NBER WORKING PAPER SERIES

PARTIAL OUTSOURCING OF PUBLIC PROGRAMS: EVIDENCE ON DETERMINANTS OF CHOICE IN MEDICARE

Marika Cabral Colleen Carey Jinyeong Son

Working Paper 31141 http://www.nber.org/papers/w31141

NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 April 2023

For helpful comments, we thank Jason Abaluck, Michael Geruso, Victoria Marone, Sean Nicholson, Robert Town, and conference participants at the 2021 American Society of Health Economists Annual Conference. We thank Megan Hyland for excellent research assistance. Cabral gratefully acknowledges financial support from the National Science Foundation CAREER Award (1845190). This research was also supported by a pilot grant within grant P30AG066614, awarded to the Center on Aging and Population Sciences at The University of Texas at Austin by the National Institute on Aging; by grant P2CHD042849, awarded to the Population Research Center at The University of Texas at Austin by the Eunice Kennedy Shriver National Institute of Child Health and Human Development; and by the Cornell Center for the Social Sciences. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health, the National Science Foundation, or any other entity. The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications.

© 2023 by Marika Cabral, Colleen Carey, and Jinyeong Son. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.

Partial Outsourcing of Public Programs: Evidence on Determinants of Choice in Medicare Marika Cabral, Colleen Carey, and Jinyeong Son NBER Working Paper No. 31141 April 2023 JEL No. H51,I11,I13

ABSTRACT

Many public programs let individuals choose between publicly provided benefits and a subsidized private alternative. We investigate the determinants of health insurance choice in Medicare—a setting with vast geographic variation in the share of individuals selecting the public option versus private alternative. We analyze insurance decisions among individuals who move to quantify the relative importance of individual-specific factors (such as preferences or income) and place-specific factors (such as local health insurance options) on insurance decisions. We find roughly 40% of the geographic variation in the share selecting private coverage is due to place-based factors, while the remainder is explained by individuals. Our findings highlight the importance of individual factors in these decisions and may inform discussions about the use of policy to address geographic disparities.

Marika Cabral Department of Economics University of Texas at Austin 2225 Speedway BRB 1.116, C3100 Austin, TX 78712 and NBER marika.cabral@utexas.edu Jinyeong Son Department of Economics University of Texas at Austin 2225 Speedway BRB 1.116, C3100 Austin, TX 78712 jinyeong.son@utexas.edu

Colleen Carey Department of Economics and Brooks School of Public Policy Cornell University Martha van Rensselaer Hall, Room 298 Ithaca, NY 14853 and NBER colleenmariecarey@gmail.com A perpetual policy debate is whether the government should directly provide public program benefits or outsource provision. With this debate in the background, many government programs have turned to partial outsourcing, giving individuals choice between direct government provision or a subsidized private alternative. Allowing choice between public and private provision has the potential to harness the benefits of competition, while accommodating variation in beneficiary preferences for the form of benefits. A leading example is the case of government provision of health insurance for the elderly and disabled through the federal Medicare program—where beneficiaries are given the choice between government-provided public Traditional Medicare (TM) coverage and government-subsidized private Medicare Advantage (MA) coverage. These two health insurance options are horizontally differentiated. Relative to public TM coverage, private MA coverage typically provides more generous financial protection, in exchange for greater utilization management and a more restrictive network of providers.

While nearly half of Medicare beneficiaries currently choose this private option (KFF, 2022), there has always been wide geographic variation in MA enrollment, raising concerns among policymakers about the program's ability to deliver equitable benefits for all Medicare recipients. The share of Medicare beneficiaries choosing MA exceeds 67% in Minnesota but is less than 10% in Alaska or Wyoming. Disparities in coverage are large even within states, with the share selecting MA varying from 5.8% to 67.4% across Texas counties and 5.1% to 73.1% across California counties. Concerns over these geographic disparities were raised at Congressional hearings prior to the last major reform to MA (Committee on Energy and Commerce, 2001; Committee on Ways and Means, 2001) and are reflected in the numerous adjustments to MA subsidies designed to raise payments in areas with low enrollment (DeParle, 2002; Cabral, Geruso and Mahoney, 2018). However, it is unclear whether areas with low MA take-up are "underserved" or whether individuals in these areas simply have weaker preferences for private coverage. Understanding the extent to which supply-side versus demand-side factors explain geographic variation in private insurance enrollment in Medicare is critical for informing both

the objectives of policymakers and the impacts of policies aimed at achieving these objectives.

In this paper, we investigate the determinants of the choice of public versus private health insurance in the context of Medicare. Using a "movers" research design (Finkelstein, Gentzkow and Williams, 2016), we compare health insurance decisions before and after a move among individuals who move between areas with differing MA popularity. While individual insurance decisions may be influenced by place-based factors—such as competition among private insurers or local provider networks—decisions may also be influenced by individual factors—such as preferences, income, and health status. The intuition behind the movers research design is simple: an individual who moves carries with them their tastes and attributes—both observed and unobserved—but is faced with new place-based factors after the move. Thus, we can analyze changes in individual decisions upon moving to distinguish the relative importance of place- and individual-based factors on these insurance decisions.

Our event study analysis correlates MA enrollment trends among movers in the years surrounding a move with their destination-origin difference in the share enrolled in MA. This analysis reveals no correlation in movers' insurance choices prior to the move. Upon moving, there is a sharp increase in MA enrollment among individuals moving to areas with greater MA prevalence, with estimates indicating a 4 percentage point (p.p.) increase in the likelihood of selecting MA after moving to an area with 10 p.p. higher MA enrollment. Additionally, the observed change in movers' propensity to select MA appears linear in the destinationorigin difference in MA enrollment. Our estimates indicate that 43% of the difference in MA enrollment across areas in the top- and bottom-quartile of MA prevalence is due to place-based factors, with the remaining 57% due to individual factors. Further, our estimates suggest that 41% of the observed cross-sectional variance in MA enrollment would persist if all place-based factors were counterfactually made uniform across places.

We then present supplemental evidence related to possible mechanisms behind our findings. First, we examine correlates of the estimated place effects and average individual effects. Findings from this correlational analysis are broadly consistent with intuition and institutional features. For instance, place effects are positively correlated with county-level MA per-capita subsidies and negatively correlated with MA insurer concentration. Second, we provide additional evidence on factors that may contribute to the estimated place effects by examining how prescription drug utilization patterns (and inferred health care delivery patterns) change when moving to areas with differing MA prevalence among movers who are consistently enrolled in either TM or MA throughout. We find that moving to a region where MA is more prevalent results in a greater share of prescriptions from primary care physicians and midlevel providers (as opposed to specialists), regardless of whether an individual is consistently in TM or MA. We also find moving to an area with higher MA enrollment is associated with increases in prescription drug utilization among individuals who are always in MA. While only suggestive, these findings highlight potential features of local health care markets—and local MA plans—that could allow MA to achieve large market shares.

This paper contributes to a broader literature investigating public programs with parallel public and private provision. Prior work has explored the consequences of public versus private provision on outcomes in settings such as housing assistance programs (e.g., Katz, Kling and Liebman (2001), Chetty, Hendren and Katz (2016)), education (e.g., Abdulkadiroğlu et al. (2011), Dobbie and Fryer (2011)), and health care (e.g., Chan, Card and Taylor (2022), Knutsson and Tyrefors (2022)). Our work complements this literature by investigating the determinants of choice between public and private options and by providing evidence on these determinants in one of the largest social insurance programs in the U.S.

Our work is also related to a literature on the Medicare program which has explored the impact of the design of federal subsidies for private MA coverage—focusing on specific policies targeting place (e.g., Cabral, Geruso and Mahoney (2018), Curto et al. (2021), Miller et al. (2019)), risk (e.g., Brown et al. (2014)), and quality (e.g., Vatter (2022), Layton and Ryan (2015)). This paper contributes to this literature by taking a step back to ask: How much of the large geographic variation in MA enrollment can be explained by all placebased factors collectively? The answer to this question has important implications for policy. Policymakers have often interpreted the large observed geographic variation in MA enrollment as *prima facie* evidence of disparities in access to high quality MA plans. In contrast to this interpretation, our findings suggest that more than half of the geographic variation in MA enrollment is due to variation in individual factors. An important implication of these findings is that geographic variation in MA enrollment alone may not provide a rationale for policy intervention. Moreover, our analysis indicates that even if adjustments in MA policy could fully offset differences in place-based factors across areas, more than 40% of the existing variation in MA enrollment would remain. Thus, our findings suggest that substantial variation in MA enrollment would persist regardless of policy efforts to equalize access and that this variation is not an appropriate metric for measuring the success of such policies.

More broadly, our findings suggest individual factors—such as preferences and health play an important role in explaining insurance decisions in Medicare. Given the characteristics that differentiate the public and private options in Medicare, our results suggest there may be substantial variation in individual preferences for insurance providers, networks, and outof-pocket costs and point to the potential value of offering choice along these dimensions when feasible. By highlighting possible benefits of offering choice between public and private options, our work complements a literature exploring policy challenges that arise with partial outsourcing in Medicare and other public programs.¹

Finally, our work contributes to a growing literature investigating geographic variation in health care settings, which to date has primarily focused on health (e.g., Finkelstein, Gentzkow and Williams (2021)) and health care production (e.g., quantity (e.g., Finkelstein, Gentzkow and Williams (2016)), price (e.g., Cooper et al. (2018)), and practice styles (e.g., Cutler et al. (2019), Molitor (2018))). Our work extends this literature by documenting geographic variation in health insurance choices and exploring determinants of this variation.

¹For example, prior work has explored market power and selection in Medicare (e.g., Brown et al. (2014), Duggan, Starc and Vabson (2016), Cabral, Geruso and Mahoney (2018), Geruso and Layton (2020)) and other public programs with partial outsourcing (e.g., Figlio and Stone (2001), Altonji, Huang and Taber (2015), Bergman and McFarlin (2018), Bauhoff (2012), Polyakova (2016), Nuscheler and Knaus (2005), Butler and Worrall (1986)).

1 Background & Data

1.1 Background

Elderly and disabled individuals in the U.S. are eligible for health insurance coverage through Medicare. These beneficiaries can select either public TM or private MA coverage. MA coverage typically requires less patient cost-sharing but often offers a more restricted network of providers. MA plans may also offer supplemental benefits not offered by TM—including vision, dental, and hearing services. Each MA plan specifies a set of counties—a service area in which to market the plan; in these counties, they must accept all beneficiaries who apply. For each enrollee, the plan collects a premium and obtains a per-enrollee federal subsidy. The subsidies are tied to TM costs in the enrollee's county and are adjusted for an estimate of the enrollee's health based on documented medical conditions.

There is substantial geographic variation in both local health care options and MA plan offerings. Thus, Medicare beneficiaries who move may want to re-optimize their coverage choices after the move to select coverage that best matches their preferences. Most moves generate a "Special Enrollment Period" that allows the individual to switch immediately between TM and MA or among MA plans (CMS, 2006). In addition, any Medicare beneficiary can switch between TM and MA or among MA plans each fall.

When moving, a Medicare beneficiary is not necessarily required to make an active choice between TM and MA. A TM enrollee can always remain in TM, and many MA enrollees can remain in the same MA plan.² However, even among movers with the option to remain in the same MA plan, many may want to select among the locally offered MA plans in the destination, which often include more nearby providers in their network.

 $^{^{2}}$ Many MA plans have a broad or nationwide service area. In addition, many MA plans opt to retain individuals who move out of the plan's service area.

1.2 Data and Measurement

This paper leverages administrative data on enrollment, coverage, and demographics for the universe of Medicare beneficiaries from the Medicare Beneficiary Summary File and administrative prescription drug claims data from the Prescription Drug Event (PDE) file covering a random 20% subsample of beneficiaries with Medicare Part D prescription drug coverage. These datasets span 2007 to 2017. Appendix Section A provides more details on additional data sources and sample restrictions.

Throughout the analysis, we focus on Medicare beneficiaries who are at least 65 years of age—thereby excluding non-elderly beneficiaries with disabilities or end-stage renal disease. We use "county" as our key geographic unit of analysis because MA service areas are specified as sets of counties. The data reflect beneficiary county of residence on file with the Social Security Administration (SSA) as of March 31^{st} of each calendar year. To align with this timing, we define "year" t throughout as a twelve-month interval that begins on April 1^{st} . We define an individual as "moving" in year t if their county of residence at the beginning of year t differs from their county of residence at the beginning of year t differs from their county of residence at the beginning of year t differs from their county of residence at the beginning of year t beneficiaries enrolled in Part D coverage, and further restrict our sample of movers to those who appear in the PDE data.³ We measure event time r as year relative to move, where r = 0 represents the year of the move. We exclude individuals who move in 2007 (who are only observed after moving) or who move more than once over the analysis period.

We restrict attention to movers who appear to have shifted their prescription drug consumption from the origin to the destination coincident with the move. This restriction excludes individuals who update their residence on file with SSA without altering their behavior (e.g., those who change their address to that of an adult child or secondary residence). Specifically, we restrict our attention to movers who increase the share of prescription drug fills at desti-

³Roughly 65% of Medicare beneficiaries have Medicare Part D coverage, with a random 20% of these individuals represented in the PDE data. While we make these sample restrictions to examine how consumption patterns change with recorded residence, we obtain very similar findings when dropping these restrictions (Appendix Figure A2).

nation pharmacies (among fills at either the origin or destination) by at least 75 p.p.⁴ Among all movers in the PDE data, approximately 57% or 348,199 movers change their prescription filling behavior consistent with an actual move. Appendix Figure A1 demonstrates that, after this restriction, our "first stage" change in prescription filling behavior is essentially one with movers filling nearly no prescriptions in the destination before the move and nearly all prescriptions in the destination after the move. Further analysis in Appendix Figure A2 shows that our main findings are very similar if we drop this restriction and scale the resulting event study estimates by the smaller "first stage" for this broader group of movers.

Our key dependent variable, MA_{it} is set to 1 whenever individual *i* has any months of MA enrollment in year *t*. Let $\overline{MA}_j = \frac{1}{T} \sum_t \left\{ |C_{jt}|^{-1} \left(\sum_{i \in \mathcal{C}_{jt}} MA_{it} \right) \right\}$ represent the average MA enrollment in county *j* over the sample period, where \mathcal{C}_{jt} represents the set of individuals living in county *j* in year *t*. The difference between MA enrollment (\overline{MA}_j) in individual *i*'s destination and origin is captured in the variable $\hat{\delta}_i$, and serves as a continuous measure of the "treatment" to which a mover is exposed upon moving.

Appendix Table A1 reports summary statistics on our sample. Movers are slightly more likely to be female, white, and older than nonmovers, and are observed for more years. Throughout we include individual fixed effects to account for any differences between movers and nonmovers. In some supplemental analyses, we use a sample of "matched nonmovers" consisting of a randomly selected nonmover for each mover who is matched at the individual level on origin county, gender, race, five-year age bin, and enrollment in Medicare during the relevant years.

Appendix Table A1 panel (b) summarizes transition patterns between TM and MA in the years surrounding a move (for movers and matched nonmovers) or other three-year intervals (for the broader nonmover sample). A large majority—85%—of movers maintain their premove choice of either TM or MA. However, movers are about twice as likely as matched nonmovers to either join or leave MA in the three-year interval surrounding their move.

⁴This sample restriction parallels an analogous sample restriction on medical claims used in Finkelstein, Gentzkow and Williams (2016).

2 Empirical Strategy

2.1 Econometric Specification

Our movers research design follows methods developed in Finkelstein, Gentzkow and Williams (2016) and subsequent related work.⁵ We use two specifications to analyze MA enrollment decisions. First, we estimate an event study specification that investigates how movers' MA choices reflect differences in MA prevalence in their destination relative to origin. Specifically, we estimate the following equation:

$$MA_{it} = \sum_{r \neq -1} \theta_r I_r \widehat{\delta}_i + \tau_t + \alpha_i + x_{it}\beta + \varepsilon_{it}, \qquad (1)$$

where the key coefficients are θ_r which are event-time-specific coefficients on $\hat{\delta}_i$ —the difference in MA enrollment between individual *i*'s destination and origin. This specification also includes year fixed effects, τ_i , to flexibly account for national trends in MA enrollment. We also include individual fixed effects, α_i , to account for the possibility that movers differ from nonmovers in their MA enrollment behavior or that individuals with high MA demand choose to move to destinations with high MA enrollment. Additionally, we include other controls (x_{it}) for age (in five-year bins) and for event time. Both movers and nonmovers are included in the estimation, where event time is set to zero for nonmovers. Standard errors are clustered at the individual level.⁶ Beyond estimating the event-time-specific θ_r coefficients, we also summarize these coefficients via a linear combination of the post-period coefficients weighted by the number of movers contributing to each coefficient.

The identification assumption behind this estimation is that MA enrollment would have evolved similarly for movers exposed to different changes in MA prevalence upon moving. While this assumption is fundamentally untestable, we find the identification assumption

⁵For example, see other research on the determinants of health care that exploits moves among individuals (Agha, Frandsen and Rebitzer, 2019; Godøy and Huitfeldt, 2020; Finkelstein et al., 2022; Ding, 2022; Zeltzer et al., 2021) and physicians (Molitor, 2018; Beheshti and Neller, 2021; Doyle and Staiger, 2021).

⁶The confidence intervals are virtually unchanged when using two-way clustering on origin and destination county instead of clustering at the individual level.

broadly plausible given that individuals likely choose to move to particular destinations based on a number of factors (e.g., family, housing costs) and consideration of MA enrollment options may be second order. Further, our event study estimates provide support for the plausibility of the identification assumption by illustrating that pre-move MA enrollment evolved similarly for movers differentially exposed to changes in MA prevalence upon moving.

Second, we estimate a fixed-effects specification with data from both movers and nonmovers using the following equation:

$$MA_{ijt} = \alpha_i + \gamma_j + \tau_t + x_{it}\beta + \varepsilon_{ijt}.$$
(2)

This specification includes a full set of individual (α_i) , place (county) (γ_j) , and time (τ_t) fixed effects. The individual and place effects are only separately identified for movers (as they are observed in two places). This specification also includes additional controls (x_{it}) for five-year age bins and event time (all set to zero for nonmovers). For movers, we exclude the year of the move and the year following it because our event study estimates suggest these are periods of adjustment.

Using estimates from this specification, we calculate each county's "place effect" (the estimated fixed effects, γ_j) and "average individual effect" ($\overline{y}_j \equiv \overline{MA}_j - \gamma_j$). We use these county-level place and individual effects to measure the relative contribution of features of a place and its residents in determining MA enrollment. First, we can compare any two counties (or sets of counties) to decompose how much of the overall difference in MA enrollment is attributable to differences in their place effects versus differences in the mean individual effects. The share attributable to individual factors can be interpreted as the share of the difference in MA enrollment we would expect to remain if place effects were counterfactually made equal across these two places.

As a natural extension, we can predict the reduction in the cross-sectional variance in MA enrollment that would result from equalizing place effects across *all* counties. Mathematically, this is given by $1 - \operatorname{var}(\overline{y}_j)/\operatorname{var}(\overline{MA}_j)$ (where "var" is the variance over counties, weighted by the number of Medicare beneficiaries in the county over the analysis period). Alternatively, suppose Medicare beneficiaries were randomly reallocated such that individuals are (on average) uniform across counties and hence mean individual effects would be equalized across areas; this would reduce the cross-sectional variance by $1 - \operatorname{var}(\gamma_j)/\operatorname{var}(\overline{MA_j})$.

2.2 Descriptive Evidence and Identifying Variation

We begin by describing geographic variation in MA enrollment. Figure 1 displays county-level MA enrollment, representing each quintile of the MA enrollment distribution in a different shade. The fraction of Medicare beneficiaries enrolled in MA varies widely nationally, with an interquartile range spanning 14.7% to 37.8%. There is also substantial variation in MA enrollment within states, with 24 states containing counties from both the top and bottom quintile. While MA tends to be more popular in urban areas, high MA enrollment is observed in many rural areas, such as the upper Midwest and Appalachia.

Appendix Figure A3 plots a histogram of the destination-origin difference in average MA enrollment ($\hat{\delta}_i$) among movers. The distribution is centered on zero, indicating that movers are just as likely to move to regions with lower or higher MA enrollment compared to their origin. Further, the figure illustrates that movers are commonly subject to very different MA environments in their destination relative to their origin, with the interquartile range of this destination-origin difference spanning -0.114 to 0.126, i.e. 11.4 p.p. lower or 12.6 p.p. higher MA enrollment relative to their origin.

3 Results

3.1 Event Study Results

We begin by showing non-parametric evidence on the relationship between the destinationorigin difference in MA enrollment and changes in an individual's own MA enrollment upon moving. Figure 2 plots this relationship, where the horizontal axis measures the destinationorigin difference in MA enrollment $(\hat{\delta}_i)$ binned into ventiles, and the vertical axis measures the average change in MA enrollment between two to five years before and after the move. The figure illustrates that individuals moving to areas with higher (lower) MA coverage have an increased (decreased) likelihood of selecting MA coverage after the move. The magnitude of this relationship is notable: a 10 p.p. increase in the destination-origin difference is associated with a 3.9 p.p. increase in probability that the mover selects MA coverage after the move. Further, this figure suggests this relationship is roughly linear, providing support for the linearity assumption in the event study specification.

Next, we consider whether individuals who move to areas with higher MA enrollment differ systematically in their taste for MA, as captured by their pre-move MA enrollment behavior. Appendix Figure A4 plots the relationship between destination-origin MA enrollment differences and pre-move MA enrollment differences comparing movers to matched nonmovers. This figure depicts a small positive slope (0.07) illustrating that movers who will move to higher MA enrollment regions have slightly higher pre-move MA enrollment propensities than their nonmover counterparts; however, this relationship is much weaker than that depicted in Figure 2. Importantly, any time-invariant differences between movers and nonmovers in their MA enrollment are accounted for by including individual fixed effects in the analysis throughout.

Figure 3 reports the main event study results from estimating equation (1). The figure illustrates that there is no correlation between pre-move MA enrollment trends among movers and the destination-origin MA enrollment difference associated with their future moves. However, we see a sharp increase in MA enrollment upon moving among movers exposed to higher MA enrollment in their destination relative to their origin. The figure illustrates that MA enrollment begins to adjust in the year of the move, leveling out two years after the move. We expect the year of the move and the following year to be an adjustment period, given the timing of the move within the move year is unknown and individuals often make insurance decisions during the annual MA open enrollment period.⁷ The coefficients of interest increase

⁷We note that this adjustment period may also reflect short-run enrollment frictions (e.g., inertia), though further evidence discussed in Appendix Section B.1 leads us to conclude that inertia is unlikely to present a major source of bias in our baseline (medium-run) estimates or impact our key findings.

from zero pre-move to a mean of 0.414 in post-move years two and beyond, indicating the likelihood of MA enrollment increases by roughly 4 p.p. when moving to a county with 10 p.p. higher MA enrollment. The effects are precisely estimated with a 95% confidence interval spanning 0.405 to 0.422.

In the appendix, we show the robustness of our findings to concerns raised by a recent literature on potential bias in difference-in-differences research designs with staggered timing and heterogeneity in treatment effects by treatment timing (Goodman-Bacon, 2021; de Chaisemartin and D'Haultfœuille, 2020; Sun and Abraham, 2021; Callaway and Sant'Anna, 2021; Borusyak, Jaravel and Spiess, 2021). Specifically, Appendix Figure A5 presents estimates from repeating our event study specification by year of move, and Appendix Figure A6 reports estimates from an alternative imputation-based estimation strategy. Both alternative approaches yield very similar conclusions to our baseline analysis.

3.2 Decomposition of Variation in MA Enrollment

Using variation from movers, we estimate equation (2) to assess how much of the observed MA enrollment differentials are attributable to features of places versus individuals living in these places. In Appendix Table A2, we use our estimates to compare counties in the top quartile of the MA enrollment distribution (with an average MA enrollment of 57%) to those in the bottom quartile (with an average MA enrollment of 10%). The average difference in place factors between these sets of counties is 20 p.p., or 43% of the overall difference in MA enrollment. Implicitly, this means that the remaining 57% of the difference in MA enrollment between the top and bottom quartile is attributable to place when considering other characterizations of the top and bottom of the MA enrollment distribution. The last column splits counties into urban and rural. MA enrollment averages 49% in urban counties, while just 29% in rural counties. However, we again find that just over half of this difference is attributable to difference in individuals residing in urban and rural counties.

The fact that both place and individual effects contribute to MA enrollment means that variation in MA enrollment would persist even if either effect were made uniform nationwide. For example, we can use our estimates to consider the effect of hypothetically equalizing place-based factors—the features of the local MA plans, health care system, or place more broadly that lead to different levels of MA enrollment—across all counties. Even if place-based factors were equalized, Appendix Table A3 illustrates that 41% of the observed variance in MA enrollment would remain. An important caveat in interpreting these estimates is that this exercise holds fixed individual factors. While our event study estimates suggest it is plausible that individual factors are stable over time, it is possible that individual factors (e.g, preferences, health) could adjust to local conditions in the long run.⁸ Still, this analysis indicates that variation in the composition of individuals across areas plays a central role in explaining the cross-sectional variance of MA enrollment.

3.3 Supplemental Evidence

The place and individual components of MA enrollment decisions could reflect a range of underlying factors. We consider potential mechanisms through two sets of supplemental analyses. First, we examine correlates of the estimated place and average individual effects. Second, we investigate other factors that may underlie our place effects through examining how health care utilization changes among movers moving to places with differential MA prevalence. Appendix Section A describes data sources and measures used in these supplemental analyses.

Correlates of Place and Average Individual Effects We consider place characteristics such as features of the health care market—provider availability (primary care physicians per capita, specialists per capita), hospital market concentration (hospital network HHI), and urbanization—as well as features of the MA insurance market—MA market concentration

⁸In our analysis, the share attributed to individuals reflects factors that an individual carries with them in the short- to medium-run—up to eight years before and/or after a move. Figure 3—in particular, the finding that adjustment happens quickly and choices are fairly stable thereafter—is consistent with individual factors being stable over this time horizon.

(MA insurer HHI), MA insurer advertising spending, and MA subsidy generosity (MA benchmarks). We also consider individual characteristics, such as demographic characteristics (age, sex, race) and economic characteristics (disability, dual eligibility, Medicare enrollment, household income, poverty rate, fraction completed high school) of the entire Medicare or elderly population that resides within the place. Additionally, we consider information on health risk (mean risk-adjustment score) and costs (mean risk-adjusted costs per capita) for TM beneficiaries, which we interpret as proxies for overall health risk and (risk-adjusted) costs in a county. We restrict attention to counties for which all measures are available; these 1,839 counties represent 85% of Medicare beneficiaries. Appendix Figure A7 illustrates the results are similar when dropping this restriction.

Figure 4 displays the results of this analysis, with coefficients from separate bivariate OLS regressions on the indicated characteristic on the left and coefficients from a multivariate OLS regression on all characteristics on the right. The reported coefficients reflect the estimated effect (in standard deviation units) of a one standard deviation increase in the characteristic. In the discussion below, we focus on the associations that appear in both the bivariate and multivariate OLS regressions.

Figure 4 panel (a) displays the correlations for the estimated place effects. These estimates indicate that place effects are higher in counties that have less concentrated MA markets, have higher MA subsidies (benchmarks), and are more urbanized. Further, place effects are higher in areas where on average individuals are younger, are in worse health (have higher risk-adjustment scores), and have lower (risk-adjusted) costs per capita. This evidence broadly aligns with intuition and evidence from the prior literature, suggesting that—all else equal—higher MA subsidies and more MA insurer competition are associated with higher quality MA plans and higher MA enrollment (Cabral, Geruso and Mahoney, 2018).

Figure 4 panel (b) presents the analogous results associating average individual effects with place and individual characteristics. The estimates indicate that average individual effects are higher in areas where individuals on average are younger, are in worse health (have higher riskadjustment scores), and have lower (risk-adjusted) costs per capita. Average individual effects are also higher in counties that are more urban.⁹ This evidence suggests age and health status are key correlates of demand for MA coverage, adding to a literature that has identified age and health status as key predictors of health care consumption in other settings (Finkelstein, Gentzkow and Williams, 2016; Brot-Goldberg et al., 2017; Marone and Sabety, 2022).

Health Care Utilization and MA Prevalence To complement the correlates analysis above, we examine how aspects of health care delivery are related to MA prevalence in a market. This analysis provides suggestive evidence on features of a local health care market (or local MA options) that may contribute to the estimated place effects. To do this, we focus on individuals who consistently elected the same type of coverage—either TM or MA before and after moving, and investigate how their health care utilization changes after moving to areas with higher or lower MA penetration.¹⁰ Specifically, we reestimate our event study specification replacing the dependent variable with measures of health care utilization inferred from Medicare Part D prescription drug claims—data which are available for both TM and MA beneficiaries. We estimate this specification separately for those consistently enrolled in TM and those consistently enrolled in MA over the sample period. This analysis considers measures of prescription drug utilization, as well as broader measures of health care delivery patterns as inferred from prescription drug claims. These measures are summarized in Appendix Table A1 panel (c).

Figure 5 reports event studies for these outcomes. Panels (a) through (c) examine prescription drug utilization. Among MA beneficiaries, moving to an area where MA is more prevalent increases the likelihood of having any prescription drugs (by 0.3 p.p. for a 10 p.p. increase in the share MA) and the total days supplied (by 2% for a 10 p.p. increase in the share MA). MA beneficiaries who move to a region with higher MA prevalence also increase their adher-

 $^{^{9}}$ Because place and average individual effects are positively correlated, it is not surprising that these qualitative patterns roughly follow the correlations seen with the place effects.

¹⁰We exclude movers who ever switch between TM and MA because their outcomes change both as a result of the move to a different county as well as any causal effects of the change in program enrollment.

ence to their medication. In contrast, we find little evidence of changes in prescription drug utilization for TM beneficiaries. These results indicate that areas where MA is more prevalent have higher prescription drug utilization among MA beneficiaries but not TM beneficiaries. These patterns suggest potential ways in which MA plans may differ in areas where MA is more popular. For example, areas with higher MA prevalence may have higher quality MA plans with more generous prescription drug coverage.

Panels (d) through (f) examine additional aspects of health care utilization through the lens of the prescription drug claims data. Among both those with TM or MA coverage, the share of prescription drugs prescribed by primary care physicians or mid-level providers (e.g., nurse practitioners) increases after moving to an area where MA is more prevalent, with analogous declines in the share prescribed by specialists. The estimates indicate the share prescribed by primary care physicians or mid-level providers increases by 0.8 p.p. among MA beneficiaries and 0.5 p.p. among TM beneficiaries when moving to an area with 10 p.p. higher MA penetration. For both TM and MA beneficiaries, the estimates also suggest a decline in the likelihood of obtaining a prescription through the emergency department (ED) after moving to an area where MA is more prevalent, though these patterns are less precise. Collectively, the estimates in panels (d) through (f) point to features of the health care delivery system—as experienced by all Medicare beneficiaries, regardless of TM or MA enrollment that are associated with greater MA prevalence. In particular, the results suggest that MA is more prevalent in areas where a larger share of care is managed by primary care or mid-level providers (as opposed to specialists) and where individuals are less likely to seek care through the ED.

We note that it is important to exercise caution when interpreting these results, as these patterns could be driven by a number of factors. For example, patterns common to TM and MA beneficiaries could reflect place-based factors that influence MA insurer entry decisions or that influence consumer decisions to enroll in MA (e.g., being on MA may be more attractive in areas where care is more often managed by primary care providers). The patterns could also reflect the causal effect of increased MA penetration or competition on the broader health care market.

4 Conclusion

This paper examines the determinants of choice between publicly and privately provided health insurance in Medicare. Leveraging variation among beneficiaries migrating to areas where the private option is more or less prevalent, we explore potential explanations for the vast geographic variation in the take-up of the private option. We find roughly 40% of this geographic variation is due to place-based factors, while the remainder is explained by variation in the composition of individuals across places.

Enrollment in private MA coverage varies widely, and some areas have very low enrollment— 20% of counties have less than 13% enrolled in MA. Policymakers have often interpreted the fact that some counties have low enrollment as a problem of unequal access to be solved via supply-side policies, such as increased subsidies to private MA plans. In contrast to this interpretation, our results indicate that variation in individual factors (e.g., preferences, health) also plays a large role in driving the observed geographic variation in MA take-up. In this way, our findings inform the interpretation of the geographic variation in MA enrollment and the rationale for (and potentially the targeting of) supply-side policy interventions. Moreover, while our findings do not speak to the desirability of any particular supply-side policy, our findings suggest interventions aimed at equalizing supply-side factors are unlikely to eliminate geographic disparities in coverage.

More broadly, geographic disparities in the take-up of subsidized private alternatives (relative to direct public provision) are observed in other public programs offering choice—for example, in education where there are large geographic disparities in charter school enrollment (Epple, Romano and Zimmer, 2016). Our findings highlight the importance of determining the role of place and individual factors in interpreting these geographic disparities and in considering policies that affect them.

References

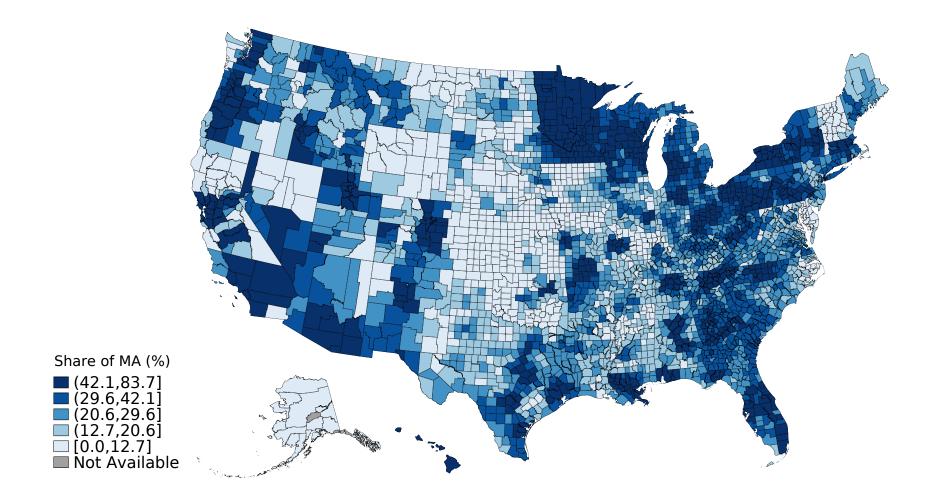
- Abdulkadiroğlu, Atila, Joshua D. Angrist, Susan M. Dynarski, Thomas J. Kane, and Parag A. Pathak. 2011. "Accountability and Flexibility in Public Schools: Evidence from Boston's Charters And Pilots." *The Quarterly Journal of Economics*, 126(2): 699–748.
- Agha, Leila, Brigham Frandsen, and James B. Rebitzer. 2019. "Fragmented division of labor and healthcare costs: Evidence from moves across regions." *Journal of Public Economics*, 169: 144–159.
- Altonji, Joseph G., Ching-I Huang, and Christopher R. Taber. 2015. "Estimating the Cream Skimming Effect of School Choice." *Journal of Political Economy*, 123(2): 266–324.
- American Hospital Association (AHA). 2016. "American Hospital Association Annual Survey: 2012-2015."
- Bauhoff, Sebastian. 2012. "Do health plans risk-select? An audit study on Germany's Social Health Insurance." *Journal of Public Economics*, 96(9): 750–759.
- Beheshti, David, and Seth Neller. 2021. "What Causes Geographic Variation in Drug Prescribing? Evidence from Physician Migration." Working Paper. https://drive.goog le.com/file/d/14eH7ClQhHtB1ZAoOr19-qzmMJ6scN5GO/view (accessed February 2023).
- Bergman, Peter, and Jr. McFarlin, Isaac. 2018. "Education for All? A Nationwide Audit Study of School Choice." National Bureau of Economic Research Working Paper 25396.
- Borusyak, Kirill, Xavier Jaravel, and Jann Spiess. 2021. "Revisiting Event Study Designs: Robust and Efficient Estimation." arXiv. https://arxiv.org/abs/2108.12419 (accessed February 2023).
- Brot-Goldberg, Zarek C., Amitabh Chandra, Benjamin R. Handel, and Jonathan T. Kolstad. 2017. "What does a Deductible Do? The Impact of Cost-Sharing on Health Care Prices, Quantities, and Spending Dynamics." The Quarterly Journal of Economics, 132(3): 1261–1318.
- Brown, Jason, Mark Duggan, Ilyana Kuziemko, and William Woolston. 2014. "How Does Risk Selection Respond to Risk Adjustment? New Evidence from the Medicare Advantage Program." *American Economic Review*, 104(10): 3335–64.
- Butler, Richard J., and John D. Worrall. 1986. "The Costs of Workers' Compensation Insurance: Private versus Public." The Journal of Law and Economics, 29(2): 329–356.
- Cabral, Marika, Michael Geruso, and Neale Mahoney. 2018. "Do Larger Health Insurance Subsidies Benefit Patients or Producers? Evidence from Medicare Advantage." *American Economic Review*, 108(8): 2048–2087.
- Callaway, Brantly, and Pedro H.C. Sant'Anna. 2021. "Difference-in-Differences with multiple time periods." *Journal of Econometrics*, 225(2): 200–230. Themed Issue: Treatment Effect 1.

- Centers for Medicare & Medicaid Services (CMS). 2006. "Medicare Managed Care Manual: Eligibility, Enrollment, and Disenrollment." https://www.cms.gov/Medicare/P rescription-Drug-Coverage/PrescriptionDrugCovContra/Downloads/-PDP_Enrollm entGuidance+Exhibits_Sep082006.pdf (accessed February 2023).
- Centers for Medicare & Medicaid Services (CMS). 2016. "Medicare Advantage Ratebook Information: 2007-2016." https://www.cms.gov/Medicare/Health-Plans/Medica reAdvtgSpecRateStats/Ratebooks-and-Supporting-Data (accessed March 2022).
- Centers for Medicare & Medicaid Services (CMS). 2022. "Medicare Data for the Geographic Variation Public Use File: 2007-2016." https://data.cms.gov (accessed January 2022).
- Chan, David C, Jr, David Card, and Lowell Taylor. 2022. "Is There a VA Advantage? Evidence from Dually Eligible Veterans." National Bureau of Economic Research Working Paper 29765.
- Chetty, Raj, Nathaniel Hendren, and Lawrence F. Katz. 2016. "The Effects of Exposure to Better Neighborhoods on Children: New Evidence from the Moving to Opportunity Experiment." *American Economic Review*, 106(4): 855–902.
- Committee on Energy and Commerce. 2001. "Has Medicare+Choice Reduced Variation in the Premiums and Benefits Offered by Participating Health Plans? A Review of Medicare+Choice Plan Payment Methodology." https://www.govinfo.gov/content/pkg/CH RG-107hhrg73736/html/CHRG-107hhrg73736.htm (accessed February 2023).
- Committee on Ways and Means. 2001. "Status of the Medicare+Choice Program." http s://www.govinfo.gov/content/pkg/CHRG-107hhrg77455/html/CHRG-107hhrg77455.h tm (accessed February 2023).
- Cooper, Zack, Stuart V Craig, Martin Gaynor, and John Van Reenen. 2018. "The Price Ain't Right? Hospital Prices and Health Spending on the Privately Insured." *The Quarterly Journal of Economics*, 134(1): 51–107.
- Curto, Vilsa, Liran Einav, Jonathan Levin, and Jay Bhattacharya. 2021. "Can Health Insurance Competition Work? Evidence from Medicare Advantage." *Journal of Political Economy*, 129(2): 570–606.
- Cutler, David, Jonathan S. Skinner, Ariel Dora Stern, and David Wennberg. 2019. "Physician Beliefs and Patient Preferences: A New Look at Regional Variation in Health Care Spending." *American Economic Journal: Economic Policy*, 11(1): 192–221.
- **Dartmouth Atlas Project (DAP).** 2016. "ZIP Code to HSA to HRR Crosswalk Files: 2012-2015." https://data.dartmouthatlas.org/supplemental (accessed March 2022).
- de Chaisemartin, Clément, and Xavier D'Haultfœuille. 2020. "Two-Way Fixed Effects Estimators with Heterogeneous Treatment Effects." American Economic Review, 110(9): 2964–96.

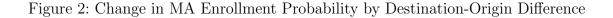
- **DeParle, Nancy-Ann.** 2002. "As good as it gets? The future of Medicare+Choice." Journal of Health Politics, Policy, and Law, 27(3): 495–512.
- Ding, Hui. 2022. "Geographic Variation in Mental Health Care: Evidence from Migration." Working Paper. https://dh-huiding.github.io//files/Ding_MH_GeoVariation.pdf (accessed February 2023).
- **Dobbie, Will, and Jr. Fryer, Roland G.** 2011. "Are High-Quality Schools Enough to Increase Achievement among the Poor? Evidence from the Harlem Children's Zone." *American Economic Journal: Applied Economics*, 3(3): 158–87.
- **Doyle, Joseph J, Jr., and Becky Staiger.** 2021. "Physician Group Influences on Treatment Intensity and Health: Evidence from Physician Switchers." National Bureau of Economic Research Working Paper 29613.
- Duggan, Mark, Amanda Starc, and Boris Vabson. 2016. "Who benefits when the government pays more? Pass-through in the Medicare Advantage program." *Journal of Public Economics*, 141: 50–67.
- Epple, D., R. Romano, and R. Zimmer. 2016. "Chapter 3 Charter Schools: A Survey of Research on Their Characteristics and Effectiveness." In . Vol. 5 of *Handbook of the Economics of Education*, , ed. Eric A. Hanushek, Stephen Machin and Ludger Woessmann, 139–208. Elsevier.
- Figlio, David N., and Joe A. Stone. 2001. "Can Public Policy Affect Private School Cream Skimming?" Journal of Urban Economics, 49(2): 240–266.
- Finkelstein, Amy, Matthew Gentzkow, and Heidi Williams. 2016. "Sources of Geographic Variation in Health Care: Evidence From Patient Migration." *The Quarterly Journal* of Economics, 131(4): 1681–1726.
- Finkelstein, Amy, Matthew Gentzkow, and Heidi Williams. 2021. "Place-Based Drivers of Mortality: Evidence from Migration." *American Economic Review*, 111(8): 2697–2735.
- Finkelstein, Amy, Matthew Gentzkow, Dean Li, and Heidi L Williams. 2022. "What Drives Risky Prescription Opioid Use? Evidence from Migration." National Bureau of Economic Research Working Paper 30471.
- Geruso, Michael, and Timothy Layton. 2020. "Upcoding: Evidence from Medicare on Squishy Risk Adjustment." *Journal of Political Economy*, 128(3): 984–1026.
- Godøy, Anna, and Ingrid Huitfeldt. 2020. "Regional variation in health care utilization and mortality." *Journal of Health Economics*, 71: 102254.
- Goodman-Bacon, Andrew. 2021. "Difference-in-differences with variation in treatment timing." Journal of Econometrics, 225(2): 254–277. Themed Issue: Treatment Effect 1.

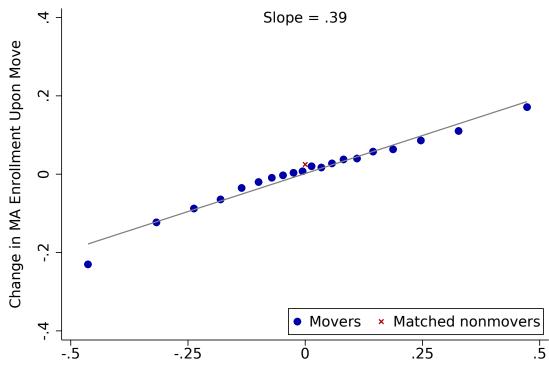
- Health Resources and Services Administration (HRSA). 2021. "Area Health Resources File (AHRF) 2020-2021 Release." https://data.hrsa.gov/data/download (accessed March 2022).
- Kaiser Family Foundation (KFF). 2022. "Medicare Advantage in 2022: Enrollment Update and Key Trends." https://www.kff.org/medicare/issue-brief/medicare-adva ntage-in-2022-enrollment-update-and-key-trends (accessed February 2023).
- Katz, Lawrence F., Jeffrey R. Kling, and Jeffrey B. Liebman. 2001. "Moving to Opportunity in Boston: Early Results of a Randomized Mobility Experiment." *The Quarterly Journal of Economics*, 116(2): 607–654.
- Knutsson, Daniel, and Björn Tyrefors. 2022. "The Quality and Efficiency of Public and Private Firms: Evidence from Ambulance Services." *The Quarterly Journal of Economics*, 137(4): 2213–2262.
- Layton, Timothy J., and Andrew M. Ryan. 2015. "Higher Incentive Payments in Medicare Advantage's Pay-for-Performance Program Did Not Improve Quality But Did Increase Plan Offerings." *Health Services Research*, 50(6): 1810–1828.
- Marone, Victoria R., and Adrienne Sabety. 2022. "When Should There Be Vertical Choice in Health Insurance Markets?" *American Economic Review*, 112(1): 304–42.
- Miller, Keaton S, Amil Petrin, Robert Town, and Michael Chernew. 2019. "Optimal Managed Competition Subsidies." National Bureau of Economic Research Working Paper 25616.
- Molitor, David. 2018. "The Evolution of Physician Practice Styles: Evidence from Cardiologist Migration." American Economic Journal: Economic Policy, 10(1): 326–56.
- National Bureau of Economic Research (NBER). 2017. "CMS's SSA to Federal Information Processing Series (FIPS) State and County Crosswalk: 2017." https://www.nber .org/research/data/ssa-federal-information-processing-series-fips-state-an d-county-crosswalk (accessed December 2021).
- National Center for Health Statistics (NCHS). 2014. "2013 NCHS Urban-Rural Classification." https://www.cdc.gov/nchs/data_access/urban_rural.htm (accessed January 2022).
- National Libraries of Medicine (NNLM). 2014. "RxNorm Release File Archive: 2005-2021." https://www.nlm.nih.gov/research/umls/rxnorm/docs/rxnormarchive.html (accessed October 2022).
- Nuscheler, Robert, and Thomas Knaus. 2005. "Risk selection in the German public health insurance system." *Health Economics*, 14(12): 1253–1271.
- **Polyakova, Maria.** 2016. "Risk selection and heterogeneous preferences in health insurance markets with a public option." *Journal of Health Economics*, 49: 153–168.

- Sun, Liyang, and Sarah Abraham. 2021. "Estimating dynamic treatment effects in event studies with heterogeneous treatment effects." *Journal of Econometrics*, 225(2): 175–199. Themed Issue: Treatment Effect 1.
- U.S. Census Bureau (Census). 2016. "2011-2015 American Community Survey 5-Year Estimates: Tables B19037, B19049, S1501." https://data.census.gov/cedsci (accessed March 2022).
- U.S. Census Bureau (Census). 2021a. "Annual Estimates of the Resident Population for Counties: Vintage 2019." https://www.census.gov/data/datasets/time-series/demo/popest/2010s-counties-total.html (accessed March 2022).
- U.S. Census Bureau (Census). 2021b. "Intercensal Estimates of the Resident Population for Counties and States." https://www.census.gov/data/tables/time-series/demo/ popest/intercensal-2000-2010-counties.html (accessed March 2022).
- U.S. Department of Housing and Urban Development Office of Policy Development and Research (HUD PD&R). 2017. "USPS Zip-County Code Crosswalk Files: 1st Quarter 2017." https://www.huduser.gov/portal/datasets/usps_crosswalk.html (accessed December 2021).
- Vatter, Benjamin. 2022. "Quality Disclosure and Regulation: Scoring Design in Medicare Advantage." Working Paper. https://benjaminvatter.com/uploads/jmp_ben_vatter. pdf (accessed February 2023).
- Zeltzer, Dan, Liran Einav, Avichai Chasid, and Ran D. Balicer. 2021. "Supply-side variation in the use of emergency departments." *Journal of Health Economics*, 78: 102453.



Notes: The map above displays the geographic (or county-level) distribution of Medicare Advantage (MA) enrollment rates in quintiles over the years 2007–2016. The MA enrollment rates are obtained by first calculating the MA enrollment share in the county in each year and then taking a simple average across years. A beneficiary with any months of MA enrollment in a given year is identified as an MA enrollee. The range of each quintile is displayed in the legend. The sample is *all* movers and nonmovers (N = 236, 810, 684 beneficiary-years).

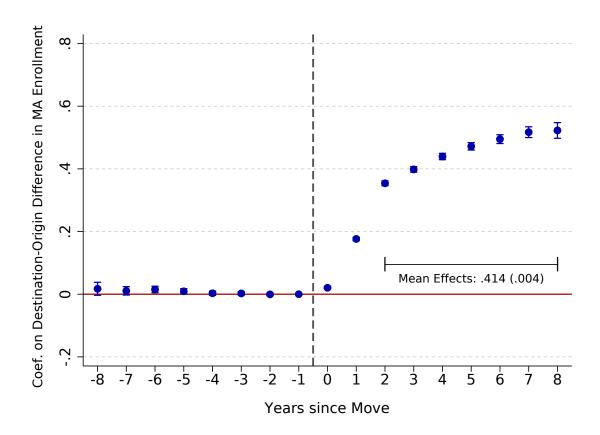




Destination-Origin Binned Difference in MA Enrollment

Notes: The figure above displays the change in MA enrollment probability before and after move by the size of movers' treatment intensity, $\hat{\delta}_i$ (i.e., the destination-origin difference in the MA enrollment rates). Movers are grouped into ventiles by $\hat{\delta}_i$. For each ventile, the *x*-axis displays the mean of $\hat{\delta}_i$, and the *y*-axis displays the mean MA enrollment probability two to five years after move minus the mean MA enrollment probability two to five years after move minus the mean MA enrollment probability two to five years before move. The line of best fit and its slope are obtained from a simple OLS regression using the 20 plotted points. For reference, we also display the analogous change among matched nonmovers, as indicated by x (in red). The sample is *baseline* movers and matched nonmovers observed between two to five years before and after move (N = 933, 354 beneficiary-years).

Figure 3: Baseline Event Study



Notes: The figure above displays estimates, θ_r (i.e., the coefficients on relative years since move interacted with the treatment intensity $\hat{\delta}_i$), from the event study estimation described in equation (1). The dependent variable is an indicator for any MA months. The regression includes place (or county) fixed effects, individual fixed effects, time (or year) fixed effects, indicators for relative years since move, and five-year age bins. Capped vertical bars indicate 95% confidence intervals, and robust standard errors are clustered at the beneficiary level. The reported mean effects are obtained by a linear combination of coefficient estimates in post-periods 2 to 8, weighted by the number of movers contributing to each period. The sample is *baseline* movers and all nonmovers (N = 211, 196, 256 beneficiary-years).

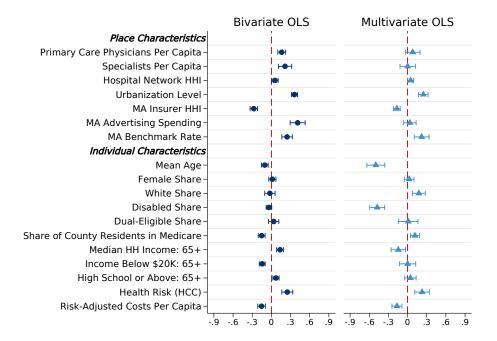
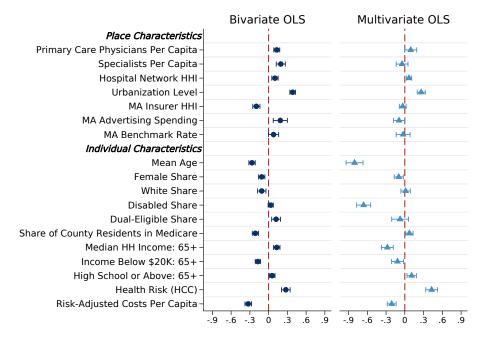


Figure 4: Correlates Analysis

(a) Place Effects



(b) Individual Effects

Notes: The figure above displays bivariate (left panel) and multivariate (right panel) OLS results of place effects (panel (a)) and individual effects (panel (b)) on various county-level characteristics. All measures and dependent variables are standardized to mean zero and variance one. Among individual characteristics, measures for income and education (i.e., Median HH income, income below \$20K, high school or above) are estimated among those who are 65 or above, while all the other measures are estimated among Medicare beneficiaries. The sample is 1,839 counties (representing 85% of beneficiary-years) for which all 18 measures are available. See Appendix Section A.3 for more detail on the measures used for this analysis.

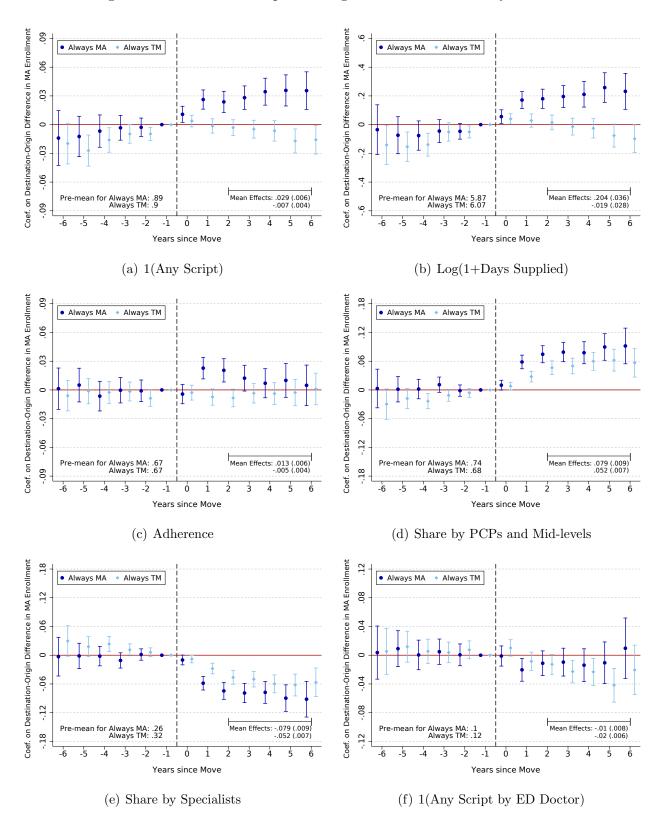


Figure 5: Effect on Prescription Drug Use and Care Delivery Patterns

Notes: The figure above displays estimates, θ_r , from separate regressions of equation (1) by the type of consistent coverage. The dependent variables are as indicated in each panel. The reported mean effects are obtained by a linear combination of coefficient estimates in post-periods 2 to 6, weighted by the number of movers contributing to each period. The sample includes *baseline* movers and all nonmovers observed in the PDE datasets and who consistently elect either MA (Always MA) or TM (Always TM). See Appendix Section A.4 for more detail on the measures used for this analysis.

APPENDIX

A Sample and Variable Construction with Data Sources

This section provides details on the construction of the baseline sample and key variables used in this paper, along with the underlying data sources.

A.1 Baseline Sample

Primary Data Sources The primary data used to construct the baseline sample come from the Centers for Medicare and Medicaid Services (CMS) and cover 2007 through 2017. The Master Beneficiary Summary File (MBSF) contains data on the universe of Medicare enrollees and includes information on Medicare Advantage (MA) enrollment, Medicare Part D (prescription drug) enrollment, and demographics (e.g., age, sex, race, and location of residence). To investigate the location of prescription drug consumption among movers, we combine the MBSF with the Prescription Drug Event (PDE) data containing all prescription drug claims for a 20 percent random sample among Medicare enrollees obtaining prescription drug benefits from Medicare Part D. Finally, we obtain provider specialty information from Medicare Part B Carrier Line datasets.

Definition of Year t The MBSF includes the enrollee's residence location information as of March 31 of each year, based on the mailing address obtained from the Social Security Administration (SSA). To be consistent with the timing with which we observe the enrollee's residence, we define year t as the 12 months from April 1 of year t to March 31 of year t + 1. We reorganize the MBSF datasets across years so that our analytical data representing year t include only appropriate monthly variables. Specifically, we merge the MBSF datasets for calendar years t and t + 1 and then drop monthly variables outside of our notion of year t(i.e., January–February of calendar year t and April–December of calendar t + 1). We also recode the enrollee's age as of the end of our definition year t. This reconstruction leads to the exclusion of enrollees in our dataset for year t if they do not appear for both calendar years tand t + 1 and reduces our sample period by one year to 2007–2016.

Sample Restriction We apply the following four sample restrictions: (i) restrict individuals to those from the 50 states and District of Columbia, (ii) drop non-elderly individuals,¹ (iii) retain individuals who are *continuously* enrolled in Medicare Part D within a year, and (iv) exclude individuals without valid Federal Information Processing Series (FIPS) county codes (as seen in Section A.2 below).

Movers and Nonmovers We define individuals as *nonmovers* if their county of residence remains the same throughout our sample period.² We define individuals as *movers* with moving

 $^{^1\}mathrm{We}$ include individuals aged 65 to 99 years old.

²The number of all nonmovers is 40,294,278.

year t, if their county of residence in year t differs from year t+1.³ We need to observe an individual at least for two years to classify them as a mover, whereas if an individual is observed only once during our sample period, they are mechanically classified as a nonmover. We exclude individuals who moved in 2007 (the first year of our sample period) because some of our analysis (e.g., change in MA enrollment probability upon move) requires pre-move periods. However, those who moved in 2007 are only observable for post-move periods. To be consistent across the analysis in terms of included movers, we drop 2007 movers throughout our analysis. We also drop movers who moved more than once during our sample period.

We further restrict our attention to movers who appear to have shifted their health care consumption from the origin to the destination coincident with their move. This sample restriction intends to exclude individuals who change their official residence without altering their behavior. For example, an individual could begin sending mail to an adult child. Specifically, we limit our movers to those who increase the share of prescription drug fills at destination pharmacies (among fills at either the origin or the destination) by at least 75 percentage points.⁴ Among movers net of previous exclusions (excluding 2007 movers and multiple-move movers; N = 2,952,623) Part D claims data are available for about 21 percent of movers (N = 615, 894) due to the 20 percent random sampling of the PDE data. Out of these movers, approximately 57 percent of movers (N = 348, 199) change their prescription filling behavior consistent with an actual move. Panels (a) and (b) in Appendix Figure A2 show that our results are robust to the inclusion of all movers with Part D claims data. The key estimate from the event study specification is 0.361 when including the broader set of these movers, which is equivalent to 0.490 after scaling by the corresponding first-stage estimate in this broader sample (0.736). This scaled estimate is very similar to the analogous estimate when using the baseline sample of movers.

Panel (c) in Appendix Figure A2 replicates the event study analysis using all movers (N = 2, 952, 623) regardless of their appearance in the PDE data. In panel (d) in Appendix Figure A2, we further drop one of our sample restrictions, which is continuous Medicare Part D coverage for a given year (i.e., the restriction (iii) in the paragraph of Sample Restriction). We find that our event study estimates in both cases are almost identical to those in panel (b) in Appendix Figure A2.

Matched Nonmover Some of our analysis relies on comparing movers to a matched sample of nonmovers. We match each mover in the data to a similar nonmover on the basis of origin county, gender, race, five-year age bin, and years of enrollment in Medicare. Specifically, for each mover, we randomly draw a matched nonmover who shares the same characteristics above and follow this matched nonmover over the sample periods. This individual level matching (as opposed to individual-year level matching) allows us to track time-invariant-matched nonmovers' MA choice for every period for which their counterpart mover is observed.

³Given that our rearranged MBSF reflects an individual's residence at the beginning of each period, the change in the county of residence between year t and t + 1 implies that the move must have occurred at some point during year t.

⁴A small number of movers have prescription drug fills only in pre- or post-move periods. For these individuals, we include them if they fill less than 5 percent of prescriptions at destination pharmacies before their move (among those who have only pre-move claims) or more than 95 percent of prescriptions at destination pharmacies after their move (among those who have only post-move claims).

A.2 Geographic Boundary of County

We use *county* as our geographic unit of analysis because MA service areas are specified as sets of counties. Specifically, our county boundaries are defined as of 2017 when there were 3,142 counties in the U.S. Given some changes to counties and county-equivalent entities during our sample period,⁵ we reassign (FIPS) county information to some individuals so that we can maintain our county boundary definition consistent across years. For instance, Bedford City (FIPS code, 51515) in Virginia was added to Bedford County (FIPS code, 51019) in 2013, in which case we change the county code for individuals in Bedford City (51515) to the code for Bedford County (51019) for the years before 2013.

The MBSF also includes information on SSA county codes instead of FIPS county codes. As one actual county (or FIPS county) could have multiple distinct SSA county codes,⁶ we first use the CMS's SSA to FIPS state and county crosswalk (NBER, 2017a) to obtain FIPS county codes for each individual. For some individuals with either too old or invalid SSA county codes which are not included in the crosswalk, we additionally use their five-digit zip codes to obtain their FIPS county, relying on the USPS zip-county code crosswalk (HUD PD&R, 2017). These adjustments ensure we define those who experienced county code changes as nonmovers.

A.3 Measures for County Characteristics

We construct 18 measures of county-level characteristics (7 place-related and 11 individualrelated) using various sources of restricted and/or publicly available datasets. We create a measure for a single year and then take a simple average across years whenever the underlying data are available for multiple years. The Intercensal Population estimates from the U.S. Census (Census, 2021a; Census, 2021b) are used when we construct per capita measures. Below, we describe the construction of each measure along with the underlying data sources in more detail.

Physicians Per Capita We construct two measures of health professional resources: per capita primary care physicians (PCPs) and specialists, using the Area Health Resources File (AHRF) over 2010–2016 (HRSA, 2021). The data include information on counts of doctors with Doctor of Medicine (M.D.) or Doctor of Osteopathic (D.O.) Medicine credentials for each county. Following the AHRF's definition, we define PCPs as doctors with specialties in general family medicine, general practice, general internal medicine, and general pediatrics. Specialist counts are derived by subtracting counts of PCPs from the total number of doctors with M.D. or D.O. credentials.

Hospital Network HHI We measure concentration using the Herfindahl–Hirschman Index (HHI) calculated for hospital networks (as opposed to individual hospitals). We obtain admissions, hospital network, and location from the American Hospital Association Survey (AHA, 2016) for almost all hospitals in the U.S. and cover 2012–2015. To account for the

⁵Detailed information on substantial changes to counties and county-equivalent entities since 1970 can be found here: https://www.census.gov/programs-surveys/geography/technical-documentation/county-changes.html.

 $^{^6\}mathrm{We}$ find 6,841 distinct SSA county codes in our MBSF datasets, which is more than double the actual number of counties.

fact that some counties do not have any hospitals, we first construct Hospital Referral Region (HRR) level HHIs by aggregating the total admissions across networks within an HRR. We then combine the MBSF with the zip-HRR crosswalk (DAP, 2016) to construct the variable representing the fraction of Medicare beneficiaries served by each HRR within a county. Using this variable as weight, we finally calculate county-level HHIs as the weighted average of HRR-level HHIs.

Urbanization Level We use the NCHS Urban-Rural Classification Scheme for Counties (NCHS, 2014) for a measure of urbanization level. The data categorize all the U.S. counties and county-equivalent entities into six discrete urbanization levels, with the value of one being the most urbanized areas (large central metro) and the value of six being the most rural areas (non-core). We reverse-code these values so that higher values represent more urbanized counties: in our analysis, the value of six represents the most urbanized regions. When defining "urban" in Appendix Tables A1 and A2, we use counties classified as large central metro, large fringe metro, or medium metro, and define "rural" as counties classified as small metro, micropolitan, or non-core.

MA Contract-Level (or Insurer) HHI We calculate the MA HHIs with MA contracts as the firm definition using the MBSF for 2007–2017. We first restrict individuals to those who hold MA Part D contracts for which their contract IDs start with the letters H or R (as opposed to standalone prescription drug plans starting with S). Next, we calculate monthly HHIs for a given county and then take a simple average across 12 months for that year to obtain annual HHIs. The Part D contract IDs are encrypted to comply with the CMS privacy rules for some (calendar) years, making creating one-step annual HHIs given our notion of year t (i.e., April–March year) infeasible.

Advertisement Spending on MA We construct a measure for advertisement spending on MA using the AdSpender data.⁷ The data contain information on the amount in dollars spent for advertisement for health insurance products along with product and brand descriptions at the designated market area (DMA) level for 2014–2017. Based on product names, we first identify advertisement spending on Medicare by retaining products containing the word *Medicare* in their product descriptions. We further exclude products related to either Medigap or standalone prescription drug plans. We then sum up advertisement spending across the remaining products for each DMA and year. Finally, we create a county-level measure by assigning the same amount of advertisement spending for all counties within each DMA.

MA Benchmark We use the Medicare Advantage rate book (CMS, 2016*a*) provided by the CMS to obtain MA benchmark rates over 2007–2016. Specifically, we use rates for risk parts A&B (2007–2011), risk parts A&B with a star rating of 2.5 (2012–2014), and risk parts A&B with a zero percent bonus rate (2015–2016).

 $^{^7\}mathrm{We}$ accessed the AdS pender database through the subscribed service from the Johnson Graduate School of Management at Cornell University.

Individual Characteristics We construct most of our measures for individual characteristics among Medicare beneficiaries over 2007–2016 by using reported statistics in the Medicare Geographic Variation Public Use files (CMS, 2022): mean age, female share, dual eligible share, Medicare beneficiary share (out of county population), mean Hierarchical Condition Category (HCC) score, and risk-adjusted per capita costs.

We also use the MBSF to construct two additional demographic measures: white share and disabled share. While creating these two measures, we do not use our baseline sample because our baseline sample excludes non-elderly individuals as well as those who are not in Medicare Part D, so it may not represent the whole Medicare market with respect to these two measures. Instead, we construct these two measures using the entire enrollees as long as they have valid FIPS county information.

Finally, we turn to the American Community Surveys (ACS) to create income and educational attainment measures among the elderly (age 65 or above). Specifically, we use the five-year ACS estimates representing 2011–2015 (Census, 2016), which report educational attainment and income by age group at the county level. We use reported statistics in the data for a measure of median household income among householders aged 65 or over. We measure the share of the population aged 65 or older who holds a high school degree or above. As a proxy for poverty measure, we also compute the fraction of households with income below \$20,000 with householders aged 65 or older analogously, using the numbers of all households (denominator) and those with incomes below \$20,000 (numerator) out of households with elderly householders.

A.4 Measures for Prescription Drug Use and Care Delivery Patterns

We construct six measures of prescription drug use and care delivery patterns. All the measures are created using the Prescription Drug Event (PDE) datasets at the beneficiary-year level. Since the level of observation in the PDE data is prescription fill (or event), we aggregate prescriptions at the beneficiary-year level over characteristics of interest (e.g., days supplied, drug code, and provider specialty) and then use them to create the associated variables.

We note that we drop the first two years of the data for the analysis of care delivery patterns because provider specialty information is not available for these two years.⁸ The analysis that utilizes measures of prescription drug use does not suffer from this issue. For this reason, we use the full sample years in this analysis. However, panels (a) through (c) (for prescription drug use) in Figure 5 display coefficient estimates for only relative years -6 to 6 (not -8 to 8) to be more consistent with and comparable to panels (d) through (f) (for care delivery patterns). We also note that the regression for each outcome includes beneficiary-year-level observations for which that outcome is definable and thus measurable. For instance, the regression using adherence as a dependent variable excludes individuals with either zero prescriptions or no "full-year drugs" (as defined below).

⁸The PDE datasets use other types of provider identifiers (e.g., Drug Enforcement Administration identification number) instead of National Provider Identifier (NPI) for these two years, which prevents us from merging these datasets with NPI-based provider specialty information.

Prescription Drug Use Our primary measures of prescription drug use are an indicator for any prescription and a Log(1 + x) transformation of the *annual* days of supply across *all* drugs. Given the definitions, both measures can be constructed in a straightforward manner. We further define and use a proxy measure of medication "adherence." To group National Drug Codes (NDCs) for the same ingredient (or ingredients) in the same strength and dosage form, we first convert NDCs to RxCUIs (RxNorm Concept Unique Identifiers) using the RxNorm Medical thesaurus created by the National Libraries of Medicine (NNLM, 2014). Then, for each RxCUI, we sum up the days of supply at the beneficiary-year level and repeat this process for each (calendar) year. Next, we find the mode of days supplied for each RxCUI across all beneficiaries and years and define the subset of drugs with modal days equal to or greater than 270 days as "full-year drugs." For individuals with prescriptions for a full-year drug (or RxCUI), adherence is computed by dividing the number of days that the individual is supplied that RxCUI by the modal days of the same RxCUI. If an individual takes multiple full-year drugs, the adherence measure is simply the mean across all full-year drugs they take.

Care Delivery Pattern Care delivery pattern measures are based on the prescriber's specialty. The PDE datasets include the prescriber's identifier (i.e., National Provider Identifier) without their specialty information. So, we supplement the PDE with Medicare Part B Carrier Line datasets, which allow us to link NPIs to Health Care Financing Administration (HCFA) specialty codes. Using the HCFA codes, we first identify primary care physicians (PCPs) and mid-level providers as those with certain specialty codes,⁹ and then the remaining NPIs are assumed to be specialists. A few providers could start out as PCPs (e.g., internal medicine residents) and later become specialists (e.g., oncologists after a fellowship). In such cases, we treat these physicians as specialists. We define the prescription share of either PCPs (and mid-level providers) or specialists as the number of prescriptions given by each group over the total number of prescriptions from both groups. Given this definition, the shares of prescriptions from both groups sum to 1 by construction. An indicator of any prescription from an emergency department (ED) doctor is constructed by confirming whether an enrollee has any prescription with the prescriber's HCFA code of "93" (emergency medicine) in a given year.

B Robustness and Interpretation of Estimates

B.1 Interpretation of Estimates and Potential Role of Adjustment Frictions

We discuss the potential role of adjustment frictions such as inertia in this setting and how this may influence the interpretation of our estimates.

Movers have both the opportunity and the incentive to re-optimize after a move because of meaningful changes in their choice sets. However, as described in Section 1, some movers do not need to make active decisions after moving. Those initially on Traditional Medicare (TM) can passively remain enrolled in TM. In contrast, many initially on MA would need to

⁹Specifically, the HCFA codes for primary care physicians include 01, 03, 06, 08, 10, 11, 29, 37, 38, 39, 44, 46, 66, 81, 82, 83, and 90, and those for mid-level providers include 42, 43, 50, 89, and 97. For a full list of the HCFA codes, see here: https://resdac.org/cms-data/variables/line-cms-provider-specialty-code.

make an active decision after a move to continue to have access to convenient in-network care. Given these institutional features, if there is inertia in this setting, we might expect inertia to operate asymmetrically in this setting—with inertia having bigger impacts on individuals initially on TM (those who are less likely to be prompted to make active decisions) than those initially on MA (those who are more likely to need to make active decisions).

While it is not possible to completely isolate the role of inertia in this setting, there are two ways that our estimates allow us to assess the potential importance of (and to account for) inertia. First, we can investigate the symmetry of the effects when comparing movers who move to places with more or less MA penetration relative to their origin. If inertia is important, we might expect to see less adjustment among those moving to areas with more MA (where the direction of adjustment is from TM to MA) compared to those moving to areas with less MA (where the direction of adjustment is from MA to TM). However, Figure 2 shows the change in MA enrollment is smooth and linear through the origin, indicating the effects appear symmetric for those moving to areas with higher or lower MA penetration relative to their origin. Second, we can investigate the dynamics of the effects. If inertia is prevalent, our intuition is that this would lead to a slow convergence in choices over time. Consistent with uncertainty in the timing of moves within the move year and annual enrollment in this setting (or perhaps some initial adjustment costs or inertia), we find evidence of partial adjustment in the first two years after a move. However, based on the event study estimates in Figure 3, most of the adjustment happens quickly after a move and the effects begin to level off after two years (though there is still a small upward trend in the estimates after that). To construct our baseline summary estimate that captures medium-run effects, we pool post-move estimates from two years after the move and beyond. Given the effects start to level out after that point, this estimate appears to capture close to full adjustment, but our conclusions are similar if we instead focus on estimates closer to the end of our window (e.g., if we focus on estimates from eight years after the move).

Collectively, these two sets of analyses suggest that inertia is unlikely to present a major source of bias in our baseline estimates, though we note that any remaining bias from inertia would attenuate the share attributed to place in our research design.

B.2 Robustness to an Alternative Estimator (Imputation Method)

In this section, we demonstrate that our baseline event study results are robust to an alternative estimation strategy that allows for treatment effect heterogeneity by move timing. The setup of this alternative specification closely follows that used in Finkelstein et al. (2022), which builds on the imputation strategy developed by Borusyak, Jaravel and Spiess (2021). Below, we describe each step of the alternative method in more detail.

• Step 1: As suggested by Borusyak, Jaravel and Spiess (2021), we first regress MA_{it} on county-year (γ_{jt}) and five-year age bin $(agebin_g)$ fixed effects, using the sample of all *nonmovers* to generate (coefficient) estimates that are uncontaminated by the behavior of movers:

$$MA_{it} = \gamma_{j(i,o)t} + agebin_{g(i,t)} + u_{it},\tag{1}$$

where j(i, o) is an individual *i*'s origin county, and g(i, t) is an individual *i*'s five-year age bin in year t.

• Step 2: Next, we construct a counterfactual outcome for each mover, using estimates of $\widehat{\gamma}_{jt}$ and \widehat{agebin}_g obtained in Step 1. Specifically, we sum the appropriate five-year age bin fixed effects and county-year fixed effects associated with the *origin* county (*even after move*). Then, we difference this counterfactual outcome from the true value of MA_{it} to form a residualized outcome, \widetilde{MA}_{it} :

$$\underbrace{\widetilde{MA}_{it}}_{\text{residual}} = MA_{it} - \underbrace{\left(\widehat{\gamma}_{j(i,o)t} + \widehat{agebin}_{g(i,t)}\right)}_{\text{counterfactual}}.$$
(2)

• Step 3: We separately estimate the following specification by year of move (m) using only movers:

$$\widetilde{MA}_{it} = \alpha_i + \beta \widetilde{\delta}_{it} + \sum_{r \neq -1} \theta_r^m I_r \widetilde{\delta}_{it} + \epsilon_{it}, \qquad (3)$$

where

$$\widetilde{\delta}_{it} \equiv \overline{MA}_{j(i,d)t} - \overline{MA}_{j(i,o)t}.$$

Note that $\widetilde{\delta}_{it}$ is the difference in average MA enrollment among all *nonmovers* between the mover *i*'s destination $(\overline{MA}_{j(i,d)t})$ and origin $(\overline{MA}_{j(i,o)t})$ in year t.¹⁰

• Step 4: To obtain an aggregated event study coefficient $(\hat{\theta}_r)$ for an event time r, we aggregate the event study coefficients $\hat{\theta}_r^m$ across move years by weighting the number of movers associated with the estimates of $\hat{\theta}_r^m$. The standard errors of the weighted average coefficients are calculated analogously with an additional assumption that θ_r^m are independent across move years. These aggregations can be written as:

$$\widehat{\theta}_r = \sum_{m=2008}^{2015} \left(\frac{N_r^m}{N_r}\right) \widehat{\theta}_r^m \quad \text{and} \quad \widehat{SE}(\theta_r) = \sqrt{\sum_{m=2008}^{2015} \left(\frac{N_r^m}{N_r}\right)^2 \widehat{VAR}\left(\theta_r^m\right)}, \tag{4}$$

where N_r^m is the number of movers observed for an event time r among those who moved in year m, and N_r is the total number of movers observed for an event time r across all move years (i.e., $N_r \equiv \sum_{m=2008}^{2015} N_r^m$).

Appendix Figure A6 displays our baseline event study coefficients (equation (1) in the text) as well as the (aggregated) event study coefficients $(\hat{\theta}_r)$ that result from the alternative method. We find essentially no difference in our estimates when employing this alternative imputation method.

¹⁰Note that $\tilde{\delta}_{it}$ differs from $\hat{\delta}_i$ (used in the baseline event study) in that (i) we use only nonmovers to estimate $\tilde{\delta}_{it}$, and (ii) $\tilde{\delta}_{it}$ is time-varying as we separately construct $\tilde{\delta}_{it}$ for each year t. We use different notations ($\tilde{\delta}$ and $\hat{\delta}$) to distinguish one from the other.

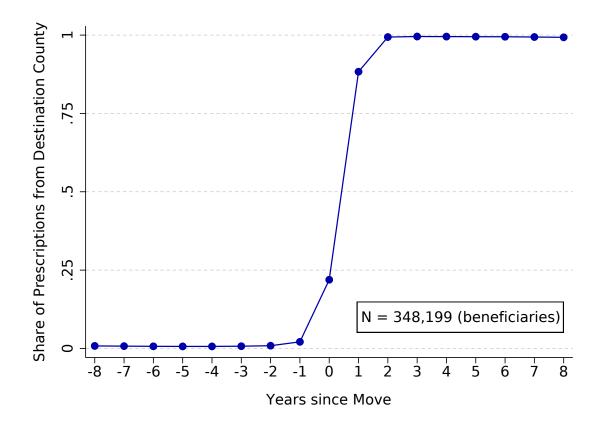


Figure A1: First Stage: Share of Prescription Drug Claims in Destination County by Relative Year to Move

Notes: The figure above displays the share of prescription drug claims from movers' destination counties among those from either their origin or destination counties by relative year since move. The sample is *baseline* movers (N = 2, 040, 217 beneficiary-years). See Appendix Section A.1 for more detail on our baseline mover definition.

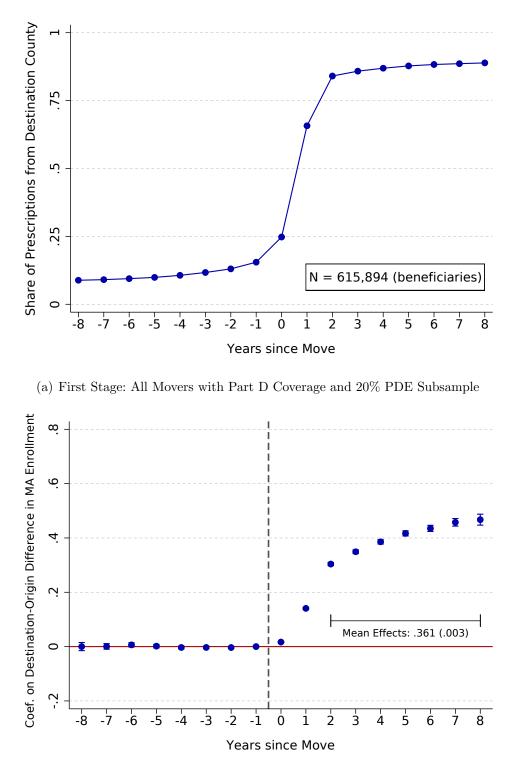
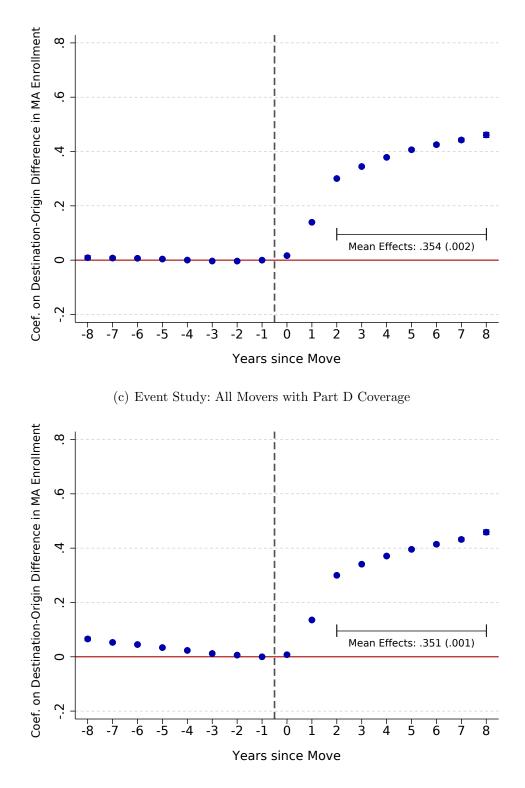


Figure A2: Robustness: Relaxing Sample Restrictions for Movers

(b) Event Study: All Movers with Part D Coverage and 20% PDE Subsample



(d) Event Study: All Movers

Notes: The panels in this figure successively relax sample restrictions. Panel (a) repeats the first-stage analysis (analogous to Appendix Figure A1) and panel (b) repeats the event study analysis (analogous to Figure 3) using all movers observed in Prescription Drug Event (PDE) datasets (N movers = 615, 894), regardless of the change in their prescription fills. Panel (c) replicates the event study analysis using all movers in Part D, even if not in the 20% subsample represented in the PDE dataset (N movers = 2, 952, 623). Panels (a)–(c) also include nonmovers with Part D coverage. In panel (d), we further remove the sample restriction of Part D coverage for both movers and nonmovers (N movers = 4, 999, 801).

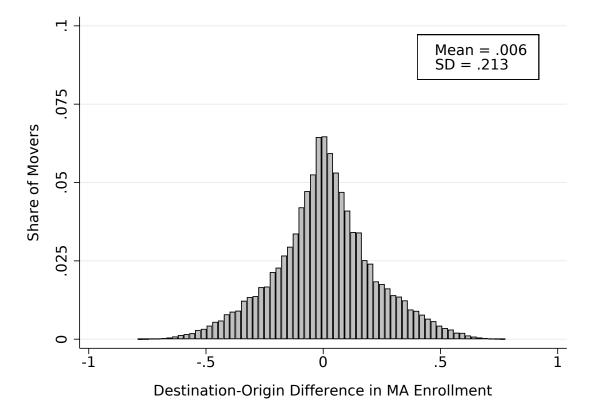


Figure A3: Distribution of Destination-Origin Differences in MA Enrollment Rates

Notes: The figure above displays the distribution of $\hat{\delta}_i$ (i.e., the destination-origin difference in the MA enrollment rates) among movers. The sample is *baseline* movers (N = 2,545,438 beneficiary-years).

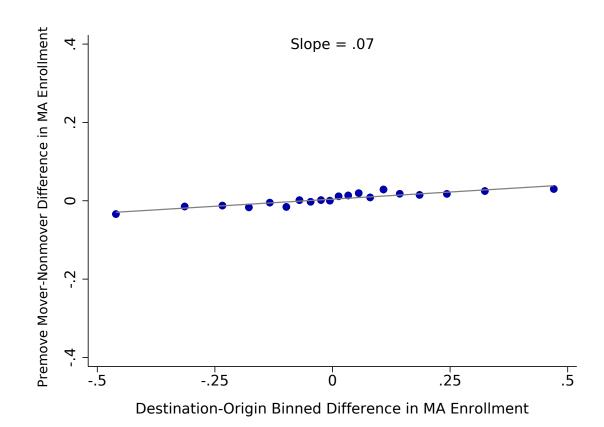


Figure A4: Movers-Nonmovers Pre-Move Difference in MA Enrollment Probability by Destination-Origin Difference

Notes: The figure above displays the difference in MA enrollment probability between movers relative to matched nonmovers by the size of movers' treatment intensity, $\hat{\delta}_i$. Movers are grouped into ventiles by $\hat{\delta}_i$. For each ventile, the *x*-axis displays the mean of $\hat{\delta}_i$, and the *y*-axis displays the mean difference in MA enrollment probability two to five years before move. The line of best fit and its slope are obtained from a simple OLS regression using the 20 plotted points. The sample is *baseline* movers and matched nonmovers observed two to five years before move (N = 658, 163 beneficiary-years).

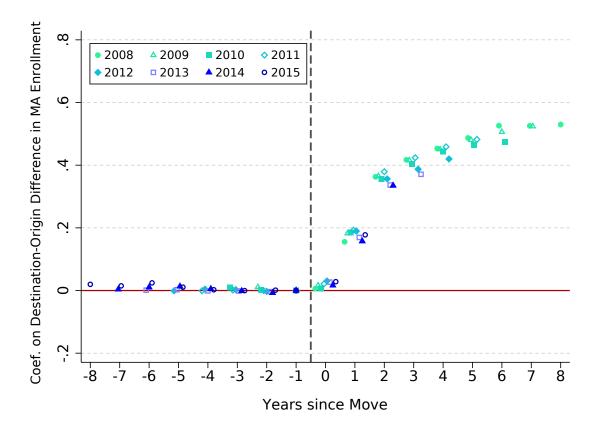


Figure A5: Robustness: A Separate Event Study Estimation by Year of Move

Notes: The figure above displays estimates, θ_r (i.e., the coefficients on relative years since move interacted with the treatment intensity $\hat{\delta}_i$), from separate regressions of equation (1) by year of move. The dependent variable is an indicator for any MA months. All regressions include place (or county) fixed effects, individual fixed effects, time (or year) fixed effects, indicators for relative years since move, and five-year age bins. To improve visualization, 95% confidence intervals (with robust standard errors clustered at the beneficiary level ranging from 0.004 to 0.018 across all estimates) are not displayed.

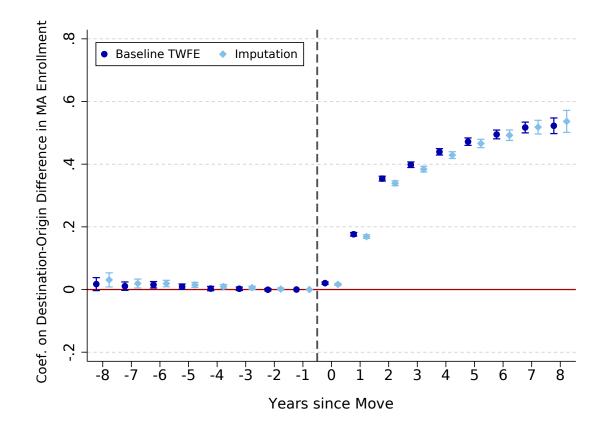


Figure A6: Robustness: Comparison of Baseline Event Study and Imputation-Based Approach

Notes: The figure above compares baseline estimates from the standard two-way fixed effects (TWFE) event study estimation (in dark blue) described in equation (1) and those from the imputation-based approach (in light blue) described in Appendix Section B.2.

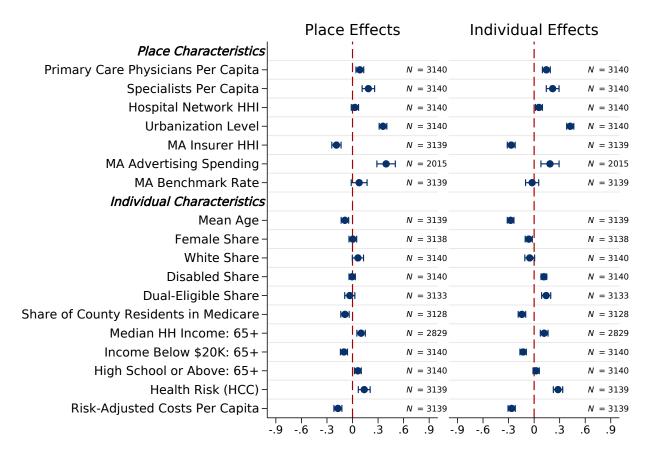


Figure A7: Correlates Analysis: All Counties

Notes: The figure above displays bivariate OLS results of place effects (left panel) and individual effects (right panel) on various county-level characteristics (analogous to left panels in Figure 4). All measures and dependent variables are standardized to mean zero and variance one. The sample includes all counties for which each measure is available, as indicated in the right corner of each panel. See Appendix Section A.3 for more detail on the measures used for this analysis.

	Nonmover	Mover	Matched Nonmover	
	(1)	(2)	(3)	
Panel (a): Demographics				
Female	0.58	0.66	0.66	
White	0.82	0.87	0.87	
Age First Observed				
65-74	0.68	0.62	0.62	
75-84	0.23	0.28	0.28	
≥ 85	0.09	0.10	0.09	
Years Observed	5.31	7.31	7.47	
MA Enrollment				
Any Month	0.44	0.43	0.43	
Share of Twelve Months	0.42	0.40	0.41	
Dual-Eligible	0.21	0.21	0.19	
Residence First Observed				
Northeast	0.20	0.18	0.18	
South	0.36	0.38	0.37	
Midwest	0.23	0.21	0.20	
West	0.22	0.24	0.24	
Urban Counties First Observed	0.72	0.71	0.72	
N of Beneficiary	40,294,278	348,199	346,067	
N of Beneficiary-year	213,873,570	2,545,438	2,532,505	
Panel (b): Transition Pattern				
TM to TM	0.51	0.50	0.54	
TM to MA	0.05	0.07	0.04	
MA to TM	0.03	0.08	0.03	
MA to MA	0.41	0.34	0.39	
Panel (c): Prescription Drug Use an	d Care Deliver	ry Pattern		
1(Any Script)	0.91	0.89	0.90	
Log(1 + Days Supplied)	6.29	6.08	6.16	
Adherence	0.29 0.69	0.68	0.10	
Share of Scripts by PCPs (and Midlevel)	$0.09 \\ 0.72$			
Share of Scripts by PCPs (and Midlevel) Share of Scripts by Specialist	$0.72 \\ 0.28$	0.72 0.72		
1(Any Script from ED Doctor)	$0.28 \\ 0.12$	$\begin{array}{c} 0.28 \\ 0.13 \end{array}$	$\begin{array}{c} 0.28 \\ 0.12 \end{array}$	

Notes: The table above reports the mean (or share) of the given characteristics for each group: *all* nonmovers, *baseline* movers, and matched nonmovers. The means displayed in panel (a) are calculated at the beneficiary level except for MA enrollment and dual-eligible, which are calculated at the beneficiary-year level. "Urban" counties are defined as the NCHS urban-rural classification levels: large central metro, large fringe metro, or medium metro. In panel (b), transition patterns are determined based on MA enrollment status one year before move (i.e., r = -1) and two years after move (i.e., r = 2) for movers and matched nonmovers. Unlike movers and matched nonmovers, relative years to move (i.e., r = -1 and 2) are not defined for nonmovers, and thus transition patterns are repeatedly examined in other three-year intervals: if a nonmover is observed in 2010–2014, we check the nonmover's MA enrollment status in 2010 and 2013 and in 2011 and 2014. The means displayed in panel (c) are calculated at the beneficiary-year level among those observed in Prescription Drug Event (PDE) datasets.

	Above/	Top/	Top/	Top/	Urban
	Below	Bottom	Bottom	Bottom	vs.
	Median	25%	10%	5%	Rural
	(1)	(2)	(3)	(4)	(5)
Difference in Average MA Enrollment					
Overall (A)	0.333	0.466	0.590	0.665	0.193
Due to Place (B)	0.137	0.202	0.262	0.281	0.091
Due to Individual (C)	0.196	0.264	0.329	0.385	0.102
Share of Difference Due to					
Place (B/A)	41.17%	43.37%	44.34%	42.19%	46.96%
Individual (C/A)	58.83%	56.63%	55.66%	57.81%	53.04%

Table A2: Decomposing Sources of Variation Across Groups of Counties

Notes: The table above reports additive decomposition results, which are based on estimation of equation (2). Each column indicates a set of included counties based on their MA enrollment rates, \overline{MA}_j , except for column (5) for which we define "Urban" using the NCHS urban-rural classification levels large central metro, large fringe metro, or medium metro. The first three rows report the difference in \overline{MA}_j , $\hat{\gamma}_j$, and \overline{y}_j between the two sets of counties as indicated in each column. The last two rows report the share of the difference in average MA enrollment rates between the two sets of counties, which is attributable to place of individual effects. The differences in the first three rows are weighted by the average number of Medicare beneficiaries in each county during our sample period. The sample is *baseline* movers and all nonmovers, excluding the year of the move and the year following for movers (N = 210, 509, 518 beneficiary-years).

Table A3: Decomposing the Variance in MA Enrollment: Role of Place and Individual Factors

	(1)
Cross-County Variance of Average	
MA Enrollment (A)	0.0361
Place Effect Estimates (B)	0.0084
Individual Effect Estimates (C)	0.0149
Correlation of Place and Individual Effect Estimates Share of Variance of MA Enrollment Would Be Reduced If	0.5736
Place Effect Estimates Were Made Equal $(1 - \frac{C}{A})$	58.73%
Individual Effect Estimates Were Made Equal $(1 - \frac{B}{A})$	76.78%

Notes: The table above reports variance decomposition results, which are based on estimation of equation (2). The first three rows report the variance of \overline{MA}_j , the variance of $\hat{\gamma}_j$, and the variance of \overline{y}_j , respectively. The fourth row reports the correlation between $\hat{\gamma}_j$ and \overline{y}_j . The last two rows report the share of variance in cross-county MA enrollment rates that would be eliminated if place (or individual) effects were equalized across counties. The variances and correlation coefficient are weighted by the average number of Medicare beneficiaries in each county during our sample period. The sample is *baseline* movers and all nonmovers, excluding the year of the move and the year following for movers (N = 210, 509, 518 beneficiary-years).