

weighted moments of the wedge distribution within a single cross-section of firms, and hence

require no restrictions on markup heterogeneity within the sample.8 Second, we apply the

methods in Baqaee and Farhi (2020) to provide a mapping from such weighted moments

into estimates of the cost of misallocation. And third, consistent with the misallocation

literature, our method allows for arbitrary wedges on each input rather than only one overall

markup.

Our approach is complementary with that in recent work by Hughes and Majerovitz

(2023), who estimate the marginal product of capital using instruments for capital supply

and analyze heterogeneity via projections onto observable firm characteristics. This approach

delivers a lower bound for the variance, but one that is informative (in terms of ruling out

small costs of misallocation) in an application to the seminal de Mel et al. (2008) study,

which randomized subsidized capital among Sri Lankan microenterprises.9

Finally, as detailed above, an extensive literature has exploited field and natural experi-

ments to examine effects of demand and input supply shocks on firm outcomes. Our paper

complements and contributes to this literature by formalizing a method through which firms’

responses to such shocks can be used to test for the existence of allocative inefficiency and

to quantify its magnitude.

8As discussed below, the Masten and Torgovitsky (2016) estimator is suitable for models like ours, in
which coefficients are arbitrarily heterogeneous and regressors are endogenous. This estimator has been pre-
viously used by Gollin and Udry (2021) when estimating averages of heterogeneous Cobb-Douglas production
function parameters in a model of Tanzanian and Ugandan farms. Klette (1999) also uses a random coef-
ficient estimator to estimate unweighted markup dispersion across firms and years in a panel of Norwegian
firms, but under the assumption that regressors are exogenous.

9Our approach also relates to work (such as McCaig and Pavcnik (2018), Rotemberg (2019), Bau and
Matray (2023), and Sraer and Thesmar (2023)) that has used quasi-experimental designs, combined with
existing methods for estimating firms’ wedges (such as that due to Hsieh and Klenow (2009)), to ask the
important but distinct question of whether policy changes change the extent of misallocation.
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2 Theoretical Framework

2.1 Setup

We consider an economy with I potential firms indexed by i. Each has a technology for

converting inputs (indexed by m in the set M) into products (indexed by j in the set

J ). The output and input bundles of firm i are denoted by vectors yi ≥ 0 and xi ≥ 0,

respectively. Our goal is to assess the efficiency of production of the allocation observed at

some time “0”, and we use a bar over any variable to denote its value at that time.10

Each firm i ∈ I produces outputs yi from inputs xi via the transformation function

F (i)(yi,xi) ≤ 0, (1)

that is (by convention) strictly increasing in (yi,−xi). We make the following assumption

about firms’ behavior and technologies.

Assumption 1 (Firms). For all firms i ∈ I: (a) F (i)(yi,xi) = 0; and (b) F (i)(·) is

differentiable at (yi,xi) with respect to the outputs in J (i) and the inputs in M(i).

Part (a) assumes that firms produce on their technological frontiers, but does not otherwise

restrict firm behavior (including the extent to which it may be constrained or not profit-

maximizing). And (b) rules out cases where a firm is producing at time-0 at a kink in its

frontier. Beyond this relatively mild restriction, technologies are free to vary in arbitrary

ways across firms and across each firm’s levels of production, including arbitrary extents of

increasing or decreasing returns-to-scale, non-homotheticity, and input substitution.

For any firm i, and given any set of prices (pi,w) and an allocation (yi,xi), we define

the wedge on any input m in firm i’s production of product j as

µij,m(yi,xi, pij, wm) ≡ − pij
wm

F
(i)
xim(yi,xi)

F
(i)
yij (yi,xi)

, (2)

10The set of active firms (i.e., those with yij > 0 for at least one product j) is I ⊆ I, and the sets of active

products and inputs (those produced and used in strictly positive amounts) for firm i are denoted by J (i)
and M(i).
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where F
(i)
x (·) ≡ ∂F (i)(·)/∂x, etc.11 That is, a wedge is the ratio of the value marginal product

of an input to the price of that input.12 Of particular interest is the set of time-0 wedges

obtained by applying this definition to the time-0 allocation and prices:

µij,m ≡ µij,m(yi,xi, pij, wm) = −
pij
wm

F
(i)
xim(yi,xi)

F
(i)
yij (yi,xi)

. (3)

Turning to preferences, we specify the utility that household h ∈ H derives from con-

suming firms’ outputs and providing firms’ inputs as

U (h)(
{
yhi
}
,
{
xhi
}
), (4)

where, for example, yhij denotes the amount of yij consumed by household h.13 Feasibility

implies that
∑

h y
h
ij ≤ yij for all i and j, etc. Households behave in a simple manner:

Assumption 2 (Households). For each household h ∈ H: (a) U (h)(·) is differentiable at

the point of consumption, (
{
yhi
}
,
{
xhi
}
); and (b) (

{
yhi
}
,
{
xhi
}
) maximizes U (h)(·), subject to

the budget constraint
∑

i∈I,j∈J pijy
h
ij ≤

∑
i∈I,m∈Mwmx

h
im, while taking output prices pi and

input prices w as given.

As we shall see, the role of this assumption is to allow observed relative prices to reveal

households’ marginal rates of substitution.14

2.2 Allocative Efficiency of Production

We define two notions of allocative efficiency. The first, which we term unconstrained alloca-

tive efficiency of production (U-AEP), corresponds to the choices made by a hypothetical

social planner who faces no aggregate resource constraint. A standard derivation implies

11For expositional simplicity, we refer to derivatives of functions (such as F (i)(·)) that are not necessarily
differentiable everywhere.

12For a single-product firm we can write its technology as yi = F̃ (i)(xi), so that µi,m = pi

wm

∂F̃ (i)(xi)
∂xim

.
13We use braces “{qk}” to denote a vector whose elements are qk.
14Given our focus on allocative efficiency of production, Assumption 2(b) effectively normalizes to one any

wedges that arise on the household side (ruling out, for example, taxes on consumption or income). More
generally, in the case of inputs sourced from other firms rather than households, our analysis normalizes to
one any wedges in upstream firms so as to focus on misallocation among the firms under study.
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that, under Assumptions 1 and 2, any Pareto-efficient allocation featuring U-AEP (denoted

with double stars) would display

µij,m(y
∗∗
i ,x

∗∗
i , p

∗∗
ij , w

∗∗
m ) ≡ µ∗∗

ij,m = 1, (5)

for any y∗∗ij > 0 and x∗∗im > 0.15

Under the second notion of efficiency, which we term constrained AEP (C-AEP), the

planner cannot use any more of an input type than is observed in use at time-0. This can

be written as: ∑
i∈I

xim ≤
∑
i∈I

xim ≡ Xm for all m ∈ M. (6)

It is common in the misallocation literature to study allocative efficiency in the presence of

such constraints. One benefit of doing so is that misallocation can be decomposed into two

sources: (a) misallocation of inputs conditional on Xm; and (b) misallocation in the total

input level Xm. Another motivation involves a connection to aggregate TFP, which holds

aggregate inputs constant by definition.

Under Assumptions 1 and 2, as well as constraint (6), any interior Pareto-efficient allo-

cation featuring C-AEP (denoted with single stars) displays

µij,m(y
∗
i ,x

∗
i , p

∗
ij, w

∗
m) ≡ µ∗

ij,m = χm, (7)

for some χm > 0. In this case, the planner’s wedges µ∗
ij,m are all equal to some common

value χm, within the same input type, but this value is not necessarily one as in the U-AEP

case (5). The essence of C-AEP is lack of dispersion in wedges rather than their level.

15This follows from the first-order conditions for an interior solution, which imply

U
(h)
yj ({y∗∗

i } , {x∗∗
i })F (i)

xim(y∗∗
i ,x

∗∗
i )

U
(h)
xim({y∗∗

i } , {x∗∗
i })F (i)

yij (y
∗∗
i ,x

∗∗
i )

= 1 for all i ∈ I, j ∈ J ,m ∈ M, h ∈ H,

and the application of Assumption 2 and wedge definition (2). The prices (p∗∗
i ,w

∗∗) are those that would
prevail in a decentralized equilibrium that corresponds to the planner’s allocation.
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2.3 Testing for Allocative Efficiency of Production

We next turn to a test for whether the observed time-0 allocation is allocatively efficient, in

either sense. The two null hypotheses to be tested are:

H0 (U-AEP) : µij,m = 1 for all i ∈ I, j ∈ J (i),m ∈ M(i), (8)

H0 (C-AEP) : µij,m = χm for some χm > 0 and for all i ∈ I, j ∈ J (i),m ∈ M(i).

Testing these hypotheses would be straightforward if the wedges {µij,m} were observable.

But each wedge depends, by definition (3), on the marginal product of input m for product

j in firm i. This cannot be determined without knowledge of each firm’s transformation

function F (i)(·).

We overcome this challenge by analyzing a change over time starting at time 0. Let

∆yij ≡ yij,t=1 − yij denote the change in any variable from time 0 to some later point in

time (t = 1). Then, following Hall (1988), we apply a first-order Taylor expansion to the

transformation function F (i)(·) around the point (yi,xi), as is valid under Assumption 1(b).

Using the definition of µij,m, changes in outputs therefore relate to changes inputs via

∑
j∈J (i)

µij0,m0

µij,m0

pij∆yij =
∑

m∈M(i)

µij0,mwm∆xim + εi, (9)

for any firm i ∈ I, wherem0 and j0 denote arbitrarily chosen reference inputs and products.16

Here, εi captures any changes in the production function (such as a change in TFP), the

consequences of any higher-order terms in the Taylor expansion and of new products j /∈ J (i)

or inputs m /∈ M(i). Importantly, this expression is valid for any set of input changes ∆xim

and does not take a stand on why (or whether) these changes occur.

As with any test, we seek a function of observables that could distinguish H0 from an

alternative hypothesis (in this case, the existence of misallocation). To do so, we define the

16For simplicity of notation, this expression assumes that m0 ∈ ĎM(i) for all i.
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following change in (fixed-price) revenues minus (fixed-price and χ-adjusted) costs

∆Πi(χ) ≡
∑
j∈J (i)

pij∆yij −
∑

m∈M(i)

χmwm∆xim. (10)

∆Πi(χ) is a function of data alone, given any candidate value of χ. Combining equations

(9) and (10), this function reduces to ∆Πi(χ) = εi under either AEP null.

Finally, we introduce an additional observable, an instrument Zi, that is assumed to

satisfy the following:

Assumption 3 (Exogeneity). An instrumental variable (IV), denoted Zi, is observable

and satisfies statistical independence with respect to εi: Zi ⊥⊥ εi.

When exogeneity holds, then ∆Πi(χ) ⊥⊥ Zi under either AEP null. Since both Zi and

∆Πi(χ) are observable under any value of χ, the hypothesis of statistical independence is

testable. One method is to consider the following nonparametric relation among all firms

i ∈ I

∆Πi(χ) = f(Zi) + νi, (11)

for a set of flexible functions f(·) and under the normalization that f(Zi) is independent of

νi. Then the AEP hypotheses can be stated as:

H0(U-AEP) : when χ = 1, f(·) = 0, (12)

H0(C-AEP) : for some χ > 0, f(·) = 0.

We summarize the discussion so far in the following proposition.

Proposition 1. Suppose Assumptions 1-3 hold. Then a nonparametric test for U-AEP can

be performed by estimating the function f(·) in equation (11), evaluating ∆Πi(χ) at χ = 1,

and rejecting the null whenever f(·) ̸= 0. A nonparametric test for C-AEP can similarly be

performed by estimating the function f(·) in equation (11), but while evaluating ∆Πi(χ) at

all χ > 0, and rejecting the null whenever there exists no value of χ > 0 at which f(·) = 0.

The intuition behind the test in Proposition 1 is as follows. Suppose that Zi is a random

demand shock that affects a subset of firms, and that Zi is positively correlated with ∆Πi(1)

11



which would correspond to a case in which one estimates an f(·) ̸= 0. This implies that

the demand shock caused some firms’ (time 0 price-valued) outputs to grow by more than

their (time-0 price-valued) inputs. This is inconsistent with U-AEP because it implies that

some wedges are larger than one—or equivalently, that random demand shocks have caused

a systematic improvement in the allocation, which would be impossible under efficiency.

However, suppose that there does exist a value of χ > 0 at which f(·) = 0 for all candidate

functions within some flexible set. This would be consistent with C-AEP because it implies

that there exists a set of “shadow values” χm such that, when inputs are valued in a way

that includes χm, output changes and input changes are aligned and no improvements to the

allocation can be found.

In practice, there are a number of ways to choose functional forms for f(·) to carry out

the test of f(·) = 0 in equation (11). In Section 5 we follow Ding et al. (2016) and estimate

a quantile regression relationship between ∆Πi(χ) and Zi and then test for zero effects at all

quantiles; this effectively tests that the distribution of ∆Πi(χ) does not vary across values of

Zi, a necessary condition for their independence. We also employ randomization inference,

given that the null is sharp (at any value of the nuisance parameter χ) and the stochastic

distribution of Zi is known in our setting.

Concerning the choice of instruments, there are two considerations. First, Zi must satisfy

Assumption 3. Recall that εi consists of three components: (a) changes to the production

technology (such as TFP shocks) between time 0 and time 1; (b) non-linear terms in the

Taylor expansion of equation (9); and (c) the impact of new types of inputs or outputs.

An instrument satisfies component (a) if it is unrelated to the firm’s technology. As long

as the set of varying inputs is comprehensive, valid examples could include the types of

exogenous sources of variation investigated in the studies referred to in the Introduction.

This includes changes in demand, in the competitive environment, in the supply of inputs,

or in the use of inputs that firms are assumed to allocate before technology shocks are

realized. Our application follows the first of these options, using randomized demand shocks

from government procurement contracts. Concerns due to (b) can be probed through the

use of different values of Zi that drive larger input changes. For example, we compare effects

of relatively small and large demand shocks below. Component (c) causes bias to the extent
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that the new inputs or outputs caused by the instrument have large value marginal products

but, as equation (7) makes clear, under the null of efficiency these effects are small.

The second consideration in choosing instruments is that the test has greater power

against typical alternatives when Zi has a stronger correlation with input changes wm∆xim.

This is akin to a “first-stage” relevance condition in standard IV settings and is empirically

observable.

2.4 Measuring Moments of the Wedge Distribution

Proposition 1 develops nonparametric tests for the existence of misallocation in production.

These tests amount to evaluating whether the distribution of wedges {sµij,m} satisfies con-

stancy across firm-products within input types (in the case of C-AEP) or degeneracy at one

for all firms, products and inputs (in the case of U-AEP). Our final procedure complements

such tests by providing point estimates of features of the wedge distribution, such as its

weighted moments (with observed weights). These estimates are themselves of interest, but

they also play a key role in estimating the aggregate costs of misallocation.

We begin by rearranging equation (9) as

spij0∆yij0 = −
∑

j∈ sJ (i)−j0

sµij0,m0

sµij,m0

spij∆yij +
∑

m∈ ĎM(i)

sµij0,m swm∆xim + εi, (13)

which holds for each firm i ∈ sI. For simplicity, we first focus on firms that produce a

single product at time 0 (and therefore drop subscript j temporarily) before returning to

multi-product firms. In this case, equation (13) becomes

spi∆yi =
∑
m∈M

sµi,m swm∆xim + εi, (14)

where we follow the convention that ∆xim = 0 if sxim = 0.

This equation corresponds to a cross-firm regression model relating spi∆yi to a set of

regressors given by swm∆xim for each m ∈ M. In particular, this model takes the form of

an instrumental variables correlated random coefficients (IVCRC) model, for three reasons.

First, each unit of observation i not only has its own unobserved intercept εi but also its
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own unobserved coefficient sµi,m on each regressor. Second, the model features endogeneity,

since we expect any regressor (i.e., the change in inputs of type m) may be correlated with

the error term. This is because the error term captures changes in the firm’s technology, to

which the firm’s input choices are likely to respond. And third, the coefficients sµi,m may be

correlated with the error term εi, for example, if firms with high markups are more likely

to receive productivity shocks. Masten and Torgovitsky (2016) develop tools to study such

IVCRC models in cases with suitable instruments, as described in the following.

Assumption 4 (IV). The econometrician has access to a vector of instruments Zim, one

for each m ∈ M, that satisfies: (a) Zim ⊥⊥ (εi, sµi,m); (b) swm∆xim = hm(Zim, Vim) for some

unknown hm(·) and scalar Vim, with
∂hm
∂Vim

> 0 for all m ∈ ĎM(i); (c) hm(Zim, Vim) is strictly

monotonic in Zim and there exists variation in Zim at almost every Vim for all m ∈ ĎM(i);

and (d) Zim has at least K + 1 points of support.

Parts (a) and (c) are analogous to standard IV requirements—exogeneity and relevance,

respectively. We return to part (d) below. Condition (a) requires the instruments to be

independent of both the residual εi and the wedge sµi,m.
17 One a priori concern about the

validity of part (c) is the presence of adjustment costs, as discussed above. Just as such

costs will reduce the power to detect misallocation of inputs that rarely adjust, they may

also hinder the ability to estimate the distribution of wedges on such inputs because it can

be challenging to find sufficiently strong instruments for them. However, condition (c) is

testable (Masten and Torgovitsky, 2016).

Part (b) is unique to IVCRC. Masten and Torgovitsky (2016) refer to this as a “first-

stage rank-invariance” condition. It requires that the ranking of firms in terms of their

input changes (for any input type m) is the same when all firms (hypothetically) receive a

low value of Zim as when they receive a high value. Put differently, firms can respond to

Zim in heterogeneous ways, but not in a way that alters their rank in the conditional-on-Zim

distribution of changes of inputm. This is more likely when firms’ heterogeneity in responses

17Our wedge estimation procedure is less vulnerable to concerns about the endogeneity of εi than the
test in Proposition 1 because here it is straightforward to control for higher-order terms in swm∆xim (to
the extent that separate instruments are available for small and large changes in inputs) as well as for new
inputs.
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to Zim is small relative to all other reasons for adjusting inputs (i.e. those that are driven

by Vim). We return to this point in the context of our application in Section 6.

Masten and Torgovitsky (2016) show that, under Assumption 4, a consistent estimator

of E[sµm] can be constructed for any m ∈ M in equation (14)—that is, for the expected value

of firms’ wedges sµi,m on input m, with the expectation taken across firms i.18 We augment

this procedure to obtain an estimate of the analogous expectation weighted by an arbitrary

vector of firm-specific weights {αm}. We denote this expectation by Eαm [sµm]. This can be

achieved by using the regressor 1
Nαim

swm∆xim instead of swm∆xim.
19

Higher-order moments of the wedge distributions can also be estimated consistently by

a simple extension. As Masten and Torgovitsky (2016) discuss, the square of equation (14)

implies

(spi∆yi)
2 =

∑
m∈M

sµ2
i,m( swm∆xim)

2 + 2
∑

m,m′∈M,
m̸=m′

sµi,msµi,m′
swm∆xim swm′∆xim′

+2εi
∑
m∈M

sµi,m swm∆xim + ε2i . (15)

This, too, is an IVCRC model. That is, to the extent that the regressors in equation (15)

are not perfectly collinear (a sufficient condition for which is Assumption 4, part (d)), the

previous argument can be used to construct a consistent estimator of second-order moments,

E[sµ2
m] and E[sµmsµm′ ].20 By a similar argument to that stated above, weighted moments

such as Eαm [sµ
2
m] are also identified. Extensions to third- and higher-order moments are

straightforward.

We summarize the preceding discussion in the next proposition:

Proposition 2. Suppose Assumptions 1-4 hold. Then all leading Kth-order weighted mo-

18Since Assumption 4 invokes conditions about inputs m ∈ ĎM(i), the identification of E[sµm] for any given
m ∈ ĎM refers to the expectation over firms i for which m ∈ ĎM(i).

19In the case of one regressor, Eα[sµ] can be approximated by interacting the regressor with indicators for
groups based on quantiles of the weighting variable αi and then constructing the group-weighted average of
group-specific estimates. This approximates Eα[sµ] increasingly well as the number of groups grows.

20If the number of input types is M , equation (15) suggests that M(M + 1) instruments are required for
identification. However, an attractive feature of the Masten and Torgovitsky (2016) procedure is that only
M instruments are required. This is because the method incorporates the mechanical relationships between
basic and derived endogenous regressors (i.e., that the first-stage relationship swm∆xim = hm(Zim, Vim) is
the same no matter how component swm∆xim appears in the regression).
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ments of the distribution of wedges {sµi,m} are identified among i ∈ sI and m ∈ ĎM(i).

Finally, we return to the multi-product firm from equation (13). The new element here is

the additional coefficients
sµij0,m0

sµij,m0
on the regressors spij∆yij, with sJ(i)−1 coefficients when firm

i produces sJ(i) products at time-0.21 These coefficients capture within-firm, cross-product

dispersion in wedges, measured by the ratio of the wedge (for an arbitrarily chosen input

m0) on reference product j0 relative to any other product j. Given suitable instruments,

Proposition 2 can be applied to the moments of these distributions too. This leads to the

identification of all moments of the distribution of all wedges across firms, within firms across

products, and within firms across inputs.

2.5 Quantifying the Cost of Misallocation

Proposition 2 developed a procedure for estimating weighted moments of the distribution

of wedges. We now show how such moments can be used to measure the aggregate cost of

misallocation. In particular, we compare the U-AEP allocation (y∗∗,x∗∗) with its wedges of

{1} to the actual time-0 allocation (y,x) with its wedges of
{
µij,m

}
. We also decompose this

total cost into two terms: (i) the cost of misallocation due to how each input type is allocated

across firms (holding aggregate input use constant at sXm); and (ii) the cost of misallocation

of the aggregate input amounts themselves. Throughout, we focus—à la Harberger—on the

second-order expansion to an aggregate welfare function around the point (y∗∗,x∗∗).22

Quantifying the total cost of misallocation, up to second-order, amounts to summing up

a series of Harberger triangles whose heights are related to the change in wedges (i.e., to

the vector
{
µij,m − 1

}
) and whose bases are related to the change in quantities of each good

produced as a result of the change in wedges. Baqaee and Farhi (2020) emphasize how the

cost of misallocation can be written as a set of weighted first- and second-order moments

of the wedge distribution, where underlying elasticities of supply and demand govern the

importance of each moment. That is, following Proposition 2, one can calculate the value of

21This can be executed as follows. Arbitrarily order each firms’ sJ(i) products such that one is chosen as
the reference product, and hence populates the left-hand side of equation (13), and the remaining sJ(i) − 1
products appear as regressors. For firms with less than sJ ≡ maxi∈sI

sJ(i) products, use the convention of
∆yij = 0 to populate the missing sJ − sJ(i) regressor values.

22Since Proposition 2 ensures identification of arbitrary moments of the wedge distribution, our focus on
second-order expansions is for simplicity only.
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each moment without knowledge of any supply or demand elasticities. But converting such

values into a measure of the cost of misallocation does require such knowledge.

Consider the following example. The economy consists of profit-maximizing firms, each

using production functions that are arbitrary (and use an arbitrary set of inputs) as long

as they satisfy Assumption 1 and display constant returns locally to the time-0 allocation.23

The representative household has nested CES preferences (with elasticity θ and arbitrary

preference weights) over the products of these firms. The household also supplies inputs

xim to all firms by deciding how much of its time endowment to consume as leisure or

convert into inputs, with an elasticity of substitution η between leisure and the bundle of

final consumption goods. Finally, each firm has the same wedge on each of its inputs, which

we denote by µi = µi,m for all m.24

The tools in Baqaee and Farhi (2020) make it straightforward to calculate the total cost

of misallocation due to wedges. Let sλi ≡ spisyi∑
i′ spi′ syi′

denote the share of firm i’s sales in total

goods consumption and sωC denote the share of the household’s virtual income spent on

consumption goods.25 Then, up to a second-order approximation, the increase in welfare

(relative to the initial level) from eliminating the wedges is

∆W

W
=

1

2
sωC(1− sωC)η (Esλ [sµ]− 1)2 +

1

2
sωCθVarsλ [µ] , (16)

where Ea[b] is the expectation of vector b weighted by vector a and Vara [b] ≡ Ea[b2]−(Ea[b])2.

The first term in this expression captures the effect of the average wedge on consumption

goods (relative to leisure, which has no wedge), which causes misallocation of the amount

of aggregate inputs sXm supplied at time-0. It therefore scales with η, the elasticity of input

supply, and the extent to which the weighted average wedge E
sλ [sµ] among firms differs from

the efficient level of one. The second term captures the effect of wedge dispersion across firms,

which causes misallocation of any given input supply { sXm}m. It scales with the demand

elasticity θ and the weighted variance of wedges across firms Var
sλ [µ].

23A natural technology with constant returns locally is one with constant marginal costs (at fixed input
prices and wedges) but arbitrary overhead costs.

24This is the case if, for example, the underlying cause of potential wedges is firms’ output market power,
and/or taxes and subsidies on firms’ sales.

25If the household’s time endowment is sT and it earns the price sw for selling inputs then sωC ≡
∑

i spi syi

sw sT
.
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As this example makes clear, estimates of a small set of weighted moments of the wedge

distribution—along with a small number of additional structural parameters—can be used

to estimate the welfare cost of misallocation. Appendix B provides two further examples

that illustrate extended versions of this logic. These extensions add: (i) within-firm wedge

dispersion across two types of inputs (as in Hsieh and Klenow (2009)), which adds a term

involving the weighted variance of within-firm wedges; and (ii) a household with nested CES

preferences across sectors and firms (as in Atkeson and Burstein (2008)), which adds a term

involving the cross-sector dispersion in the average wedge within each sector.

3 Background and Data

As discussed above, our procedures require an instrument that is correlated with changes

in firms’ input use but uncorrelated with changes in firms’ technologies. We now turn to

an application in which we can construct such an instrument based on demand shocks:

randomized allocation of certain public procurement contracts in Ecuador. This section

describes this procurement lottery process, the data and descriptive statistics regarding the

firms that participate in these lotteries, and our empirical strategy.26

3.1 Ecuador’s Procurement Lottery System

Starting in 2009, contracts for public construction projects below a certain value were al-

located through randomized lotteries among qualified suppliers.27 Examples of such con-

tracts include construction or maintenance of public buildings, small roads and town squares,

schools, sewerage, and wells. Included are both physical construction and related services

such as those of architects. Lottery contracts represent about 4% of total public procurement.

Government entities aiming to procure small construction contracts first set the parame-

ters of the contract (service to be provided and fixed price) and conduct a screening process

to determine which interested firms qualify.28 Among these firms, an automatic and cen-

26Appendix C contains further details on data construction.
27The threshold value is 0.00007% of the central government’s annual budget. This corresponds to $134,176

in 2009 and $240,100 in 2014.
28Starting in 2013, one qualification criteria was that the total value of lottery contracts a firm enters at
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tralized program determines the winner through random selection. Entry into any given

lottery is therefore endogenous—the result of selection on both sides. Conditional on entry,

however, the allocation of the contract is randomly determined.29

We collected data for each procurement lottery in 2009-2014, including the value, start

date and anticipated duration of the contract, the participating firms, and the winner (SER-

COP, 2014). We discard contracts for which only one firm qualifies (and hence there is no

random assignment). The remaining sample includes 18, 474 lotteries with 9, 393 firms that

participate at least once. The first two panels of Table 1 report summary statistics of these

lotteries and of firms’ participation. Contracts have a mean value of about $47, 000 (median

$32, 000) and usually have a short expected duration, with a mean (and median) of about

2 months. Lotteries have 10 participants on average (median 4). Participation is relatively

frequent among lottery firms, averaging about 3.5 times a year (median once a year).

3.2 Firm Data

We match the procurement records to administrative data from Ecuador’s tax authority

including firm income tax filings, matched employer-employee social security data, and firm-

to-firm transaction data from value added tax (VAT) filings. We have annual firm income

tax returns for 2008 to 2015, including all line items such as wages, non-wage costs, revenues,

and profits (SRI, 2015a). We use these line items to construct total sales and costs: total

sales include domestic sales, exports, and other income (e.g., received professional fees); total

costs comprise labor and non-labor costs (including capital costs, intermediate input costs,

maintenance and repairs, and real estate rent).30

We combine these annual income tax filings with two data sources that contain informa-

tion on wages, costs and sales on a monthly basis. The first is matched employer-employee

social security data, which includes information (available for 2007-2017) on earnings at the

worker-firm level (SRI, 2017). And the second is VAT data, which contains third-party re-

any given time be below 0.0007% of the government budget.
29Appendix C includes a more detailed step-by-step description of the lottery process.
30All our sales and costs variables are gross of taxes. The sample includes both incorporated firms, which

file the corporate income tax form (F101), and sole proprietorships, which file a combined business and
individual income tax return (F102).
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ported information about firms’ sales as constructed from their clients’ purchase annexes

(SRI, 2015b). Such purchase annexes must be filed by all incorporated firms, large sole

proprietorships, and government agencies as part of their VAT requirements.31 We use this

data to calculate third-party reported sales by summing all purchases from a supplier across

the purchase annexes of all its client entities.32 These monthly data for sales and labor costs,

though less complete than the annual data, allow us to better illustrate the dynamic paths

of the treatment effects of winning a lottery.

By their nature, administrative tax data reflect reported economic activity. We can

mitigate concerns about potential misreporting in two ways. First, we validate our sales

estimates, showing that estimated treatment effects on sales are almost identical when using

self-reported or third-party reported sales. Second, we find that the treatment effect on total

sales is almost entirely accounted for by sales to procuring entities. This is reassuring since

these are public entities that have no incentive to misreport tax filings.

Our analysis focuses on the 9, 393 firms that ever participate in a multi-participant lottery

in 2009-2014.33 The third panel of Table 1 reports summary statistics of these firms (for the

first year they participate in a lottery). Sample firms are on average 11 years old and sell to

5 clients a year. About 18% are incorporated while the rest are sole-proprietorships. Mean

annual third-party reported sales are around $133, 000 (with a median of $48, 000, reflecting

the typical skewness of firm size distribution). Self-reported annual sales are similar, with a

mean of $141, 000. Annual costs are $124, 000 on average, and profits $17, 000. The average

number of employees is 4.4, with a wage bill of around $7, 400.

Figure 1 plots the distribution of firm sizes (in terms of sales) both for lottery participants

and other firms in Ecuador. Panel 1(a) compares lottery participants to other economically

active firms, whereas panel 1(b) compares them to those in the same industry (construction

and engineering). The size distributions are broadly similar. Relative to both comparison

31Purchase annexes include the value, date and supplier ID of all purchases a firm makes.
32This measure is a lower bound on total sales since not all client firms file purchase annexes and sales to

final consumers are not included. In our sample, the two sales measures are very similar (see Table 1).
33Firms that are not yet active in 2008 enter the sample when they first appear to be economically active,

defined by when they first report any sales or costs or appear in any of the above data sets (as a lottery
participant, an employer in the social security data, or as a supplier in another firm’s purchase annex). Once
a firm is economically active, we impute zeros for any future missing data, since filing nothing is legally
equivalent to filing zero.
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groups, the distribution of lottery participants is shifted to the right but with less mass in

the upper and lower tails of the distribution.

3.3 Using Procurement Lotteries to Construct Demand Shocks

The randomized assignment of contracts provides a source of demand-side exogenous varia-

tion in the use of inputs. We use this variation to construct an instrumental variable Zit for

each firm i and time period t and then apply this instrument to the testing and estimation

procedures described above. The instrument needs to satisfy the statistical independence

assumption invoked in Assumptions 3 and 4(a). While any given lottery is akin to a simple

randomized trial, pooling across all lotteries is more complex because selection into spe-

cific lottery entry is endogenous and may correlate with unobserved determinants of firm

growth.34 To address this, we draw on the ideas in Doran et al. (2022) and Borusyak and

Hull (forthcoming) to aggregate over all lotteries.

Let k index all procurement lotteries, and Kit denote the set of lotteries firm i enters

in period t. Further, let Ak denote the contract value and Nk the number of participating

firms in lottery k. The amount of winnings that firm i obtains from lottery k is then a

random variable Wik that is binomially distributed (equal to Ak with probability 1/Nk, and

zero otherwise). Hence, a firm’s total winnings in period t is a random variable Wit ≡∑
k∈Kit

Wik that is a weighted, binomially distributed random variable, with a pth central

moment—which we denote by Mp({Ak, Nk}k∈Kit
).35 When firms participate in lotteries at

different points in time, they are therefore (potentially endogenously) exposed to different

probability distributions of randomly-generated winnings. However, conditional on two firms

participating in lotteries with the same distribution, the realization of the variableWit differs

in a purely random manner across the two firms. Put differently, conditional on all moments

of Mp({Ak, Nk}k∈Kit
), Wit is independent of any pre-determined firm attributes.

One way to proceed is therefore to useWit as our instrument while controlling for flexible

functions of leading moments of Mp({Ak, Nk}k∈Kit
). However, in practice, we find that

34Since firms can enter multiple lotteries per time period, we cannot use lottery fixed effects to isolate
purely random variation.

35For example, the first moment (or expected value) of firm i’s winnings at time t is simply
M1({Ak, Nk}k∈Kit

) ≡ E[Wit | {Ak, Nk}k∈Kit
] =

∑
k∈Kit

Ak

Nk
.
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controlling for anything beyond the first moment is quantitatively inconsequential—both

when applied to estimators that rely only on mean independence of instruments and those

that rely on stronger forms of independence. In addition, as Borusyak and Hull (forthcoming)

explain, a simpler procedure that is equivalent to controlling for the first moment is to exploit

the fact that, even in the absence of controls, demeaned winnings

Dit ≡ Wit − E[Wit | {Ak, Nk}k∈Kit
], (17)

is mean-independent of any firm characteristics, or potential outcomes. Intuitively, even

though firms can control expected winnings by choosing which lotteries to enter, they cannot

control the random deviations from expected winnings. We refer to Dit, firm i’s deviation

from expected winnings in time t, as its procurement winnings shock.36

We check for balance of randomization by regressing Dit on firms’ pre-treatment charac-

teristics. Table 2 shows that indeed, there is no statistically significant correlation between

these characteristics and the procurement winnings shock.37 In addition, we show below

that there are no spurious pre-treatment “effects” for any of our outcomes.

4 Effects of Demand Shocks: Descriptive Results

This section presents descriptive evidence on firms’ average responses to procurement de-

mand shocks and explores response heterogeneity by firm characteristics. These results

preview our formal tests and quantification of allocative efficiency in Sections 5 and 6.

4.1 Average Treatment Effects

We estimate effects of demand shocks on firm outcomes in an event-study framework by

regressing firm outcomes on procurement winnings shocks Dit. Formally, for any outcome

36In our analysis below, time periods t are either months or years. By the linearity of expectations, Dit

at the annual level corresponds to the sum of the monthly Dit in each year.
37This is consistent with Brugués et al. (2022), who show that, while political connections influence the

distribution of regular procurement contracts in Ecuador, they do not affect contracts allocated by lottery.
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Yit, we estimate

Yit = α +

Tlag∑
τ=−Tlead

βτDi,t−τ + ϵit, (18)

where α is an intercept, βτ is a coefficient that captures the effect of winnings shock Di,t−τ

(in thousands of USD) on outcome Yit, and Tlead and Tlag denote the number of included

lead and lag coefficients, respectively. Confidence intervals and standard errors are clustered

at the firm level.

Sales

Figure 2 displays estimated treatment effects of demand shocks on monthly firm sales (using

the third-party reported sales from VAT filings), based on (18). There is a flat pre-trend

at zero during the six months prior to the lottery, lending further support to the validity of

the lottery randomization. The small spike in sales one month after the lottery represents

the fact that many lottery contracts stipulate some up-front payments. Monthly sales rise

thereafter, peaking 5 months after the lottery, and dissipate by about 14 months. The

temporary demand shock does not leave these firms permanently larger.

We next annualize these third-party reported sales in order to compare them to the self-

reported sales from firms’ annual income tax returns. Columns (1) and (2) of Table 3 report

the effect of $1,000 in procurement winnings shocks on sales, based on these two measures,

in the year of the lottery and the year after.38 The total impact on sales over the two years

is $708 for third-party reported sales and $669 for self-reported sales.39

Figure 3 examines whether treatment effects vary with contract size. Effects—per $1000

of procurement winnings shocks—are remarkably similar for contracts of above- and below-

median size. The same is true when examining how relatively small firms respond to relatively

large contracts and vice versa (Appendix Figure A.2). And responses to demand shocks are

very similar regardless of whether the firm has won or lost other lotteries in the recent

38Appendix Figure A.1 shows these results graphically, starting two years before the lotteries. Again,
there are no differential pre-trends.

39As discussed below, we find virtually no crowd-out of sales to other clients. The fact that cumulative
sales effects are lower than the winnings shock itself therefore derives from two sources: firms that win a
contract are somewhat less likely to enter subsequent lotteries and contract values and scope are sometimes
modified ex post. However, this does not affect our empirical strategy since it only relies on the existence of
a random source of firm input changes (not the full pass through of contract winnings into sales growth).
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past (Appendix Figure A.3). These findings all imply that responses to demand shocks are

approximately linear, suggesting that adjustment costs and the higher-order terms in the

Taylor expansion of equation (9) are unlikely to be large in our context.

Costs

We next analyze how firm inputs change given the increase in sales. Figure 4 shows the

impact of procurement winnings shocks on labor inputs—employment and wage payments—

from the monthly social security data. The time path of effects is similar to that of sales,

though there is a minor longer-run effect for labor. Column (3) of Table 3 reports the impact

on total costs from the annual firm income tax returns (which include both labor costs and

all non-labor costs, such as materials and capital) in the year of the lottery and the year

after, which together amount to an increase in total costs of $583.40 This cost increase is

driven primarily by an increase in non-labor costs (columns 4 and 5). Finally, column (6)

reports the corresponding treatment effects on profits (i.e., column 2 minus column 3).

Overall, these findings have two important implications. First, firms in our context cannot

meet additional demand simply by using existing capacity. Second, the rapid scale-up and

scale-down of different categories of inputs is again consistent with this being a context with

limited adjustment costs.

Price versus quantity adjustments

The procedures from Section 2 rely on the ability to measure the initial period prices and

changes in quantities of firm inputs and outputs. As is standard in administrative tax data,

prices and quantities are not reported separately in our data (except for the social security

data, which tracks individual employees and their wages). However, to the extent that the

demand shocks have no effect on prices, our data on sales and costs would capture the

appropriate response (initial price times change in quantity).

Figure 5 provides evidence consistent with this in regards to output prices, plotting

impacts on four categories of clients that firms sell to.41 Importantly, there is no appreciable

40Appendix Figure A.4 presents estimated dynamic effects on total costs. As with sales, there is a flat
pre-trend followed by a sharp increase in the year of the lottery, which dissipates within two years.

41These mutually-exclusive categories are: (a) procuring entities for which firm i participated in at least one
lottery; (b) other procuring entities (i.e., other entities that made at least one purchase through the lottery
system) that firm i may sell to via non-lottery means; (c) other public entities; and (d) privately-owned
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effect on sales to the private sector: we can reject monthly effects on private sector sales

larger than ± $10 for each $1,000 dollars in procurement winnings shocks at the 95% level

in all periods. If the demand from private sector buyers is at all responsive to prices, as we

would expect it to be, then the lack of any change in purchases from lottery winners suggests

that the price at which procurement firms sell is not affected by lottery-based demand shocks.

Turning to input price adjustments, in the case of labor we can assess these directly in our

data. Appendix Figure A.5 shows wage responses per worker—first for all workers in the firm

in a given month (panel a) and second among continuing workers who remained employed

at the firm for a spell running from 6 months before the lottery to 18 months thereafter

(panel b).42 The wages paid to continuing workers are remarkably stable in response to the

demand shock, consistent with the assumption of (input) price stability.

Implications for homogeneous wedges

The pioneering Hall (1988) study of US markups assumed: (a) no wedge dispersion within

firms (across products or input types, i.e. sµij,m = sµi for all j andm), which is consistent with

the wedge (i.e. the markup) arising purely from output market power; and (b) no markup

dispersion across firms (in a single cross-section of producers) or across time periods (when

tracking one producer over time). Under these homogeneity assumptions, the single markup

can be estimated from an IV regression of sales on costs while using a demand shock as the

instrument. The results in Table 3 provide the reduced-form and first-stage estimates that

would correspond to such an IV regression. Under Hall’s (1988) assumptions, taking the

ratio of the cumulative demand shock-driven increase in sales in year t and t + 1 (column

2) to that for costs (column 3) implies an estimated homogeneous markup of 1.15. This

already provides suggestive evidence for the fact that U-AEP—a setting in which all wedges

are homogeneous and equal to 1—does not hold in our context. We conduct the formal

version of this test, and obtain an estimate of the sales-weighted average wedge E
sλ [sµ] that

does not rely on the assumption of wedge homogeneity, in Sections 5 and 6.

firms. The first such category accounts for almost all of the effect on total sales.
42To ensure a balanced sample of workers, this analysis focuses on the time window around the first lottery

in which a firm participated.
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4.2 Treatment Effect Heterogeneity by Firm Characteristics

Testing for C-AEP concerns not just the average level of the value marginal product of any

given input across firms, but also the heterogeneity in such marginal products—or equiva-

lently, the dispersion in wedges sµij,m in equation (3). In advance of the full estimation of the

distribution of such wedges in Section 6, we present here a simple exploration of treatment

effect heterogeneity by observable firm characteristics.

First, we look at firms with different levels of pre-treatment sales (i.e., from 2008, the

year before the start of the lottery scheme).43 Panel (a) of Figure 6 analyzes impacts of

lottery-driven demand shocks on sales separately for firms with above- and below-median pre-

treatment sales. These two estimates are strikingly similar. Panel (b) further disaggregates

firms into quintiles of pre-treatment sales, again with similar results. Responses are also

homogeneous across firms that differ along other pre-treatment characteristics: profitability

(sales divided by costs), number of employees, number of suppliers, labor intensity (labor

costs divided by sales), and third-party reported sales (Appendix Figures A.6–A.10).

Homogeneity in firms’ sales responses to a demand shock does not necessarily imply a

low dispersion in firms’ marginal products because firms could differ in the amount of inputs

needed to achieve these output responses. However, as Figures 7 and A.11 make clear, we

also see very homogeneous responses in labor and total costs across firms of different sizes.

Combined, Figures 6, 7, and A.7–A.11 therefore paint the picture of a particularly strong

form of marginal product homogeneity, with low heterogeneity across firms in both their

output and input responses to a demand shock.44

A key limitation of the evidence discussed so far is that it only considers observable

characteristics. The methods in the next two sections are designed to test for, and quantify,

wedge heterogeneity even when allowing for arbitrary forms of potential heterogeneity across

firms.

43This analysis exclude firms with no sales in 2008.
44A finding of homogeneous output and input responses is sufficient, but not necessary, for the homogeneity

of value marginal products (since marginal products concern the ratio of the two responses, so heterogeneity
in output and input responses could offset one another while maintaining marginal product homogeneity).
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5 Testing for Allocative Efficiency

5.1 Test Implementation

Proposition 1 proposes a test for AEP in both its unconstrained and constrained forms. To

implement this test, we evaluate ∆Πi(χ) for each firm i at the null-hypothesis value of χ = 1

in the case of U-AEP and at a range of values of χ > 0 in the case of C-AEP. In either case,

we then test for the statistical independence of ∆Πi(χ) from the instrument Zi (built from

lottery-driven demand shocks) via the test for f(·) = 0 in equation (11). When statistical

independence is rejected, allocative efficiency is rejected too.

We follow Ding et al. (2016), who develop procedures for tests of treatment effect het-

erogeneity in randomized trials.45 This is relevant to our setting since the test for C-AEP

is analogous to a test for no heterogeneous responses (of firms’ outputs to an exogenously

driven increase in their input use) and the U-AEP test is a nested case in which, under the

null, responses are not just homogeneous but also equal to one. In particular, we estimate

quantile regressions (for nine evenly spaced quantiles) of ∆Πi(χ) on Zi. We then use the

largest coefficient (in absolute value) as our test statistic TS. If any coefficient differs sub-

stantially from zero, and hence TS is large, then the null of f(·) = 0 is false and hence the

hypothesis of independence should be rejected.

We then take advantage of the fact that the null hypothesis is sharp, and the distribution

of Zi in our setting is known, in order to use randomization inference (Fisher, 1935) to

calculate the probability of obtaining a given value of the test statistic under the null. This

avoids the need to make asymptotic distributional assumptions about εi in equation (9)

(such as how technology shocks are correlated across time and firms).

We simulate the null distribution by calculating TSl in a set of simulations l = 1 . . . L,

in which the winning firm of each procurement lottery at time 1 is drawn randomly from

its known stochastic process. The p-value for a given test is the percentage of simulations

in which the value of TS when using the actual lottery winners is smaller than TSl. Intu-

itively, when statistical independence of ∆Πi(χ) and Zi is violated, we should see a stronger

45Further details about our test procedures are described in Appendix D.
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correlation between ∆Πi(χ) and Zi in the actual data than is likely to have occurred by

chance—that is, we should see a larger value of TS for actual lottery realizations than the

values TSl found in many simulations l of alternative lottery realizations. If so, this indi-

cates that the input reallocations caused by the demand shocks generate changes in aggregate

output. Via Proposition 1, this implies the economy is not allocatively efficient at time 0.

This procedure can be performed on any cross-section of changes (i.e., from any “time-0”

to any “time-1”). In order to ensure that we capture the entire two-calendar year time-path

of responses seen above, we use changes in two-year averages; that is, the average of years

t− 1 and t− 2 is “time-0” and that of years t and t+1 is “time-1”. The change ∆Πit(χ) in

equation (10) is defined analogously.46 Similarly, we define the instrument for firm i in year

t as Zit ≡ Di,t −Di,t−2. Since our test can be performed on any set of changes, we stack all

five such changes (given our data from 2008 to 2015) and perform the joint test that the null

hypothesis of U-AEP is true throughout.

5.2 Results

Figure 8 reports the p-value of the test described above when ∆Πit(χ) is evaluated at a

range of values of χ (which confines attention to the case in which all inputs m have the

same value of χm—denoted by the scalar χ—so that one dimension of the χ space can be

easily illustrated). Beginning with the test for U-AEP (χ = 1), this corresponds to the

point χ = 1 on the x-axis. The p-value at this point is extremely low (below 0.001), which

indicates that the null of unconstrained allocative efficiency (all wedges sµij,m are equal to

one) is resoundingly rejected. This implies that the treatment effect of demand-driven cost

increases on sales is (at standard levels of significance) different from one, a finding that was

already anticipated by the discussion in Section 4.1.

We now turn to an evaluation of C-AEP. Testing the null of C-AEP in principle involves

conducting our previous test at every value of χm, separately for each input type m, and

checking whether there is a value of χm (potentially a separate one for each input type) at

46For example, the component swm∆xim in ∆Πi(χ) is defined as [ 12 ( swm,t−1+ swm,t−2)][
1
2 (xim,t+xim,t+1)−

1
2 (xim,t−1 + xim,t−2)]. This requires separate data on quantities and prices, which is not always possible
in our data. However, as shown in Section 4.1, the potential violation of Assumption 3 caused by this
measurement issue seems likely to be small.
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which the test does not reject. Figure 8 shows results from a partial version of this multi-

dimensional search, in which χm is common (i.e., χm = χ) for all inputs. As it turns out,

even this partial search reveals a value at which the test does not reject at standard levels of

statistical significance. The p-value of the randomization inference test peaks sharply at the

value of χ = 1.140 (where the p-value is 0.35). The null of constrained allocative efficiency

is therefore not rejected in this setting.

These findings are consistent with the results in Section 4.2 but go beyond them in three

respects. First, they test for cross-firm wedge heterogeneity along arbitrary, unobserved

dimensions. Second, they evaluate heterogeneity in value marginal products rather than

exploring heterogeneity in output and input responses separately. And third, they allow for

sampling variation and deliver a formal p-value.

6 The Cost of Misallocation

Our final analysis goes beyond testing and aims to arrive at point estimates of moments

of the wedge distribution as well as an estimate of the welfare cost of misallocation in our

context.

6.1 Estimating Moments of the Wedge Distribution

We now apply the result in Proposition 2 to estimate weighted moments of the wedge distri-

bution in our context. In particular, we focus on the two moments—E
sλ [sµ] and Var

sλ [µ]—

appearing in the formula for the cost of misallocation in equation (16).

Recall that this expression was derived for a setting in which there is assumed to be

no within-firm dispersion of wedges across inputs. This assumption is necessary since our

demand-driven source of exogenous variation is unsuited to recover such within-firm disper-

sion in our context.47 It is therefore reassuring that the component of misallocation due to

47As Proposition 2 explains, both within-firm and across-firm dispersion can be identified if a separate
instrument Zim is available for each type of input, m. It is possible, in principle, to use demand shocks as
the source of such input-specific instruments, to the extent that firms’ technologies are non-homothetic and
the econometrician has access to observable proxies for such features, which would require survey data on
firm production.
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within-firm wedge dispersion is typically found to be relatively small (e.g., about 15% of the

estimated total misallocation cost for China in Hsieh and Klenow (2009, p. 1442)).48

In a setting with no within-firm wedge dispersion equation (14) becomes

spi∆yi = sµi
∑
m∈M

swm∆xim + εi. (19)

We begin by applying the procedure described in Section 2.4 to this equation to estimate the

sales-weighted first moment of the distribution of coefficients sµi on the single endogenous

regressor
∑

m∈M swm∆xim, while using a single instrument Zi constructed from lottery-based

demand shocks. Provided that the instrument satisfies Assumption 4, which we discuss

below, this delivers a consistent estimate of E
sλ [sµ].

49 Squaring equation (19) yields a second

regression specification

(spi∆yi)
2 = (sµi)

2

(∑
m∈M

swm∆xim

)2

+ 2sµiεi
∑
m∈M

swm∆xim + (εi)
2. (20)

Applying our procedure to this equation, the coefficient on the regressor
(∑

m∈M swm∆xim
)2

provides a consistent estimate of E
sλ [(sµ)

2]. We then calculate the centered second moment

from Var
sλ [µ] = E

sλ [(sµ)
2]− (E

sλ [sµ])
2.50

Many details of our implementation are analogous to those in the test procedure in

Section 5. In addition, the implementation of the IVCRC procedure requires the choice of

a bandwidth and kernel (these are used in a sub-component of the estimation routine that

obtains a smoothed estimate of the expected value of the coefficient at each rank of the

conditional first-stage distribution). Our baseline analysis follows the defaults in Benson et

al. (2022) and uses the rule-of-thumb bandwidth proposed by Fan and Gijbels (1996) and

an Epanechnikov kernel. We explore alternatives below.

48If wedges are truly dispersed across inputs then the single-instrument version of our procedure will

recover moments of the distribution of each firm’s (cost share-weighted) average wedge,
∑

m swmsxim sµim∑
m swmsxim

, to

the extent that the instrument is uncorrelated with changes in relative input prices as seems plausible in our
context (and is consistent with the results in Section 4.1).

49As discussed in Section 2.4, we obtain the weighted expectation of the distribution of coefficients sµi by
interacting the regressor with indicators for five bins based on firms’ 2008 sales shares (the quintiles from
Figure 6(b)). Our sensitivity analysis below explores this choice.

50We impose that variance must be non-negative by setting Var
sλ [µ] = max{0,E

sλ

[
(sµ)2

]
− (E

sλ [sµ])
2}.
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Because the IVCRC estimand cannot be represented as a sharp null hypothesis, random-

ization inference approaches (as applied in Section 5) cannot be used for confidence intervals.

We therefore use a block-bootstrap procedure (with 100 bootstrap samples created by draw-

ing firms with replacement) to assess the uncertainty in our estimates. To deal with outliers,

to which the quadratic form in equation (20) may be especially sensitive, we trim the sample

at the top and bottom 1% of the ratio of (in absolute value) change in revenues to change in

costs. We report a range of alternatives below and show this to be a conservative approach.

Finally, we require the instrument to satisfy Assumption 4. The instrument Zit, built from

lottery-driven demand shocks, plausibly satisfies independence, part (a) of this assumption.

The strong input adjustment responses seen in Section 4.1 provide support for part (b),

instrument relevance. And the wide range of lottery sizes means that Zit features multiple

points of support and hence satisfies part (d). But it is not a priori clear whether it satisfies

part (b), first-stage rank-invariance. To explore the accuracy of this assumption, Appendix

E presents a simulated version of the economy assumed here, but where firms have a known

technology (which, following Hsieh and Klenow (2009), we assume exhibits constant returns-

to-scale). We then calibrate this simulation to match our data and calculate the extent of

first-stage rank reversals in response to lottery-driven demand shocks, according to the metric

proposed by Gollin and Udry (2021). This simulation demonstrates that such reversals are

rare because firm heterogeneity in input growth due to non-lottery factors is much greater

than that due to any amount of lottery shocks. Violations of Assumption 4(b) therefore

seem unlikely to be consequential for our conclusions.51

Results

The first row of Table 4 (panel a) reports our baseline IVCRC estimates of E
sλ [sµ] and Var

sλ [µ]:

1.126 and 0.014, respectively. These values are consistent with the results in the previous

section, where we saw that, at the common wedge value of χ = 1.140, the test of C-AEP

fails to reject. We should therefore expect a value for an average wedge of approximately

that χ value, with little variation in wedges around it. And that is exactly what our point

51As discussed in Section 2.4, an IV that satisfies first-stage rank-invariance when estimating equation
(19) will also satisfy it for equation (20). This is because the first regressor is an endogenous variable but
one that is derived from a known function of the second regressor, which is itself the only regressor in (19).
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estimates of E
sλ [sµ] and Var

sλ [µ] imply.

Table 4 also reports the block-bootstrapped confidence intervals—a two-sided interval for

E
sλ [sµ], but a one-sided version for Var

sλ [µ] since we know that the true value of this variance

cannot be negative. The implied uncertainty about E
sλ [sµ] is minimal, and we can hence

reject an average wedge equal to one at standard levels of statistical significance. But the

confidence interval for Var
sλ [µ] is considerably wider. To explore this, panel (a) of Appendix

Figure A.12 plots the 100 bootstrap sample estimates of the variance of wedges that underpin

this confidence interval. The vast majority of estimates are very low, but there is also a tail

of large estimates in absolute value. This is perhaps unsurprising given the quadratic nature

of the terms in the estimating equation (20).

The next five rows of Table 4 describe the robustness of our estimates to alternative

specification choices. For example, rather than trimming at the top and bottom 1% level,

we can either not trim at all (row 2) or do so at the top and bottom 2.5% level (row 3). Or,

rather than using a Epanechnikov kernel for the IVCRC estimator, we can use a Gaussian or

uniform kernel (rows 4 and 5). Finally, rather than calculating the weighted moments E
sλ [sµ]

and Var
sλ [µ] by using five bins of firm sales sλ, we can use ten bins. The estimates of E

sλ [sµ]

are highly insensitive to these variations, with point estimates ranging from approximately

1.11 to 1.13. And the estimates of Var
sλ [µ] are always small in the sense that they are less

than or equal to the baseline estimate of 0.014.

6.2 Estimating the Cost of Misallocation

We now use the estimates of E
sλ [sµ] and Var

sλ [µ] in Table 4 to calculate the total cost of

misallocation in our context, following the formula in equation (16). Doing so requires a

value for the two elasticity parameters: that across firms in consumption (θ) and that for

aggregate input supply to these firms (η). For the former, we follow Hsieh and Klenow

(2009) to set θ = 3; and for the latter we set η = 3, a value at the upper end of estimates

in the literature on labor supply. In addition, equation (16) depends on sωC , the share of the

representative household’s shadow income that is spent on consumption of goods. We begin

with the midpoint value of sωC = 0.5 but, as we document below, our conclusions are not

very sensitive to the value chosen.
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The results we obtain when using these parameter values are reported in column (3) of

Table 4 (panel a). The baseline point estimate is ∆W/W = 0.016. This implies that the total

cost of misallocation is 1.6% of the overall expenditure on products in our model economy

(i.e. on the goods and services produced by the firms taking part in procurement lotteries,

and the leisure consumed by households). The block-bootstrapped 95% one-sided confidence

interval spans from zero to 26.1%. We therefore cannot rule out considerably larger values

at standard levels of confidence. However, as with the case of Var
sλ [µ] discussed above,

the distribution of bootstrap estimates (reported in panel (b) of Appendix Figure A.12)

demonstrates that this result is highly affected by the tails of this distribution; for example,

80% of the bootstrap values of (∆W/W ) lie below 7%.

The remaining rows of Table 4 (panel a) describe a range of robustness checks on our

conclusions about the total cost of misallocation ∆W/W . The first five rows extend the

sensitivity checks on E
sλ [sµ] and Var

sλ [µ] discussed earlier. Two additional rows consider

alternative values of sωC (of 0.75 and 0.25) centered around our baseline value of 0.5. These

seven alternatives suggest that our estimation choices have been conservative. The only

exception is sωC = 0.75. But if we were to set this parameter to its maximal value of sωC = 1,

this would imply an upper bound on losses from misallocation equal to 2.1%.

As discussed above, the total cost of misallocation ∆W/W can be decomposed into two

components due to: (a) departures from C-AEP while holding constant the availability of

aggregate inputs; and (b) misallocation of the aggregate input amounts themselves. Com-

ponent (b) can be calculated by a transformation of the values in column (1). Doing so, we

obtain 0.6% throughout the alternative specifications. Component (a) is a transformation

of the values in column (2). It ranges from zero to 1.05% across alternative specifications.

Put together, the estimates in Table 4 (panel a) imply that the allocation of inputs in

our context, both to firms and across them, appears to be close to the efficient point. In

interpreting this finding, it is important to recall that it refers to the efficiency of the actual

allocation, rather than the mechanisms through which this allocation arises. For example,

given active government involvement in this sector, our findings do not necessarily imply

that a laissez-faire policy stance would achieve near-efficiency.
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6.3 Comparison to Method Assuming Common Scale Elasticities

The results in Section 6.2 may seem surprising, especially when compared to previous work

that typically estimates large costs of misallocation. One possibility is that firms in Ecuador’s

construction services sector are simply different from those in other contexts. However,

as discussed in the introduction, existing methods typically assume that firms use similar

production technologies. This could create a biased impression of misallocation—especially

the heterogeneity in wedges inherent to departures from C-AEP—if firms’ actual technologies

are more heterogeneous than assumed.

One way of seeing this is to start from the definition of wedges in equation (2) when ap-

plied to a single-product firm whose production function is yi = F̃ (i)(xi). Then, multiplying

both sides by ( swmsxim)/(spisyi), summing across all inputs m ∈ M, and focusing on the case

with no intra-firm wedge dispersion (i.e., sµi,m = sµi for all m), we obtain

sµi =

(
spisyi∑

m∈M swmsxim

)(∑
m∈M

sxim
syi

∂F̃ (i)(sxi)

∂xi,m

)
=

(
spisyi∑

m∈M swmsxim

)
γi(sxi), (21)

where γi(sxi) ≡ (λ/syi)(∂F̃ (λsxi)/∂λ) is firm i’s scale elasticity at sxi. That is, firm i’s wedge

is equal to the product of its profitability (the ratio of total sales, spisyi, to total costs,∑
m∈M swmsxim) and its scale elasticity.

Intuitively, knowledge of the scale elasticity γi(sxi) allows an analyst to convert estimates

of average products (such as profitability) into estimates of marginal products (which is what

wedges depend on). Similarly, when scale elasticities are assumed to be common across firms,

then any cross-firm dispersion in average products is mapped one-to-one into conclusions

about dispersion in marginal products, and hence about misallocation. A common version

of this is the assumption that all firms use technologies that are globally constant returns-

to-scale, or γi(sxi) = 1 at all sxi.
52 A prominent example appears in Hsieh and Klenow

52This assumption is stronger than those we invoke to arrive at the estimates in Table 4 (panel a),
in two respects. First, our estimates of moments of the wedge distribution require only that firms use
locally differentiable technologies, and hence only that local returns-to-scale are finite. Second, the formula
for ∆W/W in equation (16) invokes the assumption that all firms have locally constant returns-to-scale
technologies, which has no direct relation to globally constant returns-to-scale; for example, the local version
allows for technologies with arbitrary overhead costs, whereas the global version rules out overhead costs.
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(2009).

Table 4 panel (b) explores the implications of such parametric restrictions in our context.

We do so by imposing the assumption that γi(sxi) = γ for all firms i. This continues to allow

for firms’ technologies to combine inputs in arbitrarily heterogeneous ways, but requires

that firms share a common scale elasticity.53 We begin with the constant returns-to-scale

case in which γ = 1. On the basis of this assumption, computing the wedge sµi for each

firm is a straightforward application of equation (21): each firm’s wedge sµi is equal to

its profitability. We then calculate the sales-weighted moments E
sλ [sµ] and Var

sλ [µ] of the

distribution of such wedges across all firms in 2013.54 Row 1 reports these estimates, along

with their bootstrapped 95% confidence intervals.

A first clear message resulting from these estimates is that the assumption of constant

returns-to-scale does not substantially affect the estimate of the first moment E
sλ [sµ]: this

value rises, but only to 1.240 (in panel b), from our preferred value of 1.126 (in panel a).

However, a second clear finding is that assuming constant returns does substantially affect

the estimate of the second moment, Var
sλ [µ], which rises from 0.014 in panel (a) to 0.611

in of panel (b). This divergence in estimates of wedge heterogeneity is consistent with the

findings discussed in Section 4.2. In particular, if all firms truly exhibited constant returns

then—as follows from substituting equation (21) into equation (19)—we would see that their

responses to demand shocks would exhibit heterogeneity in accordance with their baseline

profitability. Yet such heterogeneous responses are not apparent in Appendix Figure A.6.

Putting columns (1) and (2) together, we see in column (3) row 1 that the estimated total

cost of misallocation grows considerably (from 1.6% to 47.9%) as a result of the assump-

tion that all firms use constant returns-to-scale technologies. The bootstrapped confidence

interval on this estimate ranges from 42.7% to 57.2%, which does not overlap with the

corresponding interval of our preferred specification.

One distinction between the two methods compared here concerns the presence of multi-

product firms. Our application of the IVCRC method using a lottery-based instrument will

53Formally, this requires that F̃ (i)(sxi) = G(g(i)(sxi)) where G(·) is homogeneous of degree γ and g(i)(·) is
normalized to be homogeneous of degree one but otherwise arbitrary.

54Following Hsieh and Klenow (2009), these calculations remove the smallest and largest 1% of wedges.
Our baseline analysis uses 2013 because it is the year with the median estimated cost of misallocation in our
2008-2015 sample; we discuss alternative year estimates below.
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estimate the distribution of wedges in the lottery sector and not that of other sales.55 By

contrast, a multi-product version of equation (21) with γ = 1 for all products will estimate

a (cost-weighted) average of the wedges across all of each firm’s products. To the extent

that wedges on procurement lottery products might be different from those on non-lottery

products, these methods could therefore arrive at different conclusions because they are

estimating different objects. Figure 9 suggests that this is not the case. Here we zoom in

on sub-samples of firms with varying shares of their total sales (over 2009-2014) stemming

from contracts obtained through the lottery system. We see that the IVCRC misallocation

estimates are consistently lower than those implied by equation (21), even when examining

the approximately 1,500 firms for which lottery contracts make up more than half of their

total sales.

Sensitivity Analysis

Our final analysis examines various alternative versions of the comparisons in Table 4. First,

the remaining rows of Table 4 explore how our conclusions change with γ ̸= 1. Row 2 uses

a value of decreasing returns (γ = 0.85) and row 3 one of increasing returns (γ = 1.15). As

is clear from equation (21), given any data on firms’ sales-to-cost ratios, estimated wedges

increase with the value of γ. Unsurprisingly, therefore, estimates in row 1 are straddled by

those in rows 2 and 3. The total estimated cost of misallocation ranges from 33.2% in row

2 to 67.4% in row 3. Even the lowest of these remains many times larger than our preferred

estimate of 1.6%.

Second, we repeat our investigation of the common scale economies assumption for each

year separately. Appendix Table A.1 shows these results (for γ = 1). The estimated cost of

misallocation ranges from 38.5% to 86.9%. This variability over time stems almost entirely

from the estimates of Var
sλ [µ].

Finally, recall that the derivation of equation (16) was based on a second-order expansion

around a point with wedges µi ≃ 1 for all i. We expect this approximation to be accurate

for our preferred wedge estimates in panel (a), which lie close to this value. However,

applying this approximation to the case of the more dispersed wedge estimates in panel (b)

55As equation (13) demonstrates, this conclusion is not general. But it follows in our context as a result
of the fact that (as seen in Figure 5) our instrument has no effect on firms’ sales to non-lottery clients.
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may result in bias of unknown sign. Hsieh and Klenow (2009) show that one useful case—

where γ = 1, and firms’ TFPs and wedges are jointly log-normally distributed—results in no

approximation error at all, as long as the formula in equation (16) is appropriately adjusted

to reflect unweighted moments of log wedges. Applying this finding, we obtain a cost of

misallocation equal to 55.7% (Appendix Table A.2 row 1), which suggests that the use of

the approximation in equation (16) is conservative. On the other hand, if we derive the

analog of equation (16) for an expansion around the point of lnµi ≃ 0 for all i, then the

appropriate formula involves weighted moments of log wedges. In this case (Appendix Table

A.2 row 2) we estimate the cost of misallocation to be far smaller, at 6.3%, though this is

still four times larger than our preferred estimate of 1.6%.

Taken together, the findings in Table 4 suggest that the firms in our setting do have

heterogeneous degrees of scale economies, and that a measurement approach that restricts

this type of technological heterogeneity by assumption would infer more misallocation from

the data in this setting than appears to be correct. When the objective is to learn each

firm’s wedge individually, assumptions about firm technologies (such as a common scale

elasticity) are indispensable. But such assumptions may be overly restrictive when the goal

is to estimate moments of the distribution of firms’ wedges, as is typically sufficient for

quantifying the cost of misallocation.

7 Conclusion

In this paper we have developed new tools for assessing the allocative efficiency of produc-

tion, both in the absence and presence of an aggregate input constraint, among any given set

of firms. We have developed new procedures that can estimate features of the distribution

of wedges—ratios of the value marginal product of an input divided by its price—across all

firms, products, and inputs in an economy. By drawing on sources of exogenous variation

in firm input changes, these methods proceed without the need to specify production func-

tions, demand functions, or the underlying nature of the distortions that lead to potential

inefficiency. Instead, they simply seek to estimate the “treatment effects” of (price-adjusted)

inputs on outputs across firms. This then allows for a comparison of such treatment effects
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to an idealized efficient allocation, in which they would not differ across input uses.

Our results imply that the firms in the context of our application produce at an allocation

that is close to allocative efficiency. This holds both in terms of firms’ relative use of given

aggregate inputs and in terms of the amount of the aggregate input levels themselves. Our

analysis would arrive at a different conclusion if we were to apply commonly-used parametric

approaches that assume firms use technologies with similar features (such as a common degree

of returns-to-scale). This may be unsurprising given that the essence of our approach has

been to allow for technological heterogeneity that could create misleading impressions of

misallocation if it were ignored.

Our methods rely on researchers’ access to exogenous variation in firm input use, such as

that derived from the lottery-based demand shocks at our disposal. The studies highlighted

in the Introduction document a wide range of settings where ingenious sources of variation

in output demand and input supply—policy changes, income shocks, market integration,

bank expansions, exchange rate fluctuations, immigration events, narrow auction winnings,

etc.—have been identified by researchers for the purposes of assessing how firms respond to

such forces. The procedures developed in this paper provide a toolkit for using such variation

to assess misallocation in firm production.
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Figures and Tables

Figure 1: Comparison of Firm Size Distributions

(a) Lottery Participant Firms vs.
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(b) Lottery Participant Firms vs.
Non-Participating Firms in Same Industries
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Notes: This figure plots histograms of sales in 2008, the year prior to the start of the procurement lottery
system, using firms’ annual income tax data (excluding firms with no sales). Lottery participants are firms
that participate in at least one lottery during 2009–2014. Non-participant firms are all other firms that were
economically active in 2008. Panel (b) restricts the non-participant sample to firms in the construction or
engineering industries.
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Figure 2: Effects on Total Sales
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Notes: This figure plots estimates of the monthly effects of an additional $1,000 in procurement winnings
shocks on total (third-party reported) sales following equation (18). Total sales are based on monthly
purchase annexes reported by client entities’ VAT filings. Dashed lines indicate 95% confidence intervals
that allow for clustering at the firm level.

Figure 3: Effects on Total Sales by Contract Size
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Notes: This figure extends the analysis of Figure 2, estimating monthly effects of an additional $1,000 in
procurement winnings shocks on total sales separately for lotteries with large vs. small contracts (below-
vs. above-median contract amount), following equation (18). Total sales are based on monthly purchase
annexes reported by clients entities’ VAT filings. Dashed lines indicate 95% confidence intervals that allow
for clustering at the firm level.

43



Figure 4: Effects on Employment
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(b) Total Wage Payments
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Notes: This figure plots estimates of the monthly effects of an additional $1,000 in procurement winnings
shocks on employment following equation (18), using data from social security records. Panel (a) presents
effects on the number of employees, and panel (b) on total wages paid. Dashed lines indicate 95% confidence
intervals that allow for clustering at the firm level.

Figure 5: Effects on Sales to Different Types of Clients

−
5
0

0
5
0

1
0
0

1
5
0

E
ff
e
c
t 
(i
n
 d

o
lla

rs
, 
p
e
r 

$
1
,0

0
0
 o

f 
lo

tt
e
ry

 c
o
n
tr

a
c
t)

−6 0 6 12 18
Months after lottery

Notes: This figure extends the analysis of Figure 2, estimating the monthly effects of an additional $1,000
in procurement winnings shocks on sales to mutually-exclusive categories of clients, following equation (18).
These clients are: procuring entities with at least one lottery in our study period that the firm participated
in (in red); other procuring entities, i.e., other entities that made at least one purchase through the lottery
system in our study period (yellow); other public entities that made no purchases through the lottery system
(green); and private firms (brown). All sales measures are based on monthly purchase annexes reported by
client entities’ VAT filings. Dashed lines 95% confidence intervals that allow for clustering at the firm level.
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Figure 6: Effects on Total Sales by Firm Size
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Notes: This figure extends the analysis of Figure 2, estimating the monthly effects of an additional $1,000
in procurement winnings shocks on total sales by firm size, following equation (18). Total sales are based
on monthly purchase annexes reported by client entities’ VAT filings. Panel (a) presents estimates for firms
with above- and below-median total sales prior to the start of the lottery system (i.e., in 2008), based on
firms’ annual income tax filings. Panel (b) shows the same but partitioning the sample by quintiles of 2008
sales. Dashed lines in panel (a) indicate 95% confidence intervals that allow for clustering at the firm level.

Figure 7: Effects on Total Wage Payments by Firm Size

(a) Above vs. Below Median
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(b) Quintiles
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Notes: This figure extends the analysis of Figure 4 Panel (b), estimating the monthly effects of an additional
$1,000 in procurement winnings shocks on total wage payments by firm size, following equation (18), using
data from social security records. Panel (a) presents estimates for firms with above- and below-median total
sales prior to the start of the lottery system (i.e., in 2008), based on firms’ annual income tax filings. Panel
(b) shows the same but partitioning the sample by quintiles of 2008 sales. Dashed lines in panel (a) indicate
95% confidence intervals that allow for clustering at the firm level.
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Figure 8: Randomization Inference Test for U-AEP and C-AEP
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Notes: This figure shows the histogram of results of the randomization inference test for unconstrained
allocative efficiency of production (U-AEP) and constrained allocative efficiency of production (C-AEP), as
described in Sections 2 and 5. The figure plots the p-values (y-axis) under the null of χ = χ (i.e., χm = χ
for all inputs m), for different values of χ (x-axis). The dotted vertical line indicates the null value of χ = 1
used for the test for U-AEP, whereas the solid vertical line indicates the value of χ that corresponds to the
highest p-value (0.35) obtained in this range of χ. These results imply that the null of U-AEP is rejected at
standard levels, but that of C-AEP is not.
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Figure 9: Estimated Cost of Misallocation:
Sub-Samples with Different Shares of Total Sales from Lottery Contracts
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Notes: This figure plots the estimated cost of misallocation for sub-samples of firms with different shares of
their total sales stemming from procurement lottery contracts. For example, the “> 10%” sample includes
those firms for whom lottery contracts make up at least 10% of their total sales. We define sales from a
procurement lottery contract as sales to a procuring entity whose lottery the firm won, in the year of the
winnings and the year after. We then divide the sum of these sales by total sales in 2009-2014. The red
(lower) dots in the figure show estimated cost of misallocation for the different samples with our estimation
method using IVCRC, described in Section 6.1 (using the baseline specification as in Table 4 panel (a) row
1). The blue (higher) dots show estimates following the parametric alternative procedure, which assumes
that firms use technologies with common scale elasticities, as described in Section 6.3, using constant returns
to scale (i.e. γ = 1) as shown in Table 4 panel (b) row 1. Vertical lines indicate 95% confidence intervals
using the block bootstrap procedure.
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Table 1: Summary Statistics

Mean Median Std. Dev. N
Lotteries
Contract amount (USD) 46,523 31,597 40,989 18,474
Contract anticipated duration (days) 64.5 60 34.5 18,467
Number of participants 10.1 4 15.7 18,474
Firms’ Lottery Participation
Lotteries entered per year 3.5 1 7.2 9,393
Lotteries won per year 0.35 0 0.55 9,393
Firms’ Characteristics
Firm age (years) 11.21 10 11.06 9,393
Is incorporated 0.18 0 0.38 9,393
Number of clients (third-party reported) 4.74 2 17.72 9,393
Sales (third-party reported, USD) 132,707 47,651 271,306 9,393
Sales (self-reported, USD) 141,184 53,360 287,409 9,393
Costs (self-reported, USD) 123,907 42,058 267,508 9,393
Profits (self-reported, USD) 17,278 11,180 36,360 9,393
Employees (social security) 4.40 2 10.10 9,393
Wages (social security, USD) 7,399 2,880 25,926 9,393

Notes: This table presents summary statistics of procurement lotteries (with at least two partic-
ipating firms) and of firms that participated in any such lotteries. Observations concerning firm
characteristics are from each firm’s first year of lottery participation. Self-reported tax variables
are based on firms’ annual income tax filings. Third-party reported variables are based on (an-
nualized) monthly purchase annexes of client entities’ VAT filings. ‘Social security’ indicates data
from social security filings. Contract duration is missing for seven observations, as discussed in
Appendix C.
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Table 2: Balance of Randomization

Coefficient on $1000 in procurement winnings shocks
Firm Characteritistics
Firm age (years) -0.0004

(0.0012)
Is incorporated 0.0001

(0.0000)
Lottery Variables (t− 1)
Lotteries entered 0.0048

(0.0033)
Expected winnings 3.47

(6.98)
Lotteries won 0.0003

(0.0002)
Amount won -6.02

(8.56)
Social Security Data (t− 1)
Employees 0.0001

(0.0014)
Wages 0.3001

(1.97)
Tax Data (t− 2)
Sales (third-party reported) -12.59

(32.57)
Sales to procuring entities (third-party reported) -18.10

(27.65)
Sales to other government entities (third-party reported) 2.39

(2.22)
Sales to private sector (third-party reported) 7.16

(9.79)
Sales (self-reported) -17.51

(33.92)
Costs (self-reported) -13.60

(30.80)
Annual income tax (self-reported) -0.4017

(0.4814)
Number of clients (third-party reported) 0.0009

(0.0018)
P-value of joint F-test: 0.29

Notes: This table presents balance tests of procurement winnings shocks (in $1,000s) on pre-treatment
variables. Each displayed coefficient (and corresponding standard error in parentheses) stems from a separate
regression of the outcome variable on procurement winnings shocks in year (t). For time-varying variables,
we use data from year (t-1 ). For tax variables, we use information for year (t-2 ) to ensure that they reflect
pre-lottery filings. Self-reported tax variables are based on firms’ annual income tax filings. Third-party
reported variables are based on monthly purchase annexes of client entities’ VAT filings. Monthly variables
are summed up over the year. Observations cover 2009-2014 for non-lagged variables, 2009-2013 for (lagged)
lottery variables, 2008-2013 for (lagged) social security variables, and 2008-2012 for (double lagged) tax data
variables. As in all our analysis, the sample only includes observations for years after the firm started to be
economically active. For the joint F-test, to include the whole sample, we impute zero for missing values
and add a dummy indicator. All monetary variables in USD, winsorized at the top 1%. Standard errors
clustered at the firm level in parentheses. *** = p < 0.01, ** = p < 0.05, * = p < 0.1.
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Table 3:
Effects on Sales, Costs, and Profits

(1) (2) (3) (4) (5) (6)
Sales Sales Total Labor Non-labor Profits

(Third-party (Self- costs costs costs
reported) reported)

Procurement Lottery Shocks:
Year t 438.71*** 430.14*** 382.47*** 14.39** 368.09*** 47.67***

(37.31) (39.19) (36.22) (4.70) (33.73) (5.80)

Year t+ 1 269.76*** 239.00*** 200.57*** 11.03 189.54*** 38.43***
(48.70) (51.18) (46.49) (6.15) (43.05) (7.00)

Number of observations 53,107 53,107 53,107 53,107 53,107 53,107
Number of firms 9,368 9,368 9,368 9,368 9,368 9,368

Notes: This table shows estimates of the effect of procurement winnings shocks (in $1,000’s) on firms’ sales, costs and
profits in the year of the shock (t) and the next (t+1 ), following equation (18). Third-party reported sales are based
on monthly purchase annexes of client entities’ VAT filings, summed up over the year. All other variables are based on
firms’ annual income tax filings. Observations are firm-years. Standard errors clustered at the firm level are reported in
parentheses. *** = p < 0.01, ** = p < 0.05, * = p < 0.1.
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Table 4: Estimated Cost of Misallocation

Eλ̄[sµ] Varλ̄[sµ] ∆W
W

(1) (2) (3)

Panel (a): IVCRC estimates

Baseline 1.126 0.014 0.016

[1.093, 1.161] [0, 0.341] [0, 0.261]

No trimming 1.129 0 0.006

[1.098, 1.188] [0, 0.329] [0, 0.253]

5% trimming 1.111 0 0.005

[1.078, 1.157] [0, 0.394] [0, 0.301]

Gaussian kernel 1.125 0 0.006

[1.095, 1.145] [0, 0.040] [0, 0.035]

Uniform kernel 1.126 0.014 0.016

[1.093, 1.161] [0, 0.341] [0, 0.261]

10 sales bins 1.115 0 0.005

[1.067, 1.158] [0, 0.617] [0, 0.468]

sωC = 0.75 1.126 0.014 0.020

[1.093, 1.161] [0, 0.341] [0, 0.387]

sωC = 0.25 1.126 0.014 0.010

[1.093, 1.161] [0, 0.341] [0, 0.132]

Panel (b): Alternative procedure assuming common scale elasticities

Constant returns-to-scale (γ = 1) 1.240 0.611 0.479

[1.223, 1.257] [0.544, 0.730] [0.427, 0.572]

Decreasing returns-to-scale (γ = 0.85) 1.054 0.441 0.332

[1.040, 1.068] [0.393, 0.528] [0.296, 0.397]

Increasing returns-to-scale (γ = 1.15) 1.426 0.807 0.674

[1.407, 1.445] [0.720, 0.966] [0.601, 0.798]

Notes: Columns (1) and (2) report estimates of the 2008 sales-weighted expectation and variance
of the wedge distribution that enter the total cost of misallocation formula in equation (16);
variance estimates are truncated at zero from below. Column (3) reports the corresponding

estimated cost of misallocation ∆W/W = 1
2 sωCθVarsλ [µ] +

1
2 sωC(1− sωC)η (Esλ [sµ]− 1)

2
implied by

that formula (using parameter values of θ = 3, η = 3, and sωC = 0.5, unless noted otherwise). Panel
(a) shows estimates from the IVCRC method described in Section 6.1 with different specifications
(with 2% trimming, Epanechnikov kernel, and 5 sales bins, unless noted otherwise). Panel (b)
follows the alternative parametric procedure for estimating wedges, which assumes that firms use
technologies with common scale elasticities γ, as described in Section 6.3. The ranges reported in
square brackets are two-sided 95% confidence intervals in column (1) of panel (a) and all of panel
(b), but one-sided intervals for columns (2) and (3) of panel (a); all such intervals are calculated
on the basis of a block bootstrap procedure, with values reported in Appendix Figure A.12.
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A Appendix Figures and Tables

Figure A.1: Annual Total Sales, Third-Party Reported vs. Self-Reported
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Notes: This figure plots estimates of the annual effect of an additional $1,000 in procurement winnings shocks
on total sales, following equation (18). Third-party reported sales are based on monthly purchase annexes
reported by the client entities’ VAT filings (annualized over the year) and self-reported sales are based on
firms’ annual income tax filings. Dashed lines indicate 95% confidence intervals that allow for clustering at
the firm level.
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Figure A.2: Effects on Total Sales by Contract Size and Firm Size

(a) Below-Median Size Firms
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(b) Above-Median Size Firms

-100

0

100

200

300

Ef
fe

ct
 (i

n 
do

lla
rs

, p
er

$1
,0

00
 o

f l
ot

te
ry

 c
on

tr
ac

t)

-6 0 6 12 18
Months after lottery

Below median Above median  

Notes: This figure extends the analysis of Figures 3 and 6, estimating monthly effects of an additional
$1,000 in procurement winnings shocks on total sales by firm size, separately for lotteries with large vs.
small contracts (below-, in blue, vs. above-median, in red, contract amounts), following equation (18). Total
sales are based on monthly purchase annexes reported by client entities’ VAT filings. Panel (a) presents
estimates for firms with below-median sales prior to the start of the lottery system (i.e., in 2008), based on
firms’ annual income tax filings. Panel (b) shows the same but for firms with above-median self-reported
sales. Dashed lines indicate 95% confidence intervals that allow for clustering at the firm level.

Figure A.3: Effects on Total Sales by Recent Lottery Outcomes

(a) By Lottery Outcomes of Past 2 Months

-50

0

50

100

150

200

Ef
fe

ct
 (i

n 
do

lla
rs

, p
er

 
 $

1,
00

0 
of

 lo
tt

er
y 

co
nt

ra
ct

)

-6 0 6 12 18
Months after lottery

Net Winners Net Losers

(b) By Lottery Outcomes of Past 6 Months
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Notes: This figure extends the analysis of Figure 2, estimating monthly effects of an additional $1,000 in
procurement winnings shocks on total sales, following equation (18), separately by the extent of recent lottery
success. Total sales are based on monthly purchase annexes reported by client entities’ VAT filings. Net
winners (losers) are firms that received a total positive (negative) winnings shock over the previous months.
Panel (a) presents estimates summing up a firm’s winnings shocks of the past two months and panel (b) does
the same for the past six months. Dashed lines indicate 95% confidence intervals that allow for clustering
at the firm level.
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Figure A.4: Effects on Total Costs
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Notes: This figure plots estimates of the annual effects of an additional $1,000 in procurement winnings
shocks on total costs, following equation (18). Total costs include both labor and non-labor costs and are
based on firms’ annual income tax filings. Dashed lines indicate 95% confidence intervals that allow for
clustering at the firm level.

Figure A.5: Effects on Wages

(a) Average Monthly Wage
All Employees
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(b) Average Monthly Wage
Existing Employees
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Notes: This figure plots estimates of the monthly effects of an additional $1,000 in procurement winnings
shocks on the average monthly wage using data from social security records. Panel (a) follows equation (18)
and presents estimates of the effect on the average monthly wage for all employees. Panel (b) shows the
same for continuing workers, to avoid worker composition changes (i.e., new hires or attrition). Specifically,
it only includes employees who worked continuously at the firm from 6 months before until 18 months after
the first lottery that the firm participated in. Because this analysis only uses the winnings shocks of the
first lottery and thus disregards any potential subsequent shocks, we estimate the coefficients in a separate
regression for every lead and lag. Dashed lines indicate 95% confidence intervals that allow for clustering at
the firm level.
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Figure A.6: Effects on Total Sales by Profitability

(a) Above vs. Below Median
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(b) Quintiles
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Notes: This figure extends the analysis of Figure 2, estimating the monthly effects of an additional $1,000
in procurement winnings shocks on total sales separately by profitability (defined as sales divided by costs),
following equation (18). Total sales are based on monthly purchase annexes reported by client entities’ VAT
filings. Panel (a) presents estimates for firms with above- and below-median profitability prior to the start
of the lottery system (i.e., in 2008). Panel (b) shows the same but partitioning the same by quintiles of
profitability in 2008. Dashed lines in panel (a) indicate 95% confidence intervals that allow for clustering at
the firm level.

Figure A.7: Effects on Total Sales by Number of Employees

(a) Above vs. Below Median
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(b) Quintiles
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Notes: This figure extends the analysis of Figure 2, estimating the monthly effects of an additional $1,000
in procurement winnings shocks on total sales by number of employees, following equation (18). Total sales
are based on monthly purchase annexes reported by client entities’ VAT filings. Panel (a) presents estimates
for firms with above- and below-median number of employees prior to the start of the lottery system (i.e.,
in 2008). Panel (b) shows the same but partitioning the sample by quintiles of the number of employees in
2008. Dashed lines in panel (a) indicate 95% confidence intervals that allow for clustering at the firm level.
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Figure A.8: Effects on Total Sales by Number of Suppliers

(a) Above vs. Below Median
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(b) Quintiles
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Notes: This figure extends the analysis of Figure 2, estimating the monthly effects of an additional $1,000
in procurement winnings shocks on total sales for firms with a large vs. small number of suppliers, following
equation (18). Total sales are based on monthly purchase annexes reported by client entities’ VAT filings.
Panel (a) presents estimates for firms with above- and below-median number of suppliers prior to the start
of the lottery system (i.e., in 2008), based on firms’ annual income tax filings. Panel (b) shows the same but
partitioning the sample by quintiles of the number of suppliers in 2008. Dashed lines in panel (a) indicate
95% confidence intervals that allow for clustering at the firm level.

Figure A.9: Effects on Total Sales by Labor Intensity

(a) Above vs. Below Median
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(b) Quintiles
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Notes: This figure extends the analysis of Figure 2, estimating the monthly effects of an additional $1,000 in
procurement winnings shocks on total sales by the level of firms’ labor intensity in 2008, following equation
(18). Total sales are based on monthly purchase annexes reported by client entities’ VAT filings. Panel (a)
presents estimates for firms with above- and below-median labor intensity prior to the start of the lottery
system (i.e., in 2008), based on firms’ annual income tax filings. Panel (b) shows the same but partitioning
the sample by quintiles of labor intensity in 2008. Labor intensity is defined as the ratio of wage payments
over self-reported sales. Dashed lines in panel (a) indicate 95% confidence intervals that allow for clustering
at the firm level.

5



Figure A.10: Effects on Total Sales by Firm Size (Based on Third-Party Reported Sales)

(a) Above vs. Below Median
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(b) Quintiles
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Notes: This figure extends the analysis of Figure 2, estimating the monthly effects of an additional $1,000 in
procurement winnings shocks on total sales by the level of firms’ third-party reported sales in 2008, following
equation (18). Total sales are based on monthly purchase annexes reported by client entities’ VAT filings.
Panel (a) presents estimates for firms with above- and below-median third-party reported sales prior to the
start of the lottery system (i.e., in 2008), based on firms’ annual income tax filings. Panel (b) shows the
same but partitioning the sample by quintiles of third-party reported sales in 2008. Dashed lines in panel
(a) indicate 95% confidence intervals that allow for clustering at the firm level.

Figure A.11: Effects on Total Costs by Firm Size

(a) Above vs. Below Median
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(b) Quintiles
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Notes: This figure extends the analysis of Figure A.4, estimating the annual effects of an additional $1,000
in procurement winnings shocks on annual total costs by firm size, following equation (18). Total costs
include both labor and non-labor costs and are based on firms’ annual income tax filings. Panel (a) presents
estimates for firms with above- and below-median total sales prior to the start of the lottery system (i.e., in
2008), based on firms’ annual income tax filings. Panel (b) shows the same but partitioning the sample by
quintiles of 2008 sales. Dashed lines in panel (a) indicate 95% confidence intervals that allow for clustering
at the firm level.
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Figure A.12: Results from a Bootstrapping Procedure of IVCRC Estimates

(a) Sales-Weighted Variance of Wedges
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Notes: This figure shows histograms of results from a bootstrapping procedure of estimates of the non-
truncated sales-weighted variance of wedges, E

sλ

[
(sµ)2

]
− (E

sλ [sµ])
2, in panel (a), and of the corresponding

implied welfare cost of misallocation, ∆W
W , as described in equation (16) (prior to the left-truncation of the

variance at zero), in panel (b). The solid vertical lines show the observed point estimates when using the
original sample, as opposed to the bootstrapped samples. The dashed vertical lines show the corresponding
95% confidence limit on right-tailed tests for whether Varλ[µ̄] or ∆W

W are greater than zero, respectively.

7



Table A.1: Estimated Cost of Misallocation:
Based on Assumption of Common Scale Elasticities

Eλ̄[sµ] Varλ̄[sµ]
∆W
W

(1) (2) (3)

2008 1.258 0.857 0.668

[1.243, 1.295] [0.678, 1.835] [0.532, 1.410]

2009 1.215 0.674 0.523

[1.200, 1.230] [0.453, 0.992] [0.355, 0.767]

2010 1.240 0.484 0.385

[1.227, 1.250] [0.401, 0.588] [0.321, 0.464]

2011 1.228 0.506 0.399

[1.216, 1.240] [0.402, 0.665] [0.318, 0.520]

2012 1.236 0.562 0.442

[1.221, 1.250] [0.462, 0.674] [0.366, 0.529]

2013 1.240 0.611 0.479

[1.223, 1.257] [0.544, 0.730] [0.427, 0.572]

2014 1.264 0.866 0.676

[1.242, 1.281] [0.724, 1.042] [0.566, 0.811]

2015 1.286 1.118 0.869

[1.263, 1.314] [0.954, 1.310] [0.744, 1.018]

Notes: This table shows results from panel (b) of Table 4 row 1 for each
year in 2008 to 2015. These are estimates of the cost of misallocation follow-
ing an alternative procedure that assumes all firms have technologies featur-
ing global constant returns-to-scale (γ = 1). Columns (1) and (2) report es-
timates of the sales-weighted expectation and variance of the wedge distribu-
tion that enter the total cost of misallocation formula in equation (16). Col-
umn (3) shows the corresponding estimated cost of misallocation ∆W/W =
1
2 sωCθVarsλ [µ] +

1
2 sωC(1 − sωC)η (Esλ [sµ]− 1)

2
implied by that formula (when us-

ing parameters values θ = 3, η = 3, and sωC = 0.5, unless noted otherwise). The
ranges reported in square brackets are two-sided 95% confidence intervals calcu-
lated using the block bootstrap procedure.
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Table A.2: Estimated Cost of Misallocation:
Alternatives for Method Based on Assumption of Common Scale Elasticities

Eλ̄[ln sµ] Varλ̄[ln sµ] ∆W
W

(1) (2) (3)

Unweighted (sλ = 1
N ) 0.375 0.672 0.557

[0.350, 0.404] [0.619, 0.740] [0.516, 0.602]

Weighted 0.157 0.072 0.063
[0.148, 0.165] [0.065, 0.081] [0.058, 0.070]

Notes: This table reports estimates of the cost of misallocation, according to the al-
ternative method based on common scale elasticities, obtained when using alternative
approximations. The first row reports the unweighted expectation and variance of log
wedges (obtained when using this method) in columns (1) and (2), and the resulting
cost of misallocation in column (3). Following Hsieh and Klenow (2009), this is appro-
priate when γ = 1 and firms’ wedges and TFPs are assumed to be joint log-normally
distributed. Similarly, the second row reports values of the sales-weighted expectation
and variance of the log wedge distribution, and the resulting cost of misallocation.
This is appropriate for a second-order approximation to the welfare cost of misallo-
cation when log wedges are small. In both cases, the calculations in column (3) are

given by ∆W/W = 1
2 sωCθVarsλ [lnµ] +

1
2 sωC(1− sωC)η (Esλ [ln sµ])

2
, using parameter val-

ues θ = 3, η = 3, and sωC = 0.5. The ranges reported in square brackets are two-sided
95% confidence intervals calculated using a block bootstrap procedure.
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B Further Examples for Quantifying the Cost of Mis-

allocation

Example #1: Multiple input types and a single sector

Consider an economy with single-product, profit-maximizing firms, each producing with

a Cobb-Douglas production function that combines capital (denoted xiK) and labor (xiL)

via yi = Ai(xiK)
sαK (xiL)

1−sαK . Capital and labor are both in fixed aggregate supply to these

firms, so the only source of misallocation will concern the extent to which each input is used

across firms, not the overall extent of input use; that is, in this example there is no distinction

between U-AEP and C-AEP. The representative consumer has CES preferences for the firms’

outputs, with elasticity of substitution θ. Finally, suppose that the time-0 allocation (y,x)

and prices (p,w) imply (via the definition in equation 3) that firm i’s capital and labor

wedges are given by µi,K and µi,K , respectively. This is therefore the economy of Hsieh and

Klenow (2009) but with a single sector.

Using the results in Baqaee and Farhi (2020), it is straightforward to show that, up

to a second-order approximation, the increase in welfare (relative to the initial level) from

eliminating the wedges in this economy is given by

∆W

W
=

1

2
sαK(1− sαK)Varλ[sµK − sµL] +

1

2
θVarλ[sαKsµK + (1− sαK)sµL], (22)

where Vara [b] ≡ Ea[b2] − (Ea[b])2 denotes the variance of the vector {bk} weighted by the

vector {ak}, and Ea[b] denotes the expectation of the vector b weighted by the vector a. In

this case, the variances are weighted by the firms’ sales shares, denoted sλi ≡ spisyi∑
i′ spi′ syi′

.

The total cost of misallocation in this example derives from misallocation of inputs across

firms even while aggregate inputs are held fixed, but this misallocation can be split into two

forms, as is apparent in equation (22). The first term captures the effects of within-firm

substitution (which has an elasticity of one in this Cobb-Douglas case) to the potential

dispersion in wedges across the two inputs within any firm. And the second term captures

the effects of across-firm substitution, on the behalf of consumers (and hence scaling by θ),

to the potential differences in cost-weighted average wedges (i.e., sαKsµi,K + (1− sαK)sµi,L) of

10



different firms. Because both types of inputs in this economy are in fixed aggregate supply,

the relevant features of the wedge distribution that matter for misallocation all concern

dispersion rather than average levels. However, both of the variance measures that matter

here are weighted by sλ, since the wedges in larger firms are more costly.

Proposition 2 highlights how all weighted, uncentered moments of the distribution of

wedges across firms can be identified. This is directly applicable to the cost of misallocation

in equation (22), which can be easily converted from centered second-order weighted moments

to ones that are uncentered. Hence, in a setting with instruments that satisfy Assumption 4,

and with knowledge of the demand parameter θ, the cost of misallocation (up to a second-

order approximation) in this example can be estimated consistently.

Example #2: Multiple sectors and endogenous input supply

We continue with a setting featuring single-product, profit-maximizing firms. But we now

allow each firm to have its own arbitrary production function (involving an arbitrary set of

inputs) so long as the technology satisfies Assumption 1 and displays constant returns locally

to the time-0 allocation.56 The representative consumer has nested CES preferences over the

products produced by these firms; in particular, the consumer’s elasticity of substitution

between the firms within sector s (which we denote by I(s)) is given by θs and that for

substitution across sector-specific bundles is given by ρ.

In contrast to the previous example, we now allow the representative consumer household

to also supply the inputs xim to these firms. The household is endowed with a fixed amount

of time that it can freely convert into inputs or retain as leisure; it has an elasticity of

substitution η between leisure and the bundle of final consumption goods. This endogenous

input supply means that the total cost of misallocation will derive from both a component

due to misallocation of the aggregate inputs sXm that are supplied at time-0, and from a

second component due to the misallocation of those total amounts themselves. Finally, we

assume that each firm has the same wedge on each of its inputs, which we denote by µi,m = µi

for all m. This would be the case if, for example, the underlying cause of potential wedges

is firms’ market power in their product markets, and/or taxes and subsidies on firms’ sales.

56A natural technology that fits this form is one with arbitrary overhead costs and constant marginal costs
(at fixed input prices and wedges).
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Again, the tools in Baqaee and Farhi (2020) make it easy to calculate the total cost of

misallocation due to wedges in this economy. As before, we let sλi ≡ spisyi∑
i′ spi′ syi′

denote the

share of firm i’s sales in total goods consumption. We also let sψs ≡
∑

i∈I(s) spisyi∑
i′ spi′ syi′

denote the

share of goods consumption expenditure devoted to sector s and let sχi(s) ≡ sλi/ sψs denote the

share of firm i within sector s. Finally, we let sωC denote the share of the household’s virtual

income spent on consumption goods.57 Then we have

∆W

W
=

1

2
sωC
∑
s

θs sψsVarsχ(s)
[µ] +

1

2
sωCρVar sψ

[
E

sλ(s)
[sµ]
]
+

1

2
sωC(1− sωC)η (Esλ [sµ]− 1)2 . (23)

To unpack this expression, we begin by noting that all terms are multiplied by ωC , as

the only wedges in this economy are in consumption (rather than leisure). The first term

captures the average effect of within-sector dispersion in wedges across firms. It therefore

scales with the size of the within-sector demand elasticity of substitution, θs. In particular,

Var
sχ(s)

(µ) measures the amount of such dispersion within sector s, weighted by the size

of each firm relative to the sector (i.e., by sχ(s)). The second term captures cross-sector

dispersion in the average wedge within each sector (i.e., E
sλ(s)

[sµ]). This scales with ρ, the

consumer’s substitution elasticity across sectors.

The misallocation of the aggregates sXm across firms and sectors causes a welfare cost

equal to the sum of these first two terms. By contrast, the final term arises due to misal-

location of each sXm itself. In particular, this component of misallocation exists when the

consumption sector-wide (sales-weighted) average level of wedges is different from one. Un-

surprisingly, this term scales with both the elasticity of input supply (η) and the size of

leisure in the economy (1− sωC) since it is the division of aggregate inputs between firm pro-

duction and leisure that is potentially misallocated. Finally, a notable feature of expression

(23) is that technological features (of each firm’s production function) do not enter, since

within-firm dispersion is zero. However, this expression can be augmented to include such

phenomena by simply adding components such as the first term in equation (22).

57If the household’s time endowment is sT and it earns the price sw for selling inputs then sωC ≡
∑

i spi syi

sw sT
.
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C Data Appendix

This appendix outlines the process followed to clean the data described in Section 3 and how

we arrive at our final sample for analysis.

C.1 Public Procurement Lotteries and SERCOP Contracts

The Ecuadorian public procurement lottery system started in 2009. Through this system,

contracts for public construction projects below a certain value were allocated through ran-

domized lotteries among qualified suppliers. The threshold value is 0.00007% of the central

government’s annual budget, which corresponds to $134,176 in 2009 and $240,100 in 2014.

The qualification process for contract lotteries has several steps.

First, any tax-compliant firm can choose to register in the system. Second, government

entities initiate a given procurement contract by sending specifications and an expected

budget to the national procurement office (SERCOP).58 Third, firms that are registered to

provide the designated type of service, and are in good standing in regards to past contracts,

are invited by SERCOP to submit applications, which include proof of relevant qualifica-

tions.59 Examples of such services include construction or maintenance of public buildings,

small roads and town squares, schools, sewerage, and wells.60 Fourth, the procuring entity

determines which applicants qualify for the contract. We refer to this set of firms as “lottery

participants.” Finally, an automatic and centralized program at SERCOP determines the

winner of the contract through a lottery among the participants. As a result, even though

participation in any given lottery is the result of deliberate selection on both sides, the

allocation of the contract among participants will be randomly determined.

We scrape information from the SERCOP contracting portal between 2009 and 2014 on

the application procedure for 18,474 contracts under the procurement process “Contratos de

Menor Cuant́ıa de Obras”, which applied to all construction projects below a certain dollar

58Roughly 5% of procuring entities are formally private-sector entities with a large share of state ownership.
59The invitation process is sometimes made over several rounds and often favors SMEs and local firms.

In addition, starting in 2013, SERCOP required that the total amount of contracts a firm may enter at any
given time is limited to the maximal allowed contract value (i.e., 0.0007% of the government budget).

60Included are both physical construction and related services such as those of architects.
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threshold.61 We then clean the collected information to create a dataset in which a single

record corresponds to a particular firm’s involvement for a particular lottery contract.

Figures C.1 and C.2 show, respectively, the website from which we scrape the information,

and a sample of the data that the portal provides for each contract.

Figure C.1: SERCOP contracting portal interface

Notes: This figure shows the interface of the SERCOP contracting portal. The user
inputs the contract number and a range of dates. After entering the captcha, the
website displays the contract information.
Source: SERCOP contracting portal website.

We gather the following information for each contract: which firms were invited to submit

proposals for it, their IDs, whether they accepted the invitation, whether they submitted

a proposal, whether they were deemed eligible for the lottery, and whether they ended up

winning the contract. Other variables we retrieve are: the description of the contract, its

category, amount, and the delivery deadline.62

Starting from 38, 813 scraped contracts, we kept only those with complete information

and for which there exists more than one eligible participant and exactly one winner. These

cleaning steps remove 20, 339 (around 52.4%) of our initial observations, leaving us with

18, 474 distinct contracts in total.63 Then, we sent the remaining contracts to a third party

61This information is publicly available in the following website (working as of March 17, 2023): https://
www.compraspublicas.gob.ec/ProcesoContratacion/compras/SL/view/BusquedaDeProcesos.cpe. In
practice, we use an executable version of scrape.py (scrape.exe) created using py2exe. For more information,
see http://www.py2exe.org/index.cgi/Tutorial.

62There are seven contracts for which the duration is extremely long and likely wrong. We discard these
observations, hence the difference in the number of observations in the first three rows of Table 1.

63Most contracts are removed due to not having more than one eligible participant, while only three
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Figure C.2: Relevant information for a sample contract

Notes: This figure shows information about a sample contract. The lottery winner,
the value of the contract and the time to delivery, among other variables, are inside
yellow squares.
Source: SERCOP contracting portal website.

to check that all the information was correct. Specifically, this checking involved comparing

the scraped values to the actual contractual documentation (available in the same website).64

We use the contract values as confirmed through this process.

C.2 Income Tax Forms

The firms’ income tax filings provide self-reported information of firms (i.e., their revenue,

costs, tax liability, among others).

F101/102 forms

In Ecuador, all incorporated firms are legally obligated to submit an annual detailed

corporate income tax form (F101), independent of how large their revenues, costs or assets

are. This also applies to all publicly-owned firms. On the other hand, unincorporated firms

(which mainly consist of self-employed individuals) are required to file the income tax form

F102 if their annual revenue exceeds a standardized deduction amount (which was approx-

imately $10,000 in our sample period). These forms include self-reported information of

the firms’ revenue and costs (broken down by certain sub-categories). Small unincorporated

contracts are removed due to not having exactly one winner after removing submissions made without
documents or by non-eligible firms.

64We found errors on around 1% of the contracts and manually fixed them. These errors were due to
discrepancies between the contracts and the website itself, not due to our scraping procedure.
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firms submit a simplified version of the income tax form (“short form F102”) which corre-

sponds to the personal income tax form. Large unincorporated firms have to file an extended

income tax (“long form F102”) consisting of two parts: a part for reporting business income

corresponding to the form for incorporated firms and a part for reporting individual income

mirroring the short from F102.

In very rare cases (i.e., 0.005% of firm-year observations in the annual income tax data),

a firm reports both a F101 and a F102 form. Whenever this is the case and the forms were

filed on the same date, we proceed as follows. If the duplicates share the same value in

the same tax items, in the first instance we keep the form that the firm was expected to

correctly file. In the second instance, we track the first year in which the firm uniquely filed

a form and keep the one that matches the type of this first unique filing. If the duplicates

have different values in the same tax item, then we keep the observation that has the highest

value for each item. On the other hand, if the forms were filed on different dates, then we

keep the most recent form.

Self-reported sales and costs measures

Our measures of self-reported sales and costs are constructed based on the annual income

tax filings. In line with the theory developed in Section 2, we seek to capture (i) the firm’s

income from selling its goods or services and (ii) the costs associated with producing this

output.

Accordingly, the total sales measure includes domestic sales, net exports, and other

revenues related to selling goods or services. Table C.1 lists the sales items from the income

tax form included in our measure of self-reported sales. We deliberately exclude revenue

from dividends, financial rents, donations and contributions, and capital gains on sales of

fixed assets. The total costs measure comprises labor costs and non-labor costs as shown in

Table C.2. We deliberately exclude reported costs due to losses from the sales of assets, and

we also disregard tax liabilities deducted from the income tax (e.g., property taxes, excise

tax, non-creditable VAT).65

65Specifically, we compute our sales and costs measure by subtracting the excluded line items from the
reported total sales and costs measures, respectively. This has the advantage that a few firms only report
information on their total costs or revenues but not on sub-categories. In the very few instances in which
the adjusted total sales or costs measure is negative due to reporting errors, we replace it with a zero.
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Table C.1: Sales Line Items in Forms 101 and 102

Sales item
Domestic sales subject to 12% tax rate
Domestic sales subject to 0% tax rate
Exports
Other income from abroad
Other taxable income
Other exempted income
Change in inventory of products produced by the firm
Sales related to registered business activities*
Received fees*
Received agricultural income*
Received income from abroad*
Received wages*

This table shows the line items included in the definition
of total sales for the annual income tax form. * marks
line items that are only present for F102 and related to
the “short form” section of the form.
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Table C.2: Cost Line Items in Forms 101 and 102

Costs items Category
Wages, salaries and other taxable remunerations Labor costs
Social benefits and other non-taxable compensation Labor costs
Contribution to social security (including reserve fund) Labor costs
Obligatory profit share passed on to employees Labor costs
Costs related to wages* Labor costs
Net purchases of domestic goods not produced by the firm Non-labor costs
Imports not produced by the firm Non-labor costs
Net domestic purchases of raw material Non-labor costs
Imports of raw material Non-labor costs
Professional fees and expenses Non-labor costs
Fees to foreigners for one-time expenses Non-labor costs
Real estate rent Non-labor costs
Maintenance and repairs Non-labor costs
Fuel Non-labor costs
Marketing Non-labor costs
Supplies and materials Non-labor costs
Transportation Non-labor costs
Commercial leasing Non-labor costs
Commissions Non-labor costs
Insurance and reinsurance intermediaries Non-labor costs
Administrative costs Non-labor costs
Travel expenses Non-labor costs
Public services Non-labor costs
Payment for other goods and services Non-labor costs
Bank interest Non-labor costs
Interest paid to third parties Non-labor costs
Amortization Non-labor costs
Change in inventory of goods not produced by the firm Non-labor costs
Change in inventory of raw material Non-labor costs
Depreciation of fixed assets Non-labor costs
Provisions Non-labor costs
Other losses Non-labor costs
Indirect costs incurred from abroad by related parties Non-labor costs
Costs related to registered business activities* Non-labor costs
Costs related to professional activity or liberal occupation* Non-labor costs
Costs related to real estate rents* Non-labor costs
Costs related to other assets* Non-labor costs
Costs related to agricultural income* Non-labor costs
Costs related to other income* Non-labor costs

This table shows the line items included in the definition of total cost for the
annual income tax form, and which are included in the definition of implied labor
and non-labor costs. * marks line items that are only present for F102 and related
to the “short form” section of the form.
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We construct these sales and costs measures to represent prices gross of sales taxes (e.g.,

VAT and excise tax). This attempts to consistently follow our theory which represents sales

at the actual expense of the buyer (i.e., including any statutory sales tax). On the F101/102,

firms report revenues and costs net-of-VAT, but gross of other sales taxes.66 Hence, we adjust

our self-reported sales measure as follows.

1. Firms report sales subject to 12% VAT in a dedicated line item.

2. We multiply the amount reported by 0.12 and add it to our measure of total self-

reported sales.

Since costs are not reported separately by their VAT rate, we proceed as follows to compute

the gross-of-VAT costs based on the self-reported net-of-VAT amounts.

1. We identify the line items that are subject to VAT and calculate their total amount

(denoted Vi)

2. If a firm files purchase annexes, we calculate the (observed) share of purchases subject

to 12% VAT (denoted si). For firms that do not file purchase annexes, we predict this

share by their level of sales and incorporation status.

3. We calculate the VAT amount as Vi × si × 0.12 and add it to our measure of total

self-reported costs.

All in all, our adjusted measures of sales and costs (and profits) are consistent with

the total revenue and costs items (and profits) from the annual tax filling. They are also

consistent across years. This consistency is shown in Figure C.3, which plots the evolution

over time of these variables in their raw and adjusted versions.

66In Ecuador, sales are subject to either a 12% or 0% VAT rate, or are exempt from the VAT.
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Figure C.3: Sales and Cost Measures
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Notes: This figure shows the evolution across years of the sales, costs and profit mea-
sures for their raw (F101/2) and adjusted versions.

C.3 Purchase Annexes

The monthly purchase annexes provide both self-reported firms’ purchases information (i.e.,

their own purchases) and, implicitly, third-party reported information about other firms’

sales.

All incorporated firms (F101 filers) are required to submit purchase annexes every month.

F102-filing firms must keep accounting records and file purchase annexes on a monthly basis

if their annual revenues surpass a certain threshold (e.g., $100,000 in 2012). They are also

mandated to do this if their annual costs and expenses exceed a given value ($80,000 in

2012), or if they begin economic activities with capital above a certain threshold ($60,000 in

2012).67

To quantify transactions between firms using the purchase annex, we follow a process sim-

ilar to that described in Adao et al. (2022). For each transaction, we observe the anonymized

67A considerable number of firms that are not required to do so end up voluntarily filing purchase annexes.
However, for these smaller firms (who represent a smaller share of the country’s economic activity, naturally)
records may not be complete. See Adao et al. (2022) for further details.
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tax ID of both the buyer and the seller, the value of the purchase, the VAT paid, what part

of the value was subject to either a tax rate of 12% or 0%, and the transaction’s date. The

data feature some inconsistencies. For instance, we drop transactions with a negative VAT

value. When there is a positive value for VAT but the transaction value is inconsistent with

it, we rectify the transaction value. In cases where there is a positive transaction value but

VAT is missing, we calculate the correct VAT based on the transaction value. We also do

not consider purchases whose value exceeds a value greater than two times the maximum

between the buyer’s annual cost and the seller’s annual revenue, as such transactions are

likely the result of data entry errors. Finally, we also drop transactions where the buyer and

the seller are the same firm. The cleaned purchased annexes are used to compute monthly,

half-yearly and annual transactions between firms.68

Since the transactions are reported purchases by the buyer, we compute a measure of

third-party reported sales based on the purchase annex data.69

C.4 Social Security and Firm Characteristics

First, we combine two sources of data for employment. One covers the period from 2007 to

2017 and is extracted from the social security record that keeps track of all the employees

whose employer filed the social security for them; the other one spans from 2009 to 2016,

and has data from either the social security record or the F107 form (a tax declaration

form filed by firms with information about their workers). We restrict the sample to the

universe of employees that ever work for lottery firms. Then, we identify the month in which

an employee is hired by a firm whenever there are no payments from the employer in the

previous month. Similarly, we consider the employee to be a new employee if they were hired

in the last 12 months, and we define documented employees as those that have worked for

any firm in this same period.

Second, we have basic information of every firm registered with the tax authority up to

68We use the register date when available. Otherwise, we use the purchase date. We drop transactions
where neither of these two is available.

69Similar to the self-reported sales measure, we construct third-party reported sales gross of sales taxes.
To obtain this measure, we sum up the reported net-of-VAT transaction amount and the VAT reported for
that transaction to create a measure of third-party reported sales gross-of-VAT.
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2012. This dataset provides a snapshot of the registered firms’ characteristics in this year

for variables such as: the province where it is located, the year in which it became active

and the industry code (ISIC 3.1).

C.5 Combining the Datasets

We can combine the different datasets based on consistently anonymized firm identifiers

across all datasets.

To identify sales from lottery participants to different types of entities, we join the lot-

tery data with the transaction-level purchase annexes, information from the procurement

contracts, and information on firm characteristics. This allows us to identify whether the

reporting firm (i.e., the buyer in the purchase annex) is a procuring entity, another public

entity, or a private firm.70 We then aggregate the reported purchases on the month-seller

level to obtain measures of third-party reported sales to different types of entities as well as

total third-party reported sales.

Finally, we define a firm to be economically active from the first time it self-reports

positive sales or costs in its income tax forms, or appears in any of the above datasets either

as a lottery participant, an employer (in the social security data), or a supplier (in another

firm’s purchase annex). We then exclude firm-year observations from the period before a firm

is economically inactive and impute zeroes for any missing values after a firm has become

economically active.

70We define “public entities” as firms that are either government agencies or utilize the lottery procurement
system. Similarly, “private firms” are defined as firms that are neither a government agency nor utilize the
lottery procurement system.
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D Test of statistical independence

This appendix provides further details about the test of statistical independence used in

Section 5 to test for U-AEP and C-AEP.

D.1 Testing for U-AEP

As stated in Proposition 1, the null of U-AEP can be carried out by testing for whether

f(·) = 0 in equation (11) or not. Following Ding et al. (2016), one way to do this is via a

quantile regression of ∆Πi(1) on Zi. This corresponds to the quantile model

Q∆Π(1)(τ | Z) = α(τ) + β(τ)Z, (24)

for any quantile τ , where the null hypothesis of U-AEP requires that β(τ) = 0 for all τ . We

therefore use the test statistic

TS ≡ max
τ∈T

|β(τ)|, (25)

where T denotes some finite set of quantiles to be evaluated. The null should be rejected

when TS is large.

We implement a randomization inference version of this test. Following Fisher (1935),

the basic idea is to compare TS based on the actual data to the distribution of statistics

TSl that one obtains in a series of simulations l = 1...L in which the winners of each lottery

are randomly re-drawn from the set of actual entrants into each lottery and the sharp null

value is used to generate simulated outcome data for each observation. Since the sharp null

in question is one of zero treatment effect (of Zi on ∆Πi(1)), this procedure amounts to

performing a quantile regression of the actual data ∆Πi(1) on the values of Zi generated

by simulated counterfactual lottery winnings and repeating this across many simulations.

Specifically, we proceed as follows:

1. Estimate TS on the actual data and denote this value by T̂ S. That is, estimate a

quantile regression of ∆Πi,t(1) on Zi,t, obtain the quantile coefficient estimates β̂(τ),
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and compute the corresponding T̂ S based on (25).71 We set T = {0.1, ..., 0.9}.

2. Re-randomize the identity of the winning firm in each lottery. Refer to the values of

Zi that are obtained under this re-randomization as Z l
i .

3. Estimate a quantile regression of ∆Πi,t(1) on Z
l
i,t. Calculate the corresponding value

of TSl based on (25), again with T = {0.1, ..., 0.9}.

4. Repeat steps #2 and #3 an additional L− 1 times. In practice, we set L = 100.

5. The resulting L values of TSl provide an estimate of the exact null distribution of the

test statistic TS. Therefore, calculate the exact p-value for the null hypothesis from

the share of simulations l in which TSl > T̂S. If p < α, we reject the null at the α

level.

Figure 8, at the value displayed as χ = 1 on the x-axis, reports the p-value from performing

this test in our context.

D.2 Testing for C-AEP

Recall from Proposition 1 that the null of C-AEP is the same for that of U-AEP apart from

the fact that rather than testing on the basis of ∆Πi(1), we must repeat the test on the

basis of ∆Πi(χ) for all values of χ > 0. As discussed in Section 5.2, we confine attention

to values of χ in which all elements of this vector are equal to each other and equal to the

scalar χ (i.e., χm = χ for all m). Our test for C-AEP therefore simply amounts to repeating

the above test for U-AEP (which was effectively done for χ = 1) at a wider range of values

of χ. In practice, we do this for 201 uniformly spaced values in the interval [0.9, 1.4]. Figure

8 reports the p-values for each of these tests. The test for C-AEP fails to reject (at the 5%

level) if any of the p-values exceeds 0.05.

71As described in Section 5, the lack of available data on prices of outputs and inputs in our context
requires that we proxy for spi∆yi with ∆(piyi), etc. We therefore have ∆Πi(1) = ∆(piyi)−

∑
m ∆(wmxim).

Further, when computing time-differences “∆” we use differences in two-year averages, such as ∆(pi,tyi,t) ≡
1
2 (pi,tyi,t+pi,t+1yi,t+1)− 1

2 (pi,t−1yi,t−1+pi,t−2yi,t−2). We then stack the cross-sections from all such available
changes over 2008–2015, but only use the firm-year observations corresponding to firms that are active in
2008 so that our testing sample aligns with those firms that enter our sample for estimating sales-weighted
wedge distributions in Section 6. Finally, the instrument is defined as Zi,t = Di,t −Di,t−2.
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E Assessing First-Stage Rank-Invariance

Section 2.4 describes the use of the IVCRC estimator developed in Masten and Torgovitsky

(2016) to estimate the sales-weighted first and second moment of the distribution of wedges.

As outlined in Assumption 4, one condition for consistency of IVCRC is what Masten and

Torgovitsky (2016) refer to as “first-stage rank-invariance”: that the first-stage relationship

can be characterized by swm∆xim = hm(Zim, Vim) for some unknown hm(·) and scalar Vim,

with ∂hm
∂Vim

> 0 for all m ∈ ĎM(i) and all Zim. This condition implies that (for any input type

m), if we set Zim to any value z, then the ranking of firms in terms of their input changes (i.e.,

swm∆xim) would not depend on the value of z chosen. Put differently, firms can respond to

Zim heterogeneously but only to the extent that their rank in the input change distribution

is unchanged by such response heterogeneity.

In order to gauge the plausibility of this assumption in our context, in this Appendix

we conduct a simulation of a model inspired by features of Hsieh and Klenow (2009), cal-

ibrated to our regression sample, that suggests that first-stage rank-invariance may hold

approximately in our context.

E.1 Setup

We consider a set of N firms indexed by i. Each produces a differentiated product yi using

a single input xi according to the technology

yi = aixi, (26)

where ai denotes firm i’s productivity. The firm faces two sources of demand: (a) private-

sector buyers whose demand is given (in expenditure terms) by Ei = p1−σi , where σ is a

constant price elasticity of demand; and (b) procurement lottery-based demand denoted

(again in expenditure terms) by Wi. The firm’s total sales (Si ≡ piyi) are therefore given by

Si = Ei +Wi.

The definition of the wedge in equation (2) implies, in this model, that µi = piai/w,

where w denotes the price of the input. Starting from the “time-0” allocation (at which all
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variables are denoted with a bar), we consider a small change in the input ∆xi (between

time-0 and a subsequent time period) that results from an arbitrary change in ai and Wi,

but where, for the sake of simplicity in this simulation, µi and w are held constant. This

will imply that the first-stage of our IVCRC estimation equation is given by

sw∆xi =
[
(σ − 1) sw1−σ(sµi)

−σ
saσ−1
i

]
âi + (sµi)

−1∆Wi, (27)

where âi ≡ ∆ai/sai.

As discussed in Section 3.3, procurement lottery-based demand Wi satisfies Wi = Di +

E[Wi | {Ak, Nk}k∈Ki
], where Ak denotes the contract value of lottery k, Nk denotes the

number of participants in lottery k, Ki denotes the set of lotteries that firm i participates in

during the given time period, and Di denotes the deviation between actual lottery demand

Wi and expected lottery demand given lottery participation. Given the definition of our

instrument, Zi ≡ ∆Di, we therefore have

sw∆xi = bi + (sµi)
−1Zi, (28)

where we have defined

bi ≡
[
(σ − 1) sw1−σ(sµi)

−σ
saσ−1
i

]
âi + (sµi)

−1∆E[Wi | {Ak, Nk}k∈Ki
]. (29)

Input changes ( sw∆xi) therefore derive from two components. First, the component bi

arises due to factors unconnected from the instrument (the technology and lottery participa-

tion changes in equation 29). And second, the component (sµi)
−1Zi, which does depend on

the instrument. In this model, first-stage rank-invariance would be satisfied if there were no

heterogeneity in sµi because in such a case equation (28) could trivially be written in the form

∆xi = h(Zi, Vi) with a scalar Vi and with ∂h
∂Vi

> 0 at any value of Zi. More generally, if there

is heterogeneity in sµi and also in bi, and Corr(sµi, bi) < 0, then first-stage rank-invariance

is not guaranteed. In what follows, we use the structure of the model in this Appendix in

order to calibrate the values of bi and sµi implied by our data, and thereby calculate how

often rank-invariance is violated.
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E.2 Quantifying First-Stage Rank-Reversals

In principle, one could assess the prevalence of first-stage rank-invariance in this model by:

(a) measuring bi and sµi for every firm i; (b) computing each firm’s rank in the distribution

of sw∆xi implied by equation (28) at the lowest possible value of the instrument Z; and then

(c) repeating this at every other possible value of Z in order to keep track of the number

of times that firms’ ranks (in the distribution of sw∆xi) reverse across the full support of

Z values. In practice, however, this is both computationally costly (given the number of

potential calculations involved) and also conceptually unclear, given that Z is in principle

a continuous variable. We therefore follow Gollin and Udry (2021) in drawing a random

sample of comparisons (both pairs of firm observations whose rank is to be assessed and sets

of values of Z at which we assess whether rank-reversal has occurred) from the set of all

possible comparisons. To the extent that this random sample is large, it should provide a

reliable impression.

We calibrate the model as follows. First, we set σ = 3 as in Section 6.3 (and, for example,

in Hsieh and Klenow (2009)). Second, we let w̄ equal the average annual wage for a worker

in our dataset. Third, we pursue two versions for the calibration of sµi in parallel: (a) a

version in which these come from the sales bin-specific average wedge estimate obtained

from the IVCRC estimation procedure in Section 6.1; and (b) a version that assumes all

firms have constant returns-to-scale technologies, as in Section 6.3 and, for example, Hsieh

and Klenow (2009).72 Fourth, given data on Si and Wi, manipulations of the above supply

and demand equations can be used to solve for sai and âi.
73 Finally, E[Wi | {Ak, Nk}k∈Ki

] is

directly observable. Applying these steps we therefore know the values of bi and sµi (one for

each separate method for calibrating sµi) corresponding to every firm-year observation in our

dataset.

Using these values of bi and sµi, we quantify rank-reversals using the following procedure

(done twice for each separate method for calibrating sµi):

1. Randomly partition all firm-year observations into pairs r. Let r1 and r2 indicate the

72As discussed in Section 6.3, under constant returns-to-scale we have sµi = sSi/(
∑

m swmsxim).
73That is, combining the equations Si = Ei +Wi, Ei = p1−σ

i , and µi = piai/w, we have ai = wµi(Si −
Wi)

1/σ.
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two observations in pair r. Let there be P pairs in total.

2. Begin with pair r = 1. Randomly draw a value of the instrument Z from the distribu-

tion of the deviations from expected winnings and denote that value by Za. Evaluate

the first-stage equation (28) at Zi = Za for observation r1 and denote the result by

F (r1, Za). Do the same for observation r2 and denote the result by F (r2, Za).

3. Repeat step #2 for a second randomly drawn value of the instrument, denoted Zb.

Hence calculate R(r) ≡ [F (r1, Za) − F (r2, Za)][F (r1, Zb) − F (r2, Zb)]. This provides

one possible comparison (between two observations and two values of the instrument).

4. Repeat steps #2 and #3 for nine additional sets of randomly drawn instrument value

pairs. This yields ten values for R(r) in total for the first pair, r = 1.

5. Repeat steps #2-#4 for all remaining pairs r = 2...P .

6. Rank-reversals have occurred whenever R(r) < 0. Calculate the share of comparisons

(out of 10P total comparisons) in which this has happened.

Table E.1 reports the share of rank reversals in the randomly chosen comparisons illumi-

nated by the above simulation. Unsurprisingly, the substantially smaller wedge dispersion

used in the IVCRC-based version of this simulation (columns 1-3) shows far less propensity

for rank-reversals than does the constant returns-based version (columns 4-6). But even

in the latter case, rank reversals are quite rare, happening in less than 6.2% of pairwise

comparisons.
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Table E.1: Frequency of Rank-Reversals in Simulated Economy

IVCRC wedges CRTS wedges

Rank No. of
Share

Rank No. of
Share

reversals comparisons reversals comparisons
(1) (2) (3) (4) (5) (6)

1,256 141,820 0.0089 7,565 123,070 0.0615

Notes: This table shows results on the frequency of first-stage rank-reversals
across randomly drawn pairwise comparisons of observations and instrument
values. “IVCRC wedges” assigns firms’ wedges based on the sales-bin spe-
cific point estimates of average wedges obtained when using the IVCRC pro-
cedure described in Section 6.1. “CRTS wedges” instead uses the formula
sµi = (spisyi)/(

∑
m swmsxim), which follows from assuming that all firms have con-

stant returns-to-scale technologies as in Section 6.3, in order to estimate wedges.
The number of comparisons differs across these alternatives due to the fact that
the latter version cannot be computed for firms with zero costs.
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