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1 Introduction

In this paper we provide evidence that many of the core behavioral anomalies in in-
tertemporal choice over monetary rewards – including extreme short-run impatience,
hyperbolic discounting and structural estimates of present bias – are primarily driven
by complexity rather than non-standard preferences or self-control problems.

As summarized by Cohen et al. (2020) and Ericson and Laibson (2019), decision
makers typically depart from the predictions of the exponential discounted utility model
in a number of systematic ways when asked to value time-dated payments. The most
influential of these anomalies concern the hyperbolic shape of the empirical discount
function. First, experimental subjects show evidence of extreme short-run impatience,
discounting relatively short time intervals at a very high rate. Second, people’s revealed
per-period impatience strongly decreases as the length of evaluated intervals increases.
Third, in structural estimations, the combination of extremely high short-run impatience
and decreasing impatience is often attributed to a present bias parameter, as in β − δ
models (Laibson, 1997; O’Donoghue and Rabin, 1999). Finally, decision makers show
evidence of a front-end delay effect, decreasing their impatience when earlier and later
dates are both shifted into the future by an equal delay, violating stationarity.

What produces these systematic anomalies? The most influential explanations in the
literature are motivational in nature, rooted in non-standard preferences or internal
conflicts that appear because of temporal delay in the choice problem. For instance, the
literature has proposed that such anomalies are driven by non-standard discounting
functions such as hyperbolic or quasi-hyperbolic preferences (e.g., Loewenstein and Pr-
elec, 1992; Laibson, 1997), short-term temptation (Gul and Pesendorfer, 2001), or self-
control problems formalized as multiple selves (Fudenberg and Levine, 2006). Other mo-
tivational explanations emphasize that the passage of time produces transaction costs or
risks that the rewards being valued will not be paid out (Halevy, 2008, 2015; Andreoni
and Sprenger, 2012; Chakraborty et al., 2020).

Importantly, however, intertemporal choice is not only temporal (and thus shaped by
motivational factors like preferences) – it is also complex, requiring decision makers to
engage in non-trivial cognitive information processing to integrate the inputs of a prob-
lem (e.g., payments and delays) into an output (a valuation or choice). In particular,
rational theories of intertemporal choice posit that decision makers iteratively discount:
they evaluate rewards delayed by a one-period interval by shrinking them at some rate,
repeating successively for each additional period. If precisely engaging in this cognitive
process is difficult and costly, decision makers may elect to (or be forced to) pursue less
careful approaches to valuation instead. We will refer to such substitutions from com-
plex, optimal valuation procedures to simpler alternatives as “complexity responses.”
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The theoretical literature has proposed a number of models that characterize such
simpler-than-optimal procedures, ranging from heuristics (e.g., Rubinstein, 2003; Eric-
son et al., 2015), to noisy introspection about one’s discount factor (Regenwetter et al.,
2018; Lu and Saito, 2018; He et al., 2019), to cognitive noise models in which decision
makers combine imprecise mental representations with a prior (Vieider, 2021; Gabaix
and Laibson, 2022; Gershman and Bhui, 2020). Importantly, what these simplified pro-
cedures have in common is that they tend to produce insensitivity to differences in the
length of time intervals. Heuristically speaking, in many of these models, decision mak-
ers act as if they treat different time intervals alike to some degree. Because inelasticity
of the discount function (relative to the exponential benchmark) is the characteristic
feature of hyperbolicity, models describing such simplified procedures are often capable
of generating classical anomalies such as exaggerated short-term discounting and de-
creasing impatience without appeal to preferences or self-control problems. Yet, while
there is some evidence that bounded rationality influences intertemporal decisions (see
references below), we lack a solid understanding of whether motivational or complexity-
based mechanisms are responsible for these famous empirical anomalies.

Removing scope for motivational explanations. A key idea in our paper is that we
can identify the role complexity plays in intertemporal choice anomalies by entirely
removing scope for motivational explanations while retaining much of what makes in-
tertemporal choice complex. We do this by removing actual time delay from standard
elicitations and inducing an exponential reward function instead. Applying the design
idea of Oprea (2022) to intertemporal choice, we ask experimental subjects to value
not only intertemporal payments but also “atemporal mirrors” of the same payments
– immediate, deterministic payoffs that are deliberately described in such a way as to
require the same kind of discounting and a similar degree of information processing as
the original intertemporal choice problem. Thus, in addition to asking subjects to value
a dollar amount x paid in t periods,1 we also ask subjects to value an immediate pay-
ment of x , iteratively “shrunk” t times, each time by a fixed factor, δ. Here, the number
of iterations t is a direct analog to the length of the time interval. An atemporal mirror
is, hence, simply a standard intertemporal choice in which we experimentally induce an
exponential time preference, so that anomalous deviations from exponential discount-
ing cannot be rationalized by non-standard time preferences, temptation, self-control
or risk. However, doing this retains much of the complexity of iteratively discounting

1As summarized by Cohen et al. (2020), a key discussion is whether the fungibility of money prevents
the elicitation of true time preferences. This discussion is less relevant to our paper because we are not
attempting to measure preferences. Indeed, a central conclusion of ours is that even putting fungibility
concerns aside, intertemporal choice experiments to a great extent fail to recover preferences due to the
confounding influence of complexity.
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future rewards present in the original choice problem.
By comparing the way people value delayed payments to the way they value similarly

complexly-described immediate payments, we can gauge to what degree complexity
alone is capable of producing intertemporal choice anomalies. We do not expect subjects
to precisely calculate discounted values in these atemporal mirrors any more than we
expect them to pull out a calculator to inform decisions in actual intertemporal choice.
Rather, our interest is in what heuristic or noisy procedures people substitute to instead
of precise evaluation, and whether these substitutions produce classical anomalies.

We find that hyperbolic discounting also strongly arises in the valuation of atempo-
ral mirrors, and to a similar degree as in true intertemporal choice. Subjects discount
atemporal payments more than the experimentally induced discount factor δ specifies
when payments only need to be discounted one or two times, which directly mirrors the
extreme short-run impatience that arises in intertemporal choice. At the same time, sub-
jects discount atemporal payments that need to be discounted a large number of times
considerably less strongly than they should, given the induced discount factor. Thus,
even though we experimentally induce a fixed discount factor, subjects’ revealed per-
period “impatience” strongly decreases in the number of discounting steps, replicating
the hyperbolicity widely observed in intertemporal choice experiments.

Importantly, because we measure each subject’s behavior in both atemporal mirrors
and true intertemporal choice, we can show that behavior in the former predicts behavior
in the latter. We find correlations across the two choice problems of 0.34, suggesting that
behaviors in the two settings are likely to a great extent driven by a common behavioral
mechanism – which cannot involve temporal motivations that are absent in atemporal
mirrors.

Measuring and manipulating complexity responses. To provide further evidence on
the link between complexity and the anomalies, we study standard intertemporal de-
cisions and directly trace behavioral signatures of complexity responses (evidence that
subjects are using simpler-than-optimal procedures). We then examine whether these
signatures predict the severity of anomalies. We measure two such signatures.

First, to the degree decision makers are aware that they have substituted to a simpler-
than-optimal procedure, we expect them to express less confidence in the quality of their
choices. Thus, adapting the methodology of Enke and Graeber (2022) to an intertempo-
ral choice context, we elicit subjects’ cognitive uncertainty about each decision, asking
them how certain they are (in percentage terms) that their stated range of valuations
for a delayed payment actually contains their true valuation for that payment. Second,
many recent complexity-inspired explanations root intertemporal choice anomalies in
decision or cognitive noise. To the degree decision makers use such noisy decision proce-
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dures, we expect them to make inconsistent, noisy decisions. To measure this, we gather
data on choice inconsistencies in repeated instances of the same decision problems.

Both cognitive uncertainty and choice inconsistency are strongly correlated with
short-run impatience and hyperbolic discounting. Subjects who are more inconsistent
or more cognitively uncertain are less patient over short horizons but more patient over
long horizons – which matches exactly the results from the atemporal mirror experi-
ments in which decisions are too “impatient” over few iterations but too “patient” over
many ones. These signatures of complexity responses even predict the strength of anoma-
lies within-subject: a given subject exhibits more pronounced hyperbolicity in precisely
those decisions in which s/he expresses high cognitive uncertainty. Overall, our data sug-
gest that 85% of decreasing impatience in our setting is driven by complexity responses.

To provide causal evidence that cognitive uncertainty, choice inconsistency and in-
tertemporal choice anomalies are indeed jointly sensitive to complexity, we also study
experimental treatments that attempt to increase the cognitive costs of evaluating re-
wards and delays. We find that increasing complexity in this way leads to a joint increase
in cognitive uncertainty, choice inconsistency and anomalies, again confirming the link
between complexity, the use of imperfect decision procedures and anomalies.

Complexity and estimates of present bias. Perhaps the most commonly-discussed ex-
planation for hyperbolic discounting in the literature is present bias, as in the quasi-
hyperbolic β−δmodel. Present bias is a tendency to discontinuously overweight rewards
received immediately relative to rewards received with any delay. Structural estimates
of present bias are usually identified from the hyperbolic shape of the empirical discount
function. Given our finding that hyperbolicity is largely an outgrowth of complexity, a
natural question is to what degree estimates of β < 1 are also a result of complexity
responses.

In the atemporal mirrors experiment, where there is no true passage of time and
exponential discounting is experimentally induced, we structurally estimate β̂ = 0.85 –
an estimate that would conventionally be interpreted as strong evidence of present bias.
Similarly, in our intertemporal choice experiments, we find that subject-level estimates
of present bias are strongly correlated with cognitive uncertainty and choice inconsis-
tencies, even though from the perspective of standard preferences-based models there is
no reason to expect such a correlation. These results are robust to accounting for utility
curvature. This evidence suggests that structural estimates of β < 1 are in large part
driven by complexity responses.

Yet, as is well-understood in the literature (Cohen et al., 2020), structural estimates
of β only measure “true” present bias under strong structural assumptions. More directly,
causal estimates of present bias can be derived using front-end delay designs, in which
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subjects violate stationarity by acting in more patient ways when both earlier and later
payments are moved into the future to the same degree. In our experiments, we con-
sistently find these front-end delay effects. Yet, we never find any indication that these
effects are driven by complexity: (i) cognitive uncertainty is uncorrelated with these
effects; (ii) the complexity manipulation does not amplify them; and (iii) no front-end
delay effects appear in the atemporal mirrors. Thus, causal, front-end delay estimates of
present bias do not appear to be confounded by complexity, but structural estimates that
rely on the hyperbolic shape of discounting severely inflate the degree of true present
bias.

What accounts for this discrepancy? Intuitively, it is a consequence of the fact that
the empirical discount function is substantially more hyperbolic than the magnitude
of non-stationarities in front-end delay designs would imply (see Cohen et al., 2020).
This suggests that, in tradeoffs over money, “true” present bias (stationarity violations)
is only a small part of the reason why researchers estimate large degrees of present
bias in structural exercises.2 Instead, our evidence suggests that structural estimates of
present bias are severely inflated due to model misspecification from omiting complexity
responses: estimated present bias picks up both true present bias and complexity-driven
hyperbolicity.

Mechanism: Complexity and insensitivity. The evidence on front-end delay effects
strongly suggests that stationarity violations – while present – are unrelated to complex-
ity and explain only a fraction of the hyperbolicity of discounting. This raises the ques-
tion: through what other proximal mechanism does complexity generate hyperbolicity?
Motivated by the extant literature (Read, 2001), we investigate the idea that complexity
generates a generic insensitivity to the length of time intervals, which produces an implied
per-period discount rate that decreases as the length of intervals increases. This is akin
to complexity-driven insensitivities that have been observed in other domains (Abeler
and Jäger, 2015; Enke and Graeber, 2022; Oprea, 2022).

Evidence of insensitivity to the length of time intervals is usually gathered using
subadditivity designs. These involve a particularly stark documentation of insensitivity
in which subjects violate transitivity by making less patient choices when a single time
interval is decomposed into two separate intervals. In our data, we consistently find
that complexity is linked to such subadditivity effects: (i) they are are strongly corre-
lated with cognitive uncertainty; (ii) they increase in the complexity manipulation; and
(iii) they arise with equal strength in the atemporal mirrors. Across datasets, we estimate
that 100% of subadditivity effects reflect complexity responses. We conclude that most

2Though, as we emphasize below, “true” present bias as measured by front-end delay effects is sub-
stantially larger in exercises measures primary rewards rather than financial flows.
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of hyperbolic discounting in our context is a consequence of complexity-driven insensi-
tivity to variation across time intervals. This is reminiscent of the mechanism described
by most theoretical models of complexity-driven intertemporal choice anomalies.

Summary. Taken together, over a number of distinct empirical approaches – includ-
ing atemporal mirrors, objective decision noise, cognitive uncertainty and experimental
complexity manipulations – we document the same story. Many famous anomalies in
intertemporal decisions over money occur because people respond to the complexity of
intertemporal choice by using imperfect decision procedures that are insufficiently sen-
sitive to variation in time intervals. This inelasticity, in turn, gives rise to extreme short-
run impatience, hyperbolicity and subadditivity effects, and severely inflates structural
estimates of present bias. These results do not suggest that non-standard time prefer-
ences do not exist – our results show that complexity effects are distinct from causally-
identified present bias (stationarity violations). However, our results do suggest that, in
experimental contexts like ours, complexity is the main source of hyperbolic discount-
ing and structural estimates of present bias, both of which are often mis-attributed to
non-standard preferences.

Our findings have several implications. First, they have welfare and policy implica-
tions: to the degree anomalies are complexity-driven mistakes rather than expressions
of underlying motivations, models of non-standard discounting behavior, though no less
descriptively valuable, lose much of their normative bite. Second, our results suggest
that we can likely improve prediction, and design better policy by modeling intertem-
poral choice as dependent upon complexity, rather than fixed discount functions. For
instance, our results illuminate how complexity responses confound the structural esti-
mation of present bias, one of the central objects measured in behavioral economics. This
suggests that in some of those field contexts in which present bias has been identified
through model estimations, there may be scope for “improving” behavior by reducing
complexity. Third, our results shed light on the puzzle that demand for commitment is
typically considerably weaker than models of present bias would imply (Laibson, 2015)
– the reason is that part of estimated present bias reflects complexity responses rather
than temptation or a desire for immediate gratification. Fourth, results like ours suggest
that traditional methods of recovering preferences, which often rely heavily on the idea
that preferences are transparently revealed in choice, may produce misleading results
because choice often primarily reflects a complexity response rather than a clean rev-
elation of preferences. This speaks to a widely-known puzzle in lab-to-field studies, in
which correlations between lab measures of time preferences and ecological behaviors
such as savings behavior – while often statistically significant – are typically quantita-
tively extremely small (e.g., Chabris et al., 2008; Falk et al., 2018).
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Our paper is organized as follows. In Section 2 we review common anomalies in
intertemporal choice, explanations offered by the literature and discuss our empirical
strategies for separating them. Section 3 presents our experimental design. Sections 4–6
present the results. Section 7 discusses related literature and concludes.

2 Conceptual Background and Empirical Approaches

2.1 Anomalies in Intertemporal Choice

Consider a simple intertemporal choice problem D = (x1, t1; x2, t2) in which a decision
maker must decide what x1 paid at t1 (e.g., now) makes her indifferent to earning x2

paid at t2 > t1 (e.g., in two months). Define ∆t ≡ t2− t1 (all time units are in months).
In the exponential discounting model (the standard benchmark in the economics lit-
erature), the decision maker discounts rewards exponentially with an annual discount
factor δ = 1− γ, where γ is approximately the constant discount rate. Throughout the
paper we treat γ not as a preference parameter but rather as a descriptive empirical
measurement of the per-period impatience that is implicit in choice. We then have:

(1− γ)t1/12 x1 = (1− γ)t2/12 x2 ⇔ γ= 1−
�

x1

x2

�12/∆t

= 1− e−12·RRR/∆t , (1)

where RRR/∆t = ln(x2/x1)/∆t is the “interval-adjusted required rate of return” that
the decision maker reveals through her choices. In the exponential model, the interval-
adjusted RRR – and, hence, also γ – are constant, absent confounding factors. In what
follows, we refer to the empirical measurement of γ as “implied annual impatience,”
which is an approximation of the average annual discount rate implied by a decision.

Since Thaler (1981), behavioral economists have gathered significant evidence that
decision makers behave in ways that are incompatible with the exponential discounting
model when valuing financial flows (see Cohen et al. (2020) and Ericson and Laibson
(2019) for reviews). Many of the core anomalies boil down to the observation that per-
period impatience varies systematically as a function of the length of the time interval,
∆t, and in particular that empirically observed discounting has a hyperbolic shape.3

Extreme short-run impatience. Many studies show that decision makers tend to dis-
count relatively short intervals at such an extremely steep rate that a constant discount
rate would imply implausible and empirically counterfactual decisions over longer inter-

3There are other choice anomalies that relate not to dates, but instead to payoffs – most notably
magnitude effects and gain-loss asymmetries (Cohen et al., 2020). Our experiments concern only the
classic anomalies related to variation in time.
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vals.⁴

Decreasing impatience. Extreme short-run impatience is a component of a more gen-
eral tendency for decision makers’ revealed per-period impatience to decrease as the
interval ∆t becomes longer.

Sub-unitary estimates of β . It is common in the literature to summarize the hyper-
bolic pattern of discounting described above using structural estimates of the quasi-
hyperbolic β−δmodel (Laibson, 1997). This model postulates that decision makers put
weight 1 on immediately paid (t = 0) rewards but weight βδt on all delayed (t > 0)
rewards. Structural estimates tend to find values of β significantly lower than 1 in most
datasets, which is routinely interpreted as evidence of present bias. However, this ev-
idence is indirect in the sense that it is typically identified from the hyperbolicity of
discounting per se. By contrast, as discussed below, present bias can alternatively be
estimated causally using front-end delay designs (or revising-earlier-choices designs as
in Augenblick et al. (2015)).

Wewill call this triplet of phenomena the classical “hyperbolic pattern.” It is generally
thought to be a consequence of one (or both) of two possible behavioral tendencies. The
first is non-stationary discounting: holding the length of an interval ∆t fixed, people
might discount at different rates depending on the earlier date, t1. Non-stationarity is
typically measured using “front-end delay” designs, which produce some direct evidence
of non-stationarity:

Front-end delay effects. Shifting the date of both the earlier and the later payment
forward by a fixed delay d often causes a decrease in impatience. This is in violation
of exponential discounting, which prescribes that the starting date (t1) does not matter
for the average per-period discount rate γ. Front-end delay designs in which the earlier
date is the present (i.e. t1 = 0) are a direct way of measuring “present bias” – a form
of non-stationarity in which people put a special premium on immediately-paid rewards.

A second possible driver of the hyperbolic pattern is that people might be partially
insensitive to the length of a time interval, producing a decreasing instead of a constant
per-period discount rate. This insensitivity is conventionally measured using “subaddi-

⁴This tendency is sometimes confused with “present bias” in part because many early studies exclu-
sively featured problems in which the sooner payoff date was immediate (i.e. t1 = 0). More recent evi-
dence (e.g., Kable and Glimcher, 2010) shows that, even when t1 > 0, decision makers exhibit short-run
impatience that is so pronounced that a constant discount factor would imply implausible and empirically
counterfactual medium-run discounting behavior. See our discussion in Sections 5 and 6.
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tivity” designs that rule out non-stationarity by comparing how people value nested time
delays:

Subadditivity. There is robust evidence that decision makers violate transitivity by
discounting composite time intervals of the form (t1, t3) less than they dicount joint de-
cisions over sub-intervals (t1, t2) and (t2, t3), with t1 < t2 < t3.⁵ Because these choice
sequences span the exact same dates this behavior reflects an insensitivity to time inter-
vals that cannot be attributed to non-stationarity.

2.2 Temporal Motivations and Complexity

A number of explanations have been offered for these deviations from the exponential
model. We group these into two broad classes:motivational explanations that are rooted
in the actual passage of time, and complexity explanations that are instead rooted in the
costs and difficulties of reasoning about relative intertemporal rewards.

By far the dominant class of explanations offered by the literature are motivational
in nature: explanations rooted in preferences or internal conflicts that arise due to the
fact that intertemporal choices involve the elapse of time. One category is preference-
based explanations which argue that people simply do not have exponential, dynami-
cally consistent time preferences, leading to non-exponential discounting behavior. This
includes, for instance, hyperbolic and quasi-hyperbolic preference models (e.g., Loewen-
stein and Prelec, 1992; Laibson, 1997; O’Donoghue and Rabin, 1999). Other authors
have proposed that people have, in effect, “multiple selves” with divergent preferences at
different dates, strategically vying for control (Fudenberg and Levine, 2006). Another
set of models posits temptation effects (Gul and Pesendorfer, 2001). A final class of
motivational explanations emphasizes how transaction costs (of collecting delayed pay-
ments) and / or the inherent riskiness of the future induce decision makers to behave in
such a way as to produce anomalies (e.g., Halevy, 2008; Andreoni and Sprenger, 2012;
Chakraborty et al., 2020).

In contrast to this first class, a second class of explanations argues that anomalies
arise because intertemporal decision making is inherently complex: it requires poten-
tially costly cognitive operations. In order to properly discount a delayed payment in
the process of valuing it, an exponential decision maker must (consciously or uncon-
sciously) (i) introspect or calculate her discount factor, δ, and then (ii) reason recursively,
discounting value by δ at each step of iteration. Both processes require potentially sig-

⁵ Formally, denote by ai, j the indifference point for the tradeoff over interval (t i , t j). Then, subaddi-
tivity means that there is less discounting (more patient indifference values) over the single long interval:
a1,3 > a1,2a2,3, or, equivalently, γ(a1,3)> γ(a1,2a2,3).
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nificant information processing, which is likely to be costly for decision makers (such
procedural costs are what the term “complexity” means, e.g., in computer science).

If the procedural costs of precise evaluation are sufficiently large relative to available
cognitive resources, decision makers may substitute to less costly, imprecise or heuristic
methods of valuation instead. Throughout the paper, wewill refer to this causal sequence
as a “complexity response”: rational choice is complex and therefore costly, creating
an incentive for the decision maker to use a simpler-than-rational noisy or heuristic
procedure to guide her choices instead.

A small-but-growing theoretical literature has shown that many plausibly simpler-
than-rational evaluation procedures are capable of generating classical intertemporal
choice anomalies. Each of these complexity-inspired accounts effectively describes a dif-
ferent imperfect or imprecise valuation procedure that decision makers might substitute
to in lieu of precise evaluation. For instance, Rubinstein (2003), Ericson et al. (2015)
and Read et al. (2013) describe heuristic procedures that avoid iterative evaluation alto-
gether. Other recent complexity-inspired papers postulate that people do engage in itera-
tive reasoning, but reduce the costs of doing so by reasoning imprecisely. This broad idea
has been modeled in several different ways, including noisy introspection about one’s
discount factor (Regenwetter et al., 2018; Lu and Saito, 2018; He et al., 2019), noisy
time perception (Brocas et al., 2018; Zauberman et al., 2009) and Bayesian cognitive
noise models in which decision makers combine a noisy mental representation of the
problem with a prior (Gabaix and Laibson, 2022; Vieider, 2021; Gershman and Bhui,
2020). What most of these accounts have in common is that they describe decision-
making procedures that are excessively insensitive to the parameters of the decision
problem (e.g., the length of a time interval) relative to the exponential model. As dis-
cussed above, this kind of insensitivity can generate the hyperbolic pattern: excessive
short-term discounting and decreasing impatience.

Our goal is to empirically separate these two broad classes of explanations for in-
tertemporal choice anomalies. We propose two strategies for doing this. An advantage
of both of these strategies is that neither relies on a specific model of which noisy or
heuristic procedures people resort to when they find a problem complex.

2.2.1 Removing Temporal Motivations

A key observation motivating our study is that (unlike the motivational explanations de-
scribed above) the complexity-based explanations do not rely in any special way on the
actual elapse of time. They instead rely on the idea that intertemporal choice problems
require decision makers to conduct intensive information processing. Because they do
not depend on time, these sorts of explanations may also generate anomalies in decision

10



problems that involve no actual temporal delay, but that require a structurally similar
(and thus similarly complex) type of reasoning.

Building on this observation, we propose a method for separating the two classes of
explanations that has the virtue that it doesn’t require us to articulate any specific model
of complexity response. For any intertemporal choice problem D = (x1, t1; x2, t2), we
can construct an immediately paid “atemporal mirror” MD of that same problem that
replaces payment dates with a sequence of “steps” of payoff discounting. In each step
of discounting, the payoff from the previous step is multiplied by an exogenously pro-
vided and known fixed factor δ < 1. Thus, an atemporal mirror of D pays a determin-
istic amount δt1 x1 or δt2 x2 immediately. Instead of, e.g., valuing a payoff “$50 in two
months,” a decision maker evaluating a mirror is asked to value a payoff “$50 shrunk by
δ two times.” An atemporal mirror is therefore nothing more or less than an immediate
dollar payment that has been deliberately described in such a way as to require a similar
kind of information processing as is required in intertemporal choice.⁶

Because atemporal mirrors involve no actual time delays, anomalies in their evalu-
ation cannot be driven by any of the motivational explanations reviewed above. For in-
stance, they cannot be driven by non-exponential time preferences: an atemporal mirror
induces exponential preferences. Similarly, there is no scope for multiple selves, temp-
tation effects or “implicit risk” to generate anomalies. However, atemporal mirrors do
maintain much of the complexity of intertemporal choice: under exponential discounted
utility theory, the cognitive act required to properly value a mirror is formally highly
similar to the cognitive act required to precisely discount a future payment. As such, the
suite of simpler-than-optimal decision procedures – ranging from heuristics to different
types of noise – remain available to distort choice.⁷

Our strategy is to first compare the way decision makers evaluate a set of intertempo-
ral choice problems to the way they evaluate atemporal mirrors of those same problems.
To whatever extent the same anomalies arise in the evaluation of mirrors as in the eval-
uation of intertemporal choice, we have evidence against motivational explanations and
evidence in favor of complexity explanations. Second, we correlate the magnitude of
anomalies in the two types of problems across subjects to verify that anomalies in the
two cases are driven by a related behavioral mechanism.

⁶This empirical strategy is similar to that used in Oprea (2022), which compares valuations of lotteries
to valuations of “deterministic mirrors” of lotteries which contain no risk.

⁷If anything, the information processing required to value atemporal mirrors might be lower than in
true intertemporal choice. First, people might have non-linear utility, which does not matter for a choice
between two atemporal mirrors which include no scope for risk. Second, in intertemporal decisions people
may not have access to their own discount factor, which the atemporal mirrors transparently provide.
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2.2.2 Linking Anomalies to Signatures of Complexity Responses

A second, and complementary approach to removing temporal motivations is to directly
measure auxiliary evidence of complexity responses in traditional intertemporal choice,
and study whether this evidence predicts the severity of anomalies. Our strategy relies
on the observation that complexity-inspired intertemporal choice theories describe noisy
and / or heuristic decision procedures that serve as proximate mechanisms for classical
anomalies. These kinds of complexity responses often produce auxiliary signatures that
are identifiable in the data. We measure these signatures and link them to the anomalies.

The literature has proposed two empirical indicators that a decision was made using
a heuristic or noisy procedure: self-reported cognitive uncertainty and choice inconsis-
tencies. First, we ask subjects how likely it is (in percentage terms) that their choice
actually complies with their true tastes and preferences. This type of simple, unincen-
tivized self-report about the optimality of choice has been shown to be highly predictive
of anomalous behaviors in several other choice settings (Enke and Graeber, 2022; Arts et
al., 2020), in no small part because people often appear to have some awareness when
they are using imperfectly rational procedures. Second, we look for direct evidence of
inconsistent, noisy decision-making, another indication of the use of an imperfectly ra-
tional decision procedure. Following the literature (e.g. Agranov and Ortoleva, 2017,
2020; Agranov et al., 2020; Khaw et al., 2021), we classify a decision as deriving from
a noisy procedure if it is different from other choices made in repeated elicitations of an
identical decision problem.

Our empirical strategy is to study to what degree one or both of these behavioral sig-
natures of complexity responses predict the incidence and severity of anomalies. These
kinds of correlations are clearly consistent with complexity-based explanations, but are
not implied in any obvious way by preference-based (or other motivational) explana-
tions. Thus, to the degree we find that these signatures are related to anomalies, we
have evidence suggesting that the anomalies are outgrowths of complexity.

An attractive feature of our multi-pronged research design is that it relies on two
essentially orthogonal empirical approaches with different strengths and weaknesses:
(i) stripping away time and inducing exponential preferences while maintaining a very
similar degree of complexity and (ii) directly measuring signatures of complexity re-
sponses in standard intertemporal problems. To the degree the approaches identify the
same anomalies as being complexity-driven, we will have encouraging converging evi-
dence.
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Sessions Description Subjects

Delay & 18 tasks under Mirror & exactly repeated under Delay 500
Mirror (order of treatments randomized)

Delay-M 12 delay tasks with elicitations of cognitive uncertainty 645and choice inconsistencies

Voucher-M 12 delay tasks with UberEats vouchers and elicitations 500of cognitive uncertainty and choice inconsistencies

Table 1: Overview of main experiments.

3 Experimental Design

3.1 Basic Setup

Table 1 provides an overview of the experimental design. Following standard methods
used in the literature, the core tasks in our experiments are multiple price lists that ask
subjects to evaluate a payment of x2 at a time t2 in terms of dollars paid at an earlier
date t1 < t2. An example of the subject’s decision screen is shown in Appendix Figure 8.
In each list, Option A is kept identical in every row, paying x2 at date t2. By contrast,
Option B pays an amount x1 that declines montonotically by $2 in each row (ranging
between x2 and $2), at date t1. Non-negative discounting entails that subjects choose
A in early rows of the list (or, with extreme preferences, never) and switch to B at some
later row (we enforce single switching). The switching point between earlier and later
payment yields a direct measure of the RRR and thereby implied annual impatience, γ.

We refer to these choice problems as the Delay treatment. In most cases we random-
ize (at the subject-list level) the delayed payment x2 ∈ {$40,$42, . . . $52}. The experi-
mental design includes three main types of price lists. First, “Now Lists,” in which t1 = 0

and t2 varies across 1/4, 1, 2, 12, 24, 36, 48 and 84 months. Second, “Later Lists,” which
are identical to Now Lists except that the earlier payment is slightly delayed: t1 = 1 or
t1 = 1/4 months. Finally, “Subadditivity/Front-End Delay (SA/FED) Lists”, in which for
some horizon T we assign subjects lists (t1=0, t2 = T/2), (t1=T/2, t2 = T) and (t1=0,
t2 = T), maintaining a consistent x2 across the three lists. We randomly assign T across
subjects to be either 8 or 12. Dates t1, t2 represent months. Lists from each of these
categories are included in every treatment, for every subject and randomly ordered at
the subject level. Now and Later lists are used primarily to study the anomalies of ex-
treme short-run discounting, decreasing impatience / hyperbolicity and sub-unitary β .
SA/FED Lists are used to measure subadditivity and front-end delay effects.
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3.2 Removing Temporal Motivations

Our first variation on this standard choice setting is to study companion problems in
which we pay subjects a iteratively discounted version of the stated payoff immediately.
In these tasks, discounting occurs though a known, exogenous discount factor, trans-
forming A and B into “atemporal mirrors” of standard intertemporal choice tasks. This
is framed to subjects as “shrinking” a payment t times. Each time a payment is “shrunk,”
it falls to δ < 1 of its previous value, but a subject must reason through the consequence
of this discounting in order to properly value it. The fact that atemporal mirrors are paid
immediately is repeatedly emphasized to subjects in the instructions.

A choice list from treatment Mirror is displayed in Appendix Figure 8. Each list asks
subjects an exactly analogous sequence of binary choice questions as in the correspond-
ing list from the Delay treatment. Option A (kept identical in each row of the list) is a
dollar payment, paid out immediately but iteratively discounted some number of times.
Option B is a dollar payment that involves strictly fewer iterations, and often none, which
mimics an immediate or earlier payment. For example, in one row of a list, subjects are
asked to choose between “Option A: $42 shrunk 12 times” and “Option B: $2”. We again
elicit a standard switching interval to calculate the implied “annual impatience”.

The mirrors we implement include a single step of discounting for each month of
discounting in the Delay problem it mirrors. Throughout the experiment, we set the
per-period δ = 0.96 (based on actual estimates of the discount factor δ from the in-
tertemporal choices made in other sessions of the design, discussed below).

Every subject participated in both Delay and Mirror in a random order. The upside
of this within-subjects design is that it allows us to correlate behavior in the two types
of problems across subjects. When we are not interested in correlating behavior across
treatments, we take care to rule out contamination effects by only analyzing decisions
from the treatment that a subject encountered first (the results are very similar when
we also include the data from the second-assigned treatment, see Appendix Table 7).

Because the treatments were designed to be compared to one another, we took great
pains to use an identical interface and identical numbers. However, we were also careful
to strongly differentiate the two treatments from one another using clear instructions.
Importantly, to minimize cross-treatment contagion, subjects first assigned toMirror did
not know they would later be making intertemporal choices, and vice versa.

TheMirror treatment is incentivized using real payments, but the Delay treatment is
a purely hypothetical elicitation. This was unavoidable because our motivating questions
in Delay require us to study choices regarding multi-year delays, which are infeasible to
implement using real incentive schemes. We expect this design choice to have little ef-
fect on our Delay results, as we discuss in Section 3.4 below. Still, to whatever degree
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hypothetical payments lead to, e.g., less careful decision making in Delay than inMirror,
we should expect this to work against the complexity hypothesis we are testing when
we contrast the two treatments – we would expect hypotheticals, if anything, to exag-
gerate anomalies in unincentivized Delay observations relative to incentivized Mirror
observations. We view this, therefore, as a conservative feature of our design.

3.3 Measuring Evidence of Noisy / Heuristic Behavior

As motivated in Section 2.2, in other treatments we gather auxiliary evidence that sub-
jects are responding to the complexity of intertemporal choice by using noisy or heuristic
decision procedures. To do this, we implement treatments Delay-M and Voucher-M. In
both of these treatments, we measure the following objects.

Cognitive Uncertainty. Adapting the methodology from Enke and Graeber (2022),
after each choice list, we measure cognitive uncertainty (CU) as the subject’s subjective
probabilistic belief that their true valuation of the later payment is actually contained in
their stated switching interval:

Your choices on the previous screen indicate that you value $x2 in t2 somewhere
between $a and $b in t1. How certain are you that you actually value $x2 in
t2 somewhere between $a and $b in t1?

Participants answer this question by selecting a radio button between 0% and 100%, in
steps of 5%, see Appendix Figure 9. We interpret this question as measuring the partic-
ipant’s awareness that their decision procedure is noisy or heuristic.⁸ We are agnostic
about what exact sources of complexity in the decision problem cause subjects to doubt
their decisions. The measure is not incentivized. We, again, view this as a conservative
feature of our design: if subjects expend mental effort in the intertemporal choices but
not in the CU question, then our results will make the links between CU and intertem-
poral choice anomalies look smaller than they actually are.

Choice inconsistencies. A standard way of measuring the noisiness of subjects’ deci-
sion procedure is choice inconsistency in repetitions of the same choice problem. In our
study, each subject completes two randomly selected choice lists twice. We generate a
binary indicator that equals one if the subject’s decisions on the two repeated trials are

⁸We ensure that subjects do not misunderstand the question as referring to external uncertainty that
they may not actually receive the reward. To this effect, our experiments include a comprehension check
question that directly asks participants to indicate whether the CU elicitation question asks about (i) the
subject’s subjective probability of actually receiving the money or (ii) their certainty about their own
valuation, given that they know they will receive the money with certainty.

15



different from each other. We verify that our results continue to hold if we instead com-
pute the absolute difference between the two decisions as our measure of inconsistency.

We collected these two pieces of data in two different treatments. In Delay-M we
again use hypothetical monetary payments, which allows us to study multi-year delays.
However, we pair this with a second incentivized treatment to show that our findings are
robust to the inclusion of incentives. The Voucher-M treatment is identical to the Delay
treatments in most respects, except (i) that we actually pay subjects for their choices
using UberEats food delivery vouchers⁹ and (ii) we do not study delays of more than
one year (for feasibility reasons). In Voucher-M, payments are denominated in UberEats
vouchers usable starting at date t1 or t2 ≤ 12, respectively; these vouchers are valid for a
period of only seven days from the starting date, which minimizes fungibility concerns.
Subjects again complete multiple price lists, except that all payments refer to UberEats
vouchers (of value between $40 and $50).

Participants’ vouchers were directly credited to their personal UberEats accounts
within 10 hours of completion of the study, such that subjects did not have to actively
claim the voucher. The vouchers were always visible in their accounts, they could just
not be used before the validity period. Because participants could always view vouch-
ers in their account within a few hours of the study regardless of the precise validity
period, there is no differential payment risk across vouchers with different time delays.
Participants received automatic reminders 24 hours before a voucher became valid and
24 hours before it expired.

3.4 Discussion of Implementation

Our experimental design includes two characteristics that merit comment in light of com-
mon discussions in the literature. First, our Delay and Delay-M treatments both feature
hypothetical payments – a design decision that allows us to elicit choices over multi-year
delays that would be difficult to assess using an incentivized design. There are strong
reasons to believe that this is a benign design choice. Reviewing the literature, Cohen
et al. (2020) conclude “there is little evidence of systematic differences between RRR
in incentivized and unincentivized experiments.” Nonetheless, we use the Voucher-M
treatment to probe robustness to incentivizing elicitations.

Second, our experiments (like the bulk of the literature that motivates the anomalies)
involve delays in monetary payments rather than in consumption. A common concern
is that these experiments may not elicit true time preferences because money (unlike

⁹UberEats is a takeout delivery service that can be used for a wide array of restaurants. It is widely
available throughout the United States (Curry, 2021).
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consumption) is fungible.1⁰ This concern is less relevant for our purposes than in much
of the literature because we are not attempting to measure true time preferences – we
are only interested in measuring and explaining the kind of discounting behavior that
is often documented even in money experiments. Indeed, a central conclusion of ours
is that even putting fungibility concerns aside, intertemporal choice experiments to a
great extent fail to recover preferences due to the confounding influence of complexity.

3.5 Procedures

All experiments were conducted on Prolific. Online Appendix D contains details on ex-
perimental instructions, visual display and screening questions used.

Subjects in theMirror & Delay sessions were paid a $6 base payment and had a 20%
chance of being paid a bonus based on their choice from a randomly selected list and row
of Mirror (or from a separate risk elicitation we included in our sessions). In Delay-M,
subjects earned a flat $4.50 payment. In Voucher-M, subjects received a $4 base payment
and voucher payments from a randomly selected list and row with 25% chance.

4 Complexity and Hyperbolic Discounting

4.1 Evidence from Atemporal Mirrors

We begin by examining whether hyperbolic discounting appears inMirror, and whether
it predicts the hyperbolicity that appears in Delay. In analyzing this data, it is important
to emphasize that there are at best weak reasons to expect similar “patience” levels in
the two treatments. InMirror, subjects face an induced discount factor of 0.96; in Delay,
choices depend on subjects’ individual discount factors, which may differ from 0.96.
Our focus will therefore be on comparing the severity of anomalies, which are derived by
comparing behaviors across different decision problems, rather than comparing patience
levels.

Figure 1 provides a raw overview of the data by plotting, for both the Delay and
Mirror treatments, the average switching point (expressed as a percentage of the “later”
payment, x2) as a function of the time interval or the number of discounting iterations.11
Recall that in an exponential discounting framework with linear utility, these normalized
switching points correspond to x1

x2
= δ∆t . For the Mirror treatment, we overlay the indif-

ference point that a payoff-maximizing subject would choose given the induced “monthly

1⁰This view is not universal in the literature. An alternative line of argument holds that subjects nar-
rowly bracket their choices and treat monetary amounts in experiments as proxies for utils (Halevy, 2014;
Andreoni et al., 2018; Epper et al., 2020).

11We approximate switching points by computing the midpoint of the switching interval.
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Figure 1: Average normalized indifference points by time interval (Delay) or number of iterations
(Mirror). Top panels show Delay treatment (4,572 decisions from 254 participants). Bottom
panels showMirror treatment (4,428 decisions from 246 participants). In theMirror panels, the
dashed line represents payoff-maximizing decisions. Sample splits according to whether the ear-
lier payment occurs today/requires no discounting. The time interval in months and the number
of iterations are rounded to the nearest multiple of three. Whiskers show standard error bars,
computed based on clustering at the subject level.

discount factor” (δ = 0.96). The left panels plot data from Now Lists (the earlier date is
immediate in Delay and paid with no discounting in Mirror); the right panels are from
Later Lists (the earlier date is in one month or after one step of discounting).

Figure 2 transforms this data in a straightforward way by computing implied annual
impatience, γ̂= 1− (x1/x2)12/∆t = 1− e−RRR·12/∆t , see eq. (1).12 For ease of illustration,

12A significant practical advantage to expressing decisions in terms of implied impatience γ rather than
the interval-adjusted RRR is that the latter by construction produces large outliers that render visualiza-
tions and econometric analyses challenging.
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Figure 2: Average implied annual impatience γ̂ by time interval (treatment Delay; 4,572 decisions
from 254 participants) or number of iterations (treatment Mirror; 4,428 decisions from 246
participants). In the Mirror panel, the dashed line represents payoff-maximizing decisions. The
time interval in months and the number of iterations are rounded to the nearest multiple of three.
Whiskers show standard error bars, computed based on clustering at the subject level.

we combine Now Lists and Later Lists; the figures look very similar if separated.

Short-run impatience. It is clear from these figures that subjects in Delay show ex-
tremely high impatience over short horizons, both when the earlier payoff is immediate
and when it is delayed by one month. Figure 2 shows that subjects discount very short
horizons such as one month at an annualized rate of about 0.6.

Our first main finding is that subjects also show extreme discounting over the first
few steps of discounting in Mirror, even though there is no delay in these problems –
and even though subjects are incentivized to maximize an exponential discount func-
tion. Importantly, in Mirror (unlike in Delay) we can identify this behavior as a mistake:
subjects discount payments made in t1 = 1 or t1 = 2 to a far greater degree than their
true (experimentally induced) discount rate warrants.

Decreasing impatience. A second classical pattern visible in Figure 1 is that indiffer-
ence payments are a highly compressed function of the time interval. Figure 2 shows
that this compression implies that implied annual impatience is sharply and generally
monotonically decreasing in the length of the interval. This pattern of decreasing im-
patience is a primary motivation for models of non-exponential time preferences like
hyperbolic or quasi-hyperbolic discounting.

Our second main finding is that in the atemporal mirrors we similarly observe that
indifference payments in Figure 1 are too compressed relative to the experimentally
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induced discount factor. As shown in Figure 2, this compression implies a strong decrease
in implied annual impatience as the number of discounting steps increases. Once again
the figure highlights that this is financially suboptimal behavior: subjects’ average switch
points in Figure 1 are located above the normative benchmark for few iterations but
below it for many iterations.

To compare magnitudes across treatments, Appendix Table 6 presents regression
evidence. In Delay, for each additional year, implied annual impatience decreases by
5.6 percentage points (pp). In Mirror, that effect is 4.8 pp, meaning that decreasing
impatience in Mirror is 86% as strong as in Delay.

Result 1. Subjects exhibit extreme short-run impatience and decreasing impatience when
evaluating atemporal mirrors just as they do when evaluating delays. For mirrors, these
are clear misvaluations.

Linkage between Atemporal and Intertemporal Decisions. Next, we show that the
appearance of similar anomalies inMirror and Delay are not coincidental but are tightly
linked at the individual level. To do this, unlike in the analyses above, we leverage
our within-subjects design to examine the within-subject relationship between behav-
iors across the two treatments. If there is a common behavioral mechanism behind the
anomalies across treatments (common heuristic or noisy responses to complexity), they
should be correlated with each other.

We first link subjects’ decisions in those choice problems that are direct mirror images
of each other, such as “$40 in 6 months” vs. “$40 shrunk 6 times”. Thus, we compute a
correlation coefficient for (500 subjects * 18 unique problems * 2 treatments =) 18,000
observations. In doing so, we take care to net out that component of the correlation
that is mechanically driven by the fact that for longer intervals or a higher number of
iterations subjects should be expected to state lower valuations. Thus, we compute the
partial correlation between decisions, netting out fixed effects for each unique problem
type (each possible combination of t1 and t2). As a result, the correlation captures how
similar subjects’ behavior is across the two treatments, holding fixed the nature of the
choice problem.

We find a partial correlation of r = 0.34 (p < 0.01), see Figure 3 for corresponding
graphical evidence. This correlation is remarkably high given that the absence of time
preference-based variation in the Mirror treatment should produce correlations close
to zero for rational decision makers. Instead, behavior in Mirror produces one of the
strongest predictors of intertemporal choice ever documented in the literature (Cohen
et al., 2020).

A second approach to studying linkages across treatments is to focus not on each sep-
arate decision but, instead, on the magnitude of decreasing impatience: whether those
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Figure 3: Binned scatter plot of normalized indifference points in structurally identical choice
problems in Delay andMirror. Partial correlation plot, controlling for fixed effects for each choice
list type (each possible combination of t1 and t2). Based on 18,000 decisions by 500 subjects.
The partial correlation is r = 0.34.

subjects whose impatience strongly decreases in the length of the interval in treatment
Delay are also those whose implied per-period impatience strongly decreases in the num-
ber of iterations in treatment Mirror. To compute this, for each subject and treatment,
we regress the annual impatience implied by a decision on the length of the time in-
terval. The magnitude of the coefficient serves as a measure of decreasing impatience.
Again, we find that, across subjects, the magnitudes of decreasing impatience in the two
treatments exhibit a correlation of r = 0.34, p < 0.01.

Result 2. Across subjects, valuation of time intervals is strongly correlated with valuation
of atemporal mirrors. This suggests they are driven by a common behavioral mechanism,
which cannot be temporal motivations.

4.2 Results from Measures of Complexity Responses

Next, we turn to analyzing the data from treatments Delay-M and Voucher-M, where we
elicited both cognitive uncertainty and potential choice inconsistencies.

The data from the Delay-M and Voucher-M treatments show strong prima facie evi-
dence that subjects’ decisions are noisy and / or heuristic in nature. In Delay-M, 75%
of all decisions are associated with strictly positive CU and 60% of all repeated deci-
sions show strictly positive inconsistency. In Voucher-M, the corresponding frequencies
are 83% and 60%. These results strongly indicate wide-spread complexity responses
(usage of imperfectly rational decision procedures) in the data. We now investigate how
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variation in these measures predicts the strength of anomalies.
The left panels of Figure 4 illustrate the raw data for the Delay-M treatment: the re-

lationship between normalized indifference points (in percent) and time intervals. The
panels split results based on the presence or absence of (i) measured CU in the decision
(top panel) or (ii) choice inconsistency in the decision (bottom panel). The correspond-
ing right-hand panels transform these data (as in the previous section), by computing
the implied annual impatience γ̂. All panels pool the data for Now and Later lists (the
results are very similar looking at each of them separately). Figure 5 shows analogous
results for the incentivized UberEats voucher experiments.

The top panels illustrate that decisions associated with strictly positive CU are con-
siderably less sensitive to variation in the time interval, making them look considerably
more hyperbolic. This has two direct implications. First, CU is strongly predictive of
short-run impatience. For instance, in Delay-M, the raw correlation between normal-
ized indifference points for one-week delays and CU is ρ = −0.45 both when t1 = 0

and when t1 > 0. In Voucher-M, the same correlations are ρ = −0.39 and ρ = −0.45.
The second implication of the compression of cognitively uncertain decisions is that

implied annual impatience decreases much more rapidly in the time interval for uncer-
tain than certain subjects. For instance, going from ∆t ≈ 1 to ∆t ≈ 84 months, the
implied annual impatience drops by a factor of 4.5 for CU > 0, but only by a factor of 2
for CU = 0. Notably, in treatment Delay-M, this pattern implies that cognitively uncer-
tain participants act as if they are less patient over relatively short horizons, yet more
patient over relatively long horizons, with a crossover point at around one year.

The bottom panels of Figures 4 and 5 show analogous results for choice inconsistency.
Again, we see that inconsistent decisions appear more impatient over short horizons but
less impatient over long ones.

Notably, these patterns from cognitive uncertainty and choice inconsistency match
exactly what we find inMirror, where subjects are too “impatient” with few discounting
iterations but too “patient” with many ones.

Table 2 investigates these patterns econometrically. Across specifications and datasets,
we see that (i) both CU and choice inconsistency are strongly correlated with short-run
impatience (columns (1) and (4)) and (ii) decreasing impatience is subantially stronger
in the presence of either CU or choice inconsistencies (columns (3) and (6)).

What fraction of decreasing impatience is driven by noise / heuristics? To quantify
this, we compare the magnitudes in two sub-samples: (i) decisions that are associated
with no CU and no choice inconsistency vs. (ii) decisions that reflect either strictly pos-
itive CU or choice inconsistency. We examine how strongly implied annual impatience
increases in the evaluated time interval, akin to the regressions in Table 2. We find that
in the sample with no CU and no choice inconsistencies, the magnitude of decreasing im-
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Figure 4: Normalized indifference points (left panels) and implied annual impatience (right pan-
els) as a function of the time interval. The top panels include all decisions from Delay-M, and
we split the sample according to whether or not a choice is associated with strictly positive CU
(7,740 decisions by 645 subjects). The bottom panels include data from all decisions in Delay-M
that were elicited twice (two repeated problems per subject for a total of 2,580 decisions from
645 subjects), and we split the sample according to whether or not decisions differed in a set
of repeated choices. Time intervals are rounded to nearest multiple of three months. Whiskers
show standard error bars, computed based on clustering at the subject level.

patience is only 10% of that in the comparison sample. This suggests that at least 90% of
decreasing impatience is driven by noisy or heuristic complexity responses, rather than
preferences. This conclusion is strikingly close, quantitatively, to the decomposition com-
puted by comparing decreasing impatience in atemporal mirrors and time intervals in
Section 4.1.
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Figure 5: Normalized indifference points (left panels) and implied annual impatience (right pan-
els) as a function of the time interval in Voucher-M. The top panels include all decisions, and we
split the sample according to whether or not subjects indicate strictly positive CU (6,000 deci-
sions from 500 subjects). The bottom panels include data from all decisions that were elicited
twice (two repeated problems per subject, for a total of 2,000 decisions from 500 subjects), and
we split the sample according to whether or not decisions differed in a set of repeated choices.
Time intervals are rounded to nearest multiple of three months. Whiskers show standard error
bars, computed based on clustering at the subject level.

Robustness 1: Sample splits. The results reported above do not hinge on splitting the
sample into decisions with zero or strictly positive CU. To show this, we split the sample
into CU quartiles. We find that the effect of the time interval on decisions continuously
decreases (in absolute terms) as CU increases, see Appendix Figure 10. This shows that
the results are not just driven by the particular sample splits employed above, and that
variation in CU strongly predicts decisions also conditional on CU > 0.
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Table 2: Short-run and decreasing impatience as functions of CU and choice inconsistency

Dependent variable:
Implied annual impatience (in %)

Dataset: Delay-M Voucher-M

Phenomenon: SR imp. (≤ 1m) Decreasing impat. SR imp. (≤ 1m) Decreasing impat.

(1) (2) (3) (4) (5) (6)

Time interval -7.61∗∗∗ -3.56∗∗∗ -29.1∗∗∗ -20.6∗∗∗
(0.30) (0.54) (2.49) (6.12)

Cognitive uncertainty 0.42∗∗∗ 0.24∗∗∗ 0.61∗∗∗ 0.57∗∗∗
(0.11) (0.05) (0.10) (0.08)

Inconsistent decision 25.2∗∗∗ 11.9∗∗∗ 16.7∗∗∗ 19.6∗∗∗
(4.59) (2.38) (3.30) (2.94)

Time interval × Cognitive uncertainty -0.061∗∗∗ -0.47∗∗∗
(0.01) (0.13)

Time interval × Inconsistent decision -4.95∗∗∗ -13.0∗∗
(0.61) (6.44)

Payment amount FE Yes Yes Yes Yes Yes Yes

Observations 344 2580 2580 766 2000 2000
R2 0.24 0.20 0.24 0.17 0.06 0.19

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. In columns (1) and (4),
the sample is restricted to time intervals of at most one month. To make the samples comparable across columns, we
restrict attention to decisions for which the choice inconsistency variable is available. Time interval is in years. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01.

Robustness 2: Within-subject variation. A potential concern is that subjects might
interpret the CU question in heterogeneous ways. To show that this does not drive the
results, we restrict attention to within-subject variation in CU. We normalize the CU
data to have mean zero and standard deviation one for each subject, and then look at
whether this pure within-subject measure of CU still predicts choices. Appendix Table 8
shows that this is the case.

Choice inconsistency in atemporal mirrors. In our Mirror treatment, we also re-
peated one randomly-selected choice list for each subject, allowing us to investigate
whether choice inconsistencies are also linked to the anomalies in the evaluation of
atemporal mirrors. As shown in Appendix Table 9, we find that choice inconsistencies
are strongly predictive of “short-run impatience” and “decreasing impatience” in mir-
ror valuations, just as they are of true intertemporal decisions. This further supports
our interpretation that complexity leads to anomalies by inducing the use of noisy and
heuristic decision procedures.

Result 3. Short-run impatience and decreasing impatience are strongly correlated with
auxiliary evidence of noisy or heuristic decision-making.
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4.3 Manipulation of Task Difficulty

Our interpretation of the correlations between anomalies and CU / choice inconcistency
is that they reflect the influence complexity has on intertemporal choice. That is, we
interpret the noisy/heuristic behavior we measure as a direct response to the fact that
intertemporal choice is complex. To provide direct evidence for this linkage, we ran an
additional experiment that exogenously increases the cognitive difficulty of intertem-
poral choice. To the degree this manipulation jointly intensifies (i) our measures of
noisy/heuristic behavior and (ii) intertemporal choice anomalies, we have complemen-
tary causal evidence supporting our interpretation.

In treatment Opaque Payments/Delays, for a subset of subjects, (N = 153), we ex-
press all of the payoffs in the price list as an algebraic expression (e.g., $40 is described
as “$(4*8/2)+(8*9/2)-12”). For another subset (N = 149), we express all dates in the
price list as algebraic expressions (e.g., 1 year is described as “in (6*2/3-3) years AND
(3*6/2-9) months AND (5*4/2-10) days”). These interventions are always paired with
time constraints of 25 seconds to make the relevant information processing constraints
more likely to bind. Both of these interventions are designed to increase the information
processing required to evaluate intertemporal tradeoffs, thereby increasing the cost of
rational choice (i.e., complexity).

We find that this intervention significantly increases both of our measures of bound-
edly rational choice. Average CU rises from 21.7% in Delay-M to 35.2% for Opaque Pay-
ments/Delays; choice inconsistency rises from 60.4% in Delay-M to 67.2% inOpaque Pay-
ments/Delays (both comparisons are statistically significant at least at the 5% level, see
Appendix Table 10). These results suggest that both of our measures of noisy/heuristic
decisions are sensitive to the complexity of the choice environment.

Next, we find that this manipulation simultaneously intensifies intertemporal choice
anomalies. As Figure 6 shows, the decisions of subjects in Opaque Payments/Delays
evince stronger short-run impatience and flatter long-run impatience than those of sub-
jects in Delay-M, see Appendix Tables 10 and 11 for regression evidence. Thus, the ex-
ogenous manipulation of task difficulty has the same effects as the patterns we observed
correlationally for choice inconsistency and CU: higher task difficulty leads to both more
pronounced short-run impatience more pronounced decreasing impatience. This pattern
not only matches our correlational results, but also our findings from Mirror.

Result 4. Short-run impatience and decreasing impatience become significantly more pro-
nounced when complexity is exogenously increased.
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Figure 6: Normalized indifference points as a function of the time interval (rounded to nearest
multiple of three months) in Delay-M and the two Opaque manipulations, pooled for ease of
readability (11,364 decisions from 947 subjects). Whiskers show standard error bars, computed
based on clustering at the subject level.

5 Complexity and Estimates of Present Bias

Our findings so far suggest that the hyperbolic shape of the empirical discount function
is largely driven by complexity. What does this imply for our understanding of present
bias, which is often modeled as the primitive underlying hyperbolic choice patterns?

Structural estimates of present bias. We begin by measuring present bias using the
approach taken by the bulk of the literature: by structurally estimating the parameters of
a β−δ model, as described in Section 2. Intuitively, in these model estimations, present
bias is identified from the hyperbolicity of the discount function, including especially
the excess degree of short-run impatience not captured by the estimated exponential
discounting parameter, δ. Because we know from the previous section that this hyper-
bolicity is largely driven by complexity, there are strong reasons to hypothesize that
structural estimates of β will, likewise, be linked to complexity. Because in this section
we will frequently distinguish between structural and experimental estimates of present
bias, we will denote structural estimates by β̂ST .

We first examine whether there is evidence for βST < 1 in our Mirror treatment,
in which exponential discounting is experimentally induced and present-biased motiva-
tions are removed by design. Recall that in all of our experiments, a subject is asked to
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state an amount x1 in t1 that makes her indifferent to x2 in t2. In a β − δ model with
linear utility, we, hence, have:

δt1 · x1 = βt1=0 ·δt2 · x2 (2)

We estimate this model at the population level, amended by a mean-zero error term.
In Mirror, we estimate β̂ST = 0.85 (s.e. = 0.01) and δ̂ = 0.96 (s.e. = 0.01).13 Com-
plexity alone, therefore, induces behavior that looks like present bias under the lens of
standard estimation approaches. Intuitively, the reason for this result is that decisions in
the Mirror treatment have a hyperbolic shape with high short-run “impatience”, which
gets attributed to a sub-unitary βST . Indeed, our estimates recover the true, induced δ of
0.96, suggesting that most of the distorting effects of complexity appear in the spurious
estimate of β .

If complexity indeed confounds structural estimates of present bias, we should also
see that – in traditional intertemporal choice experiments – decisions that are associated
with stronger complexity responses (cognitive uncertainty and choice inconsistencies)
are associated with more pronounced estimated present bias. To investigate this, we
turn to the data from the Delay-M treatment. As is well-understood in the literature,
individual-level heterogeneity in discount factors renders population-level estimates of
βST potentially biased (Weitzman, 2001; Jackson and Yariv, 2014). Thus, we estimate
eq. (2) separately for each subject.1⁴ Figure 7 shows a binned scatter plot of the result-
ing individual-level estimates of β̂ST against a summary index of complexity responses
(the first principal component of CU and choice inconsistency). Estimated present bias
is strongly correlated with complexity responses (Spearman’s ρ = −0.28, p < 0.01).
Appendix Figure 12 shows that quantitatively almost identical results hold when the es-
timation accounts for utility curvature (measured through separate lottery choice lists at
the end of the experiment). In combination with the result of “present bias” in the atem-
poral mirrors, this strongly suggests that conventional structural estimates of present
bias to a great extent pick up complexity responses.

13Note that because all subjects are induced to have the same time preferences, estimates of β in
atemporal mirrors do not run afoul of the aggregation concerns raised in the literature (Weitzman, 2001;
Jackson and Yariv, 2014). Nonetheless, estimates at the individual level corroborate this result. As shown
in Appendix Figure 11, for the majority (62%) of subjects we estimate β̂ST < 1.

1⁴Population-level estimates deliver similar results on how β varies with complexity responses. Ap-
pendix Table 11 reports the results. For example, for CU = 0, we estimate β̂ST = 0.87, while for CU > 0
we get β̂ST = 0.72. In contrast, the estimates of δ are always very similar across the different sub-samples,
suggesting that (as with our estimates from Mirror), complexity mostly influences the present bias term
in estimates of these models. These results show that even if aggregation was not an issue, complexity
responses would still bias the estimation of present bias.
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Figure 7: Binned scatter plot of individual-level β̂ST in eq. (2) against first principal component of subject-
level average CU and choice inconsistencies. Based on 643 subjects in Delay-M. The figure excludes two
subjects for whom we estimate β̂ > 2.

Does complexity produce “true” present bias / non-stationarity? There are two po-
tential reasons why heuristic or noisy complexity responses generate present bias in
structural estimations. A first possibility is that complexity responses generate “true”
present bias (i.e. stationarity violations in valuations). For example, the present may
seem appealingly simple to people, contributing to a desire for immediate gratification.
A second possibility, however, is that complexity produces hyperbolicity without gener-
ating stationarity violations (e.g., by producing insensensitivity to variation in the size
of time intervals). If this were the case, structural estimates of present bias would be con-
founded due to model misspecification resulting from omiting a role for these alternative
effects of complexity on the discount function.

A standard way of causally identifying present bias in the literature is by measuring
front-end delay effects (direct measurements of stationarity violations). Indeed, it is com-
mon in the literature to define genuine present bias through front-end delay effects (e.g.,
Chakraborty, 2021). In experimental documentations of these effects, subjects reveal
lower discounting in evaluating (t1 + d, t2 + d) than in (t1, t2), for d > 0. Some of our
tasks feature such a front-end delay structure (with t1 = 0 and d randomized between
4 and 6 months across subjects).1⁵

1⁵Jang and Urminsky (2022) document that front-end delay effects are typically only identifiable if
the front-end delay is long. It is for this reason that we use the SA/FED lists (designed to study long 4-
and 6-month delays) to look for evidence of front-end delay effects.
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Table 3: Complexity and front-end delay effects

Dependent variable:
Implied annual impatience (in %)

Phenomenon: Front-end delay

Treatment: Delay Mirror Delay-M Voucher-M

(1) (2) (3) (4) (5) (6)

1 if front end delay -4.24∗∗ 3.79∗∗ -3.07∗∗∗ -2.51 -4.11∗∗∗ -7.23∗∗∗
(1.85) (1.69) (0.99) (1.53) (1.09) (2.12)

Cognitive uncertainty 0.38∗∗∗ 0.38∗∗∗
(0.06) (0.07)

1 if front end delay × Cognitive uncertainty -0.058 0.070
(0.05) (0.07)

Payment amount FE Yes Yes Yes Yes Yes Yes

Task set FE Yes Yes Yes Yes Yes Yes

Observations 508 492 2393 2393 2337 2337
R2 0.07 0.02 0.02 0.07 0.02 0.08

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. The data
are restricted to problems that have a front-end delay structure. Task set FE are fixed effects for each pair
of tasks that have a front-end delay structure. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table 3 summarizes the evidence on the link between complexity and front-end delay
effects in our data. Columns (1) and (2) show that we find a statistically significant front-
end delay effect in the Delay treatment but the opposite effect in the Mirror treatment.
Thus, the mirror data provide no evidence that the front-end delay effect is an outgrowth
of complexity. If anything, our results suggest that complexity might even work against
the identification of these effects.

Columns (3)–(6) shows the results for treatments Delay-M and Voucher-M.1⁶ Again,
we find evidence for the presence of front-end delay effects in intertemporal decisions.
Importantly for our purposes, however, these effects are entirely uncorrelated with cog-
nitive uncertainty, suggesting again that they have little to do with complexity responses.
Finally, we show in Appendix Table 10 that the experimental complexity manipulation
described in Section 4.3 does not amplify front-end delay effects, providing a third piece
of evidence that front-end delay effects have little to do with complexity.

Thus, the atemporal mirrors, the measure of cognitive uncertainty and the experi-
mental complexity manipulation all suggest that non-stationarity is not driven by com-
plexity.

1⁶Recall that we elicited only two randomly selected decisions per subject repeatedly. Given that these
repeated decisions do not always occur for the choices in the SA/FED lists, we do not have access to a
task-level measure of choice inconsistency that can be used to shed light on subadditivity or front-end
delay effects. By contrast, the CU measure is available for each decision a subject makes.
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Reconciling structural and experimental estimates. How is it possible that complex-
ity is strongly linked to structural estimates of present bias but not to causal, experi-
mental estimates? To address this, we first document that the magnitude of the present
bias inferred from front-end delays is quantitatively considerably smaller than what is
implied by the structural estimate β̂ST reported above. To compute a causally-identified
front-end-delay estimate (βF D), we estimate eq. (2) only on those decision problems
that have a front-end delay structure. In our two sets of intertemporal problems with a
front-end delay structure, we estimate β̂F D = 0.95 and β̂F D = 0.96, respectively. While
these estimates suggest strictly positive present bias, they are substantially larger (i.e.
imply substantially less present bias) than the average individual-level structural esti-
mate derived from estimating eq. (2) on the full dataset, β̂ ave

ST = 0.83. A back-of-the-
envelope calculation, hence, tentatively suggests that the structural estimate of 0.17
units of present bias can be roughly decomposed into 0.05 units attributable to true
present bias (non-stationarity) and 0.12 units attributable to complexity responses.

Intuitively, the large difference between the structural estimate and the front-end
delay estimate of present bias arises because the empirical discount function is sub-
stantially more hyperbolic than the magnitude of front-end delay effects would imply.
Indeed, this discrepancy between the magnitude of front-end delay effects and of hy-
perbolic discounting is also highlighted in the review of Cohen et al. (2020). They call
the coexistence of strongly decreasing impatience and relatively small front-end delay
effects “contradictory patterns”. Our results show that complexity is the main driver be-
hind this discrepancy because it produces hyperbolicity but not front-end delay effects.1⁷

To sum up, the severely inflated magnitude of structural estimates of present bias
reflects model misspecification: conventional estimates of a β −δ model do not account
for complexity responses, such that the complexity-induced hyperbolicity of the discount
function gets spuriously attributed to β .

An important caveat is in order. Our experiments measure discounting overmonetary
rewards. We do not claim that the results of our back-of-the-envelope decomposition of
estimated present bias into non-stationarity (e.g., a desire for immediate gratification)
and complexity responses will be the same across different decision contexts and types
of rewards. First, there are strong reasons to believe that in choices over primary re-
wards a desire for immediate gratification is larger than in choices over money (Cohen
et al., 2020). It is, hence, plausible that in these contexts a larger fraction of estimated
present bias reflects preferences or temptation. Second, the complexity of the choice
environment – and the degree of experience the decision maker has with it – likewise
plausibly affect the decomposition, with more complex environments likely generating

1⁷Cohen et al. (2020) infer as much, attributing the remainder of hyperbolicity to the insensitivities
described by subadditivity effects. See Section 6, below.
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a larger role for complexity responses.

Result 5. Structural estimates of present bias (that do not rely on causal experimental
designs) are severely biased due to model misspecification resulting from omiting complexity
responses.

6 Complexity and Insensitivity

Our findings so far suggest that the hyperbolic shape of the empirical discount func-
tion is largely driven by complexity and the responses it inspires. In this section, we
provide evidence on how complexity produces hyperbolicity. As discussed in Section
2.1, the literature has emphasized two proximal behaviors that might be responsible
for hyperbolicity. The first is non-stationary discounting, which, in principle, might be
a consequence complexity responses. However, in the previous section, we showed that
there is no evidence that complexity contributes to stationarity violations.

The second proximal mechanism for hyperbolicity discussed in the literature is that
people might treat intervals of different length in a non-exponential manner because
they are insensitive to the length of the interval when evaluating delayed rewards (Read,
2001; Cohen et al., 2020). Such insensitivity, if present, would mechanically produce
apparent decreasing impatience by causing subjects to treat longer and shorter time
intervals too similarly to one another. Notably, similar complexity-driven insensitivities
have been shown to drive anomalies in other domains in previous experimental work
(e.g., Abeler and Jäger, 2015; Enke and Graeber, 2022; Oprea, 2022).

To study whether complexity induces insensitivity to time intervals, we follow the
standard appraoch in the literature by measuring subadditivity effects. The subadditivity
literature shows that impatience over a single time interval (t1, t3) tends to be consider-
ably smaller than the total impatience people reveal when they are asked to make two
decisions, one over interval (t1, t2) and one over (t2, t3), with t1 < t2 < t3 (Read, 2001).
The resulting transitivity violations are direct evidence of insensitivity because (i) they
involve people treating shorter intervals too much like they treat a longer interval, but
(ii) cannot be confounded with non-stationarity because they involve the comparison of
nested intervals.

To investigate whether complexity causes the insensitivities to the interval length
that are typically observed in these tasks, we included in all of our experiments choice
lists in which we asked subjects to complete tasks that have a subadditivity structure,
where we varied (t1, t2, t3) randomly to be (0, 4,8) or (0,6, 12).

Table 4 summarizes the evidence. Columns (1) and (2) show how implied annual im-
patience differs between the choice over interval (t1, t3) and the combined choices over

32



Table 4: Complexity and subadditivity

Dependent variable:
Implied annual impatience (in %)

Phenomenon: Subadditivity

Treatment: Delay Mirror Delay-M Voucher-M

(1) (2) (3) (4) (5) (6)

1 if one long interval -7.57∗∗∗ -9.93∗∗∗ -8.58∗∗∗ -3.55∗∗∗ -9.39∗∗∗ -1.14
(1.38) (1.16) (0.63) (1.34) (0.60) (1.60)

Cognitive uncertainty 0.47∗∗∗ 0.45∗∗∗
(0.06) (0.08)

1 if one long interval × Cognitive uncertainty -0.24∗∗∗ -0.33∗∗∗
(0.06) (0.06)

Payment amount FE Yes Yes Yes Yes Yes Yes

Task set FE Yes Yes Yes Yes Yes Yes

Observations 508 492 1948 1948 2000 2000
R2 0.09 0.06 0.03 0.08 0.04 0.08

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. The data
are restricted to problems that have a subadditivity structure. We combine the three choices that make up a
subadditivity set into two observations according to fn. 5. Task set FE are fixed effects for each pair of tasks
that have a subadditivity structure. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

(t1, t2) and (t2, t3), separately for treatments Delay andMirror. We find strong evidence
for subadditivity in both treatments: people are roughly 10 percentage points less “pa-
tient” when a composite interval is broken up into two sub-intervals. Most importantly,
the effect is similarly strong in atemporal mirrors and true delays, suggesting that all of
the insensitivity of subadditivity is attributable to complexity rather than non-standard
intertemporal preferences or self-control problems.

Columns (3)–(6) present the results on cognitive uncertainty in treatments Delay-
M and Voucher-M. In both treatments, we find that the magnitude of subadditivity is
strongly correlated with CU. Indeed, we find that subjects with CU = 0 exhibit no
subadditivity at all. Thus, again, complexity seems to entirely explain the insensitivity
of decisions to the interval. Finally, consistent with these correlational results, Appendix
Table 10 shows that subadditivity effects also become substantially more pronounced
in our Opaque treatments that increase the difficulty of intertemporal decision making,
creating a third link to complexity.

Thus, the atemporal mirrors, the measure of cognitive uncertainty and the experi-
mental complexity manipulation all suggest that complexity causes interval insensitivity
(as measured by subadditivity). Combining this with our other findings, complexity pro-
duces insensitivity to the length of time intervals, which, in turn, produces hyperbolicity
of the empirical discount function and thereby structural mis-estimates of present bias.
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This linkage between complexity and insensitivity in our data strongly comports
with theoretical accounts of how complexity generates intertemporal choices anomalies.
As reviewed in Section 2, most such explanations root anomalies in heuristic or noisy
decision procedures that produce hyperbolicity by making valuations less sensitive (less
elastic) to variation in time delays than perfectly rational valuations are (e.g., He et al.,
2019; Lu and Saito, 2018; Gabaix and Laibson, 2022; Vieider, 2021).

Result 6. Complexity causes hyperbolicity because it generates a general insensitivity to
interval length.

7 Discussion

Table 5 summarizes the results from our paper across all of our treatments. The main
takeaway is that even though we deployed several very different types of research strate-
gies, we find highly consistent results. Regardless of how we measure complexity and
complexity responses (through atemporal mirrors, choice inconsistency, cognitive uncer-
tainty and exogenous treatment interventions), we consistently find that complexity is
strongly associated with short-run impatience, decreasing impatience, subadditivity and
structural estimates of present bias, but not with front-end delay effects (“true” present
bias). Indeed, across methods, we find strikingly similar quantitative evidence that each
of these anomalies is primarily attributable to complexity.

We interpret this as evidence that intertemporal tradeoffs appear to generate be-
havioral distortions in large part because they require a great deal of costly cognitive
information processing. Subjects respond to this complexity by substituting from costly
rational procedures for evaluating tradeoffs to less costly noisy or heuristic alternatives
that are relatively inelastic to time intervals, generating systematic departures from time
consistency.

Understanding present bias. A perhaps surprising result from this paper is that the
noisy / heuristic procedures that complexity triggers, produce systematic confounds in
the structual estimation of one of the central objects of interest in behavioral economics:
β . As we have shown, even though complexity has no impact on front-end delay effects (a
causal estimate of present bias), model estimations that rely on cross-sectional variation
in time intervals will generally wrongly attribute the hyperbolic shape of discounting to
present-biased preferences. This is related to the argument in Chakraborty et al. (2017)
that noise or confusion spuriously drives estimates of present bias in convex budget
experiments, though we show that complexity responses also bias estimates of present
bias in choice list experiments. Taken together, these results suggest that in some of
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Table 5: Summary of results across experiments

Short-run Decreasing Sub- Front-end Estimated
impatience impatience additivity delay effect present bias

Present in atemporal mirrors? Ø Ø Ø – Ø

More pronounced with cognitive uncertainty? Ø Ø Ø x Ø

More pronounced with choice inconsistency? Ø Ø n/a n/a Ø

More pronounced in difficult problems? Ø Ø Ø – Ø

Notes. “Ø” means that an anomaly is present / more pronounced, “x” that it is not present / not more pronounced
and “–” that the opposite is present / the anomaly is less pronounced. “n/a” means that data limitations do not allow
us to assess a relationship.

the field contexts in which β < 1 has been estimated, there may be normative scope
for “correcting” time-inconsistent behavior by reducing complexity and / or increasing
comprehension.

Moreover, our results shed light on the widely-discussed puzzle that demand for
intertemporal commitment is typically considerably weaker than models of present bias
would imply. If a large part of estimated present bias reflects noise and heuristics, there
is no reason to expect it to generate a demand for commitment (Gabaix and Laibson,
2022). These results jive well with those in Carrera et al. (2022) who document that
demand for commitment itself is also largely driven by noise.

This being said, we emphasize that our data clearly suggest that “true” present bias
exists and is conceptually distinct from complexity responses. This suggests that in-
tertemporal choice models would benefit from modeling two types of distortions: those
arising from non-stationarities and those arising from complexity and the heuristic and
noisy behaviors it inspires.

What makes intertemporal choice complex? Our data provides some clarity on what
it is about intertemporal choice that makes it complex. One possibility, ex ante, is that
the complexity of intertemporal choice is a consequence of the fact that it is difficult
to introspectively evaluate or calculate one’s own time preferences. However, the fact
that hyperbolic discounting arises with near-full strength in atemporal mirrors instead
suggests that complexity is driven by the difficulty of iterations discounting (successive
multiplication). Appendix C provides further evidence in support of this idea. There,
we document that both cognitive uncertainty and the variance of subjects’ decisions
strongly increase in the interval length or the number of iterations required to discount.
This evidence suggests that repeated discounting is cognitively costly, producing noise
that increases in the number of iterations required to discount a reward.

Related literature. Our work connects to several literatures on intertemporal choice
(Thaler, 1981; Frederick et al., 2002; Cohen et al., 2020; Ericson and Laibson, 2019).
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Most directly, our work relates to the literature that studies “cognitive effects,” includ-
ing work showing that patience tends to be correlated with measures of cognitive ability
(e.g., Dohmen et al., 2010; Benjamin et al., 2013; Falk et al., 2018) and is sensitive to
cognitive load, time pressure and framing (e.g., Ebert and Prelec, 2007; Imas et al., 2021;
Dertwinkel-Kalt et al., 2021). Regenwetter et al. (2018) provide an overview of the psy-
chology literature, which argues through model-fitting exercises that noise contributes
to the hyperbolicity of discounting (e.g., He et al., 2019). One of our contributions is
to provide substantially more direct evidence on the role of complexity and resulting
noise / heuristics in generating the famous anomalies than can be achieved through
model-fitting exercises.1⁸ Related to us are also experimental literatures showing that
people have difficulty with exponential reasoning, suffering an “exponential growth bias”
(Stango and Zinman, 2009). We too find errors in exponential reasoning, though unlike
this literature we show that these errors generate (and predict) classic intertemporal
choice anomalies.

Broader takeaways and connection to decision making in other domains. An im-
portant takeaway from all of the experiments reported in this paper is that complexity
(and the heuristic / noisy responses that it induces) produces a particular type of behav-
ioral response: an insufficient elasticity of decisions to variation in the main parameter
of the problem, the length of the time interval.1⁹ This observation may suggest deep
connections between intertemporal choice anomalies and other anomalies that have
similarly been identified as growing out of complexity. In two recent papers, Oprea
(2022) and Enke and Graeber (2022), we use similar methods to show that some of
the core anomalies behavioral economists have observed in the domain of risk (such
as probability weighting) are similarly rooted in complexity and the heuristic and / or
noisy procedures it induces. In particular, an overarching message that emerges from the
three papers is that, when decisions are complex, observed behavior is insufficiently sen-
sitive with respect to variation in objective problem parameters, including probabilities,
deterministic frequencies, time delays, and atemporal discounting iterations. Together,
these papers thus suggest the possibility that many apparently distinct phenomena in
behavioral economics might in fact be outgrowths of closely related forces, and that they
might be parsimoniously united by models built to describe the way humans manage
and respond to complexity.

1⁸In psychology, Bulley et al. (2022) elicit confidence judgments in intertemporal decisions but they
do not look at the choice anomalies that we focus on.

1⁹See Ebert and Prelec (2007) for a related discussion.
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Online Appendix

A Additional Figures

a) Delay treatment b) Mirror treatment

Figure 8: Screenshots from the experimental software.
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Figure 9: Screenshot of an example cognitive uncertainty elicitation screen in Delay-M
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Figure 10: Coefficients from regressions of normalized indifference points on time interval, split by CU
quartiles; left: Delay-M; right: Voucher-M.
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Mirror: Present bias in a β-δ model

Figure 11: Empirical CDFs of individual-level estimates of a β−δ model (eq. (2)) in Delay (N = 254) and
Mirror (N = 246), using first-assigned treatment only. Non-linear least squares estimation based on 18
decisions from each individual. For ease of readability we exclude subjects with β̂ > 1.3.
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Figure 12: Binned scatter plot of individual-level β̂ST in eq. (2) against first principal component of subject-
level average CU and choice inconsistencies. In this figure the individual-level estimate of β is derived
taking into account utility curvature, which is separately estimated at the population level based on
lottery choice lists. Based on 643 subjects in Delay-M. The figure excludes subjects for whom we estimate
β̂ > 2.
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B Additional Tables

Table 6: Anomalies in Delay and Mirror

Dependent variable:
Implied annual impatience (in %)

Phenomenon: Decreasing impatience Subadditivity Front-end delay

Treatment: Delay Mirror Delay Mirror Delay Mirror

(1) (2) (3) (4) (5) (6)

Time interval / number of discounting steps (in years) -5.76∗∗∗ -5.14∗∗∗
(0.25) (0.26)

1 if one long interval -7.57∗∗∗ -9.93∗∗∗
(1.38) (1.16)

1 if front end delay -4.24∗∗ 3.79∗∗
(1.85) (1.69)

Payment amount FE Yes Yes Yes Yes Yes Yes

Subadditivity set FE No No Yes Yes Yes Yes

Observations 4572 4428 508 492 508 492
R2 0.17 0.19 0.09 0.06 0.07 0.02

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. In columns (1) and
(2), the sample consists of all decisions in the respective treatment. In columns (3) and (4), the sample consists of two
observations per subject: their implied annual discounting over the long (composite) interval and their implied discounting
over the two shorter intervals that have a subadditivity structure. In columns (5) and (6), the sample includes those two
decisions per subject that have a front-end delay structure. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 7: Anomalies in Delay and Mirror, pooling first-assigned and second-assigned treamtents

Dependent variable:
Implied annual impatience (in %)

Phenomenon: Decreasing impatience Subadditivity Front-end delay

Treatment: Delay Mirror Delay Mirror Delay Mirror

(1) (2) (3) (4) (5) (6)

Time interval / number of discounting steps (in years) -6.11∗∗∗ -4.68∗∗∗
(0.18) (0.18)

1 if one long interval -8.57∗∗∗ -10.0∗∗∗
(0.89) (0.81)

1 if front end delay -4.59∗∗∗ 5.41∗∗∗
(1.28) (1.21)

Payment amount FE Yes Yes Yes Yes Yes Yes

Subadditivity set FE No No Yes Yes Yes Yes

Observations 9000 8999 1000 1000 1000 1000
R2 0.19 0.17 0.05 0.06 0.03 0.02

Notes.OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. In columns (1) and (2), the
sample consists of all decisions in the respective treatment. In columns (3) and (4), the sample consists of two observations
per subject: their implied annual discounting over the long (composite) interval and their implied discounting over the two
shorter intervals. In columns (5) and (6), the sample includes those two decisions per subject that have a front-end delay
structure. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table 8: Decreasing impatience in Delay-M and within-subject variation of cognitive uncertainty

Dependent variable:
Implied annual impatience (in %)

Dataset: Delay-M

Phenomenon: Decreasing impatience

(1) (2)

Time interval -6.87∗∗∗ -5.46∗∗∗
(0.18) (0.26)

Cognitive uncertainty (standard. within subject) 0.28∗∗∗
(0.04)

Time interval × Cognitive uncertainty (standard. within subject) -0.068∗∗∗
(0.01)

Payment amount FE Yes Yes

Observations 7740 7740
R2 0.16 0.18

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. In these
regressions, the measure of cognitive uncertainty was standardized at the subject level. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 9: Choice inconsistencies in Mirror

Dependent variable:
Implied annual impatience (in %)

Phenomenon: Short-run impatience Decreasing impatience

(1) (2)

Inconsistent decision 17.8∗∗∗ 12.7∗∗∗
(3.86) (3.90)

Number of discounting steps (in years) -2.64∗∗∗
(0.51)

Number of discounting steps (in years) × Inconsistent decision -3.07∗∗∗
(0.53)

Payment amount FE Yes Yes

Observations 417 3408
R2 0.09 0.21

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. Regressions include
sets of repeated decisions shown to a subject. Column (1) includes decisions with one discounting iteration only,
column (2) includes decisions involving any number of iterations. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 10: Anomalies in the Delay-M vs. the Opaque treatments

Phenomenon: Manipulation check Decr. imp. Subadd. Front-end

Dependent variable:
CU Inconsistent Implied annual impatience (in %)

(1) (2) (3) (4) (5)

Opaque treatments 13.6∗∗∗ 0.065∗∗ 0.99 3.07 -0.59
(1.40) (0.03) (1.89) (2.20) (2.35)

Time interval -6.88∗∗∗
(0.18)

Time interval × Opaque treatments -1.92∗∗∗
(0.34)

1 if one long interval -8.58∗∗∗
(0.63)

1 if one long interval × Opaque treatments -7.99∗∗∗
(1.30)

1 if front-end delay -3.06∗∗∗
(0.99)

1 if front-end delay × Opaque treatments 5.32∗∗∗
(1.86)

Payment amount FE Yes Yes Yes Yes Yes

Subadditivity set FE No No No Yes Yes

Observations 11364 3788 11364 2818 3465
R2 0.06 0.01 0.18 0.04 0.01

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. In
columns (1) and (3), the sample consists of all decisions in the Delay-M and Opaque treatments. In col-
umn (2), the sample includes all sets of repeated decisions shown to a subject. In column (4), the sample
consists of two observations per subject: their implied annual discounting over the long (composite) inter-
val and their implied discounting over the two shorter intervals. In column (5), the sample includes those
two decisions per subject that have a front-end delay structure. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table 11: Population-level estimates of β −δ model

Delay & Mirror Delay-M Opaque Voucher-M

Delay Mirror All CU=0 CU>0 Incons.=0 Incons.>0 All All CU=0 CU>0 Incons.=0 Incons.>0
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

β̂ .774 .846 .76 .872 .721 .822 .75 .72 .882 .953 .854 .957 .865

δ̂ .982 .96 .978 .973 .98 .983 .977 .989 .942 .955 .941 .968 .936

Notes. Population-level estimates of a β − δ model (eq. (2)). Columns (1) and (2) use the first-assigned treatment only, based
on N = 254 subjects in Delay and N = 246 subjects in Mirror. Columns (3), (8) and (9) include all subjects in the respective
treatments: N = 645 in Delay-M, N = 302 in Opaque and N = 500 in Voucher-M. All other columns are based on sample splits of
the corresponding treatments. Non-linear least squares estimates.
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C What Makes Intertemporal Choice Complex?

This Appendix tentatively investigates what it is about intertemporal choice that makes
it complex, and therefore vulnerable to noisy or heuristic decision-making. One possi-
bility, ex ante, is that complexity is a consequence of the fact that it is difficult to intro-
spectively evaluate or calculate one’s own time preferences (e.g., one’s discount factor).
Similarly, another ex ante possibility is that complexity is an outgrowth of the difficulty
of integrating one’s risk and time preferences to inform choice.

Results from our Mirror treatment (in which time preferences are clearly induced
and risk and time preferences needn’t be integrated), suggest an alternative possibility:
that the complexity of intertemporal choice is instead a direct outgrowth of the costs and
difficulties of iteratively discounting rewards, which requires an intensive type of recur-
sive reasoning. If true, we would expect the number of required steps of discounting / a
longer time delay to be associated with more pronounced complexity responses.2⁰

To examine this, re-reconsider equation (2). Rearranging, taking logs and adding a
mean-zero noise term yields that a subject’s observed indifference point in our experi-
ments can be expressed as

ln
�

x1

x2

�

= ln(βt1=0) +∆t · ln(δ) + ε. (3)

where the first term on the right-hand side collapses to zero if β = 1. Importantly,
our hypothesis that complexity responses (noisy or heuristic procedures) increase in
the delay implies that Var(ε) should not be constant but, instead, heteroscedastic and
increasing in the delay. Because in equation (3) a subject’s log normalized indifference
point is a linear function of the delay, the equation can be estimated using simple OLS.
We run this regression and then inspect the variance of the regression residuals.

The top left panel of Figure 13 shows the results for treatment Delay. We find that the
variance of the regression residuals indeed strongly increases in the length of the delay.
A different way of saying this is that the variance of subjects’ normalized indifference
points strongly increases in the delay.

The top right panel shows an analogous plot for treatment Mirror, where the x-axis
now represents the required number of steps of discounting. Again, we see strong ev-
idence of heteroscedasticity, in line with the hypothesis that complexity responses be-
come more pronounced as the number of discounting steps increases.

In a standard exponential discounting model with preference heterogeneity, the re-
gression residuals or the variance of log indifference points should increase in the delay21

2⁰Some models of complexity and intertemporal discounting directly consider this possibility: Gabaix
and Laibson (2022) model a decision maker whose degree of cognitive noisiness increases in the delay.

21With exponential discounting and linear utility, Var[ln(x1/x2)] = (∆t)2Var[ln(δ)] + Var(ε).
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Figure 13: Noisiness as a function of the delay. Top panels show the variance of the regression
residuals of eq. (3) in Delay and Mirror. Bottom panels show average cognitive uncertainty in
Delay Noise and Voucher Noise. In all panels, delays are rounded to the nearest multiple of three.

However, in treatment Mirror, where the increase is almost equally strong, there is no
preference heterogeneity available to rationalize the pattern because we experimentally
induced the same discount factor for all subjects. In Mirror, this pattern must be driven
by increasingly idiosyncratic responses to complexity as the number of steps of discount-
ing increases. The fact that that the pattern (including magnitudes) is almost identical
in Delay suggests the same complexity-based explanation likely applies there as well.
Moreover, recall that decisions in Delay and Mirror are highly correlated within subject,
providing further suggestive evidence that the increase in the variance of decisions has
the same origin, which cannot be heterogeneity in discount factors.

The bottom panels of Figure 13 provide additional evidence in suport of this claim.
We plot subjects’ cognitive uncertainty as a function of the delay in treatments Delay
Noise and Voucher Noise.22 In both treatments, people report being much more uncertain

22Analyzing how choice inconsistencies vary with the delay is confounded by the relationship between
choice inconsistency and the “extremity” of the intertemporal decision problem. In all treatments, we
find that subjects exhibit less inconsistency when the delay is either very short or very long, in large part
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about which decision to take as the delay gets longer. Going from very short delays of less
than one month to delays of seven years, CUmore than doubles. This increase is concave,
with CU barely increasing for delays longer than 1–2 years (recall that in Voucher Noise
the longest delay is one year).

Taken together, multiple streams of evidence suggest that the difficulty of decision-
making increases in the length of the delay / the number of discounting steps required.
This, when combined with the appearance of anomalies in the atemporal mirrors (where
there is little to drive complexity except the difficulty of iterative discounting), is indica-
tive that an important source of complexity in intertemporal decision-making is the
cognitive act of iteratively discounting future rewards.

Of course, the insight that complexity increases in the number of cognitive steps
required to discount does not imply that complexity is zero for very short delays. For
instance, as Figure 13 shows, there is substantial CU even for delays of one month and
less, consistent with people exhibiting noise-driven extreme short-run impatience.

because in these decision problems a large share of subjects make boundary choices that artifically make
them look perfectly consistent.
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D Experimental Instructions

D.1 Instructions for Delay & Mirror Experiment

D.1.1 First-assigned treatment: Delay
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D.1.2 First-assigned treatment: Mirror
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D.2 Instructions for Delay Noise
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D.3 Instructions for Voucher Noise
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