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1 Introduction

Portfolios and arbitrage are at the heart of finance. It has been understood all

the way back to the development of the capital asset pricing model and arbitrage

theory in the 1950s and 1960s that any one market participant’s demand for any

asset depends on prices of other assets (Markowitz (1952), Tobin (1958), Sharpe

(1964), Lintner (1965), Fama (1970), Ross (1976)).1 Yet, financial exchanges for

trading equities and many other assets—such as futures, options, and govern-

ment debt—use a market design in which each individual asset trades in its own

separate limit order book. If one stops to think about it, this is somewhat puz-

zling. With limited exceptions, financial markets around the world clear one as-

set at a time.

One factor is that designing a market to simultaneously trade and price large

numbers of assets is hard. There are two major difficulties. First, if there is just

a single asset then market clearing is trivial, whether via a limit order book or

a uniform-price batch auction. But, as soon as there are multiple assets, there

is the question of whether market-clearing prices exist. With trading of multi-

ple goods, especially if there are complementarities—and portfolios and arbi-

trage can represent a form of complementary demand across assets—it is well

known that prices that clear the market do not always exist. The second issue is

computation. Computing the market-clearing price in an auction market with

a single asset is trivial, as is running a limit order book market for a single asset.

But, as soon as there are multiple goods for which market-clearing prices need to

be computed jointly, computation often becomes a difficult or intractable issue,

even if prices are known to exist. This has been understood by economists dating

back at least to Scarf and Hansen (1973), and computational considerations have

played a prominent role in the design of modern combinatorial auction formats

(e.g., Milgrom and Segal (2017), Leyton-Brown, Milgrom, and Segal (2017)).

Another factor, of course, is path-dependence. The predominant market de-

sign used around the world today, the continuous-time limit order book, traces

1In market design theory, combinatorial markets, in which prices for multiple assets are dis-
covered jointly, have been a central topic of research since the 1990s (see, e.g., Roth (2002), Klem-
perer (2004), Milgrom (2004), Cramton, Shoham, and Steinberg (2006)).
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not only to the era of specialists and trading pits in the latter half of the 20th cen-

tury, but all the way back to trading under the buttonwood tree in the 18th cen-

tury. A human can run a limit order book market for individual assets with pen

and paper or simple electronic recordkeeping if the orders arrive slowly enough.

Modern computers can run limit order book markets at modern speeds and or-

der volumes. While this market design has been a remarkably successful and

enduring market institution from a broad historical perspective, it has impor-

tant weaknesses that we and others have analyzed in prior work and will discuss

more soon.

This paper introduces and analyzes a new financial market design in which

market participants can directly trade portfolios of assets. A portfolio in our de-

sign is any user-defined linear combination of assets, where portfolio weights can

take on arbitrary positive or negative values. For example, one can trade a market

or sector index portfolio, or a customized portfolio, or engage in a pairs trade, or

engage in any customized long-short trading strategy. We develop a novel design

for trading such flexible portfolios in a way that guarantees existence of market-

clearing prices and has attractive computational performance.

The new market design incorporates two other ingredients from our prior

work, which together enable the novel approach to trading portfolios. First is

the idea of frequent batch auctions from Budish, Cramton, and Shim (2015). In

order to trade multiple assets at the same time it is necessary for there to be a

coherent notion of “same time”—and for this, one needs to make time a dis-

crete variable and process requests to trade in batch, not serially. Second is the

idea of continuous-scaled limit orders from Kyle and Lee (2017). Instead of uti-

lizing step functions to express demand, a piecewise-linear downward-sloping

demand curve is established through linear interpolation between upper and

lower limit prices. When the upper and lower limit prices are close together, the

demand curve approximates a step function like a standard limit order. Mar-

ket participants engage in gradual trading, where the order remains active over

a period of time and is executed at a rate determined by the piecewise-linear

downward-sloping demand curve. This is the sense in which quantities are ex-

pressed in flows. For example, instead of “Buy 1000 units of Portfolio XYZ if the
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weighted portfolio price is $500.00 or better,” an order might be “Buy up to 10

units per batch interval of Portfolio XYZ if the weighted portfolio price is $500.00

or better, declining to 0 units per batch interval if the price is $501.00 or worse,

until up to 1000 units in total are bought.” This downward-sloping demand is

necessary to ensure existence of market-clearing prices and fast computation.

While orders can be for arbitrary portfolios, the prices that are discovered are

item prices, not bundle prices—that is, there is one market-clearing price per

asset. This is critical. There are infinitely many possible portfolios. The market

design does not require an unrealistic coincidence-of-wants in which the buyer

of a given portfolio must find sellers of exactly that portfolio. Rather, a buyer of,

say, a portfolio consisting of AAPL, GOOG and MSFT in some user-specified ratio

might end up being matched against sellers of individual assets (e.g., AAPL), sell-

ers of a subset of the portfolio (e.g., AAPL and MSFT), or even traders of portfolios

that overlap in some partial way (e.g., a sell GOOG buy AMZN pairs trade). Mar-

ket prices of portfolios are then calculated using the asset prices and portfolio

weights.

Table 1 contrasts our new market design, which we call “Flow Trading” to

highlight that the orders for portfolios are executed gradually over time, against

the traditional limit order book exchange design.

Flow Trading Traditional Exchange

Downward-sloping piecewise-linear Discontinuous step functions
demand curves for flows for discrete quantities

Batch auctions in discrete time Sequential matching one at a time

Orders for portfolios Orders for individual assets

Table 1: Comparison of Flow Trading with the Status Quo Design

Benefits The new market design has several sets of benefits. First, it inherits the

benefits of Budish, Cramton, and Shim (2015)’s and Kyle and Lee (2017)’s prior

market designs. From Budish, Cramton, and Shim (2015), it addresses latency
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arbitrage and the arms race for trading speed. This improves liquidity and social

welfare.2 From Kyle and Lee (2017), it builds the ability to trade gradually di-

rectly into the market design, which is what large investors want to do practically

and what many models suggest investors should do theoretically (Black (1971),

Kyle (1985), Vayanos (1999)). This saves significant costs related to the complex,

expensive trading platforms institutional investors must use to manage their or-

ders.3

Additionally, by combining Budish, Cramton, and Shim (2015) and Kyle and

Lee (2017), we are able to have discrete time and continuous prices and quantities—

tiny fractions of shares can trade each second within a nearly continuous price

grid. For example, quantities could be expressed in nano-shares (billionths of

shares) and prices in micro-dollars (millionths of dollars). In the status quo mar-

ket design with trading in continuous time, making prices and quantities ap-

proximately continuous would cause an explosion of message traffic. Contin-

uous prices would encourage traders to improve prices by smaller and smaller

increments. Continuous quantities would require traders to constantly submit

and replace numerous small orders. In our design, prices and quantities can be

approximately continuous without issue. This in turn addresses many complex-

ities and inefficiencies caused by tick-size constraints in modern markets.4 More

speculatively, it seems likely that tick-size constraints and latency arbitrage to-

gether play a meaningful role in the proliferation of off-exchange trading in mod-

ern markets—which is now nearly 50% of equity volume in the United States.5

2Recent empirical evidence from the UK stock market finds that latency arbitrage races con-
stitute 20% of all trading volume and from 17% to 33% of the market’s cost of liquidity depending
on the measure used (Aquilina, Budish, and O’Neill (2022)). Recent empirical evidence from the
Taiwan stock market’s switch to continuous trading, away from five-second batch auctions, finds
that continuous trading increases adverse selection by 36%, increases effective spreads by 5%,
and reduces quoted depth by 3% (Indriawan, Pascual, and Shkilko (2022)).

3One recent article reported that institutional investor trading commissions were $9bn in 2021
in U.S. equity markets alone (Bloomberg Insights (2021)).

4Tick-size constraints have been shown to lead to (i) high-frequency trading races for queue
position, (ii) a proliferation of complex order types to navigate this race for queue position, and
(iii) the proliferation of exchanges with creative fee schedules designed to circumvent this con-
straint. See the series of papers Chao, Yao, and Ye (2017, 2019), Yao and Ye (2018), Li, Wang, and
Ye (2021), and additional references contained therein.

5Data on the share of off-exchange trading is available from SIFMA and was cited in Sept
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The main novel benefit of the market design is that it enables market partic-

ipants to directly trade portfolios and engage in arbitrage strategies. We expect

future research will help quantify the value of these innovations. One figure that

suggests the value of trading portfolios may be high is the size of the market for

exchange traded funds (ETFs). ETFs are redundant assets that enable investors

to trade sponsor-defined portfolios efficiently, in exchange for a management fee

on holdings that averages about 20 basis points. ETFs now constitute a remark-

able 40% of all U.S. stock market volume.6

Another piece of suggestive evidence that the stakes are large is the size of the

industry that has been built around fast arbitrage and short-horizon predictive

analytics. Our design builds the ability to engage in certain kinds of arbitrage

directly into the market design—e.g., buy A and sell B, where A and B are highly

correlated assets or portfolios of assets. This should reduce some of the eco-

nomic rent and inefficiency associated with arbitraging the pricing relationship

of A and B. For instance, in our market design, if A and B are perfect substitutes

with an exact arbitrage pricing relationship, market participants can directly en-

gage in Bertrand-like competition on the price for keeping A and B in their arbi-

trage relationship, using “Buy A, Sell B” and “Sell A, Buy B” pairs trades (indeed,

the latter is just an offer to sell the former). There need not be any “correlation

breakdown” of prices between A and B, as defined and documented in Budish,

Cramton, and Shim (2015). This kind of competition is not possible in the status

quo.

Last, the new market design significantly improves transparency and fair-

ness. All orders that are executable at the market-clearing prices are executed,

either at their full rate or at a partial rate depending on the order’s pricing pa-

rameters, and all orders that execute for a given asset receive the same pricing

for that asset. This feature allows every trader, whether trading 100 shares or

100,000, to infer the exact sequence of prices and quantities executed on their

2021 Senate testimony by SEC Chair Gary Gensler (available at https://www.sec.gov/news/
testimony/gensler-2021-09-14).

6ETF volume is computed from CRSP (ETFs are share code 73). The 40% figure is ETFs’ propor-
tion of on-exchange trading volume in dollars. Vanguard reports that the asset-weighted average
ETF expense ratio for non-Vanguard ETFs is 24 basis points in 2020.
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order from publicly announced market-clearing prices. An institutional investor

trading a sophisticated portfolio can confirm they received the correct execution.

A retail investor trading a small amount can confirm they received the market-

clearing price. These abilities perhaps do not sound radical, but they are a signif-

icant transparency improvement over the current market design, where checking

whether one’s order received appropriate execution is difficult (see Tyc (2014)).

Having mentioned these potential benefits, we add an important caveat, which

is that flow trading is not designed to mitigate market failures related to market

power or private information (see Rostek and Yoon (2020) for a recent survey

of these issues). Market participants still must think strategically about how to

trade on private information and manage their price impact, just as in the status

quo design. Flow trading removes some of the unnecessary technological costs

and complexities surrounding this game, but the fact remains that large trades

will move prices.

Technical Foundations We provide three sets of technical results: on existence

and uniqueness of market-clearing prices and quantities; on computability of

these prices and quantities; and results that provide microfoundations for the

bidding language.

While orders may persist across many batch auctions, markets clear in each

auction separately. To study existence of market-clearing prices and quantities

of our market design, it suffices to focus on a single batch auction. We transform

the problem into a well-understood quadratic optimization problem with linear

constraints. To do so, we first impute a quasi-linear quadratic utility function to

each order by interpreting the order as an expression of preferences defining a

linear marginal utility curve over the range where it is partially executable. The

sum of these utility functions creates a concave objective function. The restric-

tions that each order must execute at a rate between zero and its maximum (e.g.,

one portfolio unit per batch auction) are linear inequality constraints. Market

clearing defines linear equality constraints for each asset. Zero trade is feasi-

ble since it satisfies both sets of constraints. This setup allows us to use known

results from convex optimization to prove existence of unique market-clearing
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quantities.

Market-clearing prices are Lagrange multipliers of the primal problem. Re-

gardless of whether assets are complements or substitutes,7 market-clearing prices

exist because our language imposes downward-sloping demand curves on all

user-defined portfolios. (We discuss the connection to other existence and non-

existence results in Section 2.2.) Prices, however, may be non-unique when there

are no partially executable orders from which unique prices can be inferred. For

example, when there is only one order to buy or sell some asset, the market-

clearing quantity must be zero, but any price at which the order is non-executable

clears the market. Prices can be made unique by introducing a tie-breaking rule.

To show computational feasibility of the market design, we start by showing

our problem has a structure such that the gradient method (equivalent to Wal-

rasian tatonnement) is guaranteed to converge. This proves that our problem

is computationally simpler than some cases of finding competitive equilibrium

prices (Scarf and Hansen (1973)), as the reader will anticipate from the quadratic-

programming setup described just above. It is well known, however, that the gra-

dient method may be slow and inaccurate for problems with this structure. We

therefore add to the market design that the exchange itself can serve as a “market

maker of last resort.” Formally, the exchange is willing to buy or sell an epsilon

amount of any asset at the market-clearing prices. This allows us to use inte-

rior point methods, which are much faster and more accurate than the gradient

method. Without the exchange as market maker, we know that zero trade is fea-

sible but it is not strictly on the interior of the constraint set; with the exchange

as market maker, we can easily find a feasible point strictly on the interior, from

which the algorithm can be initialized. The exchange trading also ensures that

market-clearing prices are unique.

We provide computational proof-of-concept by calculating market-clearing

prices for a simulated order book using our own implementation of a public-

7In our context, if two assets in a portfolio have weights with the same sign, the assets are
complements in the usual sense that an increase in the price of one asset decreases the quantity
demanded of the other (or increases the quantity supplied). If two assets have portfolio weights
with opposite signs, the assets are substitutes because an increase in the price of one asset in-
creases the quantity demanded of the other (or decreases the quantity supplied).
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domain interior-point method on an ordinary workstation. In a market with 500

assets and 100,000 orders, our algorithm calculates prices in about 0.15 seconds

in the base-case scenario (with the computation time ranging from 0.12 to 0.27

seconds when we consider a wide range of parameter values). With 500 assets

and 1,000,000 orders, computation time is about 0.56 seconds. With 2000 as-

sets and 100,000 orders, the computation time is about 1.1 seconds. The simula-

tion environment purposefully tries to make the problem difficult. Conceptually,

our goalpost for the computational exercise is to suggest that serious computing

power can solve a practical problem of realistic size in less than one second, not

just to illustrate that the solution to the problem is in P and not NP.

We provide a stylized microfoundation for our approach to trading portfo-

lios. In flow trading, an order specifies demand per batch auction in units of a

user-specified portfolio as a piecewise-linear downward-sloping function of the

portfolio’s price. Although this language is more general than standard limit or-

ders, it is still restrictive. In a CARA-normal framework (where investors have

exponential utility or constant absolute risk aversion and subjective beliefs that

liquidation values are normally distributed), the optimal demand for each asset

is a linear function of the asset’s own price and the prices of all other assets. Such

demands cannot be implemented with standard limit orders due to the depen-

dence of demand for any one asset on the prices of other assets. We show that,

by rotating the assets in a specific manner, a trader’s optimal demand can be

expressed as a demand for a set of portfolios, such that their demand for each

portfolio is a downward-sloping and linear function of the portfolio’s price, con-

sistent with our design. Moreover, if the trader believes that assets have a factor

structure of rank K , they can implement the optimum with only K orders, which

may be practically appealing.

The approach generalizes to taking account of linear price impact under the

mild assumption that the price impact matrix is positive semidefinite. The eco-

nomic interpretation is that the market’s implied supply curve for any portfolio

slopes upward. The logic also extends to any strictly concave, twice continuously

differentiable quasi-linear preference, as optimal demands can be locally linearly

approximated with combinations of downward-sloping demand curves for port-
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folios. With wealth effects or learning from prices, however, demand curves may

slope upward. Such demands cannot be expressed in our language because we

require demand curves to be downward sloping.

Structure of the paper The rest of the paper is structured as follows. Section 2

discusses related literature. Section 3 describes the orders used for flow trading,

which we call “flow orders.” Section 4 analyzes the existence and uniqueness of

market-clearing prices and quantities. Section 5 shows computational feasibility

of our market design. Section 6 provides a microfoundation for our approach to

trading portfolios. Section 7 concludes.

Additionally, Appendix A provides informal discussion of several important

practical implementation and policy issues.

2 Related Literature

We divide our discussion of related literature into two parts. Section 2.1 discusses

the prior work related to the flow trading market design. Section 2.2 discusses

prior work that is related to the results that market-clearing prices and quantities

exist.

2.1 Literature Related to the Market Design

The conceptual ideas behind this paper’s new market design—piecewise-linear

downward-sloping demand curves, portfolios as linear combinations of assets,

arbitrage, general equilibrium theory, quadratic programming, batch auctions,

reducing temporary price impact by trading slowly—are well-understood by re-

searchers in economics and finance. Our contribution is to combine these ideas

into a coherent and practical market design for trading financial assets such as

stocks, bonds, and futures contracts.

The two prior works most closely related to our paper are Kyle and Lee (2017)

and Budish, Cramton, and Shim (2015). Kyle and Lee (2017) introduce downward-

sloping, piecewise-linear flow orders for individual assets (“continuously scaled
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limit orders”). Budish, Cramton, and Shim (2015) introduce frequent batch auc-

tions as a market design for financial exchanges. Combining these two market

design ideas yields a market design for financial assets in which time is discrete

instead of continuous, and prices and quantities are continuous instead of dis-

crete. This is appealing for many reasons described above. Put another way, the

present paper shows that these two prior market design ideas are complements,

not substitutes.

The third ingredient of the market design, directly trading portfolios, is novel

to this paper. To be more precise, the broad idea of bidding for financial portfo-

lios instead of individual assets is obvious from the combinatorial auctions liter-

ature, but our specific approach to trading portfolios, including both the bidding

language and the associated existence and computability results, is novel. We

suggest via a long list of example use cases that our language is practically useful

for real-world financial markets. Different ways of representing preferences for

portfolios also might not yield the existence and computability results we obtain

here.

Sophisticated expression of preferences over multiple objects is a theme in

the market design literature more broadly. Research on this topic has strad-

dled computer science, economics, and operations research (Lahaie and Parkes

(2004), Sandholm and Boutilier (2006), Milgrom (2009), Klemperer (2010), Vohra

(2011), Bichler (2017), Cramton (2017), Budish, Cachon, Kessler, and Othman

(2017), Parkes and Seuken (2018), Budish and Kessler (2022)). This literature has

focused on indivisible-goods combinatorial allocation problems, such as spec-

trum auctions. Relative to this burgeoning literature, our contribution is the

novel approach to trading portfolios, which treats all goods as perfectly divisi-

ble, and allows complementarities and substitutabilities only to the extent that

they can be expressed with linear portfolio weights. This language is simple

enough to obtain strong existence and computational results, while being ex-

pressive enough to capture many important use cases in financial markets.

Another closely-related body of work by Li, Wang, and Ye (2021), Chao, Yao,

and Ye (2019), Chao, Yao, and Ye (2017), and Yao and Ye (2018) highlights the

complexities created by tick-size constraints in modern markets and associates
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tick-size constraints with an important aspect of high-frequency trading, the race

for queue position. As emphasized, our market design makes time discrete and

prices continuous, thus eliminating the inefficiencies caused by tick-size con-

straints.

The idea that optimal trading strategies involve flow trading to reduce tem-

porary price impact costs emerges as an equilibrium result in game-theoretic

models of rationally-optimizing strategic traders. Black (1971) conjectures that

more urgent execution of large orders incurs greater price impact costs. Con-

sistent with Black’s conjecture, Kyle, Obizhaeva, and Wang (2018) describe an

equilibrium in which all traders optimally submit linear demand curves for flow

quantities, with endogenous urgency to profit from private information, in a

continuous-time model. For discrete-time models, Vayanos (1999) and Du and

Zhu (2017) describe equilibria in which all traders optimally submit linear de-

mand curves to batch auctions, with endogenous urgency motivated by private

values or endowment shocks.

A growing literature studies the implications of allowing orders to trade one

asset to be contingent not only on the asset’s price but also on the prices of other

assets (Cespa (2004), Rostek and Yoon (2021), Rostek and Yoon (2022), Wittwer

(2021)). For example, Rostek and Yoon (2021) study strategic behavior in a mar-

ket with multiple assets and imperfectly competitive traders, under market de-

signs with both contingent and non-contingent orders. In their framework, con-

tingent orders allow a trader’s demand for one asset to be a function of the price

of all other assets, whereas non-contingent orders require that a trader’s demand

for each asset is a function only of the price of that asset. Our approach to trad-

ing portfolios is an intermediate case between contingent and non-contingent

orders. A trader’s demand for one asset can depend contingently on the prices of

other assets, but only through these other asset prices’ effects on the price of the

trader-defined portfolio the assets belong to. In Section 6, we show that traders

can implement their optimal fully-contingent demand by using a collection of

our flow portfolio demands, which depend on the portfolio prices only.

Surprisingly, in these models, which study a one-shot Walrasian auctioneer

framework, the efficiency and welfare consequences of allowing for contingent
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demands are ambiguous. Each trader’s individually optimal demand is indeed

contingent on all asset prices, but allowing for contingent orders affects incen-

tives to strategically shade demand and supply, and the net effects of this in-

cremental strategic behavior can affect efficiency or welfare in either direction.

Chen and Duffie (2021) provide a related insight by studying fragmentation of

trade of the same asset across multiple trading venues.8 We note that these analy-

ses do not study the efficiency issues which motivate this paper’s new market de-

sign, such as reducing the technology and intermediation costs of trading port-

folios (in these models, trading, including complex trading, is free) or reducing

latency arbitrage opportunities across venues (in these models there is mostly

just a single trading period).

2.2 Literature Related to Existence Results

We obtain existence of market-clearing prices and quantities despite the wide

range of preferences, including both substitutes and complements, that can be

expressed using portfolio orders. In this subsection we describe the relationship

of our existence results to the textbook general equilibrium theory approach and

to the literature on indivisible goods.

Relationship to General Equilibrium Theory Readers familiar with the stan-

dard treatment of general equilibrium theory will notice differences in our ap-

proach to existence and uniqueness. Mas-Colell, Whinston, and Green (1995,

Chapter 17) (“MWG”) is a reference for the standard treatment, descending from

Arrow and Debreu (1954) and McKenzie (1959). This standard approach uses

fixed-point theorems to derive existence results for general convex preferences

which include income effects. Finding the fixed point is known to often be com-

putationally intractable (Scarf and Hansen (1973), Daskalakis, Goldberg, and Pa-

padimitriou (2009), Budish, Cachon, Kessler, and Othman (2017)). By contrast,

8On the other hand, Antill and Duffie (2020) find that fragmentation of trade of the same asset
across multiple trading venues is unambiguously negative for efficiency in the case where one
trading venue is the center of price discovery and other trading venues engage in size discovery
(i.e., trade at the price discovered by the price-discovery venue).
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our market design approach focuses on a language for preferences that yields

existence and uniqueness within a computationally tractable framework.

There are three main differences from the standard treatment as explicated

in MWG.

First, the setting and assumptions are different.

1. While MWG define preferences for the entire positive orthant, our model

implicitly defines preferences for a given portfolio on the line segment (0, q),

representing partial execution of an order to buy the portfolio. The portfo-

lio can be a short position. By defining utility to be minus-infinity off the

line segment, we preserve convexity over a larger space, but we lose conti-

nuity.

2. While MWG allow general preferences that allow income effects, we im-

pute quasi-linear utility functions of the form u(x)−πππ⊺x, which do not have

income effects.

3. While MWG require strongly monotone preferences and strictly positive

prices, our implied preferences are not strongly monotone and prices can

be negative. Moreover, it may be difficult to make preferences monotone,

even over the restricted domain of agents’ demands, because there is no

natural “up” direction for the legs of a pairs trade.

Second, the technique to prove the existence of market-clearing prices and

quantities is distinct. While MWG relies on Kakutani’s fixed-point theorem, we

use quadratic programming.

Third, while market-clearing prices may not be unique in MWG, we have

uniqueness up to a convex set. This results from using quasi-linear utility, mak-

ing the second derivative of the planner’s objective function negative (semi) def-

inite. This guarantees that all market-clearing prices must lie in a convex set.

In our framework, substitutes and complements do not matter for existence or

uniqueness, since the matrix is negative semidefinite anyway.
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Relationship to the Indivisible Goods Literature Our assumptions are in some

respects more similar to assumptions made in the literature on indivisible goods,

which typically uses quasi-linear utility.

Kelso and Crawford (1982) show that competitive equilibrium is guaranteed

to exist in an indivisible goods setting under a substitutes condition. There have

been many different variations of the Kelso–Crawford substitutes condition de-

fined in the literature; see Gul and Stacchetti (1999), Milgrom (2000), Hatfield

and Milgrom (2005), Ostrovsky (2008), Hatfield et al. (2013). Hatfield, Kominers,

and Westkamp (2021) discuss the relationship among many of these criteria and

provide a maximum domain result for existence.

Baldwin and Klemperer (2019), on the other hand, use tropical geometry to

show that existence can be obtained not only when indivisible goods are substi-

tutes but also in some cases when they are complements. For example, left shoes

and right shoes are clearly complements, but prices for shoes may nevertheless

be guaranteed to exist if all agents’ preferences regard them as complements in

ways that enable the application of the Baldwin and Klemperer (2019) existence

theorems. For example, if all agents purchase shoes as pairs, and no agents re-

gard left shoes and right shoes as substitutes for each other, prices are guaranteed

to exist.

Unlike Baldwin and Klemperer (2019), or most of the indivisible-goods sub-

stitutes literature, we obtain existence for any preferences expressible in our lan-

guage. This stronger existence result relies on our treatment of assets as per-

fectly divisible (avoiding the potential difficulties of exact market clearing when

there are indivisibilities) and—as noted above in the discussion of the relation-

ship to general equilibrium theory—the restriction that preferences are only de-

fined for each portfolio on a line segment exactly corresponding to those portfo-

lio weights, as opposed to preferences being well defined on a richer consump-

tion space.

Two other papers in the indivisible goods literature that deserve special men-

tion are Klemperer (2010), which introduces the product-mix auction, and Mil-

grom (2009), which introduces the assignment auction. (These papers in turn

descend from Shapley and Shubik (1971) and Demange, Gale, and Sotomayor
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(1986)). Both papers describe multi-object auction designs that use linear prefer-

ence languages and are motivated in part by financial applications—Klemperer’s

auction, in particular, was designed for the Bank of England to purchase toxic

financial assets during the financial crisis. Technically, the key difference versus

our design is the preference language. In our design, participants have piecewise-

linear demands for portfolios of assets, which can have arbitrary user-defined

positive and negative asset weights. In Klemperer’s and Milgrom’s designs partic-

ipants have piecewise-constant demands, expressing preferences over mutually-

exclusive substitutable assets, including Shapley–Shubik unit-demand for sub-

stitutes preferences as a special case. For example, our design would allow a user

to buy a portfolio consisting of assets A and B in some user-specified ratio, with

downward-sloping demand for the portfolio, whereas Klemperer’s and Milgrom’s

auction designs would allow the user to buy a specified quantity of whichever of

A or B gives them more surplus at realized prices. This difference in language

then drives differences in the statements and methods of proof for existence and

uniqueness results. Practically, the papers have different intended use cases. We

have in mind near-continuous trading of financial assets, in which users trade

portfolios in flows. Klemperer’s and Milgrom’s designs are intended for one-shot,

high-value allocation problems (e.g., a high-value auction for toxic assets during

the financial crisis, or a spectrum auction).

3 Flow Orders

3.1 Formal Definition of Flow Orders

Traditional limit orders consist of a price, quantity, and direction of trade for a

single symbol. For example, buy 1000 shares of AAPL at $150.00 per share. The

order implicitly defines a demand curve that is a step function, with full demand

(1000 shares) at any price weakly better than the limit and zero demand at any

price strictly worse than the limit.

Flow orders depart from traditional limit orders in 3 ways:

1. Orders are for portfolios of assets instead of individual assets. A portfolio is
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defined by a vector of weights, wi ∶= (wi 1, . . . , wi N)⊺, where i identifies the

order, N denotes the number of assets in the market, and wi n ∈ R denotes

the portfolio weight of asset n in order i . A strictly positive weight denotes

buying the asset, a strictly negative weight denotes selling the asset, and a

zero weight denotes that the asset is not a part of that portfolio.

2. Flow orders specify piecewise-linear downward-sloping demands. Each or-

der specifies two prices: a lower limit pL
i and an upper limit p H

i , with pL
i <

p H
i . The flow order interprets pL

i as a demand to buy the portfolio in full

quantity at prices weakly lower than pL
i . It interprets p H

i as indicating zero

demand for the portfolio at prices weakly higher than p H
i . Then, in the in-

terval [pL
i , p H

i ], the flow order linearly interpolates the quantity demanded

from full quantity at pL
i to zero quantity at p H

i .9 Note that we use the phrase

“buy the portfolio” to include the case of selling assets—in our language,

selling an asset is buying a portfolio with a negative weight on the asset at

a negative price (i.e., receiving a transfer). We will clarify this point in detail

below.

3. Quantities are expressed as flows per batch interval, up to a cumulative

quantity limit. For each order i , the user specifies two parameters, qi > 0

and Qmax
i > 0, expressing their demand to buy up to a maximum rate of qi

portfolio units per batch interval, up to a cumulative quantity limit of Qmax
i .

Instead of requiring that quantities express a demand to trade immediately

(1000 shares now), users can tune their urgency to trade.

Thus, a flow order is described by the tuple (wi , pL
i , p H

i , qi ,Qmax
i ). (Through-

out this paper, we use a lower-case bold font to denote vectors, an upper-case

bold font to denote matrices, a subscript i to denote orders, and a subscript n to

denote assets.)

9In a traditional limit order at price p, the implied demand is the full quantity at prices weakly
better than p and zero quantity at prices strictly worse than p. In our language, these two im-
plications of the traditional limit price are split into two separate parameters: demand in full at
prices weakly better than the lower limit pL

i , and demand zero at prices weakly worse than the
upper limit p H

i .
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Next, we define a flow order’s demand within a batch auction. Assume that

the order’s cumulative purchased quantity is not within qi of Qmax
i , so that the

order can purchase its maximum rate qi in the next batch without exceeding

Qmax
i .10 Let πππ = (π1, . . . ,πN)⊺ denote the column vector of market prices of all

assets n = 1,. . . ,N . The market price for the portfolio defined by the weight vector

wi is the inner product

pi =wi
⊺πππ ∶=

N

∑
n=1

wi nπn . (1)

Order i specifies demand per batch auction in portfolio units as a function

of the portfolio’s price. The demand curve, which we call its “flow portfolio de-

mand,” is the downward-sloping and piecewise-linear function defined by

Di (pi ∣wi , qi , pL
i , p H

i ) ∶= qi trunc(
p H

i −pi

p H
i −pL

i

) , (2)

where

trunc(z) ∶=

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

1, for z ≥ 1

z, for 0 < z < 1

0, for z ≤ 0

. (3)

Now, let xi denote the flow portfolio demand evaluated at a given portfolio price:

xi ∶=Di(pi). (4)

To distinguish from flow portfolio demand as a function, we call xi order i ’s

“trade rate.”

Notice how the trade rate depends on the order’s maximum rate qi and where

the price for the portfolio is relative to the order’s price parameters pL
i and p H

i .

If the portfolio price pi is less than or equal to pL
i , the order is “fully executable,”

and the portfolio is bought at the maximum rate qi . If the portfolio price pi is

higher than p H
i , then the order is “nonexecutable” and does not buy at all. If

10In the case where the order’s cumulative purchased quantity, say Q t
i , is within qi of the limit

Qmax
i , replace qi with the remaining quantity demanded Qmax

i −Q t
i , and increase pL

i so that the
slope of the demand curve is the same as it was originally.
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the portfolio price is somewhere between p H
i and pL

i , the order is “partially exe-

cutable” and buys at the rate determined by linear interpolation between the two

price parameters.

Buying vs. Selling This formulation treats “selling” an asset as buying a portfo-

lio with a negative weight on that asset at a negative price. This not only gener-

ates compact notation for representing both buying and selling but also empha-

sizes a symmetry between buying and selling, which will be important for under-

standing how market clearing works. General equilibrium theory often uses this

idea that an upward-sloping supply curve for positive quantities is equivalent to

a downward-sloping demand curve for negative quantities.

Whether buying or selling, we have pL
i < p H

i and demand defined according

to equation (2). However, when selling, both pL
i and p H

i are negative. For ex-

ample, an order to sell XYZ in full at price $42.00 or higher, with the sell rate de-

clining linearly to zero at price $41.00, would be encoded with pL
i = −$42.00 and

p H
i =−$41.00. There are two equivalent ways to remember this. First, think of pL

i

as analogous to the price limit in a limit order (willing to trade in full at this price

or better), with demand then declining linearly to zero in the interval [pL
i , p H

i ].

Alternatively, think of p H
i as the price at which the trader is exactly indifferent

between trading and not. Then, as the price improves from p H
i , the trader’s de-

mand increases linearly, up to a maximum rate of qi when the price reaches pL
i

or better.

See Figure 1 for an illustration of buying and selling.

Last, note that if a portfolio has both positive and negative weights, there may

not be a natural buying versus selling direction to the order. We treat all orders

as “buying the portfolio” without loss of generality.

Additional Technical Remarks on the Formulation We make two additional

remarks on this formulation.

First, observe that while the above demand curve in equation (2) has a single

downward-sloping segment, the user can define an arbitrary piecewise-linear

downward-sloping demand curve for a given portfolio with multiple flow orders.
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Figure 1: Plots of (a) the function trunc(z); (b) a single buy order, with pricing pa-
rameters pL

i = $41.00 and p H
i = $42.00, and maximum rate qi = 5.00 portfolio units per

batch; (c) a single sell order, initially plotted as an upward-sloping supply curve with one
upward-sloping linear segment, and (d) the same sell order, now plotted as a downward-
sloping demand for negative quantities, which is our treatment here. The pricing param-
eters for the sell order are pL

i = −$42.00 and p H
i = −$41.00, with maximum rate qi = 5.00

portfolio units per batch. The figures for buy and sell orders are plotted with trade rate
on the horizontal axis and price on the vertical axis.

Second, order specification using the tuple of parameters (wi , pL
i , p H

i , qi ,Qmax
i )

contains an intentional redundancy of notation. Buying a portfolio containing

one share each of two stocks at a rate of ten portfolio units per batch is equivalent

to buying a portfolio containing half a share of each stock at a rate of twenty port-

folio units per batch. More generally, for some parameter α > 0, changing the or-

der parameters from (wi , pL
i , p H

i , qi ,Qmax
i ) to (αwi ,αpL

i ,αp H
i , qi /α,Qmax

i /α) has

no effect on the demand for each asset. We do this because in some circum-

stances it will be natural to normalize some stocks’ individual weights to one

or minus one, while in others it may be more natural to normalize the sum of

weights.

Proxy Instructions For Orders Over Time As in the traditional market design,

users may modify or cancel their flow orders at any moment in time throughout

the trading day. Additionally, users may want to specify what we will refer to as

“proxy instructions” that modify or cancel their orders under specified contin-

gencies.

The parameter Qmax
i is an example of such a proxy instruction: cancel the or-
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der from the market once the cumulative quantity limit Qmax
i has been reached.

Another example is time-in-force instructions, such as “good for day” or good

for some other specified period. In principle, the exchange could provide more

complex examples, such as allowing an order’s pricing parameters to vary dy-

namically over time as a function of recent prices (“Ensure that my order’s price

impact is never more than ten basis points”), or allowing an order’s maximum

rate to vary over time (“Reduce this order’s maximum rate if I am averaging above

ten percent of trading volume”). We will not discuss such complex order contin-

gencies in this paper.

3.2 Examples

We give several examples to illustrate the flexibility of flow orders.

1. Standard limit order.

A standard limit order expresses preferences to buy or sell a specified quan-

tity of one asset at one limit price. A flow order can be specified to approx-

imate a limit order. First, when only one weight wn is nonzero, the order is

an order to buy one asset if the weight is positive or to sell one asset if the

weight is negative. Second, the maximum rate qi can be set to equal the

cumulative quantity the trader wants to buy or sell, Qmax
i . Third, the price

parameters can be set so that pL
i corresponds to the intended limit price

and p H
i is as close as possible to pL

i . Theoretically, we obtain a limit order

in the limit as p H
i → pL

i
+

.

2. Time-weighted average price (TWAP) order.

In the traditional market design, a market order executes immediately at

the market-clearing price. The analog here is a time-weighted average price

(TWAP) order. The user specifies a price parameter pL
i that is sufficiently

aggressive relative to recent prices that it is essentially guaranteed to exe-

cute.11 Then, the user will trade qi portfolio units in every batch auction

11In the traditional formulation of a market order, one thinks of the limit price as ∞ if buying
and as 0 if selling. The 0 for selling implicitly encodes that assets are “goods” that can always be
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until their cumulative quantity limit is achieved (i.e., they will trade at the

TWAP over this period).

3. Pairs trades.

A pairs trade is executed by specifying a portfolio weight vector wi with one

strictly positive entry, one strictly negative entry, and the rest zeros.

4. Portfolio trades.

A portfolio trade is executed by specifying a portfolio weight vector wi with

either all entries weakly positive (if buying the portfolio) or all entries weakly

negative (if selling the portfolio). The assets whose weights are strictly pos-

itive or strictly negative comprise the portfolio.

Traders can construct and trade their own index portfolios. For example,

an order to buy the S&P 500 has positive weights on each stock in the S&P

500 index, with weights proportional to S&P 500 weights and zero weight

on stocks not in the S&P 500 index. An order to sell an index has nega-

tive weights on all stocks in the index. Traders can easily customize index

portfolios by adjusting portfolio weights—e.g., adjusting weights based on

valuation models or setting to zero weights for assets that fail a screening

criterion such as environmental, social, and governance criteria.

5. General long-short strategies.

A general long-short strategy combines the previous two cases: multiple

positive and negative entries.

6. Market-making strategies.

A trader can engage in market making, whether for a single asset, a pairs

trade, a portfolio trade, or a general long-short strategy, using two orders

with opposite-signed weights and price parameters. For example, a market

sold at a weakly positive price. Here, if the order is for a portfolio with both positive and negative
weights, it is not automatic from the order itself whether the portfolio is a “good” that should
always trade at a positive price or a “bad” that should trade at a negative price. Either way, the
trader can guarantee execution by specifying pL

i sufficiently large.
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maker who is willing to buy portfolio wi in full at $41.00 and sell it in full at

$42.00 could use orders like

• Buy leg: weights wi , price parameters pL
i = $41.00, p H

i = $41.25

• Sell leg: weights -wi , price parameters pL
i =−$42.00, p H

i =−$41.75

3.3 Limitations of the Language

There are limitations of the language for representing trading demands.

First, trading demands are only defined at exactly the ratio of portfolio weights

specified in the order. If an order specifies it wants to buy assets A and B at a ratio

of 2:1, the order contains no information about the trader’s willingness to trade

at, say, a ratio of 2.2:1 or 1.8:1. This restriction relative to traditional consumer

theory, where preferences are typically defined on the whole positive orthant, is

key to our method of existence proof (below in Section 4.2).

Second, trading demands are piecewise linear within each order. In principle,

we could replace the piecewise-linear trunc function with the flexibility to spec-

ify an arbitrary downward-sloping function on the interval of prices [pL
i , p H

i ].

However, our existence proof and computational results take advantage of this

linearity. We view the linearity restriction as a less important limitation because

arbitrary downward-sloping functions can be approximated, if needed, with a

set of piecewise-linear orders.

Third, the language does not allow for indivisibilities. Most importantly, a

user cannot specify a minimum transaction quantity per batch, only a maxi-

mum. So, for example, an order cannot be “fill or kill,” or “at least 100 shares per

batch, otherwise stay out.” That said, a user may approximate such preferences

with marketable orders if prices are sufficiently continuous.

Last, the language does not allow for in-order contingencies. This includes

cases like “buy A if the price of B is high enough” or “buy whichever of A or B gives

me more surplus given my valuations.” This latter kind of preference expression

is analyzed in Demange, Gale, and Sotomayor (1986) and is central to the market

designs of Klemperer (2010) and Milgrom (2009) discussed in Section 2.2. As with
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indivisibilities, a user may approximate such preferences with marketable orders

if prices are continuous enough.

4 Market-Clearing Prices and Quantities

Now we turn our attention to the exchange’s problem of finding market-clearing

prices and quantities. While flow orders may persist for a long period of time,

the market must clear in each batch auction. We therefore study market clearing

from the perspective of a single batch auction in isolation.

4.1 Definition of Market Clearing

To define market clearing, we need to convert individual traders’ demand curves

for portfolios as a function of portfolio prices (i.e., the Di(pi)’s) into a market

demand curve for assets as a function of asset prices. This is because the market

clears asset by asset, using item prices, even though traders place flow orders for

arbitrary portfolios.

For each order i , first replace the portfolio price pi with the weighted vector

of asset prices, using pi = wi
⊺πππ. Then, convert the demand in portfolio units

Di(wi
⊺πππ) into the demand for individual assets by multiplying by the portfolio

weights wi . Last, sum up the demand for assets across all orders i to obtain the

market’s net excess demand curve for assets as a function of asset prices:

D(πππ) ∶=
I

∑
i=1

Di (wi
⊺πππ ∣wi , qi , pL

i , p H
i ) wi . (5)

The function D(⋅) maps asset price vectors πππ ∈ RN to net asset quantity vectors

D(πππ) ∈ RN . A price vector is market clearing if each asset’s net excess demand is

zero:

D(πππ) = 0. (6)

This market-clearing condition defines N equations in N unknowns.

For arbitrary, non-clearing price vectors, the quantity vector D(πππ) may have

both positive and negative components. Note that we do not enforce a constraint
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that prices be nonnegative. Negative prices arise naturally in some commodity

markets, such as electricity, with limited storage and costly curtailment.

At market-clearing prices πππ, order i ’s quantity traded for the individual as-

sets in this batch auction is given by its trade rate times the portfolio weights,

xi wi , where xi =Di(wi
⊺πππ). Thus, using the trade rates (for the I portfolios), the

market-clearing condition in equation (6) (for the N assets) can be re-expressed

as
I

∑
i=0

xi wi = 0. (7)

4.2 Existence of Market-Clearing Prices and Quantities

To show the existence of market-clearing prices and quantities, we formulate an

optimization problem by imputing to each order “as-bid” preferences which de-

fine the dollar utility value of the number of portfolio units bought, then sum the

utility functions across orders to obtain the objective function to be maximized.

An order’s demand is a linear function of prices in the range of prices where

the order is partially executable. Therefore, a quadratic quasilinear utility func-

tion defines preferences. The constraints preventing overfilling or underfilling

the order are linear inequality constraints. Market clearing consists of linear

equality constraints. Putting this together results in a quadratic program—maximizing

a quadratic objective function subject to linear constraints.

Quadratic programs have been thoroughly studied and are well understood.

Given the structure of our problem, we can use well-known results to show that

unique utility-maximizing quantities exist, and the solution implies Lagrange

multipliers which correspond to market-clearing prices. A solution to the dual

problem of calculating optimal (market-clearing) prices also exists and implies

the same solution as the original (primal) problem.

As is standard, our market rules optimize as-bid gains from trade. In prac-

tice, traders submit orders strategically. Thus, our methodology does not mea-

sure actual economic welfare and does not generate welfare results on market

efficiency. Rather, the method provides a practical approach to finding market-

clearing prices and quantities consistent with bids.
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Pseudo-Utility Let Vi(xi) denote the dollar utility of order i from a trade rate of

xi =Di(pi) in portfolio units per second, where flow portfolio demand Di(pi) is

given by equation (2). To find Vi(xi), we first define the marginal utility function

Mi(xi) as the inverse demand curve, pi = Mi(xi). In words, the inverse demand

curve maps order i ’s trade rate xi ∈ [0, qi ] into prices pi ∈ [pL
i , p H

i ].12 Rearranging

equation (2) we have:

Mi(xi) ∶= p H
i −

p H
i −pL

i

qi
xi for xi ∈ [0, qi ]. (8)

The value of Mi(xi) measures marginal as-bid flow value in dollars per port-

folio unit. Utility Vi(xi), as a function of the trade rate xi , is defined as the inte-

gral of the marginal utility function over the interval [0, xi ]:

Vi(xi) ∶=∫

xi

0
Mi(u) du (9)

Since the marginal value is linear in xi , the total value is quadratic and therefore

strictly concave in xi :

Vi(xi) = p H
i xi −

p H
i −pL

i

2qi
xi

2 (10)

We will think of Vi(xi) as defined for all xi ∈R, with order specifications imposing

the constraint xi ∈ [0, qi ].13

Value Maximization Our problem of finding market-clearing prices is formu-

lated as two optimization problems, a primal problem of finding quantities that

maximize as-bid dollar value and a dual problem of finding prices that minimize

the cost of non-clearing prices. The first-order conditions for optimality of these

two problems imply market-clearing prices and quantities.

The exchange, acting analogously to a social planner in general equilibrium

12For trade rates in the interval (0, qi ), the fact that the order chooses an interior trade rate
tells us that the order’s as-bid marginal utility is equal to the corresponding price in the interval
(pL

i , p H
i ). The same logic extends to the boundary points 0 and qi , corresponding respectively to

prices p H
i and pL

i , by assuming as-bid utility is continuous.
13We could equivalently think of the domain of Vi (xi ) as xi ∈ [0, qi ] or define Vi (xi ) = −∞ for

xi ∉ [0, qi ].
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theory, chooses a vector of trade rates for all orders x = (x1, . . . , xI) to maximize

aggregate value, defined as the sum of pseudo-utility functions across orders,

V (x) ∶=
I

∑
i=1

Vi (xi) for x ∈RI , (11)

subject to market-clearing constraints and trade-rate constraints:

max
x

V (x) subject to

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∑
I
i=0 xi wi = 0 (market-clearing constraints)

xi ∈ [0, qi ] for all i (trade-rate constraints).
(12)

The objective function V (x) is concave because it is a sum of concave functions.

Indeed, since the objective function is quadratic and the constraints are lin-

ear, this is a quadratic program. To make this quadratic structure apparent using

matrix and vector notation, let W denote the N × I matrix whose i th column is

wi . Let pH denote the column vector whose i th element is p H
i . Let D denote the

I×I positive definite diagonal matrix whose i th diagonal element is (p H
i −pL

i )/qi .

Then the problem in equation (12) may be written compactly as

max
x

[x⊺pH − 1
2 x⊺D x] subject to W x = 0 and 0 ≤ x ≤ q. (13)

We first show that quantities that maximize aggregate utility exist. Then we

show that market-clearing prices exist by examining the dual problem to the util-

ity maximization problem.

Theorem 1 (Existence and Uniqueness of Optimal Quantities). There exists a

unique vector of trade rates x which solves the maximization problem in equation

(13).

Proof. The problem has the following properties.

1. Compactness and convexity: the inequality constraints on trade rates de-

fine the Cartesian product of I intervals, [0, q1]× ⋅ ⋅ ⋅ × [0, qI ], which is compact

and convex. The market-clearing conditions are linear constraints, which define

the intersection of hyperplanes. The intersection of a compact, convex set with
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hyperplanes is compact and convex. Thus, the set of vectors of trade rates x that

satisfies all constraints is compact and convex.

2. Feasibility: no trade (x = 0) generates well-defined utility for each order

(Vi(0) = 0), clears the market and is allowed on each order. No-trade is feasible.

3. Strict concavity: the objective V is strictly concave since the Hessian ma-

trix, −D, is negative definite.

It is a well-known principle of convex analysis that a strictly concave objec-

tive function on a non-empty compact and convex set has a unique maximizing

vector x (Bertsekas (2009, Propositions 3.1.1, 3.2.1)).

To prove that market-clearing prices exist, we exploit the duality between

the problems of finding optimal prices and quantities. For this, we define a La-

grangian function of the vector of trade rates x with three constraints: (1) the

market clears (Wx = 0); (2) the trade rates are greater than or equal to zero (x ≥ 0);

(3) the trade rates are less than or equal to their maxima (x ≤ q). In vector nota-

tion, the Lagrangian is defined by

L(x,πππ,λλλ,µµµ) ∶= x⊺pH − 1
2 x⊺D x−πππ⊺W x+µµµ⊺x+λλλ⊺(q−x). (14)

Since the multipliers associated with the market-clearing equality constraints

have the economic interpretation of market prices for assets, we use the no-

tation πππ = (π1, . . . ,πN)⊺ for these multipliers. Two vectors of multipliers, µµµ =

(µ1, . . . ,µI)
⊺ and λλλ = (λ1, . . . ,λI)

⊺, are associated with inequality constraints on

trade rates, with two constraints for each order.

The dual problem associated with the primal problem of maximizing aggre-

gate utility in equation (13) is then defined by

Ĝ(πππ,λλλ,µµµ) ∶=max
x

L(x,πππ,λλλ,µµµ) for πππ ∈RN , µµµ ≥ 0, λλλ ≥ 0. (15)

The dual problem is a minimization problem with infimum g defined by

g ∶= inf
πππ,λλλ,µµµ

Ĝ(πππ,λλλ,µµµ) subject to πππ ∈RN , µµµ ≥ 0, λλλ ≥ 0. (16)
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The dual problem in equation (16) is formulated as an infimum rather than a

minimum because we have not yet shown that there exists a solution (πππ, λλλ, µµµ)

which attains the infimum.

Theorem 2 (Existence of market-clearing prices). There exists at least one opti-

mal solution (πππ,λλλ,µµµ) to the dual problem in equation (16). The solutions x and

(πππ,λλλ,µµµ) are a primal-dual pair which satisfies the strict duality relationship

g =V (x). (17)

Proof of Theorem 2. The primal problem has the following properties.

1. Strict concavity: the objective function V (x) is strictly concave.

2. Finite solution: the primal objective is the sum of a finite number of con-

cave quadratic functions. Since each quadratic function is bounded above, the

solution to the primal problem is bounded above.

3. Linear constraints: the minimum rate constraints x ≥ 0, the maximum rate

constraints x ≤ q, and the market-clearing constraints W x = 0 are all linear.

4. Feasibility: no trade (x = 0) is feasible because it clears the market and is

allowed on each order.14

It is a standard result from convex programming that a concave primal prob-

lem, a finite supremum on the primal problem, feasibility, and linear constraints

guarantee that a solution to the dual problem exists and has the same optimal

value as the supremum to the primal problem even if a solution to the primal

problem does not exist as it does in our problem (Bertsekas (2009, Proposition

5.3.4)). Since Theorem 1 guarantees that a solution to the primal problem does

exist, the solution to the primal problem has the same value as the solution to

the dual problem.

Theorem 2 does not guarantee that market-clearing prices are unique. The

set of market-clearing prices is convex and may be unbounded. A trivial example

occurs when all orders are buy orders for individual assets, and there are no sell

orders. Then any sufficiently high price clears the market with zero trade. There

14Feasibility does not require a strict interior point (Slater’s condition) because the constraints
are linear in this problem (linear constraint qualification).
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may also be cases where the market-clearing price is not unique even when trade

occurs. A trivial example occurs when there is one buy order and one sell order

for the same asset (or portfolio) with the same maximum rate, and the buyer’s

lower limit price exceeds the absolute value of the seller’s lower limit price. In

this case, there is an interval of prices where both orders are fully executable. We

discuss a tie-breaking rule to pick a unique price in the next section.

5 Computation

In this section, we study the computational feasibility of flow trading. The ob-

jective is to provide a proof of concept, finding market-clearing solutions in less

than a second for a reasonably difficult problem with 500 assets and 100,000 or-

ders, using an ordinary workstation. We also study how computation time varies

with the numbers of assets and orders and parameters that affect how orders are

generated. Section 5.1 proposes a computational methodology. Section 5.2 ex-

plores computational performance in a simulation environment.

5.1 Methodology

Gradient Method For economists, Walrasian tatonnement is an intuitive ap-

proach for calculating market-clearing prices. An auctioneer announces tenta-

tive prices, and traders respond with their quantities. The auctioneer then ad-

justs prices in the direction proportional to net excess demand. The process

continues until the market clears.

Tatonnement is equivalent to applying the gradient optimization method to

an objective function of prices whose first-order conditions correspond to mar-

ket clearing. In our setting, such a function can be obtained as

G(πππ) ∶= inf
λλλ,µµµ

Ĝ(πππ,λλλ,µµµ) subject to µµµ ≥ 0, λλλ ≥ 0, (18)

where Ĝ(πππ,λλλ,µµµ) is given by equation (15). Theorem 2 implies that this function’s

first order conditions, G ′(πππ) = 0, correspond to market clearing.
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Since the function G(πππ) has a piecewise-linear derivative, it is continuously

differentiable, and the derivative satisfies a Lipschitz condition.15 These con-

ditions assure that the gradient method converges (Nesterov (2004, Corollary

2.1.2, p. 70)). While the guaranteed convergence rate is much faster than for the

traditional general-equilibrium theory problems discussed by Scarf and Hansen

(1973),16 it is too slow for our purpose. Reducing the error by a factor of one mil-

lion may require approximately one million iterations (Gondzio (2012)). It is a

prohibitively large number in our setting, where we need to solve for prices fre-

quently throughout the trading day (as opposed to a single high-stakes allocation

problem in a combinatorial auction).

5.1.1 Interior Point Method

We solve the quadratic program in equation (13) using an interior point method.

The literature shows that interior point methods are computationally more ef-

ficient than the more intuitive gradient method, both theoretically ( Nesterov

(2004, Chapter 4), Bertsekas (2009), Boyd and Vandenberghe (2004)) and in prac-

tice (Gondzio (2012)).17

Exchange as a Small Market Maker Theoretically, the interior point method

requires the existence of an interior point, a feasible allocation on the interior

of the constraint set. Such an allocation clears the market and strictly satisfies

the inequality constraints (0 < x < q). However, there is no natural candidate for

such an interior point in our setting. For example, no trade (x = 0), which satisfies

market clearing, does not lie on the interior of the constraints.

To ensure the existence of an interior point, we let the exchange act as a small

15There is a Lipschitz constant L such that ∣∇G(πππ+∆πππ)−∇G(πππ)∣ < L∣∆πππ∣ for allπππ and all ∆πππ.
16More modern work in computer science has focused on the complexity of computing

Brouwer and Kakutani fixed points (Daskalakis, Goldberg, and Papadimitriou (2009), Budish, Ca-
chon, Kessler, and Othman (2017)) and supports the claim that computing competitive equilib-
rium prices can be computationally difficult.

17For interior point methods, the maximum number of iterations has an upper bound pro-
portional to O(log(1/ε)), where ε is the proportion by which the error is reduced (Nesterov
(2004) Theorem 3.1). For example, reducing error by proportion 0.000001 (one-millionth) is
O(log(1,000,000)) ≈O(13.8).
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market maker for every asset. Specifically, the exchange submits a linear demand

curve for each asset n,

εn(π0n −πn), (19)

where εn is the slope, and π0n is a base price below which the exchange buys

and above which it sells. Here, εn can be a small positive number such that the

exchange does little trading. The strategy can be implemented by placing two

flow orders for each asset: one order to buy at prices below π0n and the other to

sell at prices above π0n .18 With the exchange as a small market maker, existence

of an interior point is assured. For example, pick any x such that 0 < x < q. Then

the exchange can soak up any uncleared quantities to clear the market.

Allowing modest exchange trading has two other benefits. First, it resolves

the tiebreaker problem, which arises when the convex set of market-clearing

prices contains more than one point (as we know is otherwise possible from

Theorem 2). Since the exchange’s demand schedule is strictly downward slop-

ing at every potential price for every asset, market prices are chosen uniquely

for all assets when multiple prices would otherwise be possible. For example, if

π0n is set at the previous market-clearing price for asset n, then the exchange’s

small trading will tend to break ties in favor of the prices closest to the previous

prices. Second, the exchange can absorb uncleared quantities due to rounding

error and inexact algorithm convergence to market-clearing prices, even when

the algorithm has converged to a target tolerance.

Solving the KKT Conditions We use a primal-dual interior-point method to

solve the Karush–Kuhn–Tucker (KKT) conditions. This approach finds market-

clearing prices and quantities utilizing information about both quantities from

18The buy order can be implemented with an upper limit price of pH = π0n , a lower limit price
of pL such that (pH −pL) is a large positive number, a portfolio weight vector with weight 1 on
asset n and weight 0 on all other assets, and a maximum rate of q = εn(pH −pL). The sell order
can be implemented analogously but with pH =−π0n . One very conservative way to set the lower
limit price is to choose pL such that εn(pH −pL) is the nth element of the matrix-vector product
abs(W)q, where abs(W) is the element-by-element absolute value of the portfolio weight matrix
W. This guarantees that the exchange can, in principle, take the other side of any combined
demands of all other market participants (satisfying 0 < x < q), even for extreme prices diverging
towards plus or minus infinity.
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the primal problem and prices and multipliers from the dual problem.

From here on, we redefine pH , pL , D, W, q, and x to include the exchange’s or-

ders. Then the results from Section 4 hold, and it is straightforward to show that

a solution to the KKT conditions clears the market. Further, since the exchange

has an active order at any market-clearing price, the solution is unique.

Theorem 3 (Karush–Kuhn–Tucker (KKT) Conditions with Exchange Trading). Any

solution of the KKT conditions in equations (20)–(23) for trade rates x ∶= (x1, . . . , xI)

and multipliers (πππ,λλλ,µµµ) is a solution to both the primal problem and dual prob-

lem:

W x = 0, 0 ≤ x ≤ q, (Primal Feasibility) (20)

πππ ∈RN , λλλ ≥ 0, µµµ ≥ 0, (Dual Feasibility) (21)

pH −Dx−W⊺πππ+µµµ−λλλ = 0, (Primal Optimality) (22)

λλλ ⋅(q−x) = 0, µµµ ⋅x = 0, (Complementary Slackness) (23)

where the dot product in equation (23) represents element-by-element multipli-

cation of vectors. With exchange trading defined in equation (19), there exists a

unique solution to the KKT conditions.

Proof of Theorem 3. Existence is a straightforward consequence of Theorems 1

and 2, which imply that a unique optimal primal solution x exists and some op-

timal dual solution (πππ,λλλ,µµµ) exists, and these solutions form a primal-dual pair

with the same optimized value. Uniqueness follows from the exchange having

a partially executable order for every asset at market-clearing prices. If market-

clearing prices were not unique, then any change in the price of any asset would

change the aggregate quantity demanded, which implies multiple market-clearing

quantities. Since the quantities are unique from Theorem 1, prices must there-

fore also be unique.

Instead of solving these conditions directly, the interior point method first

modifies the problem by replacing the complementary slackness conditions in

equation (23) with a set of constraints parameterized by a scalar ν̄ > 0:

λλλ ⋅(q−x) = ν̄1, µµµ ⋅x = ν̄1. (24)
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Then in the limit as ν̄→ 0, the sequence of solutions to the modified KKT condi-

tions satisfies the original KKT conditions in Theorem 3.

The modified complementary slackness conditions in equation (24) imply

that a solution to the modified KKT conditions satisfies the constraints with strict

inequality: 0 < x < q. Exchange trading plays a role in guaranteeing the existence

of such a solution for any ν̄ > 0.

Implementation Details Our algorithmic strategy solves the modified KKT con-

ditions in equations (20), (21), (22), and (24) iteratively by starting with an initial

guess for x, πππ, µµµ, λλλ satisfying 0 < x < q (interior point), µµµ > 0, λλλ > 0 (positive mul-

tipliers).19 To find search directions (∆x, ∆πππ, ∆µµµ, and ∆λλλ), we first substitute

x+∆x, πππ+∆πππ, µµµ+∆µµµ, and λλλ+∆λλλ for x, πππ, µµµ, and λλλ, respectively into the system

of equations representing the modified KKT conditions with the value of ν̄ set

to 0. Then we linearize the system of equations by dropping the second order

terms (∆x ⋅∆µµµ and ∆x ⋅∆λλλ in the modified complementary slackness conditions

in equation (24)) and solve the resulting linear system for ∆x, ∆πππ, ∆µµµ, and ∆λλλ.20

The solution vectors are then multiplied by a scalar α (with 0 < α ≤ 1) to ensure

that the best guess for the next iteration x+α∆x,πππ+α∆πππ,µµµ+α∆µµµ,λλλ+α∆λλλ is such

that x remains an interior point and the multipliers remain strictly positive, with

ν̄ eventually approaching zero. Since the KKT conditions are essentially first-

order conditions, the linearized approximation is a version of Newton’s method.

On each iteration, the linear system is solved in the following way. The mul-

tipliers ∆µµµ and ∆λλλ are expressed as functions of ∆x, easy invertibility of the di-

19Our own Python implementation of the interior point methodology follows the algorithm de-
scribed by Vandenberghe (2010) for the CVXOPT package and is tailored to our specific quadratic
program (which has an invertible diagonal matrix D and simple “Euclidean cone” constraints
0 ≤ x ≤ q). One version of the algorithm is implemented on cpus using the Python packages
numpy and scipy. Another version is implemented on both cpu and gpu using the Python pack-
age Pytorch. Results are reported for the Pytorch implementation on the gpu, which was three
times faster than either cpu version. Our implementation code will be posted publicly upon pub-
lication and is available to interested readers upon request. The Python programming language
and the CVXOPT package (not actually used) are free and publicly available.

20The KKT system is nonlinear in the unknownsπππ, x,µµµ, andλλλ only because the complementary
slackness condition in equation (24) involves element-by-element multiplication of x by µµµ and
λλλ. For µµµ (and analogously for λλλ), linearizing (x+∆x) ⋅ (µµµ+∆µµµ) sets the second-order term term
∆x ⋅∆µµµ to a vector of zeros.
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agonal matrix D allows x to be expressed as a simple function of πππ, and substi-

tuting the solution for x into the market-clearing condition reduces the problem

to solving an N ×N positive definite system for a price update to πππ, for which a

Cholesky decomposition is used.21 A mathematical derivation of the algorithmic

details is in Appendix C.

We can think of the positive definite matrix to be decomposed as a “liquidity

matrix” measuring the marginal change in quantities for each asset as a function

of small changes in prices for all assets, taking into account both demand for

individual assets and demand for portfolios. This liquidity matrix changes with

each iteration because it is constructed by implicitly assigning weights to each

order based on changing values of multipliers µµµ and λλλ. The weights are close to

zero when the multipliers push the trade rate xi close to the boundary of the in-

terval [0, qi ], and closer to one if the trade rate xi implied by the multipliers is

closer to the midpoint of the interval [0, qi ]. The order is expected to be relevant

for price discovery at the margin when it is partially executable, which, in the

context of an interior point method, means that the weight implied by the mul-

tipliers is relatively closer to one than to zero. A new Cholesky decomposition is

needed on each iteration to incorporate updated weights from the most recent

iteration into the calculation of the new search direction.

When there is great liquidity for some portfolios (e.g., the market index) but

little liquidity for some other portfolios (e.g., thinly traded individual assets), the

matrix to be decomposed is poorly conditioned and nearly singular. By supply-

ing small amounts of liquidity to all assets, exchange trading improves the con-

dition number of this matrix, which makes the Cholesky decomposition unlikely

to fail. When there is insufficient exchange trading to prevent the Cholesky de-

composition from failing, the algorithm regularizes the matrix by adding small

positive quantities to the diagonal. This does not change the optimization prob-

lem being solved, but it makes the algorithm more robust at the expense of more

21As in the original KKT system, the revised KKT system is nonlinear because the revised com-
plementary slackness condition involves element-by-element multiplication of x+∆x by µµµ+∆µµµ
andλλλ+∆λλλ. To correct for the error created by dropping the second-order terms∆µµµ ⋅∆λλλ, we solve
the linear system a second time on each iteration (using the same Cholesky decomposition), in-
cluding a correction term described by Mehrotra (1992) in the second solution.
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iterations.

5.2 Results

5.2.1 Simulating the Order Book

We simulate an order book with parameter settings designed to make the prob-

lem realistic and algorithmically difficult. Our goal is to provide a proof of con-

cept, demonstrating that market-clearing prices for 500 assets and 100,000 or-

ders can be solved in less than one second. The number 500 is chosen based

on the number of stocks in the S&P 500 index. The number 100,000 is chosen

somewhat arbitrarily. After examining the base case, we show how the numbers

of assets and orders affect computation times. We also test the robustness of the

algorithm by examining how computation times vary when parameter values are

much larger or smaller than base-case settings.

Of the 100,000 orders, 50,000 are for individual assets (an average of 100 or-

ders for each asset), 25,000 are for various index portfolios, and 25,000 are for

pairs trades. There are also an additional 1000 exchange orders, one buy order

and one sell order for each asset. These exchange orders have a tiny slope of 0.01,

which corresponds to buying one dollar’s worth of an asset when its price falls by

one percent. It is intended that the exchange will do minimal trading.

To generate a mix of assets—some very high volume and some thinly traded—

we create great variation in the number of orders across assets and the size of

orders within assets. The expected number of orders for each asset and the size

of orders for a given asset both follow lognormal distributions with large log-

standard-deviations of 1.7 and 1.5, respectively.22 This results in a few individ-

ual assets having a large number of orders and some assets having zero or very

few orders. Within assets, a few orders are expected to be gigantic and most are

expected to be relatively tiny. Mean order size is defined using the market mi-

crostructure invariance hypothesis of Kyle and Obizhaeva (2016), which makes

mean order size for an individual asset or index proportional to the cube root of

22A log-standard-deviation of 1.7 means that a plus-or-minus one standard deviation change
in the log of a random quantity multiplies or divides the random quantity by e1.7

≈ 5.47.
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expected dollar volume for the individual asset or index.

Theoretically, investors can choose from infinitely many different portfolios

by combining any of the 500 assets with arbitrary weights for each asset. In our

simulations, however, we restrict portfolios to six different types of index portfo-

lios and to randomly generated pairs trades. This is a limitation of our simula-

tion environment. For index portfolios, we construct value-weighted and equal-

weighted portfolios of the market index, “size” indices, and “industry” indices,

altogether 32 index portfolios in the base case and up to 202 index portfolios in

the high case. “Size” is defined as expected dollar volume.23 “Industry” indexes

are defined by arbitrarily grouping stocks so that the number of stocks and distri-

bution of size do not vary across industries. A large proportion of index trading

is the value-weighted market index (75%), reflecting its high volume in practice.

Pairs trades randomly buy either an asset or an index portfolio and sell an equal

expected dollar value of another random asset or index.

Limit prices are distributed around an arbitrary initial price, normalized to

$100 per share or index unit. This is also the price at which the exchange trades a

zero quantity.24 For individual assets and index portfolios, the midpoint between

upper and lower limit prices has a lognormal distribution centered at $97.00 for

buy orders and $103.00 for sell orders, with an arbitrary log-standard-deviation

of 10%. The expected difference between upper and lower limit prices is as-

sumed to be very small, one basis point (i.e., p H
i = $100.005, pL

i = $99.995), with a

very large log-variance of 2.0. Orders have equal probabilities of buying or selling

the given individual asset or portfolio.

These assumptions are realistic because liquidity and trading volume vary

enormously across stocks, market indexes (like the S&P 500 E-mini futures con-

tract or the SPDR ETF) have greater liquidity than any single stock, and long-

short trading is widely practiced. These assumptions also make the problem al-

23The simulation environment has no concept of market capitalization from which to define
size. If it is assumed that all stocks have the same expected turnover rate of unmodeled market
capitalization, then market capitalization is perfectly correlated with expected dollar volume.

24The simulations are structured so that normalizing prices scales prices and quantities but
does not otherwise affect the algorithm (e.g., dollar values of all orders and trades are unaffected
by this scaling).
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Base Low High
Description

Number of assets 500 . .
Number of orders 100000 . .
Slope of exchange’s demand schedule (shares traded per dollar price change at $100/share) 0.0100 . .
Fraction of orders for individual assets 0.5000 0.0500 0.9500
Fraction of orders for indexes among orders for portfolios 0.5000 0.0500 0.9500
Number of size indexes 5 2 50
Number of industry indexes 10 2 50
Probability an index order is a market index order 0.8000 0.0500 0.9500
Probability a size or industry index order is a size index order 0.5000 0.0500 0.9500
Probability a mkt index order is an EW mkt index order 0.0625 0.0500 0.9500
Probability a size index order is an EW size index order 0.2500 0.0500 0.9500
Probability an industry index order is an EW industry index order 0.2500 0.0500 0.9500
Standard deviation of expected number of orders across assets 1.7000 0.1000 3.0000
Standard deviation of order size given asset 1.5000 0.1000 3.0000
Standard deviation of upper limit price as fraction of initial price 0.1000 0.0100 1.0000
Mean deviation of upper limit price as fraction of initial price standard deviation 0.3000 0.0100 1.0000
Mean difference between upper and lower limit prices (basis points) 1.0000 0.0100 100.0000
Standard deviation of difference between upper and lower limit prices 2.0000 0.1000 3.0000
Fraction buy orders for indexes and assets 0.5000 0.1000 0.9500

Table 2: Parameters for simulating an order book.

gorithmically difficult because huge variation in liquidity across assets and port-

folios makes the liquidity matrix very poorly conditioned, and high-volume in-

dex trading makes the liquidity matrix highly non-diagonal. Further, huge varia-

tion in order size and the tiny difference between upper and lower limit prices

stress the algorithm by making the liquidity matrix change a great deal when

prices change by small amounts.

In addition to the base-case simulation parameters described above, we also

test the robustness of the algorithm by using low and high values of parameters.

Table 2 lists base-case, low, and high values for the parameters. Further details

on the simulation methodology are provided in Appendix B.

5.2.2 Computation Outcomes

When performed on an ordinary office workstation—an AMD Ryzen Threadrip-

per 3960X processor, 24 cores running at 3.8GHz, and 128GB of memory run-

ning at 3600MHz; RTZ 2070 gpu at 1710 MHz with 8 GB of RAM—computation

of market-clearing prices and quantities takes about 0.1451 seconds (median) in

the base-case scenario with 500 assets and 100,000 orders. Our results are ob-
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Figure 2: Computation Time As a Function of the Number of Orders and the Number of
Assets

Panel A varies the number of orders. Panel B varies the number of assets. In both panels,

all other parameters are set to their base-case values. Each dot represents one simulated

order book, and there are approximately 500 simulations in each panel. The small dis-

continuity in Panel B around 600 assets likely is a hardware artifact, such as the need to

use RAM rather than cache for sufficiently large problems.

tained using the gpu and two cores.25 Uncleared quantities are near zero, equal

to 8.7 dollars per trillion dollars of total volume.26

The amount of exchange trading is small. On average, the exchange trades

3.2 dollars per million dollars of trading volume. Across 51 repetitions, the maxi-

mum, minimum, and standard deviation of exchange trading are 5.99, 2.32, and

0.73 dollars per million dollars. In practice, we expect the exchange to be able to

avoid accumulating significant inventories by adjusting its base prices over time.

Exchange trading, while small, has a significant effect on the cross-sectional

standard deviation of market-clearing prices for assets with thin order books.

25Computation times do not change much when more cores are used. This is probably because
easily parallelized computations are done on the gpu, and other calculations do not benefit from
using multiple cores. The computation times are stable across 401 repetitions, with a maximum
of 0.1603 seconds, a minimum of 0.1365 seconds, and a standard deviation of 0.0058 seconds.

26All calculations are done with 64-bit floating-point numbers. If calculations are done with 32-
bit floating-point numbers, computation time is more than twice as fast, but uncleared quantities
are typically much larger.
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Without exchange trading, assets with thin order books have essentially inde-

terminate prices. The algorithm arbitrarily chooses prices of these assets among

multiple clearing prices. This drives the standard deviation of price changes to

an immense value of 14.4 million percent. The small amount of exchange trading

used in the simulations brings the standard deviation of prices down to a much

more reasonable 14.19%. In practice, we expect market-making firms to provide

liquidity in thinly traded stocks and stabilize prices.

Figure 2 describes how computation times vary with the number of assets

and the number of orders. In the first panel, as the number of orders increases

from 100,000 to 1,000,000 and 10,000,000, while keeping the number of assets

constant, computation times increase from 0.1451 to 0.5639 and 4.67 seconds.

The computation time crosses one second with approximately 1,930,000 orders.

When the number of orders is large, computation time is approximately propor-

tional to the number of orders. In the second panel, as the number of assets

increases from 500 to 2,000 and 10,000, again keeping the number of orders con-

stant, computation times increase to 1.1021 and 56.3 seconds. The computa-

tion time crosses one second with 1,800 assets and ten seconds with 5,200 as-

sets. The increased computation times when the number of assets increases are

mainly due to the computation costs of constructing the liquidity matrix input

to the Cholesky decomposition and the Cholesky decomposition itself (which is

an O(N 3) algorithm in the number of assets).27

For robustness, we alter each parameter’s value to the minimum and the

maximum of a wide range, as described in Table 2, while keeping the number of

orders, the number of assets, and the slope of exchange trading constant. Com-

putation times remain of the same order of magnitude (0.1159 to 0.2655 seconds

compared to 0.1459 seconds in the base-case setting). Most parameters have a

modest effect on computation times except for the standard deviation of order

size and the fraction of buy orders. These two parameters affect the balance of

the supply and demand of the order book. Changing the standard deviation of

27Both figures are almost flat initially. With a small number of orders or assets, the overhead as-
sociated with the Python interpreter becomes a significant fraction of computation times. When
there are only 10 assets and 20 orders, the computation time is about 0.0552 seconds, which we
believe is likely a good estimate of the overhead associated with the Python interpreter.
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order size from 1.5 to 3 increases computation time to 0.2078 seconds. Changing

the fraction of buy orders from 0.5 to 0.1 increases computation time to 0.2344

seconds. Extreme values for these parameters make the order book more asym-

metric, which in turn makes the problem more difficult to solve.

While having little effect on computation times, the difference between up-

per and lower limit prices significantly affects the quality of market clearing. The

low mean difference scenario (0.01 basis points) and the high standard deviation

scenario (3.00) increase the amount of uncleared quantities from 8.7 dollars per

trillion to 120 and 160 dollars per trillion. Further making the mean difference

ten times smaller makes uncleared quantities ten times larger. This occurs be-

cause as the upper and lower limit prices become closer (p H
i → pL

i ), the upper

limit price also becomes closer to the market-clearing price (p H
i → pi ) for all ex-

ecutable orders. The ratio between the two differences ((p H
i − pi)/(p H

i − pL
i )),

each of which approaches zero, becomes numerically inaccurate. This makes

the trade rate in equation (4)—and thus market-clearing quantities—inaccurate

and increases uncleared quantities.

Finally, we consider an extreme scenario by setting all parameters simultane-

ously to those that increase computation times (either the minimum or the max-

imum of the range depending on the parameters). In this case, the computation

time increases to 0.4291 seconds, approximately a factor of three relative to the

base case and still below half a second, and the uncleared quantities increase to

1.5 dollars per million of total volume. The reason uncleared quantities increase

so much in this extreme scenario, relative to the base case, is that the combina-

tion of a small mean difference between the upper and lower limit prices and a

high standard deviation of order sizes makes some demands very close to a step

function, creating numerical error. While 1.5 dollars per million is still arguably

small as an amount of inaccuracy, it may be prudent to adopt a lower bound for

the difference between the upper and lower limit prices, such as one basis point.

Discussion Overall, market-clearing prices and quantities are computed quickly

and accurately with minimal trading by the exchange. Computation times grow

with the numbers of orders and assets, as expected. Reassuringly, the growth
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with the number of orders appears to be linear, and problems with several thou-

sand assets can be solved in about one to ten seconds on an ordinary worksta-

tion. We interpret these results as an initial computational proof of concept for

the flow trading market design.

In a production environment, we expect more powerful computers and more

refined algorithms will make it easier to calculate market-clearing prices and

quantities with even greater speed. Future algorithms may be better able to take

advantage of parallel processing across more cores and take advantage of ad-

vances in quadratic programming and sparse matrix multiplications, which play

key roles in our computation and are active areas of research in computer sci-

ence.

6 Microfoundation for Flow Portfolio Demands

Flow portfolio demands are demands per batch auction in portfolio units as piecewise-

linear and downward-sloping functions of portfolio prices (equation (2)). This

language, while more general than standard limit orders, is restrictive in that a

market participant’s demand for each asset generally depends on the prices of

all assets. Section 6.1 provides a microfoundation for the language in a CARA-

normal framework. Section 6.2 describes how the logic extends to general pref-

erences and discusses limitations of our approach.

6.1 The Static CARA-Normal Framework

The CARA-normal model (Grossman (1976), Grossman and Stiglitz (1980), Ad-

mati (1985)), in which agents have constant absolute risk aversion (CARA) and

asset returns are joint-normally distributed, is widely used in economics and fi-

nance. We use the CARA-normal model to study whether flow portfolio demands

can be used to express traders’ optimal demands. Although the model is static,

we interpret the static optimal demands as optimal demands per batch. Several

models that study dynamic strategic trading in the CARA-normal environment

(Vayanos (1999), Du and Zhu (2017), Kyle, Obizhaeva, and Wang (2018), Sannikov

41



and Skrzypacz (2016)) show that trading gradually over time is optimal to man-

age price impact. While these models focus on the case of a single risky asset, we

conjecture that the insights would carry over to the trade of portfolios.

Assume there are N risky assets and one safe asset, whose return is normal-

ized to one. Assume there is a single trader who subjectively believes that the

risky assets’ payoffs, denoted by vector v, are joint-normally distributed with

mean m and covariance matrix ΣΣΣ. The trader has CARA preferences with risk

aversion parameter A. Since there are no wealth effects with CARA preferences,

we set the trader’s wealth to zero for simplicity.

Consider the trader’s optimization problem given a fixed, known set of prices—

let πππ denote the vector of prices for the N risky assets. Assume that the trader is

a perfect competitor who cannot affect these prices with their trading; we will

discuss the case where the trader has price impact shortly. The trader’s portfolio

optimization problem, given her beliefs, risk preferences, and prices, is given by

max
ωωω

E[−exp−A (v−πππ)⊺ωωω] . (25)

Joint normality allows us to transform the above into the quadratic optimiza-

tion problem:

max
ωωω

[(m−πππ)⊺ωωω− 1
2 Aωωω⊺ΣΣΣωωω] . (26)

The first order condition implies that the optimal portfolio is given by

ωωω = (AΣΣΣ)−1(m−πππ). (27)

Observe that the optimal demand for each asset depends on its covariance with

the other assets, via the associated row of the inverse covariance matrix, and the

entire vector m−πππ. Thus, as is well known, demand for each asset generally

depends on the prices of all assets.

Implementing the Optimum with Flow Portfolio Demands If the prices πππ are

known and fixed, the trader can implement their optimum as defined in equa-

tion (27) with a single flow portfolio demand with portfolio weights wi =ωωω, max-
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imum rate qi = 1, and any limit prices with p H
i > pL

i >πππ
⊺wi such that the order is

fully executable at the known prices.

Now consider the (more realistic) case where the trader does not know the

exact market-clearing prices in advance. Predicting the exact market-clearing

prices is especially difficult when prices are rapidly fluctuating over time. To

implement the optimal demand, the trader must therefore make their quantity

traded a function of unknown prices πππ. Equation (27) specifies a linear demand

curve in which the demand for asset i is a linear function of the price of some

arbitrary portfolio (the i th row of the matrix ΣΣΣ−1). These demands are not ex-

pressed in a form consistent with our flow portfolio demands because the de-

mands are not functions of the price of the asset itself and may not even be down-

ward sloping.

Next, we show that traders can nevertheless implement their optimum ac-

cording to equation (27) with flow portfolio demands, without any knowledge of

prices. To do this, we use a singular value decomposition to rotate the asset space

so that the optimal demand is for a combination of portfolios where the number

of units of each portfolio demanded is a downward-sloping linear function of the

price of the portfolio itself. Note that although we require flow portfolio demands

to be piecewise linear, not linear, the two can be made practically equivalent by

setting the range between upper and lower limit prices very wide.

Every matrix ΣΣΣ has a singular value decomposition of the form ΣΣΣ = U∆∆∆V⊺,

where U and V are matrices with orthonormal rows and∆∆∆ is a diagonal matrix. If

the matrix is symmetric, then U =V; if the matrix is positive semidefinite, then all

of the diagonal elements of∆∆∆ are positive. Since the covariance matrixΣΣΣ is posi-

tive semidefinite (symmetric), its singular value decomposition therefore has the

form

ΣΣΣ =U∆∆∆U⊺, (28)

where U is an orthonormal matrix, and ∆∆∆ is a diagonal matrix with positive ele-

ments. Let K ≤ N denote the rank of ΣΣΣ, let δi denote the i th nonzero diagonal
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entry of∆∆∆, and let ui denote the corresponding column of U.28 Then we have

ΣΣΣ−1 =
K

∑
i=1

1

δi
ui ui

⊺. (29)

Using this, we can express the optimal portfolio in equation (27) as

ωωω =
K

∑
i=1

(
ui
⊺m−ui

⊺πππ
Aδi

) ui . (30)

The right hand side of this equation is a linear combination of demand curves for

portfolios of assets, where u1, . . . ,uK are the portfolios, and the scalar quantity

1

Aδi
(ui

⊺m−ui
⊺πππ) (31)

is the number of units of portfolio ui demanded. The quantities δi , ui
⊺m, and

ui
⊺πππ correspond to the variance, the expected payoff, and the price of the portfo-

lio ui . Since the demand for each portfolio only depends on the portfolio’s price,

traders can achieve the optimal trade in equation (27) by using K demand curves

for portfolios, each of which is a downward-sloping linear function of that portfo-

lio’s price (ui
⊺πππ). The demand curve is linear due to CARA-normal assumptions,

it is a function of the price of the portfolio because the covariance matrix ΣΣΣ is

symmetric (so that U = V diagonalizes ΣΣΣ), and it is downward sloping because

the covariance matrix is positive semidefinite (which makes δi positive).

The theorem below summarizes the results.

Theorem 4. Consider a static CARA-normal framework in which a trader believes

that the covariance matrix of the asset payoffs has rank K . Then the trader’s op-

timal demand (equation (27)) can be represented as the sum of K downward-

sloping demand curves for portfolios, each of which depends only on that port-

folio’s price (equation (30)).
28When K is strictly less than N (i.e., the matrixΣΣΣ is positive semidefinite but not positive defi-

nite), we can use the pseudo-inverse instead of the inverse to define the demand curve.
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Practical Implementation We can decompose the expected utility from the

optimal portfolio into the contribution of each rotated asset. Substituting the

optimal portfolio in equation (30) into equation (26), and some algebraic ma-

nipulations (see details in Appendix D), allows us to express the expected utility

(certainty equivalent) from trading at pricesπππ as

K

∑
i=1

1

2A
(

ui
⊺m−ui

⊺πππ
√
δi

)

2

. (32)

This formula shows that the benefit of each portfolio is determined by its squared

Sharpe ratio as perceived by the trader.29 In practice, rather than trading all K

portfolios, traders may select only those portfolios which they perceive to have

sufficiently high squared Sharpe ratios.

Price Impact and Strategic Trading Thus far, we have assumed that traders are

perfect competitors, behaving as if they have no price impact. In practice, trades

can move prices. Many institutional traders dedicate considerable time and re-

sources to managing price impact. Now we show that flow portfolio demands

can still be used to implement the optimal demands when traders behave strate-

gically, taking into account their price impact.

Following the literature (Kyle (1989)), we assume that traders believe that

their price impact is linear in the quantity they trade. We further assume that the

price impact matrix is positive semidefinite.30 Positive semidefiniteness of the

price impact matrix means that buying more of a portfolio increases the portfo-

lio’s price or leaves its price unchanged. That is, for each trader, there is an N ×N

29Recall, the Sharpe ratio refers to the risk premium (i.e., the expected return minus risk-free
rate) divided by the standard deviation. Here, the risk-free rate is zero since the safe asset’s return
is normalized to one.

30Malamud and Rostek (2017) show that when the covariance matrix is the same for all traders,
each trader’s equilibrium price impact matrix is proportional to the covariance matrix, which
implies that all price impact matrices are positive semidefinite. It is left for future study to deter-
mine under what conditions the price impact matrix is positive semidefinite in a more general
setting.
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positive semidefinite matrixΛΛΛ, such that

πππ =πππ0+ΛΛΛωωω, (33)

whereπππ0 is the vector of hypothetical prices that would prevail if the trader were

not to trade, and the nth row ofΛΛΛ corresponds to the marginal impact of trading

assets 1 to N on the price of asset n.

With price impact, the trader’s optimal strategy is a slight modification of the

competitive solution in equation (27), given by

ωωω = (AΣΣΣ+ΛΛΛ)−1(m−πππ). (34)

Again, we can use singular value decomposition to rotate the asset space such

that the optimal portfolio can be implemented by combining flow portfolio de-

mands that only depend on the portfolio’s price. The number of required flow

portfolio demands corresponds to the rank of AΣΣΣ+ΛΛΛ. Both the covariance ma-

trix and the price impact matrix ΛΛΛ are positive semidefinite. Since the sum of

two positive semidefinite matrices is also positive semidefinite, AΣΣΣ+ΛΛΛ is posi-

tive semidefinite. Therefore, the demand curve for each portfolio is downward

sloping.

Theorem 5. Consider a static CARA-normal framework in which a trader believes

that her price impact is linear and positive semidefinite (equation (33)). Then the

strategic trader’s optimal portfolio (equation (34)) can be represented as the sum

of downward-sloping demand curves for portfolios, each of which depends only

on that portfolio’s price.

Recall, when proving the existence and uniqueness of market-clearing prices

and quantities in Section 4, we treat orders as if they represent traders’ true val-

uations. This simplification does not imply that we can infer traders’ valuations

from their orders. Strategic trading is an important reason that there often is a

gap between true and as-bid valuations.
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6.2 Approximations for General Preferences and Limitations

We can use the logic above to show that for any strictly concave, twice continu-

ously differentiable quasi-linear preference, the optimal demand can be locally

approximated with a combination of downward-sloping linear demand curves

for portfolios, each of which depends only on that portfolio’s price.

Suppose a trader has quasi-linear preferences u(ωωω)+m, where u(ωωω) is utility

over assets and m is money. Then the optimal demand is given by the first order

condition (u′(ωωω) = πππ), and the demand for each asset generally depends on all

prices. Since u(ωωω) is strictly concave and twice continuously differentiable, the

optimal demand is continuously differentiable. We can use a Taylor series to

linearly approximate the optimal demand at market-clearing prices πππ around a

given set of pricesπππ0 (for example, the prices at the previous period) as

ωωω(πππ) =ωωω(πππ0)+
∂ωωω

∂πππ
(πππ−πππ0), with

∂ωωω

∂πππ
=u′′(ωωω)−1, (35)

where ∂ωωω/∂πππ is a matrix whose (i , j)th element is the derivative of the optimal

demand for the i th asset with respect to the price of the j th asset.

Since there is no wealth effect with quasi-linear preferences and u(ωωω) is strictly

concave, the matrix ∂ωωω/∂πππ is negative semidefinite (Slutsky symmetry). Thus, we

can use a singular value decomposition to diagonalize the matrix as in equation

(28). This implies that, as in equation (29), there exist column vectors u1, . . . ,uK

and strictly negative values δ1, . . . ,δK , where K is the rank of the matrix ∂ωωω/∂πππ,

such that
∂ωωω

∂πππ
=

K

∑
i=1

δi ui ui
⊺. (36)

Using this, we can express the optimal demand in equation (35) as

ωωω(πππ) =ωωω(πππ0)+
K

∑
i=1

(δk ui
⊺(πππ−πππ0)) ⋅ui . (37)

Hence, the optimal demand is expressed as a linear combination of demands for

K +1 portfolios: the optimal portfolio at fixed prices πππ0 and K orthogonal port-

folios u1 . . . uK . Importantly, the optimal demand for each of the K portfolios is
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a linear downward-sloping demand curve that depends only on the price of that

portfolio (ui
⊺πππ). It is downward-sloping because δk is strictly negative, which

follows from negative semidefiniteness of the matrix ∂ωωω/∂πππ.

Limitations There are limitations to our approach. First, since the Taylor series

approximates a potentially nonlinear demand locally, traders need to replace on

old Taylor series approximation with a new one when price volatility makes the

old Taylor series approximation sufficiently inaccurate. This requires canceling

old orders and replacing them with new ones. Second, when there is asymmetric

information, the optimal demand for portfolios may depend on other portfolios’

prices through learning from prices. As a result of learning, the matrix ∂ωωω/∂πππ

may not be symmetric or negative semidefinite. Lastly, if preferences are not

quasilinear and exhibit income or wealth effects, the matrix (∂ωωω/∂πππ) is also not

necessarily symmetric or negative semidefinite. When it is not negative semidef-

inite and symmetric, it may not be possible to find portfolios such that the de-

mand is a function of the portfolio’s price and the demand is downward sloping.

7 Conclusion

This paper has introduced a new market design for trading financial assets, such

as stocks, bonds, futures, and currencies. It introduces a simple language for

trading portfolios of assets and combines it with continuous-scaled limit orders

from Kyle and Lee (2017) and frequent batch auctions from Budish, Cramton,

and Shim (2015). Technical foundations for the new market design include exis-

tence and uniqueness results, computational results, and microfoundations for

our approach to trading portfolios.

The combination of continuous-scaled limit orders and frequent batch auc-

tions yields a market design in which time is discrete, and prices and quanti-

ties are continuous. The status quo market design has these reversed. As has

been widely documented, treating time as a continuous variable and imposing

discreteness on prices and quantities causes significant complexity, inefficiency,

and rent seeking in modern financial markets. See Appendix A for discussion of
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several practical implementation details and policy issues related to our market

design.

Our design’s language for trading portfolios is, on the one hand, rich enough

to allow traders to directly express many important kinds of trading demands—

customized ETFs, pairs trades, general long-short strategies, general market-making

strategies, all with tunable urgency—while also allowing for guaranteed existence

and uniqueness of market-clearing prices and quantities and their fast compu-

tation. Our approach offers an attractive tradeoff between expressiveness and

computability.
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For Online Publication

A Implementation and Policy Issues

This appendix discusses several practical implementation and policy issues re-

lated to the flow trading market design.

Batch Interval What is the optimal batch interval? The best choice likely de-

pends on the asset class. We discuss three considerations: computation limits,

factors that favor a shorter interval subject to computation constraints, and an

open question about whether a longer interval is desirable for thinly traded as-

sets.

The batch interval must be long enough to compute prices and trades. Our

simulations suggest that a batch interval on the order of one second may be suf-

ficient for many asset classes. That said, the computational simulations serve

as a proof-of-concept rather than as a final word. There are many reasons why

a real-world implementation could be meaningfully faster than our implemen-

tation. There is also the possibility that real-world markets may take longer to

compute for reasons not anticipated by our simulation environment.

Next, three factors favor a batch interval as short as computationally feasi-

ble. First, a fast batch interval makes trading smoother—that is, smaller quanti-

ties are traded per batch. Smoother trading can be helpful to traders with com-

plex dynamic trading strategies, who may wish to adjust their orders over time

as information evolves. At the same time, traders with simpler strategies can

leave their orders be, without much adjustment over time, whether the batch

interval is long or short. Second, if the assets in question are traded in frag-

mented markets, and some of those markets are continuous, then the interaction

of a discrete-time market with a continuous-time market is likely simplest if the

discrete-time interval is short (Budish, Lee, and Shim (2021)). Third, information

policy is more robust with a shorter batch interval, as there will be less pressure

for within-batch information dissemination.

Last, we acknowledge the open question of whether a longer batch interval
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is desirable for more thinly traded assets. This is a common intuition among

regulators and practitioners (see, e.g., U.S. Securities and Exchange Commission

(2019a,b), Schwartz (2001), and references therein). Du and Zhu (2017) provide

some theoretical grounding for this intuition. A hard conceptual question is how

to think about the batch interval for markets consisting of heavily traded and

thinly traded assets. For instance, the U.S. equities market consists of about 7000

assets, some of which trade many times per second while others trade only a few

times per hour. Similarly, in many sovereign debt markets, on-the-run assets are

heavily traded while off-the-run assets are thinly traded.

Information Policy Information policy is typically discussed in terms of pre-

trade and post-trade transparency. Concerning post-trade transparency, the ex-

change could publish the trading volume and market-clearing price of each asset

promptly after the quantities and price have been calculated. In addition, the ex-

change may also publish information about the aggregate net demand curve for

each asset, holding the prices of all other assets fixed. This information policy

is analogous to publishing the outstanding limit order book in continuous mar-

kets. Then traders can make inferences about the price impact costs of their or-

ders. The exchange would not publish information about the identity of traders,

nor would it publish individual orders, since portfolio weights may reveal trading

strategies.

For pre-trade transparency, we envision that the post-trade information from

the auction at time t is the complete pre-trade information for the auction at

time t +1. As discussed by Budish, Cramton, and Shim (2015), this is the appro-

priate discrete-time analog of information policy in the continuous market. In

both cases, the exchange (i) receives an order, (ii) economically processes the or-

der, and then (iii) disseminates information about what happened (e.g., a trade

or an order book update). The difference with discrete time is that the economic

processing in (ii) occurs in discrete time, and hence the information dissemina-

tion in (iii) occurs in discrete time as well.31

31As pointed out by Budish, Cramton, and Shim (2015), in the continuous-time market it may
look like traders can see information about the state of an asset’s order book “right now,” but that
is an illusion—a trader’s information is always as of a latency ago because it takes non-zero time
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The reason not to disseminate additional information between batch auc-

tions, e.g., about the arrival of new orders or the cancelations of outstanding

orders, is that such information could lead to gaming. For example, suppose

the batch interval is one second. A trader could submit a new order to buy a

large quantity 100 milliseconds into the batch interval with the intention to can-

cel that order and instead send a new order to sell 999 milliseconds into the batch

interval. In this scenario, the order to buy was never economically binding nor

economically processed by the exchange, so sending this purposefully mislead-

ing message was costless.

We acknowledge that the pressure to disseminate information between auc-

tions grows with the batch interval. This is one reason why a batch interval

that is as short as computationally feasible may be appropriate for many asset

classes. Additionally, one could extend flow trading to include order types that

are economically binding for the duration of the current auction (i.e., cannot

be canceled until after the next auction), with within-auction information dis-

seminated about updates to this binding subset of the order book. Professional

market-making firms might deploy such orders to attract trading volume, but we

view this discussion as speculative and in need of future research.

With direct trade of arbitrary portfolios, information about the depth of the

order book is inherently complex—there are infinitely many possible portfolios.

The exchange might publish limited depth information about a fixed list of ref-

erence portfolios, alongside the depth information for individual assets.

Trust and Transparency Flow trading has the desirable property that all orders

that are executable at published market-clearing prices do in fact execute. This

property allows investors to confirm that their orders received correct execution

from published prices.

By contrast, potentially executable orders in current markets do not consis-

for the exchange’s matching engine to economically process new messages in step (ii) and to dis-
seminate updates in step (iii). Discrete time makes more transparent that a trader’s information
as of time t is the state of the order book as of time t −∆, whether ∆ is the latency of information
travel in a continuous market or the duration of the batch interval in a discrete market. Discrete
time also eliminates the arms race for speed to reduce ∆.
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tently execute when other orders execute at the same price at nearly the same

time. Uncertain execution erodes trust and market confidence, particularly among

traders without state-of-the-art speed technology, whose orders are more apt to

get poorer execution.

This difference between flow trading and the current market design arises

from combining discrete time and continuous prices and quantities. Contin-

uous prices and quantities make it possible to execute all executable orders at

a market-clearing price without any need for rationing. Discrete time makes it

possible to process multiple executable orders simultaneously in a batch pro-

cess.

Fairness In traditional markets, the concept of “bid-ask spread” captures many

of the features participants complain about as unfair. When there is a minimum

tick size and the bid-ask spread is one-tick wide, buyers and sellers cannot offer

price improvement by quoting better prices between the best bid price and best

offer price. Instead, buyers and sellers queue up at the best bid and offer, where

the fastest traders have the highest priority in the queue. Slower traders perceive

this as unfair. In dealer markets, dealers do not allow customers to post limit

orders to trade directly with other customers. Instead, customers must trade with

dealers in transactions where the dealer buys at the bid price and sells at the offer

price. Customers perceive that dealer markets are unfair because dealers have

privileges that customers do not have.

With flow trading, the concept of bid-ask spread is irrelevant when trade oc-

curs because the market demand curve for each asset is continuous and strictly

downward sloping. All trades clear at the same price. All executable orders exe-

cute. There are of course still trading costs. Trading a larger quantity, or trading

a given quantity faster, requires offering a better price—that is, walking up the

market’s supply curve if buying or down the market’s demand curve if selling—

which creates price impact. The essential difference is that a trader can trade

an epsilon quantity at the market-clearing price without any bid-ask spread. A

practical interpretation of this point is that institutional investors will have to

manage their price impact, but small retail investors can trade small quantities
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at the market-clearing price with negligible trading costs.

B Further Simulation Details

In the base case, orders for index portfolios are randomly assigned to the six cat-

egories with corresponding probabilities in parentheses: the valued-weighted

market index (75%), the equal-weighted market index (5%), five value-weighted

size indices (7.5%), five equally-weighted size indices (2.5%), ten value-weighted

industry indices (7.5%), and ten equal-weighted industry indices (2.5%). The

numbers here are chosen somewhat arbitrarily. We later vary the probabilities

to study how they may affect computation times.32 Finally, each order for indi-

vidual assets and indexes has an equal probability of being buy or sell.

For each asset, we draw a random number from a lognormal distribution with

mean of 1 and log-standard deviation of 1.7. Dividing these numbers by the sum

of all realizations across 500 assets, we generate the probability that a given or-

der is allocated to that asset. Then for each order for individual assets, we pick an

asset from a multinomial distribution with the chosen probabilities. The proba-

bility multiplied by the total number of orders for assets (50,000) is the expected

number of orders for that asset.

Following the market microstructure invariance hypothesis of Kyle and Obizhaeva

(2016), the mean order size is set proportionally to the square root of the ex-

pected number of orders for that asset. The proportionality constant is chosen

to make the aggregate expected order volume from individual stocks equal to

the arbitrary scaling constant of $10 million per batch using arbitrary expected

ex-ante prices of $100 per share. Then the standard deviation of the order size

equals
√

exp(1.52)−1 multiplied by the mean, approximately two times the mean.

For index portfolios, the expected number of orders for each size index is the

32To allow conveniently varying these probabilities, we generate them from five parameters:
the probability that an index order is for either the equal-weighted or the value-weighted market
index; the probability that a non-market index order is for a size index portfolio; the probability
that a market index order is for the equal-weighted market index portfolio; and the probability
that a size (industry) index order is for an equal-weighted size (industry) index portfolio. The five
parameters and the restriction that the probabilities sum to one determine all six probabilities.
We let each of the five parameters vary from 5% to 95%.
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same, and the expected number of orders for each industry index is the same.

The size of the index orders is determined by multiplying the square root of the

expected number of orders by the same proportionality factor used for individ-

ual orders. Since orders for the value-weighted market index are much larger and

more numerous than orders for individual stocks, the overall value of the market

index is primarily determined by these index orders. For pairs trades, each indi-

vidual asset leg is generated randomly in the same manner as orders for the asset

or portfolio. The dollar size of the larger leg is then truncated to match the dollar

size of the smaller leg, again using expected ex-ante prices.

C Details for Solving the KKT Conditions

Here we provide more details about the interior point method used to calculate

market-clearing prices and discussed in Section 5.1.1.

The system of equations representing the modified KKT conditions in equa-

tions (20), (21), (22), and (24) can be rearranged and written33

pH −Dx−W⊺πππ+µµµ−λλλ = 0, (38)

W x = 0, (39)

µµµ ⋅x = ν̄1, λλλ ⋅(q−x) = ν̄1, (40)

µµµ > 0, λλλ > 0, 0 < x < q, πππ ∈RN . (41)

Equation (41) now has strict inequalities because ν̄ is strictly positive in equation

(40). This forces the multipliers to be strictly positive and x to be an interior

point.

In this system, the order book is represented by the matrix of portfolio weights

33The actual algorithm used in the simulations replaces q−x and x in the complementary slack-
ness conditions with slack variable sµ and sλ, writes the approximation to the complementary
slackness condition as µµµ ⋅ sµ = λλλ ⋅ sλ = ν̄1, then solves for the slack variable along with the other
variables. The slack variables quickly converge to their correct values sµ ∶= x and sλ ∶= q−x and
will always attain their correct values if initialized correctly. This approach is essentially equiva-
lent to the slightly simplified exposition given here.
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W, the vector of maximum rates q, the vector of upper limit prices pH , and the

diagonal matrix D.34 The goal is to find values for the trade rates x, prices for as-

sets (multipliers for market-clearing constraints)πππ, and multipliers for trade rate

constraintsµµµ andλλλ which solve this system for a very small positive value of the

interior point parameter ν̄, which is given by

ν̄ ∶= 1
2m (λλλ⊺(q−x)+µµµ⊺x) . (42)

The algorithm starts with a large initial guess for ν̄ and initial guesses for x,πππ,

µµµ, andλλλ, then calculates revised guesses iteratively, preserving equation (41). On

a given iteration, the problem is linearized by substituting x+∆x,πππ+∆πππ,µµµ+∆µµµ,

and λλλ+∆λλλ for x, πππ, µµµ, and λλλ, respectively into this system of equations. This re-

sults in a system of equations which is linear in∆x,∆πππ,∆µµµ, and∆λλλ, except for the

non-linear terms ∆µµµ ⋅∆x and ∆λλλ ⋅∆x. Since these quadratic terms are unknown,

they are replaced with guesses εεε∆µµµ⋅∆x and εεε∆λλλ⋅∆x, whose values are discussed in

the paragraph after equation (54). Since the goal is to solve the system for smaller

and smaller versions of ν̄, the value ν̄ is replaced by a smaller quantity εν̄. The

theory of interior point methods is based on reducing ν̄ gradually iteration by

iteration. In practice, the algorithm converges faster if large reductions are at-

tempted. Here we set εν̄ = 0 to try to reduce ν̄ substantially on each iteration.

Placing terms linear in ∆x, ∆πππ, ∆µµµ, and ∆λλλ on the left side of equations, the

linearized system can be written

−D∆x−W⊺∆πππ+∆µµµ−∆λλλ =−rx , where rx ∶=pH −D x−W⊺πππ+µµµ−λλλ, (43)

W∆x =−rπ, where rπ ∶=W x, (44)

x ⋅∆µµµ+µµµ ⋅∆x =−rµ, where rµ ∶=µµµ ⋅x+εεε∆µµµ⋅∆x−εν̄1, (45)

34An order book is defined by a matrix of portfolio weights W, a vector of maximum rates q,
a vector of upper limit prices pH , and a vector of lower limit prices pL . The algorithm uses the
four quantities W, q, pH , and D, where D is a diagonal matrix with diagonal (pH

−pL
)/q. When

constructing D, the subtraction pH
−pL introduces numerical error because the percentage dif-

ference between pH and pL is typically very small. To avoid this numerical error, we drop pL

and replace it with dHL
∶= pH

−pL , then define the diagonal of D as dHL
/q. While pL is implicitly

defined by pL
∶= pH

−dHL , the vector pL is not actually used in the algorithm.
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(q−x) ⋅∆λλλ−λλλ ⋅∆x =−rλ, where rλ ∶=λλλ ⋅(q−x)+εεε∆λλλ⋅∆x−εν̄1. (46)

Now define some notation. For any vector z, let z−1 denote the vector of

element-by-element reciprocals of elements of z. For any matrix Z, let diagvec(Z)

denote the vector on its diagonal. For any vector z, let diagmat(z) denote the

diagonal matrix with z on its diagonal. Note that for a diagonal matrix Z, we

can write the matrix-vector product as an element-by-element product: if z ∶=

diagvec(Z), then Z v = z ⋅v.

Solve equations (45) and (46) for ∆µµµ and ∆λλλ:

∆µµµ = x−1 ⋅(−rµ−µµµ ⋅∆x), (47)

∆λλλ = (q−x)−1 ⋅(−rλ+λλλ ⋅∆x). (48)

Plug these solutions for ∆µµµ and ∆λλλ into equation (43):

−D∆x−W⊺∆πππ+x−1 ⋅(−rµ−µµµ ⋅∆x)−(q−x)−1 ⋅(−rλ+λλλ ⋅∆x) =−rx . (49)

Define

d = diagvec(D), ηηη ∶= (d+x−1 ⋅µµµ+(q−x)−1 ⋅λλλ)
−1

, ΩΩΩ = diagmat(ηηη). (50)

Solve equation (49) for ∆x to obtain

∆x =ηηη ⋅(r−W⊺∆πππ) , where r ∶= rx −x−1 ⋅rµ+(q−x)−1 ⋅rλ. (51)

Define the “liquidity matrix” L as

L =WΩΩΩW⊺. (52)

While the liquidity matrix L is theoretically positive definite (due to the exchange

trading every asset), it may be numerically singular (since the exchange trading

parameter is tiny). To regularize this matrix, add a vector of small positive val-

ues, denoted εεεL, to the diagonal. Substitute this solution for ∆x into the market-
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clearing condition in equation (44) (W∆x =−rπ) to obtain

(L+diagmat(εεεL)) ∆πππ = rπ+W(ηηη ⋅r). (53)

Choosing εεεL such that the regularized liquidity matrix L+diagmat(εεεL) is positive

definite and not numerically singular, the above equation can be solved for ∆πππ

using a Cholesky decomposition. Solutions for ∆x, ∆µµµ, and ∆λλλ can be obtained

from the previous equations.

These solutions, however, may be such that the updated vectors x+∆x,πππ+∆πππ,

µµµ+∆µµµ, λλλ+∆λλλ do not satisfy equation (41) requiring that x+∆x be an interior

point and multipliersπππ+∆πππ,µµµ+∆µµµ,λλλ+∆λλλ be strictly positive. To insure that the

constraints hold, truncate the solutions by a factor ᾱ defined by

ᾱ ∶= 0.99 sup[α ∶ 0 ≤α ≤ 1 , 0 < x+α∆x < q , µµµ+α∆µµµ > 0 , λλλ+α∆λλλ > 0] , (54)

The factor 0.99 insures that the updated solutions x+ᾱ∆x,πππ+ᾱ∆πππ,µµµ+ᾱ∆µµµ, and

λλλ+ ᾱ∆λλλ satisfy inequality constraints as strict inequalities.

Now consider how to choose the guesses εεε∆µµµ⋅∆x and εεε∆λλλ⋅∆x. On each iteration,

the solution for∆x,∆πππ,∆µµµ, and∆λλλ is calculated twice reusing the same Cholesky

decomposition. On the first try, the guesses are εεε∆µµµ⋅∆x = εεε∆λλλ⋅∆x = 0. On the second

try, the solution is polished using the results from the first try as guesses (Mehro-

tra (1992)):

εεε∆µµµ⋅∆x = ᾱ
2∆µµµ ⋅∆x, εεε∆λλλ⋅∆x = ᾱ

2∆λλλ ⋅∆x. (55)

The initial guess for x is rather arbitrary, involving large values for the multi-

pliersµµµ andλλλ.

Computationally, calculation of the matrix L = WΩΩΩW⊺ and its Cholesky de-

composition are the most costly parts of the algorithm. The next most costly cal-

culations are several matrix-vector products involving the sparse portfolio weight

matrix W. The remaining calculations are relatively less costly element-by-element

vector products, scalar products, and inner products.

To make calculations involving W more computationally efficient, the matrix

W is expressed as the product of two matrices, W = R B. The first matrix R is
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a vector of weights defining portfolios. It concatenates a sparse identity matrix

(defining “weights” for individual assets) with a dense matrix whose columns de-

fine weights for index portfolios. The second matrix B has one column for each

order. For orders for individual assets or index portfolios, there is one non-zero

weight for that asset or portfolio. For orders for pairs trades, there are two non-

zero weights for the assets or portfolios that are involved. Since both of these

matrices are sparse, there is computational savings from not forming the ma-

trix W explicitly. For example, the liquidity matrix L is calculated efficiently as

L = R(B ΩΩΩ B⊺)R⊺. We use a bespoke algorithm tailored to the specific sparse

structure of these matrices.

D Derivation of Equation (31) in Section 6.1

Recall, from equation (26), the expected utility from the optimal portfolio is

(m−πππ)⊺ωωω− 1
2 Aωωω⊺ΣΣΣωωω. (56)

Equalizing the marginal benefit (the expected return) and the marginal cost (risk),

the optimal portfolio in equation (30) is essentially the ratio of the expected re-

turn to risk.

Substituting the optimal portfolio in equation (30) into the first term above,

we have

(m−πππ)⊺ωωω = (m−πππ)⊺
K

∑
i=1

ui (
ui
⊺m−ui

⊺πππ
A δi

)

=
K

∑
i=1

(m⊺ui −πππ
⊺ui)(

ui
⊺m−ui

⊺πππ
A δi

)

=
K

∑
i=1

(ui
⊺m−ui

⊺πππ)2

A δi
=

1

A

K

∑
i=1

(
ui
⊺m−ui

⊺πππ
√
δi

)

2

.

(57)

Notice, ui
⊺m−ui

⊺πππ is a scalar and thus symmetric. Thus, the total expected

return from the optimal portfolio is represented by the sum of squared Sharpe

ratios of rotated portfolios, divided by risk aversion.
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Now, we want to do the same thing to the second term in the expected utility:

1
2 Aωωω⊺ΣΣΣωωω (58)

Here, sinceΣΣΣ =U∆∆∆U⊺, and∆∆∆ is a diagonal matrix, we can express it as

ΣΣΣ =U∆∆∆U⊺ =
K

∑
i=1

δui ui
⊺. (59)

Also, U is an orthonormal matrix, which implies that UU⊺ = I, an identity ma-

trix. That is, ui
⊺ui = 1,∀i and u j

⊺ui = 0,∀ j ≠ i . Then substituting the optimal

portfolio, we have

1
2 Aωωω⊺ΣΣΣωωω = 1

2 Aωωω⊺(
K

∑
i=1

δui ui
⊺)(

K

∑
i=1

ui (
ui
⊺(m−πππ)

Aδi
))

= 1
2 Aωωω⊺

K

∑
i=1

δi ui (
ui
⊺(m−πππ)

Aδi
)

= 1
2ωωω

⊺ K

∑
i=1

ui (ui
⊺(m−πππ))

= 1
2 (

K

∑
i=1

(
ui
⊺(m−πππ)

Aδi
)ui

⊺)(
K

∑
i=1

ui (ui
⊺(m−πππ)))

=
1

2A

K

∑
i=1

(
ui
⊺(m−πππ)
√
δi

)

2

.

(60)

Thus, similar to the total expected return, the total risk from the optimal portfolio

is represented as the sum of squared Sharpe ratios of rotated portfolios, except

that it is divided by 2 times the risk aversion. Thus, the total risk is exactly half

of the total expected return, where half comes from the fact that the risk is a

quadratic function of the portfolio, while the return is linear.

Finally, combining equations (57) and (60) yields equation (32).
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