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1 Introduction

A fundamental question in both economics and psychology asks: How do people make de-

cisions in dynamic settings? The traditional answer in economics is to say that people act

as if they have solved a dynamic programming problem. By contrast, over the past decade,

psychologists and neuroscientists have embraced a different framework for thinking about

decision-making in dynamic settings. This framework combines two algorithms, or systems:

a “model-free” learning system and a “model-based” learning system. In this paper, we

import this framework into a simple economic setting – a portfolio-choice problem where

investors allocate between a risk-free asset and a risky asset – study its properties, and show

that it is helpful for thinking about a range of facts in finance.1

The goal of both the model-free and the model-based algorithms is to estimate the value

of a given action. The model-free system goes about this in a way that is different from

traditional economic models in that, as its name suggests, it does not use a “model of the

world”: it makes no attempt to construct a probability distribution of future outcomes.

Rather, it learns by experience. At each date, it tries an action, observes the outcome, and

then updates its estimate of the value of the action by way of two important quantities: a

reward prediction error – the reward it observes after taking the action relative to the reward

it anticipated – and a learning rate. If the prediction error is positive, the algorithm raises

its estimate of the value of the action and is more likely to repeat the action in the future; if

the prediction error is negative, it lowers the estimated value of the action and is less likely

to try it again. This model-free framework has been increasingly adopted by psychologists

and neuroscientists because of evidence that it reflects actual computations performed by the

brain: numerous studies have found that neurons in the brain encode the reward prediction

error used by model-free learning.2

The model-based algorithm, by contrast, is similar to traditional economic approaches in

that it does construct a model of the world – a probability distribution of future outcomes –

and then uses this to compute the value of different actions. There are a number of model-

based approaches; we use one that is often adopted in research in psychology and that, like

the model-free system, has neuroscientific support. Under this approach, after observing

an outcome at some moment in time, the model-based system increases the probability it

1An early paper on this framework is Daw, Niv, and Dayan (2005). Two prominent implementations in
laboratory settings are Glascher et al. (2010) and Daw et al. (2011). Useful reviews include Balleine, Daw,
and O’Doherty (2009) and Daw (2014). We discuss the behavioral and neural evidence for the framework in
more detail in Section 2.

2See Montague, Dayan, and Sejnowski (1996), Schultz, Dayan, and Montague (1997), McClure, Berns,
and Montague (2003), and O’Doherty et al. (2003), among many others.
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assigns to that outcome and downweights the probabilities of other outcomes. To do the

updating, it again uses a learning rate and a prediction error that measures how surprising

a realized outcome is; as before, there is evidence that the brain computes such prediction

errors (Glascher et al., 2010).

Recent research in psychology argues that, to make decisions, people use these two sys-

tems in combination: they take a weighted average of the model-free and model-based esti-

mates of the value of different actions and use the resulting “hybrid” estimates to make a

choice (Glascher et al., 2010; Daw et al., 2011).

In this paper, we import this framework into an economic setting, study its properties,

and use it to account for a range of empirical facts. We pay particular attention to the

model-free system – for economists, the more novel part of the framework – and on how

its predictions differ from those of the model-based system. While the framework can be

applied in many economic domains, it is natural to consider an application in finance: these

algorithms are designed to select actions that maximize future rewards, and financial markets

are an important source of reward. Within the realm of finance, we choose a simple setting:

a portfolio-choice problem where an individual allocates money between a risk-free asset and

a risky asset in order to maximize the expected log utility of wealth at some future horizon.

This problem fits the canonical context in which model-free and model-based algorithms are

applied.

We begin by analyzing the properties of our framework. Specifically, we look at how

the stock market allocation proposed by each of the model-free and model-based systems

depends on past stock market returns. The model-based allocation puts weights on past

market returns that are positive and that decline for more distant past returns. We find

that the model-free system also recommends an allocation that puts positive weight on past

returns, and show that it does so through a mechanism that is new to financial economics. In

brief: A good stock market return reinforces the investor’s previous allocation – it raises the

model-free estimate of the value of the allocation and thus encourages the investor to continue

with this allocation – whether the allocation was low or high. However, this reinforcement is

stronger when the prior allocation is high: for a given market return, the reward, or portfolio

return, is higher when the prior allocation is high. As a consequence, on average, a good

stock market return leads the investor to subsequently take a higher allocation.

We also find that, relative to the model-based system, whose recommended allocation

puts heavy weight on recent returns, the model-free allocation puts substantially more weight

on distant past returns. This is because it updates slowly: since it learns from experience,

at each time, it updates only the value of the most recently-chosen allocation; the values of
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the other allocations are unchanged and hence depend only on more distant past returns. It

therefore takes a long time for the influence of past returns to fade.

We then use our framework to shed light on a range of important facts related to the

aggregate stock market – facts about investor behavior, such as extrapolative demand and

experience effects; facts about beliefs about future market returns and their relationship to

allocations; and facts about asset prices, such as excess volatility and return predictability.

A prominent idea, motivated by empirical evidence, is that investors have extrapolative

demand: their demand for a risky asset depends on a weighted average of the asset’s past

returns, where the weights are positive and larger for more recent returns. The analysis sum-

marized above shows that model-free and model-based learning can both offer a foundation

for extrapolative demand; the model-free system, in particular, does so in a way that is new

to financial economics. Moreover, in an asset pricing setting, this extrapolative demand gen-

erates excess volatility in market returns as well as predictability in these returns. Through

the model-based system, our framework preserves a role for beliefs as a driver of the excess

volatility. However, through the model-free system, the framework introduces a new way of

thinking about this volatility, one based on reinforcement of past actions.

Our framework also provides a foundation for experience effects – specifically, for the

finding of Malmendier and Nagel (2011) that an individual’s allocation to the stock market

can be explained in part by a weighted average of the market returns he has personally expe-

rienced, with much less weight on returns he has not experienced. Our framework captures

this because of a fundamental feature of the model-free system, namely that, because this

system learns from experience, it engages only when an individual is actively experiencing

rewards. As such, it puts no weight on returns an investor has not experienced. We relate

our approach to thinking about experience effects to alternative, memory-based approaches

(Bordalo et al., 2020; Wachter and Kahana, 2022).

Individual investors overreact to recent market returns when forming beliefs about future

market returns: as shown by Greenwood and Shleifer (2014) among others, their beliefs

depend strongly on recent returns even though there is little autocorrelation in realized

returns. Through the model-based system, our framework captures this overreaction.

Beyond simply capturing overreaction in beliefs, our framework can also resolve two puz-

zling disconnects between investors’ beliefs and stock market allocations. While individual

investor beliefs about future stock market returns depend primarily on recent past market

returns, Malmendier and Nagel (2011) find that investors’ allocations to the stock mar-

ket depend significantly even on distant past market returns. We reconcile these findings
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by way of a deep property of our framework, which is that, of the two systems, only the

model-based system has a role for beliefs: only this system explicitly constructs a probability

distribution of future outcomes. When an individual is surveyed about his beliefs regarding

future returns, he necessarily consults the model-based system – only this system can an-

swer the survey question – and therefore gives an answer that depends primarily on recent

past returns. However, his allocation is influenced by both the model-based and model-free

systems and therefore depends significantly even on distant past returns. Through a similar

mechanism, our framework can also explain another disconnect between actions and beliefs,

namely the low sensitivity of allocations to beliefs documented by Giglio et al. (2021) in the

cross-section of investors.

The framework can also help to account for some other empirical facts, including the large

cross-sectional dispersion in investor allocations to the stock market; the individual-level

inertia in these allocations over time; the widespread non-participation in the stock market

among U.S. households; and the fact that many households persist in making suboptimal

choices for long periods of time. We also draw out a number of predictions of the framework

– for example, that for an investor who is more confident in his beliefs, the brain is likely to

assign more control to the model-based system, leading the investor’s allocation to be more

closely tied to his beliefs.

Since the model-free system learns slowly, it is not an efficient way of making investment

decisions in real time. Nonetheless, for at least two reasons, it is likely, as our paper suggests,

to influence financial decision-making. First, the model-free system is a fundamental com-

ponent of human decision-making. As such, it is likely to play a role in any decision unless

explicitly “switched off” – and because it operates below the level of conscious awareness,

many investors will not recognize its influence and will therefore fail to turn it off. Second,

many people do not have a good “model” of financial markets – for example, they have a

poor sense of the structure of asset returns. As a consequence, the brain is likely to assign

at least some control of financial decision-making to the model-free system – again, without

a person’s conscious awareness – precisely because this system does not need a model of the

environment.

Model-free learning algorithms are of interest not only to psychologists and neuroscien-

tists, but also to computer scientists, albeit for a different purpose. Computer scientists see

these algorithms as a powerful tool for solving challenging dynamic problems (Sutton and

Barto, 2019). For example, these algorithms have been embedded in computer programs

that have achieved world-beating performance in complex games such as Backgammon and

Go. Psychologists and neuroscientists, by contrast, are interested in these algorithms be-

5



cause they see them as good models of how animals and humans actually behave. In this

paper, we take the psychologists’ perspective: we are proposing that these algorithms can

shed light on the behavior of real-world investors.

The full name of model-free learning is model-free reinforcement learning. Reinforcement

learning is a fundamental concept in both psychology and neuroscience – and, as described

above, in some areas of computer science. However, it has a much smaller footprint in

economics and finance, where model-based frameworks dominate instead. A central theme

of this paper is that model-free learning may be more relevant in economic settings than

previously realized. Nonetheless, our approach does have antecedents in economics – most

notably in research in behavioral game theory on how people learn what actions to take in

strategic settings (Erev and Roth, 1998; Camerer, 2003, Ch. 6). One important idea in this

line of research, Camerer and Ho’s (1999) experience-weighted attraction learning, combines

reinforcement and model-based learning in a way that is reminiscent of the hybrid model we

consider below.

Our paper is also part of a new wave of research in behavioral economics that seeks to

move beyond the high-level psychological phenomena made famous by Daniel Kahneman

and Amos Tversky and to instead incorporate deeper, lower-level psychological processes

into economic models. This research has studied topics such as memory, attention, and

perceptual coding. In this paper, our focus is on learning algorithms.3

In Section 2, we formalize the model-free and model-based learning algorithms and show

how they can be applied in a simple economic setting. In Section 3, we present an example

to show how the two algorithms work and then analyze the properties of the framework.

In Section 4, we use the framework to account for a range of facts about investor behavior.

Section 5 considers some extensions while Section 6 concludes.

2 Model-free and Model-based Algorithms

Researchers in the fields of psychology and neuroscience are increasingly adopting a frame-

work that combines model-free and model-based learning (Daw, Niv, and Dayan, 2005; Daw,

2014). In this section, we describe this framework and propose a way of applying it in an

economic setting. We begin by summarizing some of the evidence that motivates the frame-

work.

3Examples of papers in this new wave of research are Bordalo, Gennaioli, and Shleifer (2020), Khaw, Li,
and Woodford (2021), Frydman and Jin (2022), and Wachter and Kahana (2022).
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2.1 Psychological background

Under the model-free system, an individual is drawn to actions that have been rewarded

in the past. Under the model-based system, actions are instead derived from a model of

the environment. Both systems have deep roots in psychology – the model-free system in

Thorndike’s (1933) “law of effect,” and the model-based system in Tolman’s (1948) notion

of a “cognitive map,” an internal representation of the environment. An emerging view in

psychology is that humans use both of these systems, in combination. This view is based

both on behavioral data – data on how people behave – and on neural data.

To illustrate the two types of evidence, we summarize an experiment conducted by Daw

et al. (2011). In the first stage – see Figure 1 – a participant is given a choice between two

options, A and B. If he chooses A, then, with probability 0.7, he is given a choice between

options C and D, and with probability 0.3, a choice between options E and F. Conversely,

if he chooses B in the first stage, then, with probability 0.7, he is given a choice between

E and F, and with probability 0.3, a choice between C and D. After choosing between C

and D or between E and F, the participant receives the reward associated with the chosen

second-stage option. He repeats this task multiple times with the goal of maximizing the

sum of his rewards.4

A B

C D E F

0.7 0.70.3 0.3

Figure 1. The diagram shows the structure of an experiment in Daw et al. (2011).
In the first stage, the participant has a choice between two options, A and B; in
the second stage, he chooses either between options C and D or between options E
and F. The arrows indicate the transition probabilities from the first to the second
stage. After making a choice at the second stage, the participant receives the reward
associated with the chosen option.

4In the standard version of this experiment, participants are informed that each of the first-stage options
is primarily associated with one of the C-D and E-F pairs but are not told which one, nor are they told the
precise transition probabilities.
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The model-free and model-based systems make different predictions about behavior in

this setting. Suppose that the individual chooses A in the first stage and is then offered

a choice between E and F; suppose that he chooses E and then receives a reward. Under

the model-free system, he will be inclined to choose A again in the next trial because this

choice was ultimately rewarded. Under the model-based system, however, he will be inclined

to choose B in the next trial: the model-based system makes use of information about the

structure of the task; since B offers a greater likelihood of ending up with the rewarded

option E, he prefers B.

To evaluate the relative influence of model-free and model-based thinking on people’s

choices, Daw et al. (2011) run a regression of whether a participant repeats his previous

first-stage choice on two variables: an indicator variable that equals one if this previous

choice resulted in a reward; and this indicator interacted with another indicator variable

that equals one if the individual saw the common rather than the rare second-stage options.

For example, following an initial choice of A, the common second-stage options are C and

D while the rare ones are E and F. If behavior is driven purely by the model-free system,

only the coefficient on the first regressor will be significant. If behavior is driven purely

by the model-based system, only the coefficient on the second regressor will be significant.

The authors find that both coefficients are significant, which means that both systems are

playing a role; an estimation exercise indicates that participants are putting approximately

60% weight on the model-free system and 40% on the model-based system.5

The presence of both model-free and model-based influences on behavior is also supported

by neural data. The model-free and model-based systems update the values they assign

to different actions using prediction errors. In an experiment similar to that of Daw et al.

(2011), Glascher et al. (2010) use functional magnetic resonance imaging (fMRI) to show that

neural activity in a brain region known as the ventral striatum correlates with the prediction

error for the model-free system, while neural activity in an area of the prefrontal cortex

correlates with the prediction error for the model-based system. These findings suggest that

the brain implements the model-free and model-based algorithms when making decisions.

Similar neural evidence has been reported in several other studies.6

We now present the formal algorithms that have been developed to capture model-free

and model-based learning. In Section 2.2, we describe the model-free algorithm; in Section

5Charness and Levin (2005) present a different experiment in which model-free and model-based learning
– in their terminology, reinforcement learning and Bayesian learning – again make different predictions. They,
too, find that participant behavior is guided to a significant extent by the model-free system. More recent
experimental studies with a similar theme are Payzan-LeNestour and Bossaerts (2015) and Allos-Ferrer and
Garagnani (2022).

6We provide references to these studies later in Section 2.
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2.4, we lay out a model-based learning algorithm; and in Section 2.5, we show how the

two algorithms are combined. In Section 2.3, we present the portfolio-choice problem that

we apply the algorithms to. For much of the paper, we will explore the properties and

applications of model-free and model-based learning in this financial setting.

2.2 Model-free learning

Model-free and model-based learning algorithms are intended to solve problems of the fol-

lowing form. Time is discrete and indexed by t = 0, 1, 2, 3,. . . At time t, the state of the

world is denoted by st and an individual takes an action at. As a consequence of taking

this action in this state, the individual receives a reward rt+1 at time t + 1 and arrives in

state st+1 at that time. The joint probability of st+1 and rt+1 conditional on st and at is

p(st+1, rt+1|st, at). The environment has a Markov structure: the probability of (st+1, rt+1)

depends only on st and at. In a finite-horizon setting with final date T , the individual’s goal

is to maximize the expected sum of rewards:

max
{at}

E0

[
T∑
t=1

rt

]
. (1)

In an infinite-horizon setting, the goal is to maximize the expected sum of discounted rewards:

max
{at}

E0

[ ∞∑
t=1

γt−1rt

]
, (2)

where γ ∈ [0, 1) is a discount factor.

Economists almost always tackle a problem of this type using dynamic programming.

Under this approach, we solve for the value function V (st) – the expected sum of discounted

future rewards, under the optimal policy, conditional on being in state st at time t. To do this,

we write down the Bellman equation that V (st) satisfies, and with the probability distribution

p(st+1, rt+1|st, at) in hand, we solve the equation, either analytically or numerically. The

solution is sometimes used for “normative” purposes – to tell the individual how he should

act – and sometimes for “positive” purposes, to explain observed behavior.

For “positive” applications, where we are trying to explain why people behave the way

they do, the dynamic programming approach raises an obvious question. It may be hard to

determine the probability distribution p(·); and even if we have a good sense of this distri-

bution, it may be difficult, even for professional economists, to solve the Bellman equation

for the value function. How, then, would an ordinary person be able to do so? Economists
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have long suggested that people act “as if” they have solved the Bellman equation – but they

have not explained how this would come about. Psychologists, by contrast, have been trying

to develop a more literal description of how people make decisions in dynamic settings – a

framework that is rooted in the brain’s actual computations. The leading such framework

is the one we adopt in this paper, namely one that combines model-free and model-based

learning.

We now describe the model-free learning algorithm that we use. As their name suggests,

model-free algorithms tackle the problems in (1) and (2) without a “model of the world,”

in other words, without using any information about the probability distribution p(·). The

model-free algorithms most commonly used by psychologists are Q-learning and SARSA.

In the main part of the paper, we use Q-learning. In the Online Appendix, we show that

SARSA leads to similar predictions.7

Q-learning works as follows. We focus on the case with the infinite-horizon goal in (2).

Let Q∗(s, a) be the expected sum of discounted rewards – in other words, the value of the

expression

Et

 ∞∑
τ=t+1

γτ−(t+1)rτ

 (3)

– if the algorithm takes the action at = a in state st = s at time t and then continues

optimally from time t + 1 on; the asterisk indicates that, from time t + 1 on, the optimal

policy is followed. The goal of the algorithm is to estimate Q∗(s, a) accurately for all possible

actions a and states s so that it can select a good action in any given state.

Suppose that, at time t in state st = s, the algorithm takes an action at = a – we describe

below how this action is chosen – and that this leads to a reward rt+1 and state st+1 at time

t+ 1. Suppose also that, at time t, the algorithm’s estimate of Q∗(s, a) is Qt(s, a). At time

t + 1, after observing the reward rt+1, the algorithm updates its estimate of Q∗(s, a) from

Qt(s, a) to Qt+1(s, a) according to

Qt+1(s, a) = Qt(s, a) + αMF
t [rt+1 + γmax

a′
Qt(st+1, a

′)−Qt(s, a)], (4)

where αMF
t is known as the learning rate – the superscript stands for model-free – and

where the term in square brackets is an important quantity known as the reward prediction

error (RPE): the realized value of taking the action a – the immediate reward rt+1 plus a

continuation value – relative to its previously anticipated value, Qt(s, a). Put simply, the

7Q-learning was developed by Watkins (1989) and Watkins and Dayan (1992). Sutton and Barto (2019,
Ch. 6) offer a useful exposition.
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updating rule in (4) says that, if, after taking the action a, the algorithm observes a better

outcome than anticipated, it raises its estimate of the value of that action.

How does the algorithm choose an action at in state st = s at time t? It does not

necessarily choose the action with the highest estimated value of Q∗(s, at), in other words,

with the highest value of Qt(s, at). Rather, it chooses an action probabilistically, where the

probability of choosing a given action is an increasing function of its Q value:

p(at = a|st = s) =
exp[βQt(s, a)]∑
a′ exp[βQt(s, a′)]

. (5)

This probabilistic choice, known as a “softmax” specification, serves an important purpose:

it encourages the algorithm to “explore,” in other words, to try an action other than the

one that currently has the highest Q value in order to learn more about the value of this

other action. In the limit as β → ∞, the algorithm chooses the action with the highest

current Q value; in the limit as β → 0, it chooses an action randomly. The parameter β is

called the “inverse temperature” parameter, but we refer to it more simply as the exploration

parameter. We discuss what exploration means in financial settings in more detail in Section

2.3.8

The algorithm is initialized at time 0 by setting Q(s, a) = 0 for all s and a. Consistent

with (5), the time 0 action is chosen randomly from the set of possible actions. The process

then proceeds according to equations (4) and (5). If the algorithm takes the action a in state

s and this is followed by a good outcome, the value of Q(s, a) goes up, making it more likely

that, if the algorithm encounters state s again, it will again choose action a.

To see why equation (4) is a sensible updating rule, recall that Q∗(s, a) satisfies the

Bellman equation

Q∗(s, a) = E[rt+1 + γmax
a′

Q∗(st+1, a
′)|st = s, at = a], (6)

where the expectation is taken over future possible rewards rt+1 and states st+1 by way of

the probability distribution p(rt+1, st+1|st, at). If we now rewrite (4) as

Qt+1(s, a) = (1− αMF
t )Qt(s, a) + αMF

t [rt+1 + γmax
a′

Qt(st+1, a
′)], (7)

we see that the Q-learning algorithm is taking an estimate of the right-hand side of (6)

8Another interpretation of the probabilistic choice in (5) is that it stems from cognitive noise: due to
errors in perception or cognitive processing, the algorithm does not necessarily select the action with the
highest Q value. See Woodford (2020) for a review of recent research on cognitive noise.
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and then updating Qt(s, a) in the direction of this estimate to an extent determined by

the learning rate αMF
t . Specifically, it proxies for the expected reward Et(rt+1) in (6) by

the realized reward rt+1 and for Et[maxa′ Q
∗(st+1, a

′)] by maxa′ Qt(st+1, a
′). As such, while

the Q-learning algorithm differs from traditional economic approaches, it traces back to an

object that is very familiar to economists, namely the Bellman equation in (6).

Computer scientists have found Q-learning to be a useful way of solving the problem in

(2); under certain conditions, the Q values generated by the algorithm converge to the correct

Q∗ values (Watkins and Dayan, 1992). More important for our purposes, psychologists

and neuroscientists are also interested in model-free algorithms like Q-learning because of

evidence that they correspond to actual computations made by both animal and human

brains; as noted in the previous section, many studies have found that the brain computes

reward prediction errors similar to the one on the right-hand side of equation (4).9

When psychologists use Q-learning to explain behavior, they often allow for different

learning rates for positive and negative reward prediction errors, so that

Qt+1(s, a) = Qt(s, a) + αMF
t,± (RPE), (8)

where αMF
t,± = αMF

t,+ if the reward prediction error is positive and αMF
t,± = αMF

t,− otherwise. In

what follows, we also adopt this modification.

In the basic implementation of model-free learning described above, after taking an action

a in state s, the algorithm updates only the Q value for that particular action-state pair.

It is natural to ask whether the algorithm can “generalize” from its experience of (s, a) to

also update the Q values of other action-state pairs. We return to this below, after first

introducing the financial setting that we apply the algorithm to.

2.3 A portfolio-choice setting

In Section 2.4, we lay out a model-based algorithm to complement the model-free algorithm

of Section 2.2. Before we do so, it will be helpful to first describe the task that we apply

9Montague, Dayan, and Sejnowksi (1996) and Schultz, Dayan, and Montague (1997) made the influential
observation that the activity of dopamine neurons in animal brains, as recorded in famous experiments in
the laboratory of Wolfram Schultz, is well described by the reward prediction error in an important class
of model-free algorithms called temporal-difference algorithms; Q-learning is a type of temporal-difference
algorithm. Subsequent studies that use fMRI to study human decision-making find that neural activity in
the ventral striatum correlates with the reward prediction error from model-free algorithms (McClure, Berns,
and Montague, 2003; O’Doherty et al., 2003; Glascher et al., 2010; Daw et al., 2011).
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both algorithms to.

We consider a simple portfolio-choice problem, namely allocating between two assets: a

risk-free asset and a risky asset which we think of as the stock market. The risk-free asset

earns a constant gross return Rf in each period. The gross return on the risky asset between

time t− 1 and t, Rm,t, where “m” stands for market, has a lognormal distribution

logRm,t = µ+ σεt

εt ∼ N(0, 1), i.i.d. (9)

At each time t, an investor chooses the fraction of his wealth that he allocates to the

risky asset; this corresponds to the “action” in the framework of Section 2.2, so we use the

notation at for it.10 We construct an objective function that is realistic and also has the

required form in (2). Specifically, the investor’s goal is to maximize the expected log utility

of wealth at some future horizon determined by his liquidity needs. Because the timing of

these liquidity needs is uncertain, he does not know in advance how far away this horizon is.

More precisely, at time 0, the investor enters financial markets. If, coming into time t ≥ 1, he

is still present in financial markets, then, with probability 1− γ, where γ ∈ [0, 1), a liquidity

shock arrives at time t. In that case, he exits financial markets and receives log utility from

his wealth at time t. A short calculation shows that the investor’s implied objective is then

to solve

max
{at}

E0

[ ∞∑
t=1

γt−1 logRp,t

]
, (10)

where Rp,t, the gross portfolio return between time t− 1 and t, is given by

Rp,t = (1− at−1)Rf + at−1Rm,t. (11)

Comparing (2) and (10), we see that this portfolio problem maps into the framework of

Section 2.2: the generic reward rt in equation (2) now has a concrete form, namely the log

portfolio return, logRp,t.

Given our assumptions about the returns of the two assets, we can solve the problem in

(10). The solution is that, at each time t, the investor allocates the same constant fraction

a∗ of his wealth to the stock market, where

a∗ = arg max
a
Et log((1− a)Rf + aRm,t+1). (12)

10From now on, we use the terms “action” and “allocation” interchangeably.
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The fact that the problem in (10) has a mathematical solution does not necessarily mean

that real-world investors will be able to find their way to that solution. Many investors may

have a poor sense of the statistical distribution of returns; and even if they have a good sense

of it, they may not be able to compute the optimal policy or to discern it intuitively. Indeed,

for many investors, the solution in (12) will not be intuitive, in that it involves reducing

exposure to the stock market after the market has performed well and increasing exposure

to the stock market after the market has performed poorly – actions that will feel unnatural

to many investors.

If an investor is unable to explicitly compute the solution to the problem in (10), then, as

argued in the Introduction, there is reason to think that a model-free system like Q-learning

will play a role in his decision-making. As a fundamental part of human thinking, the model-

free system is likely to play a role in any decision unless it is explicitly turned off. And for

an investor who is unsure about the distribution of asset returns, the brain is all the more

likely to assign some control to the model-free system, precisely because this system does

not rely on any information about this distribution. This leads to the question at the heart

of this paper: How will an investor behave if model-free Q-learning influences his actions?

How can Q-learning be applied to the above problem? In principle, we could apply equa-

tion (4) directly. However, it is natural to start with a simpler case – the case with no state

dependence, so that Q(s, a) is replaced by Q(a). Even this simple case has rich implica-

tions that shed light on empirical facts, and so it will be our main focus. In psychological

terms, removing the state dependence can be thought of as a simplification on the part of

the investor. Indeed, neuroscience research has argued that, to speed up learning, the brain

does try to simplify the state structure when implementing its learning algorithms (Collins,

2018).11 While, in the main body of the paper, we put state dependence aside, in the Online

Appendix, we re-introduce it and confirm that the key properties of the framework continue

to hold.

As in Section 2.2, then, let Q∗(a) be the expected sum of discounted rewards – in other

words, the value of

Et

 ∞∑
τ=t+1

γτ−(t+1) logRp,τ


– if the investor chooses the allocation a at time t and then continues optimally from the next

period on. Suppose that, at time t, the investor chooses the allocation a and observes the

11It is tempting to justify the removal of the state dependence by saying that, since the risky asset returns
are i.i.d., the allocation problem has the same form at each time and so there is no state dependence.
However, we cannot use this argument because the model-free system does not know that the returns are
i.i.d.; by its nature, it does not have a model of the environment.
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reward – the log portfolio return, logRp,t+1 – at time t+ 1. He then updates his model-free

estimate of Q∗(a) from QMF
t (a) to QMF

t+1 (a) according to

QMF
t+1 (a) = QMF

t (a) + αMF
t,± [logRp,t+1 + γmax

a′
QMF
t (a′)−QMF

t (a)]. (13)

At any time t, he chooses his allocation at probabilistically, according to

p(at = a) =
exp[βQMF

t (a)]∑
a′ exp[βQMF

t (a′)]
. (14)

Put simply, if the investor chooses an allocation a and then experiences a good portfolio

return, this tends to increase the Q value of that allocation and makes it more likely that

he will choose that allocation again in the future.

The exploration embedded in (14) is central to the model-free algorithm and to the

way psychologists think about human behavior. By contrast, the term is less common in

economics and finance. Nonetheless, many actions in financial settings can be thought of as

forms of exploration – for example, any time an individual tries a strategy that is new to

him, such as investing in a stock in a different industry or foreign country, or in an entirely

new asset class. In our context, with one risk-free and one risky asset, exploration can be

thought of as the investor choosing a different allocation to the stock market than before in

order to learn more about the value of doing so.12

Given our assumption about the distribution of stock market returns, we can compute

the exact value of Q∗(a) for any allocation a. We record it here because we will use it in the

next section. It is given by

Q∗(a) = E log((1− a)Rf + aRm,t+1) +
γ

1− γ
E log((1− a∗)Rf + a∗Rm,t+1), (15)

where a∗ is defined in (12).

In the basic model-free algorithm in (13), after taking action at = a at time t, only the

Q value of action a is updated. It is natural to ask whether the algorithm can generalize

from its experience of taking the action a in order to also update the Q values of other ac-

tions. Computer scientists have studied model-free generalization (Sutton and Barto, 2019,

Chs. 9-13). As important for our purposes, research in psychology suggests that the hu-

man model-free system engages in generalization (Shepard, 1987). We therefore incorporate

generalization into our framework.

12As noted in Section 2.2, another possible foundation for the probabilistic choice in (14), one that may
be relevant in financial settings, is cognitive noise.
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Given that we are working with the model-free system, it is important that the gen-

eralization we consider does not use any information about the structure of the allocation

problem. We adopt a simple form of generalization based on the notion of similarity: after

choosing an allocation and observing the subsequent portfolio return, the algorithm updates

the Q values of all allocations, but particularly those that are similar to the chosen alloca-

tion. We implement this as follows. After choosing allocation a at time t and observing the

outcome at time t+ 1, the algorithm updates the values of all allocations according to

QMF
t+1 (â) = QMF

t (â) + αMF
t,± κ(â)[logRp,t+1 + γmax

a′
QMF
t (a′)−QMF

t (a)], (16)

where

κ(â) = exp(−(â− a)2

2b2
). (17)

In words, after observing the reward prediction error for action a and updating the Q value

of that action, the algorithm uses the same reward prediction error to also update the values

of all other actions. However, for an action â that differs from a, it uses a lower learning rate

αMF
t,± κ(â), one that is all the lower, the more different â is from a, to an extent determined

by the Gaussian function in (17).13

We will consider a range of values of b, but for our baseline analysis, we set b = 0.0577,

which has a simple interpretation: for this b, the Gaussian function in (17), normalized to

form a probability distribution, has the same standard deviation as a uniform distribution

with width 0.2 – for example, the uniform distribution that ranges from a−10% to a+ 10%.

For this b, then, the model-free algorithm generalizes primarily to nearby allocations, those

within ten percentage points of the chosen allocation. We later examine the sensitivity of

our results to the value of b.14

We emphasize that the Q-learning algorithm above, with or without generalization, does

not use any information about the distribution of risky asset returns in (9): by its model-free

nature, it does not have a model of the environment. More broadly, the algorithm has no

13Our generalization algorithm is consistent with research in psychology which identifies similarity as an
important driver of generalization (Shepard, 1987). It is also used in computer science, where it is known as
interpolation-based Q-learning (Szepesvari, 2010, Ch. 3.3.2). Computer scientists also use more sophisticated
forms of generalization such as function approximation with polynomial, Fourier, or Gaussian basis functions
(Sutton and Barto, 2019, Ch. 9). We have also implemented this more complex generalization and obtain
similar results.

14One interpretation of our generalization algorithm is that the model-free system uses a small amount of
“model” information, namely that similar allocations lead to similar portfolio returns; as such, after observing
the outcome of a 70% allocation, the system updates the Q value of an 80% allocation more than that of a
20% allocation. An alternative interpretation – a strictly model-free interpretation that uses no information
about the structure of the task – is that the generalization is based simply on numerical similarity: the
number 70 is closer to 80 than to 20.
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idea what a “risk-free asset” or the “stock market” are. It is simply choosing an action

– some combination of these unfamiliar objects – seeing what reward it delivers, and then

updating the values of the chosen action and of actions similar to it. While the model-free

system may appear uninformed, the fact that it uses so little information about the problem

at hand is precisely what makes it powerful, in general: it can be applied in almost any

setting. Moreover, its implications will turn out to be helpful for thinking about a range of

facts in finance.

2.4 Model-based learning

Current research in psychology uses a framework in which decisions are guided by both

model-free and model-based learning. Model-based systems, as their name indicates, build a

model of the environment, which, more concretely, means a probability distribution of future

outcomes – for example, in our setting, a probability distribution of stock market returns.

There are various possible model-based systems. Which one should we choose? Our goal in

this paper is to see if algorithms commonly used by psychologists can explain behavior in

economic settings. We therefore take as our model-based system one that, like the model-free

system of Section 2.2, is based on an algorithm that is used extensively by psychologists and

is supported by neural evidence from decision-making experiments.

In our model-based system, an investor learns the distribution of stock market returns

over time by observing realized market returns. At each date, he updates the probabilities of

different returns using prediction errors analogous to the reward prediction errors of Section

2.2. Specifically, suppose that the investor observes a stock market return Rm,t+1 = R at

time t+ 1 and that, at time t, before observing the return, the prior probability he assigned

to it occurring was pt(Rm = R). At time t+ 1, he updates the probability of this return as

pt+1(Rm = R) = pt(Rm = R) + αMB
t [1− pt(Rm = R)], (18)

where αMB
t is the model-based learning rate that applies from time t to time t+1. The term

1− pt(Rm = R) is a prediction error: the investor’s prior estimate of the probability of the

return equaling R was pt(Rm = R); when the return is realized, the probability of it equaling

R is 1. After this update, the investor scales the probabilities of all other returns down by

the same proportional factor so that the sum of all return probabilities continues to equal

one. Since we are working with a continuous return distribution, we can assume that each

return that is realized is one that has not been realized before. As such, pt(Rm = R) = 0,
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which simplifies (18) to

pt+1(Rm = R) = αMB
t .

To illustrate this process, suppose that the investor observes four stock market returns

in sequence: R1, R2, R3, and R4, at dates 1, 2, 3, and 4, respectively. The four rows below

show the investor’s perceived probability distribution of stock market returns at dates 1, 2,

3, and 4, in the case where the learning rate is constant over time, so that αMB
t = α for all t.

In this notation, a comma separates a return from its perceived probability, while semicolons

separate the different returns:

(R1, 1)

(R1, 1− α;R2, α)

(R1, (1− α)2;R2, α(1− α);R3, α)

(R1, (1− α)3;R2, α(1− α)2;R3, α(1− α);R4, α). (19)

The above approach is motivated by research in decision neuroscience that adopts a

similar model-based system (Glascher et al., 2010; Lee, Shimojo, and O’Doherty, 2014;

Dunne et al., 2016). Just as there is evidence that the brain encodes reward prediction

errors, so there is evidence that it encodes prediction errors analogous to the one in square

brackets in (18) (Glascher et al., 2010).15

We noted in Section 2.2 that, when they implement model-free learning, psychologists

allow for different model-free learning rates, αMF
+ and αMF

− , for positive and negative reward

prediction errors, respectively. We extend the model-based algorithm in a similar way,

allowing for different model-based learning rates, αMB
+ and αMB

− , for positive and negative

net stock market returns, respectively. Specifically, following the gross return Rm,t+1 = R,

pt+1(Rm = R) = αMB
t,+ for R ≥ 1, (20)

with the probabilities of all other returns being scaled down by 1− αMB
t,+ , and

pt+1(Rm = R) = αMB
t,− for R < 1, (21)

with the probabilities of all other returns being scaled down by 1− αMB
t,− .

15While our model-based algorithm is inspired by research in psychology, it is also similar to an existing
economic framework, namely adaptive learning (Evans and Honkapohja, 2012). As such, from the perspective
of economics, the novel elements of our framework are the model-free system and its interaction with its
model-based counterpart.
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With this perceived return distribution in hand, how does the investor come up with a

model-based estimate of Q∗(a), the value of choosing an allocation a on some date and then

continuing optimally thereafter? We again follow an approach taken by experimental studies

in decision neuroscience (Glascher at al., 2010). We assume that, for any allocation a, the

individual computes his time t model-based estimate of Q∗(a), denoted QMB
t (a), by taking

the correct form of Q∗(a) in equation (15) and applying it for his perceived time t return

distribution:

QMB
t (a) = Ep

t log((1− a)Rf + aRm,t+1) +
γ

1− γ
Ep
t log((1− a∗t )Rf + a∗tRm,t+1), (22)

where

a∗t = arg max
a
Ep
t log((1− a)Rf + aRm,t+1) (23)

and where (22) differs from (15) only in that the expectation E under the correct distribution

has been replaced by the expectation Ep
t under the investor’s perceived distribution at time

t.

The Daw et al. (2011) experiment discussed in Section 2.1 illustrates a tension between

the model-free and model-based systems. If, in that experiment, an individual chooses A and

then E and is rewarded, the model-free system wants to repeat action A in the next round,

while the model-based system, recognizing that B is more likely to lead to E, wants to choose

B. The same tension is present in our financial market setting. If the investor starts with a

low allocation to the stock market and the market then posts a high return, the model-free

system wants to stick with a low allocation because this action was “reinforced”: it was

followed by a positive reward prediction error. By contrast, the model-based system wants

to increase the investor’s allocation to the stock market: it now perceives a more attractive

distribution of market returns and wants more exposure to it. We explore the implications

of this tension in Section 3.

The model-free and model-based systems are not the only learning algorithms the brain

uses. Another important class of algorithms are “observational learning” algorithms which

learn by observing the actions and outcomes of other people (Charpentier and O’Doherty,

2018). We focus on the model-free and model-based algorithms because they have received

the most attention from psychologists and because they likely “span” other algorithms: these

other learning systems tend to generate predictions that lie somewhere between those of the

model-free and model-based systems.
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2.5 A hybrid framework

An influential framework in psychology posits that people make decisions using a combination

of model-free and model-based systems (Daw, Niv, and Dayan, 2005; Glascher et al., 2010;

Daw et al., 2011). Specifically, it proposes that, at each time t, and for each possible action a,

an individual computes a “hybrid” estimate of Q∗(a), denoted QHY B
t (a), that is a weighted

average of the model-free and model-based Q values:

QHY B
t (a) = (1− w)QMF

t (a) + wQMB
t (a), (24)

where w is the weight on the model-based system. He then chooses an action using the

softmax approach, now applied to the hybrid Q values:

p(at = a) =
exp[βQHY B

t (a)]∑
a′ exp[βQHY B

t (a′)]
. (25)

In this paper, we focus on the case where w is constant over time, as this already leads to a

rich set of properties and applications. Nonetheless, a well-known hypothesis in psychology

is that w varies over time: at each moment of time, the brain puts more weight on the

system it deems more “reliable” at that point (Daw, Niv, and Dayan, 2005). In Section A of

the Online Appendix, we formalize and explore this idea using an implementation proposed

by researchers in decision neuroscience in which a system’s reliability is measured by the

absolute magnitude of its prediction errors: if the model-free reward prediction errors have

been large in absolute magnitude, the brain deems the model-free system to be less reliable

and raises w, thereby allocating more control to the model-based system. We discuss the

implications of this idea in Section 5 and in the Online Appendix.

The model-free and model-based systems differ most fundamentally in how they estimate

the value of an action: one system uses a model of the environment, while the other does not.

However, there is another difference between them: the model-free system learns only from

experienced rewards, while the model-based system can learn from all observed rewards. In

our setting, the investor enters financial markets at time 0. Time 0 is therefore the moment at

which he starts experiencing returns and hence the moment at which the model-free system

begins learning. However, before he makes a decision at time 0, the investor can look at

historical charts and observe earlier stock market returns, which the model-based system

can then learn from. To incorporate this, we extend the timeline of our framework so that

it starts not at time 0 but L dates earlier, at time t = −L. While the model-free system

starts operating at time 0, the model-based system starts operating at time −L: it observes
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the L stock market returns prior to time 0, {R−L+1, . . . , R0}; uses these to form a perceived

distribution of market returns as in (20) and (21); and then computes model-based Q values

by way of that distribution, as in (22).16

3 Properties of Model-free and Model-based Systems

We begin this section with an example that illustrates the mechanics of the model-free and

model-based systems. We then analyze some key properties of the framework. Our focus

is on how the allocations recommended by the model-free and model-based systems depend

on past stock market returns. We also examine the dispersion and variability in investor

allocations that these systems generate. In Section 4, we build on these properties to account

for several facts about investor behavior.

We use the timeline previewed at the end of the previous section. There are L + T + 1

dates, t = −L,. . . , −1, 0, 1,. . . , T . Investors begin actively participating in financial markets

at time 0. Their model-free systems therefore start operating only at time 0, while their

model-based systems operate over the full time range, starting from t = −L. We think of

each time period as one year and set L = T = 30. Before they start investing at time 0,

then, people have access to 30 years of prior data going back to t = −30. We then track

their allocation decisions over the next 30 years, from t = 0 to t = 30.17,18

The four learning rates – αMF
+ , αMF

− , αMB
+ , and αMB

− – play an important role in our

framework. How should they be set? If we were taking a normative perspective – if we

wanted to use the algorithms of Section 2 to solve the problem in (10) as efficiently as

possible – the answer would be to use learning rates that decline over time. Specifically, the

16Our implementation here is consistent with evidence from decision neuroscience. Dunne et al. (2016)
conduct an experiment in which participants actively experience slot machines that deliver a stochastic
reward, but also passively observe other people playing the slot machines. fMRI measurements show that,
as in many other studies, the model-free reward prediction error for the experienced trials is encoded in the
ventral striatum. However, for the trials that are merely observational, the model-free RPE is not encoded
in the striatum, suggesting that the model-free system is not engaged. As Dunne et al. (2016) write, “It may
be that the lack of experienced reward during observational learning prevents engagement of a model-free
learning mechanism that relies on the receipt of reinforcement.”

17One interpretation of our annual implementation is that, as argued by Benartzi and Thaler (1995),
investors pay particular attention to their portfolios once a year – at tax time, or when they receive their
end-of-year brokerage statements. Another interpretation is that it is an approximation of a higher-frequency
implementation. Later in this section, we explain how our results are affected by the choice of frequency.

18Since our setting has an infinite horizon, investors continue to participate in financial markets beyond
date T . Date T is simply the date at which we stop tracking their allocation decisions.
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time t model-based learning rates in (20) and (21) would be19

αMB
t,+ = αMB

t,− = 1/(t+ 1), (26)

as these lead investors to equally weight all past returns, consistent with the i.i.d. return

assumption. Similarly, Watkins and Dayan (1992) show that, for Q-learning to converge to

the correct Q∗ values, declining model-free learning rates are needed that, for each action a,

satisfy
∞∑
t=0

αMF
t,± 1{at=a} =∞ and

∞∑
t=0

(αMF
t,± )21{at=a} <∞, (27)

where the indicator function identifies periods where the algorithm is taking action a.

In this paper, however, we are taking a “positive” perspective – our goal is to explain

observed behavior. What matters for our purposes is therefore not the learning rates people

should use, but rather the learning rates they actually use. Psychology research does not offer

definitive guidance on people’s learning rates, but most studies of actual decision-making use

learning rates that are constant over time (Glascher et al., 2010). For this reason, we focus

on constant learning rates. To start, we give all investors the same constant learning rates.

Later, we allow for dispersion in these rates across investors.

3.1 An example

To show how the model-free and model-based systems work, we start with an example.

Throughout the paper, we use the same baseline parameter values, in part for consistency

and in part to show that a fixed set of parameter values can account for a range of observed

facts. We consider an investor who is exposed to a sequence of stock market returns from

t = −L to t = T , where L = T = 30. The returns are simulated from the distribution

in (9) with µ = 0.01 and σ = 0.2; these values provide an approximate fit to historical

annual U.S. stock market data. We set the investor’s learning rates to αMF
± = αMB

± = 0.5,

the exploration parameter β to 30, the discount factor γ to 0.97 – this corresponds to an

expected investment horizon of 33 years – and the degree of generalization b to 0.0577.20

At each date, we allow the investor to choose his stock market allocation at from one of 11

possible allocations {0%, 10%, . . . , 90%, 100%}. We later examine how our results depend

on the values of all the key parameters.

19Equation (26) assumes L = 0. For L > 0, the learning rates would be αMB
t,+ = αMB

t,− = 1/(L+ t+ 1).
20In simulations, we find that for β = 30, an investor using the hybrid system chooses the allocation with

the highest Q value approximately half the time, which represents a moderate degree of exploration.
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In our framework, decisions are based on hybrid Q values that combine the influences of

the model-free and model-based systems. To clearly illustrate the mechanics of each system,

we start by considering two simpler cases: one where the investor uses only the model-free

system to make decisions, and one where he uses only the model-based system.

Table 1 shows the model-free Q values, QMF , based on equations (14), (16), and (17)

(upper panel) and the model-based Q values, QMB, based on equations (22) and (23) (lower

panel) that the investor assigns to the 11 allocation strategies on his first six dates of partic-

ipation in financial markets, namely t = 0, 1, 2, 3, 4, and 5. The rows labeled “net market

return” show the net return of the stock market at each date. In each column, the number

in bold corresponds to the action that was taken in the previous period; for example, the

number −0.065 in bold at date 1 in the upper table indicates that the investor chose a 70%

allocation at date 0.21

Consider the upper panel of Table 1. The model-free system begins operating at time

0. At that time, then, it assigns a Q value of zero to all the allocations. It then randomly

selects the allocation 70%. The net stock market return at time 1 is negative, which means

that the investor’s net portfolio return and reward prediction error are also negative. The

time-1 Q value for the 70% allocation therefore falls below zero. As per equations (16) and

(17), the algorithm also engages in some generalization: since a 60% allocation and an 80%

allocation are similar to a 70% allocation, their Q values also fall, albeit to a lesser extent.

The Q values of more distant allocations are unaffected, at least to three decimal places.

At time 1, the investor chooses the allocation 30%. The time-2 market return is positive;

the investor therefore earns a positive net portfolio return and the time-2 Q value of the 30%

allocation goes up, as do, to a lesser extent, the Q values of the similar allocations 20% and

40%. At time 2, the investor chooses the allocation 100%. While the market falls slightly at

time 3, the time-3 Q value of the 100% allocation goes up by a small amount because the

reward prediction error is slightly positive. At dates 3 and 4, the investor chooses allocations

of 30% and 40%, respectively, and updates the values of these allocations and their close

neighbors based on the prediction errors they lead to at dates 4 and 5.

21In the case where decisions are determined by the model-based system alone, we assume that the investor
still chooses actions probabilistically, in a manner analogous to that in (14). In our setting, for the model-
based system, this probabilistic choice does not offer the usual exploration benefits: in each period, the
investor learns the same thing about the distribution of stock market returns regardless of which allocation
he chooses. We keep the probabilistic choice to allow for a more direct comparison with the model-free
system – but also because, if, as suggested earlier, this stochastic choice stems in part from cognitive noise,
it will be relevant for model-based learning too. For these reasons, whenever we consider the model-based
system in isolation, we will allow for probabilistic choice, unless otherwise specified.
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Table 1. Model-free and model-based Q values. The upper panel reports model-free
Q values for 11 stock market allocations from t = 0 to t = 5. The lower panel reports
model-based Q values for the 11 allocations for the same six dates. The rows labeled “net
market return” report the net stock market return at each date. Boldface type indicates
the allocation that was taken in the previous period. We set αMF

± = αMB
± = 0.5, β = 30,

γ = 0.97, µ = 0.01, σ = 0.2, and b = 0.0577.

MODEL-FREE
date 0 1 2 3 4 5

net market return -17.4% 18.3% -1.3% 12.8% -16.6%
0% 0 0 0 0 0 0

10% 0 0 0 0 0 0
20% 0 0 0.006 0.006 0.01 0.01
30% 0 0 0.027 0.027 0.045 0.041
40% 0 0 0.006 0.006 0.01 -0.007
50% 0 0 0 0 0 -0.004
60% 0 -0.015 -0.015 -0.015 -0.015 -0.015
70% 0 -0.065 -0.065 -0.065 -0.065 -0.065
80% 0 -0.015 -0.015 -0.014 -0.014 -0.014
90% 0 0 0 0.001 0.001 0.001

100% 0 0 0 0.006 0.006 0.006

MODEL-BASED
date 0 1 2 3 4 5

net market return -17.4% 18.3% -1.3% 12.8% -16.6%
0% 0.72 0 1.352 0.464 2.179 0

10% 0.723 -0.007 1.357 0.466 2.187 -0.005
20% 0.726 -0.015 1.362 0.468 2.194 -0.01
30% 0.729 -0.022 1.367 0.47 2.201 -0.015
40% 0.731 -0.03 1.372 0.472 2.208 -0.02
50% 0.733 -0.039 1.376 0.473 2.215 -0.026
60% 0.736 -0.047 1.38 0.475 2.222 -0.031
70% 0.737 -0.056 1.384 0.476 2.228 -0.037
80% 0.739 -0.065 1.387 0.477 2.234 -0.044
90% 0.741 -0.075 1.39 0.478 2.241 -0.05

100% 0.742 -0.085 1.393 0.479 2.247 -0.057
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The lower panel shows that the Q values generated by the model-based system are quite

different. By time 0, the model-based system has already been operating for 30 periods and

so already has well-developed Q values for each of the 11 allocation strategies. In the periods

immediately preceding time 0, the simulated stock market returns are somewhat positive;

higher allocations to the stock market therefore have higher Q values at time 0. At time 1,

the stock market return is poor, so all Q values fall, but those of riskier allocations do so

more: the negative stock market return at time 1 makes the investor’s perceived distribution

of stock market returns less appealing; this has a larger impact on strategies that allocate

more to the stock market. At time 2, the stock market return is positive, so all Q values go

up, but those of the riskier allocations do so more.

Table 1 makes clear a key difference between the model-free and model-based systems:

while, at each time, the model-based system updates the Q values of all the allocations, the

model-free system primarily updates only the Q values of the most recently chosen allocation

and those of its nearest neighbors. The reason is that it is model-free: it knows nothing about

the structure of the problem and therefore cannot make a strong inference, after seeing the

outcome of a 70% allocation, about the value of a 20% allocation.

3.2 Dependence on past market returns

We now analyze a property of our framework that is central to the applications in Section

4, namely, how the stock market allocations recommended by the model-free and model-

based systems depend on past stock market returns. We find that the model-free system

generates a rich set of intuitions and implications, some of which are quite distinct from

those associated with model-based systems.

To study this, we take 300, 000 investors and expose each of them to a different sequence

of simulated stock market returns from t = −L to t = T . We then take investors’ stock

market allocations aT at time T , regress them on the past 30 annual stock market returns

{Rm,T , Rm,T−1,. . . ,Rm,T−29} the investors have been exposed to, and record the coefficients.

We do this for three cases, namely those where investor allocations are determined by the

model-free system alone; by the model-based system alone; and by the hybrid system. For

all investors, as before, we set L = T = 30, αMF
± = αMB

± = 0.5, β = 30, γ = 0.97, µ = 0.01,

and σ = 0.2. For ease of interpretation, we turn off generalization for now, so that b = 0.22

Finally, we set w = 0.5, so that the hybrid system puts equal weight on the model-free and

22We use “b = 0” as shorthand for model-free learning without generalization. When b = 0, we compute
model-free Q values using equation (13) rather than equations (16)-(17), although the latter equations give
the same result as b→ 0.
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model-based systems. We later look at how changing the values of key model parameters

affects the results.23

Figure 2 presents the results. The solid line plots the coefficients on past returns in the

above regression when allocations are determined by the model-based system. As we move

from left to right, the line plots the coefficients on more distant past returns: the point on

the horizontal axis that marks j years in the past corresponds to the coefficient on Rm,T+1−j.

The two other lines plot the coefficients for the model-free and hybrid systems.
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Figure 2. We run a regression of investors’ allocations to the stock market aT at
time T on the past 30 years of stock market returns {Rm,T+1−j}30j=1 investors were
exposed to and plot the coefficients for three cases: a model-free system, a model-
based system, and a hybrid system. The point on the horizontal axis that marks
j years in the past corresponds to the coefficient on Rm,T+1−j. There are 300,000
investors. We set L = T = 30, αMF

± = αMB
± = 0.5, β = 30, γ = 0.97, µ = 0.01,

σ = 0.2, w = 0.5, and b = 0, so that there is no generalization.

23The goal function in (10) is motivated in part by the idea that, due to liquidity shocks, some investors
drop out of financial markets over time. In our calculations, we do not explicitly track which investors drop
out. This is because the shocks are random: they do not depend on investors’ prior allocations or past
returns. As such, investor exits do not affect the properties or predictions that we document.
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The figure shows that, for both the model-free and model-based systems, the time T stock

market allocations depend positively on past returns, and more so on recent past returns:

the coefficients on past returns decline, the more distant the past return. Importantly, the

decline is much more gradual for the model-free system, a property that will play a key role

in some of our applications. Given that the hybrid system combines the model-free and

model-based systems, it is natural that the line for the hybrid system is, approximately, a

mix of the model-free and model-based lines.

We now discuss these findings. First, we explain why the allocations recommended by the

model-free and model-based systems depend positively on past returns. The answer is clear

in the case of the model-based system. Following a good stock market return, an investor’s

perceived distribution of market returns assigns a higher probability to good returns and a

lower probability to bad returns. This raises the model-based Q values of all stock market

allocations, but particularly those of high allocations, making it more likely that the investor

will choose a high allocation going forward.

The intuition in the case of the model-free system is different and, to our knowledge,

new to financial economics. If the investor chooses a 20% stock market allocation and the

market posts a high return, this “reinforces” the action of choosing a 20% allocation: the

positive reward prediction error raises the Q value of this allocation, making it more likely

that the investor will choose it again in the future. Similarly, if he chooses an 80% allocation

and the market posts a high return, this reinforces the 80% allocation. In one case, then, a

high market return leads the investor to choose a low allocation; in the other, it leads him to

choose a high allocation. Why then, on average, does a high market return lead to a higher

allocation, as shown by the dashed line in Figure 2? The reason is that the reinforcement

is stronger in the case of the 80% allocation: a high stock market return leads to a larger

reward prediction error when the investor’s prior allocation is 80% than when it is 20%. As

such, the net effect of a good stock market return, after averaging over the possible prior

allocations, is to lead the investor to choose a high stock market allocation.

We now explain why the weights that the two systems put on past market returns decline

as we go further into the past. In the case of the model-based system, this is because, when

this system updates its perceived return distribution after seeing a new stock market return,

it scales down the probabilities of earlier returns, reducing their importance. Intuitively, by

using a constant learning rate, the investor is acting as if the environment is non-stationary;

as such, he puts greater weight on recent returns. The top graph in Figure 3 shows how the

time T allocation recommended by the model-based system depends on past stock market

returns for four different values of the learning rates αMB
+ and αMB

− , namely 0.05, 0.1, 0.2,
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and 0.5. The graph shows that, regardless of the learning rate, the allocation puts weights

on past returns that are positive and that decline the further back we go into the past, with

the decline being more pronounced for higher learning rates.

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

0

0.05

0.1

0.15

Figure 3. We run a regression of investors’ allocations to the stock market aT at
time T on the past 30 years of stock market returns {Rm,T+1−j}30j=1 investors were
exposed to. The top graph plots the coefficients for the model-based system for four
values of the learning rates αMB

+ and αMB
− , namely 0.05, 0.1, 0.2, and 0.5. The point

on the horizontal axis that marks j years in the past corresponds to the coefficient
on Rm,T+1−j. The bottom graph plots the coefficients for the model-free system for
four values of the learning rates αMF

+ and αMF
− , namely 0.05, 0.1, 0.2, and 0.5. There

are 300,000 investors. We set L = T = 30, β = 30, γ = 0.97, µ = 0.01, σ = 0.2, and
b = 0, so that there is no generalization.
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Figure 2 shows that, for the model-free system, the weights on past returns again decline

as we go further into the past, but much more gradually. Why is this? When the model-

free system updates the Q value of an action, this tends to downweight the influence of

past returns on this Q value, relative to the most recent return. However, this effect passes

through to allocation choice in a much more gradual way than for the model-based system

because, at each time, the model-free system primarily updates only one Q value, namely

that of the most recently-chosen action; as such it takes much longer for past returns to lose

their influence on the investor’s allocation.24 The bottom graph in Figure 3, which plots the

relationship between the model-free allocation and past returns for four different values of

the learning rates αMF
+ and αMF

− , shows that the model-free allocation typically puts positive

and declining weights on past returns, with the decline being more pronounced for higher

learning rates.

The graphs in Figure 4 show how the relationship between investors’ time T model-free

allocations and past stock market returns changes as we vary one of the model parameters

while keeping the others at their benchmark levels. Across the four graphs, we vary the

degree of generalization, the degree of exploration, the discount factor, and the number

of allocation choices. Changing these parameters would have little effect on model-based

allocations. However, Figure 4 shows that it has significant impact on model-free allocations.

While for many parameter values, including those used in Figures 2 and 3, the model-free

allocation puts more weight on recent than on distant past returns, Figure 4 shows that,

for some parameter values, it can put more weight on distant than on recent past returns.

Moreover, the figure shows the conditions under which this happens – for example, for higher

degrees of generalization. We explain the full intuition for the patterns in Figure 4 in Online

Appendix B.25

24For an example, consider the upper panel of Table 1. At time 4, the model-free system updates the Q
value of the 30% allocation. However, the Q value of a 70% allocation is not significantly updated at this
time, and so it depends as strongly as before on the time 1 stock market return. As such, for the model-free
system, the time 1 and time 4 stock market returns exert a similar degree of influence on the investor’s
allocation at time 4.

25The results in Figures 2 to 4 are for an annual-frequency implementation of our framework. We have
studied the effect of changing the frequency. If we fix the learning rates αMB

± and αMF
± but switch to a semi-

annual, quarterly, or monthly implementation, this has a significant effect on the model-based allocation – it
depends all the more on recent returns – but a much smaller impact on the model-free allocation. As such,
implementing the framework at a higher frequency creates a larger wedge between the two systems.
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Figure 4. For different sets of parameter values, we run a regression of investors’
allocations to the stock market aT at time T under the model-free system on the
past 30 years of stock market returns {Rm,T+1−j}30j=1 investors were exposed to and
plot the coefficients. The lines in the top-left, top-right, bottom-left, and bottom-
right graphs correspond, respectively, to four values of the generalization parameter
b, namely 0, 0.0577, 0.115, and 0.23; to three values of the exploration parameter β,
namely 10, 50, and ∞, which corresponds to no exploration; to three values of the
discount factor γ, namely 0.3, 0.9, and 0.99; and to different numbers of allocation
choices, namely 3, 6, 11, and 21. There are 300,000 investors. The benchmark
parameter values are L = T = 30, αMF

± = 0.5, β = 30, γ = 0.97, µ = 0.01, σ = 0.2,
and b = 0, so that there is no generalization.
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While the model-free algorithm is simple to state – it is summarized in equation (16)

– it is difficult to derive analytical results about its predictions. Nonetheless, for certain

special cases, we are able to derive such results, which are precisely about the dependence

of model-free allocations on past market returns and which, to our knowledge, are the first

results of their kind. We present these results and their proofs in Theorems 1 to 4 of Online

Appendix C. Specifically, we show that, under some conditions, as t → ∞, the sensitivity

of the expected allocation at time t to the market return k periods earlier, Rm,t−k = R, is

given by

∂E(at)

∂Rm,t−k
=

αβR2β−1

(Rβ + 1)3

(
Rβ + 1− αRβ

Rβ + 1

)k
(28)

for the model-free allocation, and by

∂E(at)

∂Rm,t−k
=

αβRβ−1

(Rβ + 1)2
(1− α)k (29)

for the model-based allocation, where α is the constant learning rate for both systems. These

results are consistent with the patterns in Figure 2. Expressions (28) and (29) both decline

monotonically as k increases. Moreover, the model-free coefficient in (28) is lower than

the model-based coefficient in (29) for low values of k, but higher than the model-based

coefficient for high values of k. This provides an analytical foundation for the property

we have emphasized in this section, namely that, relative to the model-based system, the

model-free system puts significantly more weight on distant past returns.

3.3 Dependence on past allocations and portfolio returns

In the previous section, we studied the dependence of the model-free and model-based allo-

cations on past market returns. We focused on the market return because it is the exogenous

shock in our framework and because the dependence on market returns is central to our appli-

cations in Section 4. Nonetheless, it is natural to ask whether other variables – the investor’s

past allocations or portfolio returns – also have predictive power for today’s allocation.

In the case of the model-based system, the answer is negative: past market returns are

the lone predictors of today’s model-based allocation; past allocations and portfolio returns

have no additional predictive power. By contrast, past allocations and portfolio returns have

substantial predictive power for the model-free allocation – indeed, they are the primary

drivers of this allocation. Past market returns affect the model-free allocation indirectly, by

way of these other variables: they affect portfolio returns which then reinforce allocations.

In this section, we examine the dependence of the model-free allocation on past allocations
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and portfolio returns.

A large part of the predictive power of past allocations and portfolio returns for the model-

free allocation comes from just one lag of prior data. In the case where decisions are made

by the model-free system, we run a regression in our simulated data of the time T allocation

aT on the prior allocation aT−1, on the most recent net portfolio return rp,T ≡ Rp,T − 1 –

in this section, we work with the net return for ease of interpretation – and on the product

of the two aT−1rp,T ; the parameter values are the same as those in the caption for Figure 2.

We obtain

aT = 0.2 + 0.63aT−1 − 0.35rp,T + 0.75aT−1rp,T + εT , (30)

with an R2 of 43.7%. The relationship in (30) captures four features of the model-free system,

which are most easily illustrated with numerical examples.

First, equation (30) shows that the model-free allocation at time T is closely tied to the

previous period’s allocation. For example, if aT−1 = 20% and the net portfolio return is a

neutral rp,T = 0, then the expected time T allocation E(aT ) = 33%; and if aT−1 = 80% and

rp,T = 0, then E(aT ) = 71%. In both cases, the expected time T allocation is fairly close

to the time T − 1 allocation. This is because, at each time, the model-free system primarily

updates the Q value of the most recently-chosen action. As such, the Q values at time T

are similar to the Q values at time T − 1; this, in turn, means that the time T allocation is

likely to resemble the time T − 1 allocation.

Second, the numbers in the previous paragraph show that there is mean-reversion in the

model-free allocation. Again, when the net portfolio return is rp,T = 0, a prior allocation

of 20% leads to an expected allocation of 33%, while a prior allocation of 80% leads to an

expected allocation of 71%. The mean-reversion is due to the probabilistic action choice and

to the fact that the set of possible allocations is bounded by 0% and 100%. If the investor has

a high allocation to the stock market at time T −1, then, since there is a random component

to his time T allocation and since this allocation must be between 0% and 100%, his time

T allocation will on average be lower than at time T − 1.

Third, regression (30) captures the reinforcing effect of the portfolio return. If aT−1 =

20% and the portfolio return is a neutral rp,T = 0, then E(aT ) = 33%̇; but if rp,T = 0.2, then

E(aT ) = 29%: the high portfolio return reinforces the 20% allocation and pulls the time T

allocation towards it, from 33% down to 29%. Similarly, if aT−1 = 80% and rp,T = 0, then

E(aT ) = 71%; but if rp,T = 0.2, then E(aT ) = 76%: this time, the high portfolio return

reinforces the 80% allocation and pulls the time T allocation towards it, from 71% up to

76%.
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Finally, regression (30) captures the indirect way that the market return affects the model-

free allocation. If aT−1 = 20% and the net market return is a neutral rm,t ≡ Rm,t − 1 = 0,

then rp,T = 0 and E(aT ) = 33% as before. But if rm,T = 0.2, then rp,T = 0.04 and

E(aT ) = 32%. In this case, the high market return modestly reinforces the prior allocation

of 20% and lowers the expected allocation by 1%, from 33% to 32%. Similarly, if aT−1 = 80%

and rm,T = 0, then rp,T = 0 and E(aT ) = 71%. But if rm,T = 0.2, then rp,T = 0.16 and

E(aT ) = 75%. In this case, the high market return strongly reinforces the prior allocation of

80% and increases the expected allocation by 4%, from 71% to 75%. Averaging across the

two prior allocations, the positive market return increases the investor’s time T allocation

by approximately (4−1)/2 = 1.5%. This provides a numerical illustration of the mechanism

described in the previous section: the model-free allocation depends positively on past market

returns because a high market return generates greater reinforcement when the investor’s

prior allocation is high.26

3.4 Variability and dispersion

Regression (30) in the previous section shows that model-free allocations are “sticky”: the

allocation at any time hews closely to the allocation in the previous period. This suggests

that the model-free system will lead to less variability in an investor’s allocation over time.

We now document this more formally.

To demonstrate the result, we first allow for dispersion in learning rates across investors.27

For each investor, we draw each of their learning rates – each of αMF
+ , αMF

− , αMB
+ , and αMB

−

– from a uniform distribution centered at ᾱ and with width ∆. As before, the parameter

values are L = T = 30, ᾱ = 0.5, β = 30, γ = 0.97, µ = 0.01, and σ = 0.2; and as in Section

3.1, we have b = 0.0577, so that there is some generalization. We set the new parameter ∆

to 0.5. We take 1,000 investors, expose them to the same sequence of stock market returns

from t = −L to t = T, and compute the variability in their allocations: for each investor

26A more precise calculation, which averages across all eleven possible prior allocations, leads to a similar
result. The 1.5% number approximately matches the prediction of the dashed line in Figure 2 for the
sensitivity of the model-free allocation to a 20% net market return, namely (0.1072)(0.2) = 2.14%, where
0.1072 is the coefficient on the most recent market return in a regression of model-free allocations on past
market returns.

27Data on investor beliefs about future stock market returns suggest that there is substantial dispersion in
learning rates across investors. Giglio et al. (2021) analyze such data and find that an individual fixed effect
explains more of the variation in beliefs than a time fixed effect: some investors are persistently optimistic
while others are persistently pessimistic. Capturing this in our framework requires substantial dispersion in
learning rates across investors, a claim we have confirmed in simulated data: as we increase this dispersion,
individual fixed effects explain more of the variation in beliefs. Intuitively, investors with high αMB

+ and low
αMB
− are persistently optimistic, while those with low αMB

+ and high αMB
− are persistently pessimistic.
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in turn, we compute the standard deviation of his allocations {aT−j}30j=0 over time and then

average these standard deviations across investors. We repeat this exercise 300 times for

different return sequences and average the resulting variability measures.

The solid and dashed lines in the top three graphs in Figure 5 plot the variability of

investor allocations under the model-based and model-free systems, respectively, as we vary

the values of three parameters – the exploration parameter β, the mean learning rate ᾱ, and

the dispersion ∆ of learning rates – while keeping the other parameter values fixed at their

benchmark levels. The graphs confirm that the model-free system leads to lower variability

than the model-based system: the dashed lines are substantially below the solid lines.
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Figure 5. The upper graphs plot the variability of stock market allocations –
the standard deviation of allocations between time 0 and time T, computed for each
investor in turn and averaged across investors. The lower graphs plot the dispersion,
across investors, of their stock market allocations at time T. The solid and dashed
lines correspond to the model-based and model-free systems, respectively. For each
system, the graphs vary the exploration parameter β, the mean learning rate ᾱ, or
the dispersion in learning rates ∆, while keeping the other parameter values fixed
at their benchmark levels. The results are averaged across 300 simulations; each
simulation features 1,000 investors, all of whom see the same return sequence. The
benchmark parameter values are L = T = 30, ᾱ = 0.5, β = 30, γ = 0.97, ∆ = 0.5,
µ = 0.01, σ = 0.2, and b = 0.0577.
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Using the simulated data from the above exercise, we also compute another quantity that

will be helpful when we turn to applications, namely the dispersion in allocations across

investors at time T . For each of our 300 simulations, and for each of the model-free and

model-based systems, we compute the standard deviation of investors’ time T allocations

and then average these estimates across the 300 simulations. The lower graphs in Figure 5

plot the resulting dispersion measures as we vary each of β, ᾱ, and ∆. The graphs show that

the two systems generate similarly high dispersion in investor allocations. We return to this

finding in Section 4.

4 Applications

We now build on the analysis of Section 3 to show that our framework can shed light on

a range of facts in finance. This is striking, for two reasons. First, in prior research, this

framework has been used primarily to explain behavior in simple experimental settings;

it is notable, then, that it can also account for real-world financial behavior. Second, one

component of the framework is “model-free,” and, as such, uses very little information about

the nature of the task. It is striking that a framework that “knows” so little about financial

markets can nonetheless help explain investor behavior in these markets.

We have associated the risky asset in our framework with the aggregate stock market.

Our applications therefore focus on important facts about this market – facts about investor

behavior, such as extrapolative demand and experience effects; facts about investor beliefs

about market returns and the relationship between beliefs and allocations; and facts about

asset prices, such as excess volatility. Through the model-based system, our framework

preserves a role for beliefs in driving investor behavior and asset prices. However, through

the model-free system, it introduces a new way of thinking about these facts, one based on

reinforcement of past actions.

In what follows, we show that a simple parameterization of our framework can qualita-

tively, and even quantitatively, address a range of empirical facts. By “simple,” we mean

that, in this parameterization, each investor’s learning rates αMF
+ , αMF

− , αMB
+ , and αMB

− are

constant over time; and, for all investors, the values of these learning rates are drawn from

the same distribution. Our initial goal is not to provide a close quantitative fit to observed

facts; it is to show that a simple parameterization can provide a qualitative, and approxi-

mate quantitative, fit to the data. Toward the end of this section, we estimate the parameter

values that provide a closer quantitative match to the data.

35



To study the various applications, we start with the setup of Section 3. There are again

L+T +1 dates, t = −L,. . . ,−1, 0, 1,. . . , T . Relative to Section 3, we make one modification

to make the framework more realistic: we allow for different cohorts of investors who enter

financial markets at different times. Specifically, we take L = T = 30 and consider six

cohorts, each of which contains 50, 000 investors, for a total of 300, 000 investors. The first

cohort begins participating in financial markets at time t = 0; we track their allocation

decisions until time t = T . For these investors, their model-based systems operate over the

full timeline starting at time t = −L, but their model-free systems operate only from time

t = 0 on. The second cohort enters at time t = 5; we track them until time t = T . For this

cohort, the model-based system again operates over the full timeline starting at t = −L, but

the model-free system operates only from time t = 5 on. The four remaining cohorts enter

at dates t = 10, 15, 20, and 25.

Given the above structure, at time T , the cross-section of investors resembles the one we

see in reality, namely one where investors differ in their number of years of participation in

financial markets. As such, most of our analyses will focus on investor allocations at time

T and on how these relate to other variables, such as investor beliefs at that time or the

past stock market returns investors have been exposed to. For most of the applications, we

conduct simulations in which each investor interacts with a different return sequence from

time t = −L to time t = T .

Each investor in the economy is trying to solve the problem in (10) and chooses allocations

from the set {0%, 10%,. . . , 90%, 100%} according to the hybrid system in (24)-(25). For each

investor, we draw the values of the learning rates αMF
+ , αMF

− , αMB
+ , and αMB

− independently

from a uniform distribution with mean ᾱ and width ∆. We use the same parameter values

throughout much of this section in order to show that a single parameterization is consistent

with a range of empirical facts. As in Section 3, we set ᾱ = 0.5, β = 30, γ = 0.97, ∆ = 0.5,

µ = 0.01, σ = 0.2, b = 0.0577, and w = 0.5, so that investors put equal weight on the

model-free and model-based systems. Later, we formally estimate the value of w that best

fits the data.

4.1 Extrapolative demand and excess volatility

Our first application builds on the analysis of Section 3.2. A common assumption in

psychology-based models of asset prices and investor behavior is that people have extrap-

olative demand: their demand for a financial asset depends positively on the asset’s past

36



returns, and especially on its recent past returns.28

The framework of Section 2 provides a new foundation for such extrapolative demand.

As shown in Section 3.2, for a wide range of parameter values, the model-free and model-

based systems both generate an allocation to the stock market that depends positively on

past market returns and more so on recent past returns. To be clear, the mechanism in

the case of the model-based system is similar to others that have been proposed. However,

in the case of the model-free system, the mechanism is new to the finance literature. We

explained the logic in full in Section 3.2; a brief summary is: Following a good stock market

return, the reward prediction error is larger if the investor previously had a high allocation

to the stock market than if he had a low allocation; a high allocation therefore receives more

reinforcement, making it more likely that he will choose a high allocation going forward.

To confirm that the framework of Section 2 generates extrapolative demand, we run a

regression of investors’ allocations aT at time T , as determined by the hybrid system, on

the past stock market returns each of them has observed. The relationship between the

allocation and past returns is plotted as the solid line in Figure 6. The graph confirms

that an investor’s allocation to the stock market is a positive function of the market’s past

returns, with weights that decline the further back we go into the past.

The solid line in Figure 6 is similar to the line marked “Hybrid” in Figure 2 in that both

lines correspond to decisions made under the hybrid system. However, the two lines differ

because, relative to the analysis in Section 3.2, we are now allowing for dispersion across

investors in their learning rates and for multiple cohorts. The multiple cohorts in particular

make the solid line in Figure 6 decline more quickly than the “Hybrid” line in Figure 2:

some of the investors in the market at time T = 30 entered only at time 25; as such, their

model-free system puts no weight on returns before time 25.

The framework of Section 2 offers another insight relative to existing finance research on

extrapolative demand, namely that this demand has two sources which operate on different

time scales: a model-based source that puts heavy weight on recent returns, and a model-

free source that puts substantial weight even on distant past returns. We make use of this

two-component structure of extrapolative demand in subsequent applications.

28A partial list of papers that study extrapolative demand, either theoretically or empirically, is Cutler,
Poterba, and Summers (1990), De Long et al. (1990), Barberis and Shleifer (2003), Barberis et al. (2015,
2018), Cassella and Gulen (2018), Chen, Liang, and Shi (2022), Jin and Sui (2022), Liao, Peng, and Zhu
(2022), and Pan, Su, and Yu (2022).

37



0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

Figure 6. The solid line plots the coefficients in a regression of the stock market
allocation aT at date T chosen by investors who use a hybrid system to make de-
cisions on the past 30 years of stock market returns the investors were exposed to.
The dashed line plots the coefficients in a regression of investors’ expectations at
time T about the future one-year stock market return on the past 30 years of stock
market returns. There are 300,000 investors: six cohorts of 50,000 investors each
who enter financial markets at different times. For each investor, each of αMF

+ , αMF
− ,

αMB
+ , and αMB

− is drawn independently from a uniform distribution with mean ᾱ
and width ∆. We set L = T = 30, ᾱ = 0.5, β = 30, γ = 0.97, ∆ = 0.5, µ = 0.01,
σ = 0.2, b = 0.0577, and w = 0.5.

Prior work has shown that certain types of extrapolative demand can help explain the

excess volatility in stock markets and the predictability of market returns (De Long et

al., 1990; Barberis et al., 2015). Given that the investors in our framework have a form of

extrapolative demand, it is natural to expect that, in an asset pricing setting, these investors

will generate excess volatility and predictability. Our focus in this paper is on investor

behavior, not asset prices. Nonetheless, in Online Appendix D, we present a simple model

of asset prices in which some investors have the two-component structure of extrapolative
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demand generated by model-free and model-based learning, and confirm that we observe

excess volatility and return predictability. Our framework preserves a role for beliefs in

generating excess volatility – this comes from the model-based system – but also points to

a new mechanism that may contribute to this volatility, namely model-free reinforcement of

past actions.

4.2 Experience effects

Malmendier and Nagel (2011) show that investors’ decisions are affected by their experience:

whether an investor participates in the stock market, and how much he allocates to the stock

market if he does participate, can be explained in part by the stock market returns he has

personally experienced – in particular, by a weighted average of the returns he has personally

lived through, with more weight on more recent returns.

The framework of Section 2 provides a foundation for such experience effects. Since the

model-free system engages only when an investor is actively experiencing financial markets,

the framework predicts that investors who enter financial markets at different times, and

who therefore experience different returns, will choose different allocations.

There are two key features of experience effects that we aim to capture. The first is that,

if an investor begins participating in financial markets at time t, his subsequent allocations

to the stock market should depend substantially more on the stock market return at time

t + 1, Rm,t+1 – a return he experienced – than on the stock market return at time t, Rm,t,

a return he did not experience. Put differently, if we plot the coefficients in a regression of

investor allocations on past market returns, we should see a “kink” in the coefficients at the

moment the investor enters financial markets. The second feature of experience effects is

that the coefficients in a regression of investor allocations on past experienced stock market

returns should decline for more distant past returns. To capture both features, Malmendier

and Nagel (2011) propose that investors’ decisions are based on a weighted average of past

returns in which, for an investor at time t with n years of experience, the weight on the

return j years earlier, Rm,t+1−j, is

(n+ 1− j)λ/A, j = 1, 2, . . . , n, (31)

where λ is estimated to be approximately 1.3 and A is a normalizing constant, and where

the weight on returns the investor did not experience is zero.

To see if our framework can generate these two features of experience effects, we proceed
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as follows. For each of the six cohorts, we take the 50, 000 investors in the cohort and regress

their time T allocations aT on the past 30 years of stock market returns. Figure 7 presents

the results. The six graphs correspond to the six cohorts. In each graph, the solid line plots

the coefficients in the above regression, normalized to sum to one so that we can compare

them to the Malmendier and Nagel (2011) coefficients in (31). The dashed line plots the

functional form in (31) for the cohort in question, and the vertical dotted line marks the

point at which the cohort enters financial markets.
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Figure 7. The six graphs correspond to six cohorts of investors. In each graph, the
solid line plots the coefficients, normalized to sum to one, in a regression of the time
T stock market allocations aT of the investors in that cohort on the past 30 years of
stock market returns they were exposed to. The six cohorts have different numbers
of years of experience, namely n = 5, 10, 15, 20, 25, and 30; the vertical dotted
line in each graph marks the time at which the cohort enters financial markets.
There are 300,000 investors, with 50,000 in each cohort. For each investor, each of
αMF
+ , αMF

− , αMB
+ , and αMB

− is drawn independently from a uniform distribution with
mean ᾱ and width ∆. We set L = T = 30, ᾱ = 0.5, β = 30, γ = 0.97, ∆ = 0.5,
µ = 0.01, σ = 0.2, b = 0.0577, and w = 0.5. In each graph, the dashed line plots a
functional form for experience effects calibrated to data by Malmendier and Nagel
(2011), namely (n+ 1− j)λ/A, where j is the number of years in the past, λ = 1.3,
and A is a normalizing constant.
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By comparing the solid and dashed lines for each graph in turn, we see that our framework

can capture both aspects of experience effects. Consider the bottom-left graph for cohort 4

which enters at date 15. The solid line shows that our framework generates a kink in the

dependence of allocation on past market returns as we move from a return these investors

experienced – the return 15 years in the past – to one they did not experience, the return 16

years in the past. The kink is driven by investors’ model-free system, which puts substantial

weight even on a return experienced 15 years in the past, but no weight at all on returns

before that. The graph also shows that, within the subset of returns that these investors

experience, their allocation puts greater weight on more recent past returns. Both the model-

free and model-based systems contribute to this pattern, although the model-based system

does so more.

Similar patterns can be seen in the other graphs. In each case, the solid line exhibits a

kink at the moment that the investors in that cohort begin experiencing returns; and within

the subset of returns that the investors in that cohort experience, there is more weight on

more recent returns.

We have presented a foundation for experience effects based on model-free and model-

based learning. It is instructive to compare this to an alternative foundation rooted in

memory (Bordalo, Gennaioli, and Shleifer, 2020; Wachter and Kahana, 2022; Malmendier

and Wachter, 2022). Specifically, in Wachter and Kahana (2022), an experienced return is

treated differently from a return that is not experienced because it is processed by a separate

memory system. In our framework, an experienced return is treated differently because it

engages a distinct learning algorithm, model-free learning. In Wachter and Kahana (2022),

the investor’s allocation can put substantial weight even on a return in the distant past. This

is because the “context” that is associated with observed data at each moment is assumed

to change slowly over time. In our framework, it is instead because the model-free system

learns slowly, at each time primarily updating only the value of the most recently-chosen

action.

Wachter and Kahana (2022) also obtain a “jump back in time” effect whereby today’s

data remind the investor of an earlier context in which the same data were observed, thereby

recruiting additional data from that earlier context. Once we allow for state dependence,

our framework generates a similar effect: if the investor encounters state st at time t, his

action is influenced by the reward he experienced at earlier times when he was again in state

st. We analyze a state-dependent version of our framework in the Online Appendix.
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4.3 Investor beliefs: Overreaction and the frequency disconnect

Individual investors overreact to recent market returns when forming beliefs about future

market returns: their beliefs are a positive function of recent returns even though there

is little autocorrelation in realized returns (Greenwood and Shleifer, 2014). Our framework

captures this overreaction. As we confirm below, after a high return, the model-based system

increases the probability it assigns to good returns, leading the investor to expect a higher

return in the future. In the same way, the framework can capture the overreaction we observe

more generally for low-persistence processes (Bordalo et al., 2020; Afrouzi et al., 2023). For

example, if the model-based system is trying to build a probability distribution for earnings

growth, then, following high earnings growth, it raises the probability it assigns to good

earnings growth outcomes, and thus over-estimates future earnings growth.

Aside from capturing overreaction in beliefs, our framework also resolves two puzzling

disconnects between investor beliefs and investor actions – one in the frequency domain,

which we discuss in this section, and one in the cross-section of investors, which we address

in the next section. We account for these puzzles by way of a deep property of our frame-

work, namely that, of the two systems, only the model-based system has an explicit role for

beliefs. The model-free system, by contrast, has no notion of beliefs: it does not construct a

probability distribution of future outcomes; instead, it learns the value of actions simply by

trying them and observing the outcomes.

The disconnect in the frequency domain is simple to state. While investor expectations

about future returns depend heavily on recent past returns, investor stock market allocations

depend to a substantial extent even on distant past returns (Malmendier and Nagel, 2011).29

Two features of our framework allow it to explain this disconnect. First, as noted above,

only the model-based system has an explicit role for beliefs. Second, relative to the model-

based system, the model-free system recommends allocations that put substantially more

weight on distant past returns. Taken together, these features mean that, when an investor

is asked for his beliefs about future stock market returns, he necessarily consults the model-

based system – the only system that can answer the question – and therefore gives a response

that puts heavy weight on recent returns. By contrast, his allocation is based on both systems

and therefore puts greater relative weight on distant past returns. As such, the framework

29We can formalize this in the following way. When Malmendier and Nagel (2011) use the weights in (31)
to characterize the relationship between an investor’s allocation and the past returns he has experienced,
they obtain an estimate of λ ≈ 1.3. Suppose that we now take the functional form in (31) and use it,
with n = 30, to characterize the relationship between investor beliefs and the past 30 years of stock market
returns. Using Gallup data on stock market expectations from October 1996 to November 2011, we find
that the best fit is for λ ≈ 37, which puts much more weight on recent returns.
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drives a wedge between actions and beliefs.

Figure 6 illustrates these points. As discussed in Section 4.1, the solid line shows how

allocations depend on past returns: it plots the coefficients in a regression of investors’

allocations to the stock market at time T on the past 30 years of stock market returns they

were exposed to. The dashed line shows how beliefs depend on past returns: it plots the

coefficients in a regression of investors’ expectations at time T about the future one-year

stock market return on the past 30 years of stock market returns they were exposed to.

Comparing the two lines, we see that, while beliefs depend primarily on recent returns,

allocations depend significantly even on distant past returns.

A number of studies find a positive time-series correlation between investor beliefs and

allocations. For example, Greenwood and Shleifer (2014) find that the average investor

expectation of future stock market returns is positively correlated with net flows into equity-

oriented mutual funds. Our framework is consistent with such findings: in our simulated

data, there is a positive time-series correlation between investor allocations and beliefs, both

at the individual and aggregate levels. However, underlying the positive correlation in actual

data is a frequency disconnect, with beliefs putting more weight on recent returns than do

allocations; it is this puzzling disconnect that our framework can explain.

4.4 Investor beliefs: The cross-sectional disconnect

Using survey responses from Vanguard investors, as well as data on these investors’ alloca-

tions to the stock market, Giglio et al. (2021) document another disconnect between beliefs

and actions. Regressing investors’ stock market allocations on investors’ expected one-year

stock market returns, they obtain a coefficient approximately equal to one. By contrast, a

traditional Merton model of portfolio choice predicts a much higher coefficient.

Our framework can help explain this disconnect. The mechanism is similar to that for

the frequency disconnect: it again relies on the fact that, while an investor’s allocation is

based on both the model-free and model-based systems, only the model-based system has an

explicit role for beliefs. To see the implications of this, suppose that the stock market posts a

high return. The investor’s expectation about the future stock market return will then go up

significantly: the model-based system, which determines beliefs, puts substantial weight on

recent returns. However, the investor’s allocation will be less sensitive to the recent return:

it is determined in part by the model-free system, which, relative to the model-based system,

puts much less weight on recent returns.
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We can examine this effect quantitatively. In simulated data, we run a regression of

investors’ stock market allocations at time T on their expected returns on the stock market

over the next year. For our benchmark parameter values, and specifically for our benchmark

value of w = 0.5, the regression coefficient is 1.12; this is similar to that obtained by Giglio et

al. (2021) in actual data and confirms that our framework can help explain the cross-sectional

disconnect. The model-free system plays an important role in this result: if we increase the

weight on the model-free system from 0.5 to 0.9, say, the sensitivity of allocations to beliefs

falls even further, from 1.12 to 0.45. The probabilistic choice plays a minor role in this result:

even if we turn it off, the framework continues to generate an allocation-belief sensitivity

that is low, and all the lower, the greater the weight on the model-free system.

The low sensitivity of allocations to beliefs initially appears puzzling in light of the

excess volatility in the stock market. However, our framework shows that they can co-exist:

as outlined above, the investors in our framework exhibit a low allocation-belief sensitivity;

but because their demand has an extrapolative structure, it nonetheless generates excess

volatility in asset prices, as shown in Online Appendix D.

In Section 2.5, we noted that, according to a well-known hypothesis in psychology, the

brain puts more weight on the learning system it views as more reliable. This idea – one

that we analyze formally in Online Appendix A – leads to one of the clearest predictions of

our framework, namely that, if an individual is more confident in his beliefs, his actions will

be more sensitive to his beliefs. Confidence in one’s beliefs is a sign that the model-based

system – the system that generates beliefs – is more reliable. The brain therefore allocates

more control to it, leading to a higher sensitivity of allocations to beliefs. Giglio et al. (2021)

offer some evidence that is consistent with this: they find that, for the subsample of people

who say they are more confident in their beliefs, allocations are indeed more sensitive to

beliefs.

4.5 Dispersion, inertia, and inelasticity

Households differ in their asset allocations – in particular, the fraction of wealth invested in

the stock market varies substantially from one household to another. Economists typically

attribute these differing allocations to differences in beliefs – differences in perceived expected

returns or risk – or to differences in objective functions.

The lower panel of Figure 5 shows that the model-based system generates substantial

dispersion in allocations. This dispersion is primarily due to differences in beliefs across
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investors, which in turn are driven by differences in learning rates; the probabilistic choice

further adds to the dispersion. The lower panel shows that the model-free system also

generates substantial dispersion in allocations. This is striking because this dispersion cannot

be easily attributed to differences in beliefs or objective functions: as noted earlier, the model-

free system has no notion of beliefs; moreover, in our setting, all investors have the same

objective function in (10). Instead, the differences in allocations recommended by the model-

free system are due to the process of decision-making itself. The probabilistic choice leads

investors to try different allocations in their early years of financial market participation.

Different allocations are then reinforced for different investors, which leads to differences in

allocations even many years later.

While there is substantial dispersion in households’ actual allocations to the stock market,

there is also individual-level inertia in these allocations over time (Agnew, Balduzzi, and

Sunden, 2003; Ameriks and Zeldes, 2004). This inertia is often attributed to transaction

costs, procrastination, or inattention.

The framework in this paper offers a new way of thinking about inertia in investor

holdings: it says that the inertia arises endogenously from the model-free system. Regression

(30) in Section 3.3 shows that an investor’s model-free allocation in any period is closely tied

to his allocation in the previous period. More directly, the upper panel of Figure 5 shows

that, relative to the model-based system, the model-free system generates lower variability,

or equivalently, higher inertia. The reason is that the model-free system learns slowly: at

each time, it primarily updates only the value of the most recently-chosen allocation. This,

in turn, increases the likelihood that the allocation at time t will be similar to the allocation

at time t− 1.

The inertia generated by the model-free system also offers a foundation for the market

inelasticity documented by Gabaix and Koijen (2022) – the finding that, if some investors

have uninformed demand for an asset that pushes up its price, other investors do not absorb

the demand to the extent predicted by traditional models. Gabaix and Koijen (2022) note

that one possible source of inelasticity is investment mandates that constrain the holdings of

asset managers. Our framework points to an alternative source. Since the model-free system

learns slowly, it generates inertia in investors’ allocations, which in turn reduces the extent

to which they will respond to an uninformed demand shock.
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4.6 Non-participation

For our final two applications – non-participation and persistent investment mistakes – we

use modified versions of our framework that better fit the context at hand.

A long-standing question asks why many U.S. households do not participate in the stock

market despite its substantial risk premium. Our framework can shed light on this. In par-

ticular, the model-free system tilts investors toward not participating. To see why, consider

an investor who makes decisions according to the model-free system. If he allocates some

money to the stock market but then experiences a poor market return, this lowers the Q

values of the chosen allocation and of those similar to it; this, in turn, raises the probability

that, in a subsequent period, he will switch to a 0% allocation to the market. Importantly, if

he does move to a 0% allocation, the model-free system will update only the Q value of the

0% allocation: generalization aside, it learns only about the action taken. As such, it stops

learning about the stock market and, in particular, fails to learn that the stock market has

better properties than indicated by the one poor return the investor experienced. This will

tend to keep the investor at a 0% allocation for an extended period of time.

We illustrate this in a modified version of our framework with just two allocations: 0%

and 100%. It is natural to use a two-allocation framework for this application because the

participation decision has a binary flavor: Should I participate or not? In addition, because

the multi-cohort structure we used earlier does not play an interesting role in this application,

we consider a single cohort of investors who enter financial markets at time 0.

We take 300, 000 investors and expose each of them to a different sequence of stock market

returns. For each investor, we compute the fraction of time between dates 1 and T that he

chooses a 0% allocation. In addition, for each investor, we identify the episodes where he

allocates 0% to the stock market for multiple consecutive years and record the duration of

the longest such episode. We do this exercise twice: first for the case where decisions are

made by the model-free system and then for the case where they are made by the model-

based system. The parameter values are the same as before, namely L = T = 30, ᾱ = 0.5,

β = 30, γ = 0.97, ∆ = 0.5, µ = 0.01, σ = 0.2, and b = 0.0577.

The results confirm that the model-free system tilts investors toward non-participation.

We find that, under the model-free system, 43% of investors are not participating – in other

words, are at a 0% allocation – for at least 80% of the 30 dates from t = 1 to t = 30. By

contrast, under the model-based system, fewer than 1% of investors spend more than 80% of

the time not participating. In a similar vein, under the model-free system, 59% of investors

have a non-participation streak that is at least 10 years long; under the model-based system,
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only 7% of investors have a streak of this length. The simulated data also support the

mechanism for non-participation laid out above. We find that, under the model-free system,

long streaks of non-participation are typically preceded by a poor experienced stock market

return. The longer the non-participation streak, the more negative the prior experienced

return, on average.

4.7 Persistent investment mistakes

Many households make suboptimal financial choices; moreover, they often persist in these

poor choices for many years. Our framework can help explain this. The idea is simple: The

model-free system learns slowly; at each date, it learns primarily about the value of the

action a person is currently taking. As a result, it can take a long time to learn the optimal

course of action.

To demonstrate this quantitatively, it is natural to consider a slightly different setting

from the one we have used so far. In this new setting, there are ten risky assets and no

risk-free asset. The gross return on asset i from time t− 1 to t, Ri,t, is distributed as

logRi,t ∼ N(µi, σ
2
i ), i.i.d. over time,

and the returns on the ten assets are uncorrelated with each other. For all ten assets, σi = 0.2,

but while assets 1 through 9 have the same low µi = 0.01, asset 10 has a substantially higher

µ10 = 0.06. Analogous to the goal function in (10), each investor’s objective is to maximize

the expected sum of discounted log portfolio returns where, at each time, he can invest his

wealth in just one of the ten risky assets. The question is: At time T = 30, what fraction

of investors recognize that asset 10 is the best option, in the sense that they assign it the

highest estimated Q value among the 10 options?

We answer this question separately for the model-based system and for the model-free

system. In this section, we adjust the model-based system so that it serves as a normative

benchmark by which to judge the efficiency of the model-free system. We endow the model-

based system with some knowledge of the environment, namely that each asset’s return is

i.i.d. over time and uncorrelated with the returns of other assets – but no other information

beyond this. All investors use declining model-based learning rates equal to those in (26);

for these learning rates, consistent with the i.i.d. assumption, investors are equally weighting

the past returns on each asset.

The model-free system operates as before: all investors use constant learning rates; for
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each investor, his learning rates are drawn from a uniform distribution with mean ᾱ = 0.5

and width ∆ = 0.5, and the exploration parameter is β = 30. The remaining parameters

are the same for both systems: there are 300, 000 investors in each case; and L = 0, T = 30,

γ = 0.97, and b = 0, so that there is no generalization. Setting L = 0 means that there are no

data prior to time 0 that the model-based system can learn from; this puts the two systems

on more equal footing. In Online Appendix E, we present the full updating equations for

both systems.

We find that, in the case of the model-based system, at time T = 30, 47% of investors

recognize that asset 10 is the best option: they assign it the highest Q value among the

10 options. By contrast, for the model-free system, at time T = 30, just 20% of investors

recognize that asset 10 is the best option. Consistent with our claim above, then, the

model-free system learns slowly: since, at each time, it updates only the value of the most

recently-chosen action, it takes much longer to figure out the sensible course of action.

While our analysis is based on a setting with ten risky assets, we expect the findings

of this section to apply more generally to any situation where an investor faces a number

of possible courses of action and has to figure out which one is best. Since the model-free

system learns slowly, it takes the investor a long time to discover the best option; even after

many years, he may still be investing suboptimally.30

4.8 Parameter estimation

Throughout Section 4, we have taken a simple parameterization of our framework and shown

that it provides a qualitative and approximate quantitative match to a number of facts about

investor behavior. We now estimate the parameter values that best match the data. We

have three empirical targets: the relationship between past returns and investor beliefs about

future returns, as measured from surveys of investors; the sensitivity of allocations to beliefs,

as computed by Giglio et al. (2021); and the dependence of allocations on past returns,

as reported by Malmendier and Nagel (2011) in their analysis of experience effects. The

parameters we estimate are the mean model-based learning rate across investors ᾱMB; the

mean model-free learning rate ᾱMF ; the exploration parameter β; and most important, the

weight w on the model-based system.

We explain the estimation procedure in full in Online Appendix F and summarize it

here. We do the estimation in two steps. We first use data on investor beliefs to estimate

30See Gagnon-Bartsch, Rabin, and Schwartzstein (2021) for an alternative approach to slow learning, one
based on inattention to useful information.
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ᾱMB. We then estimate ᾱMF , β, and w by targeting the allocation-belief sensitivity and the

experience effect. We keep the remaining parameters at their benchmark values from before,

namely L = T = 30, γ = 0.97, ∆ = 0.5, µ = 0.01, σ = 0.2, and b = 0.0577.31

In the first step, we estimate the mean model-based learning rate ᾱMB by searching for

the value of this parameter that best fits the empirical relationship between investor beliefs

and past market returns. Specifically, we take monthly Gallup data from October 1996 to

November 2011 on average investor beliefs about the future one-year stock market return

and regress these beliefs on past annual stock market returns. We search for a value of ᾱMB

that, in simulated data from the model-based system, best matches the regression coefficients

from the Gallup data. We find this to be ᾱMB = 0.33.

With this value of ᾱMB in hand, we move to the second step: we search for values of ᾱMF ,

β, and w that best match two empirical targets. The first is the coefficient in a regression of

investor allocations on investor beliefs, which Giglio et al. (2021) find to be approximately

one. For given values of ᾱMF , β, and w, we can compute this coefficient in simulated data

from our framework. Our second target is the functional form in (31) with λ = 1.3, which

Malmendier and Nagel (2011) use to capture the relationship between allocations and past

returns. Intuitively, we are looking for values of ᾱMF , β, and w that minimize the distance

between unnormalized versions of the solid and the dashed lines in the six graphs in Figure

7.

We find that the parameter values that best match the allocation-belief sensitivity and

the experience effect are ᾱMF = 0.26, β = 20, and w = 0.38. In words, to match the data,

our framework requires substantial weight on both the model-free and model-based systems.

The reason is the following. As shown by the dashed lines in Figure 7, the experience effect

we are trying to capture involves both a steep initial decline in the coefficients on past

returns, but also a significant dependence on distant past experienced returns. The upper

panel of Figure 3 shows that the model-based system can capture the steep initial decline

in coefficients, but, when calibrated to do so, it cannot capture the dependence on distant

past returns. By contrast, the lower panel of Figure 3 shows that the model-free system can

capture a high dependence on distant past returns but not the initial decline. To match

both parts of the experience effect, we need to put substantial weight on both systems.

The significant weight on the model-free system also helps to explain the low sensitivity of

allocations to beliefs.

31We have repeated the estimation analysis for other values of these parameters and find that our main
result – that the data is best explained by a framework that puts substantial weight on both the model-free
and model-based systems – continues to hold.
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5 Some Extensions

We now discuss some extensions of our framework. We start with three extensions that we

have studied in detail; then, more briefly, we comment on three extensions that we leave to

future work.

Time-varying weights on the two systems. We have focused on the case where w,

the weight on the model-based system, is constant over time. A well-known hypothesis in

psychology is that w varies over time: at each moment, the brain puts more weight on the

system that it deems more reliable (Daw, Niv, and Dayan, 2005). In Online Appendix A, we

formalize this idea using an approach of Lee, Shimojo, and O’Doherty (2014) in which the

reliability of a system is measured by the absolute magnitude of its past prediction errors,

and explore its implications. We first show that, in our setting, an investor will gradually put

more weight on the model-free system over time: as the system gains experience, it becomes

more reliable and the brain assigns more control to it. This implies, for example, that the

allocations of older investors will be less sensitive to recent market returns – this is consistent

with the evidence in Malmendier and Nagel (2011) – and also less sensitive to their beliefs.

The framework also predicts that, following a large absolute stock market return, the weight

on the model-free system will go down: an extreme stock market return generates a large

absolute reward prediction error which lowers the model-free system’s perceived reliability.

Other model-free and model-based systems. The properties of the model-free Q-

learning system we have documented in this paper are likely to be robust to using alternative

model-free frameworks. The reason is that all model-free systems are similar at their core:

the individual takes an action, and based on the outcome, he updates the value of the action.

Consistent with this claim, in Online Appendix G, we replace Q-learning with SARSA, an

alternative model-free framework, and show that it leads to similar predictions.

When specifying the model-based part of our framework, we have a much wider range of

choices. In Section 2, we adopted a model-based system inspired by those used in psychology,

but others are of course possible. For example, some investors may use a model-based system

with a more contrarian flavor – one that, following a good stock market return, recommends

a lower allocation to the stock market on the grounds that it may now be overvalued. Such

a model-based system would create a new tension with the model-free system: after a good

stock market return, the model-free system will want to increase exposure to the stock market

while the model-based system will want to reduce it.

State dependence. Thus far, we have not allowed for state dependence: we consider

50



action values Q(a) rather than state-action values Q(s, a) because even this simple case has

many applications. In Online Appendix H, we examine the predictions of our framework

when we allow for state dependence – in particular, when there are two observable states and

the mean stock market return differs across them. We find that the framework continues to

exhibit the property that underlies a number of the applications in Section 4, namely that,

relative to the model-based system, the model-free system puts significantly more weight on

distant past returns.

There are three more extensions whose detailed analysis we leave to future work:

Time-varying learning rates. We have taken each investor’s learning rates to be con-

stant over time and have shown that even this simple case has many applications. Nonethe-

less, learning rates may vary over time. For example, there is evidence that they go up at

times of greater volatility (Behrens et al., 2007). Such an assumption can be incorporated

into our framework and may lead to useful new predictions – for example, about investor

behavior during crisis periods.

Alternative action spaces. Throughout the paper, we have used a standard action

space based on the fraction of wealth allocated to the stock market: at each time, an investor

can allocate 0% of his wealth to the stock market, or 10%, or 20%, and so on. One feature

of the model-free system is that it can easily accommodate alternative action spaces – for

example, one with the three possible actions: “do nothing,” “increase exposure to the stock

market by 10%,” and “decrease exposure to the stock market by 10%.” We have incorporated

this alternative action space into our framework and find that its implications are broadly

similar to those we have outlined in the paper. We leave a fuller analysis of this topic to

future work.

Inferring beliefs from the model-free system. Until now, we have associated beliefs

only with the model-based system. However, it is possible that an individual may also use

the model-free system to make inferences about beliefs. For example, when an investor is

asked for his beliefs about the stock market’s future return or risk, it is natural that he will

consult the model-based system, which will give him a direct measure of beliefs. However,

he may also be influenced by the model-free system, and if QMF (a = 1) > QMF (a = 0), so

that his model-free system assigns the stock market a higher Q value than the risk-free asset,

he may take this as a sign that the stock market has better properties, on several dimensions

– for example, both a higher expected return and lower risk. This can help explain Giglio

et al.’s (2021) finding that, when investors expect high returns in the stock market, they

simultaneously expect the market to have lower risk, contrary to the prediction of traditional

frameworks in which subjectively perceived risk and return are positively related.
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6 Conclusion

When economists try to explain human decision-making in dynamic settings, they typically

assume that people are acting “as if” they have solved a dynamic programming problem. By

contrast, psychologists and neuroscientists are increasingly embracing a different approach,

one based on model-free and model-based learning. In this paper, we import this framework

into a simple financial setting, study its properties, and use it to account for a range of

facts: facts about investor behavior, such as extrapolative demand and experience effects;

facts about beliefs, such as overreaction in beliefs and the relationship between beliefs and

stock market allocations; and facts about asset prices, such as excess volatility and return

predictability. Through the model-based system, our framework preserves a role for beliefs

in driving investor behavior and asset prices. However, through the model-free system, it

also introduces a new way of thinking about these facts, one based on reinforcement of past

actions.

The vast majority of economic frameworks take a model-based approach. Model-free

reinforcement learning, by contrast, has had a much smaller footprint in economics and

finance. The results in this paper challenge this state of affairs: they suggest that model-free

learning may be more common in economic settings than previously realized.

There are two broad directions for future research. We can apply the framework proposed

here to other economic domains. We can also incorporate richer psychological assumptions

– for example, about time-varying learning rates, time-varying weights on the two systems,

or state dependence. We expect that both of these broad directions will prove fruitful and

will shed new light on people’s choices in economic settings.
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