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1. Introduction

The looming climate crisis has put climate change at the top of the global pol-

icy agenda. Governments around the world have started to implement carbon

pricing policies to mitigate climate change, either via carbon taxes or cap and

trade systems. Yet, little is known about the effects of such policies in practice.

Is carbon pricing effective at reducing emissions? What is the impact on output,

employment and inflation, and who bears the economic costs of these policies?

To answer these questions, I propose a novel approach to identify the aggre-

gate and distributional effects of carbon pricing, exploiting institutional features

of the European carbon market and high-frequency data. The European Union

Emissions Trading System (EU ETS) is the largest carbon market in the world,

covering around 40 percent of the EU’s greenhouse gas (GHG) emissions. The

market was established in phases and the regulations have been updated fre-

quently. Using an event study approach, I collect 126 regulatory update events

concerning the supply of emission allowances. By measuring the change in the

carbon futures price in a tight window around the regulatory news, I isolate a

series of carbon policy surprises. Reverse causality can be plausibly ruled out

because economic conditions are known and priced by the market prior to the

regulatory news, and they are unlikely to change within the tight window I con-

sider. Using the surprise series as an instrument, I estimate the dynamic causal

effects of a carbon policy shock.

I find that carbon pricing has significant effects on both emissions and the

economy. A carbon policy shock tightening the carbon pricing regime causes a

strong, immediate increase in energy prices and a persistent fall in overall GHG

emissions. Thus, carbon pricing is successful in achieving its goal of reducing

emissions. However, this does not come without a cost. Consumer prices rise

significantly and economic activity falls, as reflected in lower output and higher

unemployment. Monetary policy leans against the inflationary pressures, likely

exacerbating the effects on activity. Stock prices fall, but the shock does not ap-

pear to strongly transmit through financial markets. The main transmission chan-

nel appears to work through higher carbon prices, which passing through energy

prices lead to a fall in income, and thus consumption and investment. Interest-

ingly, the fall in activity turns out to be somewhat less persistent than the fall

in emissions – improving the emissions intensity in the longer term. Consistent

with that, I document a significant uptick in low-carbon patenting as carbon pric-

ing creates an incentive for green innovation.
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Carbon policy shocks also contribute meaningfully to historical variations in

prices, emissions and macroeconomic aggregates. However, they did not account

for the fall in emissions associated with the global financial crisis – supporting the

validity of my identification strategy.

My results illustrate a trade-off between reducing emissions and the economic

costs of climate policies. Importantly, these costs are not equally distributed

across society. Using detailed household-level data, I document pervasive het-

erogeneity in the expenditure response to carbon policy shocks. While the ex-

penditure of higher-income households only falls marginally, low-income house-

holds reduce their expenditure significantly and persistently. These households

are more severely affected in two ways. First, they spend a larger share of their

disposable income on energy and thus the higher energy bill leaves significantly

fewer resources for other expenditures. Second, they experience a stronger fall

in income, as they tend to work in sectors that are more impacted by the policy.

Interestingly, these are not the sectors with the highest energy intensity but sec-

tors that are more sensitive to changes in demand, producing more discretionary

goods and services. Crucially, the magnitudes of the expenditure responses are

larger than what can be accounted for by the direct effect through energy prices

alone. This points to an important role of indirect, general equilibrium effects via

income and employment. Based on my estimates, indirect effects can account for

about two-thirds of the total effect on consumption.

My findings on the distributional impact of carbon pricing suggest that tar-

geted fiscal policies could be an effective way to reduce the economic costs. To

the extent that energy demand is inelastic, which turns out to be particularly

the case for poorer households, this should not compromise emission reductions.

This intuition is confirmed in a climate-economy model with nominal rigidities

and heterogeneity in households’ energy expenditure shares, income incidence

and marginal propensities to consume (MPCs). The model can account for the

observed empirical responses to carbon policy reasonably well. Using the model,

I show that redistributing carbon revenues can mitigate the fall in aggregate

consumption and reduce the regressive distributional consequences of carbon

pricing, without compromising emission reductions to a significant extent. Fi-

nally, I provide some suggestive evidence that carbon pricing leads to a fall in

the support for climate-related policies that is particularly pronounced among

low-income households. Therefore, mitigating the distributional impact may also

help to increase the public support for climate policy.

A comprehensive series of sensitivity checks indicate that the results are ro-

bust along a number of dimensions including the selection of event dates, the
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construction of the instrument, the estimation technique, the model specification,

and the sample period. Importantly, the results are also robust to accounting for

confounding news over the event window using an heteroskedasticity-based es-

timator.

Related literature and contribution. This paper contributes to a growing litera-

ture studying the effects of climate policy and carbon pricing in particular. While

there is mounting evidence on the effectiveness of such policies for emission re-

ductions (Martin, De Preux, and Wagner, 2014; Andersson, 2019, among others),

less is known about the economic effects. A number of studies have analyzed the

macroeconomic effects of the British Columbia carbon tax, finding no significant

impacts on GDP (Metcalf, 2019; Bernard and Kichian, 2021). Metcalf and Stock

(2020a,b) study the macroeconomic impacts of carbon taxes in European coun-

tries. They find no robust evidence of a negative effect of the tax on employment

or GDP growth.1 In a similar vein, Konradt and Weder di Mauro (2021) find that

carbon taxes in Europe and Canada do not appear to be inflationary. In contrast,

theoretical studies based on computable general equilibrium models tend to find

contractionary output effects (see e.g. McKibbin et al., 2017; Goulder and Haf-

stead, 2018). I contribute to this literature by providing new estimates based on

the EU ETS, the largest carbon market in the world.

A large literature has studied the macroeconomic effects of discretionary tax

changes more generally. To address the endogeneity of tax changes, the literature

has used SVAR techniques (Blanchard and Perotti, 2002) and narrative methods

(Romer and Romer, 2010). The narrative approach points to large macroeconomic

effects: a tax increase leads to a significant and persistent decline of output and

its components (see also Mertens and Ravn, 2013; Cloyne, 2013). However, it is

unclear how much we can learn from these estimates with respect to carbon pric-

ing, which is enacted to correct an externality and not because of past decisions

or ideology. While the motivation behind carbon pricing is arguably long-term

and thus more likely unrelated to the current state of the economy – similar to

the tax changes considered in Romer and Romer (2010) – it is still perceivable

that regulatory decisions also take economic conditions into account.

To address this potential endogeneity in carbon pricing, I propose a novel

identification strategy exploiting high-frequency price variation. From a method-

ological viewpoint, my approach is closely related to the literature on high-

frequency identification, which was developed in the monetary policy setting

1Metcalf and Stock (2020a,b) study the effects of national carbon taxes, which are present in
many European countries and cover sectors that are not included in the EU ETS. A key difference
is that European carbon taxes generally do not cover the power sector, which is part of the ETS.
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(Kuttner, 2001; Gürkaynak, Sack, and Swanson, 2005; Gertler and Karadi, 2015;

Nakamura and Steinsson, 2018, among others) and more recently employed in

the global oil market context (Känzig, 2021). In this literature, policy surprises

are identified using high-frequency asset price movements around policy events,

such as FOMC or OPEC meetings. The idea is to isolate the impact of policy news

by measuring the change in asset prices in a tight window around the events.

I contribute to this literature by extending the high-frequency identification

approach to climate policy, exploiting institutional features of the European car-

bon market. A number of studies have used event study techniques to analyze

the effects of regulatory news on carbon, energy and stock prices (Mansanet-

Bataller and Pardo, 2009; Fan et al., 2017; Bushnell, Chong, and Mansur, 2013,

among others). To the best of my knowledge, however, this paper is the first to

exploit these regulatory updates to analyze the economic effects of carbon pric-

ing. The approach is very general and could also be employed to evaluate the

performance of other cap and trade systems.

Equipped with this novel identification strategy, I provide new evidence not

only on the aggregate but also on the distributional consequences of carbon pric-

ing. Among policymakers, there is growing consensus that the transition towards

a low-carbon economy should involve fairness and equity considerations (Euro-

pean Comission, 2021). Against this backdrop, it is crucial to understand how car-

bon pricing affects economic inequality. I find that carbon pricing in the EU has

been more regressive than commonly thought, burdening lower-income house-

holds substantially more than richer ones. This stands in contrast to existing stud-

ies, which tend to find a more modest regressive impact (Beznoska, Cludius, and

Steiner, 2012; Ohlendorf et al., 2021). My findings illustrate the importance of

accounting for indirect, general-equilibrium effects via income and employment;

solely focusing on the direct effects via higher energy prices can understate the

actual distributional impact.

Finally, I show that carbon-policy induced changes in energy prices transmit

through a powerful demand channel that can outweigh the traditional cost chan-

nel. This has important implications for the transmission of energy price shocks

more broadly and speaks to a growing literature studying the role of Keynesian

supply shocks (see e.g. Guerrieri et al., 2022). The demand channel can be rein-

forced by the monetary policy reaction (Bernanke, Gertler, and Watson, 1997) and

the unequal incidence on constrained households (Bilbiie, 2008; Auclert, 2019;

Patterson, 2021). Thus, the distributional consequences do not only matter for

inequality but also for the transmission of the policy to the macroeconomy. To

formalize this in the context of carbon tax policy, I develop a climate-economy
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model (in spirit of Heutel, 2012; Golosov et al., 2014; Annicchiarico and Di Dio,

2015) with nominal rigidities and household heterogeneity. In this sense, I also

contribute to an influential literature studying the role of heterogeneity in the

transmission of fiscal policies (see e.g. Johnson, Parker, and Souleles, 2006; Ka-

plan and Violante, 2014; Cloyne and Surico, 2017, among many others).

Roadmap. The paper proceeds as follows. In the next section, I provide in-

stitutional background on the European carbon market and discuss the high-

frequency identification strategy. Section 3 covers the econometric approach. Sec-

tion 4 presents the results on the aggregate effects of carbon pricing, on emissions

and the macroeconomy. Section 5 looks into the heterogeneous effects of carbon

pricing, using detailed household-level data. I analyze the distributional impact,

the relative importance of different transmission channels, and the role of redis-

tributing carbon revenues. Section 6 looks beyond the short term and analyzes

the impact on attitudes towards climate policies and the effects on green innova-

tion. Section 7 concludes.

2. Institutional Background and Identification

2.1. The European carbon market

The European emissions trading system is the cornerstone of the EU’s policy to

combat climate change. It is the largest carbon market in the world and also has

one of the longest implementation histories. Established in 2005, it covers more

than 11,000 heavy energy-using installations and airlines, accounting for around

40 percent of the EU’s greenhouse gas emissions.

The market operates under the cap and trade principle. Different from a car-

bon tax, a cap is set on the total amount of certain greenhouse gases that can be

emitted by installations in the system. The cap is reduced over time so that total

emissions fall. Within the cap, emission allowances are auctioned off or allocated

for free among the companies in the system, and can subsequently be traded. Al-

ternatively, companies can also use limited amounts of international credits from

emission-saving projects around the world. Regulated companies must monitor

and report their emissions. Each year, the companies must surrender sufficient

allowances to cover their emissions. This is enforced with heavy fines. If a com-

pany reduces its emissions, it can keep the spare allowances for future needs or

sell them to another company short of allowances (European Comission, 2020a).
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A brief history of the EU ETS. The development of the EU ETS was divided

into different phases. Figure 1 shows the evolution of the carbon price over the

phases of the system. The first phase lasted three years, from 2005 to 2007. This

period was a pilot phase to prepare for phase two, where the system had to run

efficiently to help the EU meet its Kyoto targets. In this initial phase, almost all

allowances were freely allocated at the national level. In absence of reliable emis-

sions data, phase one caps were set on the basis of estimates. In 2006, the carbon

price fell significantly as it became apparent that the total amount of allowances

issued exceeded total emissions, and eventually converged to zero as phase one

allowances could not be transferred to phase two.

Figure 1: The EU Carbon Price

Notes: The EU carbon price, as measured by the price of the first EUA futures
contract over the different phases of the EU ETS.

The second phase ran from 2008 until 2012, coinciding with the first commit-

ment period of the Kyoto Protocol where the countries in the EU ETS had con-

crete emission targets to meet. Because verified annual emissions data from the

pilot phase was now available, the cap on allowances was reduced in this phase,

based on actual emissions. The proportion of free allocation fell slightly, several

countries started to hold auctions, and businesses were allowed to buy limited

amounts of international credits. The commission also started to extend the sys-

tem to cover more gases and sectors; in 2012 the aviation sector was included,

even though this only applied for flights within the European Economic Area.

Despite these changes, EU carbon prices remained at moderate levels. This was

mainly because the 2008 economic crisis led to large fall in emissions. As this was

not reflected in the way the caps were set, this led to a large surplus of allowances

weighing down on prices.

The subsequent third phase began in 2013 and ran until the end of 2020.

Learning from the previous phases, the system was changed in a number of key
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respects. In particular, the new system relies on a single, EU-wide cap on emis-

sions in place of the previous national caps, auctioning became the default way

of allocating allowances with harmonized allocation rules for the allowances still

allocated for free, and the system covers more sectors and gases, in particular

nitrous oxide and perfluorocarbons in addition to carbon dioxide. In 2014, the

Commission postponed the auctioning of 900 million emission allowances to ad-

dress the surplus of allowances that has built up since the Great Recession (‘back-

loading’). Later, the Commission introduced a market stability reserve, which

became operative in January 2019. This reserve has the aim to reduce the cur-

rent surplus of allowances and improve the system’s resilience to major shocks

by adjusting the supply of allowances. To this end, back-loaded and unallocated

allowances were transferred to the reserve rather than auctioned in the last years

of phase three.

The current, fourth phase spans the period from 2021 to 2030. The legislative

framework for this trading period was revised in early 2018. To achieve the EU’s

2030 emission reduction targets, the pace of annual reductions in total allowances

is increased to 2.2 percent from the previous 1.74 percent and the market stability

reserve is reinforced to improve the systems resilience to future shocks. More

recently, the Commission has proposed to further revise and expand the scope of

the EU ETS, with the aim to achieve a climate-neutral EU by 2050 (see European

Comission, 2020a).

Regulatory events. Given its pioneering role, the establishment of the European

carbon market has followed a learning-by-doing process. As illustrated above,

since the start in 2005, the system has been expanded considerably and its insti-

tutions and rules have been continuously updated to address issues encountered

in the market, improve market efficiency, and reduce information asymmetry and

market distortions.

Building on the event study literature, I collect a comprehensive list of regu-

latory events in the EU ETS. These regulatory update events can take the form of

a decision of the European Commission, a vote of the European Parliament or a

judgment of a European court. Of primary interest in this paper are regulatory

news regarding the supply of emission allowances. Thus, I focus on news con-

cerning the overall cap in the EU ETS, the free allocation of allowances, the auc-

tioning of allowances as well as the use of international credits. Going through

the official journal of the European Union as well as the European Commission

Climate Action news archive, I could identify 126 such events during the period

from 2005 to 2019. The events as well as the sources are detailed in Table A.1 in
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the Appendix. There are only a few events that concern the setting of the overall

cap in the system. In the first two phases, the key events concern decisions on the

national allocation plans (NAP) of the individual member states, e.g. the com-

mission approving or rejecting allocation plans or court rulings in legal conflicts

about the free allocation of allowances. With the move to auctioning as the default

way of allocating allowances, decisions on the timing and quantities of emission

allowances to be auctioned became the most important regulatory news in phase

three. Finally, starting from phase two, there were also a number of important

events related to the use and entitlement of international credits.

The selection of events is a crucial factor in event studies. As the baseline, I

use all of the identified events, however, in Appendix C.1, I study the sensitivity

of the results with respect to different event types in detail.

Carbon futures markets. There exist several organized markets where EU emis-

sion allowances (EUAs) can be traded. An EUA is defined as the right to emit

one ton of carbon dioxide equivalent gas and is traded in spot markets such as

Bluenext in Paris, EEX in Leipzig or Nord Pool in Oslo. Furthermore, there exist

also futures markets on EUAs, such as the EEX in Leipzig and ICE in London. In

2018, the cumulative trading volume in the relevant futures and spot markets was

about 10 billion EUA (DEHSt, 2019). The most liquid markets to trade emission

allowances are the futures markets. In this paper, I focus on data from the ICE,

which has been found to dominate the price discovery process in the European

carbon market (Stefan and Wellenreuther, 2020).

2.2. High-frequency identification

Since policies to fight climate change are long-term in nature, they are likely

less subject to endogeneity concerns than other fiscal polices (Romer and Romer,

2010). However, to properly address the concern that regulatory decisions in

the carbon market may take economic conditions into account, I adopt a high-

frequency identification approach.

The institutional framework of the European carbon market provides an ideal

setting in this respect. First, as discussed above, there are frequent regulatory

updates in the market that can have significant effects on the price of emission

allowances. Second, there exist liquid futures markets for trading allowances.

This motivates the idea to construct a series of carbon policy surprises by looking

at how carbon prices change around regulatory events in the carbon market. By

measuring the price change within a sufficiently tight window around the event,

reverse causality of the state of the economy can be plausibly ruled out because
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it is known and priced prior to the decision, and unlikely to change within the

tight window.

Specifically, I compute the carbon policy surprise series as the change in the

EUA futures price on the day of the regulatory event compared to the last trading

day before the event. To account for the fact that carbon prices were close to zero

at the end of the first phase, I measure the surprises as the EUR change in carbon

prices relative to the prevailing wholesale electricity price on the day before the

event:

CPSurpriset,d =
Fcarbon

t,d − Fcarbon
t,d−1

Pelec
t,d−1

, (1)

where d and t indicate the day and the month of the event, respectively, Ft,d is the

settlement price of the EUA futures contract, and Pelec
t,d−1 is the wholesale electricity

price. This allows me to isolate some variation in the carbon price that is driven

by the regulatory news, assuming that risk premia do not change over the narrow

event window.2 An alternative approach is to compute the surprise series as

the percentage change in the carbon price around the event. Reassuringly, this

produces very similar results, especially when excluding the second half of 2007

when carbon prices were approaching zero as the trial phase was coming to an

end, see Appendix C for more details.

The daily surprises, CPSurpriset,d, are then aggregated to a monthly series,

CPSurpriset, by summing over the daily surprises in a given month. In months

without any regulatory events, the series takes zero value.

Figure 2 shows the resulting carbon policy surprise series. We can see that

regulatory news can have a significant impact on carbon prices, with some news

moving carbon prices by close to 1.5 percent, relative to wholesale electricity

prices.3 In the first phase, there were a number of significant events concerning

the free allocation of allowances. For instance, in June 2005 the initial national

allocation plans were finally completed, which lead to a significant increase in

prices. The beginning of the second phase was characterized by only few regula-

tory news. This changed dramatically from the second half of phase two through

the first years of phase three, which were marked by many significant carbon

policy surprises. For example, carbon prices jumped up in March 2011 after the

Commission proposed to start the auctioning of allowances earlier than originally

2While futures prices are in general subject to risk premia, there is evidence that these premia
vary primarily at lower frequencies (Piazzesi and Swanson, 2008; Hamilton, 2009; Nakamura and
Steinsson, 2018).

3Carbon prices, per se, turn out to be more volatile, with some announcements moving prices
in excess of 40 percent, see Appendix C.1.
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Figure 2: The Carbon Policy Surprise Series

Notes: The carbon policy surprise series, constructed as the change of the EUA
futures price around regulatory policy events concerning the supply of EU emis-
sion allowances relative to the prevailing wholesale electricity price.

planned. On April 16, 2013 the European Parliament voted against the Commis-

sion’s back-loading proposal, which led to a massive fall in carbon prices. And in

March 2014, the Commission approved two batches of international credit enti-

tlement tables, causing a significant fall in prices, just to name a few. There were

also a number of significant surprises towards the end of phase three. In Febru-

ary 2019, carbon prices jumped up following news on the adoption of a stricter

carbon leakage list, and in April 2019, carbon prices increased further, after an

update on auction volumes in EFTA countries contributing to bullish sentiment

in the market.

Construction choices and diagnostics. A crucial choice in high-frequency iden-

tification concerns the size of the event window. There is a trade-off between

capturing the entire response to the announcement and the threat of other news

confounding the response, so-called background noise (Nakamura and Steins-

son, 2018). To give markets enough time to respond to the regulatory news, I

use a daily event window. Using a tighter, intraday window is complicated by

the fact that exact release times of the regulatory events are mostly unavailable.

However, to mitigate concerns about background noise when using a daily win-

dow, I also present results from a heteroskedasticity-based approach that allows

for background noise in the surprise series (see Appendix C.2).

Another choice concerns the maturity of the futures contract. I focus here

on the front contract (the contract with the closest expiry date) for two reasons.

First, it is the most liquid contract and thus gives the best price signal. Second,

near-dated contracts also tend to be less sensitive to risk premia (Baumeister and
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Kilian, 2017; Nakamura and Steinsson, 2018). Thus, focusing on the front contract

helps to further mitigate concerns about time-varying risk premia.

To be able to interpret the resulting series as carbon policy surprises, it is cru-

cial that the events do not release other information such as news about the de-

mand of emission allowances or economic activity in the EU more generally. To

address these concerns, I select only regulatory update events that were specifi-

cally about changes to the supply of emission allowances in the European carbon

market and do not include broader events such as outcomes of Conference of the

Parties (COP) meetings or other international conferences. In a series of sensi-

tivity checks, I also show that the results are not driven by a particular subset of

events. In particular, the results are robust to excluding events from the first trial

phase or excluding event days in periods of economic distress, such as the Great

Recession or the European debt crisis (see Appendix C.1).

Finally, I perform a number of additional diagnostic checks on the surprise

series as proposed in Ramey (2016), in particular with regards to autocorrelation,

forecastability and correlation with other structural shocks. I find no evidence

that the series is serially correlated. The p-value for the Q-statistic that all auto-

correlations are zero is 0.97. I also find no evidence that macroeconomic or finan-

cial variables have any power in forecasting the surprise series. For all variables

considered, the p-values for the Granger causality test are far above conventional

significance levels, with the joint test having a p-value of 0.93. Finally, I show

that the surprise series is uncorrelated with other structural shock measures from

the literature, including oil demand, uncertainty, financial, fiscal and monetary

policy shocks. Overall, this evidence supports the validity of the carbon policy

surprise series. The corresponding figures and tables can be found in Appendix

B.1.

3. Econometric Approach

As illustrated above, the carbon policy surprise series has many desirable proper-

ties. Nonetheless, it is only an imperfect measure of the shock of interest because

it may not capture all relevant instances of regulatory news in the carbon market

and could be measured with error (see also Stock and Watson, 2018).

Therefore, I do not use it as a direct shock measure but as an instrument. Pro-

vided that the surprise series is correlated with the carbon policy shock but uncor-

related with all other shocks, we can use it to estimate the dynamic causal effects

of a carbon policy shock. Because of the short sample at hand, I rely on VAR

techniques for estimation. For identification, I rely on the external instrument
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approach (Stock, 2008; Stock and Watson, 2012; Mertens and Ravn, 2013). While

this approach tends to be very efficient, it provides biased estimates if the VAR is

not invertible. Thus, I also present results from an internal instrument approach

(Ramey, 2011; Plagborg-Møller and Wolf, 2019), which includes the instrument in

the VAR and is robust to problems of non-invertibility.

An alternative strategy would be to estimate the dynamic causal effects using

local projections (see Jordà, Schularick, and Taylor, 2015; Ramey and Zubairy,

2018). However, this approach is quite demanding given the short sample, as it

involves a distinct IV regression for each impulse horizon. Importantly, Plagborg-

Møller and Wolf (2019) show that the internal instrument VAR and the LP-IV rely

on the same invertibility-robust identifying restrictions and identify, in popula-

tion, the same relative impulse responses. In Appendix B.2, I compare the LP-IV

to the internal instrument VAR responses in the sample at hand. Reassuringly, the

responses turn out to be similar, even though the LP responses are more jagged

and less precisely estimated.

3.1. Framework

Consider the standard VAR model

yt = b + B1yt−1 + · · ·+ Bpyt−p + ut, (2)

where p is the lag order, yt is a n × 1 vector of endogenous variables, ut is a n × 1

vector of reduced-form innovations with covariance matrix Var(ut) = Σ, b is a

n × 1 vector of constants, and B1, . . . , Bp are n × n coefficient matrices.

Under the assumption that the VAR is invertible, we can write the innovations

ut as linear combinations of the structural shocks εt:

ut = Sεt. (3)

By definition, the structural shocks are mutually uncorrelated, i.e. Var(εt) = Ω is

diagonal. From the invertibility assumption (3), we get the standard covariance

restrictions Σ = SΩS′.

We are interested in characterizing the causal impact of a single shock. With-

out loss of generality, let us denote the carbon policy shock as the first shock in

the VAR, ε1,t. Our aim is to identify the structural impact vector s1, which corre-

sponds to the first column of S.

External instrument approach. Identification using external instruments works

as follows. Suppose there is an external instrument available, zt. In the applica-
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tion at hand, zt is the carbon policy surprise series. For zt to be a valid instrument,

we need

E[ztε1,t] = α 6= 0 (4)

E[ztε2:n,t] = 0, (5)

where ε1,t is the carbon policy shock and ε2:n,t is a (n − 1)× 1 vector consisting

of the other structural shocks. Assumption (4) is the relevance requirement and

assumption (5) is the exogeneity condition. These assumptions, in combination

with the invertibility requirement (3), identify s1 up to sign and scale:

s1 ∝
E[ztut]

E[ztu1,t]
, (6)

provided that E[ztu1,t] 6= 0.4 To facilitate interpretation, we scale the structural

impact vector such that a unit positive value of ε1,t has a unit positive effect on

y1,t, i.e. s1,1 = 1. I implement the estimator with a 2SLS procedure and estimate

the coefficients above by regressing ût on û1,t using zt as the instrument. To con-

duct inference, I employ a residual-based moving block bootstrap, as proposed

by Jentsch and Lunsford (2019).

Internal instrument approach. To address potential problems of non-

invertibility, I also employ an internal instrument approach. For identification,

we have to assume in addition to (4)-(5) that the instrument is orthogonal to leads

and lags of the structural shocks:

E[ztεt+j] = 0, for j 6= 0. (7)

In return, we can dispense of the invertibility assumption underlying equa-

tion (3). Under these assumptions, we can estimate the dynamic causal ef-

fects by augmenting the VAR with the instrument ordered first, ȳt = (zt, y′
t)
′,

and computing the impulse responses to the first orthogonalized innovation,

s̄1 = [chol(Σ̄)]·,1/[chol(Σ̄)]1,1. As Plagborg-Møller and Wolf (2019) show, this

approach consistently estimates the relative impulse responses even if the instru-

ment is contaminated with measurement error or if the shock is non-invertible.

4To be more precise, the VAR does not have to be fully invertible for identification with external
instruments. As Miranda-Agrippino and Ricco (2018) show, it suffices if the shock of interest is
invertible in combination with a limited lead-lag exogeneity condition.
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3.2. Empirical specification

Studying the macroeconomic impact of carbon policy requires modeling the Eu-

ropean economy and the carbon market jointly. The baseline specification con-

sists of eight variables. For the climate block, I use the energy component of

the HICP as well as total GHG emissions.5 To proxy the state of the economy,

I include the headline HICP, industrial production, and the unemployment rate.

Given that the economy was at the effective lower bound for most of the sample

period, I use the two-year rate as the relevant monetary policy indicator. How-

ever, using the shadow rate or other longer-term rates produces similar results.

Finally, I include a stock market index and the Brent crude oil price, deflated by

the HICP, as financial indicators. More information on the data and its sources

can be found in Appendix A.2.

The sample period starts in January 1999, when the euro was introduced, and

runs until December 2019, stopping before the outbreak of the Covid pandemic.

Recall that the carbon policy surprise series is only available from 2005 when the

carbon market was established. To deal with this discrepancy, the missing values

in the surprise series are censored to zero (see Noh, 2019, for a formal justification

of this approach). The motivation for using a longer sample is to increase the

precision of the estimates. However, restricting the sample to 2005-2019 produces

very similar results.6

Following Sims, Stock, and Watson (1990), I estimate the VARs in levels. Apart

from the unemployment and the two-year rate, all variables enter in log-levels.

As controls I use six lags of all variables and in terms of deterministics only a con-

stant term is included. However, the results turn out the be robust with respect

to all of these choices (see Appendix C.3).

4. The Aggregate Effects of Carbon Pricing

4.1. The impact on emissions and the macroeconomy

In this section, we study how carbon policy shocks affect the macroeconomy

through the lens of the baseline model. Recall, the main identifying assump-

5Unfortunately, GHG emissions are only available at the annual frequency. Therefore, I con-
struct a monthly measure of emissions using the Chow-Lin temporal disaggregation method with
indicators from Quilis’s (2020) code suite. As the relevant monthly indicators, I include the HICP
energy and industrial production. The results are robust to extending the list of indicators used.

6Note that while the carbon market was only established in 2005, the EU agreed to the Kyoto
protocol in 1997 and started planning on how to meet its emission targets shortly after. The
directive for establishing the EU ETS came into force in October 2003 (Directive 2003/87/EC).
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tion behind the external instrument approach is that the instrument is correlated

with the structural shock of interest but uncorrelated with all other structural

shocks. However, to be able to conduct standard inference, the instrument has

to be sufficiently strong. To analyze whether this is the case, I perform the weak

instruments test by Montiel Olea and Pflueger (2013).

The carbon policy surprise series turns out to be a strong instrument. The

heteroskedasticity-robust F-statistic in the first stage is 17.43. As this is clearly

above conventional critical values, we conclude that the instrument appears to

be sufficiently strong to conduct standard inference.

Having established that the carbon policy surprise series is a strong instru-

ment, we can now turn to the discussion of the macroeconomic and environmen-

tal impacts of carbon policy shocks. Figure 3 shows the impulse responses to the

identified carbon policy shock, normalized to increase the HICP energy compo-

nent by one percent on impact. The solid black lines are the point estimates and

the shaded areas are 68 and 90 percent confidence bands based on 10,000 boot-

strap replications.

A restrictive carbon policy shock leads to a strong, immediate increase in en-

ergy prices and a significant and persistent fall in GHG emissions. Thus, carbon

pricing appears to be successful at reducing emissions and mitigating climate

change by increasing the cost of emitting. Turning to the macroeconomic vari-

ables, we can see that the fall in emissions does not come without cost. Industrial

production falls and the unemployment rate rises significantly. The labor market

response turns out to be particularly pronounced. Consumer prices, as measured

by the HICP, increase. The pass-through is strong for headline, however, core

consumer prices tend to increase as well but the response is more short-lived (see

Figure B.4 in the Appendix). Monetary policy appears to lean against the infla-

tionary pressures, which likely exacerbates the effects on activity. Stock prices do

not respond significantly on impact but then tend to fall, anticipating the fall in

activity. However, the response is imprecisely estimated. Oil prices on the other

hand increase significantly, reflecting the fact that European oil producers and

refineries are also covered by the emissions trading scheme.7

In terms of magnitudes, the shock leads to an increase in energy prices of

about 1.6 percent at peak. GHG emissions and industrial production decline by

around 0.6 percent, the unemployment rate rises by about 0.2 percentage points

and consumer prices increase by slightly more than 0.2 percent. The two-year

7The EU ETS covers emissions associated with exploration and drilling, production and pro-
cessing, transportation, and refining of oil. This includes energy use associated with these activi-
ties and gas flaring, and may thus also affect crude oil prices. In addition, substitution away from
coal-fired electricity could put further upward pressure on oil prices.
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Figure 3: Impulse Responses to a Carbon Policy Shock

Notes: Impulse responses to a carbon policy shock, normalized to increase the HICP
energy by 1 percent on impact. The solid line is the point estimate and the dark and light
shaded areas are 68 and 90 percent confidence bands, respectively.

rate increases by about 25 basis points, stock prices fall by over 1.5 percent and oil

prices increase by around 8 percent – all measured at the peak of the responses.

Thus, the responses are not only statistically but also economically significant.

While the price impacts materialize rather quickly, economic activity and GHG

emissions only fall with a substantial lag. The implied price elasticity of emis-

sions lies in the ballpark of the estimates in Metcalf (2019). It is also interesting to

observe that the fall in output appears to be less persistent than the fall in emis-

sions – implying an improvement in the emissions intensity at longer horizons.

We will revisit this finding in Section 6, where I study the effects of carbon pricing
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on green innovation.

The results from the internal instrument model turn out to be very similar, see

Appendix B.2. The signs are all consistent and the responses are of similar shape

and magnitude. Only the estimated response of the two-year rate is somewhat

less stable. The pre-test for invertibility by Plagborg-Møller and Wolf (2019) can

also not reject the null of invertibility at the 10 percent level. Overall, these find-

ings suggest that the results are robust to relaxing the assumption of invertibility.

To summarize, the above findings clearly illustrate the policy trade-off be-

tween reducing emissions and thus the future costs of climate change and the

current economic costs associated with climate change mitigation policies. It is

useful to contrast these results to Metcalf and Stock (2020a), who study the eco-

nomic and environmental impact of European carbon taxes. They find that these

taxes were successful at reducing emissions but had no robust negative effect on

output and employment.

A crucial difference is that European carbon taxes do not include the power

sector, which is covered by the EU ETS, and plays a crucial role for the macroe-

conomic effects that I estimate. In fact, in terms of magnitudes my results are

consistent with previous evidence on energy price shocks, such as oil shocks (see

e.g. Kilian, 2009; Baumeister and Hamilton, 2019; Känzig, 2021). Furthermore, in

many European countries, carbon taxes were implemented as part of a broader

tax reform which often included other changes to the tax code to cushion the im-

pact of carbon taxes. As we will discuss in Section 5.5, the distribution of carbon

revenues plays an important role in the transmission of carbon policy shocks. Fi-

nally, given that the EU is a monetary union, we would not expect a monetary

response to national carbon tax policies. By contrast, monetary policy seems to

lean against the inflationary pressures from the EU ETS, which also helps explain

the larger economic impacts (Bernanke, Gertler, and Watson, 1997).

In Appendix C, I perform a comprehensive series of robustness checks on the

identification strategy and empirical approach used to isolate the carbon policy

shock. These checks indicate that the results are robust along a number of dimen-

sions including the selection of event dates, the construction of the instrument,

the estimation technique, the model specification, and the sample period.

4.2. Historical importance

In the previous section, we have seen that carbon policy shocks can have signif-

icant effects on emissions and the economy. An equally important question is

how much of the historical variation in the variables of interest can carbon policy

account for? To this end, I perform a historical decomposition exercise.

18



Figure 4 shows the historical contribution of carbon policy shocks to GHG

emissions growth. We can see that carbon policy shocks have contributed mean-

ingfully to variations in GHG emissions in many episodes. Importantly, however,

they cannot account for the significant fall in emissions after the global financial

crisis. This suggests that the high-frequency approach is not mistakenly picking

up demand-related disturbances, as the fall in emissions during the Great Reces-

sion was clearly driven by lower demand and not supply-specific factors in the

European carbon market.

Figure 4: Historical Decomposition of GHG Emissions Growth

Notes: The figure shows the cumulative historical contribution of carbon policy shocks
over the estimation sample for GHG emissions growth against the actual evolution of
emissions growth. The solid line is the point estimate and the dark and light shaded
areas are 68 and 90 percent confidence bands, respectively.

On average, carbon policy shocks account for close to a quarter of the varia-

tions in emissions at horizons up to two years. Furthermore, carbon policy shocks

also explain a non-negligible share of the variations in energy prices and other

macroeconomic and financial variables (see the variance decomposition in Ap-

pendix B.2).

4.3. Wider effects and propagation channels

The above results suggest that energy prices play an important role in the trans-

mission of carbon policy shocks. Power producers seem to pass through the emis-

sion costs to energy prices to a significant extent, as can be seen from the strong

energy price response. This is in line with previous empirical evidence (see e.g.

Fabra and Reguant, 2014).

To get a better understanding of how carbon policy shocks transmit to the

economy, I analyze the effects on a wider range of macroeconomic and financial

variables. To compute the impulse responses, I extract the carbon policy shock
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from the monthly VAR as CPShockt = s′1Σ
−1ut (for a derivation, see Stock and

Watson, 2018) and estimate the effects using simple local projections:

yi,t+h = βi
h,0 + ψi

hCPShockt + βi
h,1yi,t−1 + . . . + βi

h,pyi,t−p + ξi,t,h, (8)

where ψi
h is the effect on variable i at horizon h. Importantly, we can also use this

approach to estimate the effects on variables that are only available at the quar-

terly or even annual frequency. In this case, we aggregate the shock CPShockt by

summing over the respective months before running the local projections. Us-

ing the shock series directly in the local projections instead of the high-frequency

surprises increases the statistical power of these regressions, as the shock series

is consistently observed and spans the entire sample. Note, however, that this

comes at the cost of assuming invertibility. Throughout the paper, I normalize the

responses to have the same peak effect on HICP energy as in the baseline model

to facilitate comparison of the results. The confidence bands are computed using

the lag-augmentation approach (Montiel Olea and Plagborg-Møller, 2020).8

Figure 5 shows the impulse responses of real GDP, consumption, investment,

and wages. Consistent with the monthly evidence, we find that the shock leads to

a significant fall in real GDP. Looking at the different components, we can see that

the fall in activity appears to be driven by lower consumption and investment.

The consumption response turns out to be particularly pronounced.

Higher energy prices can affect the economy via both direct and indirect chan-

nels. They directly affect households and firms by reducing their discretionary

income. Given that energy demand is considered to be inelastic, consumers and

firms have less money to spend and invest after paying their energy bills (see e.g.

Hamilton, 2008; Edelstein and Kilian, 2009). Energy prices also affect the econ-

omy indirectly through the general equilibrium responses of prices and wages

and hence of income and employment.

Interestingly, the magnitudes of the effects are much larger than what can be

accounted for by the direct effect through higher energy prices alone. If energy

demand is completely inelastic, the direct price effect is bounded by the energy

share in expenditure, which is around 10 percent in Europe. Given the shock

magnitude, we would thus expect a direct impact on consumption of around 15

percent. However, the estimated consumption response is substantially larger

than that, suggesting indirect effects play an important role in the transmission

of carbon policy shocks. In fact, the significant fall in wages coupled with the em-

8As controls in the local projections, I use 7 lags for monthly variables, 3 lags for quarterly
variables and 1 lag for annual variables.
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Figure 5: Effect on GDP, Consumption, Investment and Wages

Notes: Impulse responses of a selection of quarterly variables estimated using local pro-
jections on the carbon policy shock. The responses are normalized to have the same peak
effect on HICP energy as in the baseline model.

ployment effects documented in Section 4.1 strongly supports this notion. The

mechanism works as follows. After a carbon policy-induced energy price in-

crease, the direct decrease in households’ and firms’ consumption and invest-

ment expenditure leads to lower output and exerts downward pressure on em-

ployment and wages. At the same time, interest rates increase as monetary policy

leans against the inflationary pressures coming from higher energy prices, further

exacerbating these effects. The additional fall in aggregate demand induced by

lower employment and wages lies at the core of the indirect effect.

There is little evidence that carbon policy shocks strongly transmit through

financial channels or elevated uncertainty. As we have seen, the stock market

displays a muted response and measures of financial conditions such as credit

spreads do not respond significantly as well. Similarly, there is no significant

response of uncertainty measures (see Figure B.5 in the Appendix). Thus, these

alternative channels are unlikely to play a dominant role in the transmission of

carbon policy.

Finally, there are also transmission channels that work through the supply

side of the economy. Baqaee and Farhi (2019) focus on the input-output structure

of firms. They show that the centrality of the power sector can amplify the effects

of energy shocks in the presence of non-linearities. However, given that the sam-

ple of interest was characterized by relatively small shocks, we would not expect
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non-linearities to play a major role. In the next section, I shed more light on the

role of different transmission channels using detailed household micro data.

5. The Heterogeneous Effects of Carbon Pricing

Recently, there has been a big debate in Europe on energy poverty and the dis-

tributional effects of climate policy amid the European Green Deal (European

Comission, 2021). The situation has since been exacerbated by the Russian inva-

sion of Ukraine, which led to a substantial increase in energy bills.

Against this backdrop, it is crucial to better understand the distributional im-

pact of the EU ETS. If certain groups are left behind, this could ultimately un-

dermine the success of climate policy. To this end, I study the heterogeneous

effects of carbon pricing on households. This will help to get a better picture on

how carbon pricing affects economic inequality. Furthermore, looking into poten-

tial heterogeneities in the consumption responses helps to better understand the

transmission channels at work. There is reason to believe that there are impor-

tant heterogeneities at play. First, the direct effect through energy prices crucially

depends on the energy expenditure share, which is highly heterogeneous across

households. Second, households can also be affected differently in indirect ways,

as they may face different impacts on their incomes. As poorer households tend

to have a higher energy share and their income tends to be more cyclical, we

expect the impact to be regressive.

5.1. Household survey data

To be able to analyze the heterogeneous effects of carbon policy shocks on house-

holds, we need detailed micro data on consumption expenditure and income at

a regular frequency for a sample spanning the last two decades. Unfortunately,

such data does not exist for most European countries let alone at the EU level.

Therefore, I focus here on the UK which is one of the few countries that has such

data as part of the Living Costs and Food Survey (LCFS).9

The LCFS is the major survey on household spending in the UK and pro-

vides high-quality, detailed information on expenditure, income, and household

characteristics. The survey is fielded in annual waves with interviews being con-

9The UK was part of the EU ETS until the end of 2020. Over the sample of interest, the ag-
gregate effects in the UK are comparable to the ones documented at the EU level, see Figure B.6
in the Appendix. To further mitigate concerns about external validity, I show that the results for
other European countries are comparable, using similar survey data for Denmark and Spain, see
Figure B.18.
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ducted throughout the year and across the whole of the UK. I compile a repeated

cross-section based on the last 20 waves, spanning the period from 1999 to 2019.

Each wave contains around 6,000 households, generating over 120,000 observa-

tions in total. To compute measures of income and expenditure, I first express the

variables in per capita terms by dividing household variables by the number of

household members. In a next step, I deflate the variables by the (harmonized)

consumer price index to express them in real terms. For more information, see

Appendix A.3.

Ideally, we would like to observe how individual consumption expenditure

and income evolve over time. Unfortunately, the LCFS being a repeated cross-

section has no such panel dimension. To construct a pseudo-panel, it is common

to use a grouping estimator in the spirit of Browning, Deaton, and Irish (1985).

A natural dimension for grouping households is their income. However, as

the income may endogenously respond to the shock of interest, we cannot use the

current household income as the grouping variable. Luckily, the LCFS does not

only collect information about current household income but also about normal

household income. This can be thought of as a proxy for permanent income.10

Based on normal disposable household income, I group households into three

pseudo-cohorts: low-income, middle-income, and high-income households. Fol-

lowing Cloyne and Surico (2017), I assign each household to a quarter based on

the date of the interview, and create the group status as the bottom 25 percent of

the normal disposable income distribution for low-income, the middle 50 percent

for middle-income, and the top 25 percent for high-income in every quarter of a

given year. The individual variables are then aggregated using survey weights to

ensure representativeness of the British population.

Table 1 presents some descriptive statistics, overall and by income group.

We focus here on expenditure excluding housing, however, the results including

housing turn out to be similar. We can see that quarterly household expendi-

ture is increasing in income. While low-income households spend a large part of

their budget on non-durables, richer households spend more on durables. Im-

portantly, poorer households spend a significantly higher share of their expendi-

ture on energy: the energy share stands at almost 10 percent for low-income, just

above 7 percent for middle-income, and around 5 percent for high-income house-

holds. Thus, to the extent that energy demand is inelastic, poorer households are

more exposed to increases in energy prices.

10I have verified that normal income does not respond significantly to the carbon policy shock.
In contrast, current income falls significantly and persistently, as shown in Figure B.12 in the
Appendix. Alternatively, I group households by an estimate of permanent income obtained from
a Mincerian-type regression. The results again turn out to be robust, see Appendix B.3.
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Table 1: Descriptive Statistics on Households in the LCFS

Overall By income group

Low-income Middle-income High-income

Income and expenditure
Normal disposable income 6,748 3,740 6,807 10,866
Total expenditure 4,458 3,025 4,444 6,238

Energy share 7.2 9.5 7.2 5.2
Non-durables (excl. energy) share 81.5 81.6 81.6 81.3
Durables share 11.2 8.9 11.2 13.5

Household characteristics
Age 51 47 54 49
Education (share with post-comp.) 34.0 25.7 29.7 51.2
Housing tenure

Social renters 20.8 46.9 17.4 3.7
Mortgagors 42.3 25.5 41.3 60.0
Outright owners 36.9 27.7 41.3 36.4

Notes: The table shows descriptive statistics on quarterly household income and expen-
diture (in 2015 pounds), the breakdown of expenditure into energy, non-durable goods
and services excl. energy, and durables (as a share of total expenditure) as well as a se-
lection of household characteristics, both over all households and by income group. For
variables in levels such as income, expenditure and age the median is shown while the
shares are computed based on the mean of the corresponding variable. The expendi-
ture shares are expressed as a share of total expenditure excluding housing, and semi-
durables are subsumed under the non-durable category. Age corresponds to the age of
the household reference person and education is proxied by whether a household mem-
ber has completed a post-compulsory education.

The different income groups turn out to be comparable in terms of their age.

Higher-income households tend to be better educated, and are more likely to be

homeowners, either by mortgage or outright.

5.2. Heterogeneity by household income

We are now in a position to study how households’ expenditure and income re-

spond to carbon policy shocks and, more importantly, how the response varies

by income group. Figure 6 shows the responses of total household expenditure

and current income for the three income groups we consider.11 The solid black

lines are again the point estimates and the dark/light shaded areas are 68 and 90

percent confidence bands.

11To eliminate some of the noise inherent in survey data, I smooth the expenditure and income
measures with a backward-looking (current and previous three quarters) moving average, as in
Cloyne, Ferreira, and Surico (2020). The results are robust to using the raw series instead (even
though the responses become more jagged and imprecise) or using smooth local projections as
proposed by Barnichon and Brownlees (2019), see Figure B.10 in the Appendix. To flexibly control
for seasonal and trending behavior, I include a set of quarterly dummies and a linear trend.
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Figure 6: Household Expenditure and Income Responses by Income Group

Notes: Impulse responses of total expenditure (excluding housing) and current total dis-
posable household income for low-income (bottom 25 percent), middle-income (middle
50 percent) and high-income households (top 25 percent). The households are grouped
by total normal disposable income and the responses are computed based on the median
of the respective group.

We can see that there is pervasive heterogeneity in the expenditure response

across income groups. Low-income households reduce their expenditure signif-

icantly and persistently. In contrast, the expenditure response of higher-income

households is rather short-lived and only barely statistically significant. This re-

sult is even more stark when we separate between different types of expenditure.

Figure 7 shows the responses of energy, non-durable goods and services exclud-

ing energy, and durable goods expenditure. We can see that poor households sub-

stantially lower their non-durable expenditure while higher-income households

display an insignificant response. For durable expenditures, the pattern is less

clear cut. While low-income household cut durable expenditure, high-income

households also display a significant response. Therefore, the heterogeneity in
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Figure 7: Energy, Non-durables and Durables Expenditure Responses by Income Group

Notes: Impulse responses of energy, non-durables excluding energy and durables expenditure for low-income (bottom 25 percent), middle-
income (middle 50 percent) and high-income households (top 25 percent). The households are grouped by total normal disposable income and
the responses are computed based on the median of the respective group.
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the total expenditure responses appears to be driven by the non-durable expendi-

ture component. Note that these group-specific differences are not only econom-

ically but also statistically significant (see the responses of the group differences

in Figure B.11 in the Appendix).

Low-income households are more affected in two ways. First, they face a

larger and more significant increase in their energy bill. This is consistent with the

fact that these households have a higher energy share to start with and their en-

ergy demand is particularly inelastic, for instance because of financial constraints.

Second, looking at the income responses, we can also see that they face a more

significant and substantial fall in their income. As we will see in Section 5.4, this

appears to be driven by the fact that they tend to work in sectors that are more

affected by the carbon policy shock. Taken together, the shock leads to a substan-

tial reduction in discretionary income, which forces poorer households, who are

also more likely to be financially constrained, to cut their expenditure by more.

At this stage, it is worth discussing a potential concern about grouping house-

holds concerning selection. The assignments into the income groups are not

random and some other characteristics may, potentially, be responsible for the

heterogeneous responses I document. To mitigate these concerns, I group the

households by a selection of other grouping variables, including age, education

and housing tenure. The results are shown in Figures B.14-B.16 in the Appendix.

While there is not much heterogeneity by age, less educated households tend

to respond more than better educated ones and social renters tend to respond

more than homeowners. However, none of the alternative grouping variables

can account for the patterns uncovered for income, suggesting that we are not

spuriously picking up differences in other household characteristics.

5.3. Direct versus indirect effects

We have seen that there is substantial heterogeneity in the households’ expendi-

ture response to carbon policy shocks: while richer households change their ex-

penditure only marginally, low-income households lower their expenditure sig-

nificantly and persistently. Furthermore, indirect, general equilibrium effects via

income and employment seem to play an important role in the transmission of

the policy. To shed more light on the role of direct and the indirect effects, it is

instructive to convert the responses into an equivalent pound change in income

and expenditure over the three-year impulse horizon. This can be interpreted as

the overall short-run monetary adjustment following the change in carbon policy.

Table 2 shows the results, overall and by income group. We can see that en-

ergy expenditure increases for all income groups, but only low-income house-
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holds display a strong and significant increase. These households also cut their

expenditure significantly, while the adjustment for higher-income households is

less pronounced and not statistically significant. Importantly, the increase in en-

ergy bills cannot account for the large fall in non-energy expenditure. Note, how-

ever, that the shock also leads to a substantial fall in households’ incomes, which

is again particularly pronounced for low-income households. Coupled with the

fact that these households are more likely to be financially constrained (see e.g

Jappelli and Pistaferri, 2014), this helps explain the significant expenditure re-

sponse.

Table 2: Cumulative Monetary Changes over Impulse Horizon

Overall By income group

Low-income Middle-income High-income

Expenditure
Energy 23.88 28.36 22.53 22.11

[ -16.93, 64.69] [ 8.21, 48.51] [ -18.02, 63.07] [ -0.96, 45.17]

Non-durables -103.75 -134.76 -92.33 -95.60
excl. energy [ -212.38, 4.87] [ -241.21, -28.32] [ -192.67, 8.02] [ -279.87, 88.67]

Durables -6.95 -2.92 -0.44 -23.99
[ -56.09, 42.20] [ -20.75, 14.92] [ -10.37, 9.50] [ -71.44, 23.45]

Income
-203.70 -214.90 -138.65 -322.60

[ -387.13, -20.27] [ -376.38, -53.41] [ -301.82, 24.52] [ -635.44, -9.77]

Notes: The table reports the overall pound change in expenditure and income over the
three-year period following a carbon policy shock (in 2015 pounds). Bootstrapped 90 per-
cent confidence intervals are reported in brackets. The overall pound change is computed
as the present discounted value of the impulse response, multiplied by the corresponding
average quarterly expenditure/income.

By contrast, high-income households also display a significant fall in their

income, however, their expenditure responses turn out to be insignificant, con-

sistent with the notion that these households are less financially constrained and

thus better able to cushion the adverse effects on their income. Overall, these re-

sults point to an important role of indirect effects via income and employment.

My estimates suggest that the direct effect through energy prices accounts for less

than a third of the aggregate consumption response, as proxied by the increase in

energy bills relative to the overall fall in expenditure (23.88/86.82).

The expenditure heterogeneity uncovered in this section is striking, especially

against the backdrop that low-income households have much lower levels of ex-

penditure to start with (see in Table 1). Put differently, low-income households
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account for over 30 percent of the aggregate effect of carbon pricing on consump-

tion, despite the fact that they make up for a much smaller share of consumption

in normal times (around 15 percent). Accounting for indirect, general equilib-

rium effects turns out to be crucial to correctly assess the distributional impact

of carbon pricing. Focusing on the direct effect via the energy share alone can

understate the actual distributional effects considerably.

The distributional consequences also likely play an important role for the

magnitude of the aggregate expenditure response. My findings are consistent

with a literature that emphasizes the role of MPC heterogeneity in combination

with unequal income incidence for the transmission of aggregate demand shocks

(Bilbiie, 2008; Auclert, 2019; Patterson, 2021, among others). These studies show

in the context of aggregate-demand policies that the aggregate impact can be

amplified when the policy disproportionately affects the incomes of individuals

whose consumption is more sensitive. My results suggest that such a mechanism

is also at play in the transmission of carbon pricing, following the initial fall in

non-energy expenditure. Thus, even though low-income households only make

up for a relatively small portion of the population, they play an important role

for the transmission of the policy to the macroeconomy.

Alternative channels. Thus far, I focused my analysis on the direct effect via en-

ergy prices and the indirect, general-equilibrium effect via income. While there

may also other channels at work, I briefly discuss here why these alternative

channels are unlikely to play an important role in the transmission of carbon pol-

icy. First, carbon pricing may also have an effect on the prices of other goods via

substitution effects, which may in turn affect households’ budgets. However, as

shown in Section 4.1, the response of core consumer prices is much more muted

and only barely significant; therefore this channel does likely not play a major

role. Second, there may be a number of channels that work through the response

of durable expenditure, for instance because of uncertainty or precautionary mo-

tives, or via a reduction in durables that are complementary in use with energy

(see also Edelstein and Kilian, 2009). However, the overall response of durable ex-

penditure is quantitatively too small to play a dominant role in the transmission

of carbon policy. Furthermore, in Section 4.3 I did not find any significant change

in aggregate uncertainty after the shock. Finally, households may also adjust their

saving behavior as interest rates increase in response to the shock. However, this

channel is particularly relevant for higher-income households, which contribute

relatively less to the aggregate consumption response.
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5.4. What drives the income response?

We have seen that there is significant heterogeneity in the households’ income

responses. This section aims to shed light on what is driving the income inci-

dence by household group. There are at least two potential sources of heterogene-

ity. First, households may differ in their labor income, for instance because they

work in sectors that are differentially affected by the policy. Second, households

may differ in their income composition, as some households also have substantial

sources of financial income. I will focus here on the former, which is more rele-

vant to understand the heterogeneity at the lower-end of the income distribution.

In Appendix B.3, I also study the role of the household income composition.

To investigate into potential heterogeneities in labor income, I study how the

responses vary by the sector of employment using data from the UK Labour Force

Survey (LFS).12 I consider two dimensions to group sectors. First, I group sectors

by their energy intensity to gauge the role of the conventional cost channel. Sec-

ond, I group sectors by how sensitive they are to changes in aggregate demand.13

Table 3: Sectoral Distribution of Employment

Sectors Overall By income group

Low-income Middle-income High-income

Energy-intensity
High 21.6 9.8 25.6 25.8
Lower 78.4 90.2 74.4 74.2

Demand-sensitivity
High 30.5 49.0 27.2 18.1
Lower 69.5 51.0 72.8 81.9

Notes: The table depicts the sectoral employment distribution of households in the LFS,
both overall and by income group. I group sectors along two dimensions: their energy
intensity and their demand sensitivity. The energy-intensive sectors include agriculture,
utilities, transportation, and manufacturing. The demand-sensitive sectors include con-
struction, wholesale and retail trade, hospitality, and entertainment and recreation.

Table 3 presents descriptive statistics on the sectoral distribution of house-

holds, both overall and by income group. We can see that only few low-income

households work in sectors with a high energy intensity such as utilities or man-

12Unfortunately, the LCFS does not include any information on the sector of employment.
Therefore, I use data from the LFS which provides detailed information on employment sector
and income. For more information on the LFS, see Appendix A.3.

13I measure the demand-sensitivity by estimating the elasticity of sectoral labor income to
changes in aggregate income. Sectors that produce more ‘discretionary’ goods and services turn
out to be more demand-sensitive. See Appendix B.3 for more information.
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ufacturing. Thus, the sectors’ energy intensity is unlikely to explain the hetero-

geneous income responses that we observe. A more relevant dimension of het-

erogeneity appears to be the sectors’ demand sensitivity: low-income households

work disproportionally in sectors that tend to be more sensitive to aggregate fluc-

tuations, such as retail or hospitality, while a large majority of higher income

households work in less demand-sensitive sectors.

Figure 8: Income Response by Sector of Employment

Notes: Impulse responses of income (pay from main and second job net of deduc-
tions and benefits) in different sectors, grouped by their energy-intensity and demand-
sensitivity. The response is computed based on the median income in the respective
group of sectors. The sector groups are described in detail in Table 3.

Figure 8 shows how the median income across different sectors changes after

a carbon policy shock. While sectors with a high energy intensity display a some-

what stronger fall in incomes than sectors with a lower intensity, the differences

are not that large quantitatively. By contrast, there is significant heterogeneity by

the sectors’ demand-sensitivity: households working in demand-sensitive sec-

tors experience the largest and most significant fall in their income while house-

holds in less-demand sensitive sectors display more muted income responses.

This helps explain the observed heterogeneity in the income responses. In re-

sponse to a carbon policy shock, these sectors face a stronger decrease in demand,

also because households cut expenditure more in these sectors, and thus react by

laying off employees and cutting compensation. As low-income households are

overrepresented in these sectors, they are disproportionally affected.
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These results further support the notion that carbon policy shocks strongly

transmit to the economy not only through the traditional cost channel but also

through the demand side of the economy, in line with previous evidence by Kil-

ian and Park (2009) on the transmission of energy price shocks. A novel insight

is that in the presence of household heterogeneity, the demand channel may be

even stronger. This result speaks directly to a growing literature on the role of

Keynesian supply shocks (see e.g. Guerrieri et al., 2022; Cesa-Bianchi and Fer-

rero, 2021).

5.5. The role of redistributing carbon revenues

We have seen that the economic costs of carbon pricing are borne unequally

across society. Low-income households are the most affected, having to reduce

their expenditures the most, and are contributing disproportionally to the aggre-

gate response. A key question in this context is how the distribution of carbon

revenues matters for the transmission of the policy. Since auctioning became the

default way of allocating allowances, the system produces a growing share of

auction revenues. However, there is no direct redistribution scheme in place that

could offset the distributional effects on households that I document.14 The large

majority of revenues are earmarked and used for climate and energy related pur-

poses.

While using the carbon revenues for climate purposes may help to further

propel emission reductions, my results indicate that redistributing part of the

revenues to the most affected groups in society could mitigate the distributional

effects and reduce the economic costs of climate policy. To the extent that energy

demand is inelastic, which turns out to be particularly the case for low-income

households, this should not compromise the reductions in emissions.

A heterogeneous-agent climate-economy model. To study the role of redis-

tributing carbon revenues more formally, I build a climate-economy model. The

aim is to obtain a framework that can account for the empirical findings and can

be used as a laboratory for policy experiments. The model belongs to the dynamic

stochastic general equilibrium (DSGE) class. It augments the climate-economy

structure by Golosov et al. (2014) with nominal rigidities and household hetero-

14For the period from 2012-2020, the revenues generated by the member states of the EU ETS
exceeded 57 billion euros (European Comission, 2020b). The current ETS does not feature a direct
redistribution scheme, however, there are certain other, indirect solidarity measures in place, e.g.
via the Cohesion Fund or the Just Transition Fund. Only in the recent ‘Fit for 55’ plan, the Euro-
pean Commission takes a step in this direction by proposing a Social Climate Fund for the new
ETS in transportation and buildings.
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geneity, as in Bilbiie, Känzig, and Surico (2021), to allow for the demand channels

identified in the data. I will only sketch the relevant parts of the model here, a

full description can be found in Appendix D.

The household sector consists of a continuum of infinitely lived households.

Households have identical preferences and derive utility from consumption x

and disutility from labor h. The consumption good is a composite of an energy

and a non-energy good. To retain tractability, I consider a model with limited

heterogeneity. There are two types of households: a share λ of households are

hand-to-mouth (H) and a share 1 − λ are savers (S) who choose their consumption

intertemporally. Apart from the difference in MPC, households differ in their en-

ergy expenditure share and income incidence. Consistent with the data, I assume

that the hand-to-mouth have a higher energy share and that their income is more

elastic to changes in aggregate income than savers’.

Households face idiosyncratic risk as they switch exogenously between types.

I assume that only bonds are liquid and can be used to self-insure. There is limited

asset market participation. Only savers are able to self-insure themselves using

liquid bonds.15 They choose their consumption intertemporally, according to the

following Euler equation:

Ux(xS,t, hS,t)

pS,t
= β Et

[

Rb
t

Πt+1

(

s
Ux(xS,t+1, hS,t+1)

pS,t+1
+ (1 − s)

Ux(xH,t+1, hH,t+1)

pH,t+1

)

]

, (9)

where xi,t is total consumption of household i, hi,t is labor supply, Ux is the

marginal utility,
Rb

t−1
Πt

is the real risk-free rate, pi,t is the price index of the house-

hold’s consumption basket, and 1 − s is the transition probability of becoming

hand-to-mouth. The demand for non-energy and energy goods is given by the

following schedules: cS,t = aS,c

(

1
pS,t

)−ǫx

xS,t and eS,t = aS,e

(

pe,t

pS,t

)−ǫx

xS,t, where

ǫx is the elasticity of substitution between non-energy and energy goods. Savers

also invest in capital kt and supply labor hS,t. The corresponding optimizing

equations are standard and relegated to the Appendix. Savers receive labor in-

come, financial income from dividends and capital returns, and transfers ωS,t

from the government.

Hand-to-mouth households have no assets and thus consume all of their in-

come in every period: pH,txH,t = yH,t. Their income yH,t consists of labor income

plus government transfers, ωH,t. The non-energy and energy demand functions,

and labor supply equation are analogous to the expressions for the savers.

15This is a tractable way of introducing idiosyncratic risk and liquidity in spirit of full-blown
HANK models à la Kaplan, Moll, and Violante (2018), see Bilbiie (2020) and Bilbiie, Känzig, and
Surico (2021) for a detailed discussion.
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The firm block of the model consists of two sectors: energy and non-energy

producers. Energy firms produce energy using labor as an input, and can adjust

their prices flexibly. Their production technology is given by

et = ae,the,t, (10)

as in Golosov et al. (2014). I assume that there is only a single source of energy

(e.g. coal) that is available in approximately infinite supply. Without loss of gen-

erality, energy is measured in terms of carbon content. Energy firms are subject

to a carbon tax τt. This conforms well with my empirical analysis, where I study

the impacts of plausibly exogenous changes in carbon prices. The optimal energy

supply is characterized by wt = (1 − τt)pe,t
et

he,t
.

The non-energy sector consists of standard New Keynesian firms that produce

non-energy goods using capital, energy, and labor as inputs and set prices subject

to nominal rigidities. Their production technology is given by

yt = e−γst

[

(1 − ν)
1

ǫy

(

atk
α
t h1−α

y,t

)

ǫy−1

ǫy + ν
1

ǫy
(

ey,t

)

ǫy−1

ǫy

]

ǫy
ǫy−1

, (11)

where e−γst captures climate damages, modeled as a function of the atmospheric

carbon concentration st. The cost-minimization problem gives rise to the factor

demands for capital rt = αv1,tmct
yt

kt
, labor wt = (1 − α)v1,tmct

yt

hy,t
and energy

pe,t = v2,tmct
yt

ey,t
, where mct are real marginal costs and v1,t and v2,t are auxiliary

terms given in the Appendix. The price setting problem gives rise to a standard

Phillips curve, which in log-linear form reads π̂t = κm̂ct + βEtπ̂t+1, where hatted

variables denote log-deviations from steady state.

As in Golosov et al. (2014), the current level of atmospheric carbon concentra-

tion is a function of current and past emissions, st = (1− ϕ)st−1 + ϕ0et, where ϕ0

captures the share of emissions that do not immediately exit the atmosphere, and

1 − ϕ measures how emission decay over time.

The government runs a balanced budget in every period, i.e. all transfers are

financed by tax revenues. We consider the following transfer policy

λωH,t = µτt pe,tet and (1 − λ)ωS,t = (1 − µ)τt pe,tet. (12)

The distribution of carbon tax revenues are governed by the parameter µ. As the

baseline, I assume that all carbon revenues accrue to the savers µ = 0. Later, we

will study alternative transfer policies. Carbon taxes τt are set according to the

following rule: τt = (1 − ρτ)τ + ρττt−1 + ǫτ,t. Finally, the monetary authority
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follows a standard Taylor rule, targeting headline inflation. I calibrate the model

using macro and micro moments from the data and drawing on values previously

used in the literature. I discuss the calibration in detail in Appendix D.7.

Model evaluation. The impulse responses to a carbon policy shock, normal-

ized to match the estimated peak energy price response, are shown in Figure 9.

In what follows, we focus on the peak responses, as the model is not designed to

match the hump-shaped responses in the data. We can see that the model is suc-

cessful in generating consumption and income responses, overall and by house-

hold group, that are in the same order of magnitude as the estimated responses

in Section 5. As in the data, consumption and income are more responsive to car-

bon policy shocks for the low-income, hand-to-mouth households. In contrast,

the responses of high-income savers are much less pronounced.

The monetary response turns out to be an important factor for the transmis-

sion of carbon policy shocks. Recall that we assume that monetary policy tar-

gets headline inflation and thus leans against the inflationary pressures emerging

from the increase in carbon prices, consistent with the monetary policy response

estimated in the data. If we assume that monetary policy targets core inflation

instead, the effects of carbon policy are attenuated. Household heterogeneity

acts as a further amplifying channel through the unequal income incidence of the

shock linked to the heterogeneity in MPCs. Without these demand channels, it

is difficult to match the empirical magnitudes unless the energy share is set to

implausibly high levels, see Appendix B.4.

Redistributing carbon revenues. We are now in a position to study how differ-

ent carbon revenue redistribution schemes affect the transmission of carbon pol-

icy shocks. Figure 9 compares the baseline case when all carbon revenues accrue

to the savers (blue line) to the case where the revenues are distributed equally

across households µ = λ (red dashed line).

We can see that redistributing carbon revenues has important consequences:

the aggregate effect on consumption and income is much smaller than in the base-

line case of no redistribution. In contrast, redistributing revenues has a smaller

impact on the response of emissions, see Appendix B.4. The intuition is that the

redistribution scheme stabilizes the income of the hand-to-mouth which trans-

lates into a significantly smaller consumption response as they have a high MPC.

Savers, on the other hand, face a somewhat more prolonged fall in their income

but the effect on their consumption is more muted as they are able to smooth the

effects of the shock. Thus, redistributing carbon revenues also leads to a reduc-
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Figure 9: Model Responses for Consumption and Income

Notes: Impulse responses of consumption and income, in the aggregate as well as for
hand-to-mouth and savers, to a carbon policy shock normalized to match the peak energy
price response in the data. The blue line is the baseline response when carbon revenues
solely accrue to the savers; the red dashed line is the response when carbon revenues are
redistributed equally among hand-to-mouth and savers.

tion in consumption inequality. Emissions on the other hand change by less as

low-income households’ energy demand is particularly inelastic and they make

up only a small share of aggregate emissions to start with.

The above findings speak directly to the recent debate on carbon pricing and

inequality in Europe. The model confirms the intuition that redistributing carbon

revenues could mitigate the effect on aggregate consumption and alleviate the

distributional impact without compromising emission reductions to a significant

extent. An interesting case in point in this context is the carbon tax in British

Columbia. Contrary to the EU ETS, the tax was introduced alongside substantial

reductions in income taxes and direct subsidies to the most affected households.

The existing empirical evidence finds that the tax also reduced emissions signif-

36



icantly but the effects on economic activity turn out to be smaller (see Metcalf,

2019; Bernard and Kichian, 2021) – consistent with the predictions of my model.

6. Beyond the Short Term

We have seen that carbon pricing is successful in reducing emissions but this

comes at an economic cost, at least in the short term. This section aims to shed

light on some of the longer-term implications, specifically the impact of carbon

pricing on public attitudes towards climate policy and the effects on green inno-

vation.

Attitudes toward climate policies. An important argument for cushioning the

distributional impact is that a successful transition to a low-carbon economy re-

quires public support. If certain groups feel left behind, this could undermine the

success of climate policy as the yellow vest movement in France, which started

as a protest against higher fuel taxes, has shown for instance (Knittel, 2014).

To analyze this question, I use data from the British social attitudes (BSA)

survey. The BSA is an annual survey that asks about the attitudes of the British

population towards a wide selection of topics and is an important barometer of

public attitudes in the UK. To proxy attitudes towards climate policy, I rely on a

question that elicits the approval rate for environmentally-motivated fuel taxes

(see Appendix B.3 for more information).

Figure 10: Effect on Attitude Towards Climate Policy

Notes: Impulse responses of public attitude towards climate policy for low- and
higher-income groups. The public attitude towards climate policy is proxied by the
share of households in the British social attitudes survey that express support for
environmentally-motivated fuel taxes. Low-income correspond to the bottom 25 percent
and higher-income to the other 75 percent of the income distribution.

Figure 10 shows the response of the approval rate of environmentally-

motivated tax policies to a carbon policy shock across income groups. While the
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response of higher-income households is barely significant and even turns pos-

itive at longer horizons, low-income households display a significant and per-

sistent fall in the support of climate policies. Recall, these households are also

the ones that are most adversely affected by carbon policy shocks. These results

suggest that compensating the most affected households may help increase the

public support of climate change mitigation policies – consistent with recent evi-

dence by Anderson, Marinescu, and Shor (2019) and Dechezleprêtre et al. (2022).

The impact on green innovation. A key motivation behind carbon pricing is to

create an incentive for directed technical change. In fact, part of the vision for

the EU ETS is to promote investment in clean, low-carbon technologies (Euro-

pean Comission, 2020a). Innovation in low-carbon technologies will be crucial to

sustain emission reductions without permanently lowering output.

To analyze this channel empirically, I study how the patenting activity in

climate change mitigation technologies changes in response to carbon policy

shocks. I use data on patent applications from the European Patent Office (EPO),

which has developed specific classification tags for patents in climate change mit-

igation technologies.

Figure 11: Patenting in Climate Change Mitigation Technologies

Notes: Impulse responses of patenting activity in climate change mitigation technologies,
as measured by the number of climate change mitigation patents as a share of all patents
filed at the EPO. The left panel displays the share based on all patents while the right
panel focuses on high-value patents, i.e. patents filed at multiple patent offices.

The results are shown in Figure 11. We can see that the shock leads to a signifi-

cant increase in low-carbon patenting, and this is robust to focusing on high-value

patents. The effect is also economically significant as the average share of climate

change mitigation patents is around 10 percent. Thus, carbon pricing appears to

be successful in stimulating green innovation. These results support the findings

of Calel and Dechezleprêtre (2016), who employ a quasi-experimental design ex-

ploiting inclusion criteria at the installations level to estimate the causal impact

of the EU ETS on firms’ patenting.
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7. Conclusion

Fighting climate change is one of the greatest challenges of our time. While it has

proved to be difficult to make progress at the global level, several national car-

bon pricing policies have been put in place. However, still little is known about

the effects of these policies on emissions and the economy. This paper provides

new evidence from the largest carbon market in the world, the EU ETS. I show

that tightening the carbon pricing regime leads to a significant increase in en-

ergy prices, a persistent fall in emissions and an uptick in green innovation. This

comes at the cost of temporarily lower economic activity and higher inflation.

Importantly, these costs are borne unequally across society. Poorer households

lower their consumption significantly and are driving the aggregate response

while richer households are less affected. Not only are these households more

exposed to carbon pricing because of their higher energy expenditure share, they

also experience a larger fall in their income. These indirect effects via income and

employment turn out to be quantitatively important. My results suggest that re-

distributing some of the carbon revenues to the most affected groups can reduce

the economic costs of carbon pricing and may help strengthen the public support

of the policy. In future work, it would be interesting to better understand how

climate, fiscal and monetary policy can be coordinated to organize a successful

transition to a low-carbon economy.
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