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1 Introduction

During the 2008 global recession, nominal interest rates in the developed world dropped to zero.
Lacking the ability to further reduce nominal rates, central banks utilized new policy instruments
to manage the ongoing liquidity trap. Among these, quantitative easing and forward guidance

eventually became a part of the monetary policy toolkit.

When nominal rates again reached zero during the recession generated by the COVID pan-
demic, central banks continued to rely on these new instruments. Yet, the extreme downturn and
questions about the adequacy of central banks’ policy toolkit generated a quest for further policy
options.! One that has received substantial attention is “helicopter drops”—that is, a policy by
which a central bank prints money and gives it to the public.” The unorthodox feature is that
unlike conventional monetary policy operations, the use of helicopter drops involves an increase

in the central bank’s monetary liabilities without a corresponding increase in its assets.

According to standard economic theory, however, helicopter drops are irrelevant in a liquidity
trap. At zero nominal interest rates, money and bonds are perfect substitutes from the point of
view of the private sector. Ricardian equivalence thus implies that when the central bank prints
money and provides transfers, households keep higher money balances without inducing any
changes in real or nominal variables. The result of the irrelevance of helicopter drops closely
mirrors the classic irrelevance of open market operations at the zero lower bound (Wallace, 1981;
Eggertsson and Woodford, 2003). Hence, a helicopter drop, as radical as it sounds, is just as

ineffective as a conventional open market operation in a liquidity trap.

In this paper, we provide a model of how helicopter drops can be effective during a liquidity
trap. At the heart of our model is an explicit separation between the fiscal authority’s and monetary
authority’s budget constraints. We show that when the monetary authority faces balance sheet
constraints and lacks commitment to future policies, there is a role for helicopter drops during a
liquidity trap.

We consider a simple New Keynesian model, in which the central bank is required, as it
is in practice, to remit excess earnings to the fiscal authority. In addition, there are no capital
injections from the fiscal authority, and the central bank is limited in its ability to borrow using

interest-bearing securities. We first consider the set of private sector equilibria for a given set

IRegarding forward guidance, the current Chair of the Federal Reserve, Jay Powell, noted in a speech in 2019
that: “Part of the problem is that when the time comes to deliver the inflationary stimulus, that policy is likely to be
unpopular—what is known as the time consistency problem in economics.”

2The term helicopter drops was coined by Friedman (1969) as a parable to describe monetary injections. For recent
proposals advocating helicopter drops, see, for example, Bartsch, Boivin, Fischer, Hildebrand and Wang (2019) and
Gali (2020). Earlier, in 2002, Ben Bernanke at the time a member of the Federal Reserve’s Board of Governors, also
suggested that this policy would be an option in the context of Japan’s liquidity trap (Bernanke, 2002). For discussions
in the financial media, see e.g., The Economist, 2016.



of policies. We show that in this environment, any private sector equilibrium that arises from
a policy with a helicopter drop remains an equilibrium with an alternative policy without the
helicopter drop, even in the presence of balance sheet constraints. Hence, when the central bank
can commit to future policies, there is no scope for helicopter drops. Under commitment, the
central bank can already credibly promise expansionary policies in the future to help mitigate the
recession originating from the liquidity trap (Krugman, 1998; Eggertsson and Woodford, 2003;
Jung, Teranishi and Watanabe, 2005; Werning, 2011). Resorting to helicopter drops would only
inefficiently limit the central bank’s ability to stabilize output and inflation in the future. Thus,

helicopter drops should not be used under commitment.

We then examine the policy equilibria when the central bank cannot commit, which is our
main focus. We study a Markov perfect equilibrium in which the central bank at each point in
time chooses the best available policy, taking as given its inherited states (including its balance
sheet) and how the private sector’s expectations react to its policy choices. A Markov equilibrium
constrains these private sector expectations to be consistent with the central bank’s future behavior.
Using both theoretical and numerical results, we argue that a lower net worth pushes the central
bank towards a more expansionary policy (i.e., higher output and inflation). The reason is as
follows. To reduce monetary liabilities, the monetary authority has to either sell assets or reduce
the transfers it makes to the fiscal authority. Because the monetary authority is constrained to
transfer at a minimum its excess earnings and has a limited ability to borrow, it faces a limit to
how much it can reduce its monetary liabilities. A lower net worth implies that the monetary
authority needs to keep higher nominal balances to satisfy the balance sheet constraints, and this
results in lower interest rates and higher levels of output and inflation.

We argue that helicopter drops during a liquidity trap are a credible way for the central
bank to commit to an expansionary monetary policy in the future. We highlight that open
market operations remain irrelevant in a liquidity trap in our environment. However, when the
central bank expands the money supply without a corresponding increase in assets, this generates
expectations of lower interest rates going forward, which imply high output and inflation in the
future that help mitigate the recession today. In a simulation, the optimal helicopter drop achieves
a degree of stabilization that comes close to the optimal policy under commitment. The downside,

however, is that helicopter drops induce a more protracted period of inflation.

Related literature. A seminal paper on monetary and fiscal policy interactions is Sargent and
Wallace (1981). They show that fiscal policy imposes constraints on the central bank’s ability to
control inflation. In particular, fiscal deficits force the central bank to eventually collect higher

seigniorage revenues to balance the consolidated government budget constraint.

A more recent literature has unbundled the budget constraints of the government and the



central bank and studied the implications for monetary policy.®> Sims (2004) is an early paper
exploring the implications of different institutional configurations for price level determinacy.
Hall and Reis (2015) take as given that the central bank is committed to an inflation target and
evaluate when the central bank faces the risk of becoming insolvent, in the sense of facing an
explosive path for liabilities. Del Negro and Sims (2015) study how the central bank balance sheet
can determine whether price determinacy can be achieved and the extent to which fiscal support is
needed. Bassetto and Messer (2013) examine the fiscal consequences of paying interest on reserves,
arguing that although it increases the flexibility of the balance sheet, it can increase the risk of
insolvency. Benigno and Nistico (2020) explore the neutrality of changes in the central bank’s
balance sheet (given transfer policies for the central bank and treasury) and highlight how lack of
fiscal support may constrain the central bank’s choices when it can suffer losses. We instead focus
on the case where the Central Bank lacks commitment, and ask whether the Central Bank will
voluntarily weaken its net worth through a helicopter drop.

Our paper is also related to the literature on forward guidance. (Krugman, 1998; Eggertsson
and Woodford, 2003; Jung et al., 2005; Werning, 2011). A key insight from this literature is that
the central bank should commit to delivering high inflation and output in the future (after the
liquidity trap is over) to help mitigate the contraction in output at the zero lower bound. Without
commitment, however, this policy is not feasible, as the government would find it optimal to
stabilize output and inflation when the liquidity trap is over. Our paper points out that helicopter
drops of money can be a credible way to raise expectations of higher inflation and output in the
future.

Finally, our paper is related to the literature exploring the connection between the maturity
structure of the government debt and the time consistency of optimal fiscal and monetary policy.
In the context of a real model, Lucas and Stokey (1983) argue that a carefully chosen maturity
structure for government debt can make optimal fiscal and monetary policies time consistent when
taxation is costly. Alvarez, Kehoe and Neumeyer (2004) study an economy with nominal debt
and show that a portfolio can be chosen to deliver time-consistent policies if the Friedman rule is

optimal. Calvo and Guidotti (1992) show that a lower level of nominal government debt can help

3See Bassetto and Sargent (2020) for a review of the research on the interactions between monetary and fiscal
policy.

* Auerbach and Obstfeld (2005) and Gali (2019) show that money-financed stimulus can be expansionary at the
zero lower bound. However, they assume that money supply remains higher beyond the period of the liquidity trap, a
policy that is not time consistent. Benigno and Nistico (2022) and Michau (2022) also consider economies in which
helicopter drops can be expansionary but require a commitment of the fiscal authority to never undo the initial tax
relief. In the context of models with heterogeneous agents, studies such as Buera and Nicolini (2020) show that a
transfer to constrained agents financed by printing money can have stimulative effects. However, the same effects
can be achieved with issuing debt, a manifestation of the classic irrelevance of open market operations at the zero
lower bound. As explained above, our model breaks the standard irrelevance result of helicopter drops at the zero
lower bound while maintaining the neutrality of open market operations.



reduce the temptation to inflate ex post. Closer to our paper is the work of Bhattarai, Eggertsson
and Gafarov (2022), who study quantitative easing in a liquidity trap where the problem is that
the lack of commitment generates deflationary bias. They show that by shortening the maturity
of the consolidated government debt, quantitative easing provides incentives for the central bank
to slow down the exit from the liquidity trap because it is averse to losses in its balance sheet. In
our model, the central bank does not suffer losses on its balance sheet but intentionally engineers
a reduction in net worth through a helicopter drop.

The paper is organized as follows. Section 2 presents the model. Sections 3 and 4 present the

analysis of optimal monetary policy with and without commitment. Section 5 concludes.

2 Model

We consider a deterministic closed economy New Keynesian model with a representative agent,
a single final consumption good, a monetary authority, and a fiscal authority. Aside from the

monetary authority’s balance sheet constraints that we introduce, the model is entirely standard.

Monetary Authority. We start by considering the balance sheet of the monetary authority.
The monetary authority issues monetary liabilities M;, accumulates a nominal risk-free asset A;,
which pays a nominal interest rate t;, and makes nominal transfers 7, to the fiscal authority.® The

budget constraint of the monetary authority is given by

Ay
1+[t

+ Mt—l +17 = Mt + At—l- (1)

Note that we have written the risk-free assets as zero-coupon bonds. Correspondingly, let us
define the nominal beginning-of-period net worth of the monetary authority as N; = A; — M;.

Using this definition, we have that,

Lt

Nt :Nt—l +
1+

At — Tt.
Lt

Let i; = log(1 + 1;) be the corresponding instantaneous rate of interest, and we let

™™ (A i) = A(1—e™).

SAlso related is Jeanne and Svensson (2007), which shows how purchases of foreign currency assets can help
avoid a liquidity trap when the central bank faces a lower bound on the level of capital. Amador, Bianchi, Bocola and
Perri (2016) show how a large currency mismatch in a central bank can provoke an early abandonment of a floor on
the exchange rate, because of the risk of facing losses.

6 Alternatively, we could allow the monetary authority to make transfers directly to households. Because the model
features Ricardian properties in terms of debt by the fiscal authority, this alternative is equivalent to the current one.
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Then, N; < N;_; if and only if 7; > 7 (A;, i;). The value of 7* denotes the nominal net gains from
holding financial assets (1 X A) relative to the nominal cost of liabilities (0 X M). When the monetary
authority remits more than 7* to the fiscal authority, the net worth of the monetary authority falls
in nominal terms. Conversely, if remittances are lower than 7*, the net worth increases in nominal

terms.

We assume that the monetary authority needs to remit at least 7* every period:
7 > (A, iy), for all ¢, (2)

which implies that net worth cannot increase. In effect, this also means that the monetary authority
cannot count on equity injections by the fiscal authority. We also assume the only liability of the

monetary authority is the monetary base, M;. That is,
Ay > 0, for all . (3)

These two constraints, (2) and (3), imply that there is a lower bound on monetary liabilities

given by
M; > —N;_4. (4)

According to (4), lower net worth forces the monetary authority to keep a higher level of monetary
liabilities. The reason is as follows. If the monetary authority would like to reduce M;, it has to
either sell assets or reduce the transfers it makes to the fiscal authority. Because the monetary
authority is constrained to pay the minimum transfer and has to hold a minimum amount of
assets, it faces a limit to how much it can reduce its monetary liabilities.” In particular, selling all

its assets and paying the minimum transfer 7*, it can reduce the monetary liabilities up to —N;_;.5

The balance sheet constraints, (2) and (3), are our key departure from a standard model. Absent
either of these two constraints on the monetary authority, the model would have in effect a
consolidated budget constraint for the government. However, there is extensive evidence that

balance sheet constraints on central banks can actually have implications for monetary policy, an

"Notice that we could have allowed for a borrowing limit different from zero in eq. (3) (i.e., we could have written
it as A;/P; > a for given a). In that case, the constraint (4) would be M; > —N;_; + aP; and the results would be
similar, although the reduction in net worth necessary for (4) to bind would be larger.

8Given that we abstract from reserves held by commercial banks, we do not consider a policy of interest on reserves.
Allowing for payments on interest on reserves can help shift the composition of monetary liabilities away from
currency in circulation, thus achieving higher interest rates for a given net worth. Even though such an instrument
grants more flexibility to the monetary authority facing balance sheet constraints, there are also potential costs
and limits to its use. For example, given constraints on banks’ leverage, raising interest on reserves can lead to a
contraction in bank credit (see Bianchi and Bigio, 2022). We leave these issues for future research.



issue raised in early work by Stella (1997, 2005). As they note, countries generally have different
accounting rules that govern the required level of capital for the central bank, the rules for
dividends, and remittances, and these in turn, determine the ability to operate with a low level
of capital or to deal with operating losses.” Our modeling assumptions attempt to capture these
frictions between the fiscal and monetary authorities. Some recent literature (e.g., Hall and Reis,
2015, has focused on the effects of central bank losses). We note that in our analysis, the monetary
authority always makes profits. This is due to the fact that we do not have valuation effects
emerging from long-term assets or interest rate payments on the monetary liabilities.!’ Thus,
following the language of Benigno and Nistico (2020), constraint (2) implies that the monetary

authority is financially independent, and balance sheet policies are not necessarily neutral.

Fiscal Authority. There is a fiscal authority that collects the revenue received from the monetary
authority. In addition, it issues bonds and makes lump-sum transfers/taxes to households. Let B;

denote the level of debt of the fiscal authority. The fiscal authority budget constraint is

By
1+

+ 17 =T; + B, (5)
where T; represents the lump-sum transfers to households.

Households. There is a representative household that has the following preferences over

consumption and real money balances:

g/xw [u(c» +o (%)]

with f(t) = Hﬁzoe_(’”fs—l) < 1 the discount factor from period 0 to t. The value of ¢; is a time-
varying exogenous disturbance to the discount rate (and, as in Werning, 2011, this is the only
non-stationary parameter and the reason for a liquidity trap). The function u is assumed to be
strictly increasing, strictly concave, and differentiable in R*. The function v is differentiable in R*;
strictly increasing, and strictly concave in [0, m]; reaching a satiation point at m: v(m) = v(m) for

m > m.

%In the US, for example, the Federal Reserve Act requires the Reserve Banks to remit every year excess earnings after
expenses to the U.S. Treasury. When these excess earnings turn negative, a so-called “deferred asset” is accumulated.
After that, no remittance is made until earnings, through time, have been sufficient to cover that loss. However, a
large accumulation of the deferred asset would eventually call for fiscal support from the Treasury and potentially
compromise the independence of the Federal Reserve.

1°Qur analysis hinges on the requirement to transfer operating profits to the fiscal authority and a lower bound on
asset holdings (i.e, constraints (2) and (3)). Introducing additional elements to the model is left for future work.



The household faces the following sequential budget constraint:

W;

< My + Wiy + T; + PY, (6)

P,Cy + M; + <
1+

where P; is the price level, C; is the households’ real consumption, Y; is the households’ real
income (composed of real labor income and profits), and W; is the financial wealth net of money

holdings.

The household is subject to the following No-Ponzi condition:'!

W: + M;

tl)n;lo m > 0. (7)

The household’s problem is to maximize utility subject to the budget constraint, (6), and the
No-Ponzi condition, (7), taking prices and transfers as given. Letting 7; = log(P;/P;—1), we have

the following sufficiency result.'?

Lemma 1 (Sufficiency). Take a sequence of prices and transfers {P;, 1;, T;} and initial conditions P_,
W_1, 1_1. Let {Cy, My, W;} be such that (i) C; > 0 for allt > 0, (ii) the household budget constraint (6)
holds, (iii) the No-Ponzi condition (7) holds, (iv) the following first-order conditions (an Euler equation,

and a money demand condition)

u'(Gy) = eit_p_gt_ﬂ”lu,(ctﬂ),

’ Mt ’ It
=
U(Pt) u( t)l+lt

hold, and (v) the following transversality condition

W; + M;
im —— <0,
t=eo Hé:o(1+ls)

holds. Then the sequence {C;, My, W;} solves the household’s problem.
Proof. In the Appendix. m]

Note that we can collapse the No-Ponzi condition and the transversality condition into just

"Buiter and Sibert (2007) propose to use an alternative No-Ponzi condition that does not include money holdings.
Part of their argument is a potential difficulty with obtaining sufficiency results for the household problem. We show
in Lemma 1 that this is not an issue.

12We will impose the sufficient conditions of this Lemma as requirements for household optimality. For the necessity
of the transversality condition, we refer the reader to Kamihigashi (2002).



one condition at an optimal solution:

Wi + M;

v n) ®

Firms. The firms’ side of the model is in the standard New Keynesian tradition. The model
features monopolistic competition and Calvo-style sticky prices. Because these features are
standard, we work directly with the log-linearized version of the price setting equation (Phillips

curve):

7y = P + k(Y — 9), )

where f§ = e7” and for some parameters §j and k > 0. For simplicity, we set § = 0 in the rest of the

analysis.

Market Clearing. In an equilibrium, the goods market clears Y; = C;. In what follows, we

Cl—l/o’
1-1/0

assume that u(C) = . Letting y; = log(Y;), we have that the household Euler equation can be

written as:

Yr = Y1 — (it — M1 — p — &), (10)

which is the usual log-linear Euler equation (or the dynamic IS curve).

The first order condition for money holdings requires that 1; > 0. Let h denote the inverse of

v’, and using i; instead of 1;, we let
L(c,i) =h (v (e)(1-eh),

which is defined for i > 0, increasing in ¢, decreasing in i, and with L(c, 0) = m.

Thus, the money market clearing condition, together with C; = Y}, is equivalent to

— > L(y;, iy); with equality if i; > 0. (11)

2.1 Private Sector Equilibrium.

Let us define a private sector equilibrium. The economy starts at ¢t = 0 with the monetary
authority’s balance sheet given by A_; and M_4, an initial fiscal authority debt level B_;, and an

initial price level P_;."

BIn what follows, we use the notation {a,, by, ...} to refer to the sequences {a,}{,, {b:}52,, etc.



Definition 1. A private sector equilibrium is a sequence {y;, 7, i¢, P;, My, As, By, 7, T;} such that
forallt > 0 and

(i) households optimize; that is, (6), (8), (10), (11), hold for W; = B; — A; for all t > —1.
(ii) firms optimize; that is, (9) holds.
(iii) the zero lower bound constraint holds, i; > 0.
(iv) the budget constraint of the monetary authority, (1), holds.

(v) the budget constraint of the fiscal authority, (5), holds.

From the definition of equilibrium, it follows that the monetary authority’s balance sheet does
not restrict the private equilibrium set for {y;, 7, i;}. To see this, take a sequence {y;, 7, i; } that
satisfies (10), (9), and the zero lower bound. Then, we can use the initial price level to solve for the
corresponding {P;} and use the condition (11) with equality to recover a sequence for {M,} that
satisfies money market clearing. With this, we can then obtain {A;, B;} by setting any combination
such that (A; — B;y) = M, for all ¢ large enough, which guarantees that the transversality condition,
(8), holds. Finally, the implied transfers and taxes make sure that all the budget constraints hold.
This is a standard result, and justifies the common focus on just two equations, the Euler equation,
(10), and the price setting equations, (9), together with the zero lower bound constraint when

studying optimal policy.

Helicopter Drops and Balance Sheet Constraints. The constraint on the monetary aggregate
(4) that arises from the balance sheet considerations is based on the monetary authority’s net
worth, and not a notion of its “equity” value. To see the distinction between the two, let us iterate

forward on the budget constraint of the monetary authority. We get that'*

1-:1 ¢
Ni_1 + = (12)
! Z 1+ t,) SZ:; T_t 1+1;)

The left-hand side can be thought of as the “equity value” of the monetary authority: net worth
plus the future discounted value of “profits” (i.e. seigniorage revenue). This value must equal the
present discounted value of the “dividends”, that is, the transfers that the monetary authority
makes. If the transfers 7; were equal to or larger than the seigniorage revenue at all times, the
above would imply that net worth could not be negative. However, the minimum remittance

constraint, (2) operates on a nominal mark-to-market rule, as in practice.!® This leaves space for

Ar—-Mr
I, (+1,)

15See Hall and Reis (2015) for more details on this.

14WWe use that lim7_, e = 0, which follows from the household transversality condition and Condition 1.



Ts < 1sMs/(1 + 1), and thus a monetary authority that operates with negative net worth can, in

principle, be part of a private sector equilibrium.

We can rewrite the budget constraint of the monetary authority as follows:
(My = Mi—q) = (At = Ar1) + (7 = 75 (A i)

Thus, a change in the monetary base can be decomposed in a change in A, and a deviation of 7
from 7*. We will call the first component an “open market operation” and the second, a “helicopter
drop.” This means that if the monetary authority wants to increase M;, without a helicopter drop,
it needs to engage in an open market operation and purchase an amount of nominal assets equal to
the increase in the money supply. Alternatively, the monetary authority could increase M without

engaging in asset purchases by simply increasing 7 above 7*. This leads to our next definition:

Definition 2 (Helicopter Drops). A private sector equilibrium features a helicopter drop at time ¢

if Ty > T*(At, lt)

Recall that N; = A; — M;; thus, a helicopter drop necessarily reduces the nominal net worth of
the monetary authority. Note also that helicopter drops have no impact on the set of allocations
{ys, 7y, iy} consistent with private sector equilibria. As we discussed above, for any path of
{ys, m, i, } that satisfies (10), (9), and the zero lower bound, any combination of {A;, B;} such that
(A; — By) = M; where {M,} satisfies (11) is consistent with a private sector equilibrium. It turns
out that helicopter drops also have no effect on the set of private sector equilibria in the presence
of balance sheet constraints. To see this, let us first define what we mean by an equilibrium

consistent with balance sheet constraints:

Definition 3. A private sector equilibrium {y;, 7y, iy, P;, My, Ay, By, 11, T, } is consistent with balance

sheet constraints if equations (2) and (3) hold for all ¢.

We now show that helicopter drops do not change the set of allocations that are consistent

with equilibrium and balance sheet constraints.

Lemma 2 (Irrelevance of Helicopter Drops). Consider a private sector equilibrium {y;, m;, iy, Py,
M;, As, By, 7y, T;} that is consistent with balance sheet constraints. Let {1, A, Bt} be such that
ft = T*(At, it), At = Mt - M—l + A_l, and Bt = At - At. Then {yt; Ty, it, Pt, Mt, At, Bt, ft, Tt} is also

a private sector equilibrium consistent with balance sheet constraints.

Proof. Given 7; and A;, the budget constraint of the monetary authority is
At =M; — My +At—1 =M, -M_+A_,

10



where the last follows from repeated substitution of the value of A.

For the balance sheet constraints, letting A_l = A_;, we have
A=Ay =My =My > M= My — (5 — (A i) = Ay — Ary,

where we use that the original sequence satisfies 7; > 7*(Ay, i;). Thus At —At_l > A; —A;_q. Given
that A_l = A_4, it follows that At > A; and thus condition (3) holds at the new sequence given
that it holds at the old. For the new sequence, condition (2) holds with equality. Thus, the balance

sheet constraints are satisfied.

The budget constraint of the fiscal authority holds, given the construction of B;. Given that
B, —A; = Bt - At. the transversality condition (8) holds given that it was holding at the initial
equilibrium.

The new sequence then satisfies all of the conditions for a private sector equilibrium. O

The above Lemma tells us that if there is a helicopter drop at some t (that is, 7; > 7*), then
it is possible to find an alternative policy with 7; = 7* that is also consistent with equilibrium
conditions and where the balance sheet constraints are satisfied. For example, suppose that
starting from an original equilibrium, the monetary authority has increased M; at some time ¢
while simultaneously setting 7; > 7*. Such a policy reduces the monetary authority’s net worth at
time ¢ (this is a “helicopter drop”). Consider instead an alternative in which the monetary authority
conducts an open market operation at time ¢; that is, it increases M; by the same amount but uses
the proceeds to purchase assets, A;, while leaving 7; = *. The lemma above establishes that this
new policy is also consistent with the same original equilibrium outcome for {y;, 7y, i, Py, M} } and
consistent with balance sheet constraints.!®

So helicopter drops do not expand the set of private sector equilibria, even in the presence
of balance sheet constraints. Do balance sheet constraints matter at all for the set of private
sector equilibria?!” Take any allocation {y;, 7;, i;} that satisfies the Euler equation, the price
setting equation, and the zero lower bound constraint. Then, as long as the monetary authority
is well capitalized, we can find a policy under which this allocation constitutes a private sector

equilibrium.

16Tn the Lemma, the fiscal authority changes B, to adjust the budget. Alternatively, we could have the fiscal
authority to change T;. This would also work as long as the borrowing limit of the household remains satisfied with
the change.

17 Although related, our analysis is different from Benigno and Nistico (2020) analysis of the neutrality of the
monetary authority’s balance sheet. Benigno and Nistico (2020) considers an environment where the transfer policy
is fixed and the monetary authority chooses an interest on reserves and an asset portfolio. In this environment, they
analyze whether a sequence {n;, i;} is a private sector equilibrium for a given transfer/balance sheet policy. In our
case, we examine an endogenous transfer (while abstracting from interest on reserves and a portfolio decision), and
we ask instead whether the sequence {y;, 7, i; } constitutes a private sector equilibrium for at least one such policy.
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Lemma 3 (Balance-sheet irrelevance with sufficient initial net worth). Suppose that N_y = A_; —
M_; > 0. Consider a sequence {y;, 7, i;} that satisfies the Euler equation, (10), the price setting equa-
tion, (9), and the zero lower bound constraint, iy > 0. Let {P;} be the corresponding price level given
{m;} and P_y. Then, there exists a policy {M;, A;, By, 71, T; } such that {y;, my, iy, Py, My, Ay, By, 71, Th } is

a private sector equilibrium consistent with balance sheet constraints.

Proof. The proof is constructive. For t > 0, let

M; = P;L(e", i;)
At = Mt +A_1 - M_1

Tt = ™ (At, it)

Bt :At _Mt
B,
T; = + 17 — Bi-1
1+lt

Condition (i) of the private sector equilibrium definition holds, as the household budget
constraint, (6), holds with W; = B;—A;, the Euler equation (10) holds by assumption, by construction
the money demand condition, (11), holds as well, and the private sector total net financial wealth
(inclusive of money holdings) M; + B, — A; = 0 for all ¢+ > 0, implying that the transversality
condition (8) holds. Conditions (ii) and (iii) hold. And by construction, the budget constraints
of the monetary and the fiscal authority hold as well. The sequence constitutes a private sector
equilibrium. Given that A_; — M_; > 0, it follows that A; > 0, as M; > 0 and (3) holds. Finally, by

construction condition (2) holds with equality. Thus, the balance sheet constraints are satisfied. O

Lemma 3 thus tells us that, as long as the monetary authority initial net worth is non-negative,
any sequence that satisfies the Euler equation, the price setting equation, and the zero lower bound
constitutes a private sector equilibrium for some policy. Lemma 2 in addition tells us (and the
proof of Lemma 3 explicitly shows) that it suffices to consider policies without helicopter drops.
Note that for these irrelevance results to hold, we require changes to the policies followed by the
monetary and fiscal authorities. But we have not yet discussed how these policies are decided and
whether the monetary and fiscal authorities will actually follow them. Our next goal is to analyze

how policies are chosen. For that, we need to specify the monetary and fiscal policy objectives.

Monetary Policy Objective. We assume that the monetary authority seeks to minimize de-

partures from zero for both inflation and the output gap. Specifically, the monetary authority
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evaluates welfare according to the following objective function:

(o)

Z e P'W (11, 1), (13)
1=0
where W encapsulates the objective of keeping inflation and output close to the target and is

strictly maximized at W (0, 0).

Fiscal Policy Objective. The fiscal authority is assumed to select a path of {B;, T; } such that its
budget constraint holds at all times. The only additional restriction we will impose is that the real

net assets/liabilities of the fiscal authority do not explode:

Condition 1 (Non-Ricardian Fiscal Policy). In a private sector equilibrium, the fiscal authority does

not accumulate unbounded liabilities or assets:

: B,
lim ——— =0
t=0o Hs:O(l + lS)
That is, the fiscal authority does not accumulate unbounded claims or liabilities. As we will see
below, in our environment, this restriction rules out the deflationary trap equilibria of Benhabib,
Schmitt-Grohé and Uribe (2001a, 2001b, 2002) that otherwise will be pervasive in the analysis

without commitment.'®

3 Commitment Solution

We start by analyzing the optimal monetary policy under commitment. The monetary authority’s
problem is as follows: the monetary authority maximizes its objective function by choosing a
sequence {y;, 7y, iy, My, Ay, 7; } while the fiscal authority selects a sequence of {B,, T;} such that
{ys, s, iy, My, As, 71, By, T; } constitutes a private sector equilibrium consistent with balance sheet
constraints. In this case under commitment, we are assuming that the monetary authority chooses
the equilibrium outcome as long as it satisfies the required equilibrium conditions. We are left
to guarantee that the path of the fiscal authority’s real debt remains bounded, as specified in

Condition 1. We will discuss this last point at the end of this section.

Lemma 3 implies that if A_; > M_;, we can ignore balance sheets at all times and focus on

18Benhabib et al. (2001a) refer to a fiscal policy that guarantees that the household transversality condition holds
for all possible paths of prices as a “Ricardian policy.” Condition 1 makes this impossible if, for a given allocation, the
balance sheet of the monetary authority were to grow faster than the interest rate. This relates to the fiscal theory of
the price level, see also Woodford (2001), and Kocherlakota and Phelan (1999) for summaries. For a game-theoretical
analysis of the equilibrium selection issues that arise, see Bassetto (2002).
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{ys, 7y, iy} when solving for the optimal policy under commitment. In the rest of the paper, we
will narrow attention to this case of A_; > M_y, as it starkly showcases the difference between

the commitment and the no-commitment solutions.

3.1 Liquidity Trap under Commitment

We illustrate the commitment solution in the event of a liquidity trap. We let the monetary

authority’s objective be!’
W(my) = ~|(1-)7* + oy’ |.
for ¢ € [0,1]. And let & be

;= & ift=0, (14)

0; otherwise.

To solve the model under commitment, we assume that the initial net worth is positive (so that
the balance sheet constraints do not bind). In this case, the problem under commitment is in effect,
a discrete-time version of Werning (2011), with the liquidity trap lasting for one period (See also
Eggertsson and Woodford (2003) and Jung et al. (2005) for related setups).

Numerical Results. Each period represents a quarter. We set values for the discount rate
to p = 0.01 and the intertemporal elasticity of substitution to ¢ = 0.5. The value for the slope
of the Phillips curve is set to k = 0.35, which is in the middle range of those typically used in
calibrations of New Keynesian models. The coefficient on the output gap in the loss function is
set to ¢ = 0.05.%° In addition, we set the shock to the natural rate to 5 = —0.12. In the solution
without helicopter drops, this shock will generate a fall in output of 6%. Finally, we let money
demand be approximated by L(y, i) = 0e¥™"" (although, as we discussed above in Lemma 3, this
does not affect the commitment solution for y;, 7, i;). We set the interest rate elasticity of money
demand to n = 0.5, a standard value (see, e.g., Benati, Lucas, Nicolini and Weber, 2021), and the
intercept 6 to match a ratio of currency to GDP of 10%.

Figure 1 presents the numerical results. The figure shows the path for output, inflation, and

the nominal interest rate. In line with existing results in the literature, the economy experiences

9This objective can be derived from a second-order approximation to welfare around an efficient equilibrium with
zero inflation and following Woodford (2011)’s cashless limit. Efficiency requires a subsidy on production to undo the
monopolistic distortions (see Woodford, 2011, chapter 6, for details).

20This value may seem small, but it is standard in the literature. Indeed, a second-order approximation of the
welfare function in the canonical New Keynesian model delivers a relative weight of k divided by the elasticity of
substitution between differentiated inputs. Although we do not model this, our choice of ¢ would be consistent with
the value we set for x and an elasticity of substitution of 7.
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Figure 1: Simulation under Commitment

Note: Output gap, inflation, and the nominal interest rate are expressed as percentages. The x-axes

represent time.

deflation and a negative output gap at t = 0; to optimally manage the liquidity trap, the monetary
authority maintains nominal interest rates low beyond the duration of the liquidity trap. In the
example presented, lift-off occurs after 4 periods, while & goes back to zero for t > 1.

To complete the analysis, we can specify the balance sheets and transfers. Ricardian equivalence
means that these are not pinned down, but it suffices to use the sequence described in the proof of

Lemma 3, which guarantees that the fiscal authority debt position satisfies Condition 1.

4 Policy without Commitment

We now study the equilibrium in which the monetary authority cannot commit. We focus on
Markov equilibria. This is the equilibrium concept used in several previous papers, such as Albanesi,
Chari and Christiano (2003); Eggertsson (2003); Adam and Billi (2007); Armenter (2018); Nakata
and Schmidt (2019). We will narrow attention to the monetary authority’s problem. We assume
that the fiscal authority selects a path of debt and taxes consistent with its budget constraint. We

rule out as an equilibrium outcome any allocations where the fiscal path violates the boundedness

of the fiscal authority’s real debt (Condition 1).

4.1 Markov Equilibrium: The Stationary Case

First, let us consider the stationary case, in which & = 0 at all times. The state variables at time ¢
are the inherited balance sheet positions, M_, A_, and the previous period price level, P_. As usual

in monetary models, it suffices to carry M_/P_ = m_ and A_/P_ = a_ as state variables. But, as

we show below, we can further simplify the state space.
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In a Markov equilibrium, the monetary authority takes as given the private sector expectation
functions of next-period’s output and inflation. At the beginning of the period, the monetary
authority inherits its balance sheet, m_ and a_, and chooses y, 7z, i, m, a, and 7 = e"7/P_ to
maximize its objective function, subject to the Euler equation, the price setting equation, the zero
lower bound constraint, the money market clearing condition; its budget constraint, and the two

balance sheet constraints. The budget and balance sheet constraints (1)-(3) can be written as
a>0; e la+m_+7=e"m+a_;and7 > (1-e)a.

Defining n = a_ — m_, and n’ = a — m, these constraints are equivalent to

m>-n; nxe'n.
The next step is to notice that the inherited values of m_ and a_ do not affect any other constraint,
and thus we can simply use real net worth, n, as the only state variable.
We let V(n) denote the value function of the monetary authority as a function of its net worth
and Q its domain set. The functions Y (n) and II(n) denote the private sector expectations of

future output and inflation. The monetary authority’s problem can be written as®!

V(n)= max W(ry)+pV(n) (15)
(y,7r,i,n’ €Q)

subject to:
y=Y(n) - oli ~TI(x') - p) (16)
= PII(n") + ky (17)
i>0, (18)
L(eY,i) > -n"if i >0 (19)
n>e'n'. (20)

The first two constraints, (16) and (17), are the Euler and price setting equations. The next
constraint, (18), is the zero lower bound on the nominal interest rate. Constraint (19) is the balance
sheet constraint (a > 0) with the money market equilibrium. The final constraint, (20), is the

bound on net worth implied by the lack of fiscal support (r > 7*).
The last two constraints of Problem (15) reflect the key innovation of the paper. Notice that

constraint (19) is relaxed with a choice of a higher n’. Intuitively, a higher end-of-period net worth

21n writing this, we use that if i = 0 then, it is always possible to find an m’ large enough such that the money
market clearing condition holds, m” > L(eY,i), and n’ > —m; and thus these constraints on m’ can be ignored. If
i > 0, however, then we must have that m’ = L(eY,i) > —n’.
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implies that higher monetary liabilities must be carried to satisfy the lower bound constraint
on asset holdings. On the other hand, a higher end-of-period net worth tightens constraint (20)
as it would require higher inflation to satisfy the minimum real remittances that the monetary
authority must transfer. Note that together these two constraints imply e”L(e?,i) > —n. The
monetary authority cannot increase i (and reduce the money supply) unless it has enough net
worth.

Further inspection of the monetary authority’s problem, (15), shows that the inherited net
worth, n, only appears in the last constraint. It follows then that increases in n relax the monetary
authority’s problem, which guarantees that the value function V(n) must be (weakly) increasing
in net worth. The result that the value function is monotonic in n raises the question of why would
the monetary authority ever conduct a helicopter drop that would deplete its net worth and thus
lower its continuation value. The answer has to do with how, during a liquidity trap, a low net
worth induces higher inflation and output in the future, affecting private sector expectations (the
Y and II functions), something we will discuss below.

Let N (n) denote the corresponding policy functions for the net worth evolution. With this,

we are ready to define a Markov equilibrium for this case:

Definition 4. A Markov equilibrium (in the stationary case) is given by a set Q and functions
V,Y,II, N such that V solves the monetary authority’s problem given Y and II for all n € Q; and

Y, 11, N are optimal policy functions for output, inflation, and real net worth.

Starting from any n_; € Q, we can obtain the implied equilibrium paths for {y;, 7, iz, n¢}
by iterating on the policy functions. When is this sequence consistent with a fiscal policy that
satisfies Condition 1? The answer relies on the long-run behavior of the sequence {n;}. To see

this, suppose that the sequence {n; [[._, ¢™} does not converge to zero. Then, we have that

t t

- M, — A P, /P,_ M, — A
0# lim —n; n ™7l = lim — ! l—[ /Pt = lim Z ! )
t—00 0 t—00 Pt 0 1+ t—00 P_1 Hs:O(l + [S)

For the household transversality condition to hold, it would be necessary that

. B;
lim - +
t=00 P—l Hs:()(l + lS)

0,

a contradiction of Condition 1. If however, the sequence {n; ]—[220 emsTis} converges to zero, then it
is possible to construct a fiscal policy that generates a private sector equilibrium where Condition
1 holds. We will restrict attention to Markov equilibria consistent with the fiscal requirement in

Condition 1:
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Definition 5. A Markov equilibrium (Q, V, Y, 11, N) is fiscally consistent if for all ny € Q, the

resulting equilibrium path of {ny, i;, 7;} is such that

t

lim n; 1—[ e = 0. (21)

t—o00
s=0

Ruling Out The Deflationary Trap. The environment we are analyzing has the potential for
multiple Markov equilibria, a characteristic that has been highlighted by Albanesi et al. (2003);
Armenter (2018); Nakata and Schmidt (2019).

Armenter (2018) and Nakata and Schmidt (2019) show that there exists a “deflationary trap”: in
our case 7 = —p,y = —p(1 — f)/k. If the private sector expects these levels of inflation and output
tomorrow, then setting i = 0 delivers them as outcomes today per equations (16) and (17). And
with these expectations, there is not much the monetary authority can do, as raising the nominal
interest rate above zero further lowers inflation and reduces output (and thus welfare).?> The next

question is whether this deflationary trap is consistent with the fiscal condition 1.

Using condition (20), we can see that in this expectational trap (as i = 0),

n<e g =e Ty < ... < e,

T thm (1D (t41)

n; < n_g

And thus, if n_; < 0, the deflationary trap is not fiscally consistent, as it necessarily violates (21).
Note that we can use the above to also rule out transitional paths that converge to the deflationary
trap. This argument does not work if n_; > 0, but in this case, given that we know that the
value function is monotonic, setting i = 0 and reducing n’ suffices to also eliminate the trap as an

equilibrium outcome.?

The Best Possible Equilibrium. Once we have ruled out the trap outcome, the next question

is whether the best allocation (7 = 0 and y = 0 at all t) constitutes an equilibrium. Note that in

22The existence of this deflationary trap is anticipated by the self-fulfilling liquidity traps of Benhabib et al. (2001b;
2002) in their analysis of a monetary authority that adheres to a (non-optimizing) Taylor rule but faces a zero lower
bound constraint on nominal rates.

23Benhabib et al. (2001b; 2002) also point out that fiscal policy can be used to rule out deflationary traps in their
environment. In their analysis of speculative hyperinflations with a money rule, Obstfeld and Rogoff (1983) mention
the argument of Brock (1975) to rule out speculative deflations under a constant-money rule. The argument relies on a
violation of the household’s transversality condition when real money balances grow without limits (an argument
similar to the one we use here). It is worth pointing out that such speculative deflations could be an equilibrium
if the government were to simultaneously accumulate unbounded claims on the private sector to counter-balance
the growth on real money holdings, a situation that Obstfeld and Rogoff (1983) do not consider (see footnote 26 of
Woodford, 2001, for a related discussion). In our case, the fiscal authority cannot accumulate such claims, as it violates
Condition 1, and the monetary authority cannot either, as it is operating under balance sheet constraints.
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this case, i; = p > 0, and thus the zero lower bound constraint is automatically satisfied. Let us
define n* = —L(1, p). We assume that n* € interior(Q).

If n > n*, then the {m; = 0,y; = 0} allocation can be implemented as an outcome of a Markov
equilibrium in which the monetary authority maintains a constant level of net worth, n; = n,
and chooses 7 = 0,y = 0 every period. Given that this allocation achieves the maximum welfare
possible, there are no incentives for the monetary authority to deviate from it at any time if future
monetary authorities follow this strategy.

However, if n < n*, then this best allocation is no longer a possible choice: the monetary
authority lacks sufficient net worth to implement it. Let’s explore the following alternative feasible
policy. At t = 0 (given that n < 0), the monetary authority chooses a sufficiently high level of
inflation to guarantee that n’ = n* is a feasible choice. In this way, the monetary authority can
guarantee that the first best allocation is achieved from period t = 1 onward at the cost of a
positive inflation rate in ¢ = 0. The monetary authority may choose a less drastic policy of setting
inflation above zero at t = 0 and increasing n’ above n, but not enough to get to n*. Doing so may
result in an equilibrium where inflation and output are above their first best values for longer

than one period.

To provide some additional intuition, we will assume below that the Markov equilibrium
delivers inflation and output policy functions that are monotonically decreasing in n below n*
(a result we will confirm in the simulations below). Together with a continuity condition, these

imply that helicopter drops are not used away from the zero lower bound:

Lemma 4 (No Helicopter Drops Away from ZLB). Suppose that I1(n) and Y (n) are weakly
decreasing and continuous functions of n and that I1(n) > 0 forn < n*. If for n < n*, the solution to
the monetary authority’s problem features i > 0, then, it must also feature that constraint (20) holds

with equality.
Proof. In the Appendix. O

The above result connects the potential use of helicopter drops to a binding zero lower bound
constraint on nominal rates. To see this, note that if constraint (20) holds with equality, it follows
that nominal net worth is unchanged. And thus, 7 = 7*, that is, there is no helicopter drop. So,
if helicopter drops are to be used in a Markov equilibrium (that satisfies the assumptions of the
lemma), it is because nominal rates have already reached zero. Whether or not helicopter drops
are used in equilibrium is something we will discuss in further detail in the liquidity trap section
below.

The following lemma establishes that the nominal interest rate is increasing in n, and therefore

demonstrates that when conducting a helicopter drop, the monetary authority will induce lower
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levels for the nominal interest rate going forward.

Lemma 5. Suppose that I1(n) and Y (n) are weakly decreasing and continuous functions of n. If the
solution to the monetary authority’s problem features i > 0 and constraints (19) and (20) hold with

equality, then i is increasing in n, and w and y are decreasing in n.
Proof. In the Appendix. O

Let us provide some intuition for this result. Suppose that indeed Y and II are decreasing
functions of n, achieving the best possible values for n > n*. Accordingly, the monetary authority
would like to choose a high n’, to reduce deviations from the best allocation tomorrow and a
nominal interest rate consistent with low inflation and output deviations today. But a low value
of net worth today, n < n*, limits its ability to do this. To see this, let us put together (19) and (20)
and obtain the necessary condition we mentioned previously: e”L(eY, i) > —n. This implies that
low real net worth today effectively imposes a lower bound on money balances. As a result, the
nominal interest rate cannot be too high (as L is decreasing in i). For a fixed n’, from (16) and
(17), it follows that a lower nominal interest rate leads to higher inflation and output today. A
lower choice of n’ reinforces this effect, operating through the expectation functions Y and II. The
overall effect is therefore monotonic: the lower the net worth is, the lower the nominal interest

rate, resulting in higher inflation and output.

We proceed to study the Markov equilibrium numerically.

Numerical Results. To solve the model, we impose that the equilibrium delivers the best
allocation for n > n*. We then extend the equilibrium to the rest of the state space.”* Here, we

continue to use the same parameter values as in the previous section.

Figure 2 presents the results that arise from a Markov perfect equilibrium in the stationary
environment. The vertical line represents the value of n*. Panels (a), (b), and (c) show output,
inflation, and the nominal interest rate as a function of current net worth. Notice that there is a
kink at the level of net worth at which the balance sheet constraints become binding. For relatively
high levels of net worth (i.e., n > n*), the monetary authority can choose the first-best level of
inflation and output by setting i = p, as reflected by the flat region in the figures. For relatively
low levels of net worth, the nominal interest rate is increasing in current net worth, while inflation

and output are decreasing in current net worth, as established in Lemma 5.

Panel (d) shows the next-period net worth, n’, as a function of current net worth, n. Again,

when current net worth is high, the balance sheet constraints are not binding, and the monetary

24Even though we ruled out the deflationary trap outcome (and paths that converge to it), we do not have a proof
of uniqueness of Markov Equilibria.
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authority can choose to keep real (and nominal) net worth constant. On the other hand, when
n < n*, we have that nominal net worth remains constant, implying that real net worth grows at
the rate of inflation. This is because as shown in Lemma 4, the monetary authority chooses not to

do helicopter drops in the stationary case.

(a) Output Y (n) (b) Inflation I1(n) (c) Nominal Rate
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2
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Figure 2: Stationary Environment and Markov Equilibrium

Note: This figure shows the equilibrium policies y, 7, i, n” and value V as a function of net worth,
n. The vertical line indicates the value of net worth at which the balance sheet constraints cease
to bind. All variables in the y-axes, with the exception of net worth, are expressed as percentages.

Panel (e) of Figure 2 shows the value function. The value function is constant and achieves a
zero loss for n > n*, as discussed. The value function falls as net worth falls below n* given the
negative output gap and positive inflation that arise in equilibrium.

Finally, let us highlight that helicopter drops are never used in this stationary environment:
constraint (20) always holds with equality, as stated in Lemma 4. There is no need to use helicopter
drops in this stationary environment as long as i > 0. We will see below how this result changes

once we move to the liquidity trap environment.
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4.2 Markov Equilibrium: A Liquidity Trap

We now return to the liquidity trap environment of Section 3.1 and let the path of £ be as in (14):
temporarily low at ¢t = 0 and zero afterwards. Note that from period t = 1 onward, the equilibrium
is as described in the stationary environment section, and thus we can use the previously computed

Y (n), II(n), and V(n) as the continuation policies and value function.

We are interested in the Markov equilibrium starting from period ¢ = 0, the period of the

liquidity trap. In this period, the problem of the monetary authority is

Vo(n) = max W(r,y)+ pV(n')
(y,7r,i,n’ €Q)

subject to:
y=Y () -oli~1(n)~p-9
= PII(n") + ky
i >0,
L(e%,i) > -n"ifi>0

n>e'n

Note that the only difference with the stationary case is the presence of the discount factor shock
5 in the Euler equation.

We will assume, as in the commitment analysis, that the initial net worth is sufficiently high
so that the balance sheet constraints do not bind at time ¢ = 0. For simplicity, we set it to zero.
Using the same numerical parameters of previous sections, we proceed to compute the equilibrium
policy.

Figure 3 shows the equilibrium outcomes that would result in period ¢ = 0 as functions of the
level of net worth chosen in period 0 (i.e., the starting value of 0 minus the size of the helicopter
drop). The vertical line represents n*, and the solid dots represent the optimal policies chosen by

the monetary authority.

The top panels of Figure 3 show the effects on output and inflation of a helicopter drop in
period t = 0. A larger helicopter drop generates higher inflation and output in period 0, relative to
the case without helicopter drops (which corresponds to the levels above n*, at the flat region).
As shown before in Figure 2, a lower net worth starting in period 1 implies higher inflation and
output in the future, and this increases current output and inflation.

The bottom panels show the trade-off faced by the monetary authority. In the bottom right
panel, one can see the helicopter drop that maximizes the objective function during the liquidity

trap. The bottom left panel shows that it is possible to further increase the current value W, with
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Figure 3: Liquidity Trap and the Markov Equilibrium

Note: This figure shows how different levels of net worth chosen at t = 0 affect allocations and
welfare at t = 0. All variables in the y-axes are expressed as percentages.

an even larger helicopter drop, but this would come at the expense of raising future losses. The

optimal helicopter drop turns out to be roughly 2.5 percentage points of annual GDP.

Comparison with Commitment Solution. We now compare the simulation outcomes over

time of the economy under commitment with the simulations for the Markov perfect equilibrium

with and without helicopter drops. In all cases, we initialize the economy at ¢t = 0 with a high

enough net worth so that balance sheet constraints do not initially bind, and we feed the economy

with the same shock g; used above.
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Figure 4 presents the results. The red dashed line represents the Markov perfect equilibrium
without helicopter drops. This economy features the standard outcome of 7; = 0,y; = 0 from
t = 1 onward. One can see that this economy experiences a much larger recession and deflation
compared to the commitment solution. This is because when the government can commit, it

promises inflation and an output boom from ¢ = 1 onward, which mitigates the recession at ¢t = 0.

The Markov perfect equilibrium with helicopter drops is represented by the solid blue line. As
the figure shows, helicopter drops are quite effective at alleviating the liquidity trap. Relative to

the equilibrium without helicopter drops, the monetary authority is able to reduce the output gap

(a) Output

(b) Inflation
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I == =No Helicopter Drop ! == =No Helicopter Drop
m— Helicopter Drop m— Helicopter Drop
6l ‘ ‘ ‘ 29 ‘ ‘ ‘
0 2 4 6 8 0 2 4 6 8

/ = ==Commitment
== =No Helicopter Drop -
m—e Helicopter Drop

0 2 4 6 8

Figure 4: Simulation Comparison

Note: This figure shows the simulations for the three economies starting from a liquidity trap at t = 0.
All variables in the y-axes are expressed as percentages. The x-axes represent time.
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from —6% to —4% and deflation from —2.2% to —0.5%. As explained above, this is because the use of
helicopter drops implies that the monetary authority will keep interest rates lower for longer after
the liquidity trap is over. It is worth highlighting that the optimal use of helicopter drops achieves
almost as much output stabilization as the commitment solution. The downside, however, lies in
the evolution of inflation. While the amount of inflation is more short-lived under commitment,

the economy with helicopter drops experiences a more protracted period of inflation.

5 Conclusion

We presented a simple theory of how helicopter drops of money can be effective during a liquidity
trap, in contrast to standard irrelevance results. The key elements of the theory are the presence
of balance sheet constraints and the lack of commitment of the monetary authority. When the
monetary authority engages in helicopter drops, it reduces its net worth and is induced to keep
the money supply higher in the future. As a result, this triggers expectations of higher inflation
and output and mitigates the recessionary effects of a liquidity trap.

We finish with a few caveats and observations. First, central banks usually do not have the
ability to provide direct transfers to households, but this restriction may change with changes in the
political environment or innovations in financial markets. Second, as with any commitment tool,
there is a trade-off between commitment and flexibility: a helicopter drop provides commitment
but removes future flexibility in the conduct of monetary policy. Indeed, this is why a helicopter
drop can be useful during a liquidity trap. But it could become costly if the central bank needs to
unexpectedly reverse a previous monetary expansion. Finally, our theory introduced a balance
sheet constraint that takes the form of a sharp limit on the evolution of the central bank’s net
worth. Future work can more clearly identify and measure the presence and nature of such

constraints and their interactions with fiscal and monetary policy.
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A Omitted Proofs

A.1 Proof of Lemma 1

Proof. The argument here follows Buiter and Sibert (2007), except for the use of a different No-
Ponzi condition. Let {C}.M}, W;*} be a sequence that satisfies the conditions in the Lemma. Let

{C:, My, W, } be any alternative sequence.
Define D to be

T
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where the first inequality uses concavity, the first equality uses the household budget constraint,
the second one rearranges terms, the third one uses the Euler equation and the first order condition
for money holdings, the fourth simplifies, the fifth uses the Euler equation once more, the sixth
simplifies, and the last inequality uses the No-Ponzi condition for the alternative allocation
{C, My, W;}. The transversality condition stated in the Lemma implies that D < 0, completing the
proof. O

A.2 Proof of Lemma 4

Proof. Let n < n* and let (y, 7, i,n") be an optimal solution to the monetary authority problem

with i > 0. Suppose that constraint (20) is slack.

Given a sequence of prices {p;};°, and a sequence of borrowing limits {y;},>_,, let 8; and 7(511

be the policy functions for the repaying banks; and K

111 be the policy function for the defaulting

banks. Then, we have the following

Consider an alternative choice. Let i’ = n’ + ¢; for some €; > 0; and let i and 7 be

i=

% (Y (") —y+oll(A') + op] < % (Y (n') —y+oll(n) +op] =i

= pPI(A") +ky < PII(n') +ky =7
where the inequalities follow from the monotonicity of Y and II. This also implies that 7 > 0 (as
y > 0 and II(#’) > 0). The values of (y, 7, i) satisfy equations (16) and (17) by construction.

Continuity of Y and IT implies that we can find ; > 0 small enough such that i > 0 and # > 0.
Given that (20) is slack at (n’, ), continuity of the policies also implies that we can find €; small
enough so that (20) remains slack at (7, 7). Now note that L(e¥,1) > L(e¥,i) > —n’ > —#’, and
thus (y, 7, i ) is such that constraint (19) is also slack.

The policy vector (y, 7, i, ') so constructed satisfies all of the constraints of the monetary
authority problem at n (for ¢, > 0 small enough). Note that as 7 € [0, 7], it follows that
W(#x,y) > W(m,y). In addition, V(A") > V(n’) by the monotonicity of V. So the new policy
vector is also an optimal policy.

If n’ > n*, then we have that y = —o(i — p) and 7 = —ko (i — p). From (20), it follows that
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—L(1,p) =n* > n > e"™n > e"n* = —e"L(1,p), and thus 7 > 0,i < p and y > 0. Note that

n’ > n* also means that i = i and # = 7. Consider then the alternative policy:
p=i4+€; UY=y-—oey M =T —KOe

The policy (y, #, i, #") satisfies (16) and (17) and i, > 0 for €, > 0. Given that constraints (19), (20)
are slack at (y, 7, i, "), they remain slack at (g, 7, iy, ") for small enough €, > 0. It follows that
for small enough e, > 0, the allocation (i, /2, I, ') represents a strict improvement as output and
inflation are strictly lower and closer to their optimal levels. And thus, the original policy could
not have been optimal.

Consider now the case where n’ < n*. If # < 7, then policy (v, #, i, i’) is an improvement, and
thus, the original policy is not optimal. If # = 7 > 0, then we can construct a policy (i, 7z, iz, ')
as above for some €, > 0 small enough. The only detail left is that we do not have that y > 0.
But for a small €;, the change in y has a second-order effect in W, while the effect of r is first
order, guaranteeing the existence of an improvement. The case of 7 = 0 is ruled out under the

assumption of the lemma that II(n) > 0 for n < n*.

Thus, we have argued that if (20) does not hold with equality, we can construct a strict

improvement under the assumptions of the lemma, generating a contradiction. O

A.3 Proof of Lemma 5

Proof. From Lemma (4), we know that the two balance sheet constraints hold with equality. We

therefore have that the equilibrium is given by

0 (2)-afi-n(Z) ). w
=PIl (ei’f) + K, (A.2)
L(e%,i)e" =—n. (A.3)

For simplicity, let us assume that the functions Y and II are differentiable. Totally differentiating

the expressions above, we obtain

e"dy +e"adi+n(cll'(n') + Y'(n'))dr =(cll'(n’) + Y'(n’))dn (A.4)
—ke"dy + (" + nll'(n))dx =pI'(n")dn (A.5)
oL oL dn
=y i Y Vg = — -
7E dy + > di+ L(e%,i)dn = (A.6)
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where we used the following

oL (dn—-nd oL .
dL == (eydy +Y () (%)) +=di (A7)
dy = Y' (') (d”;—ﬂ”d”) (A.8)
dIl = IT' (n') (d”;—ﬂ”d”) (A.9)

The system (A.4)- (A.6) is a linear system in three equations and three unknowns {dy, di, drx} for
arbitrary dn. Solving for these variables, and using that n < 0,Y"(n) < 0, 7'(n) < 0, we obtain
di dy

= < 0.

i dr
%>0’%<0’dn
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