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1 Introduction

There is no shortage of reasons to suspect that the economies around us produce goods and

services in an inefficient manner. Many firms seem to enjoy market power, many contracts

look incomplete, and many policy actions (be they taxes and subsidies, regulations, or even

corruption) appear willing to sacrifice production efficiency in pursuit of other goals. But

just as market failures may often be qualitatively glaring, the quantification of distortions

and their misallocative costs is often challenging. And this is made all the more difficult

when, as the theory of the second best reminds us, the arrival of any additional distortion

may actually mitigate misallocation rather than exacerbate it.

In this paper we develop and apply new techniques for assessing the extent of misalloca-

tion among any given set of firms. Our techniques leverage exogenous shocks to firms’ input

use in order to quantify features of the distribution of firms’ marginal products, for each

input, which allows us to test for the presence of misallocation and to estimate its welfare

costs. Such exogenous variation can stem from either output demand or input supply. We

apply these new procedures to Ecuador’s construction industry, in which a lottery component

of the country’s public procurement system generates random sources of firm-level demand.

Using such variation, we find that misallocation appears to be limited in this context.

To arrive at this conclusion, we begin in Section 2 by describing the economic environment

that motivates our empirical procedures. An econometrician observes a set of potentially

multi-product firms producing in a given initial cross-section. The goal is to assess whether

there is misallocation in this cross-section—or equivalently, whether it displays allocative

efficiency of production (AEP). To ease comparisons with prior work, we distinguish two

notions of AEP. The first, which we term unconstrained AEP (U-AEP), is generically neces-

sary for Pareto efficiency. Such an allocation requires that, for any firm and produced good

or service, the ratio of the value marginal product of any input to the input’s price—a ratio

we refer to as the “wedge” for that firm-product-input—is equal to one no matter where

the input is in use. The second notion is analogous but conditions on the aggregate amount

of each input type that can be used by the firms in question, as standard definitions of

aggregate productivity do. An allocation consistent with this notion of constrained AEP
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(C-AEP) would feature wedges that are equal to a common value across firms and products

for each input type, but where that common value is not necessarily one.

Testing for either constrained or unconstrained AEP would be simple if marginal prod-

ucts, and hence wedges, were observed. But a firm’s marginal products, by definition, depend

on its production function, which cannot be identified in the cross-section if firms’ technolo-

gies differ in unknown respects. Existing methods pool the data across firms, under the

assumption that they have common production functions (up to a low-dimensional parame-

ter). But doing so may inherently increase the scope for apparent heterogeneity in wedges,

rather than in technology, to explain observed differences in firm behavior. These methods

may therefore overestimate the extent of misallocation—especially that due to departures

from C-AEP, which rests on wedge heterogeneity.

By contrast, the methods we develop proceed by placing minimal restrictions on the

technologies that firms use, the demand or supply relations they face, the extent of their

optimizing behavior, or the underlying sources of market failure that cause misallocation.1

This flexibility is possible for two reasons. First, we do not aim to identify each firm’s

wedge on each input and product. Instead, we focus on features of misallocation—such

as its existence or its welfare consequences—that are functions of the wedge distribution,

rather than each individual wedge itself. Second, we observe that any wedge is simply the

appropriately price-adjusted “treatment effect” of a change in a firm’s input on its output.

This implies that exogenous variation in firm input use can be used to identify features of

the distribution of such treatment effects (and hence wedges), drawing on recent advances

in the literature on treatment effects estimation due to Masten and Torgovitsky (2016).

Intuitively, if a given allocation features C-AEP, for example, then, starting from this al-

location, the treatment effect of an exogenous change in any input will be the same anywhere

in this economy. And if it features U-AEP, then these treatment effects will also equal one.

Our procedures simply invert this intuition and ask what amount of misallocation is implied

by the distribution of treatment effects that arises due to the exogenous input variation that

is available to the econometrician.

1The main substantive assumption we do require is that each firm uses a technology that is differentiable
at the point at which it is operating.
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While the techniques we develop can be applied in many settings, as we discuss more

below, our application focuses on Ecuador’s construction services sector. As detailed in

Section 3, a component of that country’s public procurement process allocates contracts

(for specific projects at specific prices) by lottery. We study the approximately 9,000 firms

that took part in over 18,000 multi-participant procurement lotteries that were held in our

sample period (2008-2015), as these firms were subject to a component of demand that was

determined randomly. We trace the response of both outputs and inputs to these random

demand shocks by merging the lottery contracts data with administrative tax records, which

contain information on sales and costs, firm-to-firm transaction values, as well as employer-

employee matches. Comparing these responses allows us to use the techniques described

above in order to both test for U-AEP and C-AEP, and to estimate the cost of misallocation.

Our first set of results, in Section 4, begins with an event-study specification that reveals

the average time-path of such output and input responses to a unit of randomly-determined

procurement lottery winnings. Firms rapidly scale up sales as well as both labor and non-

labor inputs, with effects peaking about 6 months after the lottery and dissipating by 14

months. Cumulative sales responses are larger than cost responses by a factor of 1.15. Turn-

ing to the heterogeneity in these responses, we observe little dispersion in either output or

input responses when grouping firms according to a variety of pre-determined firm charac-

teristics, such as baseline sales or number of employees, despite the fact that firms are highly

heterogeneous along such dimensions. These descriptive findings are therefore consistent

with a setting in which wedges are larger than one (in violation of U-AEP) but display lim-

ited dispersion across firms (consistent with C-AEP). However, these conclusions may mask

firm-level heterogeneity in unobserved respects.

Section 5 therefore turns to a formal test for both forms of AEP that does not rely on any

ability to pre-specify the sources of heterogeneity across firms and inputs. We implement

these tests via randomization inference to avoid relying on asymptotic inferential assump-

tions. Our results are consistent with the aforementioned descriptive analysis. The test for

U-AEP—a test for the null that all wedges equal one—resoundingly rejects, with a p-value

less than 0.001. On the other hand, the test for C-AEP—which asks whether wedges take

a common value for each firm, within each input type—does not reject (p = 0.35).
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The previous results imply that deviations from U-AEP are large enough to detect at

standard levels of statistical significance, but they do not tell us how large the cost of

misallocation is in economic terms. Equally, the failure to reject C-AEP may reflect a test

with low power even if the gain from equalizing wedges might be substantial. In Section 6

we therefore move beyond such tests to estimates of certain weighted moments of the wedge

distribution that are motivated by a second-order approximation to the cost of misallocation,

following Baqaee and Farhi (2020). In particular, we estimate that the sales-weighted mean

of wedges across firms is 1.126 and the corresponding variance of wedges is 0.014. Even at

conservative values for elasticities of output demand and input supply, these point estimates

imply that the total cost of misallocation in this context is just 1.6%.2

This estimated cost of misallocation arises in roughly equal parts from two components.

First, the fact that wedges are dispersed across firms implies that there are gains (of 1.0%)

from reallocating inputs to higher value marginal product firms, even while holding aggregate

inputs constant at their factual levels (consistent with C-AEP). Second, the fact that aver-

age wedges exceed one implies that there would be further gains (of 0.6%) from increasing

aggregate inputs until the value marginal product of each input equals its price.

It may seem surprising that the estimated cost of misallocation in this context is so much

smaller than typical estimates in the literature (discussed below). However, as argued above,

by placing only minimal restrictions on firms’ technologies, it is natural that our procedure

may arrive at a lower estimated amount of wedge dispersion. To shed light on this, we can

ask what our data would imply if we were to impose the assumption that all firms have

technologies that feature common rates of returns-to-scale, as is common in the existing

literature on misallocation, but are nevertheless free to differ in arbitrary ways across firms.

Applying this assumption to the same data would lead to the conclusion that the firms in

our setting exhibit substantially greater wedge dispersion and a cost of misallocation that

is many times larger. For example, assuming constant returns implies that this cost is 66%

rather than 1.6% using our procedure. An interpretation of our findings is, therefore, that

the firms in our context truly have heterogeneous technologies—featuring even heterogeneous

2The block-bootstrapped distribution of such estimates contains a relatively small mass of substantially
higher estimates, though 80% of such values are below 7%.
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returns returns-to-scale—and that procedures that restrict such heterogeneity by assumption

would reach different conclusions about allocative efficiency.

Prior work has been focused on quantifying the allocative efficiency of inputs across firms

for some time. For example, Restuccia and Rogerson (2008) and Hsieh and Klenow (2009)

offer seminal contributions and Hopenhayn (2014) and Restuccia and Rogerson (2017) pro-

vide reviews. As discussed above, the typical approach in existing work has been to leverage

parametric assumptions about firms’ production functions in order to estimate marginal

products, and hence wedges, in any given cross-section. Such an approach is invaluable if

one hopes to identify a separate wedge for every firm and input. However, as discussed

above, this procedure may lead to biased wedge estimates if the specification of firms’ tech-

nologies is incorrect (for example, in terms of assumed returns-to-scale as in Haltiwanger

et al. (2018)) or understates cross-firm technological heterogeneity (as emphasized in Gollin

and Udry (2021), for example). A distinguishing feature of our approach is that, instead of

seeking to identify each wedge, we focus on identifying features of the wedge distribution

that are sufficient for our questions of interest: whether all wedges equal one (in order to

test for U-AEP), whether the wedge distribution is degenerate for each input type (to test

for C-AEP), and how large are various weighted first and second moments of the wedge

distribution (to quantify the cost of misallocation).

To do so, we leverage insights from the Hall (1988, 2018) method of estimating markups.

Hall (2018), for example, uses a time-series regression of a U.S. sector’s output on a weighted

bundle of its inputs, with instrumental variables (IVs) based on military purchases and oil

price fluctuations, to identify the sector’s markup under the assumptions that the markup is

constant over time within the panel dataset. We extend this idea in several directions. First,

our techniques estimate weighted moments of the wedge distribution within a single cross-

section of firms, and hence require no restrictions on markup changes over time.3 Second,

we provide a method for translating such weighted moments into estimates of the cost of

3As discussed below, the Masten and Torgovitsky (2016) estimator is suitable for models like ours, in
which coefficients are arbitrarily heterogeneous and regressors are endogenous. This estimator has been pre-
viously used by Gollin and Udry (2021) when estimating averages of heterogeneous Cobb-Douglas production
function parameters in a model of Tanzanian and Ugandan farms. Klette (1999) also uses a random coef-
ficient estimator to estimate unweighted markup dispersion across firms and years in a panel of Norwegian
firms, but one assuming that regressors are exogenous.
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misallocation. And third, consistent with the misallocation literature, we allow for arbitrary

wedges on each input rather than simply an overall markup.

Our procedures for assessing misallocation rely on the availability of variation in firm-level

input changes that is exogenous with respect to the firm’s production set. Recent work on

firms has exploited experimental or quasi-random variation to isolate exactly such variation,

stemming from either the output demand side or the input supply side. In terms of the

former, the pioneering study of Ferraz et al. (2015) exploits quasi-random variation arising

from Brazil’s procurement auction system to study effects of demand shocks on firm growth;

similarly, Fadic (2020) examines the Ecuadorian lottery system studied here and documents

temporary effects on revenues, labor payments and assets of winning firms.4 Other examples

of exogenous sources of demand that have been isolated in prior work derive from market

integration (Jensen and Miller, 2018), firm entry (Bergquist and Dinerstein, 2020; Busso

and Galiani, 2019), and import competition (Felix, 2021). Turning to shocks from the input

supply side, innovative studies have used variation in firms’ access to capital (de Mel et

al., 2008; Banerjee and Duflo, 2014; Kaboski and Townsend, 2011), labor (de Mel et al.,

2016; Beerli et al., 2021), and management consulting services (Bloom et al., 2013; Giorcelli,

2019). Our paper complements and contributes to these literatures by formalizing a method

through which firms’ responses to such exogenous shocks can be used to test for the existence

of allocative inefficiency and to quantify its magnitude.5

2 Theoretical Framework

This section describes the theoretical environment in which we aim to test for allocative

efficiency and to measure the welfare consequences of departures from such efficiency.

4Other examples of studies utilizing procurement-based variation to study firm growth include Lee (2017)
and Hvide and Meling (2023). Relatedly, Kroft et al. (2022) use variation from procurement auctions in the
U.S. to estimate firm-level labor supply elasticities in order to study implications for market competition.

5This also complements recent work (such as McCaig and Pavcnik (2018), Rotemberg (2019), Bau and
Matray (2023), and Sraer and Thesmar (2023)) that has used quasi-experimental designs, combined with
existing methods for estimating firms’ wedges (such as that due to Hsieh and Klenow (2009)), to ask the
important but distinct question of whether policy changes appear to change the extent of misallocation.
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2.1 Setup

We consider an economy consisting of I potential firms indexed by i. Each has a technology

for converting a bundle of inputs (indexed by m in the set M) into a bundle of products

(indexed by j in the set J ). The output and input bundles of firm i are denoted by the

vectors yi ≥ 0 and xi ≥ 0, respectively. An econometrician observes this economy at time

“0” and wishes to assess the extent to which the allocation observed is allocatively efficient

(in a sense defined below). Letting a “bar” over any variable denote the time-0 allocation,

the econometrician observes the quantities yi and xi among a set of active firms (i.e., those

with yij > 0 for at least one product j) that we denote by I ⊆ I. The analogous sets of

active products and inputs (those produced and used in strictly positive amounts) for firm

i are denoted by J (i) and M(i), respectively.

We describe the technology that each firm i ∈ I uses to produce output bundle yi from

input bundle xi via the transformation function

F (i)(yi,xi) ≤ 0. (1)

Our analysis rests on the following assumption about firms’ technologies and behavior.

Assumption 1 (Firms). (a) For all firms i ∈ I, F (i)(yi,xi) is strictly increasing in

(yi,−xi). (b) For all firms i ∈ I, F (i)(yi,xi) = 0. (c) For all firms i ∈ I, F (i)(·) is

differentiable at (yi,xi) with respect to the outputs in J (i) and the inputs in M(i).

The first part of this assumption is made essentially for expositional purposes. The second

part assumes that firms produce on their technological frontiers. And the third part rules out

cases where an active firm is producing at a kink in its frontier. Beyond these relatively mild

restrictions, however, technologies are free to vary in arbitrary ways across firms and also

across each firm’s levels of production. Arbitrary extents of (finite) increasing or decreasing

returns-to-scale, non-homotheticity, and input substitution are allowed for. In addition,

firm behavior is unrestricted—firms may maximize profits subject to any assumption about

market conduct, or they may fail to optimize at all—as long as no firm produces at a point

where it could obtain strictly more output from the same bundle of inputs.
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2.2 Allocative Efficiency of Production

We define two notions of allocative efficiency to which the time-0 allocation can be compared.

These correspond to the choices made by a hypothetical social planner who acts in either

an unconstrained manner or subject to a set of aggregate resource constraints, described

below. To describe the planner’s objective, we specify households’ preferences about both

the utility from consuming produced goods and the disutility incurred when providing inputs

for production. We denote such preferences, for any household h ∈ H, by

U (h)(
{
yhi
}
,
{
xhi
}
), (2)

where, for example, yhij denotes the amount of yij consumed by household h and feasibility

implies that
∑

h y
h
ij ≤ yij for all i and j.6 Given our interest in the allocative efficiency of

production, we assume that households behave in a simple manner, as follows:

Assumption 2 (Households). For each household h ∈ H, the following hold. (a) U (h)(·)

is differentiable at the point of consumption, (
{
yhi
}
,
{
xhi
}
). (b) The household chooses

(
{
yhi
}
,
{
xhi
}
) to maximize U (h)(·), while taking output prices pi and input prices w as given,

subject to the budget constraint of
∑

i∈I,j∈J pijy
h
ij ≤

∑
i∈I,m∈Mwmx

h
im.

Below we will study a planner that selects a Pareto-efficient allocation based on the

preferences in (2). This means that Assumption 2 implies, via first-order conditions of

the household’s problem, that for any value of ({yi} , {xi}) relative prices will equal each

household’s marginal rate of substitution. As such, the essential role of Assumption 2 is

to provide sufficient conditions such that the prices paid by households for consumption

goods reflect the marginal social value of such consumption (and similarly for prices received

by households for inputs supplied). Assumption 2 therefore effectively normalizes to one

any wedges between prices and consumers’ marginal utilities (ruling out, for example, taxes

on consumption or income), as these distortions are not part of our focus on productive

inefficiencies.7

6We use the braces notation “{qk}” to denote a vector whose elements are qk.
7More generally, in the case of inputs that are sourced from other firms rather than households, our

analysis can be thought of as normalizing to one any wedges in upstream firms so as to focus on misallocation
among the firms under study.
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For any firm i, and given any set of prices (pi,w) and an allocation (yi,xi), we define

the wedge on any input m inside firm i’s production of product j as

µij,m(yi,xi,pi,w) ≡ − pij
wm

F
(i)
xim(yi,xi)

F
(i)
yij (yi,xi)

, (3)

where F
(i)
x (·) ≡ ∂F (i)(·)/∂x, etc.8 That is, a wedge is the ratio of the value marginal product

of an input (for producing a given product in a given firm) to the price of that input.9

A standard derivation then implies that, under Assumptions 1 and 2, any Pareto-efficient

allocation selected by a planner who uses firms’ technologies embodied in (1) in order to

maximize (2) will display unconstrained allocative efficiency of production (U-AEP). This

entails a set of outputs {y∗∗
i } and inputs {x∗∗

i } that satisfies the first-order conditions

U
(h)
yj ({y∗∗

i } , {x∗∗
i })F (i)

xim(y
∗∗
i ,x

∗∗
i )

U
(h)
xim({y∗∗

i } , {x∗∗
i })F (i)

yij (y
∗∗
i ,x

∗∗
i )

≤ 1 for all i ∈ I, j ∈ J ,m ∈ M, h ∈ H (4)

with equality for any (i, j,m) that satisfies y∗∗ij > 0 and x∗∗im > 0. Using (3) and Assumption

2, however, this can be expressed more succinctly by saying that, for all produced products

and used inputs, U-AEP requires

µij,m(p
∗∗
i ,w

∗∗,y∗∗
i ,x

∗∗
i ) ≡ µ∗∗

ij,m = 1, (5)

where the prices (p∗∗
i ,w

∗∗) are those that would prevail in a decentralized equilibrium that

corresponds to the planner’s allocation. That is, the planner’s wedges µ∗∗
ij,m on active products

and inputs would all be equal to one in the U-AEP case.

Turning to the case of constrained efficiency, we now imagine that the planner faces an

aggregate input constraint on the use of any type of input. In particular, we consider a

constraint that no more of the input may be used, in total, than is observed in use at time-0.

8Throughout, for expositional simplicity, we refer to derivatives of functions (such as F (i)(·)) that are not
necessarily differentiable everywhere (since Assumptions 1 and 2 only restrict their differentiability at the
time-0 allocation).

9In the case of a single-product firm we can write its technology as yi = F̃ (i)(xi), so that µi,m = pi

wm

∂F̃ (i)

∂xim
.
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Such a constraint can be written as:

∑
i∈I

xim ≤
∑
i∈I

xim ≡ Xm for all m ∈ M. (6)

It is common in the misallocation literature to study allocative efficiency in the presence

of such constraints. One benefit of doing so is that the investigation of misallocation can

be decomposed into two sources: (a) misallocation of inputs conditional on Xm; and (b)

misallocation in the total input level Xm, itself. Another motivation involves a connection

to aggregate TFP, which holds aggregate inputs constant. In line with the steps used earlier,

under Assumptions 1 and 2, and if the constraint (6) holds, any Pareto-efficient allocation

(y∗
i ,x

∗
i ) displays constrained allocative efficiency of production (C-AEP) in which

µij,m(y
∗
i ,x

∗
i ,p

∗
i ,w

∗) ≡ µ∗
ij,m ≤ χm for all i ∈ I, j ∈ J ,m ∈ M, (7)

for some constant χm > 0, and with equality for any (i, j,m) that features y∗ij > 0 and

x∗im > 0. In this constrained case, the planner’s wedges µ∗
ij,m will be equal to each other,

i.e., equal to some common value χm, within the same input type (among strictly produced

outputs and used inputs), but this common value is not necessarily equal to one. This

highlights how the essence of C-AEP is a lack of dispersion in wedges rather than their level.

2.3 Testing for Allocative Efficiency in Production

Having seen what an AEP allocation would look like, we turn to a test for whether a given

allocation in the data appears consistent with AEP. We consider an econometrician who, at

time-0, observes outputs {yi} and inputs {xi} for all firms i ∈ I, as discussed above. In

addition, the analyst observes the prices of such outputs and inputs, {pi} and w respectively.

Using the definition in equation (3), the actual wedges at time-0 therefore correspond to

µij,m ≡ µij,m(yi,xi,pi,w) = −
pij
wm

F
(i)
xim(yi,xi)

F
(i)
yij (yi,xi)

. (8)
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It is then apparent that the observed allocation is efficient if it corresponds to the planner’s

allocation in the following sense.

Definition 1. If the observed allocation {yi,xi} is U-AEP, then it satisfies µij,m = 1 for all

i ∈ I, j ∈ J (i),m ∈ M(i). If the observed allocation is C-AEP, then it satisfies µij,m = χm,

where χm > 0, for all i ∈ I, j ∈ J (i),m ∈ M(i).

As is implied by this definition, the null hypotheses to be tested can be stated as:

H0 (U-AEP) : µij,m = 1 for all i ∈ I, j ∈ J (i),m ∈ M(i), (9)

H0 (C-AEP) : µij,m = χm for some χm > 0 and for all i ∈ I, j ∈ J (i),m ∈ M(i).

This makes it clear that testing for AEP would be straightforward if the set of wedges {µij,m}

were observable. Unfortunately, as the definition of µij,m in (3) makes clear, the wedge µij,m

depends on the marginal product of input m for product j in firm i—the ratio of two deriva-

tives of firm i’s transformation function at the observed allocation, −F (i)
xim(yi,xi)/F

(i)
yij (yi,xi).

Knowledge of such marginal products can be obtained from knowledge of the transforma-

tion function F (i)(·), but obtaining knowledge of F (i)(·) is not possible without parametric

restrictions here because, with a separate function F (i)(·) per firm, there is no variation with

which the econometrician could estimate these functions nonparametrically.

We overcome this challenge by analyzing changes over time. Let ∆yij ≡ yij,t=1 − yij

denote the change in any variable, such as yij, from time-0 to some later date that we refer

to as “time-1”. Following Hall (1988), we then apply a first-order Taylor expansion to the

transformation function F (i)(·) around the point (yi,xi), as is valid under Assumption 1(c).

Using the definition of µij,m, changes in the output bundle must therefore relate to changes

in the input bundle via

∑
j∈J (i)

µij,m0

µij0,m0

pij∆yij =
∑

m∈M(i)

µij0,mwm∆xim + εi, (10)

for any firm i ∈ I, where m0 and j0 denote arbitrarily chosen reference inputs and products,

respectively.10 Here, εi captures any possible changes in the production function itself (such

10This expression assumes that m0 ∈ ĎM(i) for all i, but this is purely for simplicity of notation.

11



as, but not limited to, a change in TFP), the consequences of any higher-order terms in the

Taylor expansion, and the consequences of any new products j /∈ J (i) or inputs m /∈ M(i).

Importantly, this expression is valid for any change in outputs ∆yij and inputs ∆xim, and

hence does not take a stand on why (or indeed whether) the firm changed certain of its

inputs and hence its outputs. We use this equation extensively in what follows.

As with any test, we seek a function of observables that could distinguish H0 from an

alternative hypothesis (in this case, the existence of misallocation). Towards that goal, we

define the following change in (fixed-price) revenues minus (fixed-price and χ-adjusted) costs

∆Πi(χ) ≡
∑
j∈J (i)

pij∆yij −
∑

m∈M(i)

χmwm∆xim. (11)

Importantly, ∆Πi(χ) is a function of data alone, given any candidate value of χ. Combining

equations (10) and (11), we see that under the null of (either U- or C-) AEP, we have

∆Πi(χ) = εi. Finally, we introduce an additional observable, an “instrument,” denoted by

Zi, that is assumed to satisfy the following exogeneity restriction.

Assumption 3 (Exogeneity). The econometrician observes an instrumental variable (IV),

denoted Zi, that satisfies statistical independence with respect to εi: Zi ⊥⊥ εi.

We discuss practical considerations for assessing the validity of this assumption below.

When Assumption 3 holds, and under the null, it is the case that ∆Πi(χ) ⊥⊥ Zi. Since both

Zi and ∆Πi(χ) are observable under any candidate value of χ, this hypothesis of statistical

independence is testable. One method for doing so is to consider the following nonparametric

relationship among all firms i ∈ I

∆Πi(χ) = f(Zi) + νi, (12)

for a set of flexible functions f(·). Then the AEP hypotheses can be stated as:

H0(U-AEP) : when χ = 1, f(·) = 0, (13)

H0(C-AEP) : for some χ > 0, f(·) = 0.

12



We summarize the discussion so far in the following proposition.

Proposition 1. Suppose Assumptions 1-3 hold. Then a nonparametric test for U-AEP can

be performed by estimating the function f(·) in equation (12), evaluating ∆Πi(χ) at χ = 1,

and rejecting the null whenever f(·) ̸= 0. A nonparametric test for C-AEP can similarly be

performed by estimating the function f(·) in equation (12), but while evaluating ∆Πi(χ) at

all χ > 0, and rejecting the null whenever there exists no value of χ > 0 at which f(·) = 0.

The intuition behind the test in Proposition 1 is as follows. Suppose that Zi represents

a demand shock that applies to some firms but not others. Further, suppose that Zi is

observed to be positively correlated with ∆Πi(1), which would correspond to a case in which

one estimates an f(·) ̸= 0. Then this would imply that the demand shock caused some firms’

(time-0 price-valued) outputs to grow by more than their (time-0 price-valued) inputs. As

long as this demand shock Zi satisfies Assumption 3, such a scenario is inconsistent with

U-AEP because it implies that some wedges are larger than one. Further, suppose we find

some value of χ > 0 at which there appears to be no function f(·), within some flexible set

of functions, that delivers an estimate with f(·) ̸= 0. This is consistent with C-AEP because

it implies that there exists a set of “prices” χm for each input type m such that, when inputs

are valued in a way that includes χm, input growth does now equal output growth.

In practice, there are a number of ways to choose flexible functional forms for f(·) in

order to carry out the test of f(·) = 0 in equation (12). In Section 5 we do so by estimating

a quantile regression relationship between ∆Πi(χ) and Zi, at a range of candidate values of

χ, and testing for the presence of non-zero effects at any quantile. We also employ random-

ization inference, given that the null is sharp (for any χ) and the stochastic distribution of

Zi is known (given the randomization protocol) in our setting.

Returning to the choice of instruments Zi, there are two considerations. First, Zi must

satisfy Assumption 3. Recall that εi consists of three components: (a) changes to the

production technology (such as a TFP shock) between time-0 and time-1; (b) non-linear

terms in the Taylor expansion of equation (10); and (c) the impact of new types of inputs or

outputs. An instrument satisfies the first of these components if it derives from characteristics

of the firm’s environment that are unrelated to its own technology. As discussed in the
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Introduction, potential examples include changes in firm demand, in the firm’s competitive

environment or its competitors’ characteristics, or in subsidies to the firm’s inputs. Our

application uses a randomized component of government procurement to generate a Zi that

can be interpreted as a demand shock. Concerns due to component (b) can be probed

through the use of different values of Zi that represent relatively small and large external

shocks, as we do for our context in Section 4.1. Component (c) will cause bias to the extent

that the new inputs or outputs caused by the instrument have large value products but, as

equation (7) makes clear, under the null of efficiency these effects are expected to be small.

The second consideration in choosing instruments concerns the power of the test in Propo-

sition 1. Power can be augmented, or directed towards particular alternatives, through the

use of instruments Zi that drive different extents of variation in input use, wm∆xim. If Zi

had only a weak correlation with input changes, then the econometrician would have no

ability to learn whether there is zero correlation between Zi and ∆Πi(χ), at any χ. This is

akin to a “first-stage” relevance condition in standard IV settings.11 Ultimately, the strength

of the first-stage correlation between Zi and input changes is an empirical matter that needs

to be assessed in specific settings, as we do in Section 4 below.

2.4 Measuring the Distribution of Wedges

Proposition 1 develops nonparametric tests for the existence of misallocation in production at

a given observed point in time. These tests amount to evaluating whether the distribution of

wedges {sµij,m} satisfies certain features: constancy across firm-products within input types,

in the case of C-AEP; and degeneracy at the value of one for all firms, products and inputs, in

the case of U-AEP. Our final procedure complements such tests by providing point estimates

of features of the wedge distribution such as its weighted moments (with observed weights).

These estimates may often be of interest in their own right. But, as we describe further in

11One theoretical example that would lack power occurs in the case of a price-taking firm with increasing
marginal costs, and where Zi is a demand shock that offers to purchase more at the market price. Such
a firm would be indifferent to this demand shock and hold its scale constant, but alternative instruments
(such as an output subsidy) would work in this setting. A second example that lacks power would arise if
the instrument derives from a market-level shock that induces equal input responses among all firms. More
generally, since the essence of this test is to observe the effects of input changes, all else equal, it will have
less power to detect the misallocation of types of inputs that feature large adjustment costs.
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Section 2.5, they also play a central role in estimates of the aggregate costs of misallocation.

To proceed with such estimation, we rearrange equation (10) as

spij0∆yij0 = −
∑

j∈ sJ (i)−j0

sµij,m0

sµij0,m0

spij∆yij +
∑

m∈ ĎM(i)

sµij0,m swm∆xim + εi, (14)

which holds for each firm i ∈ sI. We begin by considering this equation when applied only to

the set of firms that produce a single product at time-0, but we return to the multi-product

firm case below. To simplify notation, we therefore drop the product subscript j temporarily.

For single-product firms, equation (14) then becomes

spi∆yi =
∑
m∈M

sµi,m swm∆xim + εi, (15)

where here (and henceforth) we follow the convention that ∆xim = 0 if sxim = 0.

This equation corresponds to a cross-firm regression model relating spi∆yi to a set of

regressors given by swm∆xim for each m ∈ M. In particular, this model takes the form of

an instrumental variables correlated random coefficients (IVCRC) model. This is because:

(a) each unit of observation i not only has its own unobserved intercept εi but also its own

unobserved coefficient sµi,m on each regressor; (b) it features endogeneity as we expect any

regressor (the change in inputs of type m) to be correlated with the error term since this

term captures changes in the firm’s production technology, to which the firm’s input choices

may respond; and (c) we can expect the coefficients sµi,m to be potentially correlated with the

error term εi, for example, if firms with high markups are more likely to receive productivity

shocks. Masten and Torgovitsky (2016) develop tools for the study of such IVCRC models

in cases with suitable instrumental variables, as described in the following condition.

Assumption 4 (IV). The econometrician has access to a vector of instruments Zim, one for

each m ∈ M. Each instrument satisfies: (a) Zim ⊥⊥ (εi, sµi,m); (b) swm∆xim = hm(Zim, Vim)

for some unknown hm(·) and scalar Vim, with ∂hm
∂Vim

> 0 for all m ∈ ĎM(i); and (c) there

exists variation in Zim at almost every Vim for all m ∈ ĎM(i).

Parts (a) and (c) of this assumption are analogous to standard requirements for IV

estimation—they embody the familiar requirements of exogeneity and relevance, respectively.
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Condition (a) requires the instruments to be independent of both the residual εi and the

wedge sµi,m.
12 One a priori concern about the validity of part (c) is the presence of adjustment

costs, as discussed above. Just as such costs will, all else equal, reduce the power to detect

misallocation of inputs that rarely adjust, they may also hinder the ability to estimate the

distribution of wedges on such inputs because it may prove challenging to find sufficiently

strong instruments for them. However, as discussed in Masten and Torgovitsky (2016),

condition (c) is testable.

Part (b) is unique to IVCRC. Masten and Torgovitsky (2016) refer to this as a “first-

stage rank-invariance” condition. It requires that the ranking of firms in terms of their input

changes, for any input type m, when all firms (hypothetically) receive a low value of Zim

is the same as that when all firms receive a high value of Zim. Put differently, firms can

respond to Zim in heterogeneous ways, but not in such a way that alters their rank in the

conditional-on-Zim distribution of changes of input m. This is more likely to be satisfied

when firms’ “background” reasons for adjusting inputs (i.e., those driven by Vim) have large

variance relative to the heterogeneity in their responses to Zim. We return to this point in

the context of our application in Section 6.

Masten and Torgovitsky (2016) show that, under Assumption 4, a consistent estimator

of E[sµm] can be constructed for any m ∈ M—that is, for the expected value of firms’

wedges sµi,m on input m, with the expectation taken across firms i—in equation (15).13

We augment this procedure to obtain an estimate of the analogous expectation when it is

weighted according to an arbitrary vector of firm-specific weights {αm}—that is, the set of

values αim for all firms i. We denote this expectation by Eαm [sµm]. This can be achieved by

simply using the regressor 1
N

swm∆xim/αim instead of swm∆xim.
14 Higher-order moments of

the wedge distributions can also be estimated consistently by a simple extension. As Masten

12Our wedge estimation procedure is less vulnerable to concerns about the endogeneity of εi than was the
test in Proposition 1 because here it is straightforward to control for higher-order terms in swm∆xim (to the
extent that separate instruments are available for small and large changes in inputs) as well as new inputs.

13Since Assumption 4 invokes conditions about inputs m ∈ ĎM(i), the identification of E[sµm] for any given
m ∈ ĎM refers to the expectation over firms i for which m ∈ ĎM(i).

14In the special case of one regressor, the weighted expectation can also be approximated by interacting
the regressor with a set of indicators for groups based on quantiles of the weighting variable αi and then
constructing the group-weighted average of group-specific estimates. This approximates Eα[sµ] increasingly
well as the number of groups grows.
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and Torgovitsky (2016) discuss, the square of equation (15) implies

(spi∆yi)
2 =

∑
m∈M

sµ2
i,m( swm∆xim)

2 + 2
∑

m,m′∈M,
m̸=m′

sµi,msµi,m′
swm∆xim swm′∆xim′

+2εi
∑
m∈M

sµi,m swm∆xim + ε2i . (16)

This, too, is an IVCRC model. As such, a repetition of the previous argument can be used

to construct a consistent estimator of second-order moments, E[sµ2
m] and E[sµmsµm′ ].15 By a

similar argument to that stated above, weighted moments such as Eαm [sµ
2
m] are also identified.

Extensions to third- and higher-order moments are straightforward.

We summarize the preceding discussion in the next proposition:

Proposition 2. Suppose that Assumptions 1-4 hold. Then all (finite-order) weighted mo-

ments of the distribution of wedges {sµi,m} are identified among i ∈ sI and m ∈ ĎM(i).

Finally, we return to the discussion of the multi-product firm from equation (14). The

new element here is the presence of potential additional coefficients
sµij,m0

sµij0,m0
on the regressors

spij∆yij, with sJ(i)−1 coefficients for the case in which firm i produces sJ(i) products at time-

0.16 These coefficients capture within-firm, cross-product dispersion in wedges, as measured

by the ratio of the wedge (for an arbitrarily chosen input m0) on any product j relative to

that on the reference product j0. Given suitable instruments, Proposition 2 can be applied

to the moments of these distributions too, leading to the identification of all moments of the

distribution of all wedges, both across firms, within firms across products, and within firms

across inputs.

15If the number of input types is M , equation (16) suggests that M(M + 1) instruments are required
for identification. However, an attractive feature of the Masten and Torgovitsky (2016) procedure is that
only M instruments are required. This is because the method incorporates the structure of the mechan-
ical relationships between basic and derived endogenous regressors (i.e., that the first-stage relationship
swm∆xim = hm(Zim, Vim) is the same no matter how the component swm∆xim appears in the regression).

16This can be executed as follows. Arbitrarily order each firms’ sJ(i) products such that one (i.e. j0) is
chosen as the reference product, and hence populates the left-hand side of equation (14), and the remaining
sJ(i)−1 products appear as regressors. For firms with less than sJ ≡ maxi∈sI

sJ(i) products, use the convention
of ∆yij = 0 to populate the missing sJ − sJ(i) regressor values.
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2.5 Quantifying the Cost of Misallocation

Proposition 1 has developed a nonparametric test for the existence of misallocation in pro-

duction at a given observed point in time. We now go further and develop a method for

calculating the aggregate welfare cost of any such misallocation.

In particular, we compare the U-AEP allocation (y∗∗,x∗∗) to the actual time-0 allocation

(y,x) by considering—à la Harberger—the second-order expansion to an aggregate welfare

function around the point (y∗∗,x∗∗).17 As in Definition 1, this can be written as a change

from the U-AEP allocation, where all wedges are equal to one, to any other vector of wedges,

such as those that prevail at the time-0 allocation, denoted
{
µij,m

}
. Equivalently, the welfare

gain due to moving from the actual wedges of
{
µij,m

}
to the U-AEP wedges of {1} equal

what we define as the total cost of the misallocation at time-0. We also decompose this total

cost into two terms: (i) a cost of misallocation due to how each input type is allocated across

firms, holding aggregate input use constant at the value sXm; and (ii) a cost of misallocation

of the aggregate input values themselves.

Quantifying the total cost of misallocation, up to second-order, amounts to summing up

a series of Harberger triangles whose heights are related to the change in wedges (i.e., to

the vector
{
µij,m − 1

}
) and whose bases are related to the change in quantities of each good

produced as a result of the change in wedges. As usual, this latter component can itself be

written as a function of the change in the wedge and a function of the relevant elasticities

of supply and demand. Baqaee and Farhi (2020) have recently provided a parsimonious

representation of these elasticities as functions of underlying data shares (measurable from

observations about expenditures in the time-0 allocation) and structural elasticities of sub-

stitution inside households’ utility functions and firms’ production functions.

The Baqaee and Farhi (2020) presentation emphasizes how the cost of misallocation can

be written as a set of weighted first- and second-order moments of the wedge distribution,

where the structural elasticities govern the importance of different moments. Assumptions

about such elasticities derive from assumptions about firms and households that are stronger

than we have needed (via Assumptions 1 and 2) so far to identify weighted moments of

17Since Proposition 2 describes an identification argument for wedge distribution moments that are higher
than second-order, our focus here on second-order expansions is done for simplicity only.
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the wedge distribution using Proposition 2. However, the additional assumptions about

demand and supply elasticities play a key role in shaping which weighted moments of the

wedge distribution are important for the cost of misallocation. The remainder of this section

provides two examples that illustrate this logic. Our empirical application in Section 6 then

draws on these examples to put such an approach into practice.

Example #1: Multiple input types and a single sector

Consider an economy with single-product, profit-maximizing firms, each producing with

a Cobb-Douglas production function that combines capital (denoted xiK) and labor (xiL)

via yi = Ai(xiK)
sαK (xiL)

1−sαK . Capital and labor are both in fixed aggregate supply to these

firms, so the only source of misallocation will concern the extent to which each input is used

across firms, not the overall extent of input use; that is, in this example there is no distinction

between U-AEP and C-AEP. The representative consumer has CES preferences for the firms’

outputs, with elasticity of substitution θ. Finally, suppose that the time-0 allocation (y,x)

and prices (p,w) imply (via the definition in equation 8) that firm i’s capital and labor

wedges are given by µi,K and µi,K , respectively. This is therefore the economy of Hsieh and

Klenow (2009) but with a single sector.

Using the results in Baqaee and Farhi (2020), it is straightforward to show that, up

to a second-order approximation, the increase in welfare (relative to the initial level) from

eliminating the wedges in this economy is given by

∆W

W
=

1

2
sαK(1− sαK)Varλ[sµK − sµL] +

1

2
θVarλ[sαKsµK + (1− sαK)sµL], (17)

where Vara [b] ≡ Ea[b2] − (Ea[b])2 denotes the variance of the vector {bk} weighted by the

vector {ak}, and Ea[b] denotes the expectation of the vector b weighted by the vector a. In

this case, the variances are weighted by the firms’ sales shares, denoted sλi ≡ spisyi∑
i′ spi′ syi′

.

The total cost of misallocation in this example derives from misallocation of inputs across

firms even while aggregate inputs are held fixed, but this misallocation can be split into two

forms, as is apparent in equation (17). The first term captures the effects of within-firm

substitution (which has an elasticity of one in this Cobb-Douglas case) to the potential

dispersion in wedges across the two inputs within any firm. And the second term captures
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the effects of across-firm substitution, on the behalf of consumers (and hence scaling by θ),

to the potential differences in cost-weighted average wedges (i.e., sαKsµi,K + (1− sαK)sµi,L) of

different firms. Because both types of inputs in this economy are in fixed aggregate supply,

the relevant features of the wedge distribution that matter for misallocation all concern

dispersion rather than average levels. However, both of the variance measures that matter

here are weighted by sλ, since the wedges in larger firms are more costly.

Proposition 2 highlights how all weighted, uncentered moments of the distribution of

wedges across firms can be identified. This is directly applicable to the cost of misallocation

in equation (17), which can be easily converted from centered second-order weighted moments

to ones that are uncentered. Hence, in a setting with instruments that satisfy Assumption 4,

and with knowledge of the demand parameter θ, the cost of misallocation (up to a second-

order approximation) in this example can be estimated consistently.

Example #2: Multiple sectors and endogenous input supply

We continue with a setting featuring single-product, profit-maximizing firms. But we now

allow each firm to have its own arbitrary production function (involving an arbitrary set of

inputs) so long as the technology satisfies Assumption 1 and displays constant returns locally

to the time-0 allocation.18 The representative consumer has nested CES preferences over the

products produced by these firms; in particular, the consumer’s elasticity of substitution

between the firms within sector s (which we denote by I(s)) is given by θs and that for

substitution across sector-specific bundles is given by ρ.

In contrast to the previous example, we now allow the representative consumer household

to also supply the inputs xim to these firms. The household is endowed with a fixed amount

of time that it can freely convert into inputs or retain as leisure; it has an elasticity of

substitution η between leisure and the bundle of final consumption goods. This endogenous

input supply means that the total cost of misallocation will derive from both a component

due to misallocation of the aggregate inputs sXm that are supplied at time-0, and from a

second component due to the misallocation of those total amounts themselves. Finally, we

assume that each firm has the same wedge on each of its inputs, which we denote by µi,m = µi

18A natural technology that fits this form is one with arbitrary overhead costs and constant marginal costs
(at fixed input prices and wedges).
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for all m. This would be the case if, for example, the underlying cause of potential wedges

is firms’ market power in their product markets, and/or taxes and subsidies on firms’ sales.

Again, the tools in Baqaee and Farhi (2020) make it easy to calculate the total cost of

misallocation due to wedges in this economy. As before, we let sλi ≡ spisyi∑
i′ spi′ syi′

denote the

share of firm i’s sales in total goods consumption. We also let sψs ≡
∑

i∈I(s) spisyi∑
i′ spi′ syi′

denote the

share of goods consumption expenditure devoted to sector s and let sχi(s) ≡ sλi/ sψs denote the

share of firm i within sector s. Finally, we let sωC denote the share of the household’s virtual

income spent on consumption goods.19 Then we have

∆W

W
=

1

2
sωC
∑
s

θs sψsVarsχ(s)
[µ] +

1

2
sωCρVar sψ

[
E

sλ(s)
[sµ]
]
+

1

2
sωC(1− sωC)η (Esλ [sµ]− 1)2 (18)

To unpack this expression, we begin by noting that all terms are multiplied by ωC , as

the only wedges in this economy are in consumption (rather than leisure). The first term

captures the average effect of within-sector dispersion in wedges across firms. It therefore

scales with the size of the within-sector demand elasticity of substitution, θs. In particular,

Var
sχ(s)

(µ) measures the amount of such dispersion within sector s, weighted by the size

of each firm relative to the sector (i.e., by sχ(s)). The second term captures cross-sector

dispersion in the average wedge within each sector (i.e., E
sλ(s)

[sµ]). This scales with ρ, the

consumer’s substitution elasticity across sectors.

The misallocation of the aggregates sXm across firms and sectors causes a welfare cost

equal to the sum of these first two terms. By contrast, the final term arises due to misal-

location of each sXm itself. In particular, this component of misallocation exists when the

consumption sector-wide (sales-weighted) average level of wedges is different from one. Un-

surprisingly, this term scales with both the elasticity of input supply (η) and the size of

leisure in the economy (1− sωC) since it is the division of aggregate inputs between firm pro-

duction and leisure that is potentially misallocated. Finally, a notable feature of expression

(18) is that technological features (of each firm’s production function) do not enter, since

within-firm dispersion is zero. However, this expression can be augmented to include such

phenomena by simply adding components such as the first term in equation (17).

19If the household’s time endowment is sT and it earns the price sw for selling inputs then sωC ≡
∑

i spi syi

sw sT
.
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3 Background and Data

As discussed above, our procedures require an instrument that is correlated with changes in

firms’ input use but uncorrelated with changes in firms’ technologies. We now turn to an

application in which we can construct such an instrument based on demand shocks from a

randomized component of Ecuador’s public procurement system. This section describes the

procurement lottery process, the administrative data we use, and the characteristics of the

firms that participate in procurement lotteries. Finally, we outline our empirical procedure

for isolating the exogenous components of demand faced generated by the lotteries. Appendix

B contains further details on all aspects of data construction.

3.1 Ecuador’s Procurement Lottery System

Starting in 2009, contracts for public construction projects below a certain value were re-

quired to be allocated based on randomized lotteries among qualified suppliers.20 Examples

of such contracts include construction or maintenance of public buildings, small roads and

town squares, schools, sewerage, and wells or water distribution channels. The contract can

involve both physical construction and services done in advance of physical construction,

such as those provided by architects. Procurement made through this lottery procedure

represents about 4% of total public procurement during our period of analysis.

The procurement process for contracts awarded by lottery has several steps. First, any

tax-compliant firm can choose to register in the system. Second, government entities initi-

ate a given procurement contract by sending specifications and an expected budget to the

national procurement office (SERCOP).21 Third, firms that are registered to provide the

designated type of service, and are in good standing in regards to past contracts, are invited

by SERCOP to submit applications, which include proof of relevant qualifications.22 Fourth,

the procuring entity determines which applicants qualify for the contract. We refer to this

20The threshold value is 0.00007% of the central government’s annual budget. The Ecuadorian economy
is fully dollarized, and this threshold corresponds to $134,176 in 2009 and $240,100 in 2014.

21Roughly 5% of procuring entities are formally private-sector entities with a large share of state ownership.
22The invitation process is sometimes made over several rounds and often favors SMEs and local firms.

In addition, starting in 2013, SERCOP required that the total amount of contracts a firm may enter at any
given time is limited to the maximal allowed contract value (i.e., 0.0007% of the government budget).
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set of firms as “lottery participants”. Finally, an automatic and centralized program at SER-

COP determines the winner of the contract through a lottery among the participants. As a

result, even though participation in any given lottery is the result of deliberate selection on

both sides, the allocation of the contract among participants will be randomly determined

within the set of lotteries that have more than one participant (which will be our focus).

We compile data on the value, date and anticipated duration of each lottery contract

between 2009 and 2014, the firms involved in each lottery, and the winner of the contract.23

Restricting the sample to lotteries with at least two participants results in 18, 474 lotteries

with 9, 393 unique firms who participate at least once over this time period. The first two

panels of Table 1 report summary statistics about the contract lotteries and firm participation

in these lotteries. Contracts have a mean value of about $47, 000 (and a median of $32, 000)

and are usually of a short anticipated duration, with a mean (and median) of about 2 months.

On average, 10 firms participate in a lottery (median 4). Lottery participation is relatively

frequent among participating firms, averaging about 3.5 times a year (median once per year).

3.2 Firm Data

We match the procurement data to administrative data obtained from Ecuador’s tax author-

ity (Servicio de Rentas Internas). This begins with annually filed firm income tax returns for

2008 to 2015.24 We observe all line items in these filings, including wages, costs, revenues,

and profits. We use these line items to construct the total sales and costs measures used

for our main analysis. Total sales include domestic sales, exports, and other income (e.g.,

received professional fees). Total costs comprise labor and non-labor costs (including, for

example, capital costs, expenses on intermediaries, maintenance and repairs, and real estate

rent). All our sales and costs variables are gross of taxes.

We combine these annual income tax filings with two data sources that contain informa-

tion on wages, costs and sales on a monthly basis. The first is matched employer-employee

social security data, which provides information on monthly earnings at the worker level

23We obtained these data by scraping them from the SERCOP website: https://www.compraspublicas.
gob.ec/ProcesoContratacion/compras/PC/buscarProceso.cpe.

24Participating firms include both incorporated firms, which file the corporate income tax form (F101),
and sole proprietorships, which file a combined business and individual income tax return (F102).
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(available for 2007-2017). And the second is third-party reported monthly information on

firms’ sales filed by their clients’ purchase annexes. Such purchase annexes have to be filed

by all incorporated firms, government agencies and large sole proprietorships as part of the

value added tax (VAT) requirements.25 We calculate third-party reported sales by summing

purchases from a given supplier across the purchase annexes of all its client entities.26 These

monthly data for sales and labor costs, though less complete than the annual data, allow us

to better illustrate the dynamic paths of the treatment effects of winning a lottery.

By their nature, administrative tax data reflect reported economic activity. We can

mitigate concerns about potential misreporting by validating our estimates for sales, showing

below that estimated treatment effects on sales are almost identical when using either self-

reported sales or third-party reported sales. Further, we find that this treatment effect on

total sales is almost entirely accounted for by sales to procuring entities, which is reassuring

since these are public entities that have no incentive to misreport their tax filings.

Our analysis focuses on 9, 393 firms that ever participate in a multi-participant lottery

between 2009 and 2014. To account for firm entry, we use a sample of firm-year observations

that begins, for each firm, when the firm first appears to be economically active. We define

this status for a given firm as beginning when it first self-reports positive sales or costs in

its firm income tax forms or otherwise appears in any of the above data sets (as a lottery

participant, an employer in the social security data, or as a supplier in another firm’s purchase

annex). Once a firm is economically active, we impute zeros for any future missing data.

The third panel of Table 1 reports summary statistics by firm (for the first year a firm

participates in any lottery). Sample firms are on average 11 years old and sell to 5 clients per

year (median 2). Mean annual self-reported sales for participating firms are around $141, 000,

with a lower median ($53, 000) as reflects the skewness of the firm size distribution. Third-

party reported sales are similar, with a mean of $133, 000 (median $48, 000). Mean annual

costs for participating firms are $124, 000 (median $42, 000) and mean profits are $17, 000

(median $11, 000). The mean number of employees is 4.4 (median 2).

25Purchase annexes include the value, date and supplier firm ID of all purchases a firm makes.
26The third-party sales measure is a lower bound since not all client firms file purchase annexes and sales

to final consumers are not included. In practice, the two sales measures are very similar for our sample (see
Table 1).
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Figure 1 plots the distribution of firm sizes, in terms of annual sales, and also allows

for a comparison of lottery participants to other firms in Ecuador. In particular, panel 1(a)

compares lottery participants to other economically active Ecuadorian firms, whereas panel

1(b) restricts the comparison group to those within the same industry (i.e., the construction

and engineering sectors). The size distributions of participants and non-participants are

broadly similar. Relative to both comparison groups, the participant distribution is shifted

to the right but with less mass in the upper and lower tails of the distribution.

3.3 Using Procurement Lotteries to Construct Demand Shocks

The randomized assignment of contracts provides a source of exogenous variation, coming

from the demand side, in the use of inputs. Our analysis below uses this variation to

construct an instrumental variable Zit for each firm i and time period t in our data. We then

apply this instrument to the testing and estimation procedures described in Sections 2.3 and

2.4. We need this instrument to satisfy the statistical independence assumption invoked in

Assumptions 3 and 4(a). While the variation within any given lottery is akin to a simple

randomized trial, pooling this variation across all firm-year observations is more complex

because the timing and nature of lottery entry (in regards to lottery characteristics such as

their contract value and competitiveness) may be correlated with unobserved determinants

of firm growth.27 To address this issue, we draw on the ideas in Doran et al. (2022) and

Borusyak and Hull (2021) to aggregate the multiple randomized lotteries and generate quasi-

experimental variation in demand from Ecuador’s procurement lottery system.

Let k index all procurement lotteries, and let Kit denote the set of lotteries that firm i

enters in period t. Further, let Ak denote the contract value and Nk the number of participat-

ing firms in lottery k. It follows that the amount of winnings that firm i obtains from lottery

k is a random variableWik that is binomially distributed (equal to Ak with probability 1/Nk,

and zero otherwise). Hence, a firm’s total winnings in any time period t is a random variable

Wit ≡
∑

k∈Kit
Wik that is a weighted, binomially distributed random variable, with a pth

central moment—which we denote by Mp({Ak, Nk}k∈Kit
)—that can be easily calculated.28

27In addition, firms can enter multiple lotteries per time period, which precludes the use of lottery fixed
effects as a means for isolating purely random variation.

28For example, the first moment (or expected value) of firm i’s winnings at time t is simply
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When firms participate in different lotteries at different points in time they are therefore

exposed, and potentially endogenously so, to different probability distributions of randomly-

generated winnings. However, conditional on two firms participating in lotteries with the

same distribution, the realization of the variable Wit will differ in a purely random manner

across these two firms. Put differently, conditional on all moments of Mp({Ak, Nk}k∈Kit
),

Wit should be independent of any pre-determined firm attributes, observed or unobserved.

One way to proceed is therefore to useWit as our instrument while controlling for flexible

functions of many leading moments ofMp({Ak, Nk}k∈Kit
). However, in practice, we find that

controlling for anything beyond the first moment is quantitatively inconsequential—both

when applied to estimators that rely only on mean independence of instruments and those

that rely on full independence. In addition, as Borusyak and Hull (2021) explain, a simpler

procedure that is equivalent to controlling for the first moment of winnings is to exploit the

fact that, even in the absence of controls, demeaned winnings

Dit ≡ Wit − E[Wit | {Ak, Nk}k∈Kit
], (19)

will be mean-independent of any firm characteristics, observed or unobserved. In the follow-

ing, we refer to Dit, firm i’s deviation from expected winnings in time t, as its procurement

winnings shock.29 Intuitively, Dit is mean independent from any firm potential outcomes

because, even though firms can control expected winnings by choosing which lotteries to

enter, they cannot control the random deviations from expected winnings.

We check for balance of randomization by regressing Dit on firms’ pre-treatment charac-

teristics. Table 2 shows that, consistent with lottery winners being randomly drawn, there

is no statistically significant correlation between these characteristics and the randomly de-

termined component of lottery winnings.30 In addition, we will show below that none of our

outcomes exhibit evidence of spurious “effects” prior to lottery realizations.

M1({Ak, Nk}k∈Kit
) ≡ E[Wit | {Ak, Nk}k∈Kit

] =
∑

k∈Kit

Ak

Nk
.

29Our analysis below considers data in which the time periods t are either months or years. By the linearity
of expectations, Dit at the annual level corresponds to the sum of the monthly Dit in each year.

30These findings are consistent with Brugués et al. (2022), who show that political connections influence
the distribution of regular procurement contracts in Ecuador but not of the contracts allocated by lottery.
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4 Effects of Demand Shocks: Descriptive Results

This section presents descriptive evidence on average firm responses to demand shocks as well

as heterogeneity in these responses. These results preview our formal tests and quantification

of allocative efficiency in Sections 5 and 6.

4.1 Average Treatment Effects

We estimate effects of demand shocks on firm outcomes in an event-study framework by

regressing firm outcomes on procurement winnings shocks Dit, the lottery-driven component

of procurement contracts defined in (19). Formally, for any outcome Yit, we estimate

Yit = α +

Tlag∑
τ=−Tlead

βτDi,t−τ + ϵit, (20)

where α is an intercept, βτ is a coefficient that shows the average effect of the winnings

shock Di,t−τ on outcome Yit, and Tlead and Tlag denote the number of included lead and

lag coefficients, respectively. For example, we choose Tlead = 6 and Tlag = 18 for monthly

outcomes. Throughout this section, we divide the variableDit by 1,000 so that the coefficients

refer to the effect of an additional $1,000 of procurement winnings shock on the outcome of

interest, and we report confidence intervals and standard errors clustered at the firm level.

Sales

We begin by estimating the treatment effect of demand shocks on firm sales. To look at

dynamics at the monthly level, we use third-party reported sales (based on client entities’

VAT filings). Results are presented in Figure 2. The estimated coefficients from equation

(20) display a flat pre-trend at zero during the six months prior to the lottery, lending

further support to the validity of the lottery randomization. There is a small spike in sales

one month after the lottery, which represents the fact that many lottery contracts stipulate

some up-front payments. Monthly sales rise thereafter, peaking 5 months after the lottery,

and dissipate by about 14 months. There is no evidence for a temporary demand shock

leaving these firms (on average) permanently larger.
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We next annualize these third-party reported sales data in order to compare estimates

to those of self-reported sales from firms’ annual income tax returns. Columns (1) and (2)

of Table 3 report the effect of $1,000 in procurement winnings shocks on sales, based on

these two alternative measures, in the year of the lottery and the subsequent year.31 The

total impact on sales over this period is $708 for third-party reported sales and $669 for

self-reported sales.32

Finally, in Figure 3, we examine whether there are heterogeneous treatment effects by con-

tract size. We split procurement contracts into above- and below-median contract amount,

and analyze firms’ responses to monthly winnings shocks separately for small and large con-

tracts. The path of monthly treatment effects—per unit of contract size—is remarkably

similar. Appendix Figure A.2 presents the same results separately for small and larger firms

(while holding the above/below median classification of contracts constant). We again ob-

serve very similar treatment effects across contract size within groups of small and larger

firms. While it might be natural to expect that small firms would respond to large de-

mand shocks differently from how large firms respond to small shocks, this is not the case.

These findings suggest that both adjustment costs and the higher-order terms in the Taylor

expansion of equation (10) are unlikely to be large in our context.

Costs

A natural question is how firm inputs scale up given the increase in firm sales seen above.

We analyze this in Figure A.3, using total costs from the annual firm income tax returns,

which include both labor and non-labor costs. As with sales, we see a flat pre-trend followed

by a sharp increase in costs in the year of the lottery, which dissipates within two years.

Figure 4 shows the impact on labor inputs, i.e., employment and labor payments measured

from monthly social security data. We see a time path of impacts that is similar to that on

sales, though there is a minor longer-run effect when it comes to the use of labor. Column

31Appendix Figure A.1 presents these results graphically, starting two years before the respective lotteries
to show that there are no differential pre-trends.

32As discussed below, we find virtually no crowd-out of sales to other clients. The fact that cumulative
sales effects from a given winnings shock are lower than the shock itself therefore derives from a mix of
reductions in subsequent entry for lottery contracts posted by the same entity and ex post modification
of contract values and scope. However, such considerations do not affect our empirical strategy since it
relies only on the existence of a random source of firm input changes, not that the pass-through of contract
winnings into sales growth takes any particular value (other than zero).
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(3) of Table 3 reports the coefficients on the procurement winning shock variable and its one-

year lag, which together imply an aggregate increase in total costs of $583 over a two-year

horizon. This cost increase is driven primarily by an increase in non-labor costs (columns 4

and 5). Finally, column (6) reports the corresponding treatment effects on profits (i.e., the

coefficients in column 2 minus those in column 3).

Overall, these findings concerning input use have two important implications. First, the

firms in our context cannot meet additional demand simply by using existing capacity. And

second, the rapid scale-up and scale-down of all observable inputs is again consistent with

this being a context in which adjustment costs are limited.

Price versus quantity adjustments

The procedures developed in Section 2 rely on the ability to measure the initial period

prices and changes in quantities of firm inputs and outputs. While such components are

available in many settings, our data do not report prices and quantities separately. However,

our data on sales and costs will still capture constant-price changes to the extent that the

demand shocks have no effect on prices. Figure 5 provides evidence that is consistent with

this in regards to output prices. It plots the estimated impact of procurement winning

shocks on total sales (as in Figure 2), as well as on sales to four different mutually-exclusive

categories of clients: (a) procuring entities for which firm i participates in at least one lottery

during our study period; (b) other procuring entities (i.e., other entities that made at least

one purchase through the lottery system in our study period) that firm i sells to via non-

lottery means; (c) other public entities that made no purchases through the lottery system

during our sample period; and (d) privately-owned firms.

Sales to the procuring entities for which firm i participates a lottery account for almost

all of the effect on total sales. In particular, there is no appreciable effect on sales to the

private sector: we can reject monthly effects on private sector sales larger than ± $10 for

each $1,000 dollars in procurement winnings shocks at the 95% level in all periods. If the

demand from private sector buyers is at all responsive to prices, as we would expect it to

be, then the lack of any change in purchases from lottery winners suggests that the price at

which procurement firms sell is not affected by lottery-based demand shocks.

29



Turning to input price adjustments, in the case of labor we can assess these directly in our

data. Figure 4 has already established that the labor costs response does at least partially

reflect a quantity response (in terms of the number of paid employees). Appendix Figure

A.4 looks at the wage response per worker, first (in panel a) in terms of the average wage

among all workers in the firm in a given month, and second (in panel b) among continuing

workers who were employed at the firm already before the lottery and who stayed at the

firm afterwards.33 While the average wage paid does fall (for about eight months, before

returning to previous levels), this appears to be a compositional phenomenon because the

wage of continuing workers is remarkably stable in response to the demand shock, again

consistent with our assumption of (input) price stability among these firms.

Implications for homogeneous wedges

The pioneering Hall (1988) study of US markups assumed: (a) that there is no wedge

dispersion within firms (across products or input types, i.e. sµij,m = sµi for all j andm), which

is consistent with the wedge (i.e. the markup) arising purely from output market power; and

(b) that there is no markup dispersion across firms (when applied to data from a single cross-

section of producers) or across time periods (when applied to data tracking one producer

over time). Under these homogeneity assumptions, the single markup can be estimated from

an IV regression of sales on costs while using a demand shock as the instrument. The results

in Table 3 provide the reduced-form and first-stage estimates that would correspond to such

an IV regression. Taking the ratio of the cumulative demand shock-driven increase in total

sales in year t and t+1 (column 2) to that for costs (column 3) implies, under Hall’s (1988)

assumptions, an estimated homogeneous markup of 1.15. This already provides suggestive

evidence for the fact that U-AEP—a setting in which all wedges are homogeneous and equal

to 1—does not appear to hold in our context. We return to the formal version of this test,

as well as to an estimate of the sales-weighted average wedge E
sλ [sµ] that does not rely on

the assumption of wedge homogeneity, in Sections 5 and 6, respectively.

33To ensure a balanced sample of workers in this event study, the analysis here tracks each firm for a
window (6 months before and 18 months after) around the first lottery in which it participated.
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4.2 Treatment Effect Heterogeneity

Testing for constrained allocative efficiency concerns not just the average level of the value

marginal product of any given input across firms, but also the heterogeneity in such marginal

products—or equivalently, the dispersion in wedges sµij,m in equation (8). In advance of the

full estimation of the distribution of such wedges in Section 6, we present here a simple

exploration of treatment effect heterogeneity—that is, in the effect of price-adjusted inputs

on price-adjusted outputs—based on observable firm characteristics.

First, we explore whether the previous average results are different across groups of firms

with different levels of pre-treatment sales (i.e., from 2008, the year before the start of the

lottery scheme).34 Panel (a) of Figure 6 analyzes impacts of lottery-driven demand shocks

on sales separately for firms with above- and below-median pre-treatment sales. These two

estimates are strikingly similar, especially relative to the sampling variance indicated by the

confidence intervals. Panel (b) further disaggregates firms into quintiles of pre-treatment

sales and also finds very similar responses across groups. Further, the similarity of sales

responses across firms also holds across groups based on other pre-treatment characteristics:

number of employees, number of suppliers, labor intensity (as measured by labor costs divided

by sales), and third-party reported sales (Appendix Figures A.5–A.8).

Homogeneity in firms’ sales responses to a demand shock does not necessarily imply a

low dispersion in firms’ marginal products because firms could differ in the amount of inputs

needed to achieve these output responses. However, as Figures 7 and A.9 make clear, we

also see very homogeneous responses in labor and total costs across these different groups

of firms. Combined, Figures 6, 7, and A.5–A.9 therefore paint the picture of a particularly

strong form of marginal product homogeneity, where there is limited heterogeneity across

firms in their responses to a demand shock, in either their outputs or their inputs.35

A key limitation of the simple evidence discussed here is that it describes firm hetero-

geneity based on observable characteristics. This is informative, but it may only scratch the

surface of the heterogeneity that could exist in terms of unobservable characteristics. The

34Results in this subsection exclude firms with no sales in 2008.
35A finding of homogeneous output and input responses is sufficient, but not necessary, for the homogeneity

of value marginal products (since marginal products concern the ratio of the two responses, so heterogeneity
in output and input responses could offset one another while maintaining marginal product homogeneity).
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methods in the next two sections are designed to test for, and quantify, wedge heterogeneity

even when allowing for arbitrary forms of potential heterogeneity across firms, whether they

align with observable firm characteristics or not.

5 Testing for Allocative Efficiency

5.1 Test Implementation

Proposition 1 has proposed a test for AEP in both its unconstrained and constrained forms.

To implement this test on any given two periods (i.e., “time-0” and “time-1”), we simply

evaluate ∆Πi(χ) for each firm i at the null-hypothesis value of χ = 1 in the case of U-AEP

and at a range of values of χ > 0 in the case of C-AEP. In either case, we then test for the

statistical independence of ∆Πi(χ) from an instrument Zi (built from lottery-driven demand

shocks) via the test for f(·) = 0 in equation (12). When statistical independence is rejected,

then the relevant null of allocative efficiency is rejected too.

As our test for statistical independence, we follow Ding et al. (2016), who develop pro-

cedures for tests of treatment effect heterogeneity in randomized trials.36 This is relevant to

our setting since the test for C-AEP is analogous to a test for no heterogeneous responses (of

firms’ outputs to an exogenously driven increase in their input use) and the U-AEP test is a

nested case in which, under the null, responses are not just homogeneous but also known (to

be equal to one). In particular, we estimate a quantile regression of ∆Πi(χ) on Zi, and use

as our test statistic TS the largest coefficient (in absolute value) across nine evenly spaced

quantile values. If any coefficient differs substantially from zero, and hence TS is large, then

the null of f(·) = 0 is false and hence the hypothesis of independence should be rejected.

We then further take advantage of the fact that the null hypothesis is sharp, and the

distribution of Zi in our setting of randomized procurement is known, in order to use the

method of randomization inference (Fisher, 1935) to calculate the probability of obtaining a

given value of the test statistic under the null. This has the benefit of avoiding the need to

make asymptotic distributional assumptions about the unobserved εi in equation (10), such

36Further details about our test procedures are described in Appendix C.
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as how technology shocks are correlated across time and firms.

To execute this procedure, we simulate the null distribution by calculating TSl in a set of

simulations l = 1 . . . L, in which the identity of the winning firm of each procurement lottery

at time-1 is drawn randomly from its known stochastic process. The p-value for a given test

is then simply the percentage of simulations l in which the value of TS obtained when using

the actual lottery winners is smaller than TSl. Intuitively, when statistical independence of

∆Πi(χ) and Zi is violated, we should see that there is a stronger correlation between ∆Πi(χ)

and Zi in the actual data than is likely to have occurred by chance—that is, we should see

a larger value of TS when examining actual lottery realizations than the values TSl found

in many simulations l of alternative lottery realizations. Such a finding would indicate that

the input reallocations caused by the lottery-driven demand shocks have generated changes

in aggregate output, and hence (via Proposition 1) that the economy in question was not

allocatively efficient at time-0.

This procedure can be performed on any cross-section of changes (i.e., from any “time-0”

to any “time-1”). But, in practice, in order to ensure that we capture the entire two-calendar

year time-path of responses seen in Table 3 (and Appendix Figure A.1), we construct changes

based on differences in two-year averages. This treats the average of years t − 1 and t − 2

as “time-0” and that of years t and t + 1 as “time-1”. The change ∆Πit(χ) in equation

(11) is then defined analogously.37 Similarly, we define the instrument for firm i in year t as

Zit ≡ Di,t−Di,t−2. Further, since our test can be performed on any set of changes, we stack

all five such changes available to us (given our data from 2008 to 2015) and perform the

joint test that the null hypothesis of U-AEP is true throughout our dataset. This joint test

can then be implemented via a pooled version of the procedure described above, estimating

a quantile regression of ∆Πit(χ) on Zit using all available firm-year observations.

Finally, we note one measurement challenge that arises in the context of our data source.

We see changes in the values of firms’ outputs and inputs, but not the corresponding changes

in quantities (valued at initial prices) called for in the definition of ∆Πi(χ). We therefore

use, for example, the change in labor costs (i.e., ∆(wmxim), where input m corresponds to

37For example, the component swm∆xim in ∆Πi(χ) is defined as [ 12 ( swm,t−1+ swm,t−2)][
1
2 (xim,t+xim,t+1)−

1
2 (xim,t−1 + xim,t−2)].
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labor) as a proxy for the change in employment evaluated at initial wages (i.e., swm∆xim),

which means that the pure price-change component (i.e., sxim∆wm) will appear in εi in

equation (10). However, as discussed in Section 4.1, multiple pieces of evidence suggest that

the demand shocks we use to construct Zit do not cause appreciable output or input price

changes, so the violation of Assumption 3 caused by this measurement issue is likely to be

small.

5.2 Results

Figure 8 reports the p-value of the test described above when ∆Πit(χ) is evaluated at a range

of values of χ. However, we confine attention to the case in which all inputs m have the same

value of χm (and denote this common value by the scalar χ) so that one dimension of the χ

space can be easily illustrated. Beginning with the test for U-AEP (χ = 1), this corresponds

to the point χ = 1 on the x-axis. The p-value at this point is extremely low (below 0.001),

which indicates that the null of unconstrained allocative efficiency is resoundingly rejected

by these data. This implies that the treatment effect of demand-driven cost increases on

sales is (at standard levels of significance) different from one, a finding that was already

anticipated (qualitatively) by the discussion in Section 4.1.

The previous result has demonstrated that the firms in our sample do not operate at

the allocation of U-AEP—namely, one where firms not only have the same value marginal

products of each input but where, further, any input’s value marginal product is equal to its

price and hence all wedges sµij,m are equal to one. However, the null of C-AEP allows for the

possibility that firms do have identical wedges for any given input, but where the value of

that common wedge is not necessarily equal to one (i.e., sµij,m = χm for all i and j). Such a

finding would be consistent with the allocation chosen by a hypothetical planner who faces

a constraint on the aggregate amount of each input that can be allocated across these firms.

We now examine this wider possibility. Doing so in principle involves conducting our

previous test at every value of χm, separately for each input type m, and checking whether

there is a value of χm (potentially a separate one for each input type) at which the test does

not reject. Figure 8 shows results from a partial version of this multi-dimensional search

through the space of χ, in which χm is common (i.e., χm = χ) for all inputs. As it turns out,
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even this partial search reveals a value at which the test does not reject at standard levels

of statistical significance, and hence we conclude that the null of C-AEP cannot be rejected.

That is, while we know from the U-AEP test that we would reject the null of C-AEP at the

point χ = 1, as we explore other values of χ (in the range of 0.9 to 1.4) the p-value of our

randomization inference test peaks sharply at the value of χ = 1.140 (where the p-value is

0.35). The null of constrained allocative efficiency is therefore not rejected in this setting.

Again, the results from this formal test for C-AEP were informally anticipated by the

results in Section 4.2. There we saw how both input and output responses to demand shocks

displayed striking similarities across groups based on pre-treatment characteristics, such as

size. Relative to those earlier findings, the benefits of the result in Figure 8 are that: (a) it

allows for sampling variation and delivers a formal p-value; (b) it tests for cross-firm wedge

heterogeneity even when firms’ wedges are allowed to differ along arbitrary, unobserved

dimensions; and (c) it evaluates heterogeneity in the ratio of firms’ output responses to their

input responses, as is consistent with the definition of the value marginal product, rather

than exploring heterogeneity in output responses and input responses separately.

6 The Cost of Misallocation

We have seen in the previous section that our test does reject the null of U-AEP in the

context of Ecuador’s construction sector. This result tells us that the extent of misallocation

is large enough to trigger rejection, but it does not tell us how large the cost of misallocation

is in economic terms. Equally, we have seen that our test for C-AEP does not reject,

but it is possible that this reflects a lack of power to detect meaningful departures from

constrained efficiency. For these reasons, our final analysis goes beyond testing and aims to

arrive at an estimate of the total welfare cost of misallocation—that is, the cost of departures

from U-AEP—in our context. We shall also provide a decomposition of this total cost into

components stemming from (a) departures from C-AEP, which holds constant the aggregate

inputs sXm, and (b) the misallocation of these aggregate input levels themselves.
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6.1 Assumptions and Parameter Choices

As described in Proposition 2, the joint distribution of wedges across firms, products, and

inputs (weighted by any set of observable weights) is nonparametrically identified given an

appropriate set of instrumental variables Zi. And as outlined in Section 2.5, moments of

these weighted distributions can be used to provide critical inputs into calculations about the

cost of misallocation, as in the simple examples discussed there. We now execute one such

set of calculations for our empirical context. In particular, we draw on the second example in

Section 2.5, with the total cost of misallocation as given by equation (18). But we specialize

to a version in which there is a single sector (i.e., we set ρ = 0, θs = θ, and sψs = 1), as is

relevant to our empirical context where we can only estimate the wedges among firms in the

construction services sector. In this case, the total cost of misallocation is equal to

∆W

W
=

1

2
sωC(1− sωC)η (Esλ [sµ]− 1)2 +

1

2
sωCθVarsλ [µ] . (21)

The two terms in this expression also provide our desired decomposition into two sources of

misallocation. The second term measures the cost of departures from C-AEP, while holding

the aggregate inputs sXm constant, which is a function of the sales-weighted variance in

wedges across firms. The first term, on the other hand, quantifies the cost of an inefficient

total amount of inputs, and is a function of the sales-weighted average of firms’ wedges.

Recall that this expression was derived for a setting in which there is assumed to be no

within-firm dispersion of wedges across inputs. This is necessary in our application because

our demand-driven source of exogenous variation is unsuited to the recovery of such within-

firm dispersion.38 It is therefore reassuring that misallocation due to within-firm wedge

dispersion is typically found to be relatively small (e.g., about 15% of the estimated total

misallocation cost for China obtained by Hsieh and Klenow (2009, p. 1442)).

38As Proposition 2 explains, such dispersion can be identified in settings where a separate instrument Zim

is available for each type of input, m. It is possible, in principle, to use demand shocks as the source of such
input-specific instruments, to the extent that firms’ technologies are non-homothetic and the econometrician
has access to observable proxies for such features. However, we lack the survey data on firm production
required to implement this idea in practice. If wedges are dispersed across inputs and our instrument is
uncorrelated with changes in relative input prices then the single-instrument version of our procedure will
recover moments of the distribution of each firm’s cost share-weighted average of its input-specific wedges.
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Calculating the cost of misallocation via equation (21) requires three sets of components.

The first is an estimate of the two weighted moments of the wedge distribution, E
sλ [sµ] and

Var
sλ [µ]. The next subsection describes how we use the IVCRC estimation method, following

Proposition 2, to estimate these moments. Second, we require a value for the two elasticity

parameters: that across firms in consumption (θ) and that for aggregate input supply to

these firms (η). We choose these conservatively, and also in a way that is consistent with

prior work. Specifically, we follow Hsieh and Klenow (2009) and set θ = 3; and we set η = 3,

as a value at the upper end of estimates in the literature on labor supply. Finally, equation

(21) also depends on sωC , the share of the representative household’s shadow income that is

spent on consumption of goods. We begin with the midpoint value of sωC = 0.5 but, as we

document below, our conclusions are not very sensitive to the value chosen.

6.2 Estimating Moments of the Wedge Distribution

IVCRC Implementation

We now apply the result in Proposition 2 to estimate the two unknown (weighted) mo-

ments of the wedge distribution in equation (21): E
sλ [sµ] and Var

sλ [µ]. In a setting with no

within-firm wedge dispersion, as assumed here, equation (15) reduces to

spi∆yi = sµi
∑
m∈M

swm∆xim + εi. (22)

We begin by applying the procedure described in Section 2.4 to this equation in order to

estimate the sales-weighted first moment of the distribution of coefficients sµi on the single

endogenous regressor
∑

m∈M swm∆xim, while using a single instrument Zi constructed from

lottery-based demand shocks. Provided that the instrument satisfies Assumption 4, a point

to which we return below, this delivers a consistent estimate of E
sλ [sµ].

39

39As discussed in Section 2.4, we augment the IVCRC procedure to obtain the weighted expectation of
the distribution of coefficients sµi by interacting the regressor with indicators for five bins based on firms’
initial-year sales shares (the quintiles from Figure 6(b)). Our sensitivity analysis below explores this choice.
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Further, squaring equation (22) yields a second regression specification

(spi∆yi)
2 = (sµi)

2

(∑
m∈M

swm∆xim

)2

+ 2sµiεi
∑
m∈M

swm∆xim + (εi)
2. (23)

Applying our procedure to this equation, using the same instrument, the coefficient on the

regressor
(∑

m∈M swm∆xim
)2

allows us to obtain a consistent estimate of E
sλ [(sµ)

2]. We then

calculate the centered second moment from Var
sλ [µ] = E

sλ [(sµ)
2] − (E

sλ [sµ])
2, though one

limitation of this procedure is that it does not impose that estimates satisfy E
sλ [(sµ)

2] ≥

(E
sλ [sµ])

2 and hence that the estimated variance is positive.

Many details of our implementation are analogous to those from the test procedure de-

scribed in Section 5. First, because our data does not report prices and quantities separately,

we proxy for the price-constant changes in revenues (and costs) in equations (22) and (23)

with observed changes in revenues and costs. However, for reasons discussed above, we be-

lieve the bias caused by any resulting proxy error is unlikely to be large. Second, while it

is possible to estimate equations (22) and (23) using data from any single cross-section of

(“time-0” to “time-1”) changes, we use the stacked set of changes from 2008-15, along with

the variable construction based on changes in two-year averages, as described in Section 5.1.

A third detail that is specific to IVCRC is the need to choose a bandwidth and ker-

nel, which are used in a sub-component of the estimation routine that obtains a smoothed

estimate of the expected value of the coefficient at each rank of the conditional first-stage

distribution. Our baseline analysis follows the defaults in Benson et al. (2022) and uses the

rule-of-thumb bandwidth proposed by Fan and Gijbels (1996) and an Epanechnikov kernel,

but we explore alternatives below. Fourth, because the IVCRC estimation problem can-

not be represented as a sharp null hypothesis, randomization inference approaches (such as

that applied in Section 5) cannot be used for confidence intervals. We therefore apply a

block-bootstrap procedure (with 100 bootstrap samples created by drawing firms with re-

placement) to assess the uncertainty in our estimates. Fifth, because we expect the quadratic

form in equation (23) to be sensitive to outliers, we trim the sample at the 2% most extreme

values of the ratio of (in absolute value) change in revenues to change in costs; but we again

report a range of alternatives below and believe this to be a conservative approach.
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Finally, as discussed in Section 2.4, the Masten and Torgovitsky (2016) method for es-

timating moments of coefficient distributions in IVCRC models relies on access to an in-

strument that satisfies Assumption 4. The instrument Zit, built from lottery-driven demand

shocks, plausibly satisfies the independence and relevance components (a) and (c) of this

assumption. But it is not a priori clear whether it satisfies component (b), first-stage rank-

invariance. To explore the accuracy of this assumption, Appendix D presents a simulated

version of the economy assumed here, but where firms have a known technology (which,

following Hsieh and Klenow (2009), we assume exhibits constant returns-to-scale). We then

calibrate this simulation to match our data and calculate the extent of first-stage rank re-

versals in response to lottery-driven demand shocks, according to the metric proposed by

Gollin and Udry (2021). This simulation demonstrates that such reversals are rare—a result

that follows because firm heterogeneity in input growth due to non-lottery factors is much

greater than that which results from any given amount of lottery-driven winnings. Hence,

violations of Assumption 4(b) seem unlikely to be consequential for our conclusions.40

Results

Our baseline IVCRC estimates of E
sλ [sµ] and Var

sλ [µ] are reported in the first row of

Table 4 (panel a). We obtain a value of 1.126 for the former (column 1) and 0.014 for the

latter (column 2). These values should not be too surprising given the results of our tests

in the previous section. We have seen in Section 5 how, at the common wedge value of χ =

1.140, the test of C-AEP fails to reject. So we should expect a value for an average wedge

of approximately that χ value, with little variation in wedges around it. And that is exactly

what our point estimates of E
sλ [sµ] and Var

sλ [µ] imply.

Table 4 also reports the block-bootstrapped confidence intervals—a two-sided interval in

the case of E
sλ [sµ], but a one-sided version in the case of Var

sλ [µ] since we know that the

true value of this variance cannot be negative—that we obtain for each of these estimates.

The implied uncertainty about E
sλ [sµ] is minimal, and we can hence reject an average wedge

equal to one at standard levels of statistical significance. But the confidence interval for

40As discussed in Section 2.4, an IV that satisfies first-stage rank-invariance when estimating equation
(22) will also satisfy it for equation (23). This is because the first regressor is an endogenous variable but
one that is derived from a known function of the second regressor, which is itself the only regressor in (22).
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Var
sλ [µ] is considerably wider. To explore this, panel (a) of Appendix Figure A.10 plots the

100 bootstrap sample estimates of Var
sλ [µ] that underpin this confidence interval. The vast

majority of estimates are very low, or even negative, but there is also a tail of large estimates

in absolute value. This is perhaps unsurprising given the quadratic nature of the terms in

the estimating equation (23).

The next five rows of Table 4 describe the sensitivity of our estimates to alternative

choices one could make when carrying out our estimation procedure. For example, rather

than trimming at the 2% level, we can either not trim at all (row 2) or do so at the 5% level

(row 3). Or, rather than using a Epanechnikov kernel when applying the IVCRC estimator,

we can use a Gaussian or uniform kernel (rows 4 and 5). Finally, rather than calculating the

weighted moments E
sλ [sµ] and Var

sλ [µ] by using five bins of firm sales sλ, we can use ten bins.

The estimates of E
sλ [sµ] are highly insensitive to these variations, with point estimates ranging

from approximately 1.11 to 1.13. The various estimates of Var
sλ [µ]—which we truncate at

zero if the point estimate is negative—are more sensitive but are always small in the sense

that they are less than or equal to our baseline estimate of 0.014.

6.3 Estimating the Cost of Misallocation

We now use the estimates of E
sλ [sµ] and Var

sλ [µ] in columns (1) and (2) of Table 4 to

calculate the total cost of misallocation in our context, following the formula in equation

(21) and the choices of parameter values for θ, η and sωC discussed in Section 6.1. The results

are reported in column (3) of Table 4 (panel a). Our baseline point estimate is ∆W/W =

0.016—which implies that the total cost of misallocation is 1.6% of the overall expenditure

on the products in our model economy (the goods and services produced by the firms taking

part in procurement lotteries, and the leisure consumed by households). Column (3) also

reports that the block-bootstrapped 95% one-sided confidence interval on our estimate for

the cost of misallocation ∆W/W spans the range from zero to 26.1%, so we cannot rule

out considerably larger values at standard levels of confidence. However, as with the case of

Var
sλ [µ] discussed above, the distribution of bootstrap estimates (reported in panel (b) of

Appendix Figure A.10) demonstrates that this result is highly affected by the tails of this

distribution; for example, 80% of the bootstrap values of (∆W/W ) fall below 7%.
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The remaining rows of Table 4 (panel a) describe a range of sensitivity checks on our

conclusions about the total cost of misallocation ∆W/W . The first five rows calculate the

consequences for ∆W/W of the sensitivity checks on E
sλ [sµ] and Var

sλ [µ] discussed earlier.

Two additional rows consider alternative values of sωC (of 0.75 and 0.25) centered around our

baseline value (of 0.5). These seven alternatives suggest that our estimation choices have

been conservative. The only exception is sωC = 0.75, but even setting this parameter to its

maximal value of sωC = 1 implies losses from misallocation equal to just 2.1%.

As discussed above, the total cost of misallocation ∆W/W can be decomposed into two

components due to: (a) departures from C-AEP while holding constant the availability of

aggregate inputs, the second term in equation (21); and (b) misallocation of the aggregate

input amounts themselves, the first term in equation (21). Component (b) can be calculated

by a transformation of the values in column (1). Doing so, we estimate it to be 0.6% through-

out the alternatives that we have explored. And component (a), which is a transformation

of the values in column (2), ranges across alternatives from zero to 1.5%.

Put together, the collection of estimates in Table 4 (panel a) implies that the allocation

of inputs in our context, both to firms and across them, appears to be close to the efficient

point. However, in interpreting this finding, it is important to recall that it refers to the

efficiency of the actual allocation, rather than the mechanisms through which this allocation

arises. For example, given active government involvement in this sector, our findings do not

necessarily imply that a laissez-faire policy stance would achieve near-efficiency.

6.4 Comparison to a Parametric Alternative

The results in Section 6.3 may seem surprising, especially when compared to previous work.

One possibility is that firms in Ecuador’s construction services sector are simply different

from those in other contexts. However, as discussed in the Introduction, existing methods

typically assume that firms use similar production technologies, which could create a biased

impression of misallocation—especially the heterogeneity in wedges inherent to departures

from C-AEP—if firms’ actual technologies are more heterogeneous than assumed.

One way of seeing this is to start from the definition of wedges in equation (3) when ap-

plied to a single-product firm whose production function is yi = F̃ (i)(xi). Then, multiplying
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both sides by ( swmsxim)/(spisyi), summing across all inputs m ∈ M, and focusing on the case

with no intra-firm wedge dispersion (i.e., sµi,m = sµi for all m), we obtain

sµi =

(
spisyi∑

m∈M swmsxim

)(∑
m∈M

sxim
syi

∂F̃ (i)(sxi)

∂xi,m

)
=

(
spisyi∑

m∈M swmsxim

)
γi(sxi), (24)

where γi(sxi) ≡ (λ/syi)(∂F̃ (λsxi)/∂λ) is firm i’s scale elasticity at sxi. That is, firm i’s wedge is

simply equal to the product of its profit margin (the ratio of total sales, spisyi, to total costs,∑
m∈M swmsxim) and its scale elasticity.

Intuitively, knowledge of the scale elasticity γi(sxi) allows an analyst to convert estimates

of average products (such as the profit margin) into estimates of marginal products (which is

what wedges depend on). Similarly, when scale elasticities are assumed to be common across

firms, then any cross-firm dispersion in average products is mapped one-to-one into conclu-

sions about dispersion in marginal products across firms, and hence about misallocation. A

common version of this is the assumption that all firms use technologies that are globally

constant returns-to-scale, or γi(sxi) = 1 at all sxi, a prominent example of which appears in

Hsieh and Klenow (2009).41

Table 4 panel (b) explores the implications of such parametric restrictions in our context.

We do so by imposing the assumption that γi(syi, sxi) = γ for all firms i. This continues to

allow for firms’ technologies to combine inputs in arbitrarily heterogeneous ways, but requires

that firms do share a common scale elasticity.42 We begin with the constant returns-to-scale

case in which γ = 1. On the basis of this assumption, computing the wedge sµi for each firm

is a straightforward application of equation (24): each firm’s wedge sµi is simply equal to

its profit margin. We then calculate the sales-weighted moments E
sλ [sµ] and Var

sλ [µ] of the

distribution of such wedges across all firms in 2008.43 Row 1 reports these estimates, along

41This assumption is stronger than those invoked to arrive at the estimates in Table 4 (panel a), in two
respects. First, our estimates of moments of the wedge distribution in columns (1) and (2) require only
that firms use locally differentiable technologies, an assumption that has no direct relation to the degree of
returns-to-scale. Second, the formula for ∆W/W in equation (21) used in column (3) invokes the assumption
that all firms have locally constant returns-to-scale technologies, which has no direct relation to the notion
of globally constant returns-to-scale; for example, the local version allows for technologies with arbitrary
overhead costs whereas the global version rules out overhead costs altogether.

42Formally, this requires that F̃ (i)(sxi) = G(g(i)(sxi)) where G(·) is homogeneous of degree γ and g(i)(·) is
homogeneous of degree one but otherwise arbitrary.

43Following Hsieh and Klenow (2009), these calculations remove the smallest and largest 1% of wedges.
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with their bootstrapped (two-sided) 95% confidence intervals.

A first clear message is that the assumption of constant returns-to-scale does not sub-

stantially affect our estimate of the first moment E
sλ [sµ]: this value rises, but only to 1.258 (in

panel b), from our preferred value of 1.126 (in panel a). However, a second clear message is

that assuming constant returns does substantially affect our estimate of the second moment,

Var
sλ [µ]. This rises from 0.014 in panel (a) to 0.850 in row 1 of panel (b). As a result, the

estimated total cost of misallocation in column (3) grows considerably (from 1.6% to 66.2%)

as a result of the assumption that all firms use constant returns-to-scale technologies.44 The

bootstrapped confidence interval on this estimate ranges from 52.7% to 135.8%, which does

not overlap with the corresponding interval implied by our preferred procedure.

The remaining rows of Table 4 explore how these conclusions change with values of

γ ̸= 1. Row 2 uses one corresponding to decreasing returns (γ = 0.85) and row 3 uses one of

increasing returns (γ = 1.15). As is clear from equation (24), given any set of data on firms’

profit margins, estimated wedges increase with the assumed value of γ. Unsurprisingly,

therefore, the estimates in row 1 are straddled by those in rows 2 and 3, with the total

estimated cost of misallocation ranging from 46.2% in row 2 to 91.8% in row 3. But even

the lowest of these remains many times larger than our preferred estimate of 1.6%.

Put together, the findings in Table 4 suggest that the firms in our setting do have hetero-

geneous degrees of scale economies, and hence that a measurement approach that restricts

technological heterogeneity by assumption would infer more misallocation from the data in

this setting than appears to be correct. Assumptions about firm technologies (such as a com-

mon scale elasticity) are indispensable for learning each firm’s wedge individually. But such

assumptions may be overly restrictive when, instead, one is merely interested in moments of

the distribution of firms’ wedges, as is typically sufficient for the study of misallocation.

To compute sales share-weighted moments in panel (b) we use the same 2008 sales shares as in panel (a).
44We note, however, that equation (21) was derived under the approximation that wedges are close to one.

If, instead, we derive this expression under the approximation that log wedges are close to zero, then the cost

of misallocation would be given by
(
∆W
W

)log
= 1

2 sωC(1 − sωC)η (Esλ [ln sµ])
2
+ 1

2 sωCθVarsλ [lnµ]. Applying this
alternative formula to wedges inferred from equation (24) under the constant returns assumption (γ = 1),
we estimate a considerably lower value of (∆W/W )log = 6.9%, with the reduction due primarily to the fact
that the inferred value for Var

sλ[ln sµ] is much lower than that for Var
sλ[sµ]. Of course, if wedges are truly close

to one, as our preferred estimates imply, then the distinction between the approximation based on wedges
close to one and that based on log wedges close to zero would be minuscule.
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7 Conclusion

In this paper we have developed new tools for assessing the allocative efficiency of produc-

tion, both in the absence and presence of an aggregate input constraint, among any given

set of firms. We have developed new procedures that estimate features of the distribution

of wedges—ratios of the value marginal product of an input divided by its price—across all

firms, products, and inputs in an economy. By drawing on sources of exogenous variation

in firm input changes, these methods proceed without the need to specify production func-

tions, demand functions, or the underlying nature of the distortions that lead to potential

inefficiency. Instead, they simply seek to estimate the “treatment effects” of (price-adjusted)

inputs on outputs across firms. This then allows for a comparison of such treatment effects

to an idealized efficient allocation, in which they would not differ across input uses.

Our results imply that the firms in our context, Ecuador’s construction sector, produce

at an allocation that is strikingly close to allocative efficiency. This holds both in terms of

firms’ relative use of given aggregate inputs and in terms of the amount of the aggregate

input levels themselves. Our analysis would arrive at a different conclusion if we were to

apply commonly-used parametric approaches that assume firms use technologies with similar

features (such as a common degree of returns-to-scale). This should come as no surprise given

that the essence of our approach has been to allow for technological heterogeneity that could

create misleading impressions of misallocation if it were ignored.

While our methods rely on researchers’ access to exogenous variation in firm input use,

such as the lottery-based demand shocks at our disposal, we are optimistic about the avail-

ability of requisite variation in other contexts. The studies cited in the Introduction highlight

a wide range of examples of such variation coming from either the output demand side (e.g.,

government demand, foreign demand, or competition shocks that affect residual demand)

or the input supply side (e.g., subsidized inputs, bank expansions, or immigration). Our

procedures would be just as applicable to those and other ideas as they are to the setting of

Ecuador’s procurement lottery system.
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Figures and Tables

Figure 1: Comparison of Firm Size Distributions

(a) Lottery Participant Firms vs.
All Non-Participating Firms
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(b) Lottery Participant Firms vs.
Non-Participating Firms in Same Industries
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Notes: This figure plots histograms of sales in 2008, the year prior to the start of the procurement lottery
system, using firms’ annual income tax data (excluding firms with no sales). Lottery participants are firms
that participate in at least one lottery during 2009–2014. Non-participant firms are all other firms that were
economically active in 2008. Panel (b) restricts the non-participant sample to firms in the construction or
engineering industries.
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Figure 2: Effects on Total Sales
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Notes: This figure plots estimates of the monthly effects of an additional $1,000 in procurement winnings
shocks on total (third-party reported) sales following equation (20). Total sales are based on monthly
purchase annexes reported by client entities’ VAT filings. Dashed lines indicate 95% confidence intervals
that allow for clustering at the firm level.

Figure 3: Effects on Total Sales by Contract Size

−100

0

100

200

E
ff

e
c
t 

(i
n

 d
o

lla
rs

, 
p

e
r

$
1

,0
0

0
 o

f 
lo

tt
e

ry
 c

o
n

tr
a

c
t)

−6 0 6 12 18
Months after lottery

Below median Above median

Notes: This figure extends the analysis of Figure 2, estimating monthly effects of an additional $1,000 in
procurement winnings shocks on total sales separately for lotteries with large vs. small contracts (below-
vs. above-median contract amount), following equation (20). Total sales are based on monthly purchase
annexes reported by clients entities’ VAT filings. Dashed lines indicate 95% confidence intervals that allow
for clustering at the firm level.
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Figure 4: Effects on Employment
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(b) Total Wage Payments
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Notes: This figure plots estimates of the monthly effects of an additional $1,000 in procurement winnings
shocks on employment following equation (20), using data from social security records. Panel (a) presents
effects on the number of employees, and panel (b) on total wages paid. Dashed lines indicate 95% confidence
intervals that allow for clustering at the firm level.

Figure 5: Effects on Sales to Different Types of Clients
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Notes: This figure extends the analysis of Figure 2, estimating the monthly effects of an additional $1,000
in procurement winnings shocks on sales to mutually-exclusive categories of clients, following equation (20).
These clients are: procuring entities with at least one lottery in our study period that the firm participated
in (in red); other procuring entities, i.e., other entities that made at least one purchase through the lottery
system in our study period (yellow); other public entities that made no purchases through the lottery system
(green); and private firms (brown). All sales measures are based on monthly purchase annexes reported by
client entities’ VAT filings. Dashed lines 95% confidence intervals that allow for clustering at the firm level.
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Figure 6: Effects on Total Sales by Firm Size

(a) Above vs. Below Median
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(b) Quintiles
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Notes: This figure extends the analysis of Figure 2, estimating the monthly effects of an additional $1,000
in procurement winnings shocks on total sales by firm size, following equation (20). Total sales are based
on monthly purchase annexes reported by client entities’ VAT filings. Panel (a) presents estimates for firms
with above- and below-median total sales prior to the start of the lottery system (i.e., in 2008), based on
firms’ annual income tax filings. Panel (b) shows the same but partitioning the sample by quintiles of 2008
sales. Dashed lines in panel (a) indicate 95% confidence intervals that allow for clustering at the firm level.

Figure 7: Effects on Total Wage Payments by Firm Size

(a) Above vs. Below Median
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(b) Quintiles
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Notes: This figure extends the analysis of Figure 4 Panel (b), estimating the monthly effects of an additional
$1,000 in procurement winnings shocks on total wage payments by firm size, following equation (20), using
data from social security records. Panel (a) presents estimates for firms with above- and below-median total
sales prior to the start of the lottery system (i.e., in 2008), based on firms’ annual income tax filings. Panel
(b) shows the same but partitioning the sample by quintiles of 2008 sales. Dashed lines in panel (a) indicate
95% confidence intervals that allow for clustering at the firm level.
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Figure 8: Randomization Inference Test for U-AEP and C-AEP
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Notes: This figure shows the histogram of results of the randomization inference test for unconstrained
allocative efficiency of production (U-AEP) and constrained allocative efficiency of production (C-AEP), as
described in Sections 2 and 5. The figure plots the p-values (y-axis) under the null of χ = χ (i.e., χm = χ
for all inputs m), for different values of χ (x-axis). The dotted vertical line indicates the null value of χ = 1
used for the test for U-AEP, whereas the solid vertical line indicates the value of χ that corresponds to the
highest p-value (0.35) obtained in this range of χ. These results imply that the null of U-AEP is rejected at
standard levels, but that of C-AEP is not.
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Table 1: Summary Statistics

Mean Median Std. Dev. N
Lotteries
Contract amount (USD) 46,523 31,597 40,989 18,474
Contract anticipated duration (days) 64.5 60 34.5 18,467
Number of participants 10.1 4 15.7 18,474
Firms’ Lottery Participation
Lotteries entered per year 3.5 1 7.2 9,393
Lotteries won per year 0.35 0 0.55 9,393
Firms’ Characteristics
Firm age (years) 11.21 10 11.06 9,393
Is incorporated 0.18 0 0.38 9,393
Number of clients (third-party reported) 4.74 2 17.72 9,393
Sales (third-party reported, USD) 132,707 47,651 271,306 9,393
Sales (self-reported, USD) 141,184 53,360 287,409 9,393
Costs (self-reported, USD) 123,907 42,058 267,508 9,393
Profits (self-reported, USD) 17,278 11,180 36,360 9,393
Employees (social security) 4.40 2 10.10 9,393
Wages (social security, USD) 7,399 2,880 25,926 9,393

Notes: This table presents summary statistics of procurement lotteries (with at least two partic-
ipating firms) and of firms that participated in any such lotteries. Observations concerning firm
characteristics are from each firm’s first year of lottery participation. Self-reported tax variables
are based on firms’ annual income tax filings. Third-party reported variables are based on (an-
nualized) monthly purchase annexes of client entities’ VAT filings. ‘Social security’ indicates data
from social security filings. Contract duration is missing for seven observations, as discussed in
Appendix B.
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Table 2: Balance of Randomization

Coefficient on $1000 in procurement winnings shocks
Firm Characteritistics
Firm age (years) -0.0004

(0.0012)
Is incorporated 0.0001

(0.0000)
Lottery Variables (t− 1)
Lotteries entered 0.0048

(0.0033)
Expected winnings 3.47

(6.98)
Lotteries won 0.0003

(0.0002)
Amount won -6.02

(8.56)
Social Security Data (t− 1)
Employees 0.0001

(0.0014)
Wages 0.3001

(1.97)
Tax Data (t− 2)
Sales (third-party reported) -12.59

(32.57)
Sales to procuring entities (third-party reported) -18.10

(27.65)
Sales to other government entities (third-party reported) 2.39

(2.22)
Sales to private sector (third-party reported) 7.16

(9.79)
Sales (self-reported) -17.51

(33.92)
Costs (self-reported) -13.60

(30.80)
Annual income tax (self-reported) -0.4017

(0.4814)
Number of clients (third-party reported) 0.0009

(0.0018)
P-value of joint F-test: 0.29

Notes: This table presents balance tests of procurement winnings shocks (in $1,000s) on pre-treatment
variables. Each displayed coefficient (and corresponding standard error in parentheses) stems from a separate
regression of the outcome variable on procurement winnings shocks in year (t). For time-varying variables,
we use data from year (t-1 ). For tax variables, we use information for year (t-2 ) to ensure that they reflect
pre-lottery filings. Self-reported tax variables are based on firms’ annual income tax filings. Third-party
reported variables are based on monthly purchase annexes of client entities’ VAT filings. Monthly variables
are summed up over the year. Observations cover 2009-2014 for non-lagged variables, 2009-2013 for (lagged)
lottery variables, 2008-2013 for (lagged) social security variables, and 2008-2012 for (double lagged) tax data
variables. As in all our analysis, the sample only includes observations for years after the firm started to be
economically active. For the joint F-test, to include the whole sample, we impute zero for missing values
and add a dummy indicator. All monetary variables in USD, winsorized at the top 1%. Standard errors
clustered at the firm level in parentheses. *** = p < 0.01, ** = p < 0.05, * = p < 0.1.

54



Table 3:
Effects on Sales, Costs, and Profits

(1) (2) (3) (4) (5) (6)
Sales Sales Total Labor Non-labor Profits

(Third-party (Self- costs costs costs
reported) reported)

Procurement Lottery Shocks:
Year t 438.71*** 430.14*** 382.47*** 14.39** 368.09*** 47.67***

(37.31) (39.19) (36.22) (4.70) (33.73) (5.80)

Year t+ 1 269.76*** 239.00*** 200.57*** 11.03 189.54*** 38.43***
(48.70) (51.18) (46.49) (6.15) (43.05) (7.00)

Number of observations 53,107 53,107 53,107 53,107 53,107 53,107
Number of firms 9,368 9,368 9,368 9,368 9,368 9,368

Notes: This table shows estimates of the effect of procurement winnings shocks (in $1,000’s) on firms’ sales, costs and
profits in the year of the shock (t) and the next (t+1 ), following equation (20). Third-party reported sales are based
on monthly purchase annexes of client entities’ VAT filings, summed up over the year. All other variables are based on
firms’ annual income tax filings. Observations are firm-years. Standard errors clustered at the firm level are reported in
parentheses. *** = p < 0.01, ** = p < 0.05, * = p < 0.1.
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Table 4: Estimated Cost of Misallocation

Eλ̄[sµ] Varλ̄[sµ] ∆W
W

(1) (2) (3)

Panel (a): IVCRC estimates

Baseline 1.126 0.014 0.016

[1.093, 1.161] [0, 0.341] [0, 0.261]

No trimming 1.129 0 0.006

[1.098, 1.188] [0, 0.329] [0, 0.253]

5% trimming 1.111 0 0.005

[1.078, 1.157] [0, 0.394] [0, 0.301]

Gaussian kernel 1.125 0 0.006

[1.095, 1.145] [0, 0.040] [0, 0.035]

Uniform kernel 1.126 0.014 0.016

[1.093, 1.161] [0, 0.341] [0, 0.261]

10 sales bins 1.115 0 0.005

[1.067, 1.158] [0, 0.617] [0, 0.468]

sωC = 0.75 1.126 0.014 0.020

[1.093, 1.161] [0, 0.341] [0, 0.387]

sωC = 0.25 1.126 0.014 0.010

[1.093, 1.161] [0, 0.341] [0, 0.132]

Panel (b): Alternative procedure assuming homogeneous technologies

Constant returns-to-scale (γi = 1) 1.258 0.850 0.662

[1.240, 1.290] [0.672, 1.769] [0.527, 1.358]

Decreasing returns-to-scale (γi = .85) 1.069 0.614 0.462

[1.054, 1.097] [0.485, 1.278] [0.365, 0.962]

Increasing returns-to-scale (γi = 1.15) 1.446 1.124 0.918

[1.427, 1.484] [0.888, 2.339] [0.738, 1.843]

Notes: This table reports, in columns (1) and (2), estimates of the the sales-weighted expectation and
variance of the wedge distribution that enter the total cost of misallocation formula in equation (21); reported
variance estimates are truncated at zero from below. Column (3) reports the corresponding estimated cost

of misallocation ∆W/W = 1
2 sωCθVarsλ [µ] +

1
2 sωC(1− sωC)η (Esλ [sµ]− 1)

2
implied by that formula (when using

values of the parameters, θ = 3, η = 3, and sωC = 0.5, unless noted otherwise); these are calculated on the
basis of the truncated variance. Panel (a) shows estimates from the IVCRC method described in Section
6.2 using different specifications (with 2% trimming, Epanechnikov kernel, and 5 sales bins, unless noted
otherwise). Panel (b) follows an alternative procedure for estimating wedges based on assuming that firms
use technologies with common scale elasticities γi, as described in Section 6.4. The ranges reported in square
brackets are two-sided 95% confidence intervals in column (1) of panel (a) and all of panel (b), but one-
sided intervals for columns (2) and (3) of panel (a); all such intervals are calculated on the basis of a block
bootstrap procedure, with values reported in Appendix Figure A.10.
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A Appendix Figures

Figure A.1: Annual Total Sales, Third-Party Reported vs. Self-Reported
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Notes: This figure plots estimates of the annual effect of an additional $1,000 in procurement winnings shocks
on total sales, following equation (20). Third-party reported sales are based on monthly purchase annexes
reported by the client entities’ VAT filings (annualized over the year) and self-reported sales are based on
firms’ annual income tax filings. Dashed lines indicate 95% confidence intervals that allow for clustering at
the firm level.

57



Figure A.2: Effects on Total Sales by Contract Size and Firm Size

(a) Below-Median Size Firms
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(b) Above-Median Size Firms
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Notes: This figure extends the analysis of Figures 3 and 6, estimating monthly effects of an additional
$1,000 in procurement winnings shocks on total sales by firm size, separately for lotteries with large vs.
small contracts (below- vs. above-median contract amount), following equation (20). Total sales are based
on monthly purchase annexes reported by client entities’ VAT filings. Panel (a) presents estimates for firms
with below-median sales prior to the start of the lottery system (i.e., in 2008), based on firms’ annual income
tax filings. Panel (b) shows the same but for firms with above-median self-reported sales. Dashed lines
indicate 95% confidence intervals that allow for clustering at the firm level.

Figure A.3: Effects on Total Costs
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Notes: This figure plots estimates of the annual effects of an additional $1,000 in procurement winnings
shocks on total costs, following equation (20). Total costs include both labor and non-labor costs and are
based on firms’ annual income tax filings. Dashed lines indicate 95% confidence intervals that allow for
clustering at the firm level.
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Figure A.4: Effects on Wages

(a) Average Monthly Wage
All Employees
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(b) Average Monthly Wage
Existing Employees
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Notes: This figure plots estimates of the monthly effects of an additional $1,000 in procurement winnings
shocks on the average monthly wage using data from social security records. Panel (a) follows equation (20)
and presents estimates of the effect on the average monthly wage for all employees. Panel (b) shows the
same for continuing workers, to avoid worker composition changes (i.e., new hires or attrition). Specifically,
it only includes employees who worked continuously at the firm from 6 months before until 18 months after
the first lottery that the firm participated in. Because this analysis only uses the winnings shocks of the
first lottery and thus disregards any potential subsequent shocks, we estimate the coefficients in a separate
regression for every lead and lag. Dashed lines indicate 95% confidence intervals that allow for clustering at
the firm level.

Figure A.5: Effects on Total Sales by Number of Employees

(a) Above vs. Below Median
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(b) Quintiles
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Notes: This figure extends the analysis of Figure 2, estimating the monthly effects of an additional $1,000
in procurement winnings shocks on total sales by number of employees, following equation (20). Total sales
are based on monthly purchase annexes reported by client entities’ VAT filings. Panel (a) presents estimates
for firms with above- and below-median number of employees prior to the start of the lottery system (i.e.,
in 2008). Panel (b) shows the same but partitioning the sample by quintiles of the number of employees in
2008. Dashed lines in panel (a) indicate 95% confidence intervals that allow for clustering at the firm level.
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Figure A.6: Effects on Total Sales by Number of Suppliers

(a) Above vs. Below Median
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(b) Quintiles
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Notes: This figure extends the analysis of Figure 2, estimating the monthly effects of an additional $1,000
in procurement winnings shocks on total sales for firms with a large vs. small number of suppliers, following
equation (20). Total sales are based on monthly purchase annexes reported by client entities’ VAT filings.
Panel (a) presents estimates for firms with above- and below-median number of suppliers prior to the start
of the lottery system (i.e., in 2008), based on firms’ annual income tax filings. Panel (b) shows the same but
partitioning the sample by quintiles of the number of suppliers in 2008. Dashed lines in panel (a) indicate
95% confidence intervals that allow for clustering at the firm level.

Figure A.7: Effects on Total Sales by Labor Intensity

(a) Above vs. Below Median
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(b) Quintiles
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Notes: This figure extends the analysis of Figure 2, estimating the monthly effects of an additional $1,000 in
procurement winnings shocks on total sales by the level of firms’ labor intensity in 2008, following equation
(20). Total sales are based on monthly purchase annexes reported by client entities’ VAT filings. Panel (a)
presents estimates for firms with above- and below-median labor intensity prior to the start of the lottery
system (i.e., in 2008), based on firms’ annual income tax filings. Panel (b) shows the same but partitioning
the sample by quintiles of labor intensity in 2008. Labor intensity is defined as the ratio of wage payments
over self-reported sales. Dashed lines in panel (a) indicate 95% confidence intervals that allow for clustering
at the firm level.
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Figure A.8: Effects on Total Sales by Firm Size (Based on Third-Party Reported Sales)

(a) Above vs. Below Median
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(b) Quintiles
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Notes: This figure extends the analysis of Figure 2, estimating the monthly effects of an additional $1,000 in
procurement winnings shocks on total sales by the level of firms’ third-party reported sales in 2008, following
equation (20). Total sales are based on monthly purchase annexes reported by client entities’ VAT filings.
Panel (a) presents estimates for firms with above- and below-median third-party reported sales prior to the
start of the lottery system (i.e., in 2008), based on firms’ annual income tax filings. Panel (b) shows the
same but partitioning the sample by quintiles of third-party reported sales in 2008. Dashed lines in panel
(a) indicate 95% confidence intervals that allow for clustering at the firm level.

Figure A.9: Effects on Total Costs by Firm Size

(a) Above vs. Below Median
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(b) Quintiles
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Notes: This figure extends the analysis of Figure A.3, estimating the annual effects of an additional $1,000
in procurement winnings shocks on annual total costs by firm size, following equation (20). Total costs
include both labor and non-labor costs and are based on firms’ annual income tax filings. Panel (a) presents
estimates for firms with above- and below-median total sales prior to the start of the lottery system (i.e., in
2008), based on firms’ annual income tax filings. Panel (b) shows the same but partitioning the sample by
quintiles of 2008 sales. Dashed lines in panel (a) indicate 95% confidence intervals that allow for clustering
at the firm level.
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Figure A.10: Results from a Bootstrapping Procedure of IVCRC Estimates
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Notes: This figure shows histograms of results from a bootstrapping procedure of estimates of the sales-
weighted variance of wedges, Varλ[µ̄], in panel (a), and of the welfare cost of misallocation, ∆W

W , as described
in equation (21), in panel (b). The solid vertical lines show the observed point estimates when using the
original sample, as opposed to the bootstrapped samples. The dashed vertical lines show the corresponding
95% confidence limit on right-tailed tests for whether Varλ[µ̄] or ∆W

W are greater than zero, respectively.
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B Data Appendix

This appendix outlines the process followed to clean the data described in Section 3 and how

we arrive at our final sample for analysis.

B.1 Public Procurement Lotteries and SERCOP Contracts

We scrape information from the SERCOP contracting portal between 2009 and 2014 on the

application procedure for 18,474 contracts under the procurement process “Contratos de

Menor Cuant́ıa de Obras”, which applied to all construction projects below a certain dollar

threshold.45 We then clean the collected information to create a dataset in which a single

record corresponds to a particular firm’s involvement for a particular lottery contract.

Figures B.1 and B.2 show, respectively, the website from which we scrape the information,

and a sample of the data that the portal provides for each contract.

Figure B.1: SERCOP contracting portal interface

Notes: This figure shows the interface of the SERCOP contracting portal. The user
inputs the contract number and a range of dates. After entering the captcha, the
website displays the contract information.
Source: SERCOP contracting portal website.

We gather the following information for each contract: which firms were invited to submit

proposals for it, their IDs, whether they accepted the invitation, whether they submitted

45This information is publicly available in the following website (working as of March 17, 2023): https://
www.compraspublicas.gob.ec/ProcesoContratacion/compras/SL/view/BusquedaDeProcesos.cpe. In
practice, we use an executable version of scrape.py (scrape.exe) created using py2exe. For more information,
see http://www.py2exe.org/index.cgi/Tutorial.
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Figure B.2: Relevant information for a sample contract

Notes: This figure shows information about a sample contract. The lottery winner,
the value of the contract and the time to delivery, among other variables, are inside
yellow squares.
Source: SERCOP contracting portal website.

a proposal, whether they were deemed eligible for the lottery, and whether they ended up

winning the contract. Other variables we retrieve are: the description of the contract, its

category, amount, and the delivery deadline.46

Starting from 38, 813 scraped contracts, we kept only those with complete information

and for which there exists more than one eligible participant and exactly one winner. These

cleaning steps remove 20, 339 (around 52.4%) of our initial observations, leaving us with

18, 474 distinct contracts in total.47 Then, we sent the remaining contracts to a third party

to check that all the information was correct. Specifically, this checking involved comparing

the scraped values to the actual contractual documentation (available in the same website).48

We use the contract values as confirmed through this process.

B.2 Income Tax Forms

The firms’ income tax filings provide self-reported information of firms (i.e., their revenue,

costs, tax liability, among others).

46There are seven contracts for which the duration is extremely long and likely wrong. We discard these
observations, hence the difference in the number of observations in the first three rows of Table 1.

47Most contracts are removed due to not having more than one eligible participant, while only three
contracts are removed due to not having exactly one winner after removing submissions made without
documents or by non-eligible firms.

48We found errors on around 1% of the contracts and manually fixed them. These errors were due to
discrepancies between the contracts and the website itself, not due to our scraping procedure.
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F101/102 forms

In Ecuador, all incorporated firms are legally obligated to submit an annual detailed

corporate income tax form (F101), independent of how large their revenues, costs or assets

are. This also applies to all publicly-owned firms. On the other hand, unincorporated firms

(which mainly consist of self-employed individuals) are required to file the income tax form

F102 if their annual revenue exceeds a standardized deduction amount (which was approx-

imately $10,000 in our sample period). These forms include self-reported information of

the firms’ revenue and costs (broken down by certain sub-categories). Small unincorporated

firms submit a simplified version of the income tax form (“short form F102”) which corre-

sponds to the personal income tax form. Large unincorporated firms have to file an extended

income tax (“long form F102”) consisting of two parts: a part for reporting business income

corresponding to the form for incorporated firms and a part for reporting individual income

mirroring the short from F102.

In very rare cases (i.e., 0.005% of firm-year observations in the annual income tax data),

a firm reports both a F101 and a F102 form. Whenever this is the case and the forms were

filed on the same date, we proceed as follows. If the duplicates share the same value in

the same tax items, in the first instance we keep the form that the firm was expected to

correctly file. In the second instance, we track the first year in which the firm uniquely filed

a form and keep the one that matches the type of this first unique filing. If the duplicates

have different values in the same tax item, then we keep the observation that has the highest

value for each item. On the other hand, if the forms were filed on different dates, then we

keep the most recent form.

Self-reported sales and costs measures

Our measures of self-reported sales and costs are constructed based on the annual income

tax filings. In line with the theory developed in Section 2, we seek to capture (i) the firm’s

income from selling its goods or services and (ii) the costs associated with producing this

output.

Accordingly, the total sales measure includes domestic sales, net exports, and other

revenues related to selling goods or services. Table B.1 lists the sales items from the income
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tax form included in our measure of self-reported sales. We deliberately exclude revenue

from dividends, financial rents, donations and contributions, and capital gains on sales of

fixed assets. The total costs measure comprises labor costs and non-labor costs as shown in

Table B.2. We deliberately exclude reported costs due to losses from the sales of assets, and

we also disregard tax liabilities deducted from the income tax (e.g., property taxes, excise

tax, non-creditable VAT).49

Table B.1: Sales Line Items in Forms 101 and 102

Sales item
Domestic sales subject to 12% tax rate
Domestic sales subject to 0% tax rate
Exports
Other income from abroad
Other taxable income
Other exempted income
Change in inventory of products produced by the firm
Sales related to registered business activities*
Received fees*
Received agricultural income*
Received income from abroad*
Received wages*

This table shows the line items included in the definition
of total sales for the annual income tax form. * marks
line items that are only present for F102 and related to
the “short form” section of the form.

49Specifically, we compute our sales and costs measure by subtracting the excluded line items from the
reported total sales and costs measures, respectively. This has the advantage that a few firms only report
information on their total costs or revenues but not on sub-categories. In the very few instances in which
the adjusted total sales or costs measure is negative due to reporting errors, we replace it with a zero.
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Table B.2: Cost Line Items in Forms 101 and 102

Costs items Category
Wages, salaries and other taxable remunerations Labor costs
Social benefits and other non-taxable compensation Labor costs
Contribution to social security (including reserve fund) Labor costs
Obligatory profit share passed on to employees Labor costs
Costs related to wages* Labor costs
Net purchases of domestic goods not produced by the firm Non-labor costs
Imports not produced by the firm Non-labor costs
Net domestic purchases of raw material Non-labor costs
Imports of raw material Non-labor costs
Professional fees and expenses Non-labor costs
Fees to foreigners for one-time expenses Non-labor costs
Real estate rent Non-labor costs
Maintenance and repairs Non-labor costs
Fuel Non-labor costs
Marketing Non-labor costs
Supplies and materials Non-labor costs
Transportation Non-labor costs
Commercial leasing Non-labor costs
Commissions Non-labor costs
Insurance and reinsurance intermediaries Non-labor costs
Administrative costs Non-labor costs
Travel expenses Non-labor costs
Public services Non-labor costs
Payment for other goods and services Non-labor costs
Bank interest Non-labor costs
Interest paid to third parties Non-labor costs
Amortization Non-labor costs
Change in inventory of goods not produced by the firm Non-labor costs
Change in inventory of raw material Non-labor costs
Depreciation of fixed assets Non-labor costs
Provisions Non-labor costs
Other losses Non-labor costs
Indirect costs incurred from abroad by related parties Non-labor costs
Costs related to registered business activities* Non-labor costs
Costs related to professional activity or liberal occupation* Non-labor costs
Costs related to real estate rents* Non-labor costs
Costs related to other assets* Non-labor costs
Costs related to agricultural income* Non-labor costs
Costs related to other income* Non-labor costs

This table shows the line items included in the definition of total cost for the
annual income tax form, and which are included in the definition of implied labor
and non-labor costs. * marks line items that are only present for F102 and related
to the “short form” section of the form.
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We construct these sales and costs measures to represent prices gross of sales taxes (e.g.,

VAT and excise tax). This attempts to consistently follow our theory which represents sales

at the actual expense of the buyer (i.e., including any statutory sales tax). On the F101/102,

firms report revenues and costs net-of-VAT, but gross of other sales taxes.50 Hence, we adjust

our self-reported sales measure as follows.

1. Firms report sales subject to 12% VAT in a dedicated line item.

2. We multiply the amount reported by 0.12 and add it to our measure of total self-

reported sales.

Since costs are not reported separately by their VAT rate, we proceed as follows to compute

the gross-of-VAT costs based on the self-reported net-of-VAT amounts.

1. We identify the line items that are subject to VAT and calculate their total amount

(denoted Vi)

2. If a firm files purchase annexes, we calculate the (observed) share of purchases subject

to 12% VAT (denoted si). For firms that do not file purchase annexes, we predict this

share by their level of sales and incorporation status.

3. We calculate the VAT amount as Vi × si × 0.12 and add it to our measure of total

self-reported costs.

All in all, our adjusted measures of sales and costs (and profits) are consistent with

the total revenue and costs items (and profits) from the annual tax filling. They are also

consistent across years. This consistency is shown in Figure B.3, which plots the evolution

over time of these variables in their raw and adjusted versions.

50In Ecuador, sales are subject to either a 12% or 0% VAT rate, or are exempt from the VAT.
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Figure B.3: Sales and Cost Measures
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Notes: This figure shows the evolution across years of the sales, costs and profit mea-
sures for their raw (F101/2) and adjusted versions.

B.3 Purchase Annexes

The monthly purchase annexes provide both self-reported firms’ purchases information (i.e.,

their own purchases) and, implicitly, third-party reported information about other firms’

sales.

All incorporated firms (F101 filers) are required to submit purchase annexes every month.

F102-filing firms must keep accounting records and file purchase annexes on a monthly basis

if their annual revenues surpass a certain threshold (e.g., $100,000 in 2012). They are also

mandated to do this if their annual costs and expenses exceed a given value ($80,000 in

2012), or if they begin economic activities with capital above a certain threshold ($60,000 in

2012).51

To quantify transactions between firms using the purchase annex, we follow a process sim-

ilar to that described in Adao et al. (2022). For each transaction, we observe the anonymized

51A considerable number of firms that are not required to do so end up voluntarily filing purchase annexes.
However, for these smaller firms (who represent a smaller share of the country’s economic activity, naturally)
records may not be complete. See Adao et al. (2022) for further details.
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tax ID of both the buyer and the seller, the value of the purchase, the VAT paid, what part

of the value was subject to either a tax rate of 12% or 0%, and the transaction’s date. The

data feature some inconsistencies. For instance, we drop transactions with a negative VAT

value. When there is a positive value for VAT but the transaction value is inconsistent with

it, we rectify the transaction value. In cases where there is a positive transaction value but

VAT is missing, we calculate the correct VAT based on the transaction value. We also do

not consider purchases whose value exceeds a value greater than two times the maximum

between the buyer’s annual cost and the seller’s annual revenue, as such transactions are

likely the result of data entry errors. Finally, we also drop transactions where the buyer and

the seller are the same firm. The cleaned purchased annexes are used to compute monthly,

half-yearly and annual transactions between firms.52

Since the transactions are reported purchases by the buyer, we compute a measure of

third-party reported sales based on the purchase annex data.53

B.4 Social Security and Firm Characteristics

First, we combine two sources of data for employment. One covers the period from 2007 to

2017 and is extracted from the social security record that keeps track of all the employees

whose employer filed the social security for them; the other one spans from 2009 to 2016,

and has data from either the social security record or the F107 form (a tax declaration

form filed by firms with information about their workers). We restrict the sample to the

universe of employees that ever work for lottery firms. Then, we identify the month in which

an employee is hired by a firm whenever there are no payments from the employer in the

previous month. Similarly, we consider the employee to be a new employee if they were hired

in the last 12 months, and we define documented employees as those that have worked for

any firm in this same period.

Second, we have basic information of every firm registered with the SRI up to 2012. This

52We use the register date when available. Otherwise, we use the purchase date. We drop transactions
where neither of these two is available.

53Similar to the self-reported sales measure, we construct third-party reported sales gross of sales taxes.
To obtain this measure, we sum up the reported net-of-VAT transaction amount and the VAT reported for
that transaction to create a measure of third-party reported sales gross-of-VAT.
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dataset provides a snapshot of the registered firms’ characteristics in this year for variables

such as: the province where it is located, the year in which it became active and the industry

code (ISIC 3.1).

B.5 Combining the Datasets

We can combine the different datasets based on consistently anonymized firm identifiers

across all datasets.

To identify sales from lottery participants to different types of entities, we join the lot-

tery data with the transaction-level purchase annexes, information from the procurement

contracts, and information on firm characteristics. This allows us to identify whether the

reporting firm (i.e., the buyer in the purchase annex) is a procuring entity, another public

entity, or a private firm.54 We then aggregate the reported purchases on the month-seller

level to obtain measures of third-party reported sales to different types of entities as well as

total third-party reported sales.

Finally, we define a firm to be economically active from the first time it self-reports

positive sales or costs in its income tax forms, or appears in any of the above datasets either

as a lottery participant, an employer (in the social security data), or a supplier (in another

firm’s purchase annex). We then exclude firm-year observations from the period before a firm

is economically inactive and impute zeroes for any missing values after a firm has become

economically active.

54We define “public entities” as firms that are either government agencies or utilize the lottery procurement
system. Similarly, “private firms” are defined as firms that are neither a government agency nor utilize the
lottery procurement system.
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C Test of statistical independence

This appendix provides further details about the test of statistical independence used in

Section 5 to test for U-AEP and C-AEP.

C.1 Testing for U-AEP

As stated in Proposition 1, the null of U-AEP can be carried out by testing for whether

f(·) = 0 in equation (12) or not. Following Ding et al. (2016), one way to do this is via a

quantile regression of ∆Πi(1) on Zi. This corresponds to the quantile model

Q∆Π(1)(τ | Z) = α(τ) + β(τ)Z, (25)

for any quantile τ , where the null hypothesis of U-AEP requires that β(τ) = 0 for all τ . We

therefore use the test statistic

TS ≡ max
τ∈T

|β(τ)|, (26)

where T denotes some finite set of quantiles to be evaluated. The null should be rejected

when TS is large.

We implement a randomization inference version of this test. Following Fisher (1935),

the basic idea is to compare TS based on the actual data to the distribution of statistics

TSl that one obtains in a series of simulations l = 1...L in which the winners of each lottery

are randomly re-drawn from the set of actual entrants into each lottery and the sharp null

value is used to generate simulated outcome data for each observation. Since the sharp null

in question is one of zero treatment effect (of Zi on ∆Πi(1)), this procedure amounts to

performing a quantile regression of the actual data ∆Πi(1) on the values of Zi generated

by simulated counterfactual lottery winnings and repeating this across many simulations.

Specifically, we proceed as follows:

1. Estimate TS on the actual data and denote this value by T̂ S. That is, estimate a

quantile regression of ∆Πi,t(1) on Zi,t, obtain the quantile coefficient estimates β̂(τ),
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and compute the corresponding T̂ S based on (26).55 We set T = {0.1, ..., 0.9}.

2. Re-randomize the identity of the winning firm in each lottery. Refer to the values of

Zi that are obtained under this re-randomization as Z l
i .

3. Estimate a quantile regression of ∆Πi,t(1) on Z
l
i,t. Calculate the corresponding value

of TSl based on (26), again with T = {0.1, ..., 0.9}.

4. Repeat steps #2 and #3 an additional L− 1 times. In practice, we set L = 100.

5. The resulting L values of TSl provide an estimate of the exact null distribution of the

test statistic TS. Therefore, calculate the exact p-value for the null hypothesis from

the share of simulations l in which TSl > T̂S. If p < α, we reject the null at the α

level.

Figure 8, at the value displayed as χ = 1 on the x-axis, reports the p-value from performing

this test in our context.

C.2 Testing for C-AEP

Recall from Proposition 1 that the null of C-AEP is the same for that of U-AEP apart from

the fact that rather than testing on the basis of ∆Πi(1), we must repeat the test on the

basis of ∆Πi(χ) for all values of χ > 0. As discussed in Section 5.2, we confine attention

to values of χ in which all elements of this vector are equal to each other and equal to the

scalar χ (i.e., χm = χ for all m). Our test for C-AEP therefore simply amounts to repeating

the above test for U-AEP (which was effectively done for χ = 1) at a wider range of values

of χ. In practice, we do this for 201 uniformly spaced values in the interval [0.9, 1.4]. Figure

8 reports the p-values for each of these tests. The test for C-AEP fails to reject (at the 5%

level) if any of the p-values exceeds 0.05.

55As described in Section 5, the lack of available data on prices of outputs and inputs in our context
requires that we proxy for spi∆yi with ∆(piyi), etc. We therefore have ∆Πi(1) = ∆(piyi)−

∑
m ∆(wmxim).

Further, when computing time-differences “∆” we use differences in two-year averages, such as ∆(pi,tyi,t) ≡
1
2 (pi,tyi,t+pi,t+1yi,t+1)− 1

2 (pi,t−1yi,t−1+pi,t−2yi,t−2). We then stack the cross-sections from all such available
changes over 2008–2015, but only use the firm-year observations corresponding to firms that are active in
2008 so that our testing sample aligns with those firms that enter our sample for estimating sales-weighted
wedge distributions in Section 6. Finally, the instrument is defined as Zi,t = Di,t −Di,t−2.
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D Assessing First-Stage Rank-Invariance

Section 2.4 describes the use of the IVCRC estimator developed in Masten and Torgovitsky

(2016) to estimate the sales-weighted first and second moment of the distribution of wedges.

As outlined in Assumption 4, one condition for consistency of IVCRC is what Masten and

Torgovitsky (2016) refer to as “first-stage rank-invariance”: that the first-stage relationship

can be characterized by swm∆xim = hm(Zim, Vim) for some unknown hm(·) and scalar Vim,

with ∂hm
∂Vim

> 0 for all m ∈ ĎM(i) and all Zim. This condition implies that (for any input type

m), if we set Zim to any value z, then the ranking of firms in terms of their input changes (i.e.,

swm∆xim) would not depend on the value of z chosen. Put differently, firms can respond to

Zim heterogeneously but only to the extent that their rank in the input change distribution

is unchanged by such response heterogeneity.

In order to gauge the plausibility of this assumption in our context, in this Appendix

we conduct a simulation of a model inspired by features of Hsieh and Klenow (2009), cal-

ibrated to our regression sample, that suggests that first-stage rank-invariance may hold

approximately in our context.

D.1 Setup

We consider a set of N firms indexed by i. Each produces a differentiated product yi using

a single input xi according to the technology

yi = aixi, (27)

where ai denotes firm i’s productivity. The firm faces two sources of demand: (a) private-

sector buyers whose demand is given (in expenditure terms) by Ei = p1−σi , where σ is a

constant price elasticity of demand; and (b) procurement lottery-based demand denoted

(again in expenditure terms) by Wi. The firm’s total sales (Si ≡ piyi) are therefore given by

Si = Ei +Wi.

The definition of the wedge in equation (3) implies, in this model, that µi = piai/w,

where w denotes the price of the input. Starting from the “time-0” allocation (at which all
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variables are denoted with a bar), we consider a small change in the input ∆xi (between

time-0 and a subsequent time period) that results from an arbitrary change in ai and Wi,

but where, for the sake of simplicity in this simulation, µi and w are held constant. This

will imply that the first-stage of our IVCRC estimation equation is given by

sw∆xi =
[
(σ − 1) sw1−σ(sµi)

−σ
saσ−1
i

]
âi + (sµi)

−1∆Wi, (28)

where âi ≡ ∆ai/sai.

As discussed in Section 3.3, procurement lottery-based demand Wi satisfies Wi = Di +

E[Wi | {Ak, Nk}k∈Ki
], where Ak denotes the contract value of lottery k, Nk denotes the

number of participants in lottery k, Ki denotes the set of lotteries that firm i participates in

during the given time period, and Di denotes the deviation between actual lottery demand

Wi and expected lottery demand given lottery participation. Given the definition of our

instrument, Zi ≡ ∆Di, we therefore have

sw∆xi = bi + (sµi)
−1Zi, (29)

where we have defined

bi ≡
[
(σ − 1) sw1−σ(sµi)

−σ
saσ−1
i

]
âi + (sµi)

−1∆E[Wi | {Ak, Nk}k∈Ki
]. (30)

Input changes ( sw∆xi) therefore derive from two components. First, the component bi

arises due to factors unconnected from the instrument (the technology and lottery participa-

tion changes in equation 30). And second, the component (sµi)
−1Zi, which does depend on

the instrument. In this model, first-stage rank-invariance would be satisfied if there were no

heterogeneity in sµi because in such a case equation (29) could trivially be written in the form

∆xi = h(Zi, Vi) with a scalar Vi and with ∂h
∂Vi

> 0 at any value of Zi. More generally, if there

is heterogeneity in sµi and also in bi, and Corr(sµi, bi) < 0, then first-stage rank-invariance

is not guaranteed. In what follows, we use the structure of the model in this Appendix in

order to calibrate the values of bi and sµi implied by our data, and thereby calculate how

often rank-invariance is violated.
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D.2 Quantifying First-Stage Rank-Reversals

In principle, one could assess the prevalence of first-stage rank-invariance in this model by:

(a) measuring bi and sµi for every firm i; (b) computing each firm’s rank in the distribution

of sw∆xi implied by equation (29) at the lowest possible value of the instrument Z; and then

(c) repeating this at every other possible value of Z in order to keep track of the number

of times that firms’ ranks (in the distribution of sw∆xi) reverse across the full support of

Z values. In practice, however, this is both computationally costly (given the number of

potential calculations involved) and also conceptually unclear, given that Z is in principle

a continuous variable. We therefore follow Gollin and Udry (2021) in drawing a random

sample of comparisons (both pairs of firm observations whose rank is to be assessed and sets

of values of Z at which we assess whether rank-reversal has occurred) from the set of all

possible comparisons. To the extent that this random sample is large, it should provide a

reliable impression.

We calibrate the model as follows. First, we set σ = 3 as in Section 6.4 (and, for example,

in Hsieh and Klenow (2009)). Second, we let w̄ equal the average annual wage for a worker

in our dataset. Third, we pursue two versions for the calibration of sµi in parallel: (a) a

version in which these come from the sales bin-specific average wedge estimate obtained

from the IVCRC estimation procedure in Section 6.2; and (b) a version that assumes all

firms have constant returns-to-scale technologies, as in Section 6.4 and, for example, Hsieh

and Klenow (2009).56 Fourth, given data on Si and Wi, manipulations of the above supply

and demand equations can be used to solve for sai and âi.
57 Finally, E[Wi | {Ak, Nk}k∈Ki

] is

directly observable. Applying these steps we therefore know the values of bi and sµi (one for

each separate method for calibrating sµi) corresponding to every firm-year observation in our

dataset.

Using these values of bi and sµi, we quantify rank-reversals using the following procedure

(done twice for each separate method for calibrating sµi):

1. Randomly partition all firm-year observations into pairs r. Let r1 and r2 indicate the

56As discussed in Section 6.4, under constant returns-to-scale we have sµi = sSi/(
∑

m swmsxim).
57That is, combining the equations Si = Ei +Wi, Ei = p1−σ

i , and µi = piai/w, we have ai = wµi(Si −
Wi)

1/σ.
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two observations in pair r. Let there be P pairs in total.

2. Begin with pair r = 1. Randomly draw a value of the instrument Z from the distribu-

tion of the deviations from expected winnings and denote that value by Za. Evaluate

the first-stage equation (29) at Zi = Za for observation r1 and denote the result by

F (r1, Za). Do the same for observation r2 and denote the result by F (r2, Za).

3. Repeat step #2 for a second randomly drawn value of the instrument, denoted Zb.

Hence calculate R(r) ≡ [F (r1, Za) − F (r2, Za)][F (r1, Zb) − F (r2, Zb)]. This provides

one possible comparison (between two observations and two values of the instrument).

4. Repeat steps #2 and #3 for nine additional sets of randomly drawn instrument value

pairs. This yields ten values for R(r) in total for the first pair, r = 1.

5. Repeat steps #2-#4 for all remaining pairs r = 2...P .

6. Rank-reversals have occurred whenever R(r) < 0. Calculate the share of comparisons

(out of 10P total comparisons) in which this has happened.

Table D.1 reports the share of rank reversals in the randomly chosen comparisons illumi-

nated by the above simulation. Unsurprisingly, the substantially smaller wedge dispersion

used in the IVCRC-based version of this simulation (columns 1-3) shows far less propensity

for rank-reversals than does the constant returns-based version (columns 4-6). But even

in the latter case, rank reversals are quite rare, happening in less than 6.2% of pairwise

comparisons.
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Table D.1: Frequency of Rank-Reversals in Simulated Economy

IVCRC wedges CRTS wedges

Rank No. of
Share

Rank No. of
Share

reversals comparisons reversals comparisons
(1) (2) (3) (4) (5) (6)

1,256 141,820 0.0089 7,565 123,070 0.0615

Notes: This table shows results on the frequency of first-stage rank-reversals
across randomly drawn pairwise comparisons of observations and instrument val-
ues. “IVCRC wedges” assigns firms’ wedges based on the sales-bin specific point
estimates of average wedges obtained when using the IVCRC procedure described
in Section 6.2. “CRTS wedges” instead uses the formula sµi = sSi/(

∑
m swmsxim),

which follows from assuming that all firms have constant returns-to-scale tech-
nologies as in Section 6.4, in order to estimate wedges. The number of comparisons
differs across these alternatives due to the fact that the latter version cannot be
computed for firms with zero costs.
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