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Introduction

A vibrant frontier in macroeconomics incorporates rich cross-sectional heterogeneity in dynamic gen-

eral equilibrium. Recent numerial advances have remarkably accelerated the computation of impulse

response functions up to first-order perturbations in some leading incomplete market models (Ahn et

al., 2018, Auclert et al., 2019). Yet, a conceptual framework rationalizing these numerical techniques

and expand their applicability has remained elusive. What is the relationship between economic fun-

damentals and equilibrium outcomes in perturbations of heterogeneous agent models? How handle

settings that fall beyond the natural scope of these methods, such as frictional labor markets or dy-

namic discrete choice? Are higher order perturbations that include nonlinearities and aggregate risk

feasible?

In this paper, I propose answers to these questions using a new conceptual framework for per-

turbations in heterogeneous agent economies. I propose a representation of dynamic economies with

heterogeneity that is analytic, low-dimensional, handles flexible general equilibrium feedbacks between

the distribution and individual decisions, and applies systematically to perturbations of any order.

These results rely on two key ideas. First, I use a state-space approach and treat the distribution of

underlying heterogeneity as an explicit state variable in individual decisions. A single value function

equation set on the space of distributions summarizes the equilibrium: the ‘Master Equation.’ Second,

I take analytic—instead of numerical—perturbations of the Master Equation in the distribution and

aggregate shocks and characterize the directional derivatives of the value function.

Specifically, the first core idea in this paper is to represent dynamic general equilibrium economies

in fully recursive form. For concreteness, consider the Krusell and Smith (1998) economy. Households

face uninsurable idiosyncratic labor productivity risk, and may borrow and save in a risk-free asset. A

representative firm rents capital and hires labor. Abstract from aggregate shocks for now: the economy

simply starts out of steady-state. Households’ consumption and savings forward-looking decisions are

fully determined by the sequence of future interest and wage rates. These prices in turn depend on the

underlying distribution of asset holdings and idiosyncratic productivity through the firms’ decision and

market clearing. The distribution of assets and productivity evolves over time according to the optimal

savings decisions of individuals. The classic difficulty in characterizing this economy is that individual

decisions are forward-looking in time, while the evolution of the infinite-dimensional distribution is

backward-looking in time. Prices are the fixed point of this forward-backward system that clear the

capital and labor market.

I include the underlying distribution of heterogeneity as an explicit state variable in households’

decision problem. Knowledge of the distribution fully characterizes prices. Households know the law

of motion of the distribution. Thus, they forecast the future path of the distribution and hence prices.

Households’ decision problem then depends on the distribution just as on any other state variable.

The only notable difference is that the distribution is an infinite-dimensional object, rather than a

finite-dimensional state vector.
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The resulting representation of the economy is the Master Equation. It was recently characterized

in the mathematics mean field games literature by Cardaliaguet et al. (2019). It consists of a single

Bellman equation that describes the entire behavior of a system of interacting agents. In the Krusell

and Smith (1998) example, the Master Equation defines a value function that depends on a given

households’ idiosyncratic states—assets and productivity—as well as the underlying distribution of

assets and productivity of all other households of the economy. The Master Equation is a Markovian

representation of the economy because it includes as a state variable all the necessary information to

forecast the evolution of the economy. It merges the fixed point on decisions, prices and the distribution

into a single object.

The logic underpinning the Master Equation representation is more general than the Krusell and

Smith (1998) example. At the same, the analysis in Cardaliaguet et al. (2019) imposes restrictions

that are at odds with most economic applications of interest. Therefore, I expand the scope of the

Master Equation to encompass a large class of continuous-time dynamic general equilibrium economies

that nest many applications of interest.1

The second core idea is to simplify the Master Equation by focusing on local perturbations around

a deterministic steady-state. Consider an impulse in the distribution, that moves the economy away

from its steady-state. For instance, suppose the economy simply starts out of steady-state. I explicitly

perturb the Master Equation along any such distributional impulse using generalized derivatives in

infinite-dimensional spaces—namely, Fréchet derivatives. I preserve the full nonlinearity of individual

decisions with respect to idiosyncratic states. Critically, relative to numerical techniques that first

discretize and next linearize, I start by taking an internally consistent analytic perturbation first,

before any computational discretization is applied. Key to this step is the use of continuous time, that

streamlines the mapping between individual decisions and the evolution of the distribution.

The First-order Approximation to the Master Equation (FAME) without aggregate shocks results

in a Bellman equation with six key properties. First, it is low-dimensional. Its solution, the ‘Impulse

Value’, consists of the directional derivatives of the value function with respect to the distribution. It

encodes how individuals value changes in the distribution. In the FAME, the Impulse Value depends on

only twice the number of idiosyncratic states, down from infinity in the fully nonlinear Master Equation.

In the Krusell and Smith (1998) example, the Impulse Value has dimension four. This drastic dimension

reduction is a feature of the local perturbation. To know their Impulse Value, individuals must know

their own idiosyncratic states—for instance assets and productivity. Individuals must also know where

the distributional impulse is happening—at another possible pair of assets and productivity. Thus,

they must keep track of another set of idiosyncratic states that index which distributional impulse they

are contemplating.

Second, the FAME depends in closed form on known and interpretable steady-state objects through

1I let individual states follow controlled jump-diffusion processes that are flexible functionals of the underlying dis-
tribution to handle job search and dynamic discrete choice models. I let idiosyncratic states face constraints, to handle
occasionally binding borrowing constraints. I let mass points develop in the distribution, consistently with borrowing
constraints.
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a systematic structure. The FAME depends on the steady-state law of motion of idiosyncratic states,

such as assets and productivity. It also depends on the direct impact of distributional impulses on

individual utility and transition probabilities between states. Finally, the FAME depends on the

general equilibrium response of all individuals in the economy through its effect on the law of motion

of the distribution. By virtue of the local perturbation, these objects all have explicit expressions that

are linked together in equilibrium by the FAME.

Third, the FAME applies equally well to settings in which few or many prices summarize feedback

between the general equilibrium and individual decisions. For instance, in dynamic spatial models,

households must keep track of several prices per location to decide where to migration. In search

and matching models with job-to-job search, the entire distribution of wage offers matters directly for

workers. Because the FAME is a perturbation with respect to the entire distribution, it applies directly

to those examples. For instance, Bilal and Rossi-Hansberg (2023) use the FAME to evaluate the cost

of climate change in a model of the U.S. economy disaggregated into over 3,000 counties.

Fourth, the FAME provides a block-recursive representation of equilibrium and impulse response

functions. The FAME inherits the block-recursivity from the Master Equation, in that it merges the

value function and the distributional fixed points. Once the Impulse Value is known, the evolution of

the distribution over time is obtained without solving any additional fixed point. Leveraging block-

recursivity and the closed-form dependence on steady-state, I show that the speed of convergence

back to steady-state depends on the dominant eigenvalue of a transition operator encoding general

equilibrium effects.

Fifth, the FAME provides a conceptual bedrock for computational perturbation techniques. It is

the mathematically exact foundation for the state-space numerical methods in Reiter (2009) and Ahn

et al. (2018). I also show that it underpins sequence-space numerical methods as in Auclert et al.

(2019). I derive an analytic counterpart to the sequence-space Jacobians in Auclert et al. (2019) and

show the equivalence between Impulse Values and sequence-space Jacobians. This equivalence is key

for implementation, as state-space impulse values are particularly useful in settings with many prices

while sequence-space Jacobians are especially powerful in settings with few prices.

Sixth, the FAME offers a streamlined and efficient implementation using standard finite difference

methods. Building on the analytic representation of the the FAME, I show that it displays a specific

separability structure because an individual’s own idiosyncratic state and the distributional impulse

propagate symmetrically but independently. Once discretized, the FAME takes the form of a modified

Sylvester matrix equation for which standard routines exist. In the Krusell and Smith (1998) example,

computation typically takes a tenth of a second and requires a couple dozen lines of code.

The FAME extends readily to the presence of aggregate shocks. A similar perturbation approach

delivers two key insights. To first order, the Impulse Value splits into two distinct components. The

first component is simply the Impulse Value from the deterministic FAME, the ‘deterministic Impulse

Value’. The second component is the ‘stochastic Impulse Value’. The latter represents how individuals

value an aggregate shock. It satisfies a similar FAME than the distributional Impulse Value and may

4



be solved or computed analogously. The economy remains block-recursive, and the linearized law of

motion of the distribution evolution equation now features an additional component that represents

the response of individual decisions to aggregate shocks. That same law of motion defines the invariant

distribution in the stochastic steady-state. Numerically, it is the solution to a simple linear system.

The Master Equation provides a systematic approach to perturbations of increasing order. Concep-

tually, the Second-order Approximation to the Master Equation (SAME) is the same as the FAME. I

show that the SAME defines a value function that depends again only on steady-state objects in closed

form. Its solution now depends on three times the number of idiosyncratic states because pairwise im-

pulses in the distribution matter to second order. The SAME handles asset pricing applications that

require second-order perturbations to depart from certainty equivalence.

I illustrate the Master Equation approach with two distinct applications. The first application is

purely analytic, and studies a dynamic location choice model that may also be broadly interpreted

as an occupation, industry or product choice model. In this setting, I leverage the FAME to connect

measurable preference and technology parameters to the speed of convergence back to steady-state—

formally the dominant eigenvalue of the transition operator governing general equilibrium forces. As a

result, the FAME provides a direct mapping between measurable primitives and the dynamic response

to the economy to an initial population shock.

The second application is quantitative. I evaluate the impact of state-dependent Unemployment

Insurance (UI) in an environment similar to Krusell and Smith (1998) but for the labor market. I

explicitly model unemployment, endogenous vacancy creation, and workers search for jobs on and off

the job. Solving such a model falls beyond what existing methods are designed for. In contrast, the

FAME is well-equipped to handle this model.

In such an environment, state-dependent UI already leads to a trade-off even without nominal rigidi-

ties. Raising UI generosity in downturns provides valuable relief to unemployed, credit-constrained

individuals. At the same time, the tax burden associated with this spending falls upon wealthy net

savers, thereby crowding out investment and depressing vacancy creation going forward. On net, it is

unclear whether state-dependent UI harms households that it intends to help.

I calibrate the model to micro evidence on the incidence of recessions and marginal propensities

to consume by income status. After solving for steady-state, computing the Impulse Values takes

under 5 seconds on a laptop. Solving for any impulse response function or the invariant distribution in

stochastic-steady state subsequently takes less than a second. The entire implementation of the FAME

requires less than 200 lines of Matlab code.

I find that a moderate increase in UI generosity delivers large direct welfare gains to credit-

constrained unemployed households. In contrast, the crowding out effects on capital are minimal.

Together, these observations imply that state-dependent UI is an effective tool. While I abstract from

nominal rigidities, they would further amplify the potency of UI.

This paper relates to four strands of literature. First, I build on the mathematics mean field games

literature. They were first introduced in sequential form by Lasry and Lions (2006) and Huang et al.
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(2006). The Master Equation was discussed in Lions (2011), and formally analyzed in Cardaliaguet

et al. (2019).2 I complement this literature by proposing a flexible formulation of the Master Equation

that is amenable to a wide class of economic applications, and by characterizing explicitly its first- and

second-order perturbations.

Second, this paper also relates to the set of papers that characterize impulse response functions

analytically in specific heterogeneous agent models by studying their spectral properties (Gabaix et al.,

2016, Alvarez and Lippi, 2021, Liu and Tsyvinski, 2020). I complement this literature by characterizing

the role and determination of the dominant eigenvalue in a wider class of economies.

Third, this paper connects to literature proposing computational methods for first-order pertur-

bations of impulse response functions in heterogeneous agent economies in state space form (Reiter,

2009, Ahn et al., 2018). These methods first discretize, then linearize to first order, an economy

with heterogeneity. They treat the resulting finite but high-dimensional system as a standard rational

expectations system. By reversing the order—linearizing first, discretizing next—the FAME is the

internally consistent foundation for this computational approach. The FAME provides an economic

interpretation of numerical output that may be otherwise difficult to see through and simplifies im-

plementation. Crucially, the Master Equation approach also delivers a systematic approach to higher

order perturbations such as the SAME.3 Since this paper was first circulated in 2021, Bhandari et al.

(2023) build on its key insights to characterize perturbations in discrete time heterogeneous agent

economies.

Fourth, the Master Equation approach relates to numerical linearization techniques that lever-

age the sequence-space representation of the economy (Boppart et al., 2018, Auclert et al., 2019).

These sequence-space approaches are designed for first-order perturbations, in contrast to the Master

Equation approach. When the economy admits a simple sequence-space representation, I show that

the FAME features a separability property that permits a lower-dimensional implementation through

sequence-space Jacobians that I derive in closed form.

Fifth, the Master Equation approach connects to numerical methods to solve heterogeneous agent

models globally. Schaab (2021) also uses the Master Equation to propose a global, adaptative sparse

grid strategy that builds on Brumm and Scheidegger (2017). This paper instead proposes an analytic

perspective on local perturbations of the Master Equation.4

The remainder of this paper is organized as follows. Section 1 presents the intuition behind the

Master Equation approach in the context of the Krusell and Smith (1998) economy. Section 2 defines

2See also Carmona and Delarue (2018a) and Carmona and Delarue (2018b) for the dual, probabilistic approach to
mean-field games and the Master Equation.

3The analytic nature of perturbations in the FAME and the SAME relate to the analytic perturbation approach
in Bhandari et al. (2018). They also propose first and second-order perturbation of heterogeneous agent economies.
However, they require that all shocks, both aggregate and idiosyncratic, are small enough. The FAME and the SAME
instead preserve full nonlinearity with respect to idiosyncratic uncertainty by only requiring that aggregate shocks are
small. Childers (2018) proposes a hybrid approach where somme differentiation is analytic but does not recover smaller-
dimensional Bellman equations as in the FAME.

4Ahn et al. (2018) mention the Master Equation in their Appendix as a possible justification for numerical state-space
approaches but do not establish the connection formally.
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the Master Equation for a general economy. Section 3 derives the FAME and discusses connections to

existing state-space and sequence-space approaches. Section 4 describes the SAME. Section 5 presents

two applications. The last section concludes. Proofs and additional details may be found in the

Appendix.

1 Motivating example

This section describes the Krusell and Smith (1998) economy and how to use the Master Equation

approach to solve for impulse response functions. I start with a deterministic economy that starts out

of steady-state, before introducing aggregate shocks.

1.1 Setup

Time t ≥ 0 is continuous and runs forever. There are no aggregate shocks for now, but the economy may

start out of steady-state. Individuals are endowed with idiosyncratic time-varying productivity yt every

instant. Their productivity endowment follows a stationary stochastic process, and is independent

across individuals. The process is defined by its generator M(y). The generator is a functional

operator that encodes conditional expectations under the income process, starting from the point y.

For instance, if productivity follows a diffusion, dyt = µ(yt)dt + σ(yt)dWt, then the generator is the

functional operator M(y)[V ] = µ(y)V ′(y) + σ(y)2

2 V ′′(y). Households are endowed with initial asset

holdings a0.

Households solve a standard income fluctuation problem by deciding how much to consume and

save every period in a single risk-free asset a. For brevity, I denote by x = (a, y) the pair of households’

idiosyncratic states. Households’ value function Vt(x) satisfies the Hamilton-Jacobi-Bellman equation:5

ρVt(x)− ∂Vt
∂t

(x) = max
c≥0

u(c) + Lt(x, c)[Vt] (1)

where I define

Lt(x, c)[V ] = (rta+ wty − c)
∂V

∂a
(x) +M(y)[V ] (2)

the expectation of future values given that assets at evolve according to the budget constraint dat =

(rtat +wtyt− ct)dt and productivity follows its exogenous stochastic process. The functional operator

Lt(x, c) is the generator of the stochastic process for households’ idiosyncratic state x = (a, y). Denote

by ĉt(x) the optimal consumption decision of households.

A representative firm operates a production technology Y = Z̄KαN1−α and rents assets from

households at the interest rate rt. The firm transforms assets into productive capital K that does not

depreciate. The firm’s optimality conditions together with market clearing imply that the real interest

5The value function is restricted to have at most linear growth as assets and income approach infinity. This restriction
is the recursive analogue to the No-Ponzi condition in the sequential formulation of problem (1).
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rate rt and the wage rate wt clear the capital and labor market:

rt = α

(∫∫
ygt(x)dx∫∫
agt(x)dx

)1−α
≡ R(gt) ; wt = (1− α)

(∫∫
agt(x)dx∫∫
ygt(x)dx

)α
≡ W(gt), (3)

where gt(x) is the probability distribution function of households over assets and income at calendar

time t. The functionals R,W capture how the interest and wage rates react to shifts in the distribution

of households.

The distribution gt(x) evolves over time according to its law of motion, the Kolmogorov forward

equation:

∂gt
∂t

(x) = L∗t (x, ĉt(x))[g] (4)

where

L∗t (x, ĉt(x))[g] = − ∂

∂a

(
st(x)gt(x)

)
+M∗(y)[gt] (5)

and st(x) = rta + wty − ĉt(x) denotes the equilibrium savings rate. M∗ is the formal adjoint of the

operator M , which is the functional equivalent of the matrix transpose. Similarly, the operator L∗ is

the adjoint of the operator L∗.

1.2 The Master Equation

The Master Equation approach considers the individual decision problem (1) in fully recursive form.

This approach is distinct from the common sequential view of (1), that takes the path of interest and

wage rates (rt, wt), t ≥ 0 as an input. Making the individual decision problem (1) recursive requires

defining the value function on the underlying space of distributions g. While the distribution is infinite-

dimensional, it may be viewed as a larger analog of any other finite-dimensional state variable. Just

as with any other state variable, including the distribution g as an explicit state variables requires

knowing its drift over time (and possibly volatility). Crucially, the Kolmogorov forward equation (4)

encodes precisely that law of motion.

I build towards the Master Equation in three steps. The first step is to recognize how the value of

a household depends on equilibrium objects. In this example, the value depends only on the interest

and wage rates rt, wt.

The second step is to express prices and any other equilibrium objects that may enter the value

function, as functionals of the underlying primitive distributions that define the relevant aggregate

state. In this example, interest and wage rates rt = R(gt), wt = W(gt) depend on the ratio of

marginals of the joint distribution of assets and wealth from the capital and labor market clearing

conditions (3). Thus, the capital and labor market clearing conditions (3) provides the required map

directly through the functionals R,W. Substituting into the value of households, I obtain

ρVt(a, y)− ∂V

∂t
(a, y) = max

c
u(c) + L(x, c, gt)[Vt] (6)

where L(x, c, gt)[V ] = (R(gt)a+W(gt)y−c)∂V∂a (a, y)+M(y)[V ]. So far, the transformation of the Bell-

8



man equation (1) into (6) is mostly notational: I have substituted the time-dependent price sequence

with the distribution-dependent price functionals.

The cornerstone of the Master Equation approach lies in the third step. Replace the time depen-

dence of the value function itself by an explicit dependence on the distribution g. This substitution

amounts to a change of variables:

Vt(x) ≡ V (x, gt). (7)

Using identity (7), the decision problem may be made fully recursive by re-expressing the time deriva-

tive in the Bellman equation (6). The first step is to recognize that, by the chain rule:

∂Vt
∂t

(a, y) =

〈
∂V

∂g
(x, gt),

∂gt
∂t

〉
. (8)

The chain rule in (8) is one that applies in infinite-dimensional spaces. It involves slightly more notation

than the usual chain rule in finite dimension, but follows the exact same logic.

First, the brackets 〈·, ·〉 denote an inner product in the appropriate functional space. In this

application, the inner product turns out to be 〈ϕ,ψ〉 =
∫
ϕ(a, y)ψ(a, y)dady on the space of square

integrable functions. This inner product is the natural generalization of the Euclidian inner product

〈ϕ,ψ〉 =
∑N

n=1 ϕnψn when dealing with functions rather than vectors.

Second, the derivative of the value with respect to the distribution, ∂V
∂g , must be understood in an

appropriate space for the distribution g. The relevant notion in most economic applications turns out

to be that of Frechet derivative, the natural generalization of derivatives in finite-dimensional spaces

to infinite-dimensional Hilbert spaces.

To gain intuition, suppose temporarily that the possible set of assets and wages was discrete and

finite, indexed by n. The value function would become a vector (Vn)Nn=1, and the derivative ∂V
∂g would

simply represent the gradient of the value vector with respect to the mass at each ones of these points.

Namely, one could write g ≡ (gn)Nn=1, and thus ∂V
∂g =

(
∂Vn
∂g1

, ..., ∂Vn∂gN

)N
n=1

.

The Frechet derivative simply extends the notion of gradient to the case when the underlying

idiosyncratic state space is continuous rather than discrete. In particular, the Frechet derivative
∂V
∂g (x, g) is itself a function of the direction in which the derivative is taken, x′—just as with a finite

dimensional gradient. The notation ∂V
∂g (x, g) implicitly omits the dependence on x′, but I also write

explicitly ∂V
∂g (x, x′, g) when needed.

The second step to remove the time derivative is to recognize that the change in the distribution,
∂gt
∂t is precisely given by the law of motion of the distribution (4). Following the same logic whereby

all equilibrium objects—prices and distributions—were expressed as functionals of g in the Bellman

equation (6), the evolution equation (4) may be expressed as a function of g only. Write the savings

rate st(x) ≡ s(x, gt) = R(gt)a+w− ĉ(x, gt). As in the change of variables in the Bellman equation (6),

these observations may be summarized by changing variables in the functional operator that encodes

the evolution of the distribution L∗t (x, ĉt(x)) ≡ L∗(x, gt). The dependence on the distribution g is both
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explicit through the interest rate, and implicit through the optimal consumption decision. I express

the dependence of the coefficients of the operator L∗ on the distribution gt through the parenthesis

gt 7→ L∗(x, gt)[·]. I express the action of the operator holding the coefficients fixed through the square

brackets gt 7→ L∗(x, ·)[gt]. Again, conditional on the aggregate state gt, the coefficients of the operator

L∗ do not depend on time, leading to

∂gt
∂t

(x) = L∗(x, gt)[gt]. (9)

Combining the chain rule (8) with the law of motion of the distribution (9), I finally obtain

∂Vt
∂t

(x) =

∫
∂V

∂g
(x, x′, gt)L

∗(x′, gt)[gt]dx
′. (10)

Identity (10) expresses the time derivative of the value function through the distributional derivative

of the value function ∂V
∂g , as well as the operator that encodes the time evolution of the distribution,

L∗. Time dependence now only runs through the distribution gt.

Combining the previous observations, I rewrite the Bellman equation (6) as

ρV (x, g) = max
c
u(c) + L(x, c, gt)[V ] +

∫
∂V

∂g
(x, x′, gt)L

∗(x′, gt)[gt]dx
′. (11)

Equation (11) is the Master Equation. Arriving at the representation (11) has required many

definitions, but the payoff is substantial: the Master Equation (11) is a fully recursive—or Markovian—

representation of the household’s problem.

Inspection of the Master Equation (11) reveals that there is no need to keep track of a separate

law of motion for the distribution. This law of motion has precisely been incorporated into the value

function through its last term
∫
∂V
∂g (x, x′, gt)L

∗(x′, gt)[gt]dx
′. As a result, the Master Equation (11) is

the only equation that needs be solved to characterize the equilibrium. It is this property has lead it

to be called the ‘Master Equation’ in the mathematics mean field games literature. In practice, the

representation of the equilibrium is now block-recursive: the evolution of the distribution along any

particular equilibrium realization follows ex-post, once the solution to the Master Equation is known.

The recursive nature of the Master Equation allows to leverage standard recursive methods to

characterize and compute the solution to (11). However, the fully nonlinear Master Equation (11) is

defined on a infinite-dimensional state space that includes the distribution g. Therefore, it remains

difficult to compute nonlinearly in practice.

To overcome this practical difficulty, I combine the Master Equation (11) with local perturbation

methods. It turns out that this combination provides a powerful closed form characterization of the

linearized Master Equation, and drastically reduces the dimensionality of the problem.

1.3 The FAME

I start from a locally isolated steady-state of the economy. It is given by a steady-state value function

V SS(x) and a steady-state distribution gSS(x). I then consider the First-order Approximation to the

Master Equation (FAME) (11) around the distribution gSS . Specifically, I only require that deviations
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in the distribution—that I denote by h = g − gSS and call distributional impulses—are small in the

mean squared error norm. I do not require that idiosyncratic uncertainty is small. Instead, the present

approximation preserves the full nonlinearity of decisions with respect to individual states.6 The main

innovation in this paper is to take the perturbation analytically instead of numerically.

The critical observation in the FAME is that the value function V (x, g) then becomes, to a first

order, a linear functional of the distributional impulse h. Namely, to first order:

V (x, g) ≈ V SS(x) +

∫
v(x, x′)h(x′)dx′. (12)

The function v(x, x′) encodes how the value function evaluated at the point x = (a, y) responds to

small impulses in the distribution around the steady-state. To first order, only the effect of the impulse

direction by direction need be considered, and the expansion is additive in the impulse h. The pairwise

effects of the impulses is second order and thus drop out to first order.

I call the function v(x, x′) the ‘determinstic Impulse Value Function’ or simply the Impulse Value.

This terminology is motivated by the observation that v(x, x′) exactly encodes how the value function

responds to a small impulse h in the underlying distribution relative to steady-state. It can be inter-

preted as the general equilibrium effect of adding one household at x′ on the value of a household at

x.

By construction of the Impulse Value, it coincides with the directional derivative evaluated at

steady-state:

v(x, x′) =
∂V

∂g
(x, x′, gSS).

To build intuition, the analogue of equation (12) with a finite state space would simply be Vn(g) ≈
V SS
n +

∑N
k=1 vnkhk with vnk = ∂Vn

∂gk
(gSS). The integral in equation (12) merely generalizes this notation

to settings with a continuous state space.

The goal of the FAME is to derive restrictions that determine the Impulse Value. To that end, I

follow a similar strategy to perturbation methods in representative agent economies such as the Real

Business Cycle (RBC) model. I substitute the definition of the Impulse Value (12) into the nonlinear

Master Equation (11). I then take a first-order approximation in the distributional impulse h. Since

the Master Equation must hold for all h, the final step is simply to use the method of undetermined

coefficients. To build intuition, recall that when linearizing the RBC model, there is a finite number

of coefficients to identify, for instance one coefficient for how the value function depends on impulses

in the aggregate capital stock. With heterogeneity, the only difference is that the ‘coefficients’ are

themselves functions, such as the Impulse Value v(x, x′) itself.

6Namely, I do not approximate the equilibrium around a degenerate distribution as in Preston and Roca (2007),
Mertens and Judd (2017), or Bhandari et al. (2018). My approach is similar in spirit to Reiter (2009), Ahn et al. (2018)
or Auclert et al. (2019)
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The calculation described above leads to the FAME:

ρv(x, x′) =

Direct price impact︷ ︸︸ ︷
u′(cSS(x))D(x, x′) +

Partial equilibrium:
continuation value
from shocks to x︷ ︸︸ ︷
L(x)[v(·, x′)] +

General equilibrium:
continuation value from

propagation of impulse at x′︷ ︸︸ ︷
L(x′)[v(x, ·)] (13)

−
∫
v(x, x′′)

∂

∂a′′

(
gSS(x′′)

(
D(x′′, x′)− 1

u′′(cSS(x′′))

∂v

∂a′′
(x′′, x′)

))
dx′′︸ ︷︷ ︸

General equilibrium: weighted average of changes in savings rates
of other households x′′ in response to impulse at x′

,

where

D(x, x′) =
(
R0a

′ +R1y
′)a+

(
W0a

′ +W1y
′)y

L(x) = L(x, cSS(x), gSS)

and where R0,R1,W0,W1 are constants that depend only the steady-state distribution and are given

in Appendix A.1.

Equation (13) is the FAME. Its right-hand-side has four component. Each one encodes a particular

force that affects how the value of household x = (a, y) changes in equilibrium when an additional

household enters the economy at x′ = (a′, y′).

The first component in the FAME is the direct price impact. When the distribution changes, prices

also change. The movement in prices affects households’ disposable income as encoded in the price

impact function D(x, x′). The price impact function D depends linearly on the household’s state: a

household with more assets benefits more from a rise in the interest rate. The price impact function D

also depends linearly in the point x′ in the state space where the distributional impulse is occurring—

where household x is contemplating an excess mass of other households x′. A given distributional

impulse at x′ affects the interest rate more if a′ is high or if y′ is high. Therefore, the function D is

larger at larger a′ and y′. A similar logic underlies the impact of the distributional impulse through

the wage rate. The impact of the distributional impulse on households’ consumption drops out due

to the envelope condition—the first-order optimality condition always holds in continuous time. By

virtue of the local perturbation, households then convert changes in disposable income into utils using

their steady-state marginal utility of consumption.

The second component in the FAME encodes a partial equilibrium force, similar to households’

continuation value in (1). Even out of steady-state, households form expectations about their own

assets and labor market productivity. Crucially, by virtue of the first-order perturbation, household

need only evaluate those expectations using steady-state prices and consumption policy functions.

Thus, they use the steady-state continuation value operator L that involves only steady-state transition

probabilities. This operator acts on the first argument x of the Impulse Value, that represents the

dependence of their value on their own own state variable.

The third component in the FAME represents a first general equilibrium force. When contemplat-

ing the effect of an additional household at x′ on the economy, households at x expect this additional
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household at x′ to behave just as any other household. Household x′ consumes, saves and received

labor market shocks. Thus, the additional household at x′ travels through the state space. Keeping

track of where they go matters to project the economy forward in time and evaluate what tomor-

row’s distribution will be. The FAME shows that this expectation is summarized by the steady-state

expectation operator L. Once more, because of the local perturbation, only steady-state transition

probabilities matter to first order. Crucially, the steady-state operator L acts on the second argument

x′ of the Impulse Value value, that represents the effect of an additional household at x′ on the value

of household x.

The fourth component in the FAME encodes a second general equilibrium force. It represents

how household x values the change in the law of motion of the distribution that arises because of an

additional household at x′. Why would the law of motion change? An additional household at x′

affects prices. Because prices change, all households in the economy—represented by the integral over

x′′—change their savings behavior. This change in savings behavior affects the law of motion of the

distribution to first order, and thus affects any given household x after weighting by the steady-state

distrbution gSS and converting to utils using the Impulse Value v(x, x′′). The change in savings rates

of any other household x′′ is then given by the innermost bracket. It involves the price impact function

D net of the first-order change in consumption
∂a′′v(x′′,x′)
u′′(cSS(x′′))

. This expression for the consumption

response follows from linearizing the first-order condition for consumption. It is a ‘distributional

Marginal Propensity to Consume’ (dMPC): it represents how consumption changes in response to a

distributional impulse.

Despite its notational complexity, the FAME is in fact remarkably simple. It has four striking

features, which Section 3 shows hold much more broadly than in the present example.

(i) From infinite to finite dimension. The FAME (13) is a standard Bellman equation in finite

dimension. The dimensionality of the Impulse Value is simply twice that of the original problem, instead

of being infinite-dimensional like the nonlinear Master Equation (11). This drastic simplification stems

from the local perturbation. Households located at x in the state space need only consider isolated

impulses at any other possible x′ in the distribution, since any pairwise impulses would lead to a

second-order deviation in the value function.

(ii) Closed form steady-state dependence. Second, by virtue of the analytic nature of the per-

turbation, all the objects entering in the FAME are steady-state objects with closed form expressions.

This observation implies that, once the nonlinear steady-state of the model is known, no additional

calculation is needed to write down and solve the FAME.

(iii) Block-recursivity. The FAME inherits the block-recursivity from the Master Equation. The

FAME is the only fixed point that must be solved to know individual behavior along any impulse

response. There is no additional price or distributional fixed point to solve because such fixed points

have already been embedded into the Master Equation. The FAME uncovers that this joint fixed point

has a simple structure that may be solved efficiently.
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Once the Impulse Value is known, it is straightforward to apply a similar perturbation argument

to the law of motion of the distribution (4).7 To first order,

∂ht
∂t

(x) = L∗(x)[ht] +K(x)[h], (14)

where the operator K is defined by the integral formula

K(x)[h] =

∫
K(x, x′)h(x′)dx′ , K(x, x′) = − ∂

∂a

(
gSS(x)

(
D(x, x′)− 1

u′′(cSS(x))

∂v

∂a
(x, x′)

))
. (15)

Equation (14) encodes the time evolution of any impulse h in the distribution over time. Its two

components represent distinct forces that mirror those that the FAME (13) uncovered.

The first term L∗[h] represents the partial equilibrium evolution of the impulse h. This partial

equilibrium evolution is computed holding transition probabilities fixed at their steady-state values.

The second term K[h] represents the general equilibrium response of the economy. It encodes

changes savings behavior of all households in response to the distributional impulse. These changes in

behavior stem are embedded in the price impact and dMPCs that enter the definition of the kernel K.

The kernel K coincides with the expression in the general equilibrium component of the FAME (13)

because both represent changes in savings rates.

(iv) Efficient numerical implementation. Due to its standard Bellman equation structure, the

FAME can be solved efficiently using standard finite dimension schemes. Denote by L the steady-state

transition matrix that discretizes the operator L. It encodes transitions within a 2-dimensional state

space, assets and productivity. With 100 grid points in each dimension, such a matrix has 100 million

(108) entries. Its sparse nature allows standard software to easily handle its size. However, in this

example, the Impulse Value is a 4-dimensional object. Naively constructing the associated transition

matrix would lead it to have 10 million billion (1016) entries. Even with a sparse structure, it may

prove difficult for standard computational software.

A closer look at the FAME reveals that its particular structure bypasses this difficulty. The prop-

agation of the relevant state (x, x′) is encoded in the second and third components, L(x)[v(·, x′)] +

L(x′)[v(x, ·)]. These expectational terms exhibit a specific separability and symmetry structure be-

cause household x and household x′ evolve independently from each other. Section 3 shows that this

property holds much more broadly.

The implication for numerical implementation is that the Impuse Value may be efficiently repre-

sented as a square matrix, rather than a column vector. Let v denote its discretization. Then the

discretization of L(x)[v(·, x′)]+L(x′)[v(x, ·)] is simply the sum of two matrix products, Lv+vLT , where

the T superscript denotes the matrix transpose. Crucially, this computation never requires to construct

a 4-by-4-dimensional matrix, only the 2-by-2-dimensional steady-state matrix. Section 3 leverages this

observation to construct an algorithm to solve the FAME numerically with only steady-state dimen-

sionality

7In fact, equation (14) is already known. It follows immediately from the linearization of the last component in (11).
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With the Impulse Value v at hand, the time evolution of the distribution obtains immediately

by iterating forward on the law of motion of the distribution (14) without solving any additional

fixed point problem: the equilibrium is block-recursive. With the distributional impulse ht along any

equilibrium path, impulse response may then be immediately computed.

1.4 Aggregate shocks with the FAME

So far, there were no aggregate shocks in order to focus on the role of the distribution. I now introduce

aggregate shocks in the economy. Aggregate productivity Z is no longer constant, but fluctuates over

time: Zt = Z̄eεzt . For the sake of simplicity, this section assumes that log productivity follows a

continuous-time AR(1) process: dzt = −µztdt+ dWt with associated generator A(z) = −µz∂z + 1
2∂zz.

The parameter ε > 0 represents the overall scale of aggregate shocks.

The Master Equation (11) enriched with aggregate shocks becomes

ρV (x, ε, z, g) = max
c
u(c) + L(x, c, ε, z, g)[V ] +

∫
∂V

∂g
(x, x′, ε, z, g)L∗(x′, ε, z, g)[g]dx′ +A(z)[V ]

(16)

Relative to the Master Equation without aggregate shocks (11), the Master Equation with aggregate

shocks (16) now depends on aggregate productivity εzt. This dependence is explicit in the operator

L through the price functionals that now depend on aggregate productivity. This dependence in turn

implies that the value function depends both on z and ε. In addition, households expect aggregate

productivity to fluctuate over time. These expectations result in the additional continuation value

A(z)[V ]. It is also possible to consider deterministic transitional dynamics in response to a one-time

shock. In that case, one needs simply to keep track of time t instead of the aggregate productivity

state z.8

The law of motion of the distribution (4) also extends with aggregate shocks:

dgt(x) = L∗(x, ε, zt, gt)[gt] dt. (17)

The law of motion in (17) is now a stochastic version of the Kolmogorov forward equation (4). The

coefficients of the operator L∗ change stochastically following shocks to aggregate productivity zt, and

thus define a stochastic partial differential equation. Despite its apparent complexity, the logic and

intuition underlying the law of motion (17) is entirely similar to that of finite-dimensional evolution

equations. For instance, the law of motion for assets for employed individuals is a unidimensional

stochastic differential equation dat = st(xt)dt. The law of motion (17) is a mere infinite-dimensional

analog thereof. The only addition is that interactions between the entries of the infinite-dimensional

vector gt(x) that are relevant for its time dynamics are picked up by cross-sectional derivatives.9

8In that case, the Master Equation approach simply removes the contribution to the time derivative in the individual
decision problem coming from the distribution gt, but keeps the time derivative coming from the aggregate shock.

9The Master Equation (16) is non-stochastic, while the SPDE (17) is, because the Master Equation (16) conditions
on the current value of the aggregate shock z, while the SPDE (17) takes the sequence of realized aggregate shocks zt as
given.
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With the Master Equation (16) at hand, it is then straightforward to extend the perturbation

argument in the deterministic FAME to aggregate shocks. There are now two objects that are small.

The first one is, as before, the deviation in the distribution g − gSS . The second object is the scale of

aggregate shocks ε. The natural benchmark is that εh ≡ g − gSS has scale ε.10

When ε is small, the first-order approximation to the value function is:

V (x, z, ε, gSS + εh) ≈ V SS(x) + ε

{∫
v(x, x′)h(x′)dx′ + ω(x, z)

}
. (18)

ω is the ‘stochastic Impulse Value’: the direct effect of aggregate shocks on the value function.11

Just as in any Taylor expansion, the first-order approximation is additive in the response to a

distributional impulse h and the aggregate shock z. Any pairwise perturbation involving an impulse in

the aggregate shock together with an impulse in the distribution h is of scale ε2, and thus second-order.

The separability in equation (18) is critical and represents certainty equivalence. It implies that

the deterministic Impulse Value v(x, x′) with respect to the distributional impulse h satisfies the

deterministic FAME (13) evaluated at Z = Z̄. In particular, the deterministic Impulse Value x

can be solved for independently from aggregate shocks. This observation mirrors the linearization of

representative agent models such as the RBC model. There too, the deterministic component in the

value function is independent from the stochastic component.

Mirroring the derivation of deterministic FAME (13), I identify coefficients on the aggregate shock

after substituting the first-order expansion (18) into the nonlinear Master Equation (11). The stochastic

Impulse Value ω(x, z) then satisfies the stochastic FAME:

ρω(x, z) =

Direct price impact︷ ︸︸ ︷
zΩ(x)u′(cSS(x)) +

Partial equilibrium:
continuation value
from shocks to x︷ ︸︸ ︷
L(x)[ω(·, z)] +

Continuation value from
aggregate shocks z︷ ︸︸ ︷
A(z)[ω(x, ·)]

−
∫
v(x, x′′)

∂

∂a′

(
gSS(x′′)

(
zΩ(x′′)− 1

u′′(cSS(x′′))

∂ω

∂a′′
(x′′, z)

))
dx′′︸ ︷︷ ︸

General equilibrium: weighted average of changes in savings rates
of other households x′′ in response to aggregate shock z

(19)

where Ω(x) ≡ R2a+W2y, and R2,W2 are constant that depend only on gSS and are given in Appendix

A.1.

The structure of the stochastic FAME (19) mirrors that of the deterministic FAME (13). The

main difference is simply the expression for the direct price impact of aggregate shocks Ω. As with

10Consider the stochastic steady-state. Suppose the economy starts at its deterministic steady-state g0 = gSS , and
is then hit by a sequence of aggregate shocks. Provided the deterministic steady-state is stable, gt will remain in a
neighborhood of gSS of typical size ε because the typical size of aggregate shocks is ε. Thus, in the stochastic steady-
state, the deviation in the distribution gt − gSS should be expected to be of comparable scale to that of aggregate
shocks.

11Depending on the stochastic process for aggregate productivity z, the stochastic Impulse Value ω needs not be linear
in z. In this section’s example, it turns out that it can be easily proven because the productivity process is an unrestricted
diffusion process. However, when there are reflecting boundaries or non-symmetric jump terms in the productivity process,
ω is no longer linear in general. By contrast, the process for the distribution is always an unrestricted diffusion process,
and thus the distribution always enters as a linear functional.
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the deterministic FAME, all the objects that enter into the stochastic FAME (19) are evaluated at the

deterministic steady-state. They are thus immediately known given given the steady-state.

As with the deterministic FAME, the stochastic FAME (19) is a standard Bellman equation that

may again be solved with standard methods. Given that the deterministic Impulse Value v is known by

the time one solves the stochastic FAME, inspection of (19) reveals that the stochastic Impulse Value

ω solves a linear equation. By contrast, the deterministic FAME solves a quadratic equation (13) in v.

This observation mirrors the linearization of the RBC model for instance, in which the deterministic

component solves a quadratic scalar equation, while the stochastic component solves a linear equation

given the solution to the deterministic component.

With both Impulse Values v, ω at hand, I turn back to the law of motion of the distribution and

obtain the evolution of the impulse ht in the distribution up to a first order:

dht(x) =
{
L∗(x)[ht] +K(x)[ht] + S(x, zt)

}
dt, (20)

where S(x, z) represents the change in savings rates of households at x in response to aggregate shocks,

and has a similar expression to K:

S(x, z) =
∂

∂a

(
gSS(x)

(
Ω(x)z − 1

u′′(cSS(x))

∂ω

∂a
(x, z)

))
(21)

Equation (20) is the linearized version of the SPDE in (17). Iterating forward on (20) for a given

sequence of aggregate shocks zt then delivers any desired impulse response function.

This section developed the main ideas and benefits of the FAME in the context of the Krusell and

Smith (1998) example. In Sections 2 and 3, I generalize the approach to nest many possible economic

models that fall beyond the scope of traditional methods, and introduce the necessary formalism to

make the statements in Section 1 rigorous.

2 The Master equation

This section builds on the insights from Section 1 and develops a general formulation of the Master

Equation in the deterministic case. The case with aggregate shocks is postponed to Section 3.3.

2.1 Notation and setup

This section sets up the notation for the remainder of the paper, most of which is to handle mass

points in the distribution symmetrically to a smooth density.

Time t ≥ 0 is continuous and runs forever. The economy is populated by a unit measure of agents.

Agents are characterized by their individual state vector x ∈ X̄ ⊂ RDX , where X = (x1, x1) × ... ×
(xDX , xDX ) is a DX -dimensional hypercube.12 Let X̄ denote its closure in the Euclidian norm. X̄ is

12Working with a hypercube is not strictly necessary for most of the results below. However, it makes the notation
much lighter—in a relative sense—to handle mass points. Without mass points, virtually all the results below go through
for a general open domain X without additional notation.
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endowed with the Borel σ−algebra, and a base measure η. Individuals may choose a control variable

c ∈ Γ̄ ⊂ RDC , where Γ is open.13

The base measure η plays a key role in the sequel. It encodes a priori information about where

the distribution is absolutely continuous, and where it may develop mass points. If the example of

Section 1 was enriched with an occasionally binding borrowing constraint a ≥ a, one would define

dη(a, y) = (da+ δ{a}(da))⊗ dy, where δ{a} denotes the Dirac measure at a, and ⊗ denotes the tensor

product of measures. This definition then allows for the possibility of a mass point at the borrowing

constraint a.

The base measure allows to handle only densities with respect to that base measure, and thus

treats mass points and smooth densities symmetrically.14 In the sequel, I always impose that the base

measure is a product measure of marginal measures. The marginal measure along dimension i in turn

consists of the Lebesgue measure together with a countable set of possible mass points. These possible

mass points are located at xin ∈ [xi, xi], for a countable set Ni ⊂ N of indices. Specifically, I henceforth

impose the following assumption.

Assumption 1. (Base measure)

dη(x) = dη1(x1) ⊗ ... ⊗ dηDX (xDX ), where, for all i = 1...DX and all Borel-measurable subset Z ⊂
[xi, xi], ηi(Z) = `(Zi) +

∑
n∈Ni 1{xin ∈ Z}, where `(Z) denotes the Lebesgue measure of Z.

The domain of the state x is the union of the open domain X together with the set of possible

mass points when they lie at the boundary. Specifically , let Ii = (xi, xi)∪{infn xin}∪{supn xin}, and

X̂ = I1 × ...× IDX . Denote by ∂X the boundary of X, and by ∂̂X the boundary of X net of the the

edges where there are mass points. Denote mi = {xin, n ∈ Ni} the set of possible mass points along

direction i. Let Mi = {x ∈ X̂ : xi ∈ mi} be the set of states x that have their ith coordinate on a

possible mass point, and M = ∪iMi the set of states where any one coordinate falls upon a possible

mass point.

Agents’ state xt evolves over time according to a controlled jump-diffusion process

dxt = b0t(xt, ct)dt+ σ0t(xt, ct) · dWt +

∫∫
(y − xt)f0t(xt, ct, y, ν)dη(y)N(dt)dν. (22)

b0t is the RDX -valued drift of the process. It may depend directly on calendar time t, the current state

xt, as well as the control ct. Similarly, σ0 is the RDX×DW -valued function volatility of the process.

It governs how individual states respond to the RDW -valued Brownian motion W . Importantly, W is

independent across agents. The Poisson jump measure N encodes the frequency of jump increments.

The density f0 captures the density of increments and their frequency over the base measures η,N .

13To keep the exposition as concise as possible, discussion of filtrations and adaptedness are omitted. See Carmona
and Delarue (2018a) for an in-depth exposition.

14In principle, it is possible to work without a base measure. In that case, the law of motion of the distribution is
set in the space of measures. Consequently, one needs to develop the formalism of derivatives with respect to general
measures in the Wassertstein space. See Cardaliaguet et al. (2019) for details. Introducing this formalism is beyond the
scope of this paper, and is also irrelevant for many economic applications of interest in which a priori knowledge of where
mass points may develop is often available.

18



In the notation is implicit that jumps are also independent across agents. Finally, the variable ν

represents idiosyncratic shocks that may occur upon a jump. This last degree of freedom lets the

framework handle taste shocks common in the dynamic discrete choice literature.

The state xt may include discrete indicators for different types of agents, for instance employed

workers and unemployed workers, workers and firms, regions or countries. The process xt is assumed

to remain within X̄, either through reflection at the boundary of X, or through an appropriate combi-

nation of drift and volatility at the boundary. Without further restrictions, equation (22) encompasses

a large class of stochastic processes in continuous time, and nests the vast majority of those commonly

used in macroeconomic applications.

I use the notion of weak derivatives to handle mass points in the distribution. Let f be a η-

measurable function. Its weak derivative ∂f
∂xi

is, when it exists, defined by duality. Suppose that there

exists a η-measurable function wi such that∫
f(x)

∂ϕ

∂xi
(x)dη(x) = −

∫
wi(x)ϕ(x)dη(x)

for all continuously differentiable functions ϕ that vanish on ∂̂X. In that case, define its weak derivative
∂f
∂xi

to be wi. See Online Appendix E for details.

When f is continuously differentiable, the weak derivative coincides with the classical derivative.

When f has a jump in direction i at some x0 ∈ X, then the weak derivative in the sense of generalized

functions is a measure: it is a Dirac mass point multiplied by the size of the jump: ∂f
∂xi

(x0)dx ≡(
limε↓0 f(x0 + ετi)− limε↓0 f(x0 − ετi)

)
δx0(dx), where τi is the unit vector pointing in direction i. In

that case, f admits a weak derivative only if x0 ∈ Mi. Then, the weak derivative as a η-measurable

function simply the size of the jump at x0: limε↓0 f(x0 + ετi)− limε↓0 f(x0 − ετi).
Two functional spaces are useful in the sequel. The first is the space of square-integrable functions

with respect to the base measure η. The second is the second Sobolev space:

L2 ≡
{
f : X̄ → R is η-measurable

∣∣∣ ∫ f(x)2dη(x) <∞
}
, H2 ≡

{
f ∈ L2

∣∣∣∂f
∂x
,
∂2f

∂x2
∈ L2

}
. (23)

The notation L2 should not be confused with the notation for the generator of the process, L. The

second Sobolev space H2 consists of all square-integrable functions that have square-integrable first

and second weak derivatives.

I now define two functional operators related to the state process xt. The first operator L0t is the

generator L0t of the state process and encodes conditional expectations of functions of xt. For any

19



V ∈ H2, define:15

L0t(x, c)[V ] =

DX∑
i=1

b0,i,t(x, c)
∂V

∂xi
(x) +

1

2

DX∑
i,j=1

Σ0,ij(x, c)
∂2V

∂xi∂xj
(x)

+

∫∫
f0t(x, c, y, ν)

(
V (y)− V (x)

)
dη(y)dν (24)

where Σ0t(x, c) = σ0t(x, c)σ0t(x, c)
T , and recall that the T superscript denotes the matrix transpose.

The second operator is the formal adjoint operator L∗0t.
16 It encodes how the cross-sectional

probability distribution of the process xt evolves over time. For any g ∈ H2, define:

L∗0t(x, c)[g] = −
DX∑
i=1

∂

∂xi

(
g(x)b0,i,t(x, c)

)
+

1

2

DX∑
i,j=1

∂2

∂xi∂xj

(
Σ0,ij(x, c)g(x)

)
+

∫∫
f0t(y, c, x, ν)g(y)dη(y)dν − g(x)

∫∫
f0t(x, c, y, ν)dη(y)dν (25)

2.2 Individual optimization problem and distribution

Armed with the notation above, I define agents’ decision problem. They solve the following time-

dependent Bellman equation with possible constraints on the state variable:

ρVt(x)− ∂Vt
∂t

(x) = max
c∈C̄

u0t(x, c, Vt) + L0t(x, c)[Vt]

s.t. C0t

(
x, Vt(x),

∂Vt
∂x

(x)

)
≥ 0, x ∈ B (26)

In equation (26), the flow payoff u0t may depend on time, the current state, but also the value function

V directly. This formulation embeds recursive preferences such as Epstein-Zin, as well as bargaining

models of the labor market.17

The function C0t captures constraints on the state xt.
18 For instance, if there was a credit constraint

at ≥ a in the economy of Section 1, consumption c must be such that ra+w − c ≥ 0, i.e. c ≤ ra+w.

This constraint on the control may equivalently be re-stated on the value function by ∂Vt
∂a ≥ u

′(rta+w).

Therefore, C0t

(
a, y, Vt,

∂Vt
∂a

)
= ∂Vt

∂a −u
′(rta+w) for a = a. The state constraint inequality holds for all

x in a set B that I assume without loss of generality to be included in the set of possible mass points

as well as the boundary of the domain: B ⊂M ∩ ∂X.

It is useful to define the evolution of the distribution in terms of the density gt(x) with respect to

the base measure η in order to accommodate the presence of possible mass points. gt satisfies the law

15For points on the boundary of X̄, x ∈ ∂X, it is understood that derivatives are taken with respect to the interior
directions to X, and all functions are extended by 0 outside of X̂.

16It is the adjoint of L0t on H2 ∩ {f continuous and f(x) = 0 for all x ∈ ∂̂X}.
17For Epstein-Zin preferences, set ut(x, c, V ) = ρV (x) + ρ 1−γ

1−ψV (x)

[(
c
/

((1− γ)V (x))
1

1−γ
)1− 1

ψ − 1

]
and set ρ = 0 in

the left-hand-side of (26).
18See Fleming and Soner (2006) for more details.
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of motion:

∂gt
∂t

(x) = L∗0t(x, ĉt(x))[gt]. (27)

The notion of weak derivative with respect to the base measure η is key to systematically handle mass

points in the evolution of the distribution. As long as mass points develop only where η allows them

to, the weak derivative is well-defined in the space H2: for all g ∈ H2, L∗0t(x, ĉt(x))[g] ∈ L2.

When the economy is stationary, and provided u0 and L0 are time-independent, the Bellman

equation (26) becomes

ρV (x) = max
c∈C̄

u0(x, c, V ) + L0(x, c)[V ] s.t. C0

(
x, V (x),

∂V

∂x
(x)

)
≥ 0, x ∈ B (28)

Similarly, the law of motion of the distribution (27) becomes

0 = L∗0(x, ĉ(x))[g] (29)

2.3 General equilibrium

I now specify how the flow payoff ut as well as the process for the productivity process L0t depend on

the underlying distribution gt.
19

Assumption 2. (Distribution dependence)

There exist functionals u, b, σ, f, C such that u0 and the coefficients of L0 satisfy

u0t(x, c, V ) = u(x, c, V, gt), b0t(x, c) = b(x, c, gt), σ0t(x, c) = σ(x, c, gt),

f0t(x, c, y) = f(x, c, y, gt), C0t

(
x, Vt,

∂Vt
∂x

)
= C

(
x, V,

∂Vt
∂x

, gt

)
(30)

In addition, u, b, σ, f, C are continuously L2-Frechet-differentiable in V and g.

I impose Assumption 2 henceforth. It captures how prices and other general equilibrium forces feed

back into individual decisions. Assumption 2 is typically mediated through market clearing conditions.

It is widely satisfied in applications, in which the dependence on calendar time is a shorthand for

dependence on the underlying aggregate state of the economy. The aggregate state of the economy

in turn consists of the distribution of individual states. In the example of Section 1, the interest and

wage rates are simple moments of the distribution. Thus, Assumption 2 is satisfied.

Importantly, Assumption 2 allows for a much more flexible dependence of the individual decision

problem than only a few prices. There can be any arbitrary number of prices that matter, such as in

a dynamic migration model. The distribution can also matter directly for individual decisions, as in a

search-and-matching model with job-to-job search. I now define an equilibrium of the economy.

19To keep the exposition minimal, I assume that time dependence runs only through the distribution gt as in Section
1. It is not difficult to let time affects the economy deterministically. In that case, one needs only treat time as another
state variable.
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Definition 1. (Equilibrium in sequential form)

An equilibrium in sequential form of the economy consists of a path of distributions (gt)t≥0 ∈ H2, a

path of values (Vt)t≥0 ∈ H2 such that (26) and (27) holds for all times t ≥ 0, and g0 is given.

There is no need to require any market to clear, since market clearing is embedded in Assumption 2.

Similarly, a steady-state equilibrium is defined as follows.

Definition 2. (Steady-state equilibrium)

A steady-state equilibrium of the economy consists of a distribution gSS ∈ H2, a value V SS ∈ H2 such

that (28) and (29) hold.

2.4 From the time-dependent problem to the Master Equation

Now turn to the Master Equation. Under Assumption 2, the economy may be represented fully

recursively as a value function defined on idiosyncratic states as well as the space of distributions

X̂ ×H2. As in Section 1, the key step is to change variables from calendar time t to the distribution

gt by writing Vt(x) ≡ V (x, gt).

Since L2 is a Hilbert space when equipped with the inner product 〈f, g〉 =
∫
f(x)g(x)dη(x), Frechet

derivatives are well-defined in L2. Suppose for now that g 7→ V (x, g) admits a Frechet derivative for η-

almost all x. It consists of a linear bounded operator from L2 onto itself. Using the Riesz representation

theorem, it may in turn be represented by an L2 function. Denote this L2 function by y 7→ ∂V
∂g (x, g, y).

The same change of variables as in Section 1, using the chain rule for Frechet derivatives and the

law of motion of the distribution (27), delivers:

∂Vt
∂t

(x) =

〈
∂V

∂g
(x, g, ·), ∂gt

∂t
(·)
〉

=

〈
∂V

∂g
(x, g, ·), L∗(·, ĉ(·), g)[g]

〉
(31)

Substituting identity (31) into the Bellman equation (26), I obtain the Master Equation.

Definition 3. (Master Equation)

The Master Equation is defined by

ρV (x, g) = max
c∈Γ̄

u(x, c, V, g) + L(x, c, g)[V ] +

∫
∂V

∂g
(x, x′, g)L∗(x′, ĉ(x′), g) [g] dη(x′)

s.t. C

(
x, V (x, g),

∂V

∂x
(x, g), g

)
≥ 0 (32)

for functions X̂ ×H2 3 (x, g) 7→ V (x, g) that are L2-Frechet-differentiable in g η-a.e. in x.

The Master Equation (32) delivers a natural definition of a recursive equilibrium.

Definition 4. (Equilibrium in recursive form)

An equilibrium in recursive form consists of a solution V to the Master Equation (32).

Definition 4 emphasizes that a value function that solves the Master Equation is the only object

that is needed to describe the equilibrium. Through the integral that enters the right-hand-side of (32),
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the endogenous evolution of the distribution is fully taken into account by agents. By construction,

both notions of equilibrium coincide whenever defining a solution to the Master Equation is possible.

Proposition 1. (Coincidence of recursive and sequential competitive equilibrium)

Suppose that there exists an equilibrium in recursive form given by a solution to the Master Equation

(32) V (x, g). Define Vt(x) ≡ V (x, gt), and let gt solve (27). Then the pair (Vt, gt) defines an equilibrium

in sequential form.

A natural and important question is of course when does a solution to the Master Equation exist

at all. Several set of assumptions have been proposed recently in the mathematics mean field games

literature. Since this literature is still growing, the set of assumptions is still limited at the time of

writing. In particular, typical assumptions exclude several key economics application, such as the

presence of a credit constraint or multiplicative interactions between prices and states in the savings

rate. Therefore, I do not list those assumptions in this paper, and merely point to existing results.20

These assumptions also guarantee that the value function V (x, g) is L2-Frechet-differentiable in the

distribution g up to second order. In addition, these assumptions are typically the same as those

required for existence and uniqueness of an equilibrium in sequential form.

It is not the purpose of this paper to attempt expanding the set of assumptions leading to existence

and uniqueness results for the fully non-linear Master Equation—though one may hope that such

results will eventually become available for most setups of economics interest. Instead, this paper is

concerned with the more practical question of local approximations to the Master Equation conditional

on the existence of at least on isolated steady-state equilibrium. Therefore, I shall merely impose the

following assumption in the sequel.

Assumption 3. (Existence, local uniqueness and regularity)

There exists at least one isolated steady-state equilibrium V SS , gSS. There exists a solution V (x, g) to

the Master Equation locally around gSS. This solution is continuously L2-Frechet-differentiable in g

in a neighborhood of gSS, η-almost everywhere in x. V is continuous in x. The DX − 1-dimensional

boundary of the set of points such that the state constraint holds with equality is continuously Frechet-

differentiable in g around g = gSS, η-almost everywhere in x.

I impose Assumption 3 henceforth. It opens the door to local perturbations of the the Master Equation,

which is the subject of the next section.

3 The FAME

This section derives the FAME, highlights its properties and derives its implications for the local

stability of the steady-state. Finally, this section proposes an efficient numerical implementation to

compute the solution to the FAME.

20See for instance Theorem 2.4.2. p. 39 in Cardaliaguet et al. (2019) or Theorem 4.2.1. p. 295 in Carmona and
Delarue (2018b).
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3.1 The deterministic FAME

Start by fixing a locally isolated steady-state equilibrium gSS , V SS , which I will be refer to as “the”

steady-state for brevity in the sequel. Consider a small perturbation of the distribution around the

steady-state, g = gSS + h.

Under Assumption 3, the value function V (x, gSS + h) is a linear functional of the impulse in the

distribution, h = g − gSS to first order:

V (x, g) = V SS(x) +

∫
v(x, x′)h(x′)dη(x′) +Ox(||h||2H2) (33)

where the notation Ox is the “large O” notation, indexed by x to highlight that it may not be uniform.

As in Section 1, v(x, x′) is the deterministic Impulse Value. It is the directional derivative of the value

function with respect to the distribution g, evaluated at steady-state gSS : v(x, x′) = ∂V
∂g (x, x′, gSS).

In light of Section 1, it is natural to expect the Impulse Value to satisfy a Bellman equation. To

define that Bellman equation as concisely as possible, it is useful to introduce additional notation

for steady-state objects. Denote objects evaluated at steady-state functions by a script letter. For

instance, denote L(x) ≡ L(x, cSS(x), V SS , gSS). Similarly, denote partial usual or Frechet derivatives

by the corresponding subscript. For instance, denote ug(x, x
′) ≡ ∂u

∂g (x, x′, V SS , gSS). For the Frechet

derivatives of the adjoint operator L∗ with respect to values V and controls c, I introduce an additional

argument. For instance, for a small perturbation in controls dc(x), I write L∗c(x, dc(x))[g] to highlight

that the derivatives embedded in the operator L∗c also apply to dc(x). The functional dc 7→ L∗c(x, dc)[g]

is linear. See Appendix A.2 for the full list of notation.

Building on the linearization of the value function in (33), it is possible to linearize how individuals’

optimal control depends on the distributional impulse through the first-order optimality condition. It

is natural to expect that, to a first order,

ĉ(x, gSS + h, V ) ≈ cSS(x) +

∫
M(x, x′, v)h(x′)dη(x′). (34)

The kernel M(x, y, v) is the distributional Marginal Propensity to Control (dMPC). It encodes how

individual controls respond to a small distributional impulse. It is a function of the point at which

consumption is evaluated, x, and the direction x′ in which the impulse occurs. It is also a function

of the Impulse Value v, since the Impulse Value determines individuals’ valuations of the impulse

h. I need the following regularity condition, satisfied in most applications of interest, e.g. when the

individual decision problem is strictly concave.

Assumption 4. (Control regularity)

The optimal control ĉ(x, V, g) is interior for ||g − gSS ||L2 small enough. U(x) ≡ uSScc (x) + Lcc(x)[V SS ]

is an invertible matrix for η-a.a. x.

I impose Assumption 4 henceforth. To gain intuition, it is sometimes useful to introduce additional

structure that is satisfied in applications. Denote by Ldiff the diffusion part of the generator L, and

Lint the integral part.
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Assumption 5. (Payoff and generator structure 1)

There are two sets of indices E1, E2 that partition {1, ..., DX} such that for i ∈ E1, bi(x, g, c, V ) =

bi(x, g, V )−ci, and for i ∈ E2, Linti (x, c, g, V ) = ciL
int(x, g, V ). In addition, u(x, c, g, V ) = u0(x, g, V )+∑

i∈E1
u1i(ci)−

∑
i∈E2

u2i(ci). uki are strictly concave and satisfy Inada conditions, and Γ̄i = [0,+∞).

Assumption 5 ensures that Assumption 4 holds, and that

∀i ∈ E1, ĉi = (u′1i)
−1

(
∂V

∂xi
(x)

)
, ∀i ∈ E2, ĉi = (u′2i)

−1
(
Linti (x, g, V )[V ]

)
.

Denote U1i(x) = 1
u′′1i(∂xiV

SS(x))
and U2i(x) = 1

u′′2i(L
int
i (x,gSS ,V SS [V SS ])

. Armed with this notation, I obtain

the first-order perturbation in individuals’ optimal control in response to a small distributional impulse.

Proposition 2. (Optimal control)

M(x, x′, v) = −U(x)−1

(
m0(x, x′) + Lc(x)[v(·, x′)] +

∫
m1(x, y)v(y, x′)dη(y)

)
m0(x, x′) ≡ ucg(x, x

′) + Lcg(x, x′)[V SS ] , m1(x, x′) ≡ ucV (x, x′) + LcV (x, x′)[V SS ].

When Assumption 5 holds, then

Mi(x, x
′, v) =

 U1i(x)∂xiv(x, x′), i ∈ E1

U2i(x)
[
Linti (x)[v(·, x′)] + Lintg,i (x, x′)[V SS ] +

∫
LintV,i(x, y)[V SS ] v(y, x′)dη(y)

]
, i ∈ E2.

Proof. See Appendix B.1.

Proposition 2 characterizes how individuals’ controls respond to a distributional impulse h. The

dMPC depend on the concavity of the utility function as well as the concavity of the generator L. The

dMPC also depends on the corresponding cross-derivatives. To gain intuition, consider only the case

with a controlled drift under Assumption 5 (i ∈ E1). In that case, the dMPC extends directly the

nonlinear first-order condition, and is simply the marginal Impulse Value, weighted by the inverse of

the second derivative of utility that governs the precautionary motive. Continuous time is key because

it ensures that the first-order condition always holds with equality.

With Proposition 2 at hand, I may now proceed to a full characterization of the Impulse Value

following the same logic as in Section 1.

Theorem 1. (FAME)

ρv(x, x′) =

Direct impact︷ ︸︸ ︷
ug(x, x′) +

∫
uV (x, y)v(y, x′)dη(y) + Lg(x, x′)[V SS ] +

∫
LV (x, y)[V SS ]v(y, x′)dη(y) (35)

+ L(x)
[
v(·, x′)

]︸ ︷︷ ︸
Partial equilibrium:

continuation value from
shocks to x

+ L(x′)
[
v(x, ·)

]︸ ︷︷ ︸
General equilibrium:

continuation value from
propagation of impulse at x′

+

∫
v(x, x′′)

{
L∗g(x′′, x′)[gSS ] +

∫
v(y, x′)L∗V

(
x′′, y

)
[gSS ] dη(y) + L∗c

(
x′′,M(x′′, x′, v)

)
[gSS ]

}
dη(x′′)︸ ︷︷ ︸

General equilibrium: weighted average of changes in decisions of other agents x′′ in response to impulse at x′

25



subject to

∀x such that C(x) = 0 : 0 = Cg(x, x′) + CV (x)v(x, x′) + Cp(x) · ∂v
∂x

(x, x′) ∀x′. (36)

Proof. See Appendix B.2.

The structure of the FAME (35) in Theorem 1 is the natural generalization of equation (13) in

Section 1. The main addition is the linearization of the state constraint (36). The state constraint

binds in the first-order approximation exactly at points where it binds in steady-state. It is natural to

expect the state constraint to bind out of steady-state in a neighborhood of the points where it binds

in steady-state. Perhaps surprisingly, these set of points turn out to coincide exactly. This conclusion

arises because changes in where the state constraint binds in response to an impulse h result in a

second-order contribution when interacted with the state constraint itself.

3.2 Deterministic Impulse Response Functions

Once the Impulse Value v is known, the evolution of the distribution is straightforward to compute.

Theorem 2. (Evolution of the distribution)

• The impulse in the distribution h ∈ H2 follows, to a first order,

∂ht(x)

∂t
= L∗(x)[ht] +K(x)[ht]

where the kernel operator K is defined by K(x)[h] ≡
∫
K(x, x′)h(x′)dη(x′), and

K(x, x′) = L∗c
(
x,M(x, x′, v)

)
[gSS ] + L∗g(x, x′)[gSS ] +

∫
L∗V (x, y)[gSS ]v(y, x′)dη(x′)

• The spectrum of the operator L∗ in H2 has weakly negative real parts. L∗ has a spectral gap,

and the speed of convergence to steady-state is governed by K, to a first order: d
dt ||ht||H2 ≤

〈ht,Kht〉H2. If, in addition, K is bounded in L2, then ||ht||L2 ≤ eλsup(K̄)·t||h0||L2, where λsup(K̄)

is the supremum of non-zero eigenvalues of K̄ ≡ (K +K∗)/2.

• If K is bounded in L2, the steady-state is asymptotically stable if λsup(K̄) < 0.

Proof. See Appendix B.3.

Theorem 2 has two parts. In the first part, I show that the first-order dynamics of the distribution

follow a simple linear law of motion. As expected, the evolution depends on the steady-state transition

probabilities embedded in the generator L∗(x). This contribution to the law of motion represents the

partial equilibrium response of aggregate dynamics to an impulse h in the distribution.

The evolution of the distribution also depends on the general equilibrium feedback of the economy,

as highlighted by the action integral operator K(x). The action of this operator on the distribution

embeds the first-order response of individual controls ĉ to an impulse in the distribution, as captured by
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the first term that may be interpreted as the effect of the dMPCs. The last two terms in the expression

for the kernel K reflect the direct impact of a distributional impulse on transition probabilities.

The second part of Theorem 2 leverages the expression for the law of motion to characterize the

transitional dynamics more precisely. The operator L∗ is a stochastic operator by construction: it

transforms probability distributions into probability distributions. Since it is assumed to have at least

one invariant distribution, standard results guarantee that its largest eigenvalue is zero and that it is

separated from the second largest by a strictly positive number. The immediate conclusion is that the

transitional dynamics generated by L∗ are stable. As a result, whether convergence back to steady-state

occurs depends critically on the general equilibrium effects embedded in the operator K.

The final results characterize convergence as a function of the eigenvalues of the operator K. When

K is bounded, the associated operator is Hilbert-Schmidt and a spectral theorem applies: its non-zero

eigenvalues are real and countable, with an associated countable orthonormal basis of H2. When the

largest eigenvalue is strictly negative, the economy always converges back to steady-state. I obtain a

sufficient condition on the eigenvalues of K rather than a necessary and sufficient condition because

the partial equilibrium dynamics could interact with the general equilibrium dynamics.

3.3 Aggregate shocks

I introduce aggregate shocks into the economy of Section 2. They take the form of a Markov stochastic

process Zt with values in RDZ that now enters as an argument of u, L and L∗.21 The stochastic process

for Zt is assumed to depend on a scalar parameter ε ≥ 0, that governs how dispersed shocks are.

This section focuses on the case in which aggregate shocks are small. The limit of small aggregate

shocks is captured by a local perturbation of the economy when ε → 0. To make this idea precise,

denote by A(Z, ε) the infinitesimal generator of the stochastic process for Z. Taking the limit of small

aggregate shocks requires that the stochastic process remains well-behaved when ε→ 0. I capture this

feature with the following regularity condition.

Assumption 6. (Scalable aggregate shocks)

There exists a constant Q0 > 0 such that P[|zt| ≤ εQ0] = 1. In addition, for any twice continuously

differentiable function ϕ, A(εz, ε)[ϕε]→ A(z)[ϕε] as ε→ 0, where ϕε(z) = ϕ(εz), and where A is the

infinitesimal generator of a stationary stochastic process with bounded domain.

Recall the particular stochastic process for aggregate shocks of Section 1. The process was a

continuous-time AR(1). In that case, the process is scalable by construction because A(εz, ε)[ϕε] =

A(z)[ϕε] for all ε.22 For the FAME to hold also with aggregate shocks, I do not need the relationship

21That only the level of aggregate shocks Zt enters as an argument is not entirely without loss of generality. In
particular, it implies that aggregate shocks do not generate direct volatility in the law of motion of individual states. This
feature lets me focus attention on the ‘first-order Master Equation’ in the terminology of Cardaliaguet et al. (2019). The
terminology ‘first-order’ there is independent of the order of local perturbations. When the aggregate shock volatility
enters directly the law of motion of individual states as in a portfolio choice problems with aggregate risk, additional
terms appear and one obtains the ‘second-order Master Equation.’ While it is not difficult to generalize the perturbation
formulae in this paper to the second-order Master Equation, I leave it for future research.

22With the additional assumption that the process is reflected to ensure a bounded support.
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between the original aggregate shock process and the rescaled one to hold exactly, but only in the

limit. It is then straightforward to write the Master Equation with aggregate shocks, in terms of the

rescaled shock zt = Zt
ε .

Appendix B.4 provides the Master Equation with aggregate shocks as well as additional details such

as regularity conditions similar to those in Section 3.1. As in Section 1, I seek a first-order solution to

the nonlinear Master Equation in the form:

V (x, z, gSS + εh, ε) ≈ V SS(x) + ε

{∫
v(x, x′)h(x′)dη(x′) + ω(x, z)

}
.

v is now called the distributional Impulse Value, and ω is called the stochastic Impulse Value.

Theorem 3. (FAME with Aggregate Shocks)

The deterministic Impulse Value v satisfies the FAME of Theorem 1. The stochastic Impulse Value ω

satisfies the Bellman equation

ρω(x, z) = z ·
{
uZ(x) + LZ(x)[V SS ]

}
(37)

+ L(x)[ω(·, z)] +A(z)[ω(x, ·)]

+

∫
v(x, x′)

{
L∗c
(
y,M(y, z, ω)

)
[gSS ]

)
+

∫
L∗V
(
x′, y, ω(y, z)

)
[gSS ]dη(y)

}
dη(x′)

subject to

∀x s.t. C(x) = 0 ; 0 = CV (x)ω(x, z) + Cp(x) · ∂ω
∂x

(x, z) ∀z, (38)

and where the stochastic MPC (sMPC) M(x, ω) is given by

M(x, z, ω) = −U(x)−1

(
m0(x) · z + Lc(x)[ω(·, z)] +

∫
m1(x, y)ω(y, z)dη(y)

)
m0(x) ≡ ucZ(x) + LcZ(x)[V SS ]

m1(x, y) ≡ ucV (x, y) + LcV (x, y)[V SS ].

Proof. See Appendix B.4.

The first key insight from Theorem 3 is that, with aggregate shocks, the deterministic Impulse Value

satisfies the same equation as in the deterministic case. Thus, as in Section 1, the economy is block-

recursive. One solves first for the deterministic Impulse Value v independently from the stochastic

Impulse Value ω. Only in a second step does one solve for the stochastic Impulse Value ω which

satisfies a standard Bellman equation. Theorem 2 extends as follows.

Theorem 4. (Evolution of the distribution with aggregate shocks)

• To first order, the impulse in the distribution ht follows the SPDE

dht(x, z) =
{
L∗(x)[ht] +K(x)[ht] + S(x, zt)

}
dt (39)
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where the forcing term S is given by

S(x, z) = L∗c
(
x,M(x, z, ω)

)
[gSS ] + z · L∗Z(x)[gSS ] +

∫
L∗V
(
x, x′, ω(x′, z)

)
[gSS ]dη(x′)

• If, in addition, K is bounded in L2 and λsup(K̄) < 0, then the steady-state equilibrium (gSS , V SS)

is stochastically stable: ||ht||L2 ≤ c||h0||L2 for a positive constant c > 0. The stochastic steady-

state is characterized by a joint invariant distribution h̃(x, z) that satisfies

0 = L∗(x)[h̃(·, z)] +K(x)[h̃(·, z)] + S(x, z) +A∗(z)[h̃(x, ·)] (40)

• If, in addition, K is bounded in L2, λsup(K̄) < 0, and zt follows a symmetric process, i.e.

A(z)[ϕ] = A(−z)[ϕ(− ·)], then ω(x, 0) = 0 η-a.e.. In addition, ht → 0 when zt = 0 for all t ≥ 0.

Proof. See Appendix B.5.

Theorem 4 extends Theorem 2 to the case with aggregate shocks. The first modification takes the

form of the forcing term S(x, z) in the evolution equation (39) for the distribution. It has a similar

structure to the general equilibrium operator K. This similarity is natural because both terms represent

how shifts in either the distributional impulse or in the aggregate shock affect individual transition

probabilities and MPCs.

The second modification is that Theorem 3 now characterizes stability as the presence of a stochastic

steady-state rather than convergence back to steady-state. Due to the continual arrival of aggregate

shocks, the economy is almost never at its deterministic steady-state, but rather fluctuates around

it. Theorem 3 shows how to compute the joint invariant distribution over idiosyncratic states x

and aggregate states z with operators that only depend on steady-state values and can be easily

implemented numerically. The evolution equation (39) represents one particular trajectory within the

continual movement captured by the joint invariant distribution solving (40).

The last result in Theorem 3 provides conditions under which the economy converges back to its

deterministic steady-state following a long sequence of realized zero aggregate shocks. This property

holds when the stochastic process for aggregate shocks is symmetric, and therefore the aggregate shock

Impulse Value is zero for a zero realization of the aggregate shock. When the process for aggregate

shocks is asymmetric, one would expect the economy to converge back to steady-state only if the

aggregate shock takes a long sequence of identical values that are non-zero, and equal to some value

that accounts for the asymmetry in individuals’ expectations of future realizations. When the process

for aggregate shocks is discrete, finding such a value may not always be possible.

3.4 Numerical implementation

Three key properties of the FAME dramatically simplify the computation of impulse responses. The

first property is block-recursivity: first solve the deterministic FAME from Theorem 1, then solve the

stochastic FAME of Theorem 3, and finally simulate an Impulse Response using Theorem 4.
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The second property is that the FAMEs (35)-(37) have the structure of a standard jump-diffusion

Bellman equation in finite dimension. In particular, the general equilibrium effects enters the FAMEs

(35)-(37) just as a standard jump term would. Therefore, readily available and highly efficient dis-

cretization schemes apply.

The third property is that the FAME provides a closed-form mapping between steady-state objects

and all the elements of the Bellman equation to solve. These observations lead to the following

numerical scheme, described in pseudo-code below. I focus on the case uV , LV = 0 and no state

constraint for simplicity, but it is straightforward to extend the scheme when these partial derivatives

are not zero or the state constraint binds.

Corollary 1. (Numerical implementation)

Define grids {xi}Ii=1, {zk}Kk=1, {τt}Tt=1 and time steps ∆t = τt − τt−1. Define the matrices vij =

v(xi, xj) ∈ RI×I and ωik = ω(xi, zk) ∈ RI×K . Then:

1. Deterministic FAME. Let L, ug,M,N and Pv discretize L, ug,Lg(x, x′)[gSS ],L∗(x, x′)[gSS ] and

L∗c(x,M(x′′, x′, v)[gSS ] respectively. Then:

• Guess v0

• Given vn, update vn+1 by solving the standard Sylvester equation:(
ρId− L

)
vn+1 − vn+1

(
LT + M + Nvn

)
= ug + N. (41)

• Stop when vn+1 and vn are close enough.

2. Stochastic FAME. Let uZ ,Q, A discretize zuZ(x), zLZ(c)[V SS ],A respectively. Then ω solves

the Sylvester equation (
ρId− L− vP

)
ω − ωAT = uZ + Q (42)

3. Impulse response functions. Let K discretize the kernel K. Let St discretize S(·, τt) for any

t. Given h0, the discretized distributional impulse ht solves the recursion

ht+1 = ht + ∆t

{
LTht + Kht + St

}
. (43)

Corollary 1 provides a simple way of computing Impulse Values and impulse response functions to

first order. The discretization of steady-state operators into matrices follows standard finite difference

rules as described in Achdou et al. (2021).

At the heart of Corollary 1 lies the specific structure of the FAME (41). Once discretized, the

deterministic FAME becomes a modified Sylvester matrix equation. A standard Sylvester matrix

equation is a linear system with a specific structure, so that it may be written as a function of a

matrix unknown Y that satisfies AY + Y B = C for known matrices A,B,C. Of course, it is always

possible to stack this linear system and solve it without exploiting the Sylvester structure. However,

doing so would abstract from useful information about the structure of the linear system. Instead,
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standard routines such as Matlab’s sylvester.m function solve the standard Sylvester equation much

more efficiently than the stacked system.

The deterministic FAME however leads to a Sylvester equation with a quadratic term. Thus,

Corollary 1 proposes an iterative scheme leveraging a sequence of standard Sylvester equations. A

key observation is to treat the quadratic component vNv consistently with implicit schemes. The first

Impulse Value v in the quadratic component represents household’s x own Impulse Value. Thus, it is

natural to treat it as implicit—solve for it endogenously at every iterative step. The second Impulse

Value v in the quadratic component represents the change in control of all other households x′′. Thus,

it is natural to treat it as explicit—exogenous from the perspective of a given iterative step.23

Once the solution to the deterministic Impulse Value is known, the stochastic Impulse Value satisfies

a standard Sylvester equation (42). With both Impulse Values at hand, iterating forward on the

linearized law of motion (43) is straightforward.

3.5 Connection with existing numerical methods

In this subsection I discuss how the FAME relates to existing numerical approaches that build either

on a state-space or a sequence-space representation.

State-space approach. The FAME is by nature a state-space approach. It provides the foundation

for the computational state-space approach in Ahn et al. (2018) and Reiter (2009).24 Ahn et al. (2018)

rely on automatic differentiation of the nonlinear discretized Bellman equation and law of motion of

the distribution to obtain a linear rational expectations system that stacks the linearized Bellman

equation and the linearized law of motion of the distribution. They then perform a Blanchard and

Kahn (1980) stable root-finding procedure to extract the relevant matrices from the associated Schur

decomposition.25

In contrast, the FAME emphasizes that linearizing the Bellman equation and the law of motion

of the distribution analytically is not only feasible, but also uncovers a systematic structure that

remains hidden in Ahn et al. (2018) or Reiter (2009). As a result, the Impulse Values satisfy standard

Bellman equations that may be solved using standard and fast recursive methods instead of relying on

high-dimensional stable root-finding.

Sequence-space approach. By construction, the FAME also relates to the computational, sequence-

space approach in Auclert et al. (2019). To make the connection clear, I propose a closed-form sequence-

space linearization and connect it to the FAME.

For concreteness, consider the Krusell and Smith (1998) economy of Section 1 without aggregate

shocks. However, it is staighforward to extend the following results to a general economy as in Section

23A formal proof of convergence is beyond the scope of this paper. Yet, this implicit-explicit structure leads to robust
convergence in practice. By contrast, reversing which Impulse Value is treated as implicit or explicit leads to systematic
divergence of the scheme.

24Specifically, the distributional Impulse Value v is the analytic counterpart to the matrix Dvg in their notation. The
aggregate shock Impulse Value ω is the analytic counterpart to the matrix DvZ in their notation.

25In such a high-dimensional setting, there is in addition no a priori guarantee that the stable hyperplane coincides
with the true value function.
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3 as long as the general equilibrium enters through a finite number of prices.

Consider a small deviation in the sequence of prices r̂t, ŵt around stead-state. The first-order

perturbation of the value function in sequence space is determined by the functions ϕr, ϕw such that:

Vt(x) ≈ V SS(x) +

∫ ∞
t

e−ρ(τ−t)ϕrτ−t(x)r̂τdτ +

∫ ∞
t

e−ρ(τ−t)ϕwτ−t(x)ŵτdτ (44)

Auclert et al. (2019) propose an algorithm to compute ϕr, ϕw. I show here that using an analytical

perturbation that is internally consistent with the model once more uncovers a systematic structure that

underpins the algorithm in Auclert et al. (2019). This structure is useful for economic interpretation

but also for the design of efficient and simple algorithms. I describe this structure before making the

connection with the FAME.

Theorem 5. (Sequence-space Jacobians of value function)

ϕr, ϕw satisfy the Bellman equations

∂ϕrt
∂t

(x) = L(x)[ϕrt ], ϕr0(x) = au′(cSS(x))

∂ϕwt
∂t

(x) = L(x)[ϕwt ], ϕr0(x) = yu′(cSS(x)).

Proof. See Appendix B.6.

Theorem 5 reveals that a standard, time-dependent Bellman equations determines the first-order

response of the value function to price changes. Similarly to the FAME, this Bellman equation depends

only on the steady-state transition probabilities encoded in the steady-state expectation operator L.

Through initial conditions, the Bellman equation also depends on the direct price impact.

Theorem 5 also delivers an expression for the first-order change in consumption by linearizing the

first-order-condition:

ĉt(x) =
1

u′′(cSS(x))

{∫ ∞
t

e−ρ(τ−t)ϕrτ−t(x)r̂τdτ +

∫ ∞
t

e−ρ(τ−t)ϕwτ−t(x)ŵτdτ

}
. (45)

Savings rates are ŝt(a, y) = r̂ta+ ŵty− ĉt(a, y). Using the linearized savings rate, the law of motion of

the distribution in sequence space becomes to first order

∂ht
∂t

(x) = L∗(x)[ht]−
∂

∂a

(
ŝt(x)gSS(x)

)
. (46)

Combining the linearized decision rules (45) with the law of motion (46), I relate the distribution at a

given point in time to the initial distribution as well as expectations of future prices.

Theorem 6. (Distribution in sequence space)

ht(x) = hPEt (x) +

∫ t

0
JD,rt−τ (x)r̂τdτ +

∫ t

0
JD,wt−τ (x)ŵτdτ +

∫ ∞
0

Jrt,τ (x)r̂τdτ +

∫ ∞
0

Jwt,τ (x)ŵτdτ

where all functions J ∈ {hPE , JD,r, JD,w} satisfy

∂Jt
∂t

(x) = L∗(x)[Jt]
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and differ in initial conditions hPE0 (x) = h0(x), JD,r0 (x) = −∂a
(
agSS(x)

)
, JD,w0 (x) = −∂a

(
ygSS(x)

)
.

Similarly, J i ∈ {Jrt,θ, Jwt,θ} satisfy

∂J it,θ
∂t

(x) = L∗(x)[J it,θ] + 1{θ−t>0}
∂

∂a

(e−ρ(θ−t)ϕiθ−t(x)

u′′(cSS(x))
gSS(x)

)
with initial conditions J0,θ(x) = 0.

Proof. See Appendix B.7.

Theorem 6 characterizes the path of the distribution as a function of the path of prices and the

sequence-space Jacobians of the distribution J . The Jacobians satisfy simple PDEs that are akin to

laws of motion. The first component hPE is simply the partial equilibrium evolution of the initial

impulse h0 under the steady-state law of motion L∗. The next two terms summarize the direct impact

of price changes on savings rates through disposable income, cumulated over past times from 0 to t.

The last two terms represent the impact of changing consumption along the transition. These

two terms summarize the forward-backward nature of the equilibrium. Consumption being a forward-

looking variable, anticipated price changes affect consumption and the integral runs into times τ > t.

From the perspective of time τ < t, all anticipated price shocks between times τ and t matter. As

savings rate deviate from steady-state at time τ < t, the impact on the distribution then propagates

over time up to time t. Thus, the integral also runs between time 0 and time t. The structure of the

evolution equation for the corresponding Jacobians Jt,θ mirrors the discrete-time version in Auclert

et al. (2019). Here, this structure emerges naturally as a consequence of the analytic linearization.

Theorem 6 is useful to determine the equilibrium sequence of prices through market clearing:

r̂t =

∫
R̂(x)ht(x)dx , ŵt =

∫
Ŵ(x)ht(x)dx. (47)

with R̂(x) = R0a + R1y and Ŵ(x) defined similarly. Substituting the results from Theorem 6 into

market clearing (47), I obtain that the equilibrium sequence of prices satisfies

r̂t = rPEt +

∫ t

0
ĴD,rt−τ r̂τdτ +

∫ t

0
ĴD,wt−τ ŵτdτ +

∫ ∞
0

Ĵrt,τ r̂τdτ +

∫ ∞
0

Ĵwt,τ ŵτdτ (48)

where Ĵ(x) ≡
∫
R̂(x)J(x)dx for all Jacobians, and a similar equation holds for ŵt. The only term

where the initial distribution enters is rPEt . From Theorem 6, it is a linear functional of the initial

distribution h0.

Equation (48) is a linear, integral equation in the sequence of prices. If it has a solution, this

observation implies that the sequence of prices writes r̂t =
∫
Rt(x

′)h0(x′)dx′ for a function Rt that

represents the inverse of the linear system. Similarly, ŵt =
∫
Wt(x

′)h0(x′)dx′. Discretized, the integral

equation becomes a linear system that can be readily solved numerically with the Jacobians Ĵ at hand,

and Rt becomes a rectangular matrix.

I can now connect the sequence-space approach to the state-space approach. Contrasting the

linearization of the value function in FAME (12) with the value function in the sequence-space approach
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(44), I obtain the following result.

Corollary 2. (FAME and the sequence-space)

v(x, x′) =

∫ ∞
0

e−ρt
{
ϕrt (x)Rt(x

′) + ϕwt (x)Wt(x
′)
}
dt.

Corollary 2 reveals that the Impulse Value is a time average of sequence-space Jacobians. It involves

the Jacobians of the value function with respect to prices, since the effect of the distribution only affect

individuals through prices. The Impulse Value also relates to the general equilibrium structure of the

economy through the solution to the forward-backward price fixed point Rt,Wt.

Of course, it is usually simpler to solve directly for the Impulse Value directly using the FAME (13)

than construct the sequence-space Jacobians and back out the Impulse Value. In practice however,

when the idiosyncratic state-space is large, it can sometimes be preferable to compute the sequence-

space Jacobians and recover the Impulse Value from Corollary 2.

Besides providing a conceptual foundation for the first-order numerical approaches discussed in this

subsection, the Master Equation is in addition uniquely suited to obtain higher-order perturbations.

4 The SAME

This section develops the Second-order Approximation to the Master Equation (SAME). The combina-

tion of the recursive and state-space structures of the Master Equation approach makes it particularly

well-suited to studying second-order perturbations.26

To obtain the SAME, the strategy is the same as for the FAME. When ε is small enough, the

second-order approximation to the value function is

V (x, ε, z, g) ≈

Steady-state︷ ︸︸ ︷
V SS(x) +

First order︷ ︸︸ ︷
ε

{∫
v(x, x′)h(x′)dη(x′) + ω(x, z)

}
(49)

+
ε2

2

{∫∫
V(x, x′, x′′)︸ ︷︷ ︸

2nd-order effect
of distribution

h(x′)h(x′′)dη(x′)dη(x′′) + 2

∫
Γ(x, x′, z)︸ ︷︷ ︸
Cross effect
of ag. shock.

& distrib.

h(x′)dη(x′) + Ω(x, z)︸ ︷︷ ︸
2nd-order
effect of

ag. shock

}

︸ ︷︷ ︸
Second order

.

The structure of the second-order approximation to the value function mirrors that of the first order

approximation. The second-order deterministic Impulse Value V(x, x′x,′′ ) encodes how deviations in

the distribution affect values up to second-order. In contrast to the first order, pairwise deviations at

x′ and x′′ now matter. Formally, V(x, x′, x′′) = ∂2V
∂2g

(x, x′, x′′, 0, 0, gSS) is the directional Hessian of the

value function with respect to the distribution, understood as Frechet derivatives.

26In contrast, state-space approaches that rely on linear rational expectation techniques such as Reiter (2009) or Ahn
et al. (2018) fall short of handling second-order perturbations. Similarly, sequence-space approaches such as Auclert et al.
(2019) also cannot deal with second-order perturbations when there are aggregate shocks because they heavily rely on
certainty equivalence.
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Aggregate shocks matter up to second order as well, as encoded in the second-order stochastic

Impulse Value Ω(x, z). Up to second order, the cross-effect between deviations in the distribution and

aggregate shocks also enters in the cross component Γ(x, x′, z).

I follows the same strategy as in the FAME to characterize the unknown derivatives V,Γ,Ω. I

substitute the second-order approximation (49) into the nonlinear Master Equation (57) in Appendix

B.4, and identify ‘coefficients’ that are again functions. To keep the exposition simple, I focus on the

case of drift control only (E2 = ∅) under Assumption 5 and no state constraint. It is straightforward

to incorporate these additional features. It is useful to define k(x) = 1
u′′(cSS(x))

and kp(x) = u′′′(cSS(x))
u′′(cSS(x))2

.

The strategy described above leads to the SAME.

Theorem 7. (SAME)

ρV(x, x′, x′′) = T (x, x′, x′′)︸ ︷︷ ︸
Direct

2nd-order impact

+ L(x)[V(·, x′, x′′)]︸ ︷︷ ︸
Continuation value from
changes to own state x

+L(x′)[V(x, ·, x′′)] + L(x′′)[V(x, x′, ·)]︸ ︷︷ ︸
Continuation value from propagation in

pair of impulses at x′ and x′′

+

∫ (
V(x, y, x′′)σ(y, x′) + V(x, x′, y)σ(y, x′′)

)
dy︸ ︷︷ ︸

General equilibrium: 2nd-order valuation of
1st-order changes in other HHs’ savings

+

∫
V(y, x′, x′′)τ(x, y)dy︸ ︷︷ ︸

General equilibrium: 1st-order
valuation of 2nd-order changes

in other HHs’ savings

where T (x, x, x′) is given in equation (59) in Appendix C.1 and

σ(x, y) = −∂x
[
gSS(x)(bg(x, y)−M(x, y, v))

]
, τ(x, y) = ∂y

(
k(y)vy(x, y)gSS(y)

)
.

The Bellman equations for Γ and Ω are given in equations (63) and (65) in Appendix C.1.

Proof. See Appendix C.1.

The structure of the SAME for the deterministic Impulse Value in Theorem 7 is analogous to the

one found in the deterministic FAME of Theorem 1. In the absence of aggregate shocks, the law of

motion of distribution is given by the following result.

Theorem 8. (Law of motion to second order)

∂ht
∂t

(x) = L∗(x)[ht] +K(x)[ht]

+ ε×
{
∂x

(
ht(x)

∫
K21(x, x′)ht(x

′)dη(x′)

)
+

∫∫
K22(x, x′, x′′)ht(x

′)ht(x
′′)dη(x′)dη(x′′)

}
,

where the kernels K21,K22 are given in Appendix C.2. See Appendix C.2 for the law of motion in the

presence of aggregate shocks.

Proof. See Appendix C.2.

The closed-form expressions in Theorem 7 also deliver a straightforward algorithm to compute the

solution to the SAME. Denote by Vijk ≡ V(xi, xj , xk) the discretization of the second-order determin-

istic Impulse Value V on a grid and into a tensor (a three-dimensional array). Inspection of the SAME
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reveals that V solves a standard linear Sylvester tensor equation:

V⊗1 A1 + V⊗2 A2 + V⊗3 A3 = B. (50)

In equation (50), Ai, i ∈ {1, 2, 3} denote standard square matrices. B denotes a tensor. The Ai and B

can be mapped to steady-state and first-order objects in closed form using Theorem 7. ⊗i denotes the

standard tensor product along dimension i, which is a direct generalization of matrix products. For

instance,
(
V⊗2 A2

)
ijk

=
∑

` Vi`kA2,`j .

It turns out that solving a Sylvester tensor equation is no harder than solving a standard Sylvester

matrix equation. It suffices to slice the tensor equation along one dimension. This slicing results in

a sequence of standard Sylvester matrix equations that are related to one another. They are related

in the same way as rows of the standard Sylvester matrix equation are related to one another after

slicing it by row. As a result, the same algorithm that is used to solve the standard Sylvester matrix

equation can be used as an outer loop to solve the tensor equation (see Chen and Lu, 2012 for more

details).

Together, Theorems 7 and 8 as well as equation (50) demonstrate that taking second-order pertur-

bations of the Master Equation is conceptually no more difficult than taking first-order perturbations—

up to slightly lenghtier algebra. This property of the Master Equation approach makes it particularly

well-suited to studying settings with aggregate shocks in which nonlinearities matter, in particular en-

vironments with asset pricing. In the interest of conciseness, this paper only lays out the groundwork

with the SAME and leaves for future research a quantitative application to asset pricing.

5 Applications

This section illustrates the FAME with two distinct economies.

5.1 A location choice model

In this section, I illustrate the FAME in dynamic discrete choice settings. For concreteness, I interpret

the framework as a dynamic location choice setting with migration, but the framework may be more

broadly interpreted as an industry, occupation or product choice problem.

Consider a unit mass of individuals who choose in which location i ∈ {1, ..., I} to live. From the

perspective of the notation in Section 2, the base measure is only a collection of Dirac measures at

locations i.

Individuals have Cobb-Douglas flow preferences for a freely traded final good, used as the nu-

meraire, and for housing with share γ. They discount the future at rate ρ. Individuals work for a

representative firm that produces the final good using labor and subject to decreasing returns to scale.

Finally, individuals are allowed to move at rate δ, in which case they draw extreme-value distributed

idiosyncratic preference shocks for potential destinations, with dispersion parameter ν. If they move,

they pay a bilateral moving cost τij . Locations are endowed with a local productivity Ai, and a fixed

supply of housing Hi whose rents are paid to absentee landlords.
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Maximizing out the housing and optimal location choices, and clearing labor and housing markets,

individuals solve

ρVit −
∂Vit
∂t

= Ui(Nit) + Li[V ], Li[V ] ≡ δ

1

ν
log

∑
j

eν(Vj−τij)

− Vi
 . (51)

The flow payoff is Ui(Ni) ≡ AiHγ
i N
−(1−γ)α−γ
i .27 The expectation operator Li[V ] is nonlinear because

of the presence of idiosyncratic taste shocks.28 Location decisions are given by the conditional choice

probabilities

πijt(V ) =
eνVit∑

j e
ν(Vjt−τij)

. (52)

The population distribution evolves according to the law of motion:

∂Nit

∂t
= δ

(∑
k

πkit(V )Nkt −Nit

)
≡ L∗i (V )[Nt]. (53)

The notation in equations (51)-(53) highlights that the framework may apply to any dynamic discrete

choice framework with bilateral costs in which the payoff from choosing option i depends, in equilibrium,

negatively on the number of individuals choosing that option. In the discrete choice setting, the

operator L∗i (V ) is simply the matrix πt(V )T − I. The Master Equation writes

ρVi(N) = Ui(Ni) + Li[V ] + L∗i (V )[Nt].

The FAME then takes the form of a nonlinear matrix equation in v = (vij)i,j :

ρv = ū− νvπT N̄(π − I)v + δ
(
(π − I)v + v(πT − I)

)
(54)

In the FAME (54), ui = ∂Ui
∂Li

= −USSi
NSS
i

((1 − γ)α + γ), and ū = diag(u) and N̄ = diag(NSS). π ≡ πSSij

denotes the matrix of steady-state migration shares. Finally, the linearized law of motion of the

distribution is then

∂ht
∂t

= δ
[
(πT − I) + νπT N̄(I − π)v

]
ht (55)

Having laid out the economy, I leverage the structure of the FAME to connect primitives of the economy

to the speed of a transition to steady-state in Proposition 3 below.

Proposition 3. (Convergence to steady-state)

Suppose that τij = 1i6=jτ0, and that τ0 is large relative to other parameters. Then, to a first order in

27To understand how equation (51) arises, note that the wage wi in location i satisfies the firm’s first-order condition

wi = A
1

1−γ
i N−αi , where Li is the population in location i. ri is the local rental rate of housing, and clears the local land

market γwiNi = riHi. Therefore, the flow payoff of locating in i is equal to γγ wi
r
γ
i

= Ui(Ni).
28Crucially, its action on a small perturbation of the value dV still coincides with the adjoint (tranpose) of the operator

L∗i : Li[V SS + dV ] = Li[V
SS ] + Li(V SS)[dV ].
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1/τ0, the population distribution converges to steady according to ||ht||2 ≤ e−Λt||h0||2, where

Λ =
δν

ρ
inf
i

(1− πSSii )NSS
i |ui|

Proposition 3 proposes an explicit convergence condition in this discrete choice setting. Convergence

back to steady-state is slower when the migration elasticity ν is low. In that case, idiosyncratic

preferences are highly dispersed, and individuals tend to move more randomly. As a result, convergence

is sluggish. The rate of convergence depends on payoff elasticities ui and own migration shares. When

local payoff are highly elastic to population changes relative to their overall payoff share in the economy,

convergence is fast since initial population deviations result in large payoff differentials across locations.

When the own migration share is low, individuals are more mobile and convergence is faster.

The results in Proposition 3 provide a sufficient statistic for the speed of adjustment in terms

of estimable elasticities and measurable statistics. For instance, the migration elasticity ν may be

estimated using a standard migration gravity estimating equation. The own migration share πSSii and

population NSS
i may be directly read off the data. The payoff elasticity ui may be estimated using

standard instrumental variable methods.

5.2 A consumption-savings model with unemployment and a wage ladder

In this section, I show how to leverage the FAME to efficiently compute impulse responses in an

economy with incomplete credit markets and a frictional labor market. I then study how countercyclical

UI trade off social insurance against crowding out investment.

Relative to the Krusell and Smith (1998) economy of Section 1, I add four key elements. First, I

enrich the economy with an occasional binding borrowing constraint a ≥ a. Second, a second set of

agents—absentee owners—own a fixed amount B of claims to capital. Together, these two elements

let me obtain high MPCs and retain a one-asset structure. Third, I micro-found the earnings process

through a frictional labor market similar to Burdett and Mortensen (1998) and Bilal and Lhuillier

(2021). Workers search on and off the job for wage offers. Wages are posted by firms. Firms also

post vacancies in order to recruit workers. The labor market clears through a matching function and

the equilibrium adjustment of labor market tightness that determines job-finding rates. Fourth, a

government taxes employed workers to finance unemployment insurance.

I relegate most of the description of the equilibrium to Appendix D.2. To illustrate how the FAME

handles the general equilibrium in this environment, I simply report the decision problem of employed

workers, setting profit rebates and transfers to 0:

ρVt(a, y)− ∂tVt(a, y) = max
c
u(c) + (rta+ w − c)∂aVt(a, y)

+ λEt

∫ ∞
w

(
Vt(a, x)− Vt(a, y)

)
f̃t(x)dx+ δ

(
Ut(a, y)− Vt(a, y)

)
. (56)

f̃t(x) is the equilibrium p.d.f. of new wage offers, and λEt is the equilibrium job-finding rate out of

employment. Critically, households need to keep track of the infinite-dimensional distribution f̃t(x)
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of wage offers at all times to make decisions. This distribution is determined by the vacancy posting

decisions of firms, that in turn depend on the current distribution of workers across wages gt(x).

The FAME is uniquely equipped to handle such a setting because it linearizes with respect to the

distribution g directly. I compute the deterministic steady-state using standard global methods. Using

the finite difference scheme from Corollary 1 on a laptop, computing the distributional Impulse Value

takes 5 seconds, and the aggregate shock Impulse Value takes 0.3 seconds. Impulse responses and the

invariant distribution in the stochastic steady-state are computed subsequently, in less than a second

as well. Together, given the deterministic steady-state, implementing the FAME requires less than 200

lines of Matlab code.

I calibrate the model at the monthly frequency taking most parameter values from the literature

as detailed in Appendix D.2. Given my focus on the insurance value of state-dependent UI, several

key parameters deserve special attention. First, I chose absentee capital B to match a liquid wealth-

to-GDP ratio of 0.5 together with a capital-to-GDP ratio of 5. This target then delivers an empirically

plausible distribution of MPCs by income for workers.

Figure 1(a) displays the monthly MPC of households by income state, in the model and in data as

reported by Broda and Parker (2014). Consistently with the data, the model predicts that the MPC is

highest for low-income individuals and declines monotonically with income. I also report the MPC of

constrained and unemployed households to highlight their particularly large MPC, suggesting potent

insurance effects of state-dependent UI.

A second key target to evaluate the insurance effects of state-dependent UI is not only the con-

sumption response conditional on a shock, but also the incidence of shocks. I calibrate the productivity

distribution to match the elasticity of individual income to aggregate output by labor market status.

Figure 1(b) displays the correlation between individual income and aggregate output in the model

and in the data as reported in Alves et al. (2020). The model broadly replicates the main patterns

in the data: unemployed workers are most exposed to business cycle variations, while most employed

workers are not. Quantitatively, the model falls short of generating the full elasticity for unemployed

workers because the model does not generate exactly enough unemployment volatility compared to the

data.29

29The sign of the elasticity for employed workers follows from composition search externalities that are not crucial for
the results of the paper.
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(a) Monthly marginal propensity to consume by income, model vs. data.
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Having matched both MPCs and the incidence of business cycles in the cross-section of workers,

I ask whether state-dependent UI can help unemployed workers smooth consumption in downturns

without crowding out investment so much that it slows down the recovery. I consider two experiments.

First, I feed in a mean-reverting sequence of aggregate productivity shocks that generates a one per-

centage point increase in the unemployment rate, holding UI at its steady-state value. Second, I hit

the economy with the same sequence of shocks, but under a rule that increases UI generosity by 5%

for every percentage point increase in the unemployment rate. Figure 2 displays the results.

Panel (B) shows that investment is indeed crowded out by the increase in UI, but with a very
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Figure 2: Impulse response functions with and without countercyclical UI.
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limited impact on the aggregate capital stock. This limited impact is merely explained by the small

size of the UI increase: a 5% rise in benefits that only 10% of the population receives (the target for

non-employment in the calibration).

Panel (C) shows that with constant UI, unemployed workers have to cut consumption by about 2%

on average in the downturn. In welfare terms, it represents a 0.5% decline as shown by panel (D). The

increase in UI generosity is effective in reducing the consumption losses of unemployed individuals.

In fact, their consumption increases above steady-state on average. However, within unemployed

workers, low-liquidity workers still cut consumption despite the transfer, a consequence of both the

unequal incidence shown in Figure 1(b) and the high MPCs displayed in Figure 1(a). As a result,

welfare does not increase above steady-state on average, but is strongly stabilized as a result of the

increase in UI generosity. Together, these results indicate that countercyclical UI can be a powerful

tool to help unemployed workers smooth losses in downturns while having only minimal effects on

capital accumulation.
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Conclusion

This paper proposed a new representation of dynamic general equilibrium economies with cross-

sectional heterogeneity. By treating the underlying distribution as an explicit state variable in decision

makers’ problem, the economy becomes fully recursive and is characterized by the Master Equation.

I show that local perturbations in aggregates of the Master Equation deliver interpretable, block-

recursive and easily computable representations of equilibrium: the FAME and the SAME.

I highlighted the versality of the FAME in a dynamic discrete choice setting, and an economy with

frictional credit and labor markets. The FAME and the SAME apply to many more economic settings.

The SAME could be used to investigate asset pricing with cross-sectional heterogeneity. The FAME

could be used to introduce aggregate shocks into quantitative spatial and trade models, as highlighted

in Bilal and Rossi-Hansberg (2023). The FAME could be used to study the cyclical variability of the

unemployment scar, a question that has so far resisted structural analysis.
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Appendix

A Notation

A.1 Additional notation for the motivating example

Define

R0 = −α(1− α)Z̄

(∫∫
ygSS(a, y)dady∫∫
agSS(a,w)

)1−α(∫∫
agSS(a, y)dady

)−1

R1 = α(1− α)Z̄

(∫∫
ygSS(a, y)dady∫∫
agSS(a,w)

)1−α(∫∫
ygSS(a, y)dady

)−1

W0 = α(1− α)Z̄

(∫∫
agSS(a, y)dady∫∫
ygSS(a,w)

)α(∫∫
agSS(a, y)dady

)−1

W1 = −α(1− α)Z̄

(∫∫
agSS(a, y)dady∫∫
ygSS(a,w)

)α(∫∫
ygSS(a, y)dady

)−1

Define also

R2 = α

(∫∫
agSS(a, y)dady

)α−1(∫∫
agSS(a, y)dady

)1−α

W2 = (1− α)

(∫∫
agSS(a, y)dady

)α(∫∫
agSS(a, y)dady

)−α
A.2 Additional notation for the FAME

Denote

L(x) = L(x, cSS(x), V SS , gSS), C(x) = C
(
x, V SS ,

∂V SS

∂x
, gSS

)
)

ug(x, y) =
∂u

∂g
(x, y, V SS , gSS), uV (x, y) =

∂u

∂V
(x, y, V SS , gSS)

Lg(x, y) =
∂L

∂g
(x, y, cSS(x), V SS , gSS), LV (x, y) =

∂L

∂V
(x, y, cSS(x), V SS , gSS)

Cg(x, y) =
∂C

∂g
(x, y, V SS ,

∂V SS

∂x
, gSS), CV (x, y) =

∂C

∂V
(x, y, V SS ,

∂V SS

∂x
, gSS)

Cp(x, y) =
∂C

∂p
(x, y, V SS ,

∂V SS

∂x
, gSS)

the Frechet differentials of the flow payoff u, the generator L and the state constraint C with respect

to either the distribution or the value. ∂/∂p denotes the derivative of C with respect to ∂V/∂x.
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B Proofs for Section 3

B.1 Proof of Proposition 2

The linearized FOCs are

∀i ∈ E1, dci(x) =
1

u′′1i(c
SS
i (x))

∂xidv(x)

∀i ∈ E2, dci(x) =
1

u′′2i(c
SS
i (x))

(∫
h(x′)dη(x′)∂gLinti (x, x′) +

∫
dv(y)dη(y)∂V Linti (x, y)

)
where now ci denote steady-state controls. Substituting out dv yields the result.

B.2 Proof of Theorem 1

Since none of the forcing terms in u, L depend directly on the derivatives of g, it is enough to look for a

Frechet derivative of V that only loads on h. To ease notation, denote partial derivatives by ∂g, ∂c, ∂V ,

or directly with the corresponding subscript. Also denote X · Y ≡ 〈X,Y 〉. Since c is always interior,

taking the FOC and substituting back into the Canonical Master Equation (32), I obtain

(ME0) ρV (x, ν) = u(ĉ(x, V, g), x, g, V ) (ME1)

+ L(x, ĉ(x, V, g), g, V )[V ] (ME2)

+

∫
∂gV (x, x′′, g)L∗(x′′, ĉ(x′′, V, g), g, V )[g]dη(x′′) (ME3)

I will sometimes omit arguments of function to ease notation. In that case, they are evaluated at

x, g, V, ĉ(x, V, g). I sometimes denote by dv(x) =
∫
v(x, x′)h(x′)dη(x′) and dc(x) the first-order change

in controls. I now expand each component of the Master Equation up to first order.

Left-hand-side (ME0). The first-order contribution of an impulse in h to the left-hand-side is

ME0 = ρ

∫
v(x, x′)h(x′)dη(x′)

Flow payoff (ME1). The flow gain is, up to first order,

ME1 =

∫
ug(x, x

′)h(x′)dη(x′) + uc(x) · dc(x) +

∫
uV (x, y)dv(y)dη(y)

=

∫
ug(x, x

′)h(x′)dη(x′) + uc(x) · dc(x) +

∫ (∫
uV (x, y)v(y, x′)dη(y)

)
h(x′)dη(x′)

Now note that u depends on V partly through c. So the FOC implies, for all g, V ,

0 = uc(x) + Lc(x, dc(x))[V ]

Generator (ME2). The contribution of the generator term is

ME2 = Lc(x, dc(x))[V ] +

∫
Lg(x, x

′)[V ]h(x′)dη(x′) +

∫
LV (x, y)[V ]dv(y)dη(y) + L(x)[dv]
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Now, passing the operator L(x) inside the integral for the last term,

L(x)[dv] =

∫
L(x)[v(·, x′)]h(x′)dη(x′)

Similarly, ∫
LV (x, y)[V ]dv(y)dη(y) =

∫ (∫
LV (x, y)[V ]v(y, x′)dη(y)

)
h(x′)dη(x′)

Flow payoff plus generator term (ME1+ME2). An envelope argument obtains where the

contributions of ∂c cancel out:

ME1 +ME2 =

∫ {
ug(x, x

′)h(x′) +

∫
uV (x, y)v(y, x′)dη(y) + Lg(x, x

′)[V ]

+

∫
LV (x, y)[V ]v(y, x′)dη(y) + L(x)[v(·, x′)]

}
h(x′)dη(x′)

Optimal control. To expand (ME3), we need to derive the first-order response of the optimal

control. The FOC writes

0 = uc(x, ĉ(x, g, V ), g, V ) + Lc(x, ĉ(x, g, V ), g, V )[V ]

Denote by by G̃(x, y) ≡ −
(
ucc(x) + Lcc(x)[V SS ]

)−1
G(x, y) for any function G. Totally differentiate

the FOC to obtain

dc(x) =

∫ {
m0(x, x′)h(x′)dη(x′) +

∫
m1(x, y)v(y, x′)dη(y) + L̃c(x)

[
v(·, x′)

]}
h(x′)dη(x′)

≡
∫
M(x, x′, v)h(x′)dη(x′)

where

m0(x, x′) = ũcg(x, x
′) + L̃cg(x, x

′)[V ] , m1(x, x′) = ũcV (x, y) +

∫
L̃cV (x, y)[V ].

General equilibrium term (ME3). I obtain, to first order

ME3 =

∫ (
v(x, x′′) +Ox(||h||)

)(
L∗(x′′)[g] +

∫
L∗g(x

′′, x′)[g]h(x′)dη(x′)

+

∫∫
L∗V (x′′, y)[g]v(y, x′)h(x′)dη(y)dη(x′)

+L∗c

(
x′′,

∫
M(x, x′, v)h(x′)dη(x′)

)
[g] + L∗(x′′)[h]

)
dη(x′′)

So far, I have considered a local perturbation around any point. To make progress, I now make use of

the steady-state property. In steady-state, L∗(x′′)[g] = 0 for all x′′ by definition. Thus, I can negelect

the Ox(||h||) term to first order.

I also make use of the adjoint property between L and L∗:
∫
L(x)[φ]ψ(x)dη(x) =

∫
φ(x)L∗(x)[ψ]dη(x).

Thus, I can express the last term as an integral over h. Together, these observations imply that to
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first order around a steady-state:

ME3 =

∫ {
L(x′)[v(x, ·)] +

∫
v(x, x′′)

(
L∗g(x′′, x′)[gSS ] +

∫
L∗V (x′′, y)[gSS ]v(y, x′)dη(y)

+L∗c(x′′,M(x′′, x′, v))[gSS ]

)
dη(x′′)

}
h(x′)dη(x′)

Equate ME0 = ME1 + ME2 + ME3 around steady-state, for all functions h, conditional on x. The

associated vector that integrates against h(x′) must be zero in L2 (“identifying coefficients”). Thus, I

obtain the FAME in Theorem 1.

State constraint Expanding the state constraint for x ∈ B, I obtain for all h:

C(x) +

∫
Γ(x, x′)h(x′)dη(x′) ≥ 0 , Γ(x, x′) = Cg(x, x′) + CV (x)v(x, x′) + Cp(x, x′)

∂v

∂x
(y, x′).

If C(x) = 0, then Γ(x, x′) = 0 for the state constraint inequality to hold for all h. When C(x) > 0, the

state constraint inequality holds as long as ||h|| is small enough. Thus, the set of x where the state

constraint holds with equality may in principle depend on h.

Consider a point x a point on the boundary of {x ∈ B : C(x) > 0} when seen as a manifold

in RDX−1. Under Assumption 3, I can parametrize the boundary as the set of points X(h) = x +∫
ψ(x, x′)h(x′)η(x′) for a function ψ(x, x′) ∈ RDX . Recall that x is on the boundary of the domain.

Thus,ψj(x, x
′) = 0 for some direction j that depends on which boundary x is located on. Without loss

of generality, assume that this coordinate is j = 1. Evaluate the state constraint at x and expand in

h to a first order: ∫ (DX∑
i=2

Cxi(x)ψi(x, x
′) + Γ(x, x′)

)
h(x′)dη(x′) ≥ 0.

Therefore, the boundary of the constrained set changes as per

Γ(x, x′) + ∂xC(x) · ψ(x, x′) = 0

where · denotes here the inner product in RDX . Because x is on the border of the constrained set

{y : C(y) = 0}, by continuity Cx(x) = 0 and Γ(x, x′) = 0. Thus, the first-order approximation does not

place additional restrictions on ψ nor Γ, and thus v.

B.3 Proof of Theorem 2

Linearized law of motion. The linearized law of motion follows directly from the first-order

expansion in the proof of Theorem 1, component ME3.

Convergence properties. Associating a sesquilinear form with L∗, standard arguments ensure

that the associated semigroup on H2 is positive irreducible, and has compact resolvent. In addition,

it is a stochastic semigroup. I assumed that it admits a steady-state distribution. Therefore, by the

Krein-Rutman theorem, its spectral bound is 0, and it has a strictly positive spectral gap. Its growth
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bound coincides with its spectral bound, and so ∀h, 〈h,L∗h〉L2 ≤ 0. Hence, the growth bound of L∗+K
is bounded above by the growth bound of K.

When K is bounded, it defines a compact operator since K is a Hilbert-Schmidt operator. So

is K̄ = (K + K∗)/2. Thus, the spectrum of K̄ is a sequence of real numbers, and the operator is

diagonalizable on a countable orthonormal basis. It is straightforward to see that 〈h,Kh〉 =
〈
h, K̄h

〉
.

Thus, the evolution ||ht|| is controlled by the supremum of the eigenvalues K̄ (see Kowalski 2009,

Chapter 2).

B.4 FAME with aggregate shocks

Definition 5. (Master Equation with Aggregate Shocks)

The Master Equation is now defined by

ρV ε(x, z, g) = max
c∈C̄

u(x, εz, c, V, g) + L(x, εz, c, g)[V ε] +

∫
∂V ε

∂g
(x, z, y, g, ε)L∗(y, εz, ĉ(y), g) [g] dη(y)

+ A(εz, ε)[V ε]

s.t. C

(
x, εz, V ε(x, z, g),

∂V ε

∂x
(x, z, g), g

)
≥ 0 (57)

for functions X̂ × ẑ ×H2 × R+ 3 (x, z, g, ε) 7→ V (x, z, g, ε) that are Frechet-differentiable in g η-a.e.

in x.

I assume that u, L,C evaluated at Z = 0 coincide with u, L,C in Section 2, and that u, L,C are

continuously differentiable in Z. To generalize the results from Section 3, I need a slight variant of

the regularity Assumption 3, that also encompasses regularity with respect to the scale of aggregate

shocks ε.

Assumption 7. (Existence, local uniqueness and regularity)

There exists one isolated steady-state equilibrium V SS , gSS. There exists a solution V (x, z, g, ε) to the

Master Equation in a neighborhood of (gSS , 0) that is continuously Frechet-differentiable in g ∈ H2

around g = gSS, and continuously differentiable in ε around ε = 0, η-almost everywhere in x. V is

continuous in x. The DX − 1-dimensional boundary of the set of points such that the state constraint

holds with equality is continuously Frechet-differentiable in g around g = gSS, and differentiable in ε

around ε = 0, η-almost everywhere in x.

Proof of Theorem 3. The proof follows closely that of Theorem 1 and is omitted for brevity.

B.5 Proof of Theorem 4

Kolmogorov forward equation. The derivation mirrors the one in Theorem 2 and is omitted

for brevity.

Stochastic stability. Let Pt denote the semigroup associated with L∗ +K. Then

ht = Pth0 +

∫ t

0
Pt−sS(·, zs)ds
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and therefore

||ht|| ≤ |||Pt||| ||h0||+
∫ t

0
|||Pt−s||| ||S(·, zs)||ds ≤ eλ

sup(K)t ||h0||+
∫ t

0
eλ

sup(K)(t−s) ||S(·, zs)||ds

which delivers the stochastic stability result.

Convergence back to steady-state. When the aggregate shock process is symmetric, it is

immediate to guess and verify that ω̃(x, z) = ω(x, z) + ω(x,−z) satisfies the Bellman equation ρω̃ =

0 + L(x)[ω̃(·, z)] + A(z)[ω̃(x, ·). Therefore, ω̃(x, z) = 0, and so ω(x,−z) = −ω(x, z) and ω(x, 0) = 0.

Then, S(x, 0) = 0, and the result follows from Theorem 2.

B.6 Proof of Theorem 5

In general, the perturbation of the value function writes:

Vt(x) ≈ V SS(x) +

∫ ∞
t

e−ρ(τ−t)ϕrt,τ (a, y)r̂τdτ +

∫ ∞
t

e−ρ(τ−t)ϕwt,τ (a, y)ŵτdτ,

where a priori the functions ϕ depend on both calendar time t and the time of the shock τ . Then,

∂Vt
∂t

(x) = −ϕrt,t(x)r̂t − ϕwt,t(x)ŵt + ρ

∫ ∞
t

e−ρ(τ−t)ϕrt,τ (x)r̂τdτ + ρ

∫ ∞
t

e−ρ(τ−t)ϕwt,τ (x)ŵτdτ

+

∫ ∞
t

e−ρ(τ−t)∂ϕ
r
t,τ

∂t
(x)r̂τdτ +

∫ ∞
t

e−ρ(τ−t)∂ϕ
w
t,τ

∂t
(x)ŵτdτ

Substituting into the Bellman equation and using the envelope theorem, I obtain, to a first order,

ϕrt,t(x)r̂t + ϕwt,t(x)ŵt −
∫ ∞
t

e−ρ(τ−t)∂ϕ
r
t,τ

∂t
(x)r̂τdτ −

∫ ∞
t

e−ρ(τ−t)∂ϕ
w
t,τ

∂t
(x)ŵτdτ

= ar̂tu
′(cSS(x)) + yŵtu

′(cSS(x)) +

∫ ∞
t

e−ρ(τ−t)L(x)[ϕrt,τ ]r̂τdτ +

∫ ∞
t

e−ρ(τ−t)L(x)[ϕwt,τ ]ŵτdτ

This equation holds for all sequences r̂τ , ŵτ . Thus, identifying coefficients,

ϕrt,t(a, y) = au′(cSS(x)) , −
∂ϕrt,τ
∂t

(a, y) = L(x)[ϕrt,τ ], τ ≥ t

and a similar expression holds for ϕw. I now change variables ϕrt,τ ≡ ϕrτ−t, and similarly for ϕw. This

change of variables then implies

ϕr0(x) = au′(cSS(x)) ,
∂ϕrs
∂s

(a, y) = L(x)[ωrs ], s ≥ 0.

B.7 Proof of Theorem 6

Let Pt(x, x0) be the semigroup associated with L∗, i.e. the solution to

∂Pt
∂t

(x, x0) = L∗(x)[Pt(·, x0)] , P0(x) = δδδ(x− x0)
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where δδδ denotes the Dirac measure. Since the PDE ∂tφ = L∗φ is linear, I may recover the solution to

that PDE given any initial condition φ0 as φt(x) =
∫
Pt(x, x0)φ0(x0)dx0. Integrating (46), I obtain

ht(x) =

∫
Pt(x, x0)h0(x0)dx0 −

∫ t

0

∫
Pt−τ (x, x0)

∂

∂a0

(
ŝτ (x0)gSS(x0)

)
dx0dτ

= hPEt (x)−
∫ t

0

∫
Pt−τ (x, x0)

∂

∂a0

([
r̂τa0 + ŵτy0 − ĉτ (x0)

]
gSS(x0)

)
dx0dτ

= hPEt (x) +

∫ t

0
hD,rt−τ (x)r̂τdτ +

∫ t

0
hD,wt−τ (x)ŵτdτ +

∫ t

0

∫
Pt−τ (x, x0)

∂

∂a0

(
ĉτ (x0)gSS(x0)

)
dx0dτ︸ ︷︷ ︸

≡C

Substituting in the linearized consumption decision (45), the last term C becomes

C =

∫∫
dτdθ1{τ ≤ t}1{θ ≥ τ}

∫
Pt−τ (x, x0)

(
γrθ−τ (x0)r̂θ + γwθ−τ (x0)ŵθ

)
dx0

where I denoted γrθ−τ (x0) = e−ρ(θ−τ) ∂
∂a0

(
ϕrθ−τ (x0)

u′′(cSS(x0))
gSS(x0)

)
and γwθ−τ (x0) = e−ρ(θ−τ) ∂

∂a0

(
ϕwθ−τ (x0)

u′′(cSS(x0))
gSS(x0)

)
.

Focusing on the contribution from interest changes only Cr, I obtain

Cr =

∫ ∞
0

dθr̂θ

∫ min{t,θ}

0
dτ

∫
Pt−τ (x, x0)γrθ−τ (x0)dx0︸ ︷︷ ︸
≡Jrt,θ(x)

Using the definition of P , I then obtain

∂Jrt,θ
∂t

(x) = L∗(x)[Jrt,θ] +

{
0 if t > θ

γrθ−t(x) if t < θ
, Jr0,θ(x) = 0.

C Proofs for Section 4

C.1 Proof of Theorem 7

To shorten notation, I denote h(dx) ≡ h(x)dη(x) in the sequel. Recall that to first order,

ME1 +ME2 =

(∫
bg(x, x

′, g, z)h(dx′) + bz(x, g, z)z

)
Vx(x) + L(x, ĉ, g, z)[dV ]

So, to second order and evaluating at steady-state,

d[ME1 +ME2] = V SS
x (x)

(∫∫
bgg(x, x

′, x′′) h(dx′)h(dx′′) + 2

∫
bgz(x, x

′)zh(dx′) + bzz(x)z2

)
+ 2

(∫
bg(x, x

′, g, z)h(dx′) + bz(x, g, z)z

)
dVx(x)− dc(x)dVx(x) + L(x)[d2V ]

To leading order,

dV (x) =

∫
v(x, x′′)h(dx′′)′ + ω(x, z)

d2V (x) =

∫∫
V(x, x′, x′′)h(dx′)h(dx′′) + 2

∫
Γ(x, x′, z)h(dx′) + Ω(x, z)
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Therefore, to second order,

d[ME1 +ME2] = V SS
x (x)

(∫∫
bgg(x, x

′, x′′) h(dx′)h(dx′′) + 2

∫
bgz(x, x

′)zh(dx′) + bzz(x)z2

)
+ 2

(∫
bg(x, x

′)h(dx′) + bz(x)z

)(∫
vx(x, x′′)h(dx′′) + ωx(x, z)

)
−

(∫
M(x, x′, v)h(dx′) +M(x, z, ω)

)(∫
vx(x, x′′)h(dx′′) + ωx(x, z)

)
+

∫∫
L(x)[V(·, x′, x′′)]h(dx′)h(dx′′) + 2

∫
L(x)[Γ(·, x′, z)]h(dx′) + L(x)[Ω(·, z)]

Re-arranging and changing integration indices to symmetrize the second-order terms in h only, I obtain

d[ME1 +ME2] = V SS
x (x)

(∫∫
bgg(x, x

′, x′′) h(dx′)h(dx′′) + 2

∫
bgz(x, x

′)z h(dx′) + bzz(x)z2

)
+

∫ (
bg(x, x

′)vx(x, x′′) + bg(x, x
′′)vx(x, x′)

)
h(dx′)h(dx′′) + 2bz(x)zωx(x, z)

+ 2

∫ (
bg(x, x

′)ωx(x, z) + bz(x)zvx(x, x′)
)
h(dx′)

− u′′(cSS(x))

{∫∫
M(x, x′, v)M(x, x′′, v) h(dx′)h(dx′′)

+

∫
M(x, z, ω)M(x, x′, v) h(dx′′) +M(x, z, ω)2

}

+

∫∫
L(x)[V(·, x′, x′′)] h(dx′)h(dx′′) + 2

∫
L(x)[Γ(·, x′, z)] h(dx′) + L(x)[Ω(·, z)]

Now turn to ME3. Recall that to first order,

ME3 =

∫ (
v(x, x′′) + dVg(x, x′′)

)(
L∗(x′′)[g]− ∂x′′

((∫
bg(x′′, x′)h(dx′) + zbz(x′′)− dc(x′′)

)
g(x′′)

)
+ L∗(x′′)[h]︸ ︷︷ ︸

≡d
(
L∗(x′′)[g]

)
)
dη(x′′)

To second order and evaluating at steady-state,

d2
(
L∗(x′′)[g]

)
= −2∂x′′

((∫
bg(x

′′, x′)h(dx′) + zbz(x
′′)− dc(x)

)
h(x′′)

)
− ∂x′′

((∫∫
bgg(x

′′, x′, y)h(dx′)h(dy) + 2

∫
zbgz(x

′′, x′)h(dx′) + z2bzz(x
′′)− d2c(x)

)
gSS(x′′)

)
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Using that u′′′(cSS(x))(dc(x))2 + u′′(cSS(x))d2c(x) = d2Vx(x), I obtain

d2
(
L∗(x′′)[g]

)
= −2∂x′′

((∫ (
bg(x

′′, x′)−M(x′′, x′, v)
)
h(dx′) + zbz(x

′′)−M(x′′, z, ω)

)
h(x′′)

)
(58)

− ∂x′′

((∫∫
bgg(x

′′, x′, y)h(dx′)h(dy) + 2

∫
zbgz(x

′′, x′)h(dx′) + z2bzz(x
′′)

)
gSS(x′′)

)
+ ∂x′′

(
gSS(x′′)

u′′(cSS(x′′))

(∫∫
Vx′′(x′′, x′, y) h(dx′)h(dy) + 2

∫
Γx′′(x

′′, x′, z) h(dx′) + Ωx′′(x
′′, z)

− u′′′(cSS(x′′))(
u′′(cSS(x′′))

)2
[∫∫

vx′′(x
′′, x′)vx′′(x

′′, y)h(dx′)h(dy)

+2

∫
vx′′(x

′′, x′)ωx(x′′, z)h(dx′) + ωx(x′′, z)2

]))
Finally, to leading order,

dVg(x, x
′′) =

∫ (
V(x, x′, x′′) + V(x, x′′, x′)

)
h(dx′) + 2Γ(x, x′′, z)

Now, to a leading order, d[ME3] =
∫
v(x, x′′)×d2

(
L∗(x′′)[g]

)
dη(x′′)+

∫
dVg(x, x

′′)×d
(
L∗(x′′)[g]

)
dη(x′′).

Starting with the first component,∫
v(x, x′′)× d2

(
L∗(x′′)[g]

)
dη(x′′)

= 2

∫∫
vx′′(x, x

′′)
(
bg(x

′′, x′)−M(x′′, x′, v)
)
h(dx′)h(dx′′) + 2

∫
vx′(x, x

′)
(
zbz(x

′′)−M(x′, z, ω)
)
h(dx′)

+

∫∫ (∫
vy(x, y)bgg(y, x

′, x′′)gSS(dy)

)
h(dx′)h(dx′′) +

∫ (
2

∫
vy(x, y)zbgz(y, x

′)gSS(dy)

)
h(dx′) +

∫
vy(x, y)z2bgzz(y, x

′)gSS(dy)

−
∫∫ (∫

vy(x, y)gSS(dy)k(y)

[
Vy(y, x′, x′′)− kp(y)vy(y, x′)vy(y, x′′)

])
h(dx′)h(dx′′)

− 2

∫ (∫
vy(x, y)gSS(dy)k(y)

[
Γy(y, x′, z)− kp(y)vy(y, x′)ωy(y, z)

])
h(dx′)

−
∫
vy(x, y)gSS(dy)k(y)

[
Ωy(y, z)− kp(y)ωy(y, z)2

]

where I denoted

k(y) =
1

u′′(cSS(y))
, kp(y) =

u′′′(cSS(y))(
u′′(cSS(y))

)2 .
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The second component is, to leading order,∫
dVg(x, x

′′)× d
(
L∗(x′′)[g]

)
dη(x′′)

=

∫ (∫
V(x, x′, x′′)h(dx′) + 2Γ(x, x′′, z)

)
×
{
−∂x′′

((∫ (
bg(x

′′, x′)−M(x′′, x′, v)
)
h(dx′) + zbz(x

′′)−M(x′′, z, ω)

)
gSS(x′′)

)
+ L∗(x′′)[h]

}
dη(x′′)

=

∫∫ (
L(x′′)[V(x, x′, ·)] + L(x′)[V(x, ·, x′′)] +

∫
Vy(x, y, x′′)

(
bg(y, x

′)−M(y, x′, v)
)
gSS(dy)

)
h(dx′)h(dx′′)

+

∫ {
2L(x′)[Γ(x, ·, z)] + 2

∫ [
Γy(x, y, z)

(
bg(y, x

′)−M(y, x′, v)
)

+
(
zbz(y)−M(y, z, ω)

) (
Vy(x, x′, y) + Vy(x, y, x′)

)]
gSS(dy)

}
h(dx′)

+ 2

∫
Γy(x, y, z)

(
zbz(y)−M(y, z, ω)

)
gSS(dy)

Putting these equations together and identifying coefficients,30 I obtain the SAMEs.

Deterministic SAME.

ρV(x, x′, x′′) = u′(cSS(x)bgg(x, x
′, x′′) + bg(x, x

′)vx(x, x′′) + bg(x, x
′′)vx(x, x′)

− u′′(cSS(x))M(x, x′, v)M(x, x′′, v) + L(x)[V(·, x′, x′′)]

+ vx′′(x, x
′′)
(
bg(x

′′, x′)−M(x′′, x′, v)
)

+ vx′(x, x
′)
(
bg(x

′, x′′)−M(x′, x′′, v)
)

+

∫
vy(x, y)

{
bgg(y, x

′, x′′)− k(y)
[
Vy(y, x′, x′′)− kp(y)vy(y, x

′)vy(y, x
′′)
]}
gSS(dy)

+ L(x′′)[V(x, x′, ·)] + L(x′)[V(x, ·, x′′)]

+

∫ [
Vy(x, y, x′′)

(
bg(y, x

′)−M(y, x′, v)
)

+ Vy(x, x′, y)
(
bg(y, x

′′)−M(y, x′′, v)
)]
gSS(dy)

Define

T (x, x′, x′′) = bgg(x, x
′, x′′)u′(cSS(x))︸ ︷︷ ︸

Direct price

+ bg(x, x
′)vx(x, x′′) + bg(x, x

′′)vx(x, x′)︸ ︷︷ ︸
Cross price-continuation value

+u′′(cSS(x))M(x, x′, v)M(x, x′′, v)︸ ︷︷ ︸
Cross consumption-continuation value

+
[
vx′(x, x

′)
(
bg(x

′, x′′)−M(x′, x′′, v)
)

+ vx′′(x, x
′′)
(
bg(x

′′, x′)−M(x′′, x′, v)
)]︸ ︷︷ ︸

GE: cross: others’ savings-impulse ≡ change in propagation of impulse due to change in savings

+

∫
vy(x, y)gSS(y)

[
bgg(y, x

′, x′′) + k(y)kp(y)vy(y, x
′)vy(y, x

′′)
]
dy︸ ︷︷ ︸

GE: 1st-order valuation of 2nd-order changes in others’ savings

(59)

and

σD(y, x) = −∂y
((
bg(y, x)−M(y, x, v)

)
gSS(y)

)
, τ(x, y) = +∂y

(
vy(x, y)k(y)gSS(y)

)
(60)

30In the case of the second-order expansion, ‘identifying coefficients’ corresponds to the results stating that if a
quadratic form defined by a symmetric operator is equal to another quadratic form defined by a symmetric operator,
then both operators must be equal. When either one of the operators is not symmetric, then only their symmetric parts
are equal.
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so that the deterministic SAME re-writes

ρV(x, x′, x′′) = T (x, x′, x′′) + L(x)[V(·, x′, x′′)] + L(x′)[V(x, ·, x′′)] + L(x′′)[V(x, x′, ·)] (61)

+

∫ (
V(x, y, x′′)σD(y, x′) + V(x, x′, y)σD(y, x′′)

)
dy +

∫
V(y, x′, x′′)τ(x, y)dy

Cross SAME. The cross SAME writes

ρΓ(x, x′, z) = u′(cSS(x))bgz(x, x
′)z + bg(x, x

′)ωx(x, z) + bz(x)zvx(x, x′)− u′′(cSS(x))M(x, z, ω)M(x, x′, v)

+ vx′(x, x
′)
(
zbz(x

′)−M(x′, z, ω)
)

+

∫
vy(x, y)zbgz(y, x

′)gSS(dy)

+ L(x)[Γ(·, x′, z)] + L(x′)[Γ(x, ·, z)] +A(z)[Γ(x, x′, ·)]

−
∫
vy(x, y)gSS(dy)k(y)

[
Γy(y, x

′, z)− kp(y)vy(y, x
′)ωy(y, z)

]
+

∫ [
Γ(x, y, z)σD(y, x′) + V(x, x′, y)σS(y, z)

]
dy

+

∫
Γ(x, y, z)σS(y, z)dy

where

σS(y, z) = −∂y
(
gSS(y)

(
zbz(y)−M(y, z, ω)

) )
Thus, define

TC(x, x′, z) = u′(cSS(x))bgz(x, x
′)z + bg(x, x

′)ωx(x, z) + bz(x)zvx(x, x′)− u′′(cSS(x))M(x, z, ω)M(x, x′, v)

+ vx′(x, x
′)
(
zbz(x

′)−M(x′, z, ω)
)

+

∫
gSS(y)vy(x, y)

[
zbgz(y, x

′) + k(y)kp(y)vy(y, x
′)ωy(y, z)

]
+

∫
V(x, x′, y)σS(y, z)dy (62)

The cross SAME then becomes

ρΓ(x, x′, z) = TC(x, x′, z) + L(x)[Γ(·, x′, z)] + L(x′)[Γ(x, ·, z)] +A(z)[Γ(x, x′, ·)]

+

∫ (
τ(x, y)Γ(y, x′, z) + Γ(x, y, z)

(
σD(y, x′) + σS(y, z)

))
dy (63)

Stochastic SAME. The stochastic SAME writes

ρΩ(x, z) = u′(cSS(x))bzz(x)z2 + 2bz(x)zωx(x, z)− u′′(cSS(x))M(x, z, ω)2

+ L(x)[Ω(·, z)] +A(z)[Ω(x, ·)]

+ 2

∫
vy(x, y)z2bgzz(y, x

′)gSS(dy)

− 2

∫
vy(x, y)gSS(dy)k(y)

[
Ωy(y, z)− kp(y)ωy(y, z)

2

]

+ 2

∫
Γy(x, y, z)

(
zbz(y)−M(y, z, ω)

)
gSS(dy)

55



Define

TS(x, z) = u′(cSS(x))bzz(x)z2 + 2bz(x)zωx(x, z)− u′′(cSS(x))M(x, z, ω)2

+

∫
vy(x, y)z2bgzz(y, x

′)gSS(dy) + 2

∫
Γ(x, y, z)σS(y, z)

+

∫
vy(x, y)gSS(y)k(y)kp(y)ωy(y, z)

2dy (64)

The stochastic SAME becomes

ρΩ(x, z) = TS(x, z) + L(x)[Ω(·, z)] +A(z)[Ω(x, ·)] + 2

∫
τ(x, y)Ω(y, z)dy (65)

C.2 Proof of Theorem 8

I may read off the perturbation of the law of motion of the distribution from the derivation of the

SAME, in particular equation (58). I need only introduce the notation:

K21(x, x′) = −2
(
bg(x, x

′)−M(x, x′, v)
)

K22(x, x′, x′′) = −∂x
(
gSS(x)bgg(x, x

′, x′′)− kp(x)vy(x, x
′)vy′(x, x

′′)− k(x)Vx(x, x′, x′′)
)

Below I report the law of motion of the distribution up to second order un the presence of aggregate

shocks:

dht(x)

dt
= L∗(x)[ht] +K(x)[ht] + S(x, zt) (66)

+ ε×
{
∂x

(
ht(x)

∫
K21(x, x′)ht(x

′)dη(x′)

)
+

∫∫
K22(x, x′, x′′)ht(x

′)ht(x
′′)dη(x′)dη(x′′)

}
− ε× ∂x

((
ztbz(x)−M(x, zt, ω)

)
ht(x)

+ 2gSS(x)

∫ [
zbzg(x, x

′)− k(x)Γx(x, x′, zt) + k(x)kp(x)vx(x, x′)ωx(x, zt)
]
ht(x

′)dη(x′)

)

− ε× ∂x

(
z2
t bzz(x)gSS(x)− k(x)Ωx(x, zt) + k(x)kp(x)ωx(x, zt)

2

)

D Details and proofs for applications

D.1 Proof of Proposition 3

First, to obtain (54), note that the FAME is

ρvij = 1i=jui +
∑
n,m

vin
∂L∗n
∂Vm

(V SS)[`SS ]vmj + Li[v·,j ] + Lj [vi,·]

Then, the operator Li coincides with the matrix multiplication by δ(π−I), and π denotes steady-state

transition probabilities. ∂L∗n
∂Vm

(V SS)[NSS ] = −ν
∑

k πknπkmN
SS
k when n 6= m, and ν

∑
k πkn(1−πkn)Nk

when n = m. The matrix
(
∂L∗n
∂Vm

(V SS)[`SS ]
)
n,m

may be thus represented as νπT ¯̀(I − π).
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To prove Proposition 3, denote ε = e−τ0 and θj = θ−1
0 eνV

SS
j |τ0=+∞ = θ−1

0 eρ
−1νUSSj for some scaling

constant θ0 to be chosen. I have, to first order in ε:

∀i 6= j, πij = ε
θj
θi

; ∀i, πii = 1− ε
∑

j 6=i θj

θi

Chose θ0 =
∑

j e
ρ−1νUSSj so that

∑
i θi = 1. Denote

Θij =

{
θj
θi

if i 6= j

−1−θi
θi

if i = j

so that π − I = εΘ to first order in ε.

To leading order in ε, the FAME (54) implies that v = ρ−1ū + O(ε). Using Theorem 2, I need

only focus on the GE component of the linearized law of motion (53). Thus, I seek to solve for the

dominant eigenvalue of the matrix p = ρ−1δνN̄Θū within the eigenspace in which
∑
xi = 0. I look for

solutions (λ, x) to

λxi =
∑
j

NiΘij ũjxj =
Ni

θi

∑
j

θj ūjxj − ūixi


Re-arranging, I obtain that(

λ+
Niūi
θi

)
xi =

Ni

θi
Q , Q =

∑
j

θj ūjxj

I can normalize Q = 1. Then xi = Ni
Niūi+λθi

. Substituting back into the normalization, I obtain that λ

satisfies

1 =
∑
i

1
1
θi

+ λ
ūiNi

⇐⇒ 0 =
∑
i

θ2i
Niūi

1
λ + θi

ūiNi

As expected, 0 is the eigenvalue that corresponds to
∑

i xi 6= 0. We thus look for the largest of

other eigenvalues. For those, λ < 0, otherwise the sum is strictly positive. Denote µ = −1/λ. Then

infi
θi
Niūi

< µ < supi
θi
Niūi

, which delivers the result.

D.2 Details for the economy in Section 5.2

Households. Employed households solve, for a ≥ a,

ρV (a, y)− V̇ (a, y) = max
c
u(c) + (ra+ w + πe − T − c)Va(a, y)

+ λE
∫ ∞
w

(
V (a, x)− V (a, y)

)
f̃(x)dx+ δ

(
U(a, y)− V (a, y)

)
. (67)

f̃(x) is the p.d.f. of new wage offers. π are profits from firms. w denotes real wages. r is the real

interest rate. T denote lump-sum taxes on the employed.
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Unemployed households solve U solves

ρU(a)− U̇(a) = max
c
u(c) + (ra+ b+ πu − c)Ua(a) + λU

∫ ∞
w(a)

(
V (a, x)− U(a)

)
f̃(x)dx (68)

where w is the reservation wage. The reservation wage solves V (a,w(a)) = U(a).

Firms. There is an exogenous distribution of new jobs (or firms, with a constant returns production)

every period, that differ in productivity z, with p.m.f. h0(z). They post real wages to solve

max
w,v
−c0v

1+γ

1 + γ
+ q
(
φ+ (1− φ)G̃(w)

)
vJ(z, w) (69)

where J(z, w) is the value of a filled job of productivity z at wage w. It solves

ρJ(z, w)− J̇(z, w) = max
k

z1−αkα − w − (r + d)k −
[
δ + λE(1− F̃ (w))

]
J(z, w) (70)

where k is the amount of capital they rent on a competitive market, and d its depreciation rate. I

assume that firms fully commit to wages. Wages are not renegotiated, and do not depend on aggregate

productivity. Equation (69) reveals that the new wage offer distribution is concentrated on the locus

of the optimal wage offer, w(z). Finally, the vacancy decision is given by

c0v(z)1/γ = qJ(z, w(z))

and the p.m.f. of new wage offers, f(w) = V f̃(w), satisfies

f(w(z))w′(z) = h0(z)v(z).

Distributions. Let ge(a, y, z) be the p.m.f. of employed workers, and gu(a) the one for unemployed

workers. It solves, for a > a,

ġe(a, y, z) = −∂a
(
se(a, y)ge(a, y, z)

)
−
[
δ + λE(1− F̃ (w))

]
ge(a, y, z) + f̃(w(z))w′(z)δδδw(z)(w)

[
λUgu(a) + λEG̃(w)

]
(71)

where se is the savings rate of employed workers. The mass of employed workers at a follows

ṁe(w, z) = −
(
se(a, y)ge(a, y, z)

)∣∣∣
a=a

−
[
δ + λE(1− F̃ (w))

]
me(w, z) + f̃(w(z))w′(z)δδδw(z)(w)

[
λUmu + λEG̃(w)

]
(72)

Similarly, for unemployed workers,

ġu(a) = −∂a
(
su(a)gu(a)

)
− λUgu(a) + δge(a)

ṁu = −
(
su(a)gu(a)

)∣∣∣
a=a
− λUmu + δme (73)
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Government. A government runs the unemployment insurance program and balances its budget

every period:

τ

∫
w(ge(w) +me(w))dw = b

(
mu +

∫
gu(a)da

)
+ rB

where B denotes the fixed government debt.

Market clearing. The interest rate clears the capital market:

(1− u)

(
α

r + d

) 1
1−α

Z =

∫∫
a
(
ge(a,w) + gu(a)

)
dadw +B

Labor market tightness θ satisfies

θ =
V

u+ ξ(1− u)
, V =

∫
v(w)h0(w)dw, u =

∫
gu(a)da

and

λU = m0θ
1−α, λE = ξλU

with a matching function M = m0S
νV 1−ν .

Aggregate shocks. Aggregate productivity Zt follows a continuous-time AR(1) process as in Section

1.
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Online Appendix

E Weak derivatives and duality

Unidimensional case. Consider a domain (−1, 1) with a possible mass point at 0. Compute, for a

smooth function ϕ such that ϕ(−1) = ϕ(1) = 0,

〈
f, ϕ′

〉
=

∫ 0−

−1
f(x)ϕ′(x)dx+ f0ϕ

′
0 +

∫ 1

0+
f(x)ϕ′(x)dx

where I denote evaluation at the mass point by subscripts to emphasize the role of (non-)smoothness

at the possible mass points. Assuming f is differentiable on (−1, 0) and (0, 1), obtain 〈f, ϕ′〉 =

f(0−)ϕ(0−)−
∫ 0−

−1 f
′(x)ϕ(x)dx+ f0ϕ

′
0 − f(0+)ϕ(0+)−

∫ 1
0+ f

′(x)ϕ(x)dx. Finally, make 〈f ′, ϕ〉 appear:

〈f, ϕ′〉 = f(0−)ϕ(0−) + f ′0ϕ0 + f0ϕ
′
0− f(0+)ϕ(0+)−〈f ′, ϕ〉 ≡ J0−〈f ′, ϕ〉. The key object of interest is

therefore J0 ≡ f(0−)ϕ(0−) + f ′0ϕ0 + f0ϕ
′
0 − f(0+)ϕ(0+). The duality property requires that the sum

of terms around 0, J0, is equal to zero.

Smooth ϕ. When ϕ is continuously differentiable on (−1, 1), and in particular is smooth around 0,

then J0 =
[
f ′0 −

(
f(0+) − f(0−)

)]
ϕ(0) + f0ϕ

′
0. So clearly, for J0 to be zero and f to have a weak

derivative, one needs

f ′0 ≡ f(0+)− f(0−) , ϕ′0 ≡ 0 = ϕ(0+)− ϕ(0−).

Thus, the definition of the weak derivative w.r.t. the base measure η imposes that the value of the

derivative at possible mass points is equal to the jump there. In particular, if a function is continuous

at a possible mass point, then the derivative there that enters into the inner product (but not around)

is endogenously 0. It needs not be a requirement.

Multidimensional case. This argument generalizes straightforwardly to multiple dimensions.
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