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1 Introduction

Difference-in-differences (DiD) has become a widely used method to estimate treatment
effects with observational data. In canonical form, with two periods and two groups (of
which one is treated), and under suitable assumptions (e.g., no anticipation and parallel
trends), DiD is an unbiased estimator of the average treatment effect on the treated.

Yet, as the scale and scope of DiD applications have widened over time and expanded
into multi-period settings, its underpinnings have been stretched and doubts about the
generality of its underlying assumptions have proliferated, as highlighted in many notable
recent studies. The central matter of concern has been the appropriate implementation
of DiD in an expanded set of situations where the timing of treatment adoption can
differ across groups (i.e., is staggered) and treatment effects can differ across groups (i.e.,
are heterogeneous) and occur gradually over time (i.e., are dynamic).1 In such a setting,
the two-way fixed effects (TWFE) estimate has been shown to be a weighted average
of heterogeneous group-specific treatment effects where the weights may be negative,
leading to potentially severe bias. As a result of this ‘negative weights’ bias, the TWFE
estimate could even lie outside of the range of group-specific treatment effects. This
problem has led to the search for, and proliferation of, several alternative estimators.
What was once a seemingly simple tool of general application increasingly appears to
need bespoke adjustments to suit each specific situation.

In this paper we propose a framework for DiD estimation that exploits an important
link to a local projection (or LP), a statistical technique introduced in a time-series context
in Jordà (2005). The local projection approach has been widely used to estimate dynamic
impulse responses in time series or panel data. By its very design, and as used in
applied macroeconomics, the LP approach was set up to estimate average treatment
responses that are heterogeneous and dynamic. As we show in this paper, an under-
appreciated feature of the LP framework is that it is straightforward to limit the set of
permissible comparisons based on a desired criterion, such as past treatment history. By
further developing these LP techniques from macroeconometrics in conjunction with the
potential outcomes approach of microeconometrics to derive results for a wide range of
DiD settings, we provide a more general toolkit for implementing the DiD method.

Importantly, we show that many of the recent DiD estimators can be reproduced as
specific sub-cases of our general approach based on either weights assigned to particular

1See for example Callaway and Sant’Anna (2020); de Chaisemartin and D’Haultfœuille (2020); Sun and
Abraham (2020); Goodman-Bacon (2021); Borusyak, Jaravel, and Spiess (2021); Gardner (2021); Wooldridge
(2021); Baker, Larcker, and Wang (2022). Surveys of this ‘new DiD’ literature are provided in Roth,
Sant’Anna, Bilinski, and Poe (2023) and de Chaisemartin and D’Haultfœuille (2022).
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treatment events, or the choice of a base period for constructing the local projection. We
also show that the LP approach can easily accommodate extensions to the basic case such
as the inclusion of covariates or the generalization of the nature of the treatment.

Specifically, our proposed LP-DiD approach employs local projections to estimate
dynamic effects alongside a flexible ‘clean control’ condition in the spirit of Cengiz, Dube,
Lindner, and Zipperer (2019) to avoid the bias that can plague fixed-effects estimators
when treatment adoption is staggered.2 Intuitively, the bias of fixed-effects estimators
arises because previously treated units, which might still be experiencing lagged time-
varying and heterogeneous treatment effects, are implicitly used as controls for newly
treated units. The clean control condition of our LP-DiD estimator avoids this bias by
restricting the estimation sample so that ‘unclean’ observations, whose outcome dynamics
are still potentially influenced by a previous change in treatment status, are not part of
the control group.

Under the usual DiD assumptions, LP-DiD unbiasedly estimates a convex weighted
average of potentially heterogeneous cohort-specific treatment effects. We characterize
explicitly the weights assigned to each cohort-specific effect and show that they are
always positive and depend on treatment variance and subsample size. As we will
explain, however, it is easy to implement a different weighting scheme with our LP-DiD
estimator – including an equally-weighted average effect or any other desired scheme.

A skeptical reaction we can imagine hearing at this point is: why do we need yet
another expanded DiD technique? Indeed, several alternative DiD estimators have recently
been proposed to address the different settings that can arise in empirical applications
without incurring in the ‘negative weights’ bias of two-way fixed-effects regression.3

However, rather like a Swiss Army knife, the LP-DiD approach offers a single, univer-
sal multi-tool with advantages over the array of methods for estimation, inference, and
robustness currently employed in practice. The regression-based formulation of LP-DiD
allows simple coefficient tests to estimate models for cases with heterogeneous or homo-
geneous effects, dynamic or non-dynamic responses, and staggered or non-staggered

2The possible bias of two-ways fixed-effects regression when treatment is staggered is studied for
example in Borusyak, Jaravel, and Spiess (2021); de Chaisemartin and D’Haultfœuille (2020); Goodman-
Bacon (2021); Callaway and Sant’Anna (2020); Sun and Abraham (2020). See Section 2 for more detailed
discussion.

3Alternative DiD estimators are proposed, for example, in Sun and Abraham (2020); Callaway and
Sant’Anna (2020); Borusyak, Jaravel, and Spiess (2021); de Chaisemartin and D’Haultfœuille (2020);
de Chaisemartin, D’Haultfœuille, Pasquier, and Vazquez-Bare (2022); Gardner (2021); Wooldridge (2021). A
different approach is taken by Viviano and Bradic (2023). Like us, they employ a local projections frame-
work in a panel data setting. However, their focus is not on the DiD design with its (conditional) parallel
trends assumptions, but on a different dynamic treatment design that relies on sequential ignorability
assumptions.
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treatments, as well as to perform the standard validation check for pre-trends. Other
advantages of LP-DiD are the simplicity of implementation, the ability to control for
pre-treatment values of the outcome and other covariates, and the flexibility in how one
defines the sets of treated and control units, in addition to the ability to handle arbitrary
weighting schemes. Because the LP-DiD estimator is not specific to a particular setting,
but can be applied in a variety of situations, it provides an encompassing framework, and
the clean control condition employed by LP-DiD defines the appropriate set of treated
and control observations in a way that is transparent and therefore easy to understand,
communicate, and evaluate.

As we noted above, LP-DiD also offers a unified approach that encompasses many
of the recent estimators as specific sub-cases. In a baseline version without covariates
and with binary absorbing treatment, and in which only not-yet-treated observations
are used as controls, it will become clear that the LP-DiD estimate is identical to the
estimate from a stacked regression approach as implemented in Cengiz, Dube, Lindner,
and Zipperer (2019), while the re-weighted LP-DiD regression that recovers an equally-
weighted ATT is numerically equivalent to the estimator proposed by Callaway and
Sant’Anna (2020). Moreover, we will show that yet another version of LP-DiD, reweighted
and with an alternative pre-treatment base period, is very close to the Borusyak, Jaravel,
and Spiess (2021) imputation estimator. However, the LP-DiD implementation is simpler
and computationally faster, and can be more easily generalized to include control variables
and deal with non-absorbing treatment or continuous treatment.

Evidence from two Monte Carlo simulations suggests that the LP-DiD estimator
performs well in staggered difference-in-differences settings, also in comparison with
other estimators that have recently been proposed. Our simulations consider a binary
staggered treatment with dynamic and heterogeneous effects. In the first simulation
treatment timing is exogenous. Under this scenario, LP-DiD performs similarly to the
Sun and Abraham (2020), Callaway and Sant’Anna (2020) and Borusyak, Jaravel, and
Spiess (2021) estimators, while being computationally simpler and faster. In our second
simulation, the probability of entering treatment depends on lagged outcome dynamics.
In this second scenario, the ability of LP-DiD to match on pre-treatment outcomes allows
it to outperform other estimators. The purpose of these simulations is not mainly that of
performing a horse race between LP-DiD and other estimators, but to show that LP-DiD
performs well in plausible scenarios and that there is a class of settings—those in which
matching on pre-treatment outcome dynamics or other pre-determined covariates is
appropriate and important—in which LP-DiD could become the ‘go-to’ approach.

Our two empirical applications employ LP-DiD to estimate the impact of banking
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deregulation on the labor share (replicating and extending Leblebicioğlu and Weinberger
2020) and the effect of democratization on economic growth (replicating and extending
Acemoglu, Naidu, Restrepo, and Robinson 2019). These are two examples of important
empirical settings where conventional estimates are potentially subject to bias because
of previously treated units being effectively used as controls, and where matching on
pre-treatment outcomes and other covariates is likely to be important. These applications
demonstrate the value of the LP-DiD approach in providing unbiased estimates both
when the parallel trends assumption holds unconditionally, and when it holds only
conditional on pre-treatment outcome dynamics.

The rest of this paper is organized as follows. In sections 2 to 4 we draw a connection
between DiD methods and the LP estimator, and then present our proposed LP-DiD
specification. In Section 5 we use simulations to assess the performance of our LP-DiD
approach, with comparisons to other methods in the recent literature. In Section 6 we
apply the LP-DiD estimator in two empirical applications. Section 7 concludes.

2 Local Projections and Difference-in-Differences

In this section we clarify the connection between the difference-in-differences (DiD) and
local projection (LP) methods. The main aim is to show how LPs can be used to implement
DiD in several different settings and with high flexibility. The presentation gradually
increases the complexity of the scenarios introduced to more clearly establish the links
between the issues raised in the literature and how LPs help sort them out.

While we start from simpler settings for the sake of clarity (Sections 2.2 to 2.4), the
core of this section is the discussion of the case of binary staggered treatment with
dynamic and heterogeneous treatment effects (Section 2.5). In the staggered setting, the
conventional two-way fixed-effects (TWFE) implementation of DiD, both in the static
and event-study version, can suffer from ‘negative weights’ bias as uncovered by recent
important studies (de Chaisemartin and D’Haultfœuille, 2020; Goodman-Bacon, 2021;
Borusyak, Jaravel, and Spiess, 2021; Callaway and Sant’Anna, 2020; Sun and Abraham,
2020).

In the last part of this Section we discuss how these problems would apply to a naive
LP implementation. Section 3 will then show how a properly specified LP approach
(which we call LP-DiD) successfully addresses these problems and provides a simple,
general and flexible regression-based framework for DiD.
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2.1 General setup and notation

We consider the following general setup. An outcome yit is observed for i = 1, ..., N units
over t = 1, ..., T time periods. Units can receive a binary treatment, denoted by Dit ∈ {0, 1}.
For now, treatment is permanent (or absorbing), so we have Dis ≤ Dit for s < t. We let pi
denote the period in which unit i enters treatment for the first time, with the convention
pi = ∞ if unit i is never treated during the observed sample.

Define groups (or treatment cohorts) g ∈ {0, 1, . . . , G} as exhaustive, mutually exclu-
sive sets of units. Groups are defined so that all units within a group enter treatment at
the same time, and two units belonging to different groups enter treatment at different
times. Group g = 0 is the never-treated group (i.e., the set of units with pi = ∞). We
denote the time period in which group g enters treatment as pg.

Using the potential outcomes framework (Rubin, 1974), we let yit(0) denote the
potential outcome that unit i would experience at time t if they were to remain untreated
throughout the whole sample period (that is, if pi = ∞). We let yit(p) denote the outcome
for unit i at time t, if unit i were to enter treatment at time p ̸= ∞. Observed outcomes can
then be written as yit = yit(0) + ∑T

p=1

(
yit(p) – yit(0)

)
× 1{pi = p}.4

Define the (unit- and time-specific) treatment effect at time t for unit i which enters
treatment at time pi ̸= ∞ as

τit = yit(pi) – yit(0) .

We then define the (group-specific and dynamic) average treatment effect on the treated
(ATT) at time horizon h for group g which enters treatment at time pg as

τ
g
h = E

[
yi,pg+h(pg) – yi,pg+h(0)|pi = pg

]
. (1)

In other words, τ
g
h represents the average dynamic effect, h periods after entering into

treatment, for all units belonging to a group g that enters treatment at time pg.5

Throughout the discussion which follows, we will make use of the assumptions of
parallel trends and no anticipation, the two essential assumptions that underpin the DiD
approach. We state these assumptions unconditionally though later we will condition on
covariates.

4Similar notation is used, for example, in Callaway and Sant’Anna (2020) and Sun and Abraham (2020).
5This object is analogous to the cohort-specific treatment effect on the treated (CATT) defined in Sun

and Abraham (2020).
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Assumption 1. No anticipation

E
[
yit(p) – yit(0)

]
= 0, for all p and t such that t < p .

This assumption ensures that units do not respond now in anticipation of a future
treatment.

Assumption 2. Parallel trends

E
[
yit(0) – yi1(0)|pi = p

]
= E

[
yit(0) – yi1(0)

]
, for all t ∈ {2, ..., T} and all p ∈ {1, ..., T, ∞} .

This assumption ensures that, had treated units been left counterfactually untreated,
they would have evolved over time in the same manner as the control units have. This
assumption is made to ensure that the measured treatment effect cannot be explained by
differences in time trends between treated and control units.

It is convenient for the exposition of our methods to be more specific and assume a
simple data-generating process (DGP) for untreated potential outcomes, which respects
the parallel trends assumption. Following the recent DiD literature, we will also assume

E[yit(0)] = αi + δt , (2)

where αi is a unit-specific fixed effect, and δt is a time-specific effect common to all units.
Finally, let us define three regression specifications of interest, which can be estimated

in our panel of N units and T time periods, or in some subset of it: static two-way fixed-
effects (static TWFE); event-study two-way fixed-effects (event study TWFE); and local
projections (LP). We will discuss, compare and evaluate these specifications throughout
our discussion.

Specification 1. Static two-way fixed-effects regression (static TWFE)

yit = αSTWFE
i + δSTWFE

t + βSTWFEDit + eSTWFE
it , (3)

where the α are unit-specific intercepts and the δ are common time-specific fixed effects,
and we denote with e the error term.
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Specification 2. Event study two-way fixed-effects regression (event study TWFE)

yit = αETWFE
i + δETWFE

t +
H
∑

h=–Q
γETWFE

h Di,t–h + eETWFE
it ; Q ≥ 0 , (4)

where βETWFE
h = ∑h

j=0
γETWFE

j provides the event study TWFE estimate for the effect at
horizon h after treatment (0 ≤ h ≤ H). Fixed effects α and δ are again included, and an
error term e. Also note that βETWFE

–h = – ∑–1

j=–h γETWFE
j is likewise an estimate of possible

pre-trends at horizon h before treatment (–Q ≤ h ≤ –1). An equivalent specification of
the event study TWFE regression uses the first difference of the treatment indicator ∆D
instead of its level D, except for the H–th lag, which is taken in level.6

Specification 3. Local Projections regression (LP)

yi,t+h – yi,t–1
= δh

t + βLP
h ∆Dit + eh

it ; for h = 0, 1, ..., H . (5)

As a result of the differencing, note that the LP specification no longer includes unit fixed
effects for comparability with the two previous specifications. Moreover, in Equation 5, a
different regression is needed for each time horizon h, in contrast to the previous two
specifications. Given our assumptions on a staggered treatment that is absorbing, if
treatment is administered at time s, then Dit = 1 for t ≥ s and hence ∆Dit = 1 for s = t, but
∆Dit = 0 for t ̸= s.

Turning to the coefficients of interest, in all specifications the β terms are population
regression coefficients, while the OLS estimates of these coefficients will be denoted by β̂.

2.2 Basic DiD setting with two groups and two time periods

The link between LP and DiD is easiest to see in a basic 2-groups/2-periods (2x2) setting.
In this setting, an LP regression at horizon h = 0 is equivalent to a first-difference
regression or a static TWFE regression, both widely-used DiD implementations.

Hence, assume two groups of units, two time periods, and a binary treatment. In the
first period (pre-treatment) no unit is treated. In the second period (post-treatment) one
group of units is treated while the other remains untreated. In terms of the general setup
and notation introduced above, we are setting T = 2, and therefore t ∈ {1, 2}. Moreover,
we have g ∈ {0, 1}, where group 0 is the control group and group 1 the treatment group.

6Yet another specification of event study TWFE, often used in applications, uses the first difference of
the treatment indicator ∆D and normalizes estimates by subtracting the coefficient on the first lead.
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For units in the treatment group pi = p1 = 2. For units in the control group pi = p0 = ∞.
Our interest is in estimating the ATT in period t = 2, defined as E[yi2(2) – yi2(0)|pi = 2].

Given the no-anticipation and parallel trends assumptions (Assumptions 1 and 2) stated
earlier, the ATT in this setting can be rewritten as follows,

ATT ≡ E[yi2(2) – yi2(0)|pi = 2]
= E[(yi2(2) – yi1(0)) – (yi2(0) – yi1(0))|pi = 2]
= E[yi2(2) – yi1(0)|pi = 2] – E[yi2(0) – yi1(0))|pi = ∞]
= E[∆yi2|pi = 2] – E[∆yi2|pi = ∞] ≡ β2x2 .

In the second line we simply add and subtract yi1(0); in the third line we use Assumption
2 (parallel trends); and in the last line we make use of Assumption 1 (no anticipation).
β2x2 is thus the well-known 2x2 DiD estimand (Angrist and Pischke, 2009, pp. 227–233).

Now consider an LP regression (Equation 5) with time horizon h = 0. In this 2x2

setting, this boils down to a simple first-difference regression

∆yit ≡ yi2 – yi1 = δ + βLP
0

∆Di2 + ei2 .

Since ∆Di2 = Di2 in this simple case, we therefore have that

βLP
0

= E[∆yi2|Di2 = 1] – E[∆yi2|Di2 = 0] = β2x2 = ATT .

Thus, in the 2x2 setting, the LP regression at horizon h = 0 is equivalent to a first-
difference regression, and its population coefficient corresponds to the 2x2 DiD estimand
β2x2, which (given no-anticipation and parallel trends) equals the ATT. As is well known,
in this setting also the estimand βTWFE from the static TWFE regression of Equation 3 is
equivalent to the coefficient from a first-difference regression and corresponds to β2x2

(Angrist and Pischke, 2009, pp. 233–236). We thus have βLP
0

= βSTWFE = β2x2 = ATT.

2.3 Two groups and multiple time periods

We now consider a slightly extended setting, with two groups (treated and control),
multiple time periods T > 2, and where all treated units enter treatment in the same time
period. Also in this setting, we show that an LP regression is a way to implement the
DiD method and recover the (dynamic) ATT.

Specifically, assume that all units in the treatment group enter treatment at time s,
with 1 < s < T, and remain treated thereafter, while control units are never treated
over the sample period. Therefore, in pre-treatment periods t < s no unit is treated. In
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post-treatment periods t ≥ s, units in the treatment group are treated, while units in
the control group are not. In terms of our general setup and notation, we are setting
g ∈ {0, 1}, where group 0 is the control group and group 1 the treatment group. For all
units in the treatment group, pi = p1 = s. For all units in the control group, pi = p0 = ∞.
With only one treated cohort, the dynamic ATT (Equation 1) does not need the treatment
group indicator, and becomes simply τh = E[yi,s+h(s) – yi,s+h(0)|pi = s].

Again, via no-anticipation and parallel trends assumptions (Assumptions 1 and 2),

τh ≡ E[yi,s+h(s) – yi,s+h(0)|pi = s]
= E[(yi,s+h(s) – yi,s–1

(0)) – (yi,s+h(0) – yi,s–1
(0))|pi = s]

= E[yi,s+h(s) – yi,s–1
(0)|pi = s] – E[yi,s+h(0) – yi,s–1

(0)|pi = ∞]
= E[yi,s+h – yi,s–1

|pi = s] – E[yi,s+h – yi,s–1
|pi = ∞] ≡ βDiD

h ,

where βDiD
h is the DiD estimand for the dynamic ATT h periods after treatment and we

have applied Assumptions 1 and 2 in lines 3 and 4 as we did previously.
The population coefficient βLP

h from an LP regression (Equation 5) corresponds exactly
to this estimand. To see this, note that in this setting the LP regression of Equation 5 is
equivalent to the following cross-sectional regression, estimated on a subsample including
all units, but only for the time period t = s,

yi,s+h – yi,s–1
= δh + βLP

h ∆Di,s + eh
i,s .

Therefore we have

βLP
h = E[yi,s+h – yi,s–1

|∆Di,s = 1] – E[yi,s+h – yi,s–1
|∆Di,s = 0] = βDiD

h = τh .

This equivalence holds because when t ̸= s there is no variation in the regressor ∆Dit.
Hence, observations with t ̸= s do not contribute to the estimated coefficient βLP

h , and the
coefficient βLP

h is only identified using observations for time t = s.
From results in the recent literature on DiD (for example de Chaisemartin and

D’Haultfœuille 2020; Gardner 2021; Sun and Abraham 2020; Goodman-Bacon 2021),
we know that in this setting, with only one treated cohort, and under Assumptions 1 and
2, it also follows that the coefficients in the event-study TWFE regression (Equation 4)
correspond to the τh estimands.7 Moreover, the βSTWFE estimand from the static TWFE

7This can be seen using the decomposition of the event-study TWFE coefficients (βETWFE
h in our notation)

provided by Sun and Abraham (2020). This shows that βETWFE
h is equal to τh plus a bias term that can arise

if the ATE is heterogeneous across cohorts. With only one treatment cohort, obviously, heterogeneity across
cohorts cannot arise, and βETWFE

h = τh.

9



regression (Equation 3) equals the ATT, defined as E[τit|Dit = 1].8

2.4 Staggered treatment adoption with dynamic but homogeneous

treatment effects

We now allow for multiple treated groups which enter treatment at different points
in time (treatment is staggered). For now, we assume that the average treatment effect
trajectory (or path) does not differ across treatment cohorts (i.e., we assume that treatment
effects are homogeneous). In terms of our general setup and notation, we now have G > 1,
meaning that we have more than one treatment group, and τ

g
h = τh for all g > 0.

In this setting with staggered treatment and dynamic but homogeneous treatment
effects, we still have that an LP regression (Equation 5) augmented with an adequate
number of lags and leads of the treatment indicator is able to recover the average treatment
effect path under the parallel trends and no-anticipation assumptions introduced earlier.

Here is how we arrive at this result. Under Assumptions 1 and 2 and assuming that
treatment effects are homogeneous, mean observed outcomes at time t + h are given by

E[yi,t+h] = E[yi,t+h(0)] + ∑T
p=1

[(
E(yi,t+h(p) – yi,t+h(0)

)
× 1{pi = p}

]
= E[yi,t+h(0)] + ∑∞

j=–h τh+j × 1{pi = t – j}
= αi + δt+h + τh ∆Di,t + ∑∞

j=–h
h ̸=0

τh+j ∆Di,t–j .
(6)

Hence, by now subtracting E[yi,t–1
] from both sides of the previous expression and

defining δh
t = δt+h – δt–1, we obtain,9

E[yi,t+h – yi,t–1
] = δh

t + τh ∆Di,t +
h
∑
j=1

τh–j ∆Di,t+j +
∞

∑
j=1

[τh+j – τj–1
] ∆Di,t–j .

Therefore the dynamic ATT τh corresponds to the βLP
h population coefficient in the

8One way to see this is to use the decomposition of the static TWFE into a weighted average of treatment-
cohort specific ATTs (de Chaisemartin and D’Haultfœuille 2020, p. 2970; Gardner 2021, p. 7). This
decomposition implies that, when there is only one treatment cohort and the panel is balanced, βSTWFE

corresponds to an equally-weighted average of all the cell-specific ATTs.
9Note that E[yi,t–1

] = αi + δt–1 + ∑∞
j=1

τj–1
∆Di,t–j.
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following LP regression,

yi,t+h – yi,t–1
= δh

t + βLP
h ∆Dit +

∞

∑
j=–h
j ̸=0

θh
j ∆Di,t–j + eh

it . (7)

This LP regression includes lags of the differenced treatment indicator, but also its leads
up to period t + h. Leads are necessary to account for the possibility that a unit might
enter treatment between period t + 1 and period t + h.

What do the static and event-study TWFE specifications of Equation 3 and Equation 4

identify in this setting with staggered treatment and dynamic but homogeneous effects?
Results from the recent DiD literature show that a static TWFE regression (Equation 3)

can suffer from bias if treatment effects are dynamic (in the sense that τh ̸= τh+1
for

some h), even under parallel trends, no-anticipation, and homogeneity across treatment
cohorts.10

Intuitively, the bias comes from the fact that previously treated units are effectively
used as controls for newly treated units. Since previously treated units might still be
experiencing a delayed dynamic response to treatment, these treatment effect dynamics
are effectively subtracted from the static TWFE treatment effect estimate (Goodman-Bacon,
2021). That is, delayed dynamic responses to treatment can enter the static TWFE estimate
(Equation 3) with a negative weight (de Chaisemartin and D’Haultfœuille, 2020).

Under the assumption of homogeneous treatment effects, however, event-study TWFE
regression (Equation 4) does not suffer from this bias and, like the LP regression with lags
and leads of treatment discussed above, is able to recover the average treatment effect
path under parallel trends and no anticipation, as long as a sufficient number of lags of
the treatment indicator is included (see Sun and Abraham, 2020, in particular Proposition
4 and Equation 19). Intuitively, the lagged treatment indicators control for the lagged
dynamic effects of previous treatments, which in this setting are the same (in expectation)
for all units.

2.5 Staggered treatment adoption with dynamic and heterogeneous

treatment effects

For greater generality, we now abandon the assumption of homogeneity of the treatment
effect path, and allow for heterogeneous treatment effects across different cohorts. For-

mally, we have τ
g
h ̸= τ

g′

h for at least some time-horizon h and some pair of groups g′ ̸= g.

10Heterogeneous effects, which we consider below in Section 2.5, would make this problem worse.
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This more general case, because of the problems it can cause, has been the main focus
of a growing recent literature (e.g., de Chaisemartin and D’Haultfœuille, 2020; Sun and
Abraham, 2020; Callaway and Sant’Anna, 2020; Goodman-Bacon, 2021; Borusyak, Jaravel,
and Spiess, 2021; Wooldridge, 2021; Gardner, 2021).

With heterogeneous treatment effects of this form, it is now well understood that the
static TWFE estimator (Equation 3) is biased both because of dynamic lagged effects and
because of heterogeneity. Let us define a cell as a given treatment group g in a given
period t. de Chaisemartin and D’Haultfœuille (2020) show that under no-anticipation
and parallel trends βSTWFE in Equation 3 equals in expectation a weighted average of all
cell-specific ATTs, but with weights that can be negative. Negative weights introduce bias:
for example, positive cell-specific effects can enter the formula for the TWFE cofficient
with a negative sign.

Another way to see this problem is through the lens of the Goodman-Bacon (2021)
decomposition theorem, which shows that the static TWFE estimator in Equation 3 is an
average of all potential 2x2 comparisons in the data, with weights based on subsample
shares and treatment variances.

The problem is that some of these 2x2 comparisons are ‘unclean’ comparisons in which
previously treated units are used as controls for newly-treated units. These ‘unclean
comparisons’ are the source of the ‘negative weights’ bias of static TWFE.11

Furthermore, in the case of heterogeneous treatment effects across cohorts, it is also
known that the event-study TWFE specification (Equation 4) is generally biased (Sun
and Abraham, 2020). Specifically, Sun and Abraham (2020) show that the relative-period
coefficients (i.e., the coefficients on leads and lags of treatment in Equation 4) can be
contaminated by effects from other periods.

In short, the two most common DiD methods fail to work in this general type of setting,
which has led to the search for, and proliferation of, so many alternative estimators.

To understand the relation between LP and DiD in this setting, we can start by noting

11Goodman-Bacon (2021) also shows that under parallel trends and no anticipation (assumptions 1 and
2), plimN→∞ β̂STWFE = VWATT – ∆ATT, where VWATT is a convex variance-weighted average of ATTs from
all possible 2x2 comparisons in the data, and –∆ATT is bias coming from dynamic and heterogeneous
effects. Seen in this way, the bias term is equal to a weighted sum of changes in treatment effects within
each group.
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that here E[yi,t+h] is determined as follows,

E[yi,t+h] = E[yi,t+h(0)] + ∑T
p=1

[(
E(yi,t+h(p) – yi,t+h(0)

)
× 1{pi = p}

]
= E[yi,t+h(0)] + ∑G

g=1

[(
∑∞

j=–h τ
g
h+j × 1{pg = t – j}

)
× 1{pi = pg}

]
= E[yi,t+h(0)] + ∑G

g=1

[
∑∞

j=–h

(
τ

g
h+j × 1{pg = t – j} × ∆Di,t–j

)]
= αi + δt+h + ∑G

g=1

[
τ

g
h × ∆Di,t × 1{t = pg}

]
+ ∑G

g=1

[
∑∞

j=1

(
τ

g
h+j × ∆Dt–j × 1{t = pg + j}

)]
+ ∑G

g=1

[
∑h

j=1

(
τ

g
h–j × ∆Dt+j × 1{t = pg – j}

)]
.

Subtracting E[yi,t–1
] from both sides, we obtain,12

E[yi,t+h – yi,t–1
] = δh

t + ∑G
g=1

[
τ

g
h × ∆Di,t × 1{t = pg}

]
+ ∑G

g=1

[
∑∞

j=1

(
(τg

h+j – τ
g
j–1

) × ∆Di,t–j × 1{t = pg + j}
)]

+ ∑G
g=1

[
∑h

j=1

(
τ

g
h–j × ∆Di,t+j × 1{t = pg – j}

)]
.

(8)

Without appropriate adjustment to take into account the last two sums on the right-
hand side of Equation 8, the simplest LP regression of Equation 5 would be mis-specified
in this setting. The easiest way to see this and understand the sources of bias is to consider
the special case where δh

t = δh for all t and h.13 In this special case, we have

E[β̂LP
h ] = E[yi,t+h – yi,t–1

|∆Dit = 1] – E[yi,t+h – yi,t–1
|∆Dit = 0]

= E
[
∑G

g (τg
h × 1{t = pg})|∆Dit = 1

]
– E

[
∑G

g=1

[
∑∞

j=1

(
(τg

h+j – τ
g
j–1

) × ∆Di,t–j × 1{t = pg + j}
)]

|∆Dit = 0

]
– E

[
∑G

g=1

[
∑h

j=1

(
τ

g
h–j × ∆Di,t+j × 1{t = pg – j}

)]
|∆Dit = 0

]
.

(9)

Equation 9 shows that, without appropriate adjustment, the simplest LP regression of
Equation 5 suffers from two sources of bias.14

The first source of bias is the presence of previously treated units in the control group,
i.e., observations such that ∆Dit = 0 but ∆Di,t–j ̸= 0 for some j ≥ 1. These previously

12Note that in this setting E[yi,t–1
] = αi + δt–1 + ∑G

g=1
[∑∞

j=1
τ

g
j–1

∆Di,t–j × 1{t = pg + j}].
13We focus on this special case here for ease of exposition. When studying our proposed LP-DiD

estimator below, we will analyse the general case with unrestricted common time effects (Section 3.2).
14de Chaisemartin and D’Haultfoeuille (2022, pp. 33-34) present similar negative results about a naive

application of LP with panel data, although they consider a LP specification in levels, with yi,t+h (rather
than yi,t+h – yi,t–1

) as the dependent variable and with Dit (rather than ∆Dit) on the right-hand side. The LP
specification in levels studied by de Chaisemartin and D’Haultfoeuille (2022) has sometimes been used in
applied work and suffers from additional problems, which de Chaisemartin and D’Haultfoeuille (2022,
pp.33-34) analyse in detail.
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treated units contribute to the estimated counterfactual for units entering treatment at
time t, as if they were untreated, although they might in fact be experiencing dynamic
treatment effects. This bias exists as long as, for some treatment cohort g at some time-
horizon h + j, we have τ

g
h+j ̸= τ

g
j–1

, meaning that treatment effects evolve gradually over
time. As a result, the dynamic changes in treatment effects that these previously treated
units might be experiencing enter Equation 9 with a negative sign. This is a manifestation
of the ‘negative weights’ bias discussed above and noted in the recent literature on
DiD (Goodman-Bacon, 2021; de Chaisemartin and D’Haultfœuille, 2020; Callaway and
Sant’Anna, 2020; Sun and Abraham, 2020; Borusyak, Jaravel, and Spiess, 2021).

Moreover, in the LP setting, a second potential source of bias is the presence in the
control group of units that are treated between t + 1 and t + h, i.e., observations such that
∆Dit = 0 but ∆Di,t+j ̸= 0 for some j in 1 ≤ j ≤ h.15

To summarize, in settings with staggered treatment, a naive LP regression might suffer
from the ‘unclean comparisons’ bias highlighted by the recent literature on DiD. The
next Section presents our main contribution: we will show how a properly specified LP
regression solves these problems and provides a simple, general and flexible regression-
based framework for DiD.

3 LP-DiD estimator

We now present our main contribution: a properly specified LP regression, which we call
LP-DiD, consistently estimates a convex weighted average treatment effect without incur-
ring in the ‘unclean controls’ problem discussed above. The key is to define appropriate
treated and control units following the ‘clean control approach’ of Cengiz et al. (2019). We
explicitly characterize the weights assigned to each cohort-specific treatment effect, and
show that they are non-negative and proportional to group size and treatment variance.
We also show how a simple re-weighted LP regression can recover an equally-weighted

15As Equation 8 shows, one solution would be a LP regression that estimates separately the effect for each
group by interacting group indicators with the contemporaneous differenced treatment indicator, while
at the same time controlling for interaction terms between group indicators and the leads and lags of the
differenced treatment indicator. These interaction terms ‘clean’ the estimated counterfactual from the bias
coming from the influence of previously treated units. Moreover, this is equivalent to interacting the leads
and lags of the differenced treatment indicator with time indicators. One could then obtain an overall ATE
by computing some convex combination of all the individual group-specific effects. This solution could be
fruitful in some settings and has similarities with the interactive fixed effects estimator proposed by Sun
and Abraham (2020), but generally has some drawbacks. In practical applications, it involves estimating
a potentially very large number of interaction terms, where the coefficients are of no economic interest.
Moreover, our aim in this paper is to show that it is possible to directly estimate a convex combination of
all the cohort-specific effects, without having to first estimate them separately and then aggregate.
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average treatment effect on the treated.
This Section considers the setup, notation and identification assumptions introduced

in the previous Section, and in particular in Section 2.5: treatment is binary, staggered
and absorbing; the no anticipation and parallel trends assumptions hold unconditionally;
treatment effects can be dynamic and heterogeneous. Section 4 will discuss extensions to
settings with covariates, non-absorbing treatment or non-binary treatment.

3.1 LP-DiD specification

LP-DiD consists, in essential form, of estimating the LP specification of Equation 5 in a
restricted sample that only includes newly treated observations (∆Dit = 1) and not-yet
treated ones (∆Di,t–j = 0 for –h ≤ j ≤ ∞). Under the assumption of absorbing binary
treatment, the restriction imposed on the control group (∆Di,t–j = 0 for –h ≤ j ≤ ∞)
simplifies to Di,t+h = 0. Intuitively, as recent literature has made clear and as Equation 8

and Equation 9 illustrate, ‘negative weights’ bias comes from unclean comparisons in
which previously treated units are used as controls for newly-treated units. Excluding
these ‘unclean’ observations from the control group eliminates the bias.

Formally, consider the following specification of an LP-DiD regression,

LP-DiD regression Estimate the regression

yi,t+h – yi,t–1
= βLP–DiD

h ∆Dit treatment indicator
+ δh

t time effects
+ eh

it for h = 0, . . . , H ,

by restricting the estimation sample to observations that are eithernewly treated: ∆Dit = 1 ,

or clean control: Di,t+h = 0 .
(10)

By removing previously treated observations and observations treated between t + 1

and t + h from the control group, βLP–DiD
h from Equation 10 provides a convex combination

of all group-specific effects τ
g
h . Before analysing the general case (in Section 3.2 below), it

is instructive to consider again the special case with δh
t = δh. In this special case, we have

E[β̂LP–DiD
h ] = E(yi,t+h – yi,t–1

|∆Dit = 1) – E(yi,t+h – yi,t–1
|∆Dit = 0, Di,t+h = 0)

= E
[
∑G

g

(
τ

g
h × 1{t = pg}

)
|∆Dit = 1

]
.
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The clean control condition of Equation 10 can equivalently be implemented by
estimating Equation 5 in the full sample with a full set of interaction terms between a binary
indicator for ‘unclean’ (i.e., previously treated) control observations and time effects. With
absorbing treatment, this binary indicator is equal to UCit = 1{∆Dit = 0} × 1{Di,t+h = 1}.
With control variables (which we will discuss in Section 4 below), the UCit indicator
should also be interacted with any included covariates. Of course, this is just another and
completely equivalent way of excluding unclean controls from the estimation sample.

The LP-DiD approach can be valuable also in settings in which treatment effects
are assumed to be homogeneous. As shown above (Section 2.4), under homogeneous
effects, simple LP or dynamic TWFE specifications are sufficient to obtain an unbiased
estimate, provided that a sufficient number of lags of the treatment indicator is included.
However, there are two reasons for still using LP-DiD (with a clean control condition)
also in that setting. First, and most obviously, LP-DiD is robust to possible failure of the
homogeneous effects assumption. Second, even if homogeneity holds, LP-DiD relieves
the researcher from the problem of selecting the appropriate number of lags.

3.2 Weights of the LP-DiD estimator

We can explicitly characterize the weights assigned to each cohort-specific effect τ
g
h when

the LP-DiD specification (Equation 10) is estimated with OLS in the general case with
unrestricted common time effects. The key result is that, under parallel trends and no-
anticipation (Assumptions 1 and 2), the LP-DiD specification of Equation 10 consistently
estimates a weighted average of all cohort-specific treatment effects, with weights that are
always positive and depend on treatment variance and subsample size. Here we present
this result. A simple formal derivation based on the Frisch-Waugh-Lovell theorem and an
extension to the case with covariates are provided in Appendix A.

To illustrate the result, we need to introduce further definitions. Recall that the time
period in which group g enters treatment is pg. For each treatment group g > 0, define the
clean control sample (CCS) for group g at time horizon h (denoted as CCSg,h) as the set of
observations for time t = pg that satisfy the sample restriction in Equation 10. Therefore
CCSg,h includes the observations at time pg for all units that either enter treatment at pg

or are still untreated at pg+h. In other words, CCSg,h includes observations at pg for group
g and its clean controls.

Under parallel trends and no anticipation (Assumptions 1 and 2), the LP-DiD estimator
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βLP–DiD
h recovers the following weighted average effect,

E(β̂LP–DiD
h ) = ∑

g ̸=0

ωLP–DiD
g,h τ

g
h . (11)

The weight attributed to each group-specific effect is given by

ωLP–DiD
g,h =

NCCSg,h
[ngh(nc,g,h)]

∑g ̸=0
NCCSg,h

[ng,h(nc,g,h)]
, (12)

where NCCSg,h
is the number of observations in the clean control sample for group g at

time-horizon h; ng,h = Ng/NCCSg,h
is the share of treated units in the CCSg,h subsample;

and nc,g,h = Nc,g,h/NCCSg,h
is the share of control units in the CCSg,h subsample.16

Thus, in short, the LP-DiD estimator βLP–DiD
h recovers a variance-weighted ATT

(VWATT in the terminology of Goodman-Bacon, 2021).

3.3 Obtaining an equally-weighted average effect

If a researcher is instead interested in an equally-weighted ATT, there are two equivalent
ways to obtain it within an LP-DiD framework. The first is to employ a re-weighted
regression. The second is to use regression adjustment.

Indeed, Equations 11-12 imply that estimation of an LP-DiD regression (Equation 10)
through weighted least squares, assigning to an observation belonging to CCSg,h a weight
equal to 1/(ωLP–DiD

g,h /Ng), allows unbiased estimation of the equally-weighted ATT.

In practical applications, the weight (ωLP–DiD
g,h /Ng) can be obtained by computing sub-

samples sizes and shares of treated and control units in the sample and using Equation 12,
or through an auxiliary regression. Specifically, consider an auxiliary regression of ∆D on
time indicators in the sample defined by Equation 10. Define ∆D̃g,pg as the residual at
time pg for a unit belonging to group g.17 The Frisch-Waugh-Lovell theorem implies that

(ωLP–DiD
g,h /Ng) =

∆D̃g,pg

∑g ̸=0
Ng∆D̃g,pg

,

where further discussion can be found in Appendix A.
Another equivalent way to obtain an equally-weighted ATT is to estimate the LP-DiD

specification with the clean control condition of Equation 10 through regression adjust-

16The derivation of these weights is in Appendix A.
17Note that ∆D̃g,pg will be identical for all units belonging to the same group.
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ment. Here, regression adjustment uses clean control units to estimate a counterfactual
outcome change for each treated unit, and then compute an average estimated effect
assigning equal weight to each treated unit, thus estimating an equally-weighted ATT.

In particular, regression adjustment can be implemented as follows. Regress yi,t+h –
yi,t–1

on time effects using only clean control observations (i.e., observations with Di,t+h =
0). Use the estimated coefficients to get a predicted value in absence of treatment

̂yi,t+h – yi,t–1
for each treated unit. The ATT is then estimated as

N–1

TR ∑
i∈TR

[
(yi,t+h – yi,t–1

) – ( ̂yi,t+h – yi,t–1
)
]

,

where TR is the set of treated observations (i.e., the set of observations with ∆Di,t = 1).18

This regression-adjustment implementation of LP-DiD constitutes an imputation estimator,
in the same sense as in Borusyak, Jaravel, and Spiess (2021).

3.4 Alternative pre-treatment base periods

In some settings, there can be efficiency gains from adopting an alternative LP-DiD
specification, one in which the long difference of the outcome variable is taken relative
to its average value over some interval before t, instead of relative to just its first lag.
Formally, this alternative specification uses yi,t+h – 1

k ∑t–1

τ=t–k yi,τ instead of yi,t+h – yi,t–1
as

the dependent variable.
The motivation for considering such an alternative base period in the long difference

of the outcome is a possible efficiency-related concern with the LP-DiD specification of
Equation 10 (as well as the simple LP regression of Equation 5). Typically, an LP uses
the long difference yi,t+h – yi,t–1

as the dependent variable. Period t – 1 is thus used as the
pre-treatment base period: for a treatment event occurring at time s, the expected value
of the outcome in the pre-treatment period in the treated group and its clean controls
are estimated from yi,s–1

. However, the number of time periods available for estimating
the expected value of the outcome in the pre-treatment period is larger than just s – 1:
observations for all time periods t < s can potentially be used. For this reason, using a
single pre-treatment period as the baseline may be inefficient, and produce more noisy
estimates than necessary.

18It is easy to implement this method for recovering the equally-weighted ATT using standard statistical
software. The following is an example in STATA syntax:
teffects ra (Dhy i.time) (dtreat) if D.treat==1 | Fh.treat==0, atet vce(cluster unit)

where y is the variable measuring the outcome of interest; h is the time-horizon of the estimate; Dhy
= yi,t+h – yi,t–1

; dtreat is the first difference of the binary treatment indicator; time is a variable indexing
time periods; unit is a variable indexing units, and we are clustering standard errors at the level of units.
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This concern can be accommodated by using an average of pre-treatment observa-
tions (1

k ∑t–1

τ=t–k yi,τ) as the baseline, instead of just yi,t–1
. The dependent variable thus

becomes yi,t+h – 1

k ∑t–1

τ=t–k yi,τ. This gives rise to the following ‘pre-mean-differenced’ (PMD
hereafter) specification of LP-DiD,

PMD LP-DiD regression

yi,t+h – 1

k ∑t–1

τ=t–k yi,τ = βPMD LP–DiD
h ∆Dit treatment indicator

+ δh
t time effects

+ eh
it for h = 0, . . . , H ,

restricting the estimation sample to observations that are either:newly treated: ∆Dit = 1 ,

or clean control: Di,t+h = 0 .
(13)

(Note here that by setting k = t – 1, one can use all available observations for estimating
the expected value of the outcome in the pre-treatment period.)

The results presented earlier in this Section and in Appendix A imply that βPMD LP–DiD
h

recovers a convex weighted average of cohort-specific effects, with the same weights
ωLP–DiD discussed in Section 3.2. Also in this case, weighted regression or regression
adjustment can be employed to obtain an equally-weighted ATE (Section 3.3).

The potential advantages and risks of differencing with respect to the pre-treatment
average (‘pre-mean differencing’) relative to differencing over a single lag (‘first-lag
differencing’) have been discussed in the recent literature (a review of these discussions
is provided in de Chaisemartin and D’Haultfœuille 2022, pp. 18–19). The potential
advantage of pre-mean differencing is the efficiency gain discussed above. This advantage
is greater the lower the autocorrelation in untreated potential outcomes (Borusyak, Jaravel,
and Spiess, 2021; Harmon, 2022)19. A potential risk is that, under some deviations from
the parallel trends assumption, pre-mean differencing can amplify the bias relative to
first-lag differencing. If parallel trends holds between periods s and s + h (s being the time
of treatment), but not in earlier pre-treatment periods, first-lag differencing will still be
unbiased, while pre-mean differencing will be biased. In this sense, first-lag differencing

19Borusyak et al. (2021) prove that in the extreme case of no autocorrelation, differencing with respect
to the pre-treatment average is more efficient than differencing over the last pre-treatment lag. However,
Harmon (2022) finds that in the opposite polar case where errors follow a random walk (very high
autocorrelation), this efficiency ranking reverses, with differencing over the last pre-treatment period being
more efficient.
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relies on a weaker parallel trends assumption than pre-mean differencing (Marcus and
Sant’Anna, 2021). Moreover, if parallel trends does not fully hold at any time period, and
the gap in average untreated potential outcomes between treated and controls increases
over time, then pre-mean differencing will be more biased than first-lag differencing.

The ability of LP-DiD to allow researchers to flexibly choose the appropriate pre-
treatment base period, and to easily test robustness to alternative choices, is an addi-
tional advantage of LP-DiD. Other available DiD estimators (for example Callaway and
Sant’Anna (2020), Sun and Abraham (2020) and Borusyak et al. (2021)) are less flexible in
this respect. Of course, as with all specification choices, researchers should commit to
a preferred choice of pre-treatment base period ex-ante, based on the features of their
application and independent of estimation results, in order to avoid introducing bias.

3.5 Pooling over post-treatment periods

So far, the LP-DiD estimates have been based on long differenced outcomes, yi,t+h – yi,t–1
,

so the coefficients βLP–DiD
h trace out the impulse response h periods following a treatment.

However, we may wish to estimate an overall DiD estimate averaged over the full post-
treatment window, h ∈ 0, ..., H. This can be easily obtained by estimating a single
LP-DiD regression where the dependent variable is a post-treatment period mean of
long differenced outcomes: 1

H+1
∑H

h=0
yi,t+h – yi,t–1

. The resulting coefficient provides the
treatment effect over the post-treatment window relative to the event date –1.

More generally, any linear combination of βLP–DiD
h coefficients can be estimated and

tested by appropriately redefining the dependent variable in the LP-DiD regression. This
includes testing for differences in treatment effects across event times, or estimating a
cumulative response of treatment summing over event time. One could also combine
pooling over post-treatment periods with pre-mean differencing for additional power by
using the outcome: 1

H+1
∑H

h=0
yi,t+h – 1

k ∑t–1

τ=t–k yi,τ.
Of course, another simple way to test joint hypotheses about a combination of βLP–DiD

h
coefficients is to jointly estimate the individual LP regressions for the different H horizons
as a system. In applications, this can be done for example by stacking the data. Ready-
made packages to perform joint hypotheses from separate regressions are available
in commonly used statistical software (e.g., the ‘suest’ command in STATA, which is
equivalent to stacking the data).
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3.6 Composition effects

In finite samples, the LP-DiD specification of Equation 10 might suffer from composition
effects because the set of treated and clean control units can change across different time
horizons h. Note that the composition effect from a changing set of treated units is also
present in other available DiD techniques, including conventional TWFE estimators, while
composition effects from a changing control set are a result of the way the clean control
condition is specified in Equation 10.

There is a way to rule out composition effects, but at a cost, since it requires a reduction
in the number of observations which can reduce statistical power. To keep the control set
constant across time horizons, one can modify the clean control condition, defining clean
controls at all horizons as units such that Di,t+H = 0, where H is the maximum horizon
considered in estimation. Moreover, to keep the set of treated units constant across time
horizons, one can exclude from the estimation sample treatment events which occur after
time period T – H (i.e., exclude treatment cohorts with pg > T – H).

3.7 Relation to other DiD estimators

Some recently proposed DiD estimators can be obtained as special cases of the LP-DiD
approach, using specific weighting schemes or choosing particular base periods for
constructing the local projection.

First, in the baseline version with absorbing binary treatment and no covariates,
the LP-DiD estimator βLP–DiD

h is numerically equivalent to the estimate from a stacked
regression approach as implemented in Cengiz et al. (2019).20 Moreover, the re-weighted
version of LP-DiD (discussed in Section 3.3) is numerically equivalent to the estimator
proposed by Callaway and Sant’Anna (2020).21

Futhermore, the PMD version of the LP-DiD estimator (Equation 13) is analogous to
the estimator proposed by Borusyak, Jaravel, and Spiess (2021) (BJS thereafter), which
also implicitly uses pre-mean differencing. In fact, in the special case of one single treated
group, it is easy to see that PMD LP-DiD with k = t – 1 is numerically equivalent to the
BJS estimator.22 With more than one treated group, the BJS estimator does not have a
closed form expression, and it is therefore not straightforward to assess with precision its

20See Appendix A for more details about this equivalence.
21In terms of our notation, the Callaway and Sant’Anna (2020) estimator of τh

g is equal to E[yi,pg+h –
yi,pg–1

|∆Di,pg = 1] – E[yi,pg+h – yi,pg–1
|Di,pg+h = 0]. An ATT is then estimated by taking a equally-weighted

average across all treated units. In this baseline setting with absorbing treatment, no control variables and
using only not-yet treated units as controls, re-weighted LP-DiD equals the same difference in means.

22 With one single treated group g that enters treatment in period pg, the BJS estimator has a closed form

21



relation to our PMD LP-DiD estimator. However, the pre-period mean differencing means
that the two estimators use similar information, and indeed our Monte Carlo simulations
(presented in Section 5 below) show that with more than one treated group, when using
reweighting to obtain an equally-weighted ATT, the two estimators produce very similar
(although not identical) point estimates.

Some additional considerations about the relation between PMD LP-DiD and BJS are
in order. Although very similar, PMD LP-DiD might offer practitioners some advantages
over the BJS estimator. First, it is easy to provide an analytical expression for PMD
LP-DiD even in the case of more than one treated group, unlike for the BJS estimator.23

Movever, unlike the BJS estimator, PMD LP-DiD can be implemented using simple OLS (or
weighted least squares) regression, using commonly used and well understood methods
for statistical inference. Third, as we will discuss in Section 4.1 and as our simulations
and empirical application will illustrate, the structure of the LP-DiD specification allows
one to control for pre-treatment lags of the outcome and of other time-varying covariates.

That said, BJS prove the efficiency of their estimator of the equally weighted ATT
under the Gauss-Markov assumptions; this implies that the PMD LP-DiD cannot be more
efficient than BJS under these specialized conditions.

However, we note that in our simulations below, the point estimates from the
reweighted PMD LP-DiD and BJS estimators are typically very close in most cases.
Therefore, any efficiency advantage of the BJS estimator over PMD LP-DiD is likely to
be small. Indeed, our first simulation (Section 5 below), in which both estimators are
unbiased, shows that the root mean squared error of the two estimators is nearly identical.

It also bears noting that efficiency of the BJS estimator is only guaranteed under the
Gauss-Markov assumptions. These require, among other things, no auto-correlation in
untreated potential outcomes, a polar assumption that might be seen as implausible in
most panel data applications (Harmon, 2022; de Chaisemartin and D’Haultfœuille, 2022,
p. 18). Moreover, if there is little heterogeneity in treatment effects between treatment
cohorts or a variance-weighted effect is as satisfactory as an equally-weighted effect,

(de Chaisemartin and D’Haultfœuille, 2022, pp.18-19). In terms of our notation, it is equal to

N–1

g ∑
i∈g

[
yi,pg+h –

1

pg – 1

pg–1

∑
k=1

yi,k

]
– Nc,g,h ∑

i ̸=g,i∈CCSg,h

[
yi,pg+h –

1

pg – 1

pg–1

∑
k=1

yi,k

]
.

In this one-group setting, this is exactly equal to the βPMD LP–DiD
h estimator.

23With one single treated group, the PMD LP-DiD estimator (like the BJS estimator) is equal to the
expression in foonote 22. With more than one treated group, the PMD LP-DiD estimator is equal to a
weighted average of the expression in footnote 22 across all treated groups, with weights given by ωLP–DiD

g,h
in Equation 12. The reweighted PMD LP-DiD estimator is equal to a simple average of the expression in
footnote 22 across all treated units.
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variance-weighting (as done by LP-DiD or PMD LP-DiD without reweighting) can be
more efficient than equal weights.

In general, the LP-DiD implementation is simpler and computationally faster than
the alternatives. Relative to Cengiz et al. (2019) it is also less prone to errors in practical
applications, given that it does not require the reshaping of the dataset in stacked
format. Moreover, as we discuss below, the LP-DiD specification is easier to generalize,
for example by conditioning on pre-treatment values of the outcome or using other
covariates.

4 Extensions

In this section we extend the LP-DiD approach introduced in the previous section to
a variety of settings encountered in empirical research. We begin by discussing the
inclusion of covariates. Covariates can help in two ways: (1) as a control for variation in
treatment assignment; and (2) as a way to improve the efficiency of the estimated ATT.
Next we consider settings in which treatment is not absorbing, that is, units can enter and
exit treatment multiple times. In addition, we briefly comment on non-binary treatments.
Because the LP-DiD approach is based on simple regression, it can naturally normalize
the treatment effect depending on treatment intensity (or dose), though we leave a more
thorough development of this topic for another paper. However, this discussion helps
us tee up a brief comment on the link between DiD and the impulse responses used in
macroeconomics to establish the parts of commonality and departure.

4.1 Inclusion of covariates

We will now go on to show how the LP-DiD specification of Equation 10 can easily
be augmented to include both time-invariant and time-varying covariates. Including
covariates might be necessary for identification, if the parallel trends assumption only
holds conditional on (constant or time-varying) variables that determine selection, or to
increase precision.

A distinctive feature of the LP-DiD approach is that it allows to control for pre-treatment
values of time-varying covariates, including lagged outcome dynamics. This is made
possible by the structure of the LP specification. Unlike a standard event-study TWFE
specification or most alternative estimators proposed in the recent literature, the LP
specification implies that any lagged variable included in the estimating equation is
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measured before treatment.24

Formally, in the special case with binary absorbing treatment, an LP-DiD specification
which controls for K lags of the outcome dynamics and also controls for contemporaneous
and lagged values of a vector of exogenous or pre-determined covariates, xit can be written
as follows.25

LP-DiD regression with exogenous covariates and lagged outcome dynamics

yi,t+h – yi,t–1
= βLP–DiD

h ∆Dit treatment indicator
+ ∑K

k=1
γh

k ∆yi,t–k outcome lags
+ γhxit covariates
+ δh

t time effects
+ eh

it ; for h = 0, . . . , H ,

(14)

restricting the sample to observations that are eithernewly treated ∆Dit = 1 ,

or clean control Di,t+h = 0 .
(15)

This setup requires variants of Assumptions 1 and 2, labeled 3 and 4, where the statement
of the assumptions is made conditional on outcome lags and other covariates xit.

26

Appendix A.2 discusses the weights assigned to each group-specific effect in the speci-
fication that includes control variables. The main result is that the weights are guaranteed

24Of course, controlling for pre-treatment outcome dynamics (as well as any other exogenous or pre-
determined covariate) will be appropriate in some applications but not in others. A discussion of the
conditions under which it is appropriate or necessary to control for lagged outcome dynamics and other
covariates in the DiD setting is outside the scope of this paper (see for example Chabé-Ferret 2015; Caetano,
Callaway, Payne, and Rodrigues 2022). What matters here is that the LP-DiD estimator offers flexibility in
this respect: the researcher can decide whether to control for lagged outcomes and other covariates based
on the application.

25Of course, the vector of covariates xit can include not only variables taken in levels and measured at
time t, but also differenced or lagged variables.

26Formally, conditional versions of Assumptions 1 and 2 can be written as follows:

Assumption 3. Conditional no anticipation

E
[
yit(p) – yit(0)|∆yi,t–1

, ...., ∆yi,t–K; xit
]

= 0, for all p and t such that t < p.

Assumption 4. Conditional parallel trends

E
[
yit(0) – yi1(0)|∆yi,t–1

, ...., ∆yi,t–K; xit; pi = p
]

= E
[
yit(0) – yi1(0)|∆yi,t–1

, ...., ∆yi,t–K; xit
]

,
for all t ∈ {2, ..., T} and for all p ∈ {1, ..., T, ∞}.
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to remain the same as in Equation 12 if covariates have linear and homogeneous effects.
In more general settings, the presence of covariates will alter the weighting scheme in
ways that are difficult to characterize analytically. In applications, the weights can still be
computed empirically through the auxiliary regression described in Section 3.2.

If one wants to preserve the variance-weighting scheme of the baseline specification
without covariates, or to avoid other possible drawbacks from the inclusion of covariates
in linear regression in the DiD setting (discussed by Sant’Anna and Zhao, 2020), it is easy
to control for covariates semi-parametrically using propensity-score based methods in the
spirit of Sant’Anna and Zhao (2020). Moreover, an equally-weighted average effect can
still be estimated by using regression adjustment, as described in Section 3.2. Jordà and
Taylor (2016) discuss the implementation of propensity-score based and doubly-robust
methods in the LP setting and apply them to estimate the effects of fiscal consolidation.

When the specification includes lags of the outcome, Nickell (1981) bias can arise
from the presence of yi,t–1

both as a regressor and in the error term, which is equal to
ei,t+k – ei,t–1

. However, two conditions must both be met for this bias to be problematic.
First, the autoregressive coefficient on the lagged outcome variable must be high. Second,
the time dimension of the dataset must be relatively small. If either of these two conditions
fails, the bias is negligible as Álvarez and Arellano (2003) show. In applications in which
‘Nickell bias’ is a concern, the researcher can nevertheless correct for it by using a simple
split-sample correction, following Chen, Chernozhukov, and Fernández-Val (2019).

4.2 Non-absorbing treatment

In many applications, treatment is not absorbing: units can enter and exit treatment
multiple times. The LP-DiD framework offers flexibility to accommodate the different
target estimands and identification assumptions that might be appropriate under non-
absorbing treatment. An appropriate modification of the ‘clean control’ sample restriction
of Equation 10 will generally be necessary to implement LP-DiD in this setting. In what
follows we extend our setup to allow for non-absorbing treatment and illustrate how
LP-DiD can flexibly accommodate this setting.27

27Later, in Section 6.2, we illustrate the use of LP-DiD under non-absorbing treatment in an empirical
application which estimates the effect of democracy on economic growth. Moreover, the project repository
https://github.com/danielegirardi/lpdid/ provides a STATA example file illustrating the application
of LP-DiD in a simulated dataset with non absorbing treatment.
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4.2.1 Setup and notation with non-absorbing treatment

To discuss the case of non-absorbing treatment, we extend the framework of Section 2.1
and allow potential outcomes to be a function of the treatment path, as in Robins (1986)
and de Chaisemartin and D’Haultfoeuille (2022).28

Specifically, we make the following modifications. Treatment is still binary (Dit ∈
{0, 1}), but we remove the assumption Dis ≤ Dit for s < t. In other words, we allow
units to enter and exit treatment. Let Di = (Di1, . . . , DiT) denote the vector containing
the observed time series of the treatment variable D over the sample period for unit i.
The observed outcome can then be written as yit = yit(Di). Let yit(d1, . . . , dT) denote the
potential outcome for unit i at time t, if its treatments over the sample period were equal
to (Di1, ..., DiT) = (d1, . . . , dT).

For units that start untreated (Di1 = 0), we let pn
i denote the time period in which

unit i enters treatment for the n-th time during the sample period, with the convention
pn

i = ∞ if the unit enters treatment less than n times in the sample period. Therefore p1

i is
the time period in which unit i enters treatment for the first time and we have p1

i = ∞
if the unit is never treated during the sample period (i.e., if Di = 0). For units that are
already treated at the start of the sample period (Di1 = 1), we define p1

i = 0, while for
n ≥ 1 we define pn+1

i as the n-th period in which the unit enters treatment during the
sample period, with the convention pn+1

i = ∞ if the unit enters treatment less than n times
during the sample period. For example, p2

i is the first time period in which a unit with
Di1 = 1 re-enters treatment during the sample period. For all units, we also define qn

i
as the period in which unit i exits treatment for the n-th time during the sample period,
with qn

i = ∞ if the unit exits treatment less than n times in the sample period.
Groups g ∈ {1, . . . , G, G + 1} are now defined so that all units within the same group

experience the same treatment path over the sample period, while units in different
groups do not. In other words, treatment is still assigned at the (g, t) level. We let Dg

denote the treatment path experienced by group g. Group g = 0 again denotes a possible
never treated group (i.e., a group with Dg = 0), while group g = G + 1 denotes a possible
‘always treated’ group (i.e., a group with Dg = 1). Groups 1 to G experience some change
in treatment status during the sample period.

The no-anticipation and parallel trends assumptions are rewritten as follows:

28Recent articles discussing panel data estimation with non-absorbing treatment are for example
de Chaisemartin and D’Haultfoeuille (2022); Bojinov et al. (2021); Viviano and Bradic (2023).
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Assumption 5. No anticipation (non-absorbing treatment version)

yit(d1, ..., dT) = yit(d1, ..., dt) for all i and t.

Assumption 6. Parallel trends (non-absorbing treatment version)

E
[
yit(0) – yi1(0)|Di = D

]
= E

[
yit(0) – yi1(0)

]
, for all t ∈ {2, ..., T} and all D.

The intuition for these two assumptions remains the same as in the absorbing treatment
setting. As in the previous sections, we further assume E

[
yit (0)

]
= αi + δt

4.2.2 Estimating the effect of entering treatment for the first time

We first consider the problem of estimating the effect of entering treatment for the first
time and staying treated, relative to a counterfactual of remaining untreated.

We denote the set of groups which start untreated and which first treatment lasts at
least h periods as gh. Therefore gh includes all groups such that Dg,1 = 0 and Dg,p1

g+j = 1

for 0 ≤ j ≤ h.
We let τ

′g
h denote the h-periods horizon effect of entering treatment for the first time

for group g, which enters treatment for the first time at p1

g and then remains treated until
at least period t + h. This can be written as

τ
′g
h = E

[
yi,p1

g+h
(
Dg

)
– yi,p1

g+h (0) |Di = Dg, g ∈ gh
]

The estimand under consideration renders this setting analogous to the case of
absorbing treatment discussed in the previous section, and similar results follow. A
variance-weighted average effect ∑g ̸=0,g∈gh ωLP–DiD

g,h τ
′g
h , with strictly positive weights

determined as in Equation 12, can be recovered by estimating the LP-DiD specification of
Equation 10 and applying the following ‘clean control’ sample restriction treatment

or clean control

(Di,t+j = 1 for 0 ≤ j ≤ h) and (Di,t–j = 0 for j ≥ 1) ,

Di,t–j = 0 for j ≥ –h .
(16)

Estimating the same specification using either a weighted regression or regression
adjustment (as discussed in Section 3.3) allows unbiased estimation of an equally-weighted
effect.
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4.2.3 Estimating average treatment effects under an ‘effect stabilization’ assumption

In numerous settings of practical importance, the estimand τ
′g
h introduced above and the

resulting ‘clean control’ condition of Equation 16 might not be feasible or appropriate.
Consider, for example, the problem of estimating the effect of minimum wage increases
in a panel of regions. For later time periods t, there will be very few regions that have
never experienced a minimum wage increase until period t + h. In fact, most regions are
likely to have experienced some increase in the minimum wage before the start of the
sample period. This case can be dealt with in a simple way in the LP-DiD framework, by
focusing on the average effect of treatment events and under the additional assumption
that dynamic effects stabilize after a finite number of periods.

Let us first define treatment and exit events. If group g enters treatment at time j (i.e.,
if ∆Dg,j = 1), we say that all units in group g have a treatment event at time j. Similarly,
if ∆Dg,j = –1, then g experiences an exit event at time j. We let NT

g denote the number of
treatment events experienced by group g in the sample period, and NE

g the number of
exit events.

We then introduce the vectors of counterfactual treatment series Dg,j,0 and Dg,j,1.
We let Dg,j,0 denote a (1 × T) vector which is equal to Dg up to column j – 1, while its
columns j to T are all equal to 0. Similarly, Dg,j,1 is equal to Dg up to column j – 1,
but its columns j to T are all equal to 1. We thus have Dg,j,0 = (Dg1, . . . , Dg,j–1

, 0) and
Dg,j,1 = (Dg1, . . . , Dg,j–1

, 1).
The average dynamic effect of the n-th treatment event experienced by group g is

denoted by τ
g,n
h and defined as follows29

τ
g,n
h = E[yi,pn

g+h(Dg,pn
g ,1) – yi,pn

g+h(Dg,pn
g ,0)|Di = Dg]

The average dynamic effect of the n-th exit event experienced by group g, denoted by
η

g,n
h , is defined similarly:

η
g,n
h = E[yi,qn

g+h(Dg,qn
g ,1) – yi,qn

g+h(Dg,qn
g ,0)|Di = Dg]

We assume that treatment effects (including exit effects) stabilize after a finite number
of periods. Formally, we introduce the following assumption.

29If follows from our notation that, if a group is treated at the start of the sample period (Dg1 = 1), then
the n-th treatment event is the n – 1-th treatment event experienced within the sample period. For example,
if Dg1 = 1, the 2nd treatment event is the first treatment event experienced during the sample period.
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Assumption 7. Dynamic effects stabilize after L periods:

λ
g,n
L = λ

g,n
L+l for l ≥ 0 , λ ∈ {τ, η} and all groups g = 1, ..., G .

Assumption 7 implies that, for any group g, any time horizon h, any event n, and any
j ≥ L + 1, we have τ

g,n
h+j = τ

g,n
j–1

(or, in the case of exit events η
g,n
h+j = η

g,n
j–1

).
In this setting and under assumptions 5, 6 and 7, we have

E[yt+h – yt–1] = E
[
yi,t+h(0)

]
– E

[
yi,t–1

(0)
]

+ E
[
yi,t+h(Di) – yi,t+h(0)

]
– E

[
yi,t–1

(Di) – yi,t–1
(0)

]

= δh
t +

[
∑G

g=1 ∑
NT

g
n=1

(
τ

g,n
h × 1{t = pn

g} × 1{Di = Dg}
)]

× 1{∆Di,t = +1}

+
[

∑G
g=1 ∑

NE
g

n=1

(
η

g,n
h × 1{t = qn

g} × 1{Di = Dg}
)]

× 1{∆Di,t = –1}

+ ∑L
j=1

[
∑G

g=1 ∑
NT

g
n=1

((
τ

g,n
h+j – τ

g,n
j–1

)
× 1{t = pn

g + j} × 1{Di = Dg}
)]

× 1{∆Di,t–j = +1}

+ ∑L
j=1

[
∑G

g=1 ∑
NE

g
n=1

((
η

g,n
h+j – η

g,n
j–1

)
× 1{t = qn

g + j} × 1{Di = Dg}
)]

× 1{∆Di,t–j = –1}

+ ∑h
j=1

[
∑G

g=1 ∑
NT

g
n=1

(
τ

g,n
h–j × 1{t = pn

g – j} × 1{Di = Dg}
)]

× 1{∆Di,t+j = +1}

+ ∑h
j=1

[
∑G

g=1 ∑
NE

g
n=1

(
η

g,n
h–j × 1{t = qn

g – j} × 1{Di = Dg}
)]

× 1{∆Di,t+j = –1}
(17)

where δh
t = δt+h – δt–1 as in the previous sections.

Equation 17 differs from its absorbing treatment counterpart (Equation 8) in two main
ways: first, the same group can be under the influence of multiple previous treatment and
exit events; second (because of Assumption 7), only events that occur between periods
t – L and t + h affect the expected value of the long difference yt+h – yt–1.

A convex weighted ATT for the effect of entering treatment and staying treated is then
obtained by estimating an LP-DiD specification with the following sample restriction: treatment

or clean control

(Di,t+j = 1 for 0 ≤ j ≤ h) and (Di,t–j = 0 for 1 ≤ j ≤ L) ,

∆Di,t–j = 0 for – h ≤ j ≤ L .
(18)

For example, if the effect of treatment is assumed to stabilize after 15 periods (L=15),
then one only needs to exclude from the estimation sample observations that experience
a change in treatment status between t – 15 and t – 1 or between t + 1 and t + h.30

30In their empirical application, Callaway and Sant’Anna (2020) study the impact of minimum wage
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In this subsection we have provided two brief simple illustrations, likely relevant
in empirical applications, of what one can do with the LP-DiD framework in settings
with non-absorbing treatment. Of course, one could consider several alternative target
estimands and assumptions. A detailed and comprehensive discussion of non-absorbing
treatment would indeed require a whole article in itself. Our point here is simply
that the LP-DiD framework and its clean control condition can be flexibly adapted to
accommodate different estimands of interest and identification assumptions in settings
with non-absorbing treatment.

4.3 Continuous treatment

A detailed formal discussion of the issues that can arise under continuous treatment is
outside the scope of this paper (see for example de Chaisemartin et al. 2022). However, it
is clear that the LP-DiD framework also offers flexibility to accommodate the different
definitions of the causal effect of interest and the different identification assumptions that
might be appropriate with continuous treatment. For example, the clean control condition
can be adapted to define clean controls as ‘stayers’ (or alternatively ‘quasi-stayers’), in the
terminology of de Chaisemartin et al. (2022).

4.4 Identification and relation to impulse responses

Circling back to our initial motivation, we end this discussion by briefly outlining the
differences and commonalities between the LP framework for applied microeconomic
research and the ways LPs are used in macroeconomics.

First, we reiterate the identification assumptions behind LP-DiD (and the DiD literature
in general). As Ghanem, Sant’Anna, and Wüthrich (2022) show, as long as selection into
treatment is driven by static covariates or covariates that change over time randomly (so
that they are unpredictable), then we can rely on the no-anticipation and parallel trends
assumptions to eliminate selection bias. When identification further requires conditioning
on covariates (especially in dynamic settings where the parallel trends assumption may
only hold conditionally), these assumptions can be made conditionally, as the literature
has shown. In practice, we expect that these should be the default assumptions.

increases during 2001–2007, and use as controls all states that did not raise their minimum wage during
this period. However, all states (including the control states) were affected by the federal minimum wage
increases in 1996–1997, and there were no truly untreated states during the 2001–2007 period. Therefore,
there is an assumption in Callaway and Sant’Anna (2020) that L is no greater than 4 years, although this
assumption is not made explicit.

30



We think it is helpful to compare the LP-DiD methods that we propose in this paper
and the now-typical estimation of impulse responses by LPs in macroeconomics. Perhaps
the key difference is in the definition of the counterfactual experiment. In a traditional
macro impulse response, treatment (the ‘shock’ in macro parlance), typically generates a
series of later changes in the policy variable itself (i.e., subsequent treatments) as well as
changes in the outcome. In a sense, the experiment is akin to a treatment plan rather than
a one-off treatment, as is traditional in applied micro.

Note that in the specification of the LP-DiD estimator, we condition on future values
of treatment (between t + 1 and t + h). This removes the effect of subsequent treatment
effects on future values of the outcome. It should be obvious that one can recover the
impulse response by the convolution of the treatment plan with the single-treatment effect
measured with the LP-DiD estimator. That is, our estimator computes the treatment effect
of a one-off intervention. If the intervention itself then generates subsequent interventions,
the overall effect—the impulse response—is the result of combining one-off treatment
effects with the treatment plan itself.

Is one approach more correct than the other? As Alloza, Gonzalo, and Sanz (2019)
show, not really. The impulse response captures the effect of an intervention on an
outcome that is the most likely to be seen directly in the data, allowing for the path
of future treatments. The researcher is less interested in the sequence of individual
treatment effects on the outcome generated by the treatment plan. Rather the goal is
to understand the overall effect on the outcome over time. In the applied-micro setting
for which our LP-DiD estimator is constructed, we are instead careful to parse out the
one-off effect. This object is of equal value scientifically as it would permit the researcher
to craft an alternative treatment plan than that usually observed (though in that case,
deviations from the usual treatment plan can run afoul of the Lucas critique if they are
‘too different’).

There are two important caveats to these statements. First, conditioning on future
treatments is not innocuous if treatment assignment is endogenous, in which case, an
instrumental variable approach would be advisable. Second, even if treatments are
exogenous (perhaps conditional on observables), the extent to which the results can be
interpreted as measures of one-off treatments when treatment is not absorbing greatly
depends on how agents form expectations about future treatments. A one-off treatment
will likely be a significant departure from previously observed treatment plans and thus
lead forward-looking agents to respond differently.
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5 Simulations

In this section, we conduct two Monte Carlo simulations to evaluate the performance
of the LP-DiD estimator. We consider a binary staggered treatment, with dynamic
and heterogeneous treatment effects. In the first simulation, treatment is exogenous;
the parallel trends assumption holds and the conventional TWFE model only fails
because of heterogeneous dynamic effects, which lead to negative weighting (as discussed
in Section 2.5). In the second simulation, treatment is endogenous; specifically, the
probability of receiving treatment depends on previous outcome dynamics. We compare
the performance of LP-DiD with a conventional event-study TWFE specification and
other recently proposed estimators.

Results suggest that, unlike the conventional TWFE specification, LP-DiD tracks well
the true effect path even in the presence of heterogeneity. Under unconditional parallel
trends, LP-DiD performs in a way similar to the Sun and Abraham (2020), Callaway
and Sant’Anna (2020) and Borusyak, Jaravel, and Spiess (2021) estimators, while being
computationally faster. When the probability of treatment depends on lagged outcome
dynamics, the ability of LP-DiD to match on pre-treatment outcomes makes it outperform
other estimators.

5.1 Setting

Our simulated datasets include N = 500 units, observed for T = 50 time periods. The
counterfactual outcome yit(0) that a unit would experience if not treated is given by

yit(0) = ρyi,t–1
(0) + λi + γt + ϵit ,

with ρ = 0.5, and with λi, γt, ϵit ∼ N(0, 25).
Treatment is binary and staggered and treatment is an absorbing state. The treatment

effect is positive and grows in time for 20 time periods, after which it stabilizes. Moreover,
early adopters have larger treatment effects. Specifically, the treatment effect is given by

βit =


0

α0(t – pi + 1) + α1(t – pi + 1)2 + (1 – α1) (t–pi+1)2

(pi/p1)2

α021 + α121
2 + (1 – α1) 21

2

(pi/p1)2

if t – pi < 0 ,

if 0 ≤ t – pi ≤ 20 ,

if t – pi > 20 ,

where pi is the period in which unit i enters treatment as in the previous sections and p1

is the treatment period for the ‘earliest adopter’ in the sample. We set α0 = 2 and α1 = 0.5.
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Observed outcomes yit are therefore given by yit = yit(0) + βit .

Simulation 1: Exogenous treatment timing In simulation 1, we assume that treatment
is exogenous. Specifically, units are randomly assigned to 10 groups, each of size N/10.
One group never receives treatment; the other nine groups receive treatment respectively
at time p = 11, 13, 15 . . . , 27.

Simulation 2: Endogenous treatment timing In simulation 2, treatment timing is
endogenous: the probability of receiving treatment depends on past outcome dynamics.
Specifically, unit i enters treatment in the first period that satisfies that following condition:

ψ∆yi,t–1
+ (1 – ψ)ui ≤ θ and 11 ≤ t ≤ 30 ,

with ψ = 0.6, ui ∼ N(0, 25) and θ = –σ∆yit(0). The probability of entering treatment
is therefore higher for untreated units that experience a large negative change in the
outcome variable.

5.2 Results

We perform 200 replications of each of the two simulations and evaluate five estimators:

• A conventional event-study TWFE specification with leads and lags of the treatment
indicator (Equation 4).

• The LP-DiD estimator (Equation 10), using both simple (variance-weighted) LP-DiD
and re-weighted LP-DiD, and applying both first-lag differencing and pre-mean
differencing.31

• The Sun and Abraham (2020) estimator (SA hereafter).

• The Callaway and Sant’Anna (2020) estimator (CS hereafter).

• The Borusyak, Jaravel, and Spiess (2021) estimator (BJS hereafter).

For each estimator, we compare the distribution of the estimated ATE with the
(equally-weighted) true ATE.

31As discussed in Section 3.2, the variance-weighted version recovers a convex combination of cohort
specific effects, with weights given by Equations 11 and 12. The re-weighted version recovers an equally-
weighted ATT; it can be implemented through a weighted least squares regression or using regression
adjustment. See Section 3.5 for the discussion of first-lag differencing versus pre-mean differencing.
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Table 1: Simulation 1: Exogenous treatment scenario: Root mean squared error (RMSE)

Event
time

ES
TWFE

LP-DiD Rw
LP-DiD

PMD
LP-DiD

Rw
PMD

LP-DiD

SA CS BJS

-5 10.83 2.05 2.11 1.31 1.35 2.17 1.61 1.54

-4 7.54 1.90 1.97 1.33 1.37 2.19 1.51 1.63

-3 5.70 1.93 1.95 1.47 1.52 1.83 1.54 1.92

-2 3.50 1.79 1.81 1.60 1.62 1.96 1.60 2.08

0 4.86 1.48 1.46 1.58 1.59 1.70 1.46 1.59

1 5.80 1.83 1.85 1.55 1.58 1.68 1.85 1.58

2 10.27 2.09 2.14 1.63 1.68 2.18 2.14 1.67

3 11.22 2.40 2.41 1.89 1.89 2.25 2.41 1.89

4 15.68 2.39 2.36 2.04 1.99 2.42 2.36 1.98

5 17.03 2.47 2.33 2.14 2.00 2.14 2.33 1.99

6 21.22 2.67 2.38 2.33 2.07 2.39 2.38 2.04

7 23.60 2.90 2.45 2.57 2.12 2.37 2.45 2.09

8 27.19 3.12 2.31 2.85 1.98 2.36 2.31 1.92

9 30.65 3.56 2.51 3.28 2.14 2.41 2.51 2.10

10 33.50 3.79 2.57 3.53 2.25 2.62 2.57 2.18

Notes: RMSE from 200 replications. ES TWFE = event-study two-way-fixed-effects; Rw = reweighted; PMD
= pre-mean-differenced; CS = Callaway and Sant’Anna (2020); SA = Sun and Abraham (2020); BJS =
Borusyak et al. (2021).

5.2.1 Results of Simulation 1: Exogenous treatment scenario

Results from Simulation 1, with exogenous treatment timing, are presented in Figures 1

and 2 and Tables 1 and 2.
Figure 1 displays the estimated effect path in comparison with the true (equally-

weighted) average effect path and the full range of heterogeneous group-specific effects.
Figure 2 plots the full distribution of the estimates at time-horizons 0,5,10 and –2. Tables
1 and 2 report the root mean squared error (RMSE) and the empirical standard error of
each estimator at time horizons between –5 and +10.

The conventional event-study TWFE specification does a poor job in our setting, due
to the heterogeneity of treatment effects. It finds a non-existent decreasing pre-trend, and
it grossly underestimates the dynamic treatment effect. Due to negative weighting, point
estimates lie outside the full range of true group-specific effects.32

32The fact that in our simulated DGP the size of the effect is a function of the date of treatment makes the
‘negative weighting’ problem particularly severe, and therefore the performance of the TWFE specification
particularly poor. We choose this DGP in order to test the performance of our estimator in a setting in
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Figure 2: Simulation 1: Exogenous treatment scenario: Distribution of estimates
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Notes: Distribution of estimates from 200 replications. The black vertical dashed line is the true (equally-
weighted) average treatment effect on the treated. The Callaway and Sant’Anna (2020) estimator is not
included, because in this setting it is numerically equivalent to Reweighted LP-DiD.

Our LP-DiD estimator, instead, tracks well the average true effect. This is true of
both simple (variance-weighted) LP-DiD and re-weighted LP-DiD. As expected, there is
a bias-variance trade-off between the two. The variance-weighted version has a slightly
smaller empirical standard error (Table 2), but also a small bias due to differences between
the variance-weighted and equally-weighted ATTs (Figure 1 and Figure 2). This bias
tends to become more relevant at longer time-horizons, because in our simulation the
true treatment effect variance increases in time after treatment.

Overall, variance-weighted LP-DiD has smaller RMSE than re-weighted LP-DiD at
short time-horizons, but the opposite is true at longer time horizons (Table 1). Pre-mean-
differencing (PMD) has a lower RMSE than first-lag differencing, as expected in a setting
in which parallel trends holds fully and at all time periods (see the discussion in Section
3.5).

In this exogenous treatment setting, also the SA, CS and BJS estimators perform very

which the flaws of the conventional estimator are particularly severe.
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Table 2: Simulation 1: Exogenous treatment scenario: Empirical standard errors

Event
time

ES
TWFE

LP-DiD Rw
LP-DiD

PMD
LP-DiD

Rw
PMD

LP-DiD

SA CS BJS

-5 5.07 2.06 2.11 1.31 1.34 2.18 1.61 1.54

-4 5.12 1.89 1.97 1.33 1.37 2.17 1.50 1.63

-3 3.35 1.93 1.96 1.48 1.52 1.83 1.54 1.93

-2 3.49 1.79 1.80 1.60 1.62 1.94 1.60 2.08

0 2.61 1.48 1.46 1.58 1.59 1.68 1.46 1.59

1 2.89 1.83 1.85 1.55 1.58 1.68 1.85 1.58

2 3.39 2.09 2.13 1.63 1.65 2.18 2.13 1.64

3 3.43 2.39 2.41 1.88 1.90 2.25 2.41 1.89

4 3.53 2.35 2.36 2.01 1.99 2.42 2.36 1.98

5 3.25 2.32 2.33 2.00 2.01 2.14 2.33 1.99

6 3.76 2.40 2.38 2.07 2.07 2.39 2.38 2.04

7 3.76 2.39 2.45 2.06 2.13 2.38 2.45 2.09

8 4.14 2.25 2.32 1.94 1.98 2.37 2.32 1.93

9 3.94 2.42 2.52 2.07 2.15 2.41 2.52 2.10

10 4.22 2.53 2.57 2.18 2.25 2.63 2.57 2.18

Notes: Empirical standard errors from 200 replications. ES TWFE = event-study two-way-fixed-effects; Rw
= reweighted; PMD = pre-mean-differenced; CS = Callaway and Sant’Anna (2020); SA = Sun and Abraham
(2020); BJS = Borusyak et al. (2021).

well. Overall, LP-DiD performs similarly to these (computationally more demanding)
estimators. In particular, the reweighted and pre-mean-differenced version of LP-DiD
outperforms CS and SA and is very close to BJS. BJS has slightly lower RMSE than
reweighted PMD LP-DiD at longer post-treatment time horizons, but the reverse applies
to testing for pre-trends (i.e., pre-treatment time horizons). 33

33As discussed in Section 2, in this setting with binary absorbing treatment, no covariates, and using
only not-yet treated observations as controls, the re-weighted LP-DiD estimator with first-lag differencing
is numerically equivalent to the CS estimator, and therefore has exactly the same RMSE and empirical
standard error. This holds at all post-treatment time-horizons (h ≥ 0), but not in the estimation of pre-trends
(h < 0) because pre-trends tests are constructed differently by the CS estimator. As discussed in Section 3.5,
reweighted PMD LP-DiD would be numerically equivalent to BJS in the special case of only one treated
group, and is very similar in more general settings. The fact that in this simulation reweighted PMD
LP-DiD has lower RMSE than BJS at pre-treatment time periods is not inconsistent with BJS’s demostration
of efficiency, because that demostration assumes no autocorrelation, while in this simulation there is some
autocorrelation.
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Table 3: Simulation 2: Endogenous treatment scenario: Root mean squared error (RMSE)

Event
time

ES
TWFE

LP-DiD Rw
LP-DiD

PMD
LP-DiD

Rw
PMD

LP-DiD

SA CS BJS

-5 30.66 2.12 2.18 1.70 1.73 25.29 2.29 3.38

-4 31.43 2.05 2.09 1.69 1.78 28.41 3.46 6.20

-3 35.00 1.57 1.60 1.52 1.63 34.36 5.99 12.09

0 10.13 1.71 1.72 1.73 1.78 11.28 12.11 13.63

1 13.77 2.24 2.35 2.13 2.19 16.52 16.59 8.44

2 14.78 2.53 2.61 2.04 2.07 19.40 18.61 6.00

3 14.19 2.76 2.75 2.18 2.17 20.60 19.77 4.76

4 13.47 2.63 2.58 2.19 2.16 21.27 20.54 3.99

5 12.15 2.94 2.76 2.33 2.12 21.58 20.74 3.82

6 10.48 3.27 3.06 2.68 2.44 21.64 20.75 4.09

7 9.14 3.36 3.04 2.89 2.47 21.73 20.93 3.94

8 8.58 3.73 3.12 3.24 2.43 21.67 20.9 3.93

9 10.03 3.95 3.00 3.60 2.50 21.67 20.98 3.87

10 13.18 4.24 3.09 3.92 2.61 21.57 21.18 3.85

Notes: RMSE from 200 replications. ES TWFE = event-study two-way-fixed-effects; Rw = reweighted; PMD
= pre-mean-differenced; CS = Callaway and Sant’Anna (2020); SA = Sun and Abraham (2020); BJS =
Borusyak et al. (2021).

5.2.2 Results of Simulation 2: Endogenous treatment scenario

Results from the simulation with endogenous treatment timing (Simulation 2) are reported
in Figures 3 and 4 and Tables 3 and 4.

In applying our LP-DiD estimator in this setting, we include one lag of the change in
the outcome variable as a control. This warrants some discussion in comparison to other
estimators. While the SA, CS and BJS estimators do allow the inclusion of time-invariant,
and in some cases time-varying, control variables, there is no straightforward way to
control for pre-treatment lags of the outcome (or of other time-varying covariates) in their
specifications.

LP-DiD outperforms other estimators in the presence of this particular failure of
the parallel-trends assumption, due to its ability to match on pre-treatment outcome
dynamics. Indeed, the LP-DiD estimator tracks quite well the true dynamic effect also
in this second simulation (Figure 3) and it has the lowest RMSE (Table 3). The SA, CS
and BJS estimators are biased in this setting in which selection into treatment is based on
lagged outcome dynamics.
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Figure 4: Simulation 2: Endogenous treatment scenario: Distribution of estimates
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Notes: Distribution of estimates from 200 replications. The black vertical dashed line is the true (equally-
weighted) average treatment effect on the treated. To filter out variation in estimates due to variation in
the true treatment effect across replications, we subtract from each estimate the true effect, and then add
back the average true effect across all replications. This adjustment is in order because in the ‘endogenous
treatment’ setting, the average treatment effect is not deterministic.

Also in this endogenous treatment setting, there is a bias-variance tradeoff between
simple (variance-weighted) LP-DiD and reweighted DiD. Reweighted LP-DiD is unbiased,
while variance-weighted LP-DiD has a small bias but also smaller variance. Overall, the
two versions of LP-DiD perform similarly in this setting in terms of RMSE.

5.3 Computational speed

We also find that our LP-DiD estimator provides a substantial computational advantage
relative to other recently proposed estimators. To quantify this, we recorded the computa-
tion time required for estimating the treatment effect path in our synthetic datasets. For
these exercises, the estimations were conducted using STATA software on a laptop with
2.80 GHz Quad-core Intel i7 Processor and 16 GB of RAM. Recorded computation times
are reported in Table 5.
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Table 4: Simulation 2: Endogenous treatment scenario: Empirical standard errors

Event
time

ES
TWFE

LP-DiD Rw
LP-DiD

PMD
LP-DiD

Rw
PMD

LP-DiD

SA CS BJS

-5 8.25 2.11 2.18 1.68 1.72 2.96 1.81 1.93

-4 6.15 2.05 2.09 1.66 1.74 2.86 1.76 1.94

-3 6.12 1.57 1.60 1.48 1.59 2.87 1.80 1.91

0 4.79 1.67 1.67 1.62 1.67 2.32 1.87 1.78

1 6.04 2.23 2.35 2.14 2.19 2.97 2.51 2.14

2 6.24 2.34 2.47 2.11 2.17 2.92 2.74 2.15

3 6.05 2.61 2.70 2.38 2.45 3.15 2.82 2.37

4 6.33 2.58 2.77 2.43 2.61 3.12 2.89 2.58

5 6.57 2.95 3.24 2.69 2.97 3.38 3.24 2.92

6 6.69 3.61 4.10 3.40 3.89 4.04 3.95 3.83

7 6.65 4.06 4.79 3.86 4.55 4.62 4.49 4.45

8 6.68 4.36 5.34 4.18 5.10 5.29 5.07 5.16

9 6.68 4.96 6.24 4.86 6.08 6.24 5.85 6.12

10 7.38 5.74 7.49 5.64 7.30 6.87 7.10 7.35

Notes: Empirical standard errors from 200 replications. ES TWFE = event-study two-way-fixed-effects; Rw
= reweighted; PMD = pre-mean-differenced; CS = Callaway and Sant’Anna (2020); SA = Sun and Abraham
(2020); BJS = Borusyak, Jaravel, and Spiess (2021).

Table 5: Computational speed (seconds)

Simulation 1 (exogenous treatment scenario)

ES
TWFE LP-DiD

PMD
LP-DiD

Rw
LP-DiD

Rw PMD
LP-DiD CS SA BJS

.59 .74 .80 1.59 1.64 79.25 177.71 7.08

Simulation 2 (endogenous treatment scenario)

ES
TWFE LP-DiD

PMD
LP-DiD

Rw
LP-DiD

Rw PMD
LP-DiD CS SA BJS

.61 .74 .82 16.27 19.03 177.5 902.78 7.48

Notes: Computation times in a single repetition of the simulated datasets described in Section 5, measured
in seconds. Recorded on a laptop with 2.80 GHz Quad-core Intel i7 Processor and 16 GB of RAM, using the
STATA software. Rw = reweighted (see Sec 3.3); PMD = pre-mean-differenced (see Sec 3.5); CS = Callaway
and Sant’Anna (2020); SA = Sun and Abraham (2020); BJS = Borusyak, Jaravel, and Spiess (2021).
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In the synthetic dataset with exogenous treatment timing, the LP-DiD estimator
runs in 0.7 seconds per repetition, similar to the (biased) event-study TWFE estimator,
while reweighted LP-DiD (implemented through weighted regression) requires around
1.6 seconds. The BJS estimator requires approximately 7 seconds with the CS and SA
demanding respectively 79 and 178 seconds. With endogenous treatment timing, LP-
DiD runs in around 0.7 seconds and re-weighted LP-DiD in around 16 seconds, while
the BJS estimator requires approximately 7.5 seconds. The CS and SA estimators are
computationally demanding: they require respectively 178 and 903 seconds.34

6 Empirical Applications

To illustrate the use of the LP-DiD estimator in practice, we present two empirical ap-
plications. In the first, we use the LP-DiD estimator to estimate the effect of banking
deregulation laws on the labor share in US States, replicating Leblebicioğlu and Wein-
berger (2020). In the second, we replicate the Acemoglu, Naidu, Restrepo, and Robinson
(2019) country-panel study of the effect of democracy on economic growth.

6.1 Credit and the labor share

In our first empirical study, we replicate the Leblebicioğlu and Weinberger (2020) analysis
of the effect of banking deregulation on the labor share in US states.

From the late 1970s up to the 1990s, U.S. states lifted restrictions on the ability of
out-of-state banks to operate in-state (interstate banking deregulation) and on the ability of
in-state banks to open new branches (intra-state branching deregulation). Leblebicioğlu
and Weinberger (2020) estimate the effects of both inter-state and intra-state banking
deregulation laws on the labor share of value added. They find inter-state banking
deregulation had a sizable negative effect on the labor share, but find no effect of intra-
state branching deregulation.

The dataset covers the 1970–1996 period. (In 1997, inter-state banking deregulation was
imposed in all states by federal law.) Figure 5, which reproduces Figure 1 in Leblebicioğlu
and Weinberger (2020), displays the share of US states with a liberalized banking sector.

34CS and SA are more computationally demanding in the simulation with endogenous treatment timing
relative to the one with exogenous treatment because by construction there is a larger number of treatment
cohorts. Reweighted LP-DiD is relatively slower in the simulation with endogenous treatment timing than
under exogenous treatment because of the presence of covariates. Indeed with control variables other
than time effects, reweighted LP-DiD needs to be implemented using regression adjustment, while in the
absence of control variables it can be implemented using a (computationally faster) weighted least squares
regression (as discussed in Section 3.2).
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6.1.1 Conventional TWFE specifications

As a starting point, we consider the following static TWFE specification for the effect
of banking deregulation laws, which replicates Leblebicioğlu and Weinberger (2020)’s
baseline specification:

LSst = βBankBankst + βBranchBranchst + ηXst + αs + αt + ϵst , (19)

where s indexes states, t indexes years, and LS is the labor share. Branchst and Bankst are
binary indicators equal to one if a state has adopted intrastate branching or interstate
banking deregulation.

To assess possible pre-trends and lagged effects, Leblebicioğlu and Weinberger (2020)
also estimate the following event-study TWFE specification:35

LSst =
9

∑
q=–9

βBank,t+q∆Banks,t+q +
9

∑
q=–9

βBranch,t+q∆Branchs,t+q + ηXst + αs + αt + ϵst . (20)

6.1.2 Forbidden comparisons in the TWFE specifications

Given the staggered rollout of banking deregulation laws across US states, the TWFE
specifications of Equations 19 and 20 might suffer from the negative weights bias high-
lighted by recent studies and discussed in Section 2. Earlier liberalizers are used as
controls for states that liberalize later on. Specifically, the specifications in Equations
19 and 20 produce a weighted average of two types of comparisons: (1) newly treated
states vs. not-yet treated states and (2) newly treated states vs. earlier treated states
(Goodman-Bacon, 2021).

We employ the Goodman-Bacon (2021) diagnostic to decompose the TWFE estimate
from Equation 19 into these two types of comparisons.36 While ‘unclean’ 2x2 comparisons
with earlier treated units as controls contribute to (and potentially bias) the TWFE

35The event-study TWFE specification employed by Leblebicioğlu and Weinberger (2020) is not completely
standard, since it includes only leads and lags of the differenced treatment indicators but not a last lag in
levels. Therefore it is not completely equivalent to the standard event-study TWFE estimator as obtained
by estimating equation 4 above. This non-standard specification, however, does not influence results:
applying a standard event-study TWFE specification (as in our equation 4) yields very similar results as
those obtained by Leblebicioğlu and Weinberger (2020). This reassures us that any differences between the
dynamic TWFE results of Leblebicioğlu and Weinberger (2020) and our results from applying LP-DiD are
due to the negative weights bias of TWFE, not to the non-standard specification of the TWFE model used
by Leblebicioğlu and Weinberger (2020).

36Specifically, the Goodman-Bacon (2021) diagnostic is applied to a basic static TWFE specification that
only includes two-way fixed effects and the treatment indicator for the policy under consideration. This
corresponds to the first specification (‘only FEs’) reported in the top panel of Figure 7.
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Figure 5: Banking deregulation in US States
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Notes: Data from Leblebicioğlu and Weinberger (2020).

estimates of both the policies studied, the estimates of the effect of intrastate branching
deregulation are affected most severely. The static TWFE estimator of the effect of
interstate banking deregulations assigns a overall weight of 63% to ‘clean’ comparisons of
newly treated versus not-yet treated states, and 36% to ‘unclean’ comparisons that use
earlier treated units as controls. For the estimates of the effect of intrastate branching
deregulations, the problem is much more severe: ‘clean’ comparisons receive a weight
of only 30%. The remaining 70% is accounted for by two types of unclean comparisons:
later treated units versus earlier treated units (23%) and treated units versus units that
are already treated in the first period of the panel (47%).

Figure 6 displays the results of the Goodman-Bacon (2021) decomposition diagnostic.
The figure plots each constituent 2x2 comparison that contributes to the static TWFE
estimates, with its weight on the horizontal axis and its estimate on the vertical axis. The
graph suggests that the estimates of the effects of branching deregulations are driven by
a few ‘unclean’ comparisons – those involving states that deregulated before 1970 – that
receive a very large weight. Notably, for both types of policies, clean comparisons produce
overwhelmingly negative coefficients, while the unclean ones tend to bias the coefficients
upwards. The greater bias in the case of intrastate branching—whose adoption is spread
over a much longer horizon than interstate banking—is a stark demonstration of the
negative weighting problem that arises with staggered treatment.
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Figure 6: Goodman-Bacon (2021) decomposition diagnostic for the static TWFE specifica-
tion of equation 19
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6.1.3 LP-DiD specification

In order to avoid the biases of the conventional TWFE specifications, and to allow for
matching based on pre-treatment outcome dynamics, we re-estimate the effect of banking
deregulation laws using the following LP-DiD specification:37

LSs,t+h – LSs,t–1 = αh
t + βLP–DiD

h ∆Policys,t +
M
∑

m=1

γh
m∆LSs,t–m +

M
∑

m=1

ηh
mXs,t–m + eh

s,t , (21)

with Policy ∈ {Bank, Branch}, and restricting the sample to observation that are either: newly treated

or clean control

∆Policys,t = 1 ,

Policys,t+h = 0 .
(22)

6.1.4 Results

We begin by presenting some replication results that follow the design of the original
study. Figure 7 displays results from the static and event-study TWFE specifications of
Equations 19 and 20. These replicate the estimates reported in Table 2 and Figure 2 of
Leblebicioğlu and Weinberger (2020). They suggest that the liberalization of inter-state

37Given that treatment is absorbing in this data, and there is a sufficient number of not-yet treated States
at all points in time, we use the version of the clean control condition with only not-yet treated as controls.
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banking has a sizable negative effect on the labor share, although they also show a small
pre-treatment trend. Instead, the estimated effects of intra-state branching deregulation
on the labor share are positive, small and very imprecise.

Next consider the LP-DiD estimator with clean controls of Equation 22, whose results
are displayed in Figure 8 . The negative effect of inter-state banking deregulation on the
labor share is confirmed, including when controlling for pre-treatment outcome dynamics.
Estimates of the effect of intra-state branching deregulation, instead, change dramatically:
while the original TWFE estimates found no effect, we find a sizable negative impact.

Finally, we can sum up the lessons of this empirical exercise. The results here are
not weaker, and in some respects are even stronger, than in the original study. After
addressing the bias of the TWFE estimator by excluding ‘unclean’ comparisons, the
estimated effect of inter-state branching deregulation on the labor share is negative and
of similar size as that of inter-state banking deregulation. Both types of deregulation are
now found to make a difference.

6.2 Democracy and economic growth

Our second empirical application estimates the effect of democracy on GDP per capita,
replicating the analysis in Acemoglu, Naidu, Restrepo, and Robinson (2019), ANRR
hereafter.

The dataset covers 175 countries from 1960 to 2010. The treatment indicator is a binary
measure of democracy, which ANRR build from several datasets to mitigate measurement
error. The main outcome variable of interest is the log of GDP per capita, obtained from
the World Bank Development Indicators.

Three features make this application an especially meaningful testing ground for
the LP-DiD approach. First, there is potential for negative weighting: fixed-effects
regression would implicitly use older democracies as controls for new democracies.
Second, treatment is non-absorbing: democracies can slide back into autocracy, and there
are indeed multiple instances of reversals in the data. Third, controlling for pre-treatment
outcome dynamics is crucial, since there is evidence of selection: ANRR show that
democratisation tends to be preceded by a dip in GDP per capita.
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Figure 7: Effect of banking deregulation on the labor share: TWFE estimates
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Notes: Estimates for the effect of banking deregulation on the labor share, using data from Leblebicioğlu
and Weinberger (2020). The top panel uses the static TWFE specification of equation 19. The two bottom
panels use the event-study TWFE specification of equation 20. These graphs replicates results from
Leblebicioğlu and Weinberger (2020). Following Leblebicioğlu and Weinberger (2020), the additional
controls are four lags of real State GDP, average corporate tax rate, and union membership rates.
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Figure 8: Effect of banking deregulation on the labor share: LP-DiD estimates
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Notes: Estimates for the effect of banking deregulation on the labor share, using data from Leblebicioğlu
and Weinberger (2020) and the LP-DiD specification of equations 21 and 22. Following Leblebicioğlu and
Weinberger (2020), the additional controls are four lags of real State GDP, average corporate tax rate, and
union membership rates.

6.2.1 Dynamic panel specifications

The baseline results in ANRR are obtained from the following dynamic fixed effects
specification:

yct = βDct +
p

∑
j=1

γjyc,t–j + αc + δt + ϵct , (23)

where c indexes countries, t indexes years, y is the log of GDP per capita and D is the
binary measure of democracy.

Lags of GDP per capita are included to address selection bias, and in particular the
pre-democratization decline in GDP per capita.

The estimated coefficients from Equation 23 are then used to build an impulse response
function (IRF) for the dynamic effect on GDP. These estimates also allow one to derive
the cumulative long-run effect of a permanent transition to democracy, which can be
estimated as β̂(1 – ∑

p
j=1

γ̂j)
–1.

Figure 9 displays the IRF from the estimation of the dynamic panel model of Equa-
tion 23. This reproduces the baseline results in ANRR. The implied long-run effect of
democracy on growth is 21 percent with a standard error of 7 percent.
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Figure 9: Effect of democracy on growth: dynamic panel estimates
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Notes: Extrapolated impulse response function for the effect of democracy on GDP per capita, using the
dataset of Acemoglu et al. (2019) and the dynamic fixed effects specification of Equation 23. This graph
replicates the baseline results from Acemoglu et al. (2019).

This dynamic fixed effects specification, however, might suffer from the negative
weighting bias discussed in Section 2.

6.2.2 LP-DiD specifications

Consider an LP-DiD specification for estimating the effect of democracy on growth,

yc,t+h – yc,t–1 = βLP DiD
h ∆Dct + δh

t +
p

∑
j=1

γh
j yc,t–j + ϵh

ct , (24)

restricting the estimation sample to: democratizations

clean controls

Dit = 1; Di,t–j = 0 for 1 ≤ j ≤ L ,

Di,t–j = 0 for 0 ≤ j ≤ L .
(25)

In words, in each year t treated units are countries that democratize at t and have
experienced no other change in treatment status in the previous L years; clean controls
are countries that have been non-democracies continually for at least L years.

This is an example of how the LP-DiD framework can be applied in a setting in which
treatment is not absorbing, and the clean control condition can (and should) be tailored
to the specific application. For example, this specification does not condition inclusion in
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the estimation sample on treatment status between time t + 1 and t + h. This is to take into
account the concern that, under endogenous selection into treatment, constraining future
treatment status might introduce bias (see ANRR, pp. 54–55, for a discussion).

Moreover, similar to ANRR, only non-democracies are included in the control group,
although in principle under Assumption 7 also countries that are continually democracies
from t – L to t could be included. This reflects the concern that established democracies
might not be a good comparison for new democracies, therefore a control group composed
only of continuing autocracies is more likely to satisfy the parallel trends assumption.

In a section of their analysis, ANRR employ a semiparametric LP specification that
can be seen as a special version of the LP-DiD estimator above. Specifically, they estimate
Equations 24–25 with L = 1, which implies a time-window for defining clean controls of
just 1 year.

Seeing ANRR’s semiparametric specification as a version of LP-DiD provides a useful
novel perspective on their analysis and suggests possible deviations from their specifica-
tion. Our formal analysis in Section 4 makes clear that their choice relies on an implicit
(and unintended) assumption that treatment effects stabilize after 1 year, which is clearly
too strong in this setting.38

We thus estimate the LP-DiD specification of Equations 24–25 with a time-window
of 20 years (L = 20) for defining clean controls, thus excluding observations that have
experienced some transition in the previous 20 years.

We also test robustness to excluding countries that democratize between t + 1 and
t + h from the control group. To do this, we adopt a second version of the clean control
condition, in which treated units are defined as in condition 25 but clean controls are
observations with Di,t–j = 0 for –h ≤ j ≤ L.39 This test, however, should be interpreted
with caution: in this setting conditioning on future treatment status might introduce bias.

38For example, consider Argentina, which democratized in 1973 and became a dictatorship again in 1976.
The ANRR approach means that Argentina contributes to the counterfactual for measuring the effect of
the 1978 democratization of Spain (among others). It seems natural to consider an alternative specification
that excludes Argentina from the counterfactual for countries that (like Spain) democratize shortly after
1973–1976, reflecting the concern that the country might have experienced prolonged dynamic effects from
the 1973–1976 transitions in and out of democracy.

39For example, in measuring the effect of the 1978 democratization of Spain on subsequent GDP dynamics,
ANRR allow Ecuador, which was a nondemocracy in 1977 and 1978 but democratized in 1979, to be part of
the control group. Instead, using the above version of the clean control condition we exclude Ecuador from
the control group for the 1978 democratization of Spain.
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6.2.3 Results

Figure 10 displays results from LP-DiD specifications (Equations 24–25). We present four
specifications: The first (top left panel) follows ANRR and sets a time-window of just one
year for defining clean controls (L = 1). The second (top right) uses a time-window of 20

years (L = 20). The third (bottom left) adds the additional requirement that control units
remain non-democracies between t + 1 and t + h. The fourth (bottom right) estimates the
LP-DiD specification using regression adjustment (RA) to obtain an equally-weighted
(rather than a variance-weighted) ATT, as discussed in Section 3.3.

Overall, the result of a positive and large effect of democracy on GDP per capita
appears robust to stricter definitions of the control group. The partial exception is
the specification that excludes countries that democratize between t + 1 and t + h from
the control group, which finds similar positive short- and medium-term effects, but
much smaller and very imprecise long-term effects. However, that specification is to be
interpreted with caution, since constraining treatment status between t and t + h could
introduce a form of selection bias.

7 Conclusion

We propose a simple, transparent, easy, and fast technique for difference-in-differences
estimation with dynamic heterogeneous treatment effects. Our LP-DiD estimator has
several advantages and provides an encompassing framework, which can be flexibly
adapted to address a variety of settings. It does not suffer from the negative weighting
problem, and indeed can be implemented with any weighting scheme the investigator
desires. Simulations demonstrate the good performance of the LP-DiD estimator and
empirical exercises illustrate its use.
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Figure 10: Effect of democracy on growth: LP-DiD estimates
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Notes: LP-DiD estimates for the effect of democracy on GDP per capita, using the dataset of Acemoglu
et al. (2019) and the specification of Equations 24-25. The top left panel (‘ANRR (2019) LP specification’)
replicates the results in Section IV of Acemoglu et al. (2019), which use a LP specification and restrict the
sample to countries that are either democratizing at year t or non-democracies in both t – 1 and t. The
other three panels use the LP-DiD estimator with a time horizon for defining clean controls of 20 years
(L = 20). CCC 1 is a clean control condition that defines treated units as countries that democratize in year t
and experienced no transition between t – 20 and t – 1, and clean controls as countries that are continually
non-democracies between t – 20 and t. CCC 2 defines treated units in the same way, but clean controls are
continually non-democracies between t – 20 and t + h. The right bottom panel uses reweighting to obtain an
equally-weighted average effect, using CCC 1 as the clean control condition. See main text for more details.
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Òscar Jordà and Alan M. Taylor. The time for austerity: Estimating the average treatment effect of
fiscal policy. Economic Journal, 126(590):219–255, 2016.

Aslı Leblebicioğlu and Ariel Weinberger. Credit and the labour share: Evidence from US states.
Economic Journal, 130(630):1782–1816, 2020.

Michelle Marcus and Pedro H. C. Sant’Anna. The role of parallel trends in event study settings: An
application to environmental economics. Journal of the Association of Environmental and Resource
Economists, 8(2):235–275, 2021.

Stephen Nickell. Biases in dynamic models with fixed effects. Econometrica, 49(6):1417–1426, 1981.

James Robins. A new approach to causal inference in mortality studies with a sustained exposure
period—application to control of the healthy worker survivor effect. Mathematical Modelling, 7

(9):1393–1512, 1986. doi: https://doi.org/10.1016/0270-0255(86)90088-6.

Jonathan Roth, Pedro H.C. Sant’Anna, Alyssa Bilinski, and John Poe. What’s trending in difference-
in-differences? a synthesis of the recent econometrics literature. Journal of Econometrics, 2023.
doi: https://doi.org/10.1016/j.jeconom.2023.03.008. URL https://www.sciencedirect.com/

science/article/pii/S0304407623001318.

Donald B. Rubin. Estimating causal effects of treatments in randomized and nonrandomized
studies. Journal of Educational Psychology, 66(5):688–701, 1974.

Pedro H. C. Sant’Anna and Jun Zhao. Doubly robust difference-in-differences estimators. Journal
of Econometrics, 219(1):101–122, 2020.

Liyang Sun and Sarah Abraham. Estimating dynamic treatment effects in event studies with
heterogeneous treatment effects. Journal of Econometrics, 225(2):175–199, 2020.

Davide Viviano and Jelena Bradic. Dynamic covariate balancing: estimating treatment effects over
time with potential local projections, 2023.

Jeffrey M. Wooldridge. Two-way fixed effects, the two-way Mundlak regression, and difference-in-
differences estimators. http://dx.doi.org/10.2139/ssrn.3906345, August 2021.

54

https://jrgcmu.github.io/2sdd_current.pdf
https://jrgcmu.github.io/2sdd_current.pdf
https://arxiv.org/abs/2203.09001
https://www.sciencedirect.com/science/article/pii/S0304407623001318
https://www.sciencedirect.com/science/article/pii/S0304407623001318
http://dx.doi.org/10.2139/ssrn.3906345


Appendix

A Weights of the LP-DiD estimator
This appendix derives the weights assigned to each cohort-specific ATET by the LP-DiD estimator,
first in a baseline version without control variables (Equations 11 and 12 in the main text) and
then in more general specifications with control variables.

A.1 Baseline version without control variables
Assumptions about the DGP

Consider the general setup and notation introduced in Section 2.1 in the main text. Treatment
is binary, staggered and absorbing; parallel trends and no anticipation hold unconditionally
(Assumptions 1 and 2); potential outcomes without treatment are determined according to
Equation 2. As in Section 2.5, treatment effects can be dynamic and heterogeneous across
treatment cohorts.

We can write the observed long-difference yi,t+h – yi,t–1
as follows,

yi,t+h – yi,t–1
= δh

t + τi,t+hDi,t+h – τi,t–1
Di,t–1

+ eh
i,t , (A.1)

where δh
t = δt+h – δt–1 and eh

it = ei,t+h – ei,t–1
.

LP-DiD specification

Consider the following LP-DiD specification with clean controls,

yi,t+h – yi,t–1
= δh

t + βLP–DiD
h ∆Dit + ϵh

it , (A.2)

restricting the sample to observations that are either{
newly treated
or clean control

∆Dit = 1 ,
Di,t+h = 0 .

(A.3)

βLP–DiD
h is the LP-DiD estimate of the dynamic ATET, h periods after entering treatment.

Derivation of the weights

First, we need to define a clean control sample (CCS) for each treatment group. Consider a
treatment group (or cohort) g > 0, as defined in Section 2.1. Define the clean control sample (CCS)
for group g at time horizon h (denoted as CCSg,h) as the set of observations for time t = pg that
satisfy condition A.3. Therefore CCSg,h includes the observations at time pg for all units that either
enter treatment at pg or are still untreated at pg + h. In other words, CCSg,h includes observations
at time t = pg for group g and its clean controls.

By definition of groups and CCSs, each observation that satisfies condition A.3 enters into one
and only one CCS. Therefore, the unbalanced panel dataset defined by the clean control condition
in A.3 can always be reordered as a ‘stacked’ dataset, in which observations are grouped into
consecutive and non-overlapping CCSs. The equivalence between the estimation sample defined
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by the clean control condition of Equation A.3 and the stacked dataset we just described implies
that, in this baseline setting, LP-DiD is equivalent to the stacked approach of Cengiz et al. (2019).

Moreover, for any observation {i, t} ∈ CCSg,h, we have ∆Di,t = ∆Di,pg = Di,pg . This follows
from the fact that for any {i, t} ∈ CCSg,h, we have Di,t–1

= Di,pg–1
= 0 by virtue of the clean control

condition.
Define event indicators as a set of G binary variables that identify the CCS that an observation

belongs to. For each treatment group g > 0, the corresponding event indicator is equal to 1

if {i, t} ∈ CCSg,h and 0 otherwise. By definition of treatment groups and CCCs, these event
indicators are fully collinear with time indicators.

By the Frisch-Waugh-Lovell theorem,

E
(

β̂LP–DiD
h

)
=

∑G
j=1

∑i∈CCSj,h

[
∆D̃i,pj

E
(

yi,pj+h – yi,pj–1

)]
∑G

j=1
∑i∈CCSj,h

∆D̃
2

i,pj

, (A.4)

where ∆D̃i,pg is the residual from a regression of ∆D on time indicators in the sample defined by
condition A.3.

This residualized treatment dummy for unit i at time pg is equal to

∆D̃i,pg = ∆Di,pg –
∑i∈CCSg,h

∆Di,pg

NCCSg,h

= Di,pg –
∑i∈CCSg,h

Di,pg

NCCSg,h

= Di,pg –
Ng

NCCSg,h

, (A.5)

where NCCSg,h
is the number of observations belonging to CCSg,h, and Ng is the number of

observations belonging to group g. For all observations belonging to the same group g > 0, we

have ∆D̃i,pg = ∆D̃g,pg = 1 – Ng
NCCSg,h

The first equality in Equation A.5 follows from the full collinearity between time indicators
and event indicators (defined as above); the second and third equalities follow from the definitions
of groups and CCCs.

Given the parallel trends assumption (Assumption 2), we have

E
(

β̂LP–DiD
h

)
=

∑G
j=1

∑i∈CCSj,h

[
∆D̃i,pj

E
(

yi,pj+h–yi,pj–1

)]
∑G

j=1
∑i∈CCSj,h

∆D̃
2

i,pj

=
∑G

j=1
∑i∈CCSj,h

[
∆D̃i,pj

E
(

τi,pj+hDi,pj+h

)]
∑G

j=1
∑i∈CCSj,h

∆D̃
2

i,pj

=
∑G

j=1
∑i∈CCSj,h

[
∆D̃i,pj

E
(

τi,pj+hDi,pj

)]
∑G

j=1
∑i∈CCSj,h

∆D̃
2

i,pj
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= ∑G
j=1

∑i∈CCSj,h

∆D̃i,pj

∑G
j=1

∑i∈CCSj,h
∆D̃

2

i,pj

E
(

τi,pj+hDi,pj

)

= ∑G
j=1

∑i∈j
∆D̃i,pj

∑G
j=1

∑i∈j ∆D̃
2

i,pj

τi,pj+h

= ∑g ̸=0

Ng∆D̃g,pg

∑g ̸=0
Ng∆D̃

2

g,pg
τg,pg+h

= ∑g ̸=0
ωLP–DiD

g,h τ
g
h ,

where the weights are given by

ωLP–DiD
g,h =

Ng∆D̃g,pg

∑g ̸=0
Ng∆D̃

2

g,pg

=
Ng

(
1 – Ng

NCCSg,h

)
∑g ̸=0

Ng

(
1 – Ng

NCCSg,h

) =
NCCSg,h

[ngh(nc,g,h)]

∑g ̸=0
NCCSg,h

[ng,h(nc,g,h)]
, (A.6)

where ng,h = Ng/NCCSg,h
is the share of treated units in the CCSg,h subsample; and nc,g,h = Nc,g,h/NCCSg,h

is the share of control units in the CCSg,h subsample. Recall that τ
g
h was defined in the main text

as the dynamic ATET for group g at time-horizon h (Equation 1).

A.2 Weights with control variables
What are the weights of the LP-DiD estimator in a more general specification that includes
exogenous and pre-determined control variables? If covariates have a linear and homogenous
effect on the outcome, and parallel trends holds conditional on covariates, it is possible to show
that the weights assigned to each group-specific effect by the LP-DiD estimator are unchanged by
the inclusion of exogenous or pre-determined covariates. In more general settings, the weights
are proportional to the residuals of a regression of the treatment indicator on time effects and the
covariates.

To explore the role of covariates, we now assume that no anticipation and parallel trends hold
after conditioning on a set of observable exogenous or pre-determined covariates (Assumptions 3

and 4 in the main text).

A.2.1 Covariates with linear and homogeneous effects

The DGP Assume that covariates have a linear and homogeneous effect on the outcome.
Specifically, assume the following DGP,

yi,t+h – yi,t–1
= δh

t + ρh∆xit + τi,t+hDi,t+h – τi,t–1
Di,t–1

+ eh
i,t , (A.7)
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LP-DiD specification with covariates The LP-DiD estimating equation with clean controls
and control variables is

yi,t+h – yi,t–1
= βLP–DiD

h ∆Dit treatment indicator
+ ρh∆xit covariates
+ δh

t time effects
+ eh

it; for h = 0, . . . , H ,

(A.8)

restricting the sample to observations that respect condition A.3.

Weights derivation All the definitions of clean control subsamples and indicators, and the
results related to those, that have been described in Section A.1 above, still hold.

The LP-DiD specification of Equation A.8 can be rewritten as

yi,t+h – yi,t–1
– ρh∆xit = βLP–DiD

h ∆Dit + δh
t + eh

it .

Therefore, by the Frisch-Waugh-Lovell theorem, we have

E
(

β̂ LP–DiD
h

)
=

∑G
j=1

∑i∈CCSj,h

[
∆D̃i,pj

E
(
yi,t+h – yi,t–1

– ρ̂h∆xit
)]

∑G
j=1

∑i∈CCSj,h
∆D̃

2

i,pj

, (A.9)

where ∆D̃i,pg is the residual from a regression of ∆D on time indicators in the sample defined by
condition A.3.

The equivalence of Equation A.5 above still holds; therefore, for all observations belonging to
the same group g > 0, we have ∆D̃i,pg = ∆D̃g,pg = 1 – Ng/NCCSg,h

Given the assumptions about the DGP, we have

E
(

β LP–DiD
h

)
=

∑G
j=1

∑i∈CCSj,h

[
∆D̃i,pj

E(yi,t+h–yi,t–1
–ρ̂h∆xit)

]
∑G

j=1
∑i∈CCSj,h

∆D̃
2

i,pj

=
∑G

j=1
∑i∈CCSj,h

[
∆D̃i,pj

E
(

τi,pj+hDi,pj+h

)]
∑G

j=1
∑i∈CCSj,h

∆D̃
2

i,pj

.

This is the same expression as in the case of unconditional parallel trends and no covariates
analyzed above, and it therefore leads to the same result,

E
(

β LP–DiD
h

)
= ∑g ̸=0

ωLP–DiD
g,h τg(h) .

where the weights are given by Equation A.6 above.

A.2.2 More general setting

Now consider a more general setting, in which Assumptions 3 and 4 hold, but we do not
restrict the effect of covariates to be linear or homogeneous. In this more general setting, the
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Frisch-Waugh-Lovell theorem implies

E
(

βLP–DiD
h

)
=

∑G
j=1

∑i∈CCSj,h

[
∆D̃

c
i,pj

E
(

yi,pj+h – yi,pj–1

)]
∑G

j=1
∑i∈CCSj,h

(
∆D̃

c
i,pj

)
2

, (A.10)

where ∆D̃
c
i,pg = ∆D̃

c
g,pg is the residual from a regression of ∆D on time indicators and the control

variables xit in the sample defined by condition A.3.
The weights are thus given by

ωc LP–DiD
g,h =

Ng∆D̃
c
g,pg

∑g ̸=0
Ng

(
∆D̃

c
g,pg

)
2

. (A.11)

As noted in the main text (Section 4), it is always possible to preserve non-negative variance-
weighted weights by employing semi-parametric propensity-score methods, or obtain a equally-
weighted effect using regression adjustment.
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