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1 Introduction

A fundamental question in both economics and psychology asks: How do people make decisions

in dynamic settings? The traditional answer in economics is to say that people act as if they

have solved a dynamic programming problem. By contrast, over the past decade, psychologists

and neuroscientists have embraced a different framework for thinking about decision-making

in dynamic settings. This framework combines two algorithms, or systems: a “model-free”

learning system and a “model-based” learning system. In this paper, we import this framework

into a simple financial setting – one where investors allocate between a risk-free asset and a

risky asset – study its implications for investor behavior, and show that it is helpful for thinking

about a range of facts in finance.1

The goal of both the model-free and the model-based algorithms is to estimate the value

of taking a given action. The model-free system goes about this in a way that is different from

traditional economic models. As its name suggests, it does not use a “model of the world”: it

makes no attempt to construct a probability distribution of future outcomes. Rather, it learns

by experience. At each date, it tries an action, observes the outcome, and then updates its

estimate of the value of the action by way of two important quantities: a reward prediction

error – the reward it observes after taking the action relative to the reward it anticipated –

and a learning rate. If the prediction error is positive, the algorithm raises its estimate of

the value of the action and is more likely to repeat the action in the future; if the prediction

error is negative, it lowers the estimated value of the action and is less likely to try it again.

This model-free framework has been increasingly adopted by psychologists and neuroscientists

because of evidence that it reflects actual computations performed by the brain: numerous

studies have found that neurons in the brain encode the reward prediction error used by

model-free learning.

The model-based algorithm, by contrast, is similar to traditional economic approaches in

that it does construct a model of the world – a probability distribution of future outcomes –

and then uses this to compute the value of different actions. There are a number of model-

based approaches; we use one that is often adopted in research in psychology and that, like

1An early paper on this framework is Daw, Niv, and Dayan (2005). Two prominent implementations in
laboratory settings are Glascher et al. (2010) and Daw et al. (2011). Useful reviews include Balleine, Daw,
and O’Doherty (2009) and Daw (2014). We discuss the behavioral and neural evidence for the framework in
more detail in Section 2.
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the model-free system, has neuroscientific support. Under this approach, after observing an

outcome at some moment in time, the model-based system increases the probability it assigns

to that outcome and downweights the probabilities of other outcomes. To do the updating,

it again uses a learning rate and a prediction error that measures how surprising a realized

outcome is; as before, there is evidence that the brain computes such prediction errors.

Recent research in psychology argues that, to make decisions, people use these two systems

in combination: they take a weighted average of the model-free and model-based estimates

of the value of different actions and use the resulting “hybrid” estimates to make a choice

(Glascher et al., 2010; Daw et al., 2011).

In this paper, we import this framework into a financial setting, study its implications for

investor behavior, and use it to account for a range of empirical facts. To our knowledge,

this is the first time the framework has been applied, in a comprehensive way, in an economic

domain outside the laboratory. We choose a simple setting: one where an individual allocates

money between a risk-free asset and a risky asset in order to maximize the expected log utility

of wealth at some future horizon. This problem fits the canonical context in which model-free

and model-based algorithms are applied. The two algorithms tackle the problem in different

ways. The model-based system learns a distribution of stock market returns over time by

observing realized returns and uses it to decide on an allocation. The model-free system, by

contrast, simply tries an allocation and observes the resulting portfolio return; if this return

is good, the model-free system raises its estimate of the value of this allocation and is more

likely to recommend this allocation again in the future.

We begin by characterizing investor behavior in our framework, paying particular attention

to the model-free system – for economists, the more novel system. Specifically, we look at

how the stock market allocation proposed by each of the model-free and model-based systems

depends on past stock market returns. The model-based allocation puts weights on past

market returns that are positive and that decline for more distant past returns. We find

that the model-free system also recommends an allocation that puts positive weight on past

returns, and show that it does so through a mechanism that is new to financial economics. In

brief: A good stock market return reinforces the investor’s previous allocation, whether the

allocation was low or high. However, this reinforcement is stronger when the prior allocation

is high: for a given positive market return, the reward, or portfolio return, is higher when the
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prior allocation is high. As a consequence, on average, a good stock market return leads the

investor to subsequently take a higher allocation.

We also find that, relative to the model-based system, whose recommended allocation puts

heavy weight on recent returns, the model-free allocation puts substantially more weight on

distant past returns. This is because it updates slowly: since it learns from experience, at each

time, it updates only the value of the most recently-chosen allocation; the values of the other

allocations are unchanged and hence depend only on more distant past returns. It therefore

takes a long time for the influence of past returns to fade.

We then use our framework to shed light on some important facts about investor behavior,

investor beliefs, and the relationship between the two. This is striking because, in prior

research, this framework has been used primarily to explain behavior in experimental settings;

it is notable, then, that it can also account for real-world financial behavior.

A prominent idea, motivated by empirical evidence, is that investors have extrapolative

demand: their demand for a risky asset depends on a weighted average of the asset’s past

returns, where the weights are positive and larger for more recent returns. The analysis

summarized above shows that model-free and model-based learning can both offer a foundation

for extrapolative demand; the model-free system, in particular, does so in a way that is new

to financial economics.

Our framework also provides a foundation for experience effects – specifically, for the

finding of Malmendier and Nagel (2011) that an individual’s allocation to the stock market can

be explained in part by a weighted average of the market returns he has personally experienced,

with much less weight on returns he has not experienced. Our framework captures this because

of a fundamental feature of the model-free system, namely that, because this system learns

from experience, it engages only when an individual is actively experiencing rewards. As such,

it puts no weight on returns an investor has not experienced.

Individual investors overreact to recent market returns when forming beliefs about future

market returns: as shown by Greenwood and Shleifer (2014) among others, their beliefs depend

strongly on recent returns even though there is little autocorrelation in realized returns. Our

framework captures this overreaction through the model-based system: after a good market

return, this system increases the probability it assigns to good returns, leading the investor

to expect a higher market return in the future.
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Beyond simply capturing overreaction in beliefs, our framework can also resolve two puz-

zling disconnects between investors’ beliefs and stock market allocations. While individual

investor beliefs about future stock market returns depend primarily on recent past market

returns, Malmendier and Nagel (2011) find that investors’ allocations to the stock market

depend significantly even on distant past market returns. We reconcile these findings by way

of a deep property of our framework, which is that, of the two systems, only the model-based

system has a role for beliefs: only this system explicitly constructs a probability distribution

of future outcomes. When an individual is surveyed about his beliefs regarding future returns,

he necessarily consults the model-based system – only this system can answer the survey ques-

tion – and therefore gives an answer that depends primarily on recent past returns. However,

his allocation is influenced by both the model-based and model-free systems and therefore

depends significantly even on distant past returns.

Through a similar mechanism, our framework can also explain another disconnect between

actions and beliefs, namely the low sensitivity of allocations to beliefs documented by several

recent studies in the cross-section of investors.2 If the stock market posts a high return, the

investor’s expectation about the future stock market return will go up significantly: the model-

based system, which determines beliefs, puts substantial weight on recent returns. However,

the investor’s allocation will be less sensitive to the recent return: it is determined in part by

the model-free system, which, relative to the model-based system, puts much less weight on

recent returns.

Our framework can also help to account for some other empirical facts about investor be-

havior, including the large cross-sectional dispersion in investor allocations to the stock market;

the individual-level inertia in these allocations over time; and the widespread non-participation

in the stock market among U.S. households. We also draw a number of predictions out of the

framework – for example, that for an investor who is more confident in his beliefs, the brain

is likely to assign more control to the model-based system, leading the investor’s allocation to

be more closely tied to his beliefs.

Since the model-free system learns slowly, it is not an efficient way of making investment

decisions in real time. Nonetheless, for several reasons, it is likely, as our paper suggests, to

influence financial decision-making. First, the model-free system is a fundamental component

2See Ameriks et al. (2020), Giglio et al. (2021), Charles, Frydman, and Kilic (2023), and Yang (2023).

5



of human decision-making. As such, it is likely to play a role in any decision unless explicitly

“switched off” – and because it operates below the level of conscious awareness, many investors

will not recognize its influence and will therefore fail to turn it off. Second, many people do

not have a good “model” of financial markets – for example, they have a poor sense of the

structure of asset returns. As a consequence, the brain is likely to assign at least some control

of financial decision-making to the model-free system – again, without a person’s conscious

awareness – precisely because this system does not need a model of the environment. Third,

for a less sophisticated investor, his model-free system may perform better than his model-

based system, something that we demonstrate quantitatively. While the slow learning of the

model-free system can be costly – this system is slow to learn genuinely useful information –

it can also be beneficial, in that it leads the model-free system to exhibit only a mild form of

the biased thinking embedded in the investor’s model-based system.

Model-free learning algorithms are of interest not only to psychologists and neuroscientists,

but also to computer scientists, albeit for a different purpose. Computer scientists see these

algorithms as a powerful tool for solving challenging dynamic problems (Sutton and Barto,

2019). For example, these algorithms have been used in computer programs that have achieved

world-beating performance in complex games such as Backgammon and Go. Psychologists and

neuroscientists, by contrast, are interested in these algorithms because they see them as good

models of how animals and humans actually behave. In this paper, we take the psychologists’

perspective: we are proposing that these algorithms can shed light on the behavior of real-world

investors.

The full name of model-free learning is model-free reinforcement learning. Reinforcement

learning is a fundamental concept in both psychology and neuroscience – and, as described

above, in some areas of computer science. However, it has a much smaller footprint in eco-

nomics and finance, where model-based frameworks dominate instead. A central theme of this

paper is that model-free learning may be more relevant in economic settings than previously

realized. Nonetheless, our approach does have antecedents in economics – most notably in re-

search in behavioral game theory on how people learn what actions to take in strategic settings

(Erev and Roth, 1998; Camerer, 2003, Ch. 6). One idea in this line of research, Camerer and

Ho’s (1999) experience-weighted attraction learning, combines reinforcement and model-based

learning in a way that is reminiscent of, albeit different from, the hybrid model we consider
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below.

Our paper is also part of a new wave of research in behavioral economics that seeks to move

beyond the high-level psychological phenomena made famous by Daniel Kahneman and Amos

Tversky and to instead incorporate deeper, lower-level psychological processes into economic

models. This research has studied topics such as memory, attention, and perceptual coding.

In this paper, our focus is on learning algorithms.3

In Section 2, we formalize the model-free and model-based learning algorithms and show

how they can be applied in a financial setting. In Section 3, we present an example to show

how the two algorithms work and then study their implications for investor behavior. In

Section 4, we use the framework to account for a range of facts about investor allocations and

beliefs. Section 5 discusses some additional analysis while Section 6 concludes.

2 Model-free and Model-based Algorithms

To understand human decision-making, researchers in the fields of psychology and neuroscience

are increasingly adopting a framework that combines model-free and model-based learning

(Daw, Niv, and Dayan, 2005; Daw, 2014). In this section, we describe this framework and

propose a way of applying it in a financial setting. Specifically, in Section 2.1, we describe

the model-free algorithm; in Section 2.3, we lay out a model-based learning algorithm; and

in Section 2.4, we show how the two algorithms are combined. In Section 2.2, we present

the portfolio-choice problem that we apply the algorithms to. For much of the paper, we will

explore the properties and applications of model-free and model-based learning in this financial

setting. Along the way, we will also summarize some of the psychological and neuroscientific

evidence for the framework.

2.1 Model-free learning

Model-free and model-based learning algorithms are intended to solve problems of the following

form. Time is discrete and indexed by t = 0, 1, 2, 3,. . . At time t, the state of the world is

denoted by st and an individual takes an action at. As a consequence of taking this action

3Examples of papers in this new wave of research are Bordalo, Gennaioli, and Shleifer (2020), Khaw, Li,
and Woodford (2021), Frydman and Jin (2022), and Wachter and Kahana (2022).
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in this state, the individual receives a reward rt+1 at time t + 1 and arrives in state st+1 at

that time. The joint probability of st+1 and rt+1 conditional on st and at is p(st+1, rt+1|st, at).
The environment has a Markov structure: the probability of (st+1, rt+1) depends only on st

and at. In an infinite-horizon setting, the individual’s goal is to maximize the expected sum

of discounted rewards:

max
{at}

E0

[
∞∑
t=1

γt−1rt

]
, (1)

where γ ∈ [0, 1) is a discount factor.

Economists almost always tackle a problem of this type using dynamic programming.

Under this approach, we solve for the value function V (st) – the expected sum of discounted

future rewards, under the optimal policy, conditional on being in state st at time t. To do this,

we write down the Bellman equation that V (st) satisfies, and with the probability distribution

p(st+1, rt+1|st, at) in hand, we solve the equation, either analytically or numerically. The

solution is sometimes used for “normative” purposes – to tell the individual how he should

act – and sometimes for “positive” purposes, to explain observed behavior.

For “positive” applications, where we are trying to explain why people behave the way

they do, the dynamic programming approach raises an obvious question. It may be hard to

determine the probability distribution p(·); and even if we have a good sense of this distri-

bution, it may be difficult, even for professional economists, to solve the Bellman equation

for the value function. How, then, would an ordinary person be able to do so? Economists

have long suggested that people act “as if” they have solved the Bellman equation – but they

have not explained how this would come about. Psychologists, by contrast, have been trying

to develop a more literal description of how people make decisions in dynamic settings – a

framework that is rooted in the brain’s actual computations. The leading such framework

is the one we adopt in this paper, namely one that combines model-free and model-based

learning.

We now describe the model-free learning algorithm that we use. As their name suggests,

model-free algorithms tackle the problem in (1) without a “model of the world,” in other

words, without using any information about the probability distribution p(·). The model-free

algorithms most commonly used by psychologists are Q-learning and SARSA. In the main

part of the paper, we use Q-learning. In the Internet Appendix, we show that SARSA leads
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to similar predictions.4

Q-learning works as follows. Let Q∗(s, a) be the expected sum of discounted rewards – in

other words, the value of the expression

Et

[
∞∑

τ=t+1

γτ−(t+1)rτ

]
(2)

– if the algorithm takes the action at = a in state st = s at time t and then continues

optimally from time t + 1 on; the asterisk indicates that, from time t + 1 on, the optimal

policy is followed. The goal of the algorithm is to estimate Q∗(s, a) accurately for all possible

actions a and states s so that it can select a good action in any given state.

Suppose that, at time t in state st = s, the algorithm takes an action at = a – we describe

below how this action is chosen – and that this leads to a reward rt+1 and state st+1 at time

t + 1. Suppose also that, at time t, the algorithm’s estimate of Q∗(s, a) is Qt(s, a). At time

t + 1, after observing the reward rt+1, the algorithm updates its estimate of Q∗(s, a) from

Qt(s, a) to Qt+1(s, a) according to

Qt+1(s, a) = Qt(s, a) + αMF
t [rt+1 + γmax

a′
Qt(st+1, a

′)−Qt(s, a)], (3)

where αMF
t is known as the learning rate – the superscript stands for model-free – and where

the term in square brackets is an important quantity known as the reward prediction error

(RPE): the realized value of taking the action a – the immediate reward rt+1 plus a continu-

ation value – relative to its previously anticipated value, Qt(s, a). Put simply, the updating

rule in (3) says that, if, after taking the action a, the algorithm observes a better outcome

than anticipated, it raises its estimate of the value of that action.

How does the algorithm choose an action at in state st = s at time t? It does not

necessarily choose the action with the highest estimated value of Q∗(s, at), in other words,

with the highest value of Qt(s, at). Rather, it chooses an action probabilistically, where the

probability of choosing a given action is an increasing function of its Q value:

p(at = a|st = s) =
exp[βQt(s, a)]∑
a′ exp[βQt(s, a′)]

. (4)

4Q-learning was developed by Watkins (1989) and Watkins and Dayan (1992). Sutton and Barto (2019,
Ch. 6) offer a useful exposition.
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This probabilistic choice, known as a “softmax” specification, serves an important purpose:

it encourages the algorithm to “explore,” in other words, to try an action other than the one

that currently has the highest Q value in order to learn more about the value of this other

action. In the limit as β → ∞, the algorithm chooses the action with the highest current Q

value; in the limit as β → 0, it chooses an action randomly. The parameter β is called the

“inverse temperature” parameter, but we refer to it more simply as the exploration parameter.

We discuss what exploration means in financial settings in more detail in Section 2.2.5

The algorithm is initialized at time 0 by setting Q(s, a) = 0 for all s and a. Consistent with

(4), the time 0 action is chosen randomly from the set of possible actions. The process then

proceeds according to equations (3) and (4). If the algorithm takes the action a in state s and

this is followed by a good outcome, the value of Q(s, a) goes up, making it more likely that,

if the algorithm encounters state s again, it will again choose action a. Computer scientists

have found Q-learning to be a useful way of solving the problem in (1); it can be shown that,

under certain conditions, the Q values generated by the algorithm converge to the correct Q∗

values (Watkins and Dayan, 1992).

Psychological background. While computer scientists make frequent use of model-free

algorithms like Q-learning, what is more important for our purposes is that psychologists and

neuroscientists are also interested in these algorithms. This is because of mounting evidence

that they play an important role in human decision-making. This evidence comes in two forms:

behavioral data – data on how people behave – and neural data on the brain’s computations.

The behavioral data come from experimental paradigms that allow researchers to isolate

the influence of model-free learning from more traditional model-based learning. One of the

best known is the “two-step task” introduced by Daw et al. (2011). We summarize this task

in Internet Appendix A. Analysis of participants’ behavior in this experiment finds a large

influence of model-free learning.6

Neural data has been an even bigger factor in the surge of interest in model-free learning.

5Another interpretation of the probabilistic choice in (4) is that it stems from cognitive noise: due to errors
in perception or cognitive processing, the algorithm does not necessarily select the action with the highest Q
value. See Woodford (2020) for a review of recent research on cognitive noise.

6Charness and Levin (2005) present a different experiment in which model-free and model-based learning
– in their terminology, reinforcement learning and Bayesian learning – again make different predictions. They,
too, find that participant behavior is guided to a significant extent by the model-free system. More recent
experimental studies with a similar theme are Payzan-LeNestour and Bossaerts (2015) and Allos-Ferrer and
Garagnani (2023).
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A major finding in decision neuroscience is that the activity of certain neurons in the ventral

striatum region of the brain lines up well with the reward prediction error used by model-free

algorithms. This, in turn, suggests that the brain implements such model-free algorithms

when making decisions. This observation was first made in influential papers by Montague,

Dayan, and Sejnowksi (1996) and Schultz, Dayan, and Montague (1997). A large number

of subsequent studies, using functional magnetic resonance imaging (fMRI) to study human

decision-making, have presented similar neural evidence for model-free learning.7

When psychologists use Q-learning to explain behavior, they often allow for different learn-

ing rates for positive and negative reward prediction errors, so that

Qt+1(s, a) = Qt(s, a) + αMF
t,± (RPE), (5)

where αMF
t,± = αMF

t,+ if the reward prediction error is positive and αMF
t,± = αMF

t,− otherwise. In

what follows, we also adopt this modification.

In the basic implementation of model-free learning described above, after taking an action

a in state s, the algorithm updates only the Q value for that particular action-state pair. It

is natural to ask whether the algorithm can “generalize” from its experience of (s, a) to also

update the Q values of other action-state pairs. We return to this below, after first introducing

the financial setting that we apply the algorithm to.

2.2 A portfolio-choice setting

In Section 2.3, we lay out a model-based algorithm to complement the model-free algorithm

of Section 2.1. Before we do so, it will be helpful to first describe the task that we apply both

algorithms to.

We consider a simple portfolio-choice problem, namely allocating between two assets: a

risk-free asset and a risky asset which we think of as the stock market. The risk-free asset

earns a constant gross return Rf = 1 in each period. The gross return on the risky asset

7See McClure, Berns, and Montague (2003), O’Doherty et al. (2003), Glascher et al. (2010), and Daw et
al. (2011), among many others. Sutton and Barto (2019, Ch. 15) offer a useful review.
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between time t− 1 and t, Rm,t, where “m” stands for market, has a lognormal distribution

logRm,t = µ+ σεt

εt ∼ N(0, 1), i.i.d. (6)

At each time t, an investor chooses the fraction of his wealth that he allocates to the risky

asset; this corresponds to the “action” in the framework of Section 2.1, so we use the notation

at for it.8 We construct an objective function that is realistic and also has the required form

in (1). Specifically, the investor’s goal is to maximize the expected log utility of wealth at

some future horizon determined by his liquidity needs. The timing of these liquidity needs is

uncertain; as such, the investor does not know in advance how far away this horizon is. More

precisely, at time 0, the investor enters financial markets. If, coming into time t ≥ 1, he is

still present in financial markets, then, with probability 1 − γ, where γ ∈ [0, 1), a liquidity

shock arrives. In that case, he exits financial markets and receives log utility from his wealth

at time t. A short calculation shows that the investor’s implied objective is then to solve

max
{at}

E0

[
∞∑
t=1

γt−1 logRp,t

]
, (7)

where Rp,t, the gross portfolio return between time t− 1 and t, is given by

Rp,t = (1− at−1)Rf + at−1Rm,t. (8)

Comparing (1) and (7), we see that this portfolio problem maps into the framework of Section

2.1: the generic reward rt in equation (1) now has a concrete form, namely the log portfolio

return, logRp,t.

Given our assumptions about the returns of the two assets, we can solve the problem in

(7). The solution is that, at each time t, the investor allocates the same constant fraction a∗

of his wealth to the stock market, where

a∗ = arg max
a
Et log((1− a)Rf + aRm,t+1). (9)

8From now on, we use the terms “action” and “allocation” interchangeably.
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The fact that the problem in (7) has a mathematical solution does not necessarily mean

that real-world investors will be able to find their way to that solution. Many investors may

have a poor sense of the statistical distribution of returns; and even if they have a good sense

of it, they may not be able to compute the optimal policy or to discern it intuitively. Indeed,

for many investors, the solution in (9) will not be intuitive, as it involves reducing exposure

to the stock market after the market has performed well and increasing exposure to the stock

market after the market has performed poorly – actions that will feel unnatural to many

investors.

If an investor is unable to explicitly compute the solution to the problem in (7), then, as

argued in the Introduction, there is reason to think that a model-free system like Q-learning

will play a role in his decision-making. As a fundamental part of human thinking, the model-

free system is likely to play a role in any decision unless it is explicitly turned off. And for an

investor who is unsure about the distribution of asset returns, the brain is all the more likely

to assign some control to the model-free system, precisely because this system does not rely

on any information about this distribution. This leads to the question at the heart of this

paper: How will an investor behave if model-free Q-learning influences his actions?

How can Q-learning be applied to the above problem? In principle, we could apply equation

(3) directly. However, it is natural to start with a simpler case – the case with no state

dependence, so that Q(s, a) is replaced by Q(a). Even this simple case has rich implications

that shed light on empirical facts, and so it will be our main focus. In psychological terms,

removing the state dependence can be thought of as a simplification on the part of the investor.

Indeed, neuroscience research has argued that, to speed up learning, the brain does try to

simplify the state structure when implementing its learning algorithms (Collins, 2018).9 While,

for much of the paper, we put state dependence aside, we re-introduce it in Section 5 and

summarize there an analysis in the Internet Appendix of the state-dependent case.

As in Section 2.1, then, let Q∗(a) be the expected sum of discounted rewards – in other

words, the value of

Et

[
∞∑

τ=t+1

γτ−(t+1) logRp,τ

]
9It is tempting to justify the removal of the state dependence by saying that, since the risky asset returns

are i.i.d., the allocation problem has the same form at each time and so there is no state dependence. However,
we cannot use this argument because the model-free system does not know that the returns are i.i.d.; by its
nature, it does not have a model of the environment.
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– if the investor chooses the allocation a at time t and then continues optimally from the next

period on. Suppose that, at time t, the investor chooses the allocation a and observes the

reward – the log portfolio return, logRp,t+1 – at time t + 1. He then updates his model-free

estimate of Q∗(a) from QMF
t (a) to QMF

t+1 (a) according to

QMF
t+1 (a) = QMF

t (a) + αMF
t,± [logRp,t+1 + γmax

a′
QMF
t (a′)−QMF

t (a)]. (10)

At any time t, he chooses his allocation at probabilistically, according to

p(at = a) =
exp[βQMF

t (a)]∑
a′ exp[βQMF

t (a′)]
. (11)

Put simply, if the investor chooses an allocation a and then experiences a good portfolio

return, this tends to increase the Q value of that allocation and makes it more likely that he

will choose that allocation again in the future.

The exploration embedded in (11) is central to the model-free algorithm and to the way

psychologists think about human behavior. The term is less common in economics and finance.

Nonetheless, many actions in financial settings can be thought of as forms of exploration –

for example, any time an individual tries a strategy that is new to him, such as investing in

a stock in a different industry or foreign country, or in an entirely new asset class. In our

context, with one risk-free and one risky asset, exploration can be thought of as the investor

choosing a different allocation to the stock market than before in order to learn more about

the value of doing so.10

Given our assumption about the distribution of stock market returns, we can compute the

exact value of Q∗(a) for any allocation a. We record it here because we will use it in the next

section. It is given by

Q∗(a) = E log((1− a)Rf + aRm,t+1) +
γ

1− γ
E log((1− a∗)Rf + a∗Rm,t+1), (12)

where a∗ is defined in (9).

In the basic model-free algorithm in (10), after taking action at = a at time t, only the Q

10As noted in Section 2.1, another possible foundation for the probabilistic choice in (11), one that may be
relevant in financial settings, is cognitive noise.
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value of action a is updated. It is natural to ask whether the algorithm can generalize from

its experience of taking the action a in order to also update the Q values of other actions.

Computer scientists have studied model-free generalization (Sutton and Barto, 2019, Chs.

9-13). As important for our purposes, research in psychology suggests that the human model-

free system engages in generalization (Shepard, 1987). We therefore incorporate generalization

into our framework.

Given that we are working with the model-free system, it is important that the generaliza-

tion we consider does not use any information about the structure of the allocation problem.

We adopt a simple form of generalization based on the notion of similarity: after choosing

an allocation and observing the subsequent portfolio return, the algorithm updates the Q

values of all allocations, but particularly those that are similar to the chosen allocation. We

implement this as follows. After choosing allocation a at time t and observing the outcome

at time t+ 1, the algorithm updates the values of all allocations according to

QMF
t+1 (â) = QMF

t (â) + αMF
t,± κ(â)[logRp,t+1 + γmax

a′
QMF
t (a′)−QMF

t (a)], (13)

where

κ(â) = exp(−(â− a)2

2b2
). (14)

In words, after observing the reward prediction error for action a and updating the Q value

of that action, the algorithm uses the same reward prediction error to also update the values

of all other actions. However, for an action â that differs from a, it uses a lower learning rate

αMF
t,± κ(â), one that is all the lower, the more different â is from a, to an extent determined by

the Gaussian function in (14).11

We will consider a range of values of b, but for our baseline analysis, we set b = 0.0577,

which has a simple interpretation: for this b, the Gaussian function in (14), normalized to

form a probability distribution, has the same standard deviation as a uniform distribution

with width 0.2 – for example, the uniform distribution that ranges from a− 10% to a+ 10%.

11Our generalization algorithm is consistent with research in psychology which identifies similarity as an
important driver of generalization (Shepard, 1987). It is also used in computer science, where it is known as
interpolation-based Q-learning (Szepesvari, 2010, Ch. 3.3.2). Computer scientists also use more sophisticated
forms of generalization such as function approximation with polynomial, Fourier, or Gaussian basis functions
(Sutton and Barto, 2019, Ch. 9). We have also implemented this more complex generalization and obtain
similar results.
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For this b, then, the model-free algorithm generalizes primarily to nearby allocations, those

within ten percentage points of the chosen allocation. We later examine the sensitivity of our

results to the value of b.12

We emphasize that the Q-learning algorithm above, with or without generalization, does

not use any information about the distribution of risky asset returns in (6): by its model-free

nature, it does not have a model of the environment. More broadly, the algorithm has no idea

what a “risk-free asset” or the “stock market” are. It is simply choosing an action – some

combination of these unfamiliar objects – seeing what reward it delivers, and then updating

the values of the chosen action and of actions similar to it. While the model-free system may

appear uninformed, the fact that it uses so little information about the problem at hand is

precisely what makes it powerful, in general: it can be applied in almost any setting. And

despite being uninformed, its implications will turn out to be helpful for thinking about a

range of facts in finance.

2.3 Model-based learning

Current research in psychology uses a framework in which decisions are guided by both model-

free and model-based learning. Model-based systems, as their name indicates, build a model of

the environment, which, more concretely, means a probability distribution of future outcomes

– for example, in our setting, a probability distribution of stock market returns. There are

various possible model-based systems. Which one should we choose? Our goal in this paper is

to see if algorithms commonly used by psychologists can explain behavior in economic settings.

We therefore take as our model-based system one that, like the model-free system of Section

2.1, is based on an algorithm that is used extensively by psychologists and is supported by

neural evidence from decision-making experiments.

In our model-based system, an investor learns the distribution of stock market returns

over time by observing realized market returns. At each date, he updates the probabilities of

different returns using a prediction error analogous to the reward prediction error of Section

12One interpretation of our generalization algorithm is that the model-free system uses a small amount of
“model” information, namely that similar allocations lead to similar portfolio returns; as such, after observing
the outcome of a 70% allocation, the system updates the Q value of an 80% allocation more than that of a 20%
allocation. An alternative interpretation – a strictly model-free interpretation that uses no information about
the structure of the task – is that the generalization is based simply on numerical similarity: the number 70
is closer to 80 than to 20.
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2.1. Specifically, suppose that the investor observes a stock market return Rm,t+1 = R at time

t + 1 and that, at time t, before observing the return, the prior probability he assigned to it

occurring was pt(Rm = R). At time t+ 1, he updates the probability of this return as

pt+1(Rm = R) = pt(Rm = R) + αMB
t [1− pt(Rm = R)], (15)

where αMB
t is the model-based learning rate that applies from time t to time t+ 1. The term

1 − pt(Rm = R) is a prediction error: the investor’s prior estimate of the probability of the

return equaling R was pt(Rm = R); when the return is realized, the probability of it equaling

R is 1. After this update, the investor scales the probabilities of all other returns down by the

same proportional factor so that the sum of all return probabilities continues to equal one.

Since we are working with a continuous return distribution, we can assume that each return

that is realized is one that has not been realized before. As such, pt(Rm = R) = 0, which

simplifies (15) to

pt+1(Rm = R) = αMB
t .

To illustrate this process, suppose that the investor observes four stock market returns in

sequence: Rm,1, Rm,2, Rm,3, and Rm,4, at dates 1, 2, 3, and 4, respectively. The four rows

below show the investor’s perceived probability distribution of stock market returns at dates

1, 2, 3, and 4, in the case where the learning rate is constant over time, so that αMB
t = α

for all t. In this notation, a comma separates a return from its perceived probability, while

semicolons separate the different returns:

(Rm,1, 1)

(Rm,1, 1− α;Rm,2, α)

(Rm,1, (1− α)2;Rm,2, α(1− α);Rm,3, α)

(Rm,1, (1− α)3;Rm,2, α(1− α)2;Rm,3, α(1− α);Rm,4, α). (16)

The above approach is motivated by research in decision neuroscience that adopts a similar

model-based system (Glascher et al., 2010; Lee, Shimojo, and O’Doherty, 2014; Dunne et al.,

2016). Just as there is evidence that the brain encodes the reward prediction error used by

model-free learning, so there is evidence that it encodes the prediction error used by model-

17



based learning.13

We noted in Section 2.1 that, when they implement model-free learning, psychologists

allow for different model-free learning rates, αMF
+ and αMF

− , for positive and negative reward

prediction errors, respectively. We extend the model-based algorithm in a similar way, allowing

for different model-based learning rates, αMB
+ and αMB

− , for positive and negative net stock

market returns, respectively. Specifically, following the gross return Rm,t+1 = R,

pt+1(Rm = R) = αMB
t,+ for R > 1, (17)

with the probabilities of all other returns being scaled down by 1− αMB
t,+ , and

pt+1(Rm = R) = αMB
t,− for R ≤ 1, (18)

with the probabilities of all other returns being scaled down by 1−αMB
t,− . The different learning

rates can be thought of as reflecting a different level of attention to, or a different level of

concern about, positive as opposed to negative outcomes (Kuhnen, 2015).

With this perceived return distribution in hand, how does the investor come up with a

model-based estimate of Q∗(a), the value of choosing an allocation a on some date and then

continuing optimally thereafter? We again follow an approach taken by experimental studies

in decision neuroscience (Glascher at al., 2010). We assume that, for any allocation a, the

individual computes his time t model-based estimate of Q∗(a), denoted QMB
t (a), by taking

the correct form of Q∗(a) in equation (12) and applying it for his perceived time t return

distribution:

QMB
t (a) = Ep

t log((1− a)Rf + aRm,t+1) +
γ

1− γ
Ep
t log((1− a∗t )Rf + a∗tRm,t+1), (19)

where

a∗t = arg max
a
Ep
t log((1− a)Rf + aRm,t+1) (20)

and where (19) differs from (12) only in that the expectation E under the correct distribution

13While our model-based algorithm is inspired by research in psychology, it is also similar to an existing
economic framework, namely adaptive learning (Evans and Honkapohja, 2012). As such, from the perspective
of economics, the novel elements of our framework are the model-free system and its interaction with its
model-based counterpart.
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has been replaced by the expectation Ep
t under the investor’s perceived distribution at time t.

While our financial setting is a simple one, it is rich enough to create a tension between the

model-free and model-based systems. If the investor starts with a low allocation to the stock

market and the market then posts a high return, the model-free system wants to stick with

a low allocation because this action was “reinforced”: it was followed by a positive reward

prediction error. In intuitive terms, since the investor’s action is “working,” there is no need

to change it. By contrast, the model-based system wants to increase the investor’s allocation

to the stock market: it now perceives a more attractive distribution of market returns and

wants more exposure to it. We explore the implications of this tension in Section 3.14

The model-free and model-based systems are not the only learning algorithms the brain

uses. Another important class of algorithms are “observational learning” algorithms which

learn by observing the actions and outcomes of other people (Charpentier and O’Doherty,

2018). There is also some evidence for “counterfactual learning” algorithms which learn

about the value of actions not taken. We focus on the model-free and model-based algorithms

because they have received the most attention from cognitive scientists; because they likely

“span” other algorithms, in that these other learning systems tend to generate predictions

that lie somewhere between those of the model-free and model-based systems; and because

these other algorithms are not necessary for our purpose: as we show in Section 4, a simple

combination of model-free and model-based learning alone can account for several aspects of

investor behavior.

2.4 A hybrid framework

An influential framework in psychology posits that people make decisions using a combination

of model-free and model-based systems (Daw, Niv, and Dayan, 2005; Glascher et al., 2010;

Daw et al., 2011). Specifically, it proposes that, at each time t, and for each possible action

a, an individual computes a “hybrid” estimate of Q∗(a), denoted QHY B
t (a), that is a weighted

average of the model-free and model-based Q values:

QHY B
t (a) = (1− w)QMF

t (a) + wQMB
t (a), (21)

14As described in Internet Appendix A, a similar tension is present in experimental studies of model-free
and model-based learning.
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where w is the weight on the model-based system. He then chooses an action using the softmax

approach, now applied to the hybrid Q values:

p(at = a) =
exp[βQHY B

t (a)]∑
a′ exp[βQHY B

t (a′)]
. (22)

In this paper, we focus on the case where w is constant over time, as this already leads to

a rich set of properties and applications. Nonetheless, a well-known hypothesis in psychology

is that w varies over time: at each moment, the brain puts more weight on the system it

deems more “reliable” at that point (Daw, Niv, and Dayan, 2005). In Section B of the

Internet Appendix, we formalize and explore this idea using an implementation proposed by

researchers in decision neuroscience in which a system’s reliability is measured by the absolute

magnitude of its prediction errors: if the model-free reward prediction errors have been large

in absolute magnitude, the brain deems the model-free system to be less reliable and raises

w, thereby allocating more control to the model-based system. We discuss the implications of

this idea in Section 5 and in the Internet Appendix.15

The model-free and model-based systems differ most fundamentally in how they estimate

the value of an action: one system uses a model of the environment, while the other does not.

However, there is another difference between them: the model-free system learns only from

experienced rewards, while the model-based system can learn from all observed rewards. In

our setting, the investor enters financial markets at time 0. Time 0 is therefore the moment at

which he starts experiencing returns and hence the moment at which the model-free system

begins learning. However, before he makes a decision at time 0, the investor can look at

historical charts and observe earlier stock market returns, which the model-based system can

then learn from. To incorporate this, we extend the timeline of our framework so that it

starts not at time 0 but L dates earlier, at time t = −L. While the model-free system starts

operating at time 0, the model-based system starts operating at time −L: it observes the L

stock market returns prior to time 0, {Rm,−L+1, . . . , Rm,0}; uses these to form a perceived

distribution of market returns as in (17) and (18); and then computes model-based Q values

15The model-free and model-based learning framework is not without critics. For example, Feher da Silva
et al. (2023) question a subset of the evidence for the framework. However, they do not offer a concrete
alternative, and the model-free and model-based learning framework continues to be the leading approach to
thinking about a large body of both behavioral and neural evidence.
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by way of that distribution, as in (19).16

3 Properties of Investor Behavior

We begin this section with an example that illustrates the mechanics of the model-free and

model-based systems. We then study the implications of the framework for investor behavior.

Our focus is on how the allocations recommended by the model-free and model-based systems

depend on past stock market returns. We also examine the dispersion and variability in

investor allocations that these systems generate. In Section 4, we build on this analysis to

account for several facts about investor behavior.

We use the timeline previewed at the end of the previous section. There are L + T + 1

dates, t = −L,. . . , −1, 0, 1,. . . , T . Investors begin actively participating in financial markets

at time 0. Their model-free systems therefore start operating only at time 0, while their

model-based systems operate over the full time range, starting from t = −L. We think of

each time period as one year and set L = T = 30. Before they start investing at time 0,

then, people have access to 30 years of prior data going back to t = −30. We then track their

allocation decisions over the next 30 years, from t = 0 to t = 30.17,18

The four learning rates – αMF
+ , αMF

− , αMB
+ , and αMB

− – play an important role in our

framework. How should they be set? If we were taking a normative perspective – if we

wanted to use the algorithms of Section 2 to solve the problem in (7) as efficiently as possible

– the answer would be to use learning rates that decline over time. Specifically, the time t

16Our implementation here is consistent with evidence from decision neuroscience. Dunne et al. (2016)
conduct an experiment in which participants actively experience slot machines that deliver a stochastic reward,
but also passively observe other people playing the slot machines. fMRI measurements show that, as in many
other studies, the model-free reward prediction error for the experienced trials is encoded in the ventral
striatum. However, for the trials that are merely observational, the model-free RPE is not encoded in the
striatum, suggesting that the model-free system is not engaged. As Dunne et al. (2016) write, “It may be that
the lack of experienced reward during observational learning prevents engagement of a model-free learning
mechanism that relies on the receipt of reinforcement.”

17One interpretation of our annual implementation is that, as argued by Benartzi and Thaler (1995), in-
vestors pay particular attention to their portfolios once a year – at tax time, or when they receive their
end-of-year brokerage statements. Another interpretation is that it is an approximation of a higher-frequency
implementation. Later in this section, we explain how our results are affected by the choice of frequency.

18Since our setting has an infinite horizon, investors continue to participate in financial markets beyond
date T . Date T is simply the date at which we stop tracking their allocation decisions.
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model-based learning rates in (17) and (18) would be

αMB
t,+ = αMB

t,− = 1/(L+ t+ 1), (23)

as these lead investors to equally weight all past returns, consistent with the i.i.d. return

assumption. Similarly, Watkins and Dayan (1992) show that, for Q-learning to converge to

the correct Q∗ values, declining model-free learning rates are needed that, for each action a,

satisfy
∞∑
t=0

αMF
t,± 1{at=a} =∞ and

∞∑
t=0

(αMF
t,± )21{at=a} <∞, (24)

where the indicator function identifies periods where the algorithm is taking action a.

In this paper, however, we are taking a “positive” perspective – our goal is to explain

observed behavior. What matters for our purposes is therefore not the learning rates people

should use, but rather the learning rates they actually use. Psychology research does not offer

definitive guidance on people’s learning rates, but most studies of actual decision-making use

learning rates that are constant over time (Glascher et al., 2010); moreover, the recorded

activity of neurons that encode the reward prediction error is consistent with a constant

learning rate (Bayer and Glimcher, 2005). For this reason, we focus on constant learning

rates. To start, we give all investors the same constant learning rates. Later, we allow for

dispersion in these rates across investors.19

3.1 An example

To show how the model-free and model-based systems work, we start with an example.

Throughout the paper, we use the same baseline parameter values, in part for consistency

and in part to show that a fixed set of parameter values can account for a range of observed

facts. We consider an investor who is exposed to a sequence of stock market returns from

t = −L to t = T , where L = T = 30. The returns are simulated from the distribution in (6)

with µ = 0.01 and σ = 0.2; these values provide an approximate fit to historical annual U.S.

stock market data. We set the investor’s learning rates to αMF
± = αMB

± = 0.5, the exploration

19One reason that has been proposed for why the human learning system would use constant learning rates
is that these are well-suited to the non-stationary environments that humans often encountered during the
evolutionary process.

22



parameter β to 30, the discount factor γ to 0.97 – this corresponds to an expected invest-

ment horizon of 33 years – and the degree of generalization b to 0.0577.20 At each date, we

allow the investor to choose his stock market allocation at from one of 11 possible allocations

{0%, 10%, . . . , 90%, 100%}. We later examine how our results depend on the values of all the

key parameters.

In our framework, decisions are based on hybrid Q values that combine the influences of

the model-free and model-based systems. To clearly illustrate the mechanics of each system,

we start by considering two simpler cases: one where the investor uses only the model-free

system to make decisions, and one where he uses only the model-based system.

Table 1 shows the model-freeQ values, QMF , based on equations (11), (13), and (14) (upper

panel) and the model-based Q values, QMB, based on equations (19) and (20) (lower panel)

that the investor assigns to the 11 allocation strategies on his first six dates of participation

in financial markets, namely t = 0, 1, 2, 3, 4, and 5. The rows labeled “net market return”

show the net return of the stock market at each date. In each column, the number in bold

corresponds to the action that was taken in the previous period; for example, the number

−0.065 in bold at date 1 in the upper table indicates that the investor chose a 70% allocation

at date 0.21

Consider the upper panel of Table 1. The model-free system begins operating at time 0.

At that time, then, it assigns a Q value of zero to all the allocations. It then randomly selects

the allocation 70%. The net stock market return at time 1 is negative, which means that the

investor’s net portfolio return and reward prediction error are also negative. The time-1 Q

value for the 70% allocation therefore falls below zero. As per equations (13) and (14), the

algorithm also engages in some generalization: since a 60% allocation and an 80% allocation

are similar to a 70% allocation, their Q values also fall, albeit to a lesser extent. The Q values

of more distant allocations are unaffected, at least to three decimal places.

20In simulations, we find that for β = 30, an investor using the hybrid system chooses the allocation with
the highest Q value approximately half the time, which represents a moderate degree of exploration.

21In the case where decisions are determined by the model-based system alone, we assume that the investor
still chooses actions probabilistically, in a manner analogous to that in (11). In our setting, for the model-
based system, this probabilistic choice does not offer the usual exploration benefits: in each period, the investor
learns the same thing about the distribution of stock market returns regardless of which allocation he chooses.
We keep the probabilistic choice to allow for a more direct comparison with the model-free system – but also
because, if, as suggested earlier, this stochastic choice stems in part from cognitive noise, it will be relevant
for model-based learning too. For these reasons, whenever we consider the model-based system in isolation,
we will allow for probabilistic choice.
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Table 1. Model-free and model-based Q values. The upper panel reports model-free Q
values for 11 stock market allocations from t = 0 to t = 5. The lower panel reports model-
based Q values for the 11 allocations for the same six dates. The rows labeled “net market
return” report the net stock market return at each date. Boldface type indicates the allocation
that was taken in the previous period. We set αMF

± = αMB
± = 0.5, β = 30, γ = 0.97, µ = 0.01,

σ = 0.2, and b = 0.0577.

MODEL-FREE
date 0 1 2 3 4 5

net market return -17.4% 18.3% -1.3% 12.8% -16.6%
0% 0 0 0 0 0 0

10% 0 0 0 0 0 0
20% 0 0 0.006 0.006 0.01 0.01
30% 0 0 0.027 0.027 0.045 0.041
40% 0 0 0.006 0.006 0.01 -0.007
50% 0 0 0 0 0 -0.004
60% 0 -0.015 -0.015 -0.015 -0.015 -0.015
70% 0 -0.065 -0.065 -0.065 -0.065 -0.065
80% 0 -0.015 -0.015 -0.014 -0.014 -0.014
90% 0 0 0 0.001 0.001 0.001

100% 0 0 0 0.006 0.006 0.006

MODEL-BASED
date 0 1 2 3 4 5

net market return -17.4% 18.3% -1.3% 12.8% -16.6%
0% 0.72 0 1.352 0.464 2.179 0

10% 0.723 -0.007 1.357 0.466 2.187 -0.005
20% 0.726 -0.015 1.362 0.468 2.194 -0.01
30% 0.729 -0.022 1.367 0.47 2.201 -0.015
40% 0.731 -0.03 1.372 0.472 2.208 -0.02
50% 0.733 -0.039 1.376 0.473 2.215 -0.026
60% 0.736 -0.047 1.38 0.475 2.222 -0.031
70% 0.737 -0.056 1.384 0.476 2.228 -0.037
80% 0.739 -0.065 1.387 0.477 2.234 -0.044
90% 0.741 -0.075 1.39 0.478 2.241 -0.05

100% 0.742 -0.085 1.393 0.479 2.247 -0.057

At time 1, the investor chooses the allocation 30%. The time-2 market return is positive;

the investor therefore earns a positive net portfolio return and the time-2 Q value of the 30%

allocation goes up, as do, to a lesser extent, the Q values of the similar allocations 20% and
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40%. At time 2, the investor chooses the allocation 100%. While the market falls slightly at

time 3, the time-3 Q value of the 100% allocation goes up by a small amount because the

reward prediction error is slightly positive. At dates 3 and 4, the investor chooses allocations

of 30% and 40%, respectively, and updates the values of these allocations and their close

neighbors based on the prediction errors they lead to at dates 4 and 5.

The lower panel shows that the Q values generated by the model-based system are quite

different. By time 0, the model-based system has already been operating for 30 periods and

so already has well-developed Q values for each of the 11 allocation strategies. In the periods

immediately preceding time 0, the simulated stock market returns are somewhat positive;

higher allocations to the stock market therefore have higher Q values at time 0. At time 1,

the stock market return is poor, so all Q values fall, but those of riskier allocations do so

more: the negative stock market return at time 1 makes the investor’s perceived distribution

of stock market returns less appealing; this has a larger impact on strategies that allocate

more to the stock market. At time 2, the stock market return is positive, so all Q values go

up, but those of the riskier allocations do so more.

Table 1 makes clear a key difference between the model-free and model-based systems:

while, at each time, the model-based system updates the Q values of all the allocations, the

model-free system primarily updates only the Q values of the most recently-chosen allocation

and those of its nearest neighbors. The reason is that it is model-free: it knows nothing about

the structure of the problem and therefore cannot make a strong inference, after seeing the

outcome of a 70% allocation, about the value of a 20% allocation.

3.2 Dependence on past market returns

We now analyze a property of our framework that is central to the applications in Section 4,

namely, how the stock market allocations recommended by the model-free and model-based

systems depend on past stock market returns. We find that the model-free system generates a

rich set of intuitions and implications, some of which are quite distinct from those associated

with model-based systems.

To study this, we take 300, 000 investors and expose each of them to a different sequence

of simulated stock market returns from t = −L to t = T . We then take investors’ stock

market allocations aT at time T , regress them on the past 30 annual stock market returns
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{Rm,T , Rm,T−1,. . . ,Rm,T−29} the investors have been exposed to, and record the coefficients.

We do this for three cases, namely those where investor allocations are determined by the

model-free system alone; by the model-based system alone; and by the hybrid system. For

all investors, as before, we set L = T = 30, αMF
± = αMB

± = 0.5, β = 30, γ = 0.97, µ = 0.01,

and σ = 0.2. For ease of interpretation, we turn off generalization for now, so that b = 0.22

Finally, we set w = 0.5, so that the hybrid system puts equal weight on the model-free and

model-based systems. We later look at how changing the values of key model parameters

affects the results.23

Figure 1 presents the results. The solid line plots the coefficients on past returns in the

above regression when allocations are determined by the model-based system. As we move

from left to right, the line plots the coefficients on more distant past returns: the point on the

horizontal axis that marks j years in the past corresponds to the coefficient on Rm,T+1−j. The

two other lines plot the coefficients for the model-free and hybrid systems.

The figure shows that, for both the model-free and model-based systems, the time T stock

market allocations depend positively on past returns, and more so on recent past returns: the

coefficients on past returns decline, the more distant the past return. Importantly, the decline

is much more gradual for the model-free system, a property that will play a key role in some

of our applications. Given that the hybrid system combines the model-free and model-based

systems, it is natural that the line for the hybrid system is, approximately, a mix of the

model-free and model-based lines.

We now discuss these findings. First, we explain why the allocations recommended by the

model-free and model-based systems depend positively on past returns. The answer is clear

in the case of the model-based system. Following a good stock market return, an investor’s

perceived distribution of market returns assigns a higher probability to good returns and a

lower probability to bad returns. This raises the model-based Q values of all stock market

allocations, but particularly those of high allocations, making it more likely that the investor

will choose a high allocation going forward.

22We use “b = 0” as shorthand for model-free learning without generalization. When b = 0, we compute
model-free Q values using equation (10) rather than equations (13)-(14), although the latter equations give
the same result as b→ 0.

23The goal function in (7) is motivated in part by the idea that, due to liquidity shocks, some investors drop
out of financial markets over time. In our calculations, we do not explicitly track which investors drop out.
This is because the shocks are random: they do not depend on investors’ prior allocations or past returns. As
such, investor exits do not affect the properties or predictions that we document.
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Figure 1. We run a regression of investors’ allocations to the stock market aT at
time T on the past 30 years of stock market returns {Rm,T+1−j}30j=1 investors were
exposed to and plot the coefficients for three cases: a model-free system, a model-
based system, and a hybrid system. The point on the horizontal axis that marks
j years in the past corresponds to the coefficient on Rm,T+1−j. There are 300,000
investors. We set L = T = 30, αMF

± = αMB
± = 0.5, β = 30, γ = 0.97, µ = 0.01,

σ = 0.2, w = 0.5, and b = 0, so that there is no generalization.

The intuition in the case of the model-free system is different and, to our knowledge, new

to financial economics. If the investor chooses a 20% stock market allocation and the market

posts a high return, this “reinforces” the action of choosing a 20% allocation: the positive

reward prediction error raises the Q value of this allocation, making it more likely that the

investor will choose it again in the future. Similarly, if he chooses an 80% allocation and the

market posts a high return, this reinforces the 80% allocation. In one case, then, a high market

return leads the investor to choose a low allocation; in the other, it leads him to choose a

high allocation. Why then, on average, does a high market return lead to a higher allocation,

as shown by the dashed line in Figure 1? The reason is that the reinforcement is stronger in
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the case of the 80% allocation: a high stock market return leads to a larger reward prediction

error when the investor’s prior allocation is 80% than when it is 20%. As such, the net effect

of a good stock market return, after averaging over the possible prior allocations, is to lead

the investor to choose a high stock market allocation.

We now explain why the weights that the two systems put on past market returns decline

as we go further into the past. In the case of the model-based system, this is because, when

this system updates its perceived return distribution after seeing a new stock market return,

it scales down the probabilities of earlier returns, reducing their importance. Intuitively, by

using a constant learning rate, the investor is acting as if the environment is non-stationary;

as such, he puts greater weight on recent returns. The top graph in Figure 2 shows how the

time T allocation recommended by the model-based system depends on past stock market

returns for four different values of the learning rates αMB
+ and αMB

− , namely 0.05, 0.1, 0.2,

and 0.5. The graph shows that, regardless of the learning rate, the allocation puts weights on

past returns that are positive and that decline the further back we go into the past, with the

decline being more pronounced for higher learning rates.

Figure 1 shows that, for the model-free system, the weights on past returns again decline

as we go further into the past, but much more gradually. Why is this? When the model-free

system updates the Q value of an action, this tends to downweight the influence of past returns

on this Q value, relative to the most recent return. However, this effect passes through to

allocation choice in a much more gradual way than for the model-based system because, at

each time, the model-free system primarily updates only one Q value, namely that of the most

recently-chosen action; as such it takes much longer for past returns to lose their influence

on the investor’s allocation.24 The bottom graph in Figure 2, which plots the relationship

between the model-free allocation and past returns for four different values of the learning

rates αMF
+ and αMF

− , shows that the model-free allocation typically puts positive and declining

weights on past returns, with the decline being more pronounced for higher learning rates.

24For an example, consider the upper panel of Table 1. At time 4, the model-free system updates the Q
value of the 30% allocation. However, the Q value of a 70% allocation is not significantly updated at this time,
and so it depends as strongly as before on the time 1 stock market return. As such, for the model-free system,
the time 1 and time 4 stock market returns exert a similar degree of influence on the investor’s allocation at
time 4.

28



0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

0

0.05

0.1

0.15

Figure 2. We run a regression of investors’ allocations to the stock market aT at
time T on the past 30 years of stock market returns {Rm,T+1−j}30j=1 investors were
exposed to. The top graph plots the coefficients for the model-based system for four
values of the learning rates αMB

+ and αMB
− , namely 0.05, 0.1, 0.2, and 0.5. The point

on the horizontal axis that marks j years in the past corresponds to the coefficient
on Rm,T+1−j. The bottom graph plots the coefficients for the model-free system for
four values of the learning rates αMF

+ and αMF
− , namely 0.05, 0.1, 0.2, and 0.5. There

are 300,000 investors. We set L = T = 30, β = 30, γ = 0.97, µ = 0.01, σ = 0.2, and
b = 0, so that there is no generalization.

The graphs in Figure 3 show how the relationship between investors’ time T model-free

allocations and past stock market returns changes as we vary one of the model parameters
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while keeping the others at their benchmark levels. Across the four graphs, we vary the degree

of generalization, the degree of exploration, the discount factor, and the number of allocation

choices. Changing these parameters would have little effect on model-based allocations. How-

ever, Figure 3 shows that it has significant impact on model-free allocations. While for many

parameter values, including those used in Figures 1 and 2, the model-free allocation puts more

weight on recent than on distant past returns, Figure 3 shows that, for some parameter values,

it can put more weight on distant than on recent past returns. Moreover, the figure shows the

conditions under which this happens – for example, for higher degrees of generalization. We

explain the full intuition for the patterns in Figure 3 in Internet Appendix C.25

While the model-free algorithm is simple to state – it is summarized in equation (13) – it

is difficult to derive analytical results about its predictions. Nonetheless, for certain special

cases, we are able to derive such results, which are precisely about the dependence of model-

free allocations on past market returns and which, to our knowledge, are the first results of

their kind. We present these results and their proofs in Theorems 1 to 4 of Internet Appendix

D. Specifically, we show that, under some conditions, as t→∞, the sensitivity of the expected

allocation at time t to the market return k periods earlier, Rm,t−k = R, is given by

∂E(at)

∂Rm,t−k
=

αβR2β−1

(Rβ + 1)3

(
Rβ + 1− αRβ

Rβ + 1

)k
(25)

for the model-free allocation, and by

∂E(at)

∂Rm,t−k
=

αβRβ−1

(Rβ + 1)2
(1− α)k (26)

for the model-based allocation, where α is the constant learning rate for both systems. These

results are consistent with the patterns in Figure 1. Expressions (25) and (26) both decline

monotonically as k increases. Moreover, the model-free coefficient in (25) is lower than the

model-based coefficient in (26) for low values of k, but higher than the model-based coeffi-

cient for high values of k. This provides an analytical foundation for the property we have

25The results in Figures 1 to 3 are for an annual-frequency implementation of our framework. We have
studied the effect of changing the frequency. If we fix the learning rates αMB

± and αMF
± but switch to a

semi-annual, quarterly, or monthly implementation, this has a significant effect on the model-based allocation
– it depends all the more on recent returns – but a much smaller impact on the model-free allocation. As
such, implementing the framework at a higher frequency creates a larger wedge between the two systems.
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emphasized in this section, namely that, relative to the model-based system, the model-free

system puts significantly more weight on distant past returns.
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Figure 3. For different sets of parameter values, we run a regression of investors’
allocations to the stock market aT at time T under the model-free system on the
past 30 years of stock market returns {Rm,T+1−j}30j=1 investors were exposed to and
plot the coefficients. The lines in the top-left, top-right, bottom-left, and bottom-
right graphs correspond, respectively, to four values of the generalization parameter
b, namely 0, 0.0577, 0.115, and 0.23; to three values of the exploration parameter β,
namely 10, 50, and ∞, which corresponds to no exploration; to three values of the
discount factor γ, namely 0.3, 0.9, and 0.99; and to different numbers of allocation
choices, namely 3, 6, 11, and 21. There are 300,000 investors. The benchmark
parameter values are L = T = 30, αMF

± = 0.5, β = 30, γ = 0.97, µ = 0.01, σ = 0.2,
and b = 0, so that there is no generalization.
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3.3 Dependence on past allocations and portfolio returns

In the previous section, we studied the dependence of the model-free and model-based alloca-

tions on past market returns. We focused on the market return because it is the exogenous

shock in our framework and because the dependence on market returns is central to our appli-

cations in Section 4. Nonetheless, it is natural to ask whether other variables – the investor’s

past allocations or portfolio returns – also have predictive power for today’s allocation.

In the case of the model-based system, the answer is negative: past market returns are

the lone predictors of today’s model-based allocation; past allocations and portfolio returns

have no additional predictive power. By contrast, past allocations and portfolio returns have

substantial predictive power for the model-free allocation – indeed, they are the primary

drivers of this allocation. Past market returns affect the model-free allocation indirectly, by

way of these other variables: they affect portfolio returns which then reinforce allocations. In

this section, we examine the dependence of the model-free allocation on past allocations and

portfolio returns.

A large part of the predictive power of past allocations and portfolio returns for the model-

free allocation comes from just one lag of prior data. In the case where decisions are made

by the model-free system, we run a regression in our simulated data of the time T allocation

aT on the prior allocation aT−1, on the most recent net portfolio return rp,T ≡ Rp,T − 1 – in

this section, we work with the net return for ease of interpretation – and on the product of

the two aT−1rp,T ; the parameter values are the same as those in the caption for Figure 1. We

obtain

aT = 0.2 + 0.63aT−1 − 0.35rp,T + 0.75aT−1rp,T + εT . (27)

The relationship in (27) captures four features of the model-free system, which are most easily

illustrated with numerical examples.26

First, equation (27) shows that the model-free allocation at time T is closely tied to the

previous period’s allocation. For example, if aT−1 = 20% and the net portfolio return is a

26Here, and in some other places in the paper, we study the implications of behavior when it is determined by
the model-free system alone. We do this in order to understand the model-free system more deeply. However,
the prevailing view in psychology is that behavior is driven by both the model-free and model-based systems,
in combination. As such, it does not make sense to compare (27) directly to observed behavior. Rather, it is
the combined impact of model-free and model-based learning that should be compared to observed behavior,
as it will be in Section 4.
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neutral rp,T = 0, then the expected time T allocation E(aT ) = 33%; and if aT−1 = 80% and

rp,T = 0, then E(aT ) = 71%. In both cases, the expected time T allocation is fairly close

to the time T − 1 allocation. This is because, at each time, the model-free system primarily

updates the Q value of the most recently-chosen action. As such, the Q values at time T are

similar to the Q values at time T − 1; this, in turn, means that the time T allocation is likely

to resemble the time T − 1 allocation.

Second, the numbers in the previous paragraph show that there is mean-reversion in the

model-free allocation. Again, when the net portfolio return is rp,T = 0, a prior allocation

of 20% leads to an expected allocation of 33%, while a prior allocation of 80% leads to an

expected allocation of 71%. The mean-reversion is due to the probabilistic action choice and

to the fact that the set of possible allocations is bounded by 0% and 100%. If the investor has

a high allocation to the stock market at time T − 1, then, since there is a random component

to his time T allocation and since this allocation must be between 0% and 100%, his time T

allocation will on average be lower than at time T − 1.

Third, regression (27) captures the reinforcing effect of the portfolio return. If aT−1 = 20%

and the portfolio return is a neutral rp,T = 0, then E(aT ) = 33%̇; but if rp,T = 0.2, then

E(aT ) = 29%: the high portfolio return reinforces the 20% allocation and pulls the time T

allocation towards it, from 33% down to 29%. Similarly, if aT−1 = 80% and rp,T = 0, then

E(aT ) = 71%; but if rp,T = 0.2, then E(aT ) = 76%: this time, the high portfolio return

reinforces the 80% allocation and pulls the time T allocation towards it, from 71% up to 76%.

Finally, regression (27) captures the indirect way that the market return affects the model-

free allocation. If aT−1 = 20% and the net market return is a neutral rm,t ≡ Rm,t−1 = 0, then

rp,T = 0 and E(aT ) = 33% as before. But if rm,T = 0.2, then rp,T = 0.04 and E(aT ) = 32%.

In this case, the high market return modestly reinforces the prior allocation of 20% and

lowers the expected allocation by 1%, from 33% to 32%. Similarly, if aT−1 = 80% and

rm,T = 0, then rp,T = 0 and E(aT ) = 71%. But if rm,T = 0.2, then rp,T = 0.16 and

E(aT ) = 75%. In this case, the high market return strongly reinforces the prior allocation of

80% and increases the expected allocation by 4%, from 71% to 75%. Averaging across the

two prior allocations, the positive market return increases the investor’s time T allocation by

approximately (4 − 1)/2 = 1.5%. This provides a numerical illustration of the mechanism

described in the previous section: the model-free allocation depends positively on past market
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returns because a high market return generates greater reinforcement when the investor’s prior

allocation is high.27

3.4 Variability and dispersion

Regression (27) in the previous section shows that model-free allocations are “sticky”: the

allocation at any time hews closely to the allocation in the previous period. This suggests

that the model-free system will lead to less variability in an investor’s allocation over time.

We now document this more formally.

To demonstrate the result, we first allow for dispersion in learning rates across investors.28

For each investor, we draw each of their learning rates – each of αMF
+ , αMF

− , αMB
+ , and αMB

− –

from a uniform distribution centered at ᾱ and with width ∆. As before, the parameter values

are L = T = 30, ᾱ = 0.5, β = 30, γ = 0.97, µ = 0.01, and σ = 0.2; and as in Section 3.1,

we have b = 0.0577, so that there is some generalization. We set the new parameter ∆ to

0.5. We take 1,000 investors, expose them to the same sequence of stock market returns from

t = −L to t = T, and compute the variability in their allocations: for each investor in turn, we

compute the standard deviation of his allocations {aT−j}30j=0 over time and then average these

standard deviations across investors. We repeat this exercise 300 times for different return

sequences and average the resulting variability measures.

The solid and dashed lines in the top three graphs in Figure 4 plot the variability of

investor allocations under the model-based and model-free systems, respectively, as we vary

the values of three parameters – the exploration parameter β, the mean learning rate ᾱ, and

the dispersion ∆ of learning rates – while keeping the other parameter values fixed at their

benchmark levels. The graphs confirm that the model-free system leads to lower variability

than the model-based system: the dashed lines are substantially below the solid lines.

27A more precise calculation, which averages across all eleven possible prior allocations, leads to a similar
result. The 1.5% number approximately matches the prediction of the dashed line in Figure 1 for the sensitivity
of the model-free allocation to a 20% net market return, namely (0.1072)(0.2) = 2.14%, where 0.1072 is the
coefficient on the most recent market return in a regression of model-free allocations on past market returns.

28Data on investor beliefs about future stock market returns suggest that there is substantial dispersion in
learning rates across investors. Giglio et al. (2021) analyze such data and find that an individual fixed effect
explains more of the variation in beliefs than a time fixed effect: some investors are persistently optimistic
while others are persistently pessimistic. Capturing this in our framework requires substantial dispersion in
learning rates across investors, a claim we have confirmed in simulated data: as we increase this dispersion,
individual fixed effects explain more of the variation in beliefs. Intuitively, investors with high αMB

+ and low
αMB
− are persistently optimistic, while those with low αMB

+ and high αMB
− are persistently pessimistic.
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Figure 4. The upper graphs plot the variability of stock market allocations –
the standard deviation of allocations between time 0 and time T, computed for each
investor in turn and averaged across investors. The lower graphs plot the dispersion,
across investors, of their stock market allocations at time T. The solid and dashed
lines correspond to the model-based and model-free systems, respectively. For each
system, the graphs vary the exploration parameter β, the mean learning rate ᾱ, or
the dispersion in learning rates ∆, while keeping the other parameter values fixed
at their benchmark levels. The results are averaged across 300 simulations; each
simulation features 1,000 investors, all of whom see the same return sequence. The
benchmark parameter values are L = T = 30, ᾱ = 0.5, β = 30, γ = 0.97, ∆ = 0.5,
µ = 0.01, σ = 0.2, and b = 0.0577.

Using the simulated data from the above exercise, we also compute another quantity

that will be helpful when we turn to applications, namely the dispersion in allocations across

investors at time T . For each of our 300 simulations, and for each of the model-free and model-

based systems, we compute the standard deviation of the 1,000 investors’ time T allocations

and then average these estimates across the 300 simulations. The lower graphs in Figure 4

plot the resulting dispersion measures as we vary each of β, ᾱ, and ∆. The graphs show that

the two systems generate similarly high dispersion in investor allocations. We return to this

finding in Section 4.
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4 Applications

We now build on the analysis of Section 3 to show that our framework can shed light on a range

of facts in finance. This is striking, for two reasons. First, in prior research, this framework

has been used primarily to explain behavior in simple experimental settings; it is notable,

then, that it can also account for real-world financial behavior. Second, one component of

the framework is “model-free,” and, as such, uses very little information about the nature of

the task. It is striking that a framework that “knows” so little about financial markets can

nonetheless help explain investor behavior in these markets.

We have associated the risky asset in our framework with the aggregate stock market.

Our applications therefore focus on important facts about this market – facts about investor

allocations, investor beliefs, and the relationship between the two. We address these facts

by way of a simple parameterization of our framework, where, by “simple,” we mean that

each investor’s learning rates αMF
+ , αMF

− , αMB
+ , and αMB

− are constant over time, and, for

all investors, the values of these learning rates are drawn from the same distribution. Our

initial goal is not to provide a close quantitative fit to observed facts; it is to show that a

simple parameterization can provide a qualitative, and approximate quantitative, fit to the

data. Toward the end of this section, we estimate the parameter values that provide a closer

quantitative match to the data.

To study the various applications, we start with the setup of Section 3. There are again

L+ T + 1 dates, t = −L,. . . ,−1, 0, 1,. . . , T . Relative to Section 3, we make one modification

to make the framework more realistic: we allow for different cohorts of investors who enter

financial markets at different times. Specifically, we take L = T = 30 and consider six cohorts,

each of which contains 50, 000 investors, for a total of 300, 000 investors. The first cohort

begins participating in financial markets at time t = 0; we track their allocation decisions

until time t = T . For these investors, their model-based systems operate over the full timeline

starting at time t = −L, but their model-free systems operate only from time t = 0 on. The

second cohort enters at time t = 5; we track them until time t = T . For this cohort, the

model-based system again operates over the full timeline starting at t = −L, but the model-

free system operates only from time t = 5 on. The four remaining cohorts enter at dates

t = 10, 15, 20, and 25.

Given the above structure, at time T , the cross-section of investors resembles the one we
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see in reality, namely one where investors differ in their number of years of participation in

financial markets. As such, most of our analyses will focus on investor allocations at time T

and on how these relate to other variables, such as investor beliefs at that time or the past

stock market returns investors have been exposed to. For most of the applications, we conduct

simulations in which each investor interacts with a different return sequence from time t = −L
to time t = T .

Each investor in the economy is trying to solve the problem in (7) and chooses allocations

from the set {0%, 10%,. . . , 90%, 100%} according to the hybrid system in (21)-(22). For each

investor, we draw the values of the learning rates αMF
+ , αMF

− , αMB
+ , and αMB

− independently

from a uniform distribution with mean ᾱ and width ∆. We use the same parameter values

throughout this section in order to show that a single parameterization is consistent with a

range of empirical facts. As in Section 3, we set ᾱ = 0.5, β = 30, γ = 0.97, ∆ = 0.5, µ = 0.01,

σ = 0.2, b = 0.0577, and w = 0.5, so that investors put equal weight on the model-free and

model-based systems. Later, we formally estimate the value of w that best fits the data.

4.1 Extrapolative demand

Our first application builds on the analysis of Section 3.2. A common assumption in psychology-

based models of asset prices and investor behavior is that people have extrapolative demand:

their demand for a financial asset depends positively on the asset’s past returns, and especially

on its recent past returns.29

The framework of Section 2 provides a new foundation for such extrapolative demand.

As shown in Section 3.2, for a wide range of parameter values, the model-free and model-

based systems both generate an allocation to the stock market that depends positively on

past market returns and more so on recent past returns. The mechanism in the case of the

model-based system is similar to others that have been proposed. However, in the case of the

model-free system, the mechanism is new to the finance literature. We explained the logic in

full in Section 3.2. A brief summary is: Following a good stock market return, the reward

prediction error is larger if the investor previously had a high allocation to the stock market

29A partial list of papers that study extrapolative demand, either theoretically or empirically, is Cutler,
Poterba, and Summers (1990), De Long et al. (1990), Barberis and Shleifer (2003), Barberis et al. (2015,
2018), Cassella and Gulen (2018), Bastianello and Fontanier (2022), Chen, Liang, and Shi (2022), Jin and Sui
(2022), Liao, Peng, and Zhu (2022), and Pan, Su, Wang, and Yu (2023).
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than if he had a low allocation; a high allocation therefore receives more reinforcement, making

it more likely that he will choose a high allocation going forward.

To confirm that the framework of Section 2 generates extrapolative demand, we run a

regression of investors’ allocations aT at time T , as determined by the hybrid system, on the

past stock market returns each of them has observed. The relationship between the allocation

and past returns is plotted as the solid line in Figure 5. The graph confirms that an investor’s

allocation to the stock market is a positive function of the market’s past returns, with weights

that decline the further back we go into the past. The solid line in Figure 5 is similar to the

line marked “Hybrid” in Figure 1 in that both lines correspond to decisions made under the

hybrid system. However, the two lines differ because, relative to the analysis in Section 3.2, we

are now allowing for dispersion across investors in their learning rates and for multiple cohorts.

The multiple cohorts in particular make the solid line in Figure 5 decline more quickly than

the “Hybrid” line in Figure 1: some of the investors in the market at time T = 30 entered

only at time 25; as such, their model-free system puts no weight on returns before time 25.

Recent models of extrapolative demand have taken it to be a consequence of investor beliefs.

Our analysis shows that it can also result from a mechanism that is unrelated to beliefs and

based instead on the reinforcement of past actions. More precisely, our framework says that

extrapolative demand has two sources: a model-based source derived from beliefs that puts

heavy weight on recent returns, and a model-free source that puts substantial weight even

on distant past returns. We exploit this two-component structure of extrapolative demand

in Sections 4.3 and 4.4 to shed light on some puzzling disconnects between allocations and

beliefs.

Prior work has shown that certain types of extrapolative demand can help explain the

excess volatility in stock markets and the predictability of market returns (De Long et al.,

1990; Barberis et al., 2015). Given that the investors in our framework have a form of

extrapolative demand, it is natural to expect that, in an asset pricing setting, these investors

will generate excess volatility and predictability. This excess volatility will be driven in part

by beliefs – this is the influence of the model-based system – but also by a new mechanism,

namely model-free reinforcement of past actions. For space reasons, we do not present a formal

analysis of asset prices in the current paper, but such an analysis is feasible and a natural

direction for future research.
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Figure 5. The solid line plots the coefficients in a regression of the stock market
allocation aT at date T chosen by investors who use a hybrid system to make de-
cisions on the past 30 years of stock market returns the investors were exposed to.
The dashed line plots the coefficients in a regression of investors’ expectations at
time T about the future one-year stock market return on the past 30 years of stock
market returns. There are 300,000 investors: six cohorts of 50,000 investors each
who enter financial markets at different times. For each investor, each of αMF

+ , αMF
− ,

αMB
+ , and αMB

− is drawn independently from a uniform distribution with mean ᾱ
and width ∆. We set L = T = 30, ᾱ = 0.5, β = 30, γ = 0.97, ∆ = 0.5, µ = 0.01,
σ = 0.2, b = 0.0577, and w = 0.5.

4.2 Experience effects

Malmendier and Nagel (2011) show that investors’ decisions are affected by their experience:

whether an investor participates in the stock market, and how much he allocates to the stock

market if he does participate, can be explained in part by the stock market returns he has

39



personally experienced – in particular, by a weighted average of the returns he has personally

lived through, with more weight on more recent returns.

The framework of Section 2 provides a foundation for such experience effects. Since the

model-free system engages only when an investor is actively experiencing financial markets,

the framework predicts that investors who enter financial markets at different times, and who

therefore experience different returns, will choose different allocations.

There are two key features of experience effects that we aim to capture. The first is that,

if an investor begins participating in financial markets at time t, his subsequent allocations

to the stock market should depend substantially more on the stock market return at time

t + 1, Rm,t+1 – a return he experienced – than on the stock market return at time t, Rm,t,

a return he did not experience. Put differently, if we plot the coefficients in a regression of

investor allocations on past market returns, we should see a “kink” in the coefficients at the

moment the investor enters financial markets. The second feature of experience effects is that

the coefficients in a regression of investor allocations on past experienced stock market returns

should decline for more distant past returns. To capture both features, Malmendier and Nagel

(2011) propose that investors’ decisions are based on a weighted average of past returns in

which, for an investor at time t with n years of experience, the weight on the return j years

earlier, Rm,t+1−j, is

(n+ 1− j)λ/A, j = 1, 2, . . . , n, (28)

where λ is estimated to be approximately 1.3 and A is a normalizing constant, and where the

weight on returns the investor did not experience is zero.

To see if our framework can generate these two features of experience effects, we proceed

as follows. For each of the six cohorts, we take the 50, 000 investors in the cohort and regress

their time T allocations aT on the past 30 years of stock market returns. Figure 6 presents the

results. The six graphs correspond to the six cohorts. In each graph, the solid line plots the

coefficients in the above regression, normalized to sum to one so that we can compare them

to the Malmendier and Nagel (2011) coefficients in (28). The dashed line plots the functional

form in (28) for the cohort in question, and the vertical dotted line marks the point at which

the cohort enters financial markets.
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Figure 6. The six graphs correspond to six cohorts of investors. In each graph, the
solid line plots the coefficients, normalized to sum to one, in a regression of the time
T stock market allocations aT of the investors in that cohort on the past 30 years of
stock market returns they were exposed to. The six cohorts have different numbers
of years of experience, namely n = 5, 10, 15, 20, 25, and 30; the vertical dotted
line in each graph marks the time at which the cohort enters financial markets.
There are 300,000 investors, with 50,000 in each cohort. For each investor, each of
αMF
+ , αMF

− , αMB
+ , and αMB

− is drawn independently from a uniform distribution with
mean ᾱ and width ∆. We set L = T = 30, ᾱ = 0.5, β = 30, γ = 0.97, ∆ = 0.5,
µ = 0.01, σ = 0.2, b = 0.0577, and w = 0.5. In each graph, the dashed line plots a
functional form for experience effects calibrated to data by Malmendier and Nagel
(2011), namely (n+ 1− j)λ/A, where j is the number of years in the past, λ = 1.3,
and A is a normalizing constant.

By comparing the solid and dashed lines for each graph in turn, we see that our framework

can capture both aspects of experience effects. Consider the bottom-left graph for cohort 4

which enters at date 15. The solid line shows that our framework generates a kink in the

dependence of allocation on past market returns as we move from a return these investors

experienced – the return 15 years in the past – to one they did not experience, the return 16

years in the past. The kink is driven by investors’ model-free system, which puts substantial
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weight even on a return experienced 15 years in the past, but no weight at all on returns before

that. The graph also shows that, within the subset of returns that these investors experience,

their allocation puts greater weight on more recent past returns. Both the model-free and

model-based systems contribute to this pattern, although the model-based system does so

more.

Similar patterns can be seen in the other graphs. In each case, the solid line exhibits a

kink at the moment that the investors in that cohort begin experiencing returns; and within

the subset of returns that the investors in that cohort experience, there is more weight on

more recent returns.

Using an analogous approach, our framework can also capture several other types of expe-

rience effects in financial markets – for example, that after experiencing good returns on their

investments in a particular industry, IPO stock, or lottery-type stock, people are more likely

to purchase another stock in that industry, another IPO stock, or another lottery-type stock,

respectively (Kaustia and Knupfer, 2008; Huang, 2019; Hui et al., 2021).30

4.3 Investor beliefs: Overreaction and the frequency disconnect

Individual investors overreact to recent market returns when forming beliefs about future

market returns: their beliefs are a positive function of recent returns even though there is

little autocorrelation in realized returns (Greenwood and Shleifer, 2014). Our framework

captures this overreaction. As we confirm below, after a high return, the model-based system

increases the probability it assigns to good returns, leading the investor to expect a higher

return in the future. In the same way, the framework can capture the overreaction we observe

more generally for low-persistence processes (Bordalo et al., 2020; Afrouzi et al., 2023). For

example, if the model-based system is trying to build a probability distribution for earnings

growth, then, following high earnings growth, it raises the probability it assigns to good

earnings growth outcomes, and thus over-estimates future earnings growth.

Aside from capturing overreaction in beliefs, our framework also resolves two puzzling

disconnects between investor beliefs and investor actions – one in the frequency domain, which

we discuss in this section, and one in the cross-section of investors, which we address in the

30See Malmendier and Wachter (2022) for a review of other psychology-based foundations for experience
effects.
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next section. We account for these puzzles by way of a deep property of our framework, namely

that, of the two systems, only the model-based system has an explicit role for beliefs. The

model-free system, by contrast, has no notion of beliefs: it does not construct a probability

distribution of future outcomes; instead, it learns the value of actions simply by trying them

and observing the outcomes.

The disconnect in the frequency domain is simple to state. While investor expectations

about future returns depend heavily on recent past returns, investor stock market allocations

depend to a substantial extent even on distant past returns (Malmendier and Nagel, 2011).31

Two features of our framework allow it to explain this disconnect. First, as noted above,

only the model-based system has an explicit role for beliefs. Second, relative to the model-

based system, the model-free system recommends allocations that put substantially more

weight on distant past returns. Taken together, these features mean that, when an investor

is asked for his beliefs about future stock market returns, he necessarily consults the model-

based system – the only system that can answer the question – and therefore gives a response

that puts heavy weight on recent returns. By contrast, his allocation is based on both systems

and therefore puts greater relative weight on distant past returns. As such, the framework

drives a wedge between actions and beliefs.

Figure 5 illustrates these points. As discussed in Section 4.1, the solid line shows how allo-

cations depend on past returns: it plots the coefficients in a regression of investors’ allocations

to the stock market at time T on the past 30 years of stock market returns they were exposed

to. The dashed line shows how beliefs depend on past returns: it plots the coefficients in a

regression of investors’ expectations at time T about the future one-year stock market return

on the past 30 years of stock market returns they were exposed to. Comparing the two lines,

we see that, while beliefs depend primarily on recent returns, allocations depend significantly

even on distant past returns.

A number of studies find a positive time-series correlation between investor beliefs and

allocations. For example, Greenwood and Shleifer (2014) find that the average investor ex-

31We can formalize this in the following way. When Malmendier and Nagel (2011) use the weights in (28)
to characterize the relationship between an investor’s allocation and the past returns he has experienced, they
obtain an estimate of λ ≈ 1.3. Suppose that we now take the functional form in (28) and use it, with n = 30,
to characterize the relationship between investor beliefs and the past 30 years of stock market returns. Using
Gallup data on stock market expectations from October 1996 to November 2011, we find that the best fit is
for λ ≈ 37, which puts much more weight on recent returns.

43



pectation of future stock market returns is positively correlated with net flows into equity-

oriented mutual funds. Our framework is consistent with such findings: in our simulated

data, there is a positive time-series correlation between investor allocations and beliefs, both

at the individual and aggregate levels. However, underlying the positive correlation in actual

data is a frequency disconnect, with beliefs putting more weight on recent returns than do

allocations; it is this puzzling disconnect that our framework can explain.

Our results also have implications for our understanding of asset prices. Recent research

has tried to explain excess volatility in the stock market with models in which investors form

beliefs about future market returns by extrapolating past returns (Barberis et al., 2015; Jin

and Sui, 2022). One challenge faced by these models is that, when calibrated to survey data,

they predict too low a persistence for the price-dividend ratio: since beliefs depend primarily

on recent returns, they have low persistence, and prices inherit this property. Our framework

offers a solution to this problem. In a market with investors of the type studied here, beliefs,

generated by the model-based system, will have low persistence because they load heavily

on recent returns. However, prices are determined by both the model-free and model-based

systems, and will therefore have high persistence: since the model-free system loads even on

distant past returns, it generates a high-persistence component in allocations, and hence in

prices too.

4.4 Investor beliefs: The cross-sectional disconnect

Using survey responses from Vanguard investors, as well as data on these investors’ allocations

to the stock market, Giglio et al. (2021) document another disconnect between beliefs and

actions. Regressing investors’ stock market allocations on investors’ expected one-year stock

market returns, they obtain a coefficient approximately equal to one. By contrast, a traditional

Merton model of portfolio choice predicts a much higher coefficient. A similar insensitivity

of allocations to beliefs is also documented, using a variety of approaches, by Ameriks et al.

(2020), Charles, Frydman, and Kilic (2023), and Yang (2023).

Our framework can help explain this insensitivity. The mechanism is similar to that for

the frequency disconnect: it again relies on the fact that, while an investor’s allocation is

based on both the model-free and model-based systems, only the model-based system has an

explicit role for beliefs. To see the implications of this, suppose that the stock market posts a
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high return. The investor’s expectation about the future stock market return will then go up

significantly: the model-based system, which determines beliefs, puts substantial weight on

recent returns. However, the investor’s allocation will be less sensitive to the recent return:

it is determined in part by the model-free system, which, relative to the model-based system,

puts much less weight on recent returns.

We can examine this effect quantitatively. In simulated data, we run a regression of

investors’ stock market allocations at time T on their expected returns on the stock market

over the next year. For our benchmark parameter values, and specifically for our benchmark

value of w = 0.5, the regression coefficient is 1.12; this is similar to that obtained by Giglio et

al. (2021) in actual data and confirms that our framework can help explain the cross-sectional

disconnect. The model-free system plays an important role in this result: if we increase the

weight on the model-free system from 0.5 to 0.9, say, the sensitivity of allocations to beliefs falls

even further, from 1.12 to 0.45. The probabilistic choice, by contrast, is much less important:

even if we turn it off, the framework continues to generate an allocation-belief sensitivity that

is low, and all the lower, the greater the weight on the model-free system.

In Section 2.4, we noted that, according to a well-known hypothesis in psychology, the

brain puts more weight on the learning system it views as more reliable. This idea – one

that we analyze formally in Internet Appendix B – leads to one of the clearest predictions of

our framework, namely that, if an individual is more confident in his beliefs, his actions will

be more sensitive to his beliefs. Confidence in one’s beliefs is a sign that the model-based

system – the system that generates beliefs – is more reliable. The brain therefore allocates

more control to it, leading to a higher sensitivity of allocations to beliefs. Giglio et al. (2021)

offer evidence consistent with this: they find that, for the subsample of people who say they

are more confident in their beliefs, allocations are indeed more sensitive to beliefs.

4.5 Dispersion and inertia

Households differ in their asset allocations: the fraction of wealth invested in the stock market

varies substantially from one household to another. Economists typically attribute these

differing allocations to differences in beliefs – differences in perceived expected returns or risk

– or to differences in objective functions.

The lower panel of Figure 4 shows that the model-based system generates substantial dis-
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persion in allocations. This dispersion is primarily due to differences in beliefs across investors,

which in turn are driven by differences in learning rates; the probabilistic choice further adds

to the dispersion. The lower panel shows that the model-free system also generates substantial

dispersion in allocations. This is striking because this dispersion cannot be easily attributed

to differences in beliefs or objective functions: as noted earlier, the model-free system has no

notion of beliefs; moreover, in our setting, all investors have the same objective function in

(7). Instead, the differences in allocations recommended by the model-free system are due to

the process of decision-making itself. The probabilistic choice leads investors to try different

allocations in their early years of financial market participation. Different allocations are then

reinforced for different investors, which leads to differences in allocations even many years

later.

While there is substantial dispersion in households’ actual allocations to the stock market,

there is also individual-level inertia in these allocations over time (Agnew, Balduzzi, and

Sunden, 2003; Ameriks and Zeldes, 2004). This inertia is often attributed to transaction

costs, procrastination, or inattention.

The framework in this paper offers a new way of thinking about inertia in investor holdings:

it says that the inertia arises endogenously from the model-free system. Regression (27)

in Section 3.3 shows that an investor’s model-free allocation in any period is closely tied

to his allocation in the previous period. More directly, the upper panel of Figure 4 shows

that, relative to the model-based system, the model-free system generates lower variability, or

equivalently, higher inertia. The reason is that the model-free system learns slowly: at each

time, it primarily updates only the value of the most recently-chosen allocation. This, in turn,

increases the likelihood that the allocation at time t will be similar to the allocation at time

t− 1.

The inertia generated by the model-free system also offers a foundation for the market

inelasticity documented by Gabaix and Koijen (2022) – the finding that, if some investors

have uninformed demand for an asset that pushes up its price, other investors do not absorb

the demand to the extent predicted by traditional models. Gabaix and Koijen (2022) note

that one possible source of inelasticity is investment mandates that constrain the holdings of

asset managers. Our framework points to an alternative source. Since the model-free system

learns slowly, it generates inertia in investors’ allocations, which in turn reduces the extent to

46



which they will respond to an uninformed demand shock.

4.6 Non-participation

A long-standing question asks why many U.S. households do not participate in the stock

market despite its substantial risk premium. Our framework can shed light on this. In

particular, the model-free system tilts investors toward not participating. To see why, consider

an investor who makes decisions according to the model-free system. If he allocates some

money to the stock market but then experiences a poor market return, this lowers the Q

values of the chosen allocation and of those similar to it; this, in turn, raises the probability

that, in a subsequent period, he will switch to a 0% allocation to the market. Importantly,

if he does move to a 0% allocation, the model-free system will stop learning about the stock

market: realized market returns will no longer affect the reward prediction error, and so, even

allowing for generalization, these returns will not be reflected in the updated Q values. As

such, the investor fails to learn that the stock market has better properties than indicated

by the one poor return he experienced. This will tend to keep him at a 0% allocation for an

extended period of time.

We illustrate this in a modified version of our framework with just two allocations: 0%

and 100%. It is natural to use a two-allocation framework for this application because the

participation decision has a binary flavor: Should I participate or not? In addition, because

the multi-cohort structure we used earlier does not play an interesting role in this application,

we consider a single cohort of investors who enter financial markets at time 0.

We take 300, 000 investors and expose each of them to a different sequence of stock market

returns. For each investor, we compute the fraction of time between dates 1 and T that he

chooses a 0% allocation. In addition, for each investor, we identify the episodes where he

allocates 0% to the stock market for multiple consecutive years and record the duration of the

longest such episode. We do this exercise twice: first for the case where decisions are made by

the model-free system and then for the case where they are made by the model-based system.

The parameter values are the same as before, namely L = T = 30, ᾱ = 0.5, β = 30, γ = 0.97,

∆ = 0.5, µ = 0.01, σ = 0.2, and b = 0.0577.

The results confirm that the model-free system tilts investors toward non-participation.

We find that, under the model-free system, 43% of investors are not participating – in other
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words, are at a 0% allocation – for at least 80% of the 30 dates from t = 1 to t = 30.

By contrast, under the model-based system, fewer than 1% of investors spend more than

80% of the time not participating. In a similar vein, under the model-free system, 59% of

investors have a non-participation streak that is at least 10 years long; under the model-based

system, only 7% of investors have a streak of this length. The simulated data also support the

mechanism for non-participation laid out above. We find that, under the model-free system,

long streaks of non-participation are typically preceded by a poor experienced stock market

return. The longer the non-participation streak, the more negative the prior experienced

return, on average.

The mechanism we have used to think about non-participation can also be deployed to

explain, more generally, why households make persistent investment mistakes. Suppose that,

when trying to achieve some financial goal, an investor has ten options to choose from – ten

different financial products, say, or ten different investment strategies. In this context, as in

others, the model-free system will be slow to learn: at each time, it learns only about the

option it is currently trying. As a consequence, an investor who is influenced by model-free

learning will take a long time to figure out which of the options is the best one.

4.7 Parameter estimation

Throughout Section 4, we have taken a simple parameterization of our framework and shown

that it provides a qualitative and approximate quantitative match to a number of facts about

investor behavior. We now estimate the parameter values that best match the data. We

have three empirical targets: the relationship between past returns and investor beliefs about

future returns, as measured from surveys of investors; the sensitivity of allocations to beliefs,

as computed by Giglio et al. (2021); and the dependence of allocations on past returns,

as reported by Malmendier and Nagel (2011) in their analysis of experience effects. The

parameters we estimate are the mean model-based learning rate across investors ᾱMB; the

mean model-free learning rate ᾱMF ; the exploration parameter β; and most important, the

weight w on the model-based system.

We explain the estimation procedure in full in Internet Appendix E and summarize it here.

We do the estimation in two steps. We first use data on investor beliefs to estimate ᾱMB. We

then estimate ᾱMF , β, and w by targeting the allocation-belief sensitivity and the experience
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effect. We keep the remaining parameters at their benchmark values from before, namely

L = T = 30, γ = 0.97, ∆ = 0.5, µ = 0.01, σ = 0.2, and b = 0.0577.32

In the first step, we estimate the mean model-based learning rate ᾱMB by searching for

the value of this parameter that best fits the empirical relationship between investor beliefs

and past market returns. Specifically, we take monthly Gallup data on average investor beliefs

about the future one-year stock market return and regress these beliefs on past annual stock

market returns. We search for a value of ᾱMB that, in simulated data from the model-based

system, best matches the regression coefficients from the Gallup data. We find this to be

ᾱMB = 0.33.

With this value of ᾱMB in hand, we move to the second step: we search for values of ᾱMF ,

β, and w that best match two empirical targets. The first is the coefficient in a regression of

investor allocations on investor beliefs, which Giglio et al. (2021) find to be approximately

one. For given values of ᾱMF , β, and w, we can compute this coefficient in simulated data

from our framework. Our second target is the functional form in (28) with λ = 1.3, which

Malmendier and Nagel (2011) use to capture the relationship between allocations and past

returns. Intuitively, we are looking for values of ᾱMF , β, and w that minimize the distance

between unnormalized versions of the solid and the dashed lines in the six graphs in Figure 6.

We find that the parameter values that best match the allocation-belief sensitivity and the

experience effect are ᾱMF = 0.26, β = 20, and w = 0.38. In words, to match the data, our

framework requires substantial weight on both the model-free and model-based systems. The

reason is the following. As shown by the dashed lines in Figure 6, the experience effect we are

trying to capture involves both a steep initial decline in the coefficients on past returns, but

also a significant dependence on distant past experienced returns. The upper panel of Figure

2 shows that the model-based system can capture the steep initial decline in coefficients, but,

when calibrated to do so, it cannot capture the dependence on distant past returns. By

contrast, the lower panel of Figure 2 shows that the model-free system can capture a high

dependence on distant past returns but not the initial decline. To match both parts of the

experience effect, we need to put substantial weight on both systems. The significant weight

on the model-free system also helps to explain the low sensitivity of allocations to beliefs.

32We have repeated the estimation analysis for other values of these parameters and find that our main
result – that the data are best explained by a framework that puts substantial weight on both the model-free
and model-based systems – continues to hold.
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5 Additional Analysis

In this section, we discuss some additional analysis. We start by comparing the performance of

the model-free and model-based systems. We then turn to some extensions of the framework.

5.1 Performance of the two systems

We have noted two reasons why model-free learning may play at least some role in investor

decision-making: it is likely to engage automatically whenever the investor is experiencing

rewards; and for an investor who feels that he does not have a good model of the environment,

the brain is all the more likely to assign some control to the model-free system.

There is one more reason why the model-free system may influence decision-making. For

an investor with a poor understanding of financial markets, and whose model-based system is

therefore flawed, the model-free system’s performance may be at least as good as that of the

model-based system. As a consequence, even if the investor becomes aware of the influence of

the model-free system on his behavior, he may continue to rely on it.

We can illustrate this point quantitatively. For the setting of Section 2 with i.i.d market

returns, and for the parameter values and simulation structure in the caption to Figure 1,

we find that the performance of the model-free system is similar to that of the model-based

system. When investors use only the model-free system to make decisions, the mean and

standard deviation of their per-period excess portfolio returns between t = 0 and t = 30,

averaged across the 300,000 investors in the simulation, are 1.72% and 12.69%, respectively.

By comparison, for investors who use only the model-based system, the corresponding numbers

are 1.58% and 12.66%.

These numbers may understate the effectiveness of the model-free system. In Internet

Appendix F, we analyze the case where the i.i.d return structure of Section 2 is replaced

with one that captures the long-run mean-reversion seen in some asset classes. In words, if a

weighted average of the risky asset’s prior returns is high, then its subsequent mean return is

low; if its prior returns are moderate, then its subsequent mean return is also moderate; and if

its prior returns are low, then its subsequent mean return is high. In this case, we find that the

state-independent model-free algorithm of Section 2 outperforms the state-independent model-

based algorithm of that section by a substantial margin: it generates a mean and standard
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deviation of portfolio returns equal to 1.61% and 12.99%, respectively; the corresponding

numbers for the model-based system are 0.96% and 12.77%.

There is a good reason why, for less sophisticated investors, their model-free systems may

outperform their model-based systems. The model-free system learns slowly. This has an

obvious cost: the model-free system is slow to learn genuinely useful information. However,

it also has a benefit: it leads the model-free system to exhibit only a mild form of the biased

thinking built into some investors’ model-based systems. For example, as shown in Section

3, the model-free system is less extrapolative, and this is valuable in a market with mean-

reverting returns.

5.2 Extensions of the framework

We now discuss some extensions of our framework. We start with three extensions that we

have studied in detail; then, more briefly, we comment on three extensions that we leave to

future work.

Time-varying weights on the two systems. We have focused on the case where w,

the weight on the model-based system, is constant over time. A well-known hypothesis in

psychology is that w varies over time: at each moment, the brain puts more weight on the

system that it deems more reliable (Daw, Niv, and Dayan, 2005). In Internet Appendix B,

we formalize this idea using an approach of Lee, Shimojo, and O’Doherty (2014) in which the

reliability of a system is measured by the absolute magnitude of its past prediction errors,

and explore its implications. We show that, in our setting, an investor will gradually put

more weight on the model-free system over time: as the system gains experience, it becomes

more reliable and the brain assigns more control to it. This implies, for example, that the

allocations of older investors will be less sensitive to recent market returns – this is consistent

with the evidence in Malmendier and Nagel (2011) – and also less sensitive to their beliefs.

Other model-free and model-based systems. The properties of the model-free Q-

learning system we have documented in this paper are likely to be robust to using alternative

model-free frameworks. The reason is that all model-free systems are similar at their core:

the individual takes an action, and based on the outcome, he updates the value of the action.

Consistent with this claim, in Internet Appendix G, we replace Q-learning with SARSA, an

alternative model-free framework, and show that it leads to similar predictions.
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When specifying the model-based part of our framework, we have a much wider range of

choices. In Section 2, we adopted a model-based system inspired by those used in psychology,

but others are of course possible. For example, some investors may use a model-based system

with a more contrarian flavor – one that, following a good stock market return, recommends

a lower allocation to the stock market on the grounds that it may now be overvalued. Such

a model-based system would create a new tension with the model-free system: after a good

stock market return, the model-free system will want to increase exposure to the stock market

while the model-based system will want to reduce it. We present a formal analysis of this

tension in Internet Appendix F.

State dependence. Thus far, our learning algorithms have not allowed for state de-

pendence: we have worked with action values Q(a) rather than state-action values Q(s, a)

because even this simple case has many applications. In Internet Appendix F, we examine the

predictions of our framework when we allow for state dependence. In particular, we consider

the setting with state-dependent returns summarized in Section 5.1 and study the implica-

tions for investor behavior when both the model-free and model-based algorithms take the

state dependence into account. Echoing a result reported above, we find that the model-free

and model-based systems have fairly similar performance: when decisions are made by the

model-free system, the mean and standard deviation of excess portfolio returns are 1.77% and

12.98%, respectively. When decisions are made by the model-based system, the corresponding

numbers are 1.94% and 13.25%. Once again, the slow learning of the model-free system has

both costs and benefits: this system is slower to detect the mean-reversion in asset returns;

however, it also exhibits a less extrapolative asset demand, which is valuable when returns

are mean-reverting.

There are three more extensions whose detailed analysis we leave to future work:

Time-varying learning rates. We have taken each investor’s learning rates to be con-

stant over time and have shown that even this simple case has many applications. Nonetheless,

learning rates may vary over time. For example, there is evidence that they go up at times

of greater volatility (Behrens et al., 2007). Such an assumption can be incorporated into our

framework and may lead to useful new predictions – for example, about investor behavior

during crisis periods.

Alternative action spaces. Throughout the paper, we have used a standard action
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space based on the fraction of wealth allocated to the stock market: at each time, an investor

can allocate 0% of his wealth to the stock market, or 10%, or 20%, and so on. One feature

of the model-free system is that it can easily accommodate alternative action spaces – for

example, one with the three possible actions: “do nothing,” “increase exposure to the stock

market by 10%,” and “decrease exposure to the stock market by 10%.” We have incorporated

this alternative action space into our framework and find that its implications are broadly

similar to those we have outlined in the paper. We leave a fuller analysis of this topic to

future work.

Inferring beliefs from the model-free system. Until now, we have associated beliefs

only with the model-based system. However, it is possible that an individual may also use

the model-free system to make inferences about beliefs. For example, when an investor is

asked for his beliefs about the stock market’s future return or risk, it is natural that he will

consult the model-based system, which will give him a direct measure of beliefs. However,

he may also be influenced by the model-free system, and if QMF (a = 1) > QMF (a = 0), so

that his model-free system assigns the stock market a higher Q value than the risk-free asset,

he may take this as a sign that the stock market has better properties, on several dimensions

– for example, both a higher expected return and lower risk. This can help explain Giglio

et al.’s (2021) finding that, when investors expect high returns in the stock market, they

simultaneously expect the market to have lower risk, contrary to the prediction of traditional

frameworks in which subjectively perceived risk and return are positively related.33

6 Conclusion

When economists try to explain human decision-making in dynamic settings, they typically

assume that people are acting “as if” they have solved a dynamic programming problem. By

contrast, cognitive scientists are increasingly embracing a different approach, one based on

model-free and model-based learning. In this paper, we import this framework into a simple

financial setting, study its implications for investor behavior, and use it to account for a

range of facts about investor allocations, investor beliefs, and the relationship between the

two. Through the model-based system, our framework preserves a role for beliefs in driving

33By way of a similar mechanism, our framework can also generate Hartzmark, Hirshman, and Imas’ (2021)
finding that ownership amplifies the extent of extrapolation in investor beliefs.
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investor behavior. However, through the model-free system, it also introduces a new way of

thinking about this behavior, one based on reinforcement of past actions.

The vast majority of economic frameworks take a model-based approach. Model-free

reinforcement learning, by contrast, has a much smaller footprint in economics and finance.

The results in this paper argue for a reevaluation of this state of affairs: they suggest that

model-free learning may be more common in economic settings than previously realized.

There are two broad directions for future research. We can apply the framework proposed

here to other economic domains. We can also incorporate richer psychological assumptions –

for example, about time-varying learning rates, time-varying weights on the two systems, or

state dependence. We expect that both of these broad directions will prove fruitful and will

shed new light on people’s choices in economic settings.
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