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1 Introduction

Understanding the forces behind technology diffusion is important in several areas of eco-
nomics (see e.g., Parente and Prescott (1994); Comin and Hobijn (2010); Stokey (2020)).
While the literature has studied the role of learning in shaping adoption processes, less is
known about how the process of diffusion is shaped by strategic complementarities, where
one agent’s benefit from adoption increases with the number of adopters. We develop a
dynamic model of adoption to study the role of such complementarities in the diffusion of a
new technology. The model allows us to analyze the efficiency of the equilibria and discuss
optimal policy interventions.

In particular we study the diffusion of new means of payments, such as mobile money
and other peer-to-peer (P2P) payment instruments, that have been recently propelled by
digitization (see e.g., Economides and Jeziorski (2017); Aron (2018)) and appear in several
plans for central bank digital currency (see e.g., Auer et al. (2020); Carapella and Flemming
(2020)). A central element of our analysis is the presence of complementarities in adoption,
an inherent feature of payment instruments. The applied literature on technology adoption
has long recognized the presence of complementarities, whereby the probability that a new
technique is adopted is an increasing function of the proportion of firms already using it
(see Griliches (1957); Mansfield (1961)), but progress in this research area is hindered by the
challenges that arise when modeling adoption dynamically —a large state space, non-linear
decisions, multiple equilibria—, and by the lack of detailed data on technology diffusion. We
present a model of technology adoption featuring heterogeneous agents, complementarities,
and fully fledged dynamics: the agent’s decision to adopt depends on the whole path of future
adoptions. We analyze the conditions for equilibrium existence, multiplicity of equilibrium
paths, multiplicity of stationary equilibria, and the local stability of stationary equilibria. We
also characterize the planner’s problem and its implementation through subsidies. We use
the model to study the diffusion of SINPE, a digital platform developed and administered by
the Central Bank of Costa Rica.! The platform was launched in May 2015 and over 60% of
the adult population uses the app in 2021, with about 10% of the country’s GDP transacted
through SINPE. We leverage a battery of granular administrative datasets to characterize
the adoption patterns and to document the presence of strong complementarities in adoption
and usage.”

The model assumes the flow benefits of using the technology at time ¢ depend on the

'More precisely, the app is called “SINPE Mévil,” although throughout we will be referring to it only as
“SINPE,” which stands for Costa Rica’s National Electronic Payment System (by its initials in Spanish).

2See Bjorkegren (2018) for a related network-goods analysis using data on mobile phones adoption in
Rwanda.



number of agents who have adopted the technology, N(t), and on an idiosyncratic persistent
random component, x(t). Adoption entails a fixed cost and agents choose when to adopt
taking the aggregate path of adoption as given. The model also includes an intensive margin
for the usage of the technology. We show that when the idiosyncratic benefits are random the
equilibrium features gradual adoption through a simple mechanism: agents wait for others
to adopt.®> This differs from previous contributions, discussed below, where gradualism is
absent or assumed (e.g., by means of staggered adoption opportunities). While gradualism
can also be generated by a learning mechanism, we see strategic complementarities as an
inherent feature of means of payment, as well as important for its implications on optimal
subsidies.* The optimal adoption rule is given by a time-dependent threshold value, denoted
by Z(t), such that adoption is optimal if z(t) > Z(t). We assume that the economy starts with
an initial measure of agents that have adopted the technology. Aggregation of the optimal
adoption rule across agents yields a path for the fraction of agents that adopt the technology
at each time ¢, N(t). The equilibrium has a classic fixed point structure: the optimal decision
path (z) depends on the aggregate path (N), and vice-versa.

We obtain several theoretical results. First, we establish the monotonicity of the optimal
decision rules and of the aggregation. In particular, we show that the optimal adoption rule
for each agent, summarized by the threshold path z, is a decreasing functional of the path of
adoption N. The strength of this effect depends on the parameter that controls the strategic
complementarity. Likewise, we show that the adoption path N is a decreasing functional
of the path z, for any initial distribution of adopters. An equilibrium path N is a fixed
point of the composition of these two functionals. We use the monotonicity to show that,
for a given initial condition, the set of equilibrium path is a lattice, i.e., the equilibria can be
ordered in terms of their intensity of adoption, with a highest and a lowest equilibrium path.
This means that when there is more than one equilibrium, the highest and lowest paths do
not cross. Additionally, the equilibrium path N increases as a function of the strength of
strategic complementarity, as well as of the initial fraction of adopters. Second, we show
that there is a critical mass of adopters Ny such that, if the initial measure of adopters is
below Ny, then there is an equilibrium where no one will adopt in the future. Third, we
analyze the equilibrium model as a dynamic system for the cross sectional distribution of
adoption. We show that besides the stationary distribution with no adoption the model

has two additional interior stationary distributions, which we label low- and high-adoption.

3We also analyzed a model where x is heterogeneous across agents but fixed through time. A key takeaway
from this model is that, starting from a no adoption initial distribution, it features no dynamics; it is not
a model of gradual diffusion, but one of “jumps.” Instead, the stochastic model features gradual adoption
given the option value of waiting for a high draw of the idiosyncratic benefit.

4See Cabral (1990); Reinganum (1981) for an early analysis of a dynamic equilibrium with externalities.



Fourth, we conduct a perturbation analysis with respect to the initial condition to study the
stability of the interior stationary distributions.® We find that the high-adoption equilibrium
is locally stable, while the low-adoption is unstable, a feature that leads us to discard it
from the analysis. Fifth, all equilibria are socially inefficient: the reason is that agents do
not internalize the fact that when they adopt they benefit all agents who already have the
technology. We analyze the socially efficient dynamics of adoption by solving the planner’s
problem, and show how to decentralize the planner’s solution using a time-varying subsidy
paid to those that use the technology. Equivalently, it can be decentralized with a time
varying adoption subsidy.

We then leverage a comprehensive set of data collected since SINPE was created to analyze
the dynamics of adoption and usage, to document the presence of strategic complementari-
ties, and to discipline the parametrization of the model. Data on users—both receivers and
senders—can be linked to several relevant networks, including the employer-employee net-
work, family networks, and spatial “neighborhood” networks. We document five empirical
patterns that guide our modeling choices and inform the quantitative analysis. First, while
firms can potentially use SINPE, over 95% of the transactions are between individuals: this
fact aligns with our model where transactions are peer-to-peer. Second, we find that indi-
viduals belong to networks, as 75% of all transactions occur between coworkers, neighbors,
or relatives. Third, we find that the technology diffuses gradually within the network. The
last two facts motivate the importance of mechanisms delivering a gradual diffusion of the
technology within a network. Fourth, there is evidence of selection at entry: users who
adopted when adoption rates were low use the app more intensively, and that early adopters
have higher wages and skills than those who adopt later. These patterns are consistent with
our model where individuals with a high idiosyncratic benefit adopt the technology early on.
Fifth, there is evidence of strategic complementarities: changes in the share of people within
a network who adopt SINPE are associated with changes in the intensity with which users in
that network use the app.® We use arguably exogenous variations in the network size due to
mass layoffs to provide evidence in support of a causal relation between the share of agents

who have adopted (N) and usage of the app.”

5This is a non trivial problem that involves the linearization of an infinite dimensional system, which
we handle leveraging techniques from the Mean Field Game literature, developed in Alvarez, Lippi and
Souganidis (2022Db).

6This correlation persists across a battery of ways to define usage and networks. It also emerges after
using a leave-one-out instrument and following a balanced panel of adopters to address concerns regarding
mis-measurement selection.

“"Namely, we focus on networks of coworkers and examine the effect of network changes on adoption,
at the extensive and intensive margins, for workers displaced during a mass layoff. The intensive margin,
in particular, follows workers who had already adopted the app when they were displaced, and can better
disentangle the impact of complementarities from learning. We leverage our rich data to overcome the fact



We put together the theory and the data in a quantitative analysis where we calibrate
the model using key moments from the data. To match the initial gradual diffusion of the
technology, observed in each network, we combine our model of strategic complementarities
with a random diffusion of information model, following the seminal work of Bass (1969). The
calibration requires us to estimate the value of the parameter that governs the strength of
the strategic complementarities. We do so by exploiting exogenous changes in the network of
coworkers after mass the layoffs described above. We examine how both the extensive and the
intensive margin of adoption respond to that variation. The intensive margin, in particular,
allows us to tease out strategic complementarities from other channels. The calibrated model

shows that the optimal subsidy moves the economy to 100% adoption.

Contribution of the paper. Altogether, we see our model as delivering four main con-
tributions. First, a novel mechanism for the gradual diffusion of a new technology, based
on the presence of strategic complementarities, whose empirical relevance we also document.
Second, an in-depth analysis of multiple equilibria, multiple stationary equilibria, and the
stability or lack or thereof (this is related to e.g., Cabral 1990, Matsuyama 1991). Third, the
tractability of the model allows us to solve the planning problem. The problem is relevant
for policy since the presence of complementarities implies that the equilibrium is not effi-
cient. Our framework allows us to compute the optimal subsidy under which the equilibrium
converges to the planner’s solution. The optimal subsidy depends positively on the strength
of strategic complementarities, which can be estimated from the data. Fourth, our paper
also innovates in the use of individual-level data on adoption and on usage of SINPE, relying
on individual earnings and demographic characteristics, considering relatives, neighbors, and
coworkers. This provides a unique opportunity to understand the characteristics and relevant
networks of each user, identify the strength of complementarities —at both the extensive and

intensive margins— and the dynamics of adoption over a long time period.®

Related Literature. Several recent studies are related to our paper. Benhabib et al.
(2021) model firms that can endogenously innovate and adopt a technology. They analyze
the effect of these choices on productivity and balanced growth, but without conducting an
analysis of the transition between stationary distributions; likewise, Buera et al. (2021) study
policies that can coordinate technology adoption across firms. A closely related contribution

is Crouzet et al. (2023), who develop a model with a unique equilibrium where the rate of

that people select into their networks and the reflection problem that arises when common shocks affect those
in the network.

8This is related to other studies, summarized by Suri (2017), that relied on RCTs or shorter periods of
time to analyze the patterns of adoption of electronic methods of payment.



adoption of electronic payment by retailers increases following an aggregate shock. Their
analysis is motivated by 2016 Indian Demonetization, and exploits the variation in the inten-
sity with which firms in Indian districts were exposed to the shock to examine the adoption
of retailers. Unlike our model, which has heterogeneous agents and generates dynamics and
gradual adoption endogenously (as agents wait for others to adopt before doing so), their
model features homogeneous agents and a sluggish adjustment a’ la Calvo (1983), generating
gradual adoption through this imposed friction. Moreover, the heterogeneity in our model
allows us to accommodate, not only aggregate shocks when we analyze transition dynamics
in closed-form, but also dynamics after shocks that target particular types of agents; for
instance, we compare the propagation after “giving the app” to people with high vs. low

idiosyncratic benefits, which in turn can be mapped to observables like wages and skills.

2 The Model

We present a simple model for the adoption of a new technology. The economy is populated
by a continuum of agents that differ in the potential benefits from adopting the technology.
Let N(t) denote the number of agents that have adopted the technology at time t. Let
x € [0, U] be the idiosyncratic potential benefit of adopting, due to e.g., the agent’s strength
of connections. We assume that the flow benefit of the technology for an agent who adopts
are given by

(00 + 0,N (1)) (1)

at time ¢, where 6y, 6,, > 0 are parameters. The idiosyncratic potential x follows a Brownian
motion, independent across agents, with variance per unit of time o, no drift, and reflecting
barriers at * = 0 and = U, so that dv = odW where W is a standardized Brownian
motion. We let ¢ > 0 be the fixed cost of adopting the technology. The time discount rate is
r > 0, and we assume that with probability v per unit of time agents die, so that the agents
discount at rate p = r+v. Agents that die are replaced by newborns without the technology
and are given a random draw x from the invariant density f on [0, U] which is uniformly

distributed due to our reflecting barriers assumption, i.e., f(z) = 1/U.

2.1 Optimal Adoption Decisions

In this section we describe the optimal adoption decision as a function of the whole path of

N, the fraction of agents that adopt the technology. Let a(z,t) be the value function of an



agent who uses the technology and has state x at time t:

a(x,t) = E[/too e P57 (0 4 0,N(s)) z(s)ds

() = x] 2)

for all t > 0 and « € [0,U]. Note that the agent takes the path N(s) as given.

For technical motives we assume that the path of N(s) is constant at some given value N
for s > T where T is given. All our results hold for finite but arbitrarily large T', and some
of the results hold for T'— co. Later on we will focus on the case when N is the adoption
rate corresponding to an invariant distribution for the model with T" = occ.

An agent with state x that at time ¢ has not yet adopted has a value function v(z,t) that
solves the following stopping-time problem

v(x,t) = r£1<aXE e (a(z(7),7) —¢) ‘ x(t) = x} , (3)
where 7 denotes the time of the adoption and depends only on the information generated by

the process for x’s and on calendar time.

Discretized Model. For future use, we introduce a discretized version of the model. It is
defined by positive integers I, J which determine step sizes for ¢ given by A; = % and for x
given by A, = & Thust € {A(j—1):j=1,...,Jtand a(t) € {A,(i—1):i=1,...,T}.
The reflecting Brownian Motion, Poisson processes, and discounting are changed accordingly,
following the scheme used in finite difference approximations. See Definition 3 in Appendix A
for a detailed definition.

As a preliminary result, we show that the optimal adoption policy is a threshold rule:

ProposITION 1. Fix a path N and a time ¢ € [0,7]. If it is optimal to adopt at (x1,1),
then it is also optimal to adopt at (z9,t) where x5 > x;. This holds for the continuous time

as well as for the discretized version.

This proposition means that we can represent the optimal adoption rule at time ¢ as a
threshold rule, Z(¢). The result is intuitive but non-trivial since the process for x is persistent.

We denote ar(z) = a(z,T) and vr(z) = v(z,T), that depend only on the constant N.
We can now concentrate on the time interval [0,7]. In this interval we write the optimal
decision rule as a function of the path N : [0,7] — [0, 1], and of the functions ar and vy.
Indeed, the optimal decision depends on the difference between a; and vy which we denote
by Dr = ar — vp, further discussed in Section 2.4. We denote the optimal threshold as
T = X(N;Dr), so that 7 : [0,7] — [0,U].



2.2 Aggregation

In this section, we aggregate the individual adoption decisions and compute the implied path
for the fraction of adopters, N. We start by defining the probability that an agent alive at s
with state x(s) = x survives until time ¢, while the value of her state remains below Z during

this period, i.e:
P(z,s,t;2) = Pr|x(t) < z(1), for all v € [s, ] ’ z(s) = :z:] emV(t=9), (4)

For an agent that at time s has z < Z(s), the value of P(x, s,t;Z) gives the probability that
this agent will survive up to t without adopting.

We let mo(z) be the density of the agents at time ¢ = 0 without the technology. Given
our assumption about x, we require 0 < m(z) < 1/U for all x € [0, U]. The fraction of agents

that have adopted the technology at time ¢ is thus given by

N(t)=1- /OU P(z,0,t; F)mo(z)dz — /Oty VOU P(x,s,t;x%dx ds. (5)

The second term on the right hand side is the fraction of agents who did not have the
technology at time 0 and survived until time ¢ without adopting. The third term considers
the cohorts of agents that are born between 0 and ¢, and for each of these cohorts computes
the fraction that survived without adopting up to t. We note that an equivalent version of
equation (5) holds in a discretized version of the model. We denote the resulting path of
N as a function of  (the path of the adoption threshold) and of the initial condition my,
namely N = N (Z;my).

2.3 Equilibrium

The equilibrium is given by the fixed point between the forward looking optimal adoption
decision, encoded in X, and the backward looking aggregation, encoded in N. To emphasize
the forward looking nature of X', note that it depends on the terminal value function Dy =
ar — v7. To emphasize the backward looking nature of N, note that it propagates the initial

condition mgy. We then have

DEFINITION 1. Fix an initial condition mg, and a terminal value function Dy. An equilibrium
{N*,z*} solves the fixed point :

N*=F (N*;mqg, Dy) where F (N;mq, Dr) =N (X (N; Dr);mqg) (6)



and the corresponding z* = X (N*; Dr).

Note that this is a canonical definition of equilibrium, where the operator F combines the
two operators A/ and X defined before. This definition holds for both the continuous time

and the discretized version of the model.

2.4 A Recursive Formulation of the Equilibrium

The functions a(z,t) and v(z,t), and the optimal policy Z(t), have a recursive representation
in terms of Hamilton-Jacobi-Bellman (HJB) partial differential equations. We derive these
equations and their boundaries in Appendix F. The information encoded in the equations
can be summarized by the value function D(z,t) = a(z,t) — v(x,t), which satisfies:

pD(x,t) = min {pc , (0o + 0, N(t)) + %Dm(m, t) + Dy(x, t)} (7)

for all z € [0,U], t € [0,T] and terminal condition D(x,T) = Dy(x) = ar(z) — vr(x).

We interpret the value function D(zx,t) as the opportunity cost of waiting to adopt. To
see why, note that a(z,t) — ¢ is the net value of adopting immediately while v(z,t) is the
net optimal value, that may entail adopting in the future, see equation (2) and equation (3).

From here it follows that
D(a,t) = E[ / P70 (g + 0, N (s)) 2(s)ds + ePT Ve ‘ () = x} . (8)
t

Optimality requires that D(z,t) < ¢, which implies the value matching condition at the
barrier. We are looking for a classical solution that satisfies:
2

pD(z,t) = 2(0y + 0, N (1)) + %Dm(x, t) + Dy(,t) 9)

for all z € [0,Z(¢)] and ¢ € [0,T] with boundary conditions:

D(z(t),t) =c Value Matching
D.(z(t),t) =0 Smooth Pasting (10)
D,(0,t) =0 Reflecting

If the solution is regular, it also features smooth pasting. Finally, since x = 0 is a reflecting
barrier, the value function has a zero derivative at that point.
Let m(x,t) denote the density of the agents with x that have not adopted at t. The law



of motion of m for all ¢ > 0 is:

my(x,t) =v (% — m(a:,t)) + %mm(x,t) if 0 <z <Z(t)
t)=0 forx e [z(t),U] (11)
m,(0,t) =0

m(z,

and initial condition mg(x) = m(z,0) for all x € (0,U). The p.d.e. is the standard Kol-
mogorov forward equation (KFE). The density of non-adopters is zero to the right of Z(t),
since this is an exit point. The last boundary condition is obtained from our assumption that
x reflects at © = 0.

The fraction of agents that have adopted the technology is thus given by

N(t)=1- /i(t) m(z,t)dx. (12)

We use these equations to provide an equilibrium definition, equivalent to Definition 1, which

emphasizes the dynamic nature of the equilibrium.

DEFINITION 2. An equilibrium is given by the functions { D, m, z, N} satisfying the coupled
p.d.e.’s for D and m given in equation (9) and equation (11), and the boundary conditions

given in equation (10), equation (11) and equation (12).

We note that this system of p.d.e.’s is involved for two reasons. First, the equations are
coupled through z and N. Second, the equations feature a time-varying free boundary, which

is known to be non trivial.

3 Equilibrium of the Stochastic Baseline Model

In this section we establish equilibrium existence. We first give a normalization of the primal

problem that is useful for empirical applications.

LEMMA 1. The problem with parameters {c, p,v,o,0q,0,,U}, initial condition my,
f(z) = 1/U and equilibrium objects {Z(t), N(¢t),a(z,t),v(z,t)} for x € [0,U] and ¢t € (0,T)
is equivalent to the following normalized problem {ULGO, PV, Gy L, Z_Z’ 1} for a normalized
variable z = & € (0,1) and ¢ € (0,7) with initial condition mg(z) = Umo(x), f(z) = 1 and
equilibrium objects {@,N(t),d(z,t) ,@(Z,t)} where a(z,t) = 6pa (2U,t) and 0 (z,t) =
Oov (2U, t).



The lemma shows that the problem features 5 independent parameters as U and 6, can
be normalized without affecting the nature of the solution as the dynamics of the technology

diffusion are unchanged.

3.1 Monotonicity and Existence of Equilibrium

The next proposition shows that the function X', giving the path of the optimal threshold z
as a function of the path N, is monotone decreasing. Thus an agent facing a higher path of
adoption will choose to adopt earlier. Moreover, the proposition shows that an agent facing

larger values of 6y and/or 6, will also adopt earlier.

PropPOSITION 2. Fix the terminal value function Dy = ar — vy and 6,, > 0. Let & be the
threshold path implied by N(¢). Consider two paths such that N'(t) > N(t) for all t € [0, 7],
then 7'(t) < z(t). Moreover, let 6 = (6, 0,) with the corresponding optimal threshold path
z. If 0 > 0 then T'(t) < z(t).

Proposition 2 also holds if we replace the continuous time model by a discrete-time,
discrete-state, approximation to it. For instance, it holds for a finite difference approximation,
which we use for some computations, and which converges to the continuous-time version.
The reason the proof holds is that we verify the conditions to use Topkis (1978). Thus,
once we reformulate the problem in terms of stopping times, we can apply the monotone
comparative statics logic developed by Milgrom and Shannon (1994) to characterize the
policy function.

Next we show that for the same initial condition mg(z), if the path z(¢) < z/(t) then
N'(t) < N(t) for all t. We need to show that the fraction of non-adopters is decreasing in

z(t). This implies that A is monotone decreasing.

PROPOSITION 3. Fix my and consider two path of thresholds z, 2’ satisfying z/(t) > z(t) for
all t € [0,7T]. Let N' = N (z';mg) and N = N (Z;myg). Then N'(t) < N(t) for all t € [0,T].
Moreover, fix a threshold Z, and consider two initial measures with mg(z) > mg(z) for all
z € [0,U], then N' = N (Z;mg) and N = N (Z;mg). Then N'(t) < N(t) for all ¢t € [0, 7.

The next theorem uses the monotonicity of X and N, established in Proposition 2 and
Proposition 3, which by the definition in equation (6) implies that F is monotone. This
allows us to use Tarski’s theorem. For technical reasons the theorem applies to a finite
horizon, discretized version of the model introduced in Section 2.1 where the time domain
[0, 77 is divided into J segments and the state [0, U] is divided into I segments (see Definition 3
in Appendix A).? We have:

9The reason is the completeness of the lattice in which F is defined.
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THEOREM 1. Consider a finite horizon, discrete time - discrete state version of the model
and 0,, > 0. Fix an initial condition mg € ]Ri and a terminal value function Dy € Ri.

(i) The equilibria of this model are a non-empty lattice. Hence the model has a smallest
equilibrium, {#L, N}, and a largest one, {#f1, N¥} and any equilibrium path {Z, N} satis-
fies NI < N < NH and ' >z > zH.

(ii) Let 0" > 6 and m{, < my. Consider the equilibrium {z’, N’} with the largest N’ corre-
sponding to {¢',m{} and the equilibrium {z, N} with largest N corresponding to {6, mg}.
Then 7’ < 7z and N' > N.

The first statement of the theorem establishes existence of the equilibrium for the finite
horizon - discrete time version of the model. The result holds for an arbitrary small length
of the time period, and for an arbitrary large horizon 7. An important consequence of the
theorem is that the equilibrium set, for a given initial distribution of non-adopters my and
terminal valuation Dy = ap — vp, is a lattice. Moreover, we can compute the value of
the extreme equilibria by iterating on N¥*1 = F(N*; Dy, my) for k = 0,1,..., starting from
NO(t) =1 or from N°(t) = 0, for all £. The theorem ensures that the limit converges to a fixed
point. If the two sequences converge to the same limit, then the equilibrium is unique. The
second statement of the theorem establishes a useful comparative statics result: considering
a model with a larger 6 or with a smaller mg implies that the high-adoption equilibrium is

larger (more agents adopt).

3.2 No Adoption Equilibrium

We briefly analyze the equilibrium in which there is no adoption i.e., Z(¢) = U for all t. For
simplicity we focus on the case where T' = co. This case is particularly easy because agents
decision are in a corner. We find the basin of attraction for such equilibrium, i.e., we find a
threshold for the number of adopters V, so that a no adoption equilibrium exists if and only

if at ¢ = 0 there are fewer agents with the technology than N.

PROPOSITION 4. A no-adoption equilibrium with Z(t) = U and N(¢) = N(0)e " for all
t > 0 exists if and only if 1 — fOU mo(x)dx < N, where

U =6y 14 g(nU)] [ +g(n'U)] (13)

n= \/i, \/ and = csch(y) ; coth(y) € (—3,0) . (14)

Note that N > 0 if and only if & > 0y [1 + g(nU)]. Moreover, if N > 0 we have:
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(i) NV is an increasing function of o, satisfying

(5w s 0 -0) 09

where the two limits are reached as ¢ — 0 and as ¢ — oo, respectively.

(ii) N is a decreasing function of 6,,.

An immediate corollary of this proposition is that mg(z) = 1/U is an invariant distribution
provided that N > 0, i.e., under this condition if we start with no adoption, then we stay with
no adoption. The fact that N > 0 requires 6y to be small is intuitive: when this condition is
violated then agents with a large x will find it profitable to adopt regardless. Likewise, the
effect of o is intuitive since, for a given U, a large ¢ makes the process to revert to the mean
faster. Finally, if 6, is large then it is more profitable to coordinate on high N and then the

basin of attraction is smaller.

4 Stationary Equilibria

In this section we let 7' = oo and analyze the stationary version of the model and its
corresponding stationary distributions. We look for an initial condition mg such that the
distribution is invariant, and that both Z(t) = z,, and N(t) = N are constant through

time.

4.1 Stationary Equilibria in the Deterministic Model (¢ = 0)

We begin by studying the deterministic case where o = 0, so that the agent’s valuation z
does not change. This case is useful to relate to the existing literature studying technology
diffusion (e.g., Stokey (2020); Buera et al. (2021); Crouzet et al. (2023)), and it unveils the
basic forces at work in the adoption problem.

We specialize equation (7) to the stationary equilibrium of the deterministic model. Since
0? = 0 then D,,0? = 0 and, since we focus on the stationary case, D, = 0. The equation

becomes

pD(x) = min {pc , (6 +0.N.) | (16)
for all x € [0, U]. The stationary threshold Z, is the value of = solving

pc = Zss(0y + 0, Nss). (17)
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Using equation (11), imposing the 0% = 0 and the stationary condition m; = 0 gives one
equation for the invariant distribution of agents without the technology which is given by
m(z) = & for z € [0, 2] and m(x) = 0 for © € [Z,,, U] so that we have

T
Ny =1-22, 18
- (15)
Solving this simple system for z,, gives a quadratic equation that can have zero, one or two

interior stationary distributions. We have the following result:

PROPOSITION 5. There are two cases. Case (i): If pc < 6yU, then there is a unique
stationary distributions with z,, with 0 < Z,, < U. Case (ii): If U < pc, then there is
always a no activity stationary equilibrium with Zss = U. In this case, there is threshold
value for ¢ such that, if 6,, < 7, there is no other stationary equilibrium, whereas if 6,, > 6

there are two additional interior stationary equilibrium.

A key insight of the proposition is that multiple interior stationary equilibria occur when
the complementarities are strong relative to the intrinsic value of the technology, i.e., when
0y is small and 6, is large. We concentrate on the stationary equilibria of the deterministic
model for two reasons. First, for small ¢ they provide a good benchmark for the stationary
equilibria of the stochastic model analyzed next. Second, we omit the treatment of the
dynamics of this model because for a non-pathological set of initial conditions the model

converges immediately to the corresponding stationary distribution.'®

4.2 Stationary Equilibria in the Stochastic Model (o > 0)

Next we analyze the stationary equilibria of the stochastic version of the model. We will
show that convergence to these equilibrium must be gradual, i.e., unlike the deterministic
case, it is not possible to “jump” to the equilibrium given a generic initial condition.

A stationary equilibrium is given by two constant values of Ng and Z,, that solve the
time invariant version of the partial differential equations presented in Section 2.4. Given
N,, we can derive the value function D(z,t) = D(z) and Z(t) = Z,,. Given Z,, we can derive

the invariant distribution m(z,t) = m(z), from which we derive Ny,. Given N,,, we find D

10Tndeed, in Appendix J we show that if the initial condition is such that at time zero no agent with low
valuation has adopted the technology (while some high valuation agents may have done so), the equilibrium
of the deterministic problem has no dynamics. This implies that adoption occurs instantaneously and that
the fraction of adopters is a constant N(t) = Ngs.
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and Z,, that solve:

pD(z) = z(0y + 0, N,) + gbx$(x) if x € [0, Z] Value of Adoption

D,(0)=0 Reflecting

D(Zs,) = ¢ Value Matching
Dx(:z’:ss) =0 Smooth Pasting

Given T, solve for m

2

1
0= —vin(a) + v + %rhm(m) KFE if z < 7y

m(Zss) = 0 and m,(0) =0 Exit and Reflecting

and given m(z) and T, we define the fixed point

Ngg=1-— / m(s)dx.
0

We begin by solving D(x), and Z,s given a value for Ng. The details of the solution can
be found in Appendix I.1. Using the solutions for D we can solve for X,, : [0,1] — [0,U], a
function that gives the optimal stationary threshold as a function of a given N,,. The mono-
tonicity properties of the function D on the parameters Ny, 6y, ¢ and 6, give the following

characterization of the threshold X;.

LEMMA 2. The function X, is decreasing in N, strictly so at the points where 0 < 7., < U.
Fixing a value of N, the function X, is strictly increasing in ¢, strictly so at the points
where 0 < Z,, < U. Fixing a value of Ny, the function X, is strictly decreasing in 6,

and #, at the points where 0 < z,, < U. Moreover we have the following expansion:
XSS(NSS) = %Jrgﬁ + ﬁ + O(O’).
Since the function Xgs(Ngs) is decreasing in Ny, it has an inverse, which we denote by

Xt and is given by:

ss

1 pc

X (Tss) = - —————— ———— — 0y | where
20 S 1 S )
C(—ew) o een)
Al :Em, A2:5m andn: 2p/0 . (19)

Note that, from the expansion given in Lemma 2, fixing Z,,, then X '(Z,,) is increasing in
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o in a neighborhood of ¢ = 0, provided that 6, > 0, we have

1 cp
X )~ ——FF——=—0y).
s (Tm) On (xss —a/\V2p 0)
Next we can solve the Kolmogorov forward equations for m(z), given a barrier Zs subject
to an exit point and to the conditions coming from the reflecting barriers. We denote the

corresponding value of the fraction that have adopted as Ny,(Z,s). The details of the solutions

can be found in Appendix 1.2. Solving this equation we obtain

_ tanh (i
Nos(ZTss) =1 — x(js + %z%s) where v = /2v/02. (20)

As it is intuitive, the value of N (Zss) is decreasing in the level of the barrier T. The next

lemma, obtained by analyzing equation (20) gives a characterization of Ns.

LEMMA 3. Fix vy > 0, then N (Z) is strictly decreasing in Z,. Fixing > 0, then N, is
strictly increasing in 7, and hence strictly decreasing in 0. Moreover, we have the expansion:
Nis(T) =1 = % + %= + 0(0).

The system given by equation (19) and equation (20) determines Zss and Ng,. In partic-

ular, a stationary equilibrum is described by the pair {Z,, Ny}, which solves
Nyo = Noo(Zss) = X1 (25).

Next, we summarize the behavior of the stationary equilibrium for small values of . We
label the stationary equilibrium with superscripts {H, L} to hint at the associated High or

Low level of adoption, so that z < z’.

PROPOSITION 6. Assume that v > 0 and that the parameters 6y, 0,,,c and p are such
that there are two interior stationary equilibria in the deterministic case of o = 0, and label
them as 72 < 7L, Then, (i) there exists a & > 0 such that for all ¢ € (0,5) there are two
interior stationary equilibria with 2 < L. (ii) The thresholds for each stationary equilibria
is continuous with respect to o at ¢ = 0. (iii) The sign of the comparative static differs

across stationary equilibria, with

aigj£>0>8i£5 and aiSL“5>O>6’i‘g
Oc Oc 00, 06y

The proposition shows that the high adoption stationary equilibria behaves in an intuitive

H

) associated to a smaller adoption cost (¢), or to a

way, with more adoption (a lower
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larger intrinsic value of the technology (6p). The comparative statics for the low adoption

stationary state are just the opposite.

Figure 1: Stochastic Stationary Equilibria: Density of non-adopters: m(x)

m(x)

—o =0
—o >0

~stochastic
s

x

i"/' terministic

8

(a) Deterministic and Stochastic Stat. Eqbm  (b) High and Low Adoption Stat. Eqbm

Panel (a) of Figure 1 compares the density of stationary distribution of non-adopters
for the deterministic case (¢ = 0) with the one for the stochastic case (¢ > 0). The key
difference is that in the invariant equilibrium of the stochastic case there are agents with low
benefits, namely with z(t) < Zss, who have the technology. These are agents who adopted the
technology in the past (for some ¢’ < ¢t when z(t') > Z(#'), and whose stochastic = decreased
over time. As a result, m(x) < 1/U when o > 0, and the density of non-adopters below Z
is not uniform. Given that the density takes time to adjust, the stochastic model features
the presence of dynamics in the adoption of a new technology; while the distribution of the
deterministic model can be generated instantaneously (with the agents above Z immediately
adopting), the distribution of the stochastic model takes time to change from the initial
uniform distribution to the invariant distribution, as agents adopt when x(t) > Z(¢) and it
takes times for these z’s to crawl back below the stationary threshold. Panel (b) shows the

densities of the invariant distribution of the high and the low adoption stationary equilibria

L
EEN

in the stochastic model (o > 0). Naturally, £ < 7L so that both equilibria have adopters

below the stationary thresholds, although fewer of them in the low adoption stationary
equilibrium.

5 Stability of Stationary Equilibria

In this section we analyze the local stability of the stationary equilibria. We explore the

question using a perturbation of the distribution of adopters in each of the two interior
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invariant distributions using techniques from the Mean Field Game literature developed
in Alvarez, Lippi and Souganidis (2022b). For the purpose of this section we model the
equilibrium as from Definition 2. This dynamical system is infinite-dimensional because the
state at every time t is given by the entire density m(x,t).

We consider the stationary equilibrium given by m, and we ask whether starting from
an initial condition mg close to m the economy converges back to m. Because the system is
infinite-dimensional there are many deviations that are possible. Any initial condition can
be described by mg(z) = m(z) + ew(z), for some w satisfying fOUw(x)d:E = 0. The sense in
which the analysis is local is that we evaluate the derivative of the system with respect to
¢ and evaluate it at ¢ = 0. The alert reader will notice that the local dynamics of a system
in R? are encoded in a ¢ x ¢ matrix. The analogous infinite dimensional object is a linear
operator that will be analytically presented below.

We begin with the approximation of Z(t) = X'(N)(t). We take the directional derivative
(Gateaux) with respect to an arbitrary perturbation n of a constant path N. In particular,
we consider paths defined by N(t) = Ny + en(t) around the stationary value Ns;. We will

denote this Gateaux derivative by .

PROPOSITION 7. Fix a stationary equilibrium with interior Z,,, and its corresponding
N,s. Let Dy be equal to the stationary value function D corresponding to that stationary

equilibrium. Let n : [0,7] — R be an arbitrary perturbation. Then

X(NSs + €en; D)<t) — X<Nss; D)(t)

S = 1i
g(t) = lim ;
9 T
== G(1t — t)n(1)dT, 21
where
o0 2 1 . 2 . 3
— oS > L g 77'(5 +7) (11— cos(my)
G(s) = JE:O cje >0,v;=p+ 5 (—fss and ¢; = —7r(j " %) 7

where Dm(i’ss) < 0 is the second derivative of the stationary value function:

. pC — Tss [0p + 0, N Tgs  tanh (7Zgy) 2v
Dmx ss) — y Nss =1-— T .
(Z) o?/2 U o ~U o o2

Thus, we can write Z(t) = Zss + €y(t) + o(e). Note that G is positive and D,, is negative,
so the effect of the future path on the current value is negative, which is consistent with the

property that X is decreasing. Also note that it is proportional to 6,,, so if 6, = 0, then the
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threshold will be constant. Thus, the approximation of z(t) depends on the perturbation
of the path of N from ¢ to T, given by n(s) for s = [t,T|. The proof of the proposition
is obtained by jointly differentiating with respect to € the system defined by D and Z in
equation (9) and equation (10). This yields a new p.d.e., and new boundary conditions. The
expression for g is obtained once we solve this new p.d.e., see the proof in Appendix C.1.
Now we turn to the perturbation for the fraction of the adopters as a function of the
thresholds and of a perturbation of the initial condition. We approximate N (t) = N (Z, mg)(t)
by taking the directional derivative (Gateaux) with respect to an arbitrary perturbation g
of a constant path  and a perturbation w on the stationary density m. In particular,
we consider paths defined by z(t) = Zss + €y(t) around the stationary threshold zg,, and

mo(z) = m(z) + ew(z). We will denote this Gateaux derivative by n.

ProprosiTION 8. Fix the interior threshold Z,, of a stationary equilibrium and its
corresponding Ny, and let m be the corresponding invariant distribution of non-adopters.
Let w : [0,Zss] — R be an arbitrary perturbation to the distribution, and let g : [0,7] — R
be an arbitrary perturbation of the threshold. Then

N (Zss + €g;m + ew)(t) — N (Zss; m) (1)

n(t) = lgf(r)l ;
= nofeo) () + 22T / J(t - T)g(r)dr (22)
where
J(s) = Z e "% with p; = v+ %(72 (W(il_ j)) (23)
O e (24)

— (5 + ) (@5 5)

¢;(z) = sin (% + j) ™ (1 - ;)) for 2 € [0, Zy (25)

) 2 Tss
{pgw) _ 2 oi(r)w(x)dr and m,(Ts) = —% tanh(vZ,).

<90ja 90j> Tss 0

Thus, we can write N(t) = Ny + en(t) + o(e). This formula encodes the effect of two
perturbations: w and 3. The former is the perturbation on the initial condition mg, whose
effect is in the term ng(w)(t). We note that ng(w)(t) is the effect at time ¢ on the path N (%)
triggered by a perturbation of the initial condition keeping the threshold rule z fixed. The
function ng(w) can be further reinterpreted by considering the limiting case of a perturbation

w given by a distribution concentrated at x = & < Iy, i.e., a Dirac’s delta function as
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The effect of the perturbation, g, on the path of the threshold, Z(s), is captured by the second
term in equation (22). This term gives the effect at time ¢ on the path N(t) of a perturbation
of the threshold rule z, keeping the initial condition m fixed. Also, consistent with our general
result for AV, the effect of the threshold is negative, as J > 0 and m,(Zs) < 0.

For future reference it is useful to understand the behavior of ng(t) as function of time.
In particular, the rate at which the perturbation w to the initial distribution converges back

to the stationary distribution, while keeping Z(t) = Zs;. This rate is given by the value of

o = v+ %2 (fﬁ)Q, i.e., the dominant eigenvalue. The proof’s strategy is in Appendix C.2
and resembles the one for the previous proposition.

The next step is to use the last two propositions to derive one equation for the linearized
equilibrium as a function of the perturbed initial distribution mg(z) = m(z) + ew(x). We
combine equation (21) and equation (22) to arrive to a single linear equation that n(t) must

solve as a function of w.

THEOREM 2. Fix an interior threshold Z,s for an stationary state, with its corresponding
Ngs, and let m be the corresponding invariant distribution of non-adopters. Let mg(x) =
m(z) + ew(z). Let Dy be equal to the value function D corresponding to that stationary

equilibrium. The linearized equilibrium must solve

n(t) = no(w)(t) + © /0 K(t, s)n(s)ds, (26)

My (-?S.S)U'Q@n

ZssDzo (fss)

where ng(w)(t) is given in Proposition 8 and © = > (. The kernel K is given by

(it mint,s} _ |
‘ } >0 (27)

NODEDIP I { o

N
Moreover, Lip, = sup, [ |K(t,s)|ds < (%) . Furthermore, if © Lip, < 1 there exists a

unique bounded solution to equation (26) which is the limit of

n=[I+06K+60’kK*+...] no(w) where K(g)(t) = /0 K(t,s)g(s)ds, (28)
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and where K71 (g)(t) = fOT K(t,s)K’(g)(s) ds for any bounded g : [0,T] — R.

A few remarks are in order. First, note that K depends on 6,, because 11;,1; are a function
of T4, which is itself a function of 6,. The coefficient © depends on 6,, directly and indirectly
through Zs;. Hence the equation (26) and its solution depend on which steady equilibria we
focus on. Second, if we discretize time so that t € {A(j — 1) :j=1,...,J} for A, = %,
as done in Section 2.1, then the operator K is a J x J matrix with elements K (¢;,t;), and
ng,n are J x 1 vectors, so that equation (26) becomes the linear equation n = ny + OK n.
Third, the fact that ©K > 0 implies that the terms OK + ©2K? 4 ... in equation (28) give

the amplification over and above ng, due to the time-varying path of the barrier z.

Figure 2: Perturbation of Stationary Equilbria
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time ¢ time ¢

(a) High Adoption Stat. Eqbm. (b) Low Adoption Stat. Eqbm.

Figure 2 illustrates the stability of the high and low adoption equilibria, respectively, in
Panels (a) and (b). Each panel considers two shocks that displace a small mass of agents away
from the invariant distribution of non-adopters and endows them with the app. The shocks
differ in the direction in which the mass is displaced. The blue line depicts the case where
the app is given to agents with low benefit, namely with x &~ 0, while the red line considers
a perturbation where the app is assigned to agents with a high benefit, namely with z ~ Z;.
Two remarks are due. First, the high adoption equilibrium is locally stable, as displayed
in Panel (a): for all shocks considered, the system returns to its invariant distribution. We
also note that the half life of the shock is much shorter when the perturbation assigns the
app to agents with a high benefit (x &~ Z,), as these agents were going to get the app soon
anyways. Second, it is apparent that the low adoption equilibrium is unstable in Panel (b):
the dynamics of the system following a perturbation are explosive, showing that the sequence
in equation (28) does not converge; i.e., that the system does not return to the the invariant

distribution after being shocked. To see the explosive nature of the path nearby the low
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activity stationary equilibrium, note the difference in the scale of the two panels.

6 The Planning Problem

This section sets up the planning problem in the stochastic version of the model (o > 0).
We first state the planning problem, provide a characterization of its solution, and show
how it can be decentralized as an equilibrium with a subsidy. Section D.1 characterizes the
stationary solution of this problem.!

The planner solves a non-trivial dynamic problem since the state of the economy is an

entire distribution. At time zero the planner solves:

fﬂ({;ﬁ{/ / (U =, )2 (60 + 6,N(2)) da

~
Density of adopters Flow benefit

- [Teremim v a

0

TV
Flow of adoption cost: gross new adoptions

subject to

(t)
N(t)=1- / m(z,t)dz for all t
0

2

my(z,t) = —v (m(x,t) — 1/U) + %mm(aﬁ, t) foraze (0,z(t)) and allt > 0 KFE

m(z,t) =0 forx € [z(t),U] and all t > 0 Adoption
m.(0,t) =0 forallt>0 Reflecting
m(z,0) = mo(x) for all = initial condition

The objective function of the planner integrates the lifetime utility of agents using as a
weight the discount factor e™" for the cohort born at ¢. The first term contains the utility
flows of all those using the technology. The second term subtracts the cost of adoption across
time, where Ny(t) + vN(t) is the gross cost of adoption at time ¢. The planner decides at
each time a threshold Z(t) which determines adoption, and takes as given the initial condition
mo(z). The planner takes as given the law of motion of the density m that is only affected
through the choice of Z. The first constraint defines N (t), the second one is the KFE of the
density of non-adopters. As before, the density of non-adopters is zero to the right of z(¢),

" Appendix D.5 uses a linearized version of the problem to analyze dynamics around its invariant distri-
bution.
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there is an exit point at Z(¢), and there is a boundary conditions from reflection at zero.

To characterize the solution we write the lagrangian for this problem. We denote the
lagrange multiplier of the KFE equation by e "*A(z,t) and replace N(t) and N, (¢) by the
corresponding integrals. To derive the p.d.e’s for non-adopters, we first adapt the planning
problem to a discrete-time discrete-state using a finite-difference approximation. In this set
up we allow for a more general policy, i.e., not necessarily a threshold rule. We obtain the first
order conditions for a problem in finite dimensions and take limits to find the corresponding
p.d.e’s. We provide details of this derivation in Appendix D.3. The p.d.e’s corresponding to

the planning problem are summarized in the following proposition.

PROPOSITION 9. A planner problem is given by {Z(t), A(z,t), m(x,t)} such that adoption
occurs for x > z(t), and the Lagrange multiplier A, and the density of non-adopters m solve

the p.d.e. for non-adopters:

Z(t) Z(t)
pA(z,t) = z(6p + 0,1 — / m(z,t)dz]) + 6, (% — / m(z,t)zdz) (29)
0 0
+ %QAM(x,t) + Me(z,t) for x < z(t) and ¢ > 0
Mz, t) =cfor x > Z(t) and t > 0
A (Z(t),t) =0for t >0 (30)
A:(0,t) =0 fort >0

and my(z,t) = v(1/U —m(z,t)) + %Qmm(:v,t) for x < z(t) and t > 0
m(z,t) =0 for z > Z(t) and t >0
(0,1) =

)

0fort>0

= mg(x) for all =

This proposition has two important consequences. First, it allows us to compute the solu-
tion of the planning problem following similar steps as for the computation of the equilibrium
described in Section 3.1. Second it indicates how to decentralize the optimal allocation as
an equilibrium. Define Z(¢ fo @ m(z,t)zdx > 0 and note that this non-negative
magnitude is the difference between the average x in the population, U/2, and the average z
among those who have not adopted the technology (the integral term). Comparing the p.d.e.
for the Lagrange multiplier A in equation (29) with the p.d.e. for D which characterizes the
equilibrium in equation (9), we see that these equations only differ in the term 6,,Z(t) in the
flow. Thus, if agents that adopt the technology were given a flow subsidy 6, Z(t) every pe-

riod after they have adopted, then the planner allocation would be an equilibrium. Note that
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0,7 (t) contains the inframarginal valuation of the technology for those that use it. So, this

subsidy corrects the externality. We summarize this discussion in the following proposition.

ProprosiTioN 10. Fix an initial condition my and the solution of the planner’s problem
{z,\,m}. The planner’s allocation coincides with an equilibrium for the same initial condi-
tions with a time varying subsidy paid to adopters. The flow subsidy paid at time ¢ to those
that have adopted at t or before is given by 6,Z(t) where

Z(t)
Zt)y =Y - /0 m(z,t)xdr forallt >0 (31)

The subsidy 6,7 is independent of .

For future reference, we define Z = Z(Z;my) as the solution of the path for Z defined in
equation (31). In particular, given Z and my, using the KFE one solves for the path of m,
and computing the integral in equation (31) gives Z. Consider the path Z that solves the
p.d.e. pA(z,t) =z (6o + 0, N (1)) + 0, Z(t) + %2)\3&(35, t) + Ae(z,t) with the three boundaries
given in equation (30) given the paths of N and Z and terminal condition A(z,T) = Ap(z).
For future reference, we define 7 = X¥(N, Z; Ar) to denote the functional, which is defined
as the X in Section 2.1 and where the superscript P denotes the planning problem. Note
that, using the definitions for X¥, Z and A the planner’s problem must satisfy the fixed
point 7* = H(z*, \p,mg) where H(z; A\r, mo) = X (N (Z;m0), Z(Z;m0); Ar). We can use
the same type of analysis, based on monotonicity, to characterize the solution to this fixed
point problem, and to compute it.

Figure 3 illustrates an application of the optimal subsidy to reach a high adoption equilib-
rium. In Panel (a) of the figure, we plot the time path of the share of adopters, N(t), for the
stationary high-adoption equilibrium and for the planning problem. Since the initial distribu-
tion of non-adopters corresponds to the stationary equilibrium, the path of N(¢) is constant.
Instead, the path for N(¢) in the planning problem jumps on impact (at the time the subsidy
appears) and converges gradually to the stationary distribution of the planning problem (see
Appendix D.1 for a characterization of this stationary distribution). Panel (b) shows the
time path of the optimal subsidy, Z(t), which starts at the value Z(0) = ¥ — OjH m(z)xdx
and increases over time thereafter. In this example, although the high-adoption equilibrium
has an interior solution, the planning problem mandates close to full adoption in stationary

distribution.
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Figure 3: Planning Problem: mg(x) = m(x)

Equilibrium path - initial condition mg(t) = m(x) Equilibrium path
05

08
0498

08

— N(t): Decentralized =
—— N(t): Planning Problem N

N(t)

06

05

04 049
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

time ¢ time ¢

(a) N(t) (b) Z(t)

7 Application: SINPE, A Digital Payments Platform

In May 2015, the Central Bank of Costa Rica launched SINPE Mévil (hereafter, SINPE), a
digital platform that allows users to make money transfers between each other using their
mobile phones.'? To use SINPE, users must have a bank account at a financial entity and
link this account to their mobile number. According to the Central Bank of Costa Rica,
SINPE’s main goal was to become a mass-market payment mechanism that could reduce the
demand for cash as a method of payment. As such, SINPE was originally designed to be
used for relatively small transfers, which are not subject to any fee as long as they do not
exceed a daily sum. The maximum daily amount transferred without a fee varies by bank;
for most users, it is approximately $310, although some banks have lower limits of $233 and
$155.1% The average size of transactions in SINPE is about $50, and has slowly decreased

over time, as shown in Figure G2.

7.1 Data

SINPE Transactions Our data on SINPE usage is comprehensive: For each user in the
country, we have official records on the exact date when she adopted the technology, along
with records on each transaction made. In particular, for each transaction, the data records
the amount transacted along with the individual identifier of the sender and the receiver of

the money. Records also include the sender’s and the receiver’s bank. Importantly, this

12SINPE is an acronym for the initials of “National Electronic Payment System” (Sistema Nacional de
Pagos FElectrénicos), in Spanish.

13Respectively, these limits in dollars correspond with approximately 200,000; 150,000; and 100,000 Costa
Rican colones.
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information is available, not only for individuals, but also for firms.

Family Networks and Demographics Data on nationwide family networks is available
from Costa Rica’s National Registry. In particular, these data records, for each citizen, if he
or she is married, to whom, and who their children are. Thus, it is possible to reconstruct
each person’s family tree. We find that the average number of first-degree, second-degree, and
third-degree relatives is 6.4 (median 5), 10.9 (median 9), and 22.0 (median 18), respectively.
The data includes individual identifiers that can be linked to SINPE. The data is dynamic,
meaning that we can see how family networks are changing over time between 2015 and 2021.

The same data source provides details on individual demographics.

Networks of Coworkers, Income, and Occupation Matched employer-employee data
is obtained from the Registry of Economic Variables of the Central Bank of Costa Rica, which
tracks the universe of formal employment and labor earnings. The data include monthly de-
tails on each employee, including her occupation, earnings, and employment history spanning
SINPE’s lifetime (2015-2021).! The average number of coworkers in our sample is 4.7 (me-
dian 1). Using this data, we can identify which people are working at the same firm in a
given month to construct networks of coworkers which can be matched to SINPE records.

Networks of coworkers vary at a monthly frequency as people change employers.

Networks of Neighbors and Residential Location We construct networks of neighbors
for all adult citizens in the country leveraging data from the National Registry and the
Supreme Court of Elections. The data consist of official records on the residence of each
citizen, along with his or her identifier. While the records include each person’s district of
residence, and there are 488 districts across the country, they also include the voting center
which is closest to the citizen’s residence, with 2,059 centers in total. Thus, we leverage the
latter to get a more precise notion of a person’s neighborhood. Approximately, 1,670 adults

are assigned to each voting center, on average (median 613).

Firm-Level Data We leverage data on corporate income tax returns from the Ministry of
Finance, which cover the universe of formal firms in the country and contain typical balance
sheet variables, including sales, input costs, and net assets. The data start in 2005 to 2021

and includes details on each firm’s sector and location.

17t is worth noting that informal workers are a relatively small share of all workers in Costa Rica (27.4%),
which is significantly below the Latin American average of 53.1% (ILO, 2002).
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7.2 From Model to Data: Stylized Facts

As described in the previous section, we obtained (i) individual-level data on networks of
neighbors, coworkers, and relatives from official sources; and (ii) transaction-level data in-
cluding information on the senders and receivers who took part in each transaction since
the app’s inception. Moreover, crucially, we can link identifiers in (i) and (ii). We leverage
this substantial data effort to construct measures of networks (N) for each individual and
to obtain individual-level measures of adoption at the extensive and intensive margins. This
will enable us to document six stylized facts consistent with the model, along with evidence

of selection (x) and strategic complementarities (6,,).

Fact 1: Most transactions are peer-to-peer. In theory, firms are allowed to adopt SINPE
and conduct transactions within the app. In practice, however, transactions involving firms
represent a small fraction of all payments. In fact, as shown in Figure G3, individual-to-
individual transactions account for over 95% of all transactions, regardless of the time period
considered.!® This motivates us to study adoption through the lens of our model while fo-
cusing on peer-to-peer transactions where small agents trade with each other, rather than

one with a few non-atomistic players (large firms).

Fact 2: Indiwiduals “belong” to networks. We can identify different types of networks for each
user. In particular, we could identify which transactions take place within an individual’s
network of neighbors, coworkers, or relatives. To do so, we construct the network of neighbors
of each user—which would correspond with the people assigned to her voting center—and
calculate the number and total value of SINPE transactions involving another user who
also resides in the same neighborhood. Similarly, we construct the network of coworkers for
each employed user based on employer-employee data. Finally, we construct family networks
taking into account relatives up to a third-degree of kinship.

In Table 1, we document that most transactions involve a counterpart who belongs to at
least one of these networks:!% 43% of all transactions have a neighbor as counterpart, 44%
of all transactions are among coworkers, and 28% are conducted with relatives. We can also
consider the union of all three networks described above, and document that about three-
quarters of all transactions take place with someone within at least one of the three types
of networks. Moreover, we also document that users have relatively few peers with whom

they transact. Before 2019, each user had less than two distinct connections per month,

15This finding holds if we instead consider unweighted number of transactions, as shown in Figure G4.

16Table 1 calculates shares using 2018 data; the midpoint of our sample period. Results remain quite
similar if, instead, we consider the average shares of transaction for the entire sample period, as shown in
Table G1.
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both as a sender and as a receiver. By the end of 2021, this number had increased; each
user had just over six distinct monthly connections and the average total number of distinct
connections per user was 44, i.e., people do not necessarily transact with the same six p