

NBER WORKING PAPER SERIES

GLOBAL HIGH-RESOLUTION ESTIMATES OF THE UNITED NATIONS HUMAN
DEVELOPMENT INDEX USING SATELLITE IMAGERY AND MACHINE-LEARNING

Luke Sherman
Jonathan Proctor
Hannah Druckenmiller
Heriberto Tapia
Solomon M. Hsiang

Working Paper 31044
<http://www.nber.org/papers/w31044>

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue
Cambridge, MA 02138
March 2023, Revised August 2025

This work was supported by a grant from the Human Development Report Office of the United Nations Development Programme. We thank Pedro Conceicao and seminar participants at The Workshop in Environmental Economics and Data Science, the WIDER Development Conference (Bogota), IDinsight, and the American Geophysical Union Fall Meeting for their valuable feedback. We thank the Global Data Lab for sharing DHS cluster-level data on the International Wealth Index. The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications.

© 2023 by Luke Sherman, Jonathan Proctor, Hannah Druckenmiller, Heriberto Tapia, and Solomon M. Hsiang. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.

Global High-Resolution Estimates of the United Nations Human Development Index Using Satellite Imagery and Machine-learning

Luke Sherman, Jonathan Proctor, Hannah Druckenmiller, Heriberto Tapia, and Solomon M. Hsiang

NBER Working Paper No. 31044

March 2023, Revised August 2025

JEL No. C1, C8, I32, R1

ABSTRACT

The United Nations Human Development Index (HDI) is arguably the most widely used alternative to gross domestic product for measuring national development. This is in large part due to its multidimensional nature, as it incorporates not only income, but also education and health. However, the country-level resolution of the global HDI data released by the Human Development Report Office of the United Nations Development Programme (N=191 countries) has limited its use at the local level. Recent efforts used survey data to produce HDI estimates for first-level administrative units (e.g., states/provinces). Here, we build on recent advances in machine learning and satellite imagery to develop the first global estimates of HDI for second-level administrative units (e.g., municipalities/counties, N = 61,530) and for a global $0.1^\circ \times 0.1^\circ$ grid (N=819,309). To accomplish this we develop and validate a generalizable downscaling technique based on satellite imagery that allows for training and prediction with observations of arbitrary shape and size. This enables us to train a model using provincial administrative data and generate HDI estimates at the municipality and grid levels. Our results indicate that more than half of the global population was previously assigned to the incorrect HDI quintile within each country, due to aggregation bias resulting from lower resolution estimates. We also illustrate how these data can improve decision-making. We make these high-resolution HDI estimates publicly available in the hope that they increase understanding of human wellbeing globally and improve the effectiveness of policies supporting sustainable development. We also make available the satellite features necessary to increase the spatial resolution of any other administrative data that is detectable via imagery.

Luke Sherman

University of California, Berkeley

lsherman@berkeley.edu

Jonathan Proctor

University of British Columbia

Food and Resource Economics

jon.proctor@ubc.ca

Hannah Druckenmiller

California Institute of Technology

and NBER

hdruck@caltech.edu

Heriberto Tapia

Human Development Report Office,

United Nations Development Programme

heriberto.tapia@undp.org

Solomon M. Hsiang

Stanford University

and NBER

solhsiang@stanford.edu

Global high-resolution estimates of the United Nations Human Development Index using satellite imagery and machine learning

Luke Sherman^{1*}, Jonathan Proctor^{2*†}, Hannah Druckenmiller³, Heriberto Tapia⁴, Solomon Hsiang¹

¹Global Policy Lab, Stanford University

²University of British Columbia

³California Institute of Technology

⁴Human Development Report Office, United Nations Development Programme

* equal contribution

† correspondence: jon.proctor@ubc.ca

August 2025

Abstract

The United Nations Human Development Index (HDI) is arguably the most widely used alternative to gross domestic product for measuring national development. This is in large part due to its multidimensional nature, as it incorporates not only income, but also education and health. However, the country-level resolution of the global HDI data released by the Human Development Report Office of the United Nations Development Programme (N=191 countries) has limited its use at the local level. Recent efforts used survey data to produce HDI estimates for first-level administrative units (e.g., states/provinces). Here, we build on recent advances in machine learning and satellite imagery to develop the first global estimates of HDI for second-level administrative units (e.g., municipalities/counties, N = 61,530) and for a global $0.1^\circ \times 0.1^\circ$ grid (N=819,309). To accomplish this we develop and validate a generalizable downscaling technique based on satellite imagery that allows for training and prediction with observations of arbitrary shape and size. This enables us to train a model using provincial administrative data and generate HDI estimates at the municipality and grid levels. Our results indicate that more than half of the global population was previously assigned to the incorrect HDI quintile within each country, due to aggregation bias resulting from lower resolution estimates. We also illustrate how these data can improve decision-making. We make these high-resolution HDI estimates publicly available in the hope that they increase understanding of human wellbeing globally and improve the effectiveness of policies supporting sustainable development. We also make available the satellite features necessary to increase the spatial resolution of any other administrative data that is detectable via imagery.

¹ Introduction

² The Human Development Index (HDI) is widely used by policymakers and academics to
³ summarize three key dimensions of wellbeing: the population's health, human capital, and
⁴ standard of living (1–4). A more comprehensive measure of wellbeing than income or wealth
⁵ alone (2, 3, 5), HDI is used to categorize countries by their level of human development,
⁶ which, in turn, can determine allocations of global resources (6). However, the United
⁷ Nations Development Programme (UNDP) releases official global estimates of HDI annually
⁸ only at the highly aggregated national level (N=191), preventing the use of the indicator
⁹ in applications that require subnational information. Thus, measures of income remain the
¹⁰ dominant metric for evaluating development progress within countries, in part because they
¹¹ are more readily available.

¹² In an effort to address this, non-UN researchers (7) recently processed extensive house-
¹³ hold survey data in order to produce the first HDI estimates for first-level administrative
¹⁴ units – i.e. provinces and states, hereafter called “provinces” (N=1,739). These efforts have
¹⁵ substantially advanced our understanding of global development patterns, but province-level
¹⁶ measures nonetheless remain too coarse for many modern policy applications where local in-
¹⁷ formation is needed, such as community-level targeting of aid (8, 9). Furthermore, the
¹⁸ reliance of current HDI estimates on slow, infrequent, and costly ground-based data col-
¹⁹ lection limits the usability of HDI for most practical applications other than cross-national
²⁰ rankings.

²¹ Here, we produce the first global estimates of HDI at the second administrative level – i.e.
²² municipalities and counties, hereafter called “municipalities” (N=61,530) and for a global
²³ $0.1^\circ \times 0.1^\circ$ (approximately 10km by 10km) grid. We construct these estimates by combining
²⁴ information from prior provincial estimates (2) with global daytime and nighttime satellite
²⁵ imagery (10, 11). Our approach builds on recent advances in machine-learning (12) to
²⁶ develop a general method that learns the relationship between imagery and an outcome
²⁷ of interest (here, HDI) using data from any set of political boundaries. We can then use
²⁸ that relationship to estimate the outcome for any other set of boundaries. Importantly,
²⁹ our method works for spatial units of arbitrary shape and size, so models can be trained
³⁰ on coarse-resolution outcome measurements and make predictions at finer resolution. We
³¹ apply this method to transform provincial HDI measures into finer resolution estimates.
³² While other such “downscaling” approaches typically rely on either theoretically informed
³³ relationships or simple dasymetric masks (13, 14) our approach to making predictions at
³⁴ finer resolution than the source labels uses machine learning and satellite imagery to identify
³⁵ complex spatial relationships between imagery and an outcome of interest.

³⁶ **A general approach to downscaling administrative data using satel-
³⁷ lite imagery and machine learning**

³⁸ The combination of satellite imagery and machine learning (SIML) is increasingly used to
³⁹ predict socioeconomic variables at fine spatial resolution (12, 15–22). This approach enables
⁴⁰ information that is expensive to obtain through ground surveys to be estimated at low cost.
⁴¹ While SIML estimates do not replicate ground surveys exactly (23–25), the quality of SIML
⁴² estimates is now high enough that it can assist targeting of aid and program evaluation in
⁴³ remote communities where alternative sources of information are unavailable (8, 15, 24, 26,
⁴⁴ 27).

⁴⁵ However, the ability of SIML systems to promote development is limited by the paucity
⁴⁶ of suitable observations for model training (15). This limitation is partly due to the design
⁴⁷ of modern SIML methods, since large quantities of administrative data are available, but
⁴⁸ existing systems are generally not designed to make use of them. To date, SIML approaches
⁴⁹ for predicting human outcomes have standardized the structure of both the training labels
⁵⁰ and corresponding imagery so that the unit of analysis is a regular spatial structure, such
⁵¹ as a square. For example, many systems use convolutional neural networks (CNNs)(16, 17,
⁵² 20), which tend to perform well on diverse computer vision tasks. CNNs, however, typically
⁵³ require images to be a constant size and shape, such as 224 x 224 x 3 pixels in the case of the
⁵⁴ commonly used ResNet-18 (28). This restriction has caused prior studies to rely on coarse
⁵⁵ approximations for linking irregularly shaped labels to corresponding imagery, for example,
⁵⁶ by averaging polygon labels that overlap with the square image (12, 18). Such procedures
⁵⁷ can introduce considerable error when administrative polygons are much larger or smaller
⁵⁸ than the chosen square size. This is particularly relevant for HDI, for which data is globally
⁵⁹ available only for nations or provinces, which tend to be irregularly shaped and vary greatly
⁶⁰ in spatial extent. For example, the largest provincial polygon in our data is the Far Eastern
⁶¹ Federal District of Russia, which is over 6 million km², and the smallest is Banjul of Gambia,
⁶² which is 7 km². Developing a robust and widely applicable SIML system that can be trained
⁶³ on inputs that correspond with such diverse administrative structures requires an alternative
⁶⁴ strategy.

⁶⁵ In an ideal setting, we would solve for a function that could directly map a single satellite
⁶⁶ image “tile” (e.g. 1km × 1km) to the corresponding HDI for the same tile

$$HDI_{tile} = f(satellite_image_{tile}) + \epsilon_{tile} \quad (1)$$

⁶⁷ where ϵ is the component of HDI that is not measurable with imagery. In theory, Eq. 1
⁶⁸ could be solved directly with many learning approaches, such as a CNN (29), but this is

69 infeasible in practice because tile-level data on HDI (i.e. the left-hand side of Eq. 1, HDI_{tile})
70 does not exist. Instead, we observe only aggregated estimates of HDI over politically-defined
71 regions ($HDI_{country}$ or $HDI_{province}$) that correspond with large and irregular agglomerations
72 of image tiles. For the SIML system described by $f(\cdot)$, this creates a mismatch between the
73 spatial structure of inputs (image tiles) and outputs (administrative regions).

74 We solve this problem by converting image tiles into a generalizable set of descriptive
75 variables or “features,” X_{tile} , such that $f(\cdot)$ can be structured as linear in these features,

$$f(\text{satellite_image}_{tile}) = \beta \cdot X_{tile}, \quad (2)$$

76 where β is a vector of weights (i.e. coefficients). Specifically, we construct a basis for the
77 imagery such that outcomes of interest are well-represented by linear combinations of the
78 basis vectors. This allows aggregate administrative measures of HDI to project onto corre-
79 sponding aggregations of tile-level features with the same weights that would be recovered
80 if the problem had been solved using only tile-level data. Thus, we learn the model

$$HDI_{province} = \beta \cdot \underbrace{\left(\frac{1}{N} \sum_{tile \in province} X_{tile} \right)}_{\bar{X}_{province}} + \epsilon_{province} \quad (3)$$

81 and recover the same weights β that we would have recovered had we directly solved Eq.
82 1 using the linearization in Eq. 2. See Supplementary Information S5 for an empirical
83 validation of the scale-invariance of model weights using this approach. Note that $\bar{X}_{province}$
84 is simply the vector of average tile-level features within a province. The weights β can
85 then be used to generate predictions for arbitrary aggregations of tiles. We use these β to
86 downscale HDI to the municipality level ($\beta \cdot \bar{X}_{municipality} = \hat{HDI}_{municipality}$) and the tile level
87 ($\beta \cdot \bar{X}_{tile} = \hat{HDI}_{tile}$).

88 The benefits of linearizing this problem have been understood in general terms, since
89 linear models of basic scalar image properties (e.g. “greenness” (30) or nighttime lights
90 (31)) have been widely used to downscale administrative-level data. However, to our knowl-
91 edge, it has not been shown that such linearization is possible and skillful for the types of
92 featurizations that capture complex spatial structures in imagery.

93 Here we demonstrate that such a skillful linearization can be achieved by embedding rich
94 image information using the Multi-task Observation using Satellite Imagery and Kitchen
95 Sinks (MOSAIKS) approach (12). Converting images into MOSAIKS features
96 ($daytime_satellite_image \rightarrow \mathbf{X}_{MOSAIKS}$) provides a structured representation of the un-
97 structured information within the satellite image that performs well in linear models. These

98 features summarize the joint distribution of color and textures within daytime tri-band optical imagery (see Methods 1 and Figure S1). We concatenate these features with features
99 that summarize nighttime lights of locations (32, 33) (*nighttime_satellite_image* \rightarrow \mathbf{X}_{NL})
100 to construct a linear model that downscals HDI using only satellite data (see Methods 3.2
101 and 4.1).

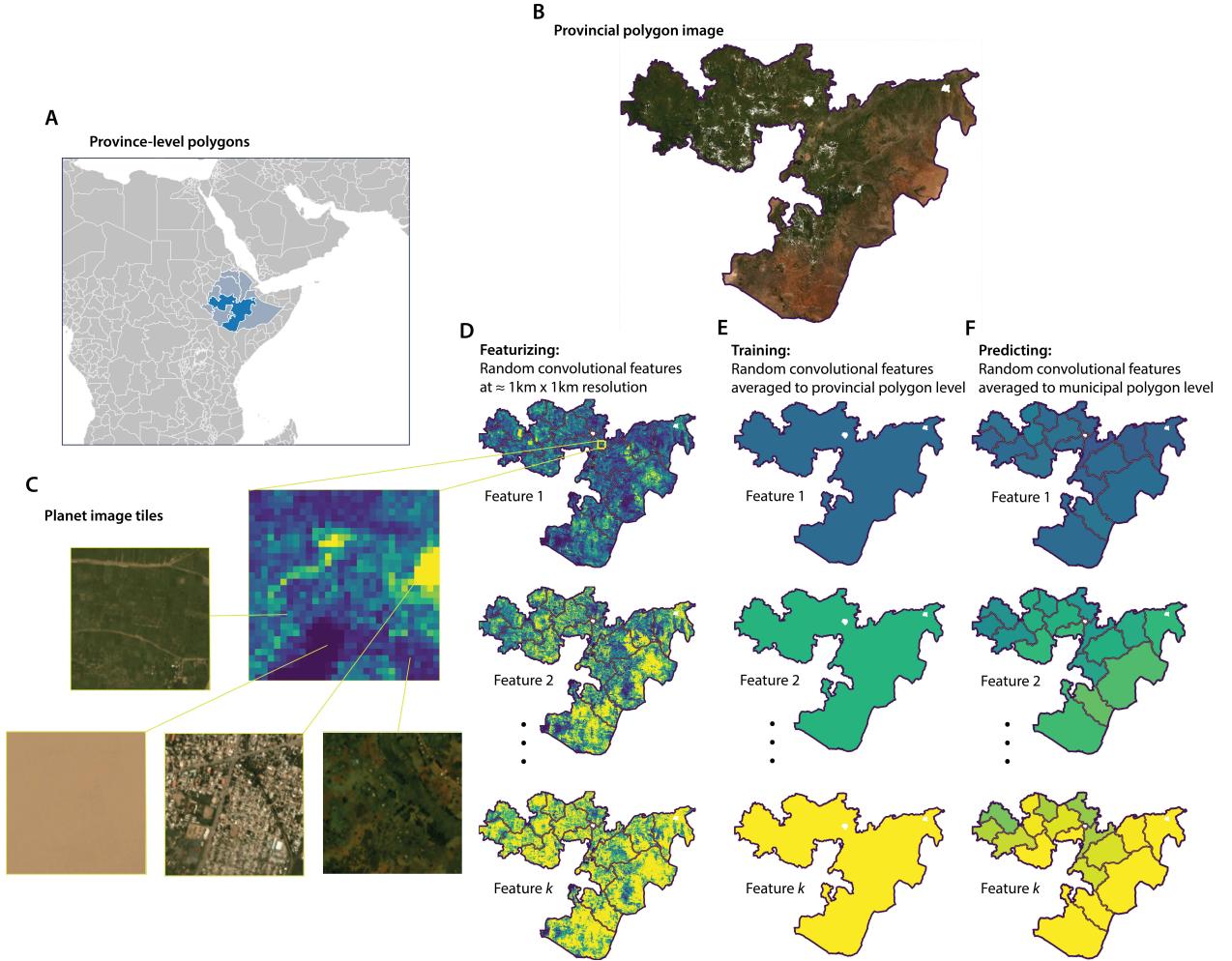


Figure 1: **The MOSAIKS approach transforms satellite imagery for each administrative polygon into a vector of image features.** (A) The location of Oromia, an example province (ADM1 unit) within Ethiopia. (B) A composite of Planet imagery over Oromia in 2019. (C) A sample of $0.01^\circ \times 0.01^\circ$ image tiles. (D) Three examples of MOSAIKS random convolutional features over Oromia; each pixel shows the feature value for a single $0.01^\circ \times 0.01^\circ$ image (X_{tile}). (E) The corresponding aggregation of these MOSAIKS features to the provincial polygon (ADM1) level for model training ($\bar{X}_{province}$). (F) Aggregation of these same MOSAIKS features to the municipal polygon (ADM2) level for fine-resolution prediction of HDI ($\bar{X}_{municipality}$). See Figure S1 for an illustration of how MOSAIKS features are calculated and used to predict HDI.

103 **Results**

104 Our results have four sections. First we train and evaluate a global model for HDI at the
105 province-level using aggregates of satellite features. Second, we implement multiple tests
106 to validate that this model is skillful. Third, we generate the first high-resolution global
107 HDI data using this procedure, and we evaluate how these estimates compare to existing
108 aggregated estimates. Fourth, we illustrate how these new high-resolution estimates could
109 alter decision-making when targeting aid.

110 **1. Predicting province-level HDI using satellite imagery**

111 Using province-level administrative HDI data for training (as in Equation 3 and Figure 1),
112 we find that predictions made using linear aggregates of daytime and nighttime satellite
113 image features, anchored to known country means, explain 96% of the variation in global
114 provincial HDI values (Figure 2A, denoted “full variation performance”). Specifically, we
115 train a model to predict provincial HDI deviations from each country mean and then add the
116 known country mean to the predicted provincial deviations. We take this “mean-anchored”
117 approach, because it reflects how SIML may be used to augment existing HDI data in practice
118 (see Methods 4.4 and Supplementary Information S6.1 for a discussion of mean-anchoring).
119 Since most HDI variation is across-countries rather than within-countries (Figure 2A-B),
120 much of this performance predicting provincial variation is driven by the measured country
121 means that the predictions are anchored to.

122 The primary value of incorporating satellite imagery is to explain *local-scale* variation
123 in HDI. As a first test of the model’s ability to explain local variation, we evaluate model
124 performance predicting deviations in provincial HDI from the country mean. We find that
125 model predictions explain 52% of this *within-country* provincial variation in HDI (Figure 2B;
126 see Methods 4.2 for a discussion of performance metrics). This indicates that SIML-based
127 provincial predictions of HDI add substantial fine-resolution information to existing national
128 measures. Importantly, models trained on provincial deviations from the country-level HDI
129 have higher performance predicting such deviations than models trained directly on the
130 provincial values themselves (Table S1 col. 4). Intuitively, model weights are optimized
131 to explain the smaller within-country variation in the demeaned model, rather than the
132 larger across-country deviations (Figure 2 A-B). We use such “within-country” models as
133 our primary model specification.

¹³⁴ **2. Validating downscaling of data below the province-level**

¹³⁵ We cannot directly evaluate the performance of municipality-level or grid-level HDI predic-
¹³⁶ tions worldwide because such highly-resolved estimates have not been previously constructed.
¹³⁷ Nonetheless, we test the performance of our downscaling technique in three ways that allow
¹³⁸ predictions to be directly compared to “ground truth” at finer resolution than the training
¹³⁹ data. First, we directly compare our municipality-level HDI predictions to census-derived
¹⁴⁰ estimates in three countries where these data are available – Indonesia, Brazil, and Mexico.
¹⁴¹ (9, 34, 35). Second, we train a model relating satellite imagery to the International Wealth
¹⁴² Index (IWI) at the province level, and then construct downscaled predictions of IWI at the
¹⁴³ resolution of Demographic and Health Surveys (DHS) clusters where granular IWI measure-
¹⁴⁴ ments are available (36). The IWI is an alternative development indicator to HDI that omits
¹⁴⁵ measures of education and health. Third, we train a model to predict nighttime lights (NL),
¹⁴⁶ a common proxy for economic wellbeing (32, 37–42), using features constructed exclusively
¹⁴⁷ from daytime satellite imagery, and test whether our approach can downscale NL. Mirroring
¹⁴⁸ the structure of our HDI analysis, we train a model using only NL labels aggregated to the
¹⁴⁹ province level, and then evaluate predictions of NL at the municipality level. No test can
¹⁵⁰ directly validate the performance for downscaling HDI globally, since the data necessary for
¹⁵¹ such a test do not exist; however, all three of these large-scale tests taken together document
¹⁵² the effectiveness of our downscaling strategy in general – using global socioeconomic data
¹⁵³ similar to HDI – and for HDI in particular – using municipal HDI data for three countries.

¹⁵⁴ When evaluating estimates made at finer resolution than that of the training data, we
¹⁵⁵ mean-anchor downscaled estimates to the known provincial mean. This approach produces
¹⁵⁶ the best possible estimates by using the satellite-based model to explain within-province
¹⁵⁷ variation, which is previously unknown, and the known provincial values to explain the
¹⁵⁸ across-provincial variation.

¹⁵⁹ **Downscaling HDI in Mexico, Brazil and Indonesia** As a direct evaluation of HDI
¹⁶⁰ downscaling performance, we compare municipal HDI predictions from the satellite-based
¹⁶¹ model trained on provincial HDI deviations from the country mean to municipal HDI derived
¹⁶² from census-based calculations in Mexico (9), Brazil (35), and Indonesia (34) (Methods
¹⁶³ 2.3). In Mexico, downscaled HDI predictions explain 45% of the municipal HDI variation
¹⁶⁴ overall (Figure 2C) and 29% of the within-province variation (Figure 2D). In Brazil, HDI
¹⁶⁵ predictions explain 48% of municipal HDI variation overall, and 20% of the within-province
¹⁶⁶ variation. And in Indonesia, HDI predictions explain 61% of the municipal HDI variation
¹⁶⁷ overall and 53% of the within-province variation. It is encouraging that HDI predictions align
¹⁶⁸ better with census-based measures for Indonesia than for Mexico or Brazil because measures

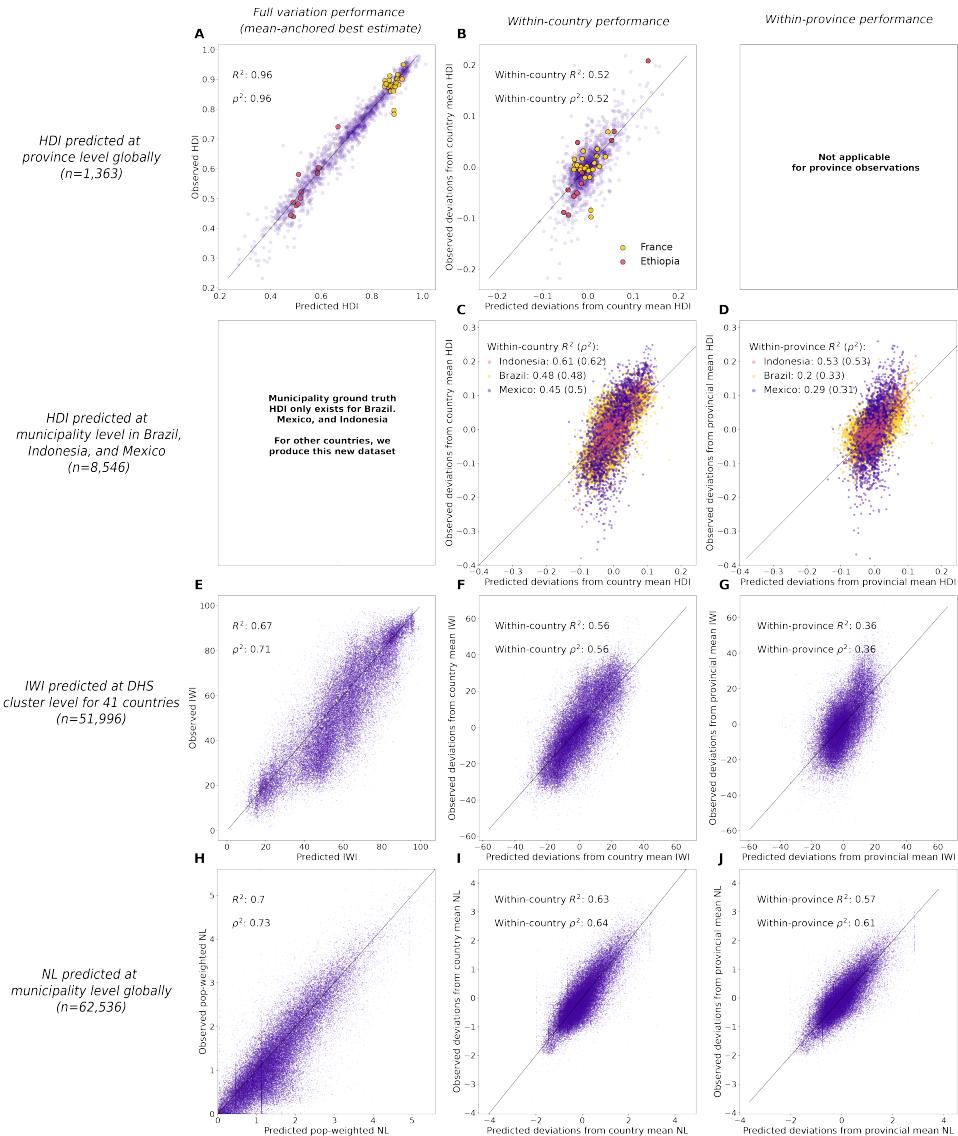


Figure 2: MOSAIKS models perform well predicting socioeconomic indicators, including at down-scaled resolution. (A) Observed and predicted HDI at the province level. Note that the within-country variation is smaller than the across-country variation, as illustrated by France, in yellow, and Ethiopia, in pink. (B) The same as (A), evaluating within-country variation. Provincial deviations from the country mean for France and Ethiopia are now centered at 0, and the model is evaluated on how well it can differentiate provinces that are relatively well and worse-off within countries. (C-D) Observed and predicted municipal HDI data in Mexico, Brazil and Indonesia. (E-G) Observed and predicted IWI at the DHS cluster level. (H-J) Observed and predicted nighttime lights at the municipality level. The vertical streaking in (H-J) are caused by countries that have very spatially dense municipalities (Supplementary Information S6.3). Predictions are anchored to known country or provincial means (Methods 4.4). All predictions are for the year 2019.

169 for Indonesia are from 2019, which aligns with our satellite-based predictions of within-
170 province HDI variation, while measures for Mexico and Brazil are from 2010. These older
171 HDI measures could differ from our satellite-based predictions in part due to changes in HDI
172 since the measurements were taken. Additionally, some portion of the misalignment between
173 satellite-based predictions and survey estimates likely arises as a result of errors in the survey
174 data itself, a widely recognized issue (15) that we are unable to assess. Together, these results
175 indicate that our method for SIML-based downscaling improves our understanding of the
176 spatial distribution of HDI in these three example countries; although, it is not a complete
177 substitute for survey-based estimates when such data are available.

178 **Downscaling the International Wealth Index** We test the ability of our approach
179 to downscale IWI internationally by training a model on province-level aggregates of IWI
180 and then predicting IWI across DHS clusters. This is a more difficult task than predicting
181 municipality-level values and an equally difficult task as predicting at the $0.1^\circ \times 0.1^\circ$ grid-
182 level, since DHS clusters tend to be even finer resolution than municipalities and about the
183 same size as the HDI grid (DHS cluster $\approx 180 \text{ km}^2$, municipality $\approx 2,000 \text{ km}^2$, grid tile ≈ 120
184 km^2). Models are trained on 862 provincial observations within 85 countries and evaluated at
185 51,996 DHS clusters (Table S1). Analogous to our approach with HDI, models are trained on
186 province-level deviations from country-level means and predictions are re-centered to match
187 the observed province-level mean, as these values are known (see Methods S6.2). Downscaled
188 IWI predictions explain 67% of the variation in IWI across all DHS clusters (Figure 2E) and
189 56% of the variation in IWI across DHS clusters within countries (i.e. of cluster deviations
190 from the country mean, Figure 2F). Importantly, this approach is also able to predict 36%
191 of the variation in IWI within the provincial units that it was trained on (Figure 2G). This
192 result demonstrates the ability of our downscaling approach to generate skillful global-scale
193 predictions at resolutions higher than the training data, and also its ability generalize to
194 measures other than HDI.

195 **Downscaling nighttime lights** To further evaluate our approach in a global test, we
196 train a model on aggregate provincial NL and evaluate predictions at municipal resolution.
197 NL are not a direct measure of human welfare; however, they are generally correlated with
198 income and other development indicators (38–40, 43, 44). NL have even been used along
199 with population to construct development indicators correlated with HDI (e.g. (41)). NL
200 are particularly useful here because they allow us to design a validation test where true sub-
201 national values are known worldwide. Mirroring our HDI process, we train the model using
202 provincial deviations from the country mean, and then construct municipal values as the pre-

203 dictated municipal deviations from the country mean plus the known country mean (Methods
204 S6.3). Downscaled NL predictions capture 70% of municipal variation in NL globally (Figure
205 2H), 63% of the municipal variation within countries (Figure 2I), and, most importantly, 57%
206 of the variation across municipalities within provinces (Figure 2J). These results further re-
207 inforce the ability of our approach to downscale global province-level data and underscore its
208 generalizability to other non-HDI outcomes. Unlike the two downscaling experiments above,
209 this experiment relies entirely on features generated using only daytime imagery (Figure S2).

210

211 Comparisons to municipal data on HDI, IWI, and NL indicate that models trained on
212 provincial data can explain 20-57% of within-province municipal variation. Collectively, these
213 three experiments demonstrate that our approach effectively combines coarse socioeconomic
214 measurements with satellite data to produce skillful estimates at spatial resolutions finer
215 than the province-level training data.

216 3. Additional evaluation of model performance

217 **Model performance for components of HDI** One motivation for using MOSAIKS
218 features to downscale HDI is their ability to predict a diversity of ground-based measures.
219 This is particularly relevant for predicting HDI, since it is constructed from components
220 that capture human health, education, and income. To consider which components of HDI
221 are best captured by our estimates, we retrain models to predict each component of HDI
222 separately. We find that MOSAIKS models explain 92% (5%) of the full (within-country)
223 variation in provincial life expectancy, 93% (51%) of mean years of schooling, 90% (27%)
224 of expected years of schooling, and 97% (56%) of gross national income per capita (GNIpc)
225 (Table S3). While the components of HDI do tend to be correlated (Table S4), these results
226 indicate that instead of just capturing income, predictions of HDI using satellite imagery
227 maintain the ability to capture multiple dimensions of human wellbeing. These results
228 also help explain what aspects of human development satellite features are able to capture,
229 indicating their ability to explain local variation in education and income as well as their
230 difficulty predicting aspects of health. Predictions of HDI made from combinations of its
231 individually predicted components perform nearly identically to the direct predictions of
232 HDI used throughout this analysis.

233 Further model evaluation including model, model performance across global regions, and
234 the value of combining daytime and nighttime imagery are discussed in Supplementary In-
235 formation S2. While it remains untestable how accurately the approach can downscale HDI
236 globally, we find that the approach can predict substantial global variation in HDI and its

²³⁷ components, and that it can downscale both HDI in three countries and variables related to
²³⁸ HDI globally with accuracy.

²³⁹ 4. Global municipality-level and grid-level estimates of HDI

²⁴⁰ We use our model for within-country HDI (from Results Sections 1–2) to estimate HDI for
²⁴¹ 61,530 municipalities and 819,309 $0.1^\circ \times 0.1^\circ$ grid tiles (Figure 3), the finest resolutions at
²⁴² which HDI has been estimated globally (Methods 4.5). We make these municipal and grid-
²⁴³ level estimates of HDI publicly available for download at mosaiks.org/hdi. Estimates are
²⁴⁴ available annually from 2012–2021. We also similarly produce and make available estimates
²⁴⁵ of the individual components of HDI.

²⁴⁶ Our high-resolution estimates enable a substantially more detailed understanding of hu-
²⁴⁷ man development compared with national and provincial measures (Figure 3 A,B vs. C,D).
²⁴⁸ Both municipal and grid-level estimates reveal within-province heterogeneity of HDI that
²⁴⁹ was previously un-resolved (Figures S3, S4). The gridded HDI estimates tend to be higher
²⁵⁰ along major roadways, especially at the intersection of roadways (Figure S5). Boarders, such
²⁵¹ as between Turkey, Georgia, Armenia, Azerbaijan, Iraq and Iran, are less apparent in the
²⁵² fine resolution estimates, indicating a greater continuity in human development across space
²⁵³ than in the provincial maps. The wealthier city centers and poorer suburbs of capital cities
²⁵⁴ such as Moscow, Russia and Antananarivo, Madagascar are also visible in the municipal and
²⁵⁵ grid estimates, but obscured in the provincial estimates. The contribution of environmental
²⁵⁶ features to human development is illustrated in eastern Pakistan and northwestern India,
²⁵⁷ where human development is higher in the plains bordering the Indus River and its tribu-
²⁵⁸ taries, and lower in neighboring deserts. Similarly, within Sonora and Sinaloa in Mexico,
²⁵⁹ coastal areas show higher human development than inland regions. This local heterogeneity
²⁶⁰ in HDI indicates that uniform assignment of HDI to populations based on their country or
²⁶¹ province of residence is inaccurate because it groups together populations with very different
²⁶² levels of human development.

²⁶³ We use our estimates to quantify the degree of aggregation bias that occurs when using
²⁶⁴ only province-level estimates. Aggregation bias occurs here because small units (i.e. grids
²⁶⁵ or municipalities) are assigned the HDI of a larger unit (i.e. a province), which does not
²⁶⁶ reflect local conditions. For example, a small urban region, where HDI is high, embedded
²⁶⁷ in a province that also contains large, less developed rural areas, will be assigned a HDI
²⁶⁸ level that is too low when provincial measures are used. We quantify how frequently such
²⁶⁹ mis-assignment occurs within countries by assigning populations to a quintile of HDI within
²⁷⁰ their national HDI distribution based on provincial, municipal, or grid-level estimates. We

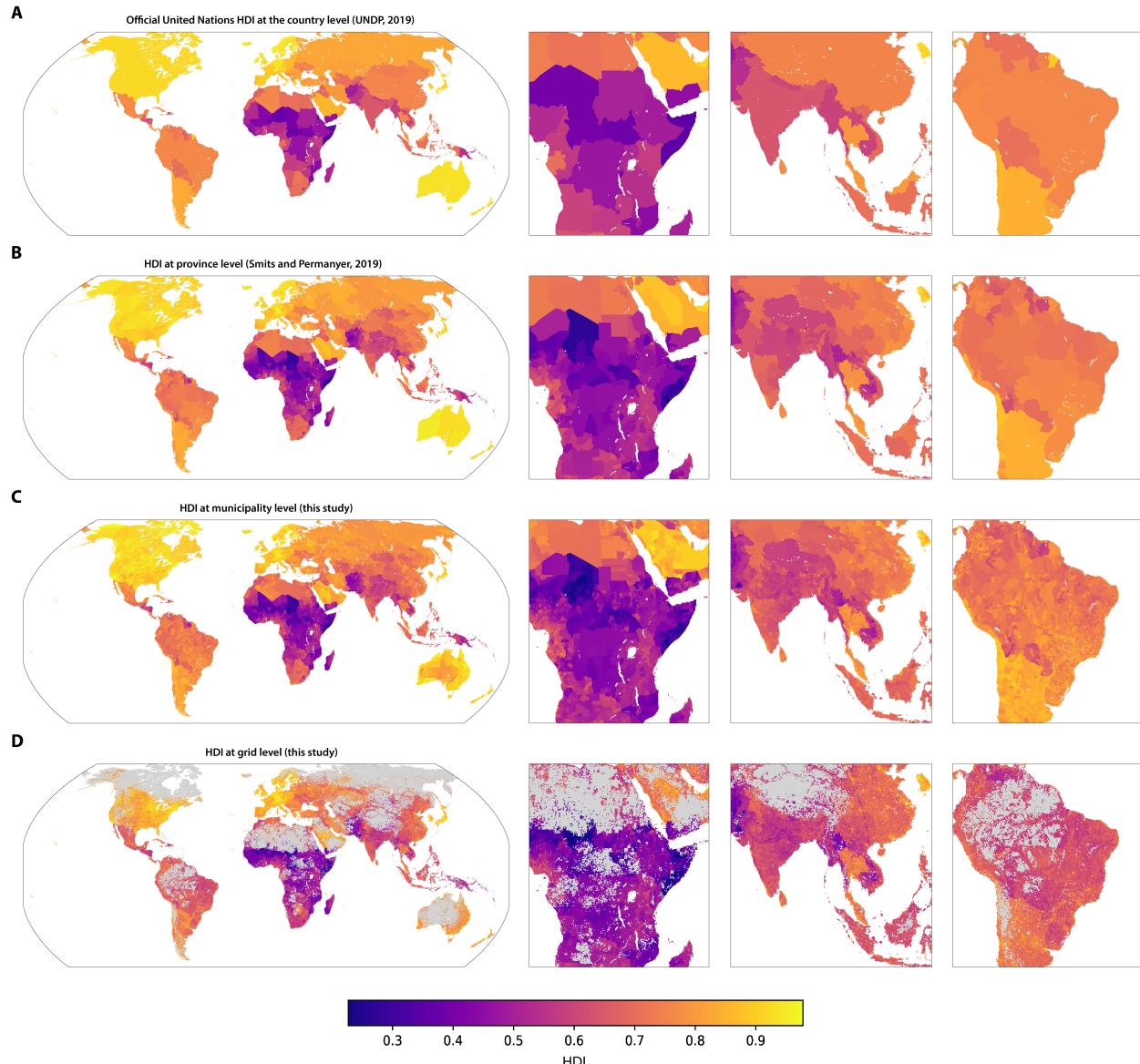


Figure 3: Global HDI estimates at the municipal and grid levels. (A) Official United Nations HDI at the country level (45) (B) HDI data at the province level from Smits and Permanyer (7). (C) Municipal level estimates of HDI produced here. (D) Grid level estimates of HDI at the 0.1° by 0.1° (approximately 10km by 10km) level produced here. Grey in the grid-level estimates indicates land area believed to be unsettled (46). All data shown are for the year 2019.

271 then evaluate how frequently the province-level estimates agree with the more highly resolved
 272 estimates (Figure 4).

273 We find that a majority of the global population (58% using municipal estimates and 65%
 274 using grid estimates) is assigned to a different within-country HDI quintile compared to when
 275 using provincial estimates. For example, of the population measured to be in the bottom two
 276 HDI quintiles using provincial estimates, 8.5% are reassigned to the top two HDI quintiles
 277 using municipal estimates and 12.9% using grid-estimates. Grid-level estimates reveal larger
 278 amounts of aggregation bias due to their finer resolution. Based on our grid-level estimates,
 279 we estimate that 20.4% (21.0%) of the global population is one quintile lower (higher) than
 280 assigned using provincial estimates, and 9.5% (9.3%) are two quintiles lower (higher).

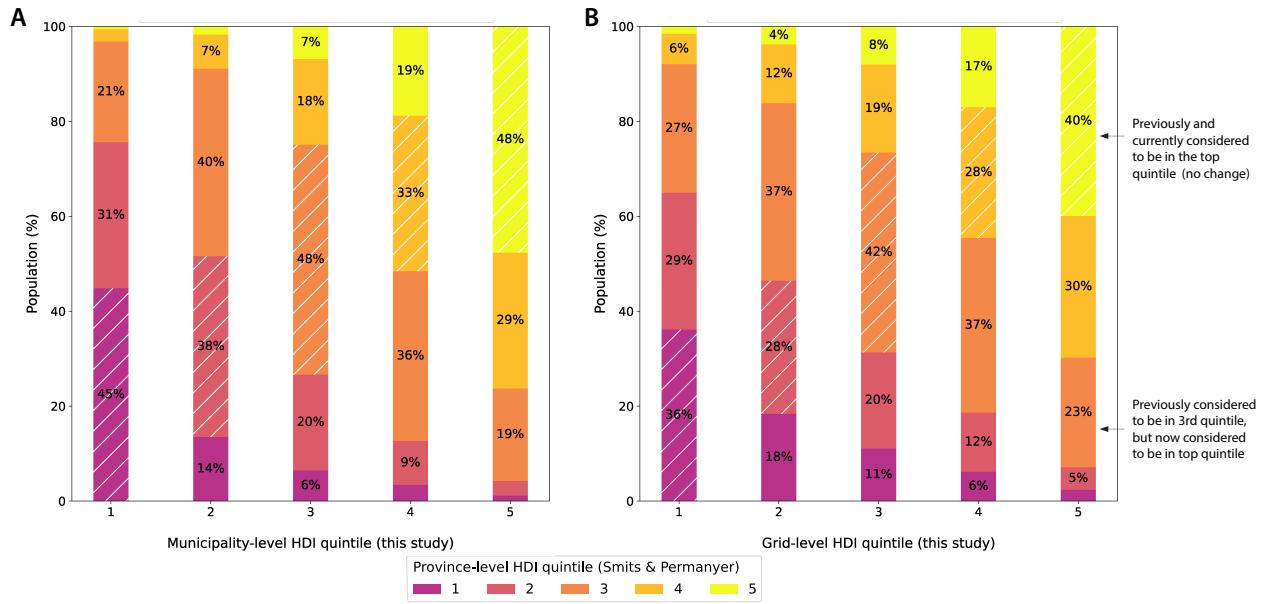


Figure 4: **Municipal and grid-level estimates of HDI assign more than half of the global population to a different within-country HDI quintile than provincial estimates.** (A) Shows the difference in estimated HDI quintile, within countries, using provincial vs. municipal data. (B) shows the same analysis using grid-level HDI estimates. Colors show the estimated HDI quintile using provincial data from (7), where yellow is high human development and purple is low human development. All data is from 2019. Bins along the x-axis show estimated HDI quintiles using the municipal and grid level data produced in this study. Hatch marks indicate no change in quintile assignment using municipal data. When provincial data do not allow for the creation of five distinct bins, the population is assigned first to the middle bin, followed by the neighboring bins. For example, if a country does not have any province-level data, the entire population is assumed to be in the middle quintile for that country. For this reason, a greater fraction of the global population is assigned to the middle quintile (33%) than to the outer quintiles when using the provincial data.

281 **5. Illustrative application: targeting policy in Mexico**

282 To explore how our new HDI measures could improve the efficiency of development policies,
283 we conduct a simulation exercise for Mexico. We simulate how a geographically targeted
284 policy based on provincial vs municipal HDI data (Figure 5A-B) might achieve different
285 outcomes, noting that previous work has shown that more spatially granular targeting can
286 produce meaningful welfare gains (17, 47–50). We study Mexico because “ground truth”
287 estimates of HDI enable us to benchmark performance (9).

288 The use of municipality-level data improves the number of program recipients correctly
289 targeted. Supposing that the program director aims to provide assistance to the 10% of in-
290 dividuals with the lowest HDI, accuracy of program targeting increases by 11.4% percentage
291 points (from 32.3% to 43.7%) when using municipal data (Figure 5E, assuming the standard
292 deviation of individual HDI within each municipality is 0.1, see Methods 4.6). Use of the
293 municipal data also results in a much greater geographic dispersion of targeted municipalities
294 (Figure 5C-D). Evaluation of targeting performance using a receiver operating characteris-
295 tic curve (8) gives similar results (Figure 5F, Methods 4.6). Replicating this analysis for
296 Indonesia also gives consistent results (Figure S11).

297 This application illustrates how fine-resolution HDI estimates can improve targeting
298 of policies that would otherwise use coarser provincial measures, even though these fine-
299 resolution estimates are imperfect. Using provincial measures implicitly assumes no within-
300 provincial variation in HDI, so any positive ability to predict variation within provinces
301 improves understanding of the spatial distribution of HDI. Users of these fine-resolution esti-
302 mates should consider their specific policy context to determine whether these fine-resolution
303 estimates, which explain 29% of the within-province HDI variation in Mexico, 20% in Brazil,
304 and 53% in Indonesia, provide sufficient additional information to be useful in their setting.
305 These estimates may be particularly valuable in data poor settings, where traditional data
306 sources such as surveys are less available and reliable (15); only about half of the world’s
307 poorest countries have conducted a census in the last decade (16, 26). These estimates may
308 also be useful in cross-country settings where a consistent metric of welfare is desired.

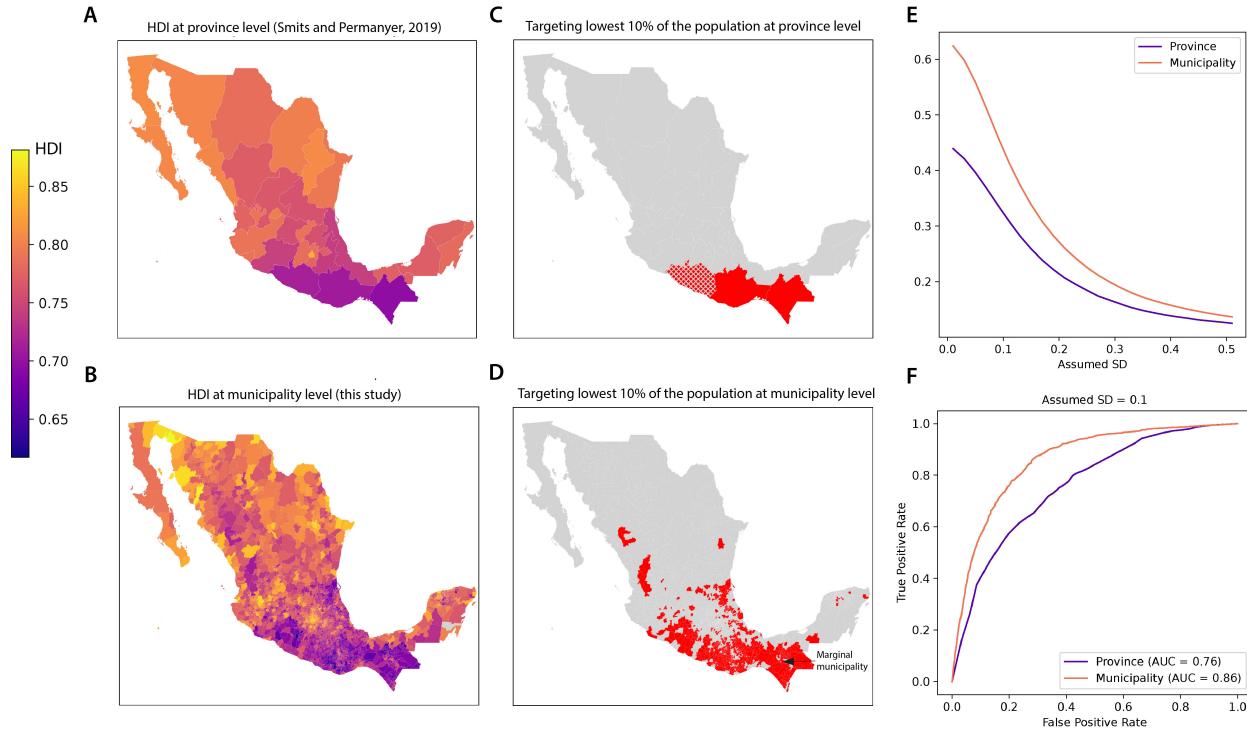


Figure 5: Spatially granular HDI measures can improve decision-making. (A) HDI for 2019 at the province level of observation (7) (B) HDI estimates for 2019 at the municipality level produced in this paper. (C) Lowest HDI provinces that would be targeted until 10% of the country's population is reached. (D) Lowest HDI municipalities that would be targeted until 10% of the country's population is reached. Hashing in (C) and (D) shows the marginal province and municipality that would be partially targeted. (E) Targeting accuracy (true positive rate) as a function of the assumed standard deviation of HDI within each municipality. (F) ROC curves illustrate the degree of improvement that comes with targeting at the municipality level relative to the province level (assumed SD of 0.1 within each municipality).

309 **Conclusion**

310 We produce and make publicly available the first global-scale, high-resolution estimates of
311 HDI, enabling the use of broad-based measures of wellbeing for local decision-making and
312 policy prioritization. We achieve this by developing an approach for generating spatially
313 granular development indicators using SIML models trained on spatially aggregated and
314 inconsistently structured administrative data. Since many forms of non-HDI data are also
315 available only for administrative regions, we believe this generalizable method will increase
316 the range of outcomes that can be used as labels in SIML models, which are currently
317 constrained by limited training data (15).

318 Our strategy is motivated by the limited resolution of available training data for HDI, but
319 our results do not exhibit obvious compromises in performance relative to alternatives that
320 exploit high-resolution labels. A related benchmark in this literature achieves $\rho^2 = 0.63$ -0.67
321 predicting a wealth index when training and evaluating at the DHS cluster resolution (16,
322 51). Though we train at the provincial level, not the DHS cluster level, our performance
323 predicting DHS cluster IWI is competitive with this previous analysis ($\rho^2 = 0.71$; Table
324 S1, col 1). Another benchmark in this literature achieves an R^2 of 0.54 predicting RWI,
325 which is conceptually identical to what we call within-country IWI, at the same DHS cluster
326 level (17) (metric taken from a replication of their Figure 3B). Again, despite training at
327 the provincial level rather than the DHS cluster level we achieve a within-country R^2 of 0.56
328 predicting IWI at the cluster level. Direct comparison to both of these benchmarks, however,
329 is complicated by differences in training and evaluation methodologies including our focus
330 on explaining within-province variation and our corresponding mean-anchoring approach.

331 Here, we use satellite imagery due to its rich information content, global availability,
332 and near uniformity in quality across countries. To evaluate whether additional satellite
333 data sources beyond visual daytime imagery and nighttime imagery might improve HDI
334 estimates, we follow ref. (22) and add to the baseline model three additional index-based
335 features constructed from Sentinel-2A satellite imagery that integrate knowledge of spectral
336 properties of different ground conditions: the Normalized Difference Vegetation Index, Nor-
337 malized Difference Water Index, and Normalized Difference Built-Up Index. We find that
338 the model performance is essentially unchanged (Table S5), indicating that these additional
339 features do not provide additional information beyond what is already captured by the MO-
340 SAIKS and NL features. While it is important to note that there is a limit to how well
341 socioeconomic variables can be predicted using satellite imagery generally, and adding these
342 additional features did not improve performance in this case, future work should nonetheless
343 explore whether incorporating additional imagery sources and/or other ancillary data can

344 improve these estimates (52).

345 This approach to producing HDI estimates can be viewed as a type of regression-based
346 technique for small area estimation using satellite imagery (53, 54). Though data limita-
347 tions in this setting – including the lack of fine-resolution global surveys of HDI – preclude
348 the direct implementation of most commonly used small area estimation techniques (e.g.,
349 (55)), this approach follows the general small area estimation framework of combining lim-
350 ited measurements of the variable of interest (provincial HDI) with universally available
351 axillary data informing the variable of interest (satellite imagery) to make accurate and
352 precise fine-resolution predictions. A key difference between more traditional small area es-
353 timation techniques and ours is that we use a global-level auxiliary dataset that does not
354 suffer from the challenge of construct validity across countries, although this comes with a
355 tradeoff of needing to assume some degree of consistency between imagery and conditions
356 on the ground. A recent comparison of poverty maps for Malawi produced using i) a small
357 area estimation approach combining survey data and census data and ii) an alternative ap-
358 proach combining survey data and geospatial indicators including satellite imagery found
359 that the two approaches produced very similar estimates, with a correlation exceeding 0.9
360 (56). This, paired with the performance of satellite imagery predicting HDI shown here,
361 indicates that satellite imagery can be an effective substitute for census information when
362 producing fine-resolution estimates of human wellbeing in settings where census data is not
363 available. In locations where reliable census data is available, satellite imagery could serve
364 as a complementary source of information.

365 One important property of the errors in our estimates, common in machine learning (12,
366 24, 25), is that our predictions exhibit lower variance than the true values. For example, in
367 Mexico the standard deviation of our satellite-derived estimates is approximately half that
368 of census-derived values. Survey and other traditional approaches to data collection remain
369 critical to informing the state of global human development and complement satellite models,
370 which cannot be trained or evaluated without ground-truth measures.

371 We have produced global downscaled estimates of HDI for 2012-2021 by combining ex-
372 isting provincial measures with fine-resolution satellite estimates. This approach estimates
373 municipal HDI in each year by adding satellite-based estimates of municipal HDI deviations
374 from the provincial mean, which are time-constant, onto time-varying provincial values cal-
375 culated from surveys (7). These municipal values are appropriate for applications comparing
376 levels of HDI across locations within a specific moment in time. They cannot be used to eval-
377 uate changes in the distribution of HDI within-provinces over time. Current data does not
378 allow us to distinguish performance between our validated approach and an approach that
379 estimates local trends in HDI (Figure S8 and Supplementary Information S3). Developing

380 additional approaches for tracking and validating subnational trends in HDI is an important
381 area for future research.

382 A benefit of our approach is its mathematical transparency (57), relative to deep learning
383 alternatives; however, like most computer vision approaches, it is a challenge to explain why
384 our model generates a particular prediction. To explore which specific phenomena are cor-
385 related with our HDI estimates, we examine how predicted HDI values associate with other
386 variables globally, an approach similar to some prior efforts to evaluate model predictions
387 (54). We find that municipalities with higher road density (full variation $\rho^2=0.24$, within-
388 country $\rho^2=0.14$) and building density (full variation $\rho^2=0.07$, within-country $\rho^2=0.16$) tend
389 to have higher predicted HDI (Figure S9, Supplementary Information S4). Population has
390 a weak association with HDI across the globe (full variation $\rho^2=0.02$), but within countries,
391 more densely populated municipalities tend to have higher HDI ($\rho^2=0.33$). In contrast,
392 cooler countries tend to have higher HDI (full variation $\rho^2=0.12$), but temperature has lit-
393 tle association with HDI within countries ($\rho^2=0.0$). Terrain ruggedness, forest cover, crop
394 cover, and rainfall have little to no association with our HDI estimates. Collectively this
395 analysis indicates that our HDI estimates capture image information related to built in-
396 frastructure and the density of human settlements, but also indicates that there is residual
397 image information beyond these factors that contribute to the HDI estimates – together the
398 variables analyzed above explain 32% of the full variation in municipal HDI estimates and
399 33% of the within-country variation in a multiple linear regression analysis. Broadly, policy-
400 makers benefit from algorithmically-informed decisions that are transparent and explainable
401 (58). Future work should investigate improvements in remote sensing model interpretability
402 that can support transparent policy-making and aid in understanding potential sources of
403 systematic bias (57, 59, 60).

404 We emphasize that the approach described here can be used to predict a wide variety of
405 labels for which country, province, and/or municipality level labels exist. To facilitate this
406 use, we make the features used in this analysis publicly available at the country, province, and
407 municipality level via <https://mosaiks.org/hdi> (10). We offer these features aggregated
408 to these administrative-unit levels using both area and population weights. Each of these
409 files is relatively small, ≈ 3 GB or less, and thus possible to process on a desktop computer.
410 For comparison, the global set of features is ≈ 3 TB and the raw imagery is ≈ 30 TB. We
411 hope that researchers and decision-makers can leverage these features, along with their own
412 administrative datasets, to produce new downscaled estimates of socially-relevant outcomes.
413 Such spatially granular data may create new opportunities for achieving global development
414 goals.

415 **Methods**

416 **1 Overview**

417 To transform satellite imagery into descriptive features that exhibit high performance in
418 linear models, we build on the recent development of MOSAIKS, an approach that achieves
419 performance competitive with CNNs using an unsupervised image embedding combined with
420 a linear ridge regression model (12). The linearity of ridge regression enables the scale invari-
421 ance of our downscaling approach (12). MOSAIKS random convolutional features combined
422 with ridge regression have been shown to be skillful at solving diverse prediction problems
423 —such as forest cover, population, elevation, and house price— using only imagery as inputs
424 and using only a single linear specification. This property makes MOSAIKS a particularly
425 appealing approach for predicting HDI, which is constructed from multiple development in-
426 dicators. Each MOSAIKS feature for a tile describes the similarity between the satellite
427 image and a smaller patch of imagery, and is calculated as a nonlinear transformation of the
428 image’s pooled convolution with a random sub-image from the sample (12, 61). For example,
429 a feature whose patch was sampled from a city might inform how urban an image is, while
430 a feature whose patch was sampled from farmland might inform how agricultural an image
431 is. Together, thousands of MOSAIKS features form a basis that can skillfully describe the
432 rich structure contained within large imagery datasets through simple linear combinations
433 of the features. For details on how MOSAIKS captures visual information from satellite
434 imagery see Figure S1, as well as the Methods sections “Theoretical foundations” and “Con-
435 volutional random kitchen sinks”, and the Supplementary Information section “Alternative
436 interpretations relating MOSAIKS to kernels and CNNs” of ref. (12).

437 To compute local HDI via SIML, we transform a dataset of global Planet imagery ($\approx 5\text{m}$
438 resolution) into a set of 4000 general-purpose MOSAIKS features (X) for $0.01^\circ \times 0.01^\circ$ tiles
439 ($\approx 1\text{km} \times 1\text{km}$; Figure 1) (10). We supplement these MOSAIKS features with features that
440 flexibly characterize the distribution of nighttime lights in each tile (Methods 3.2). While
441 past measures of economic and human wellbeing have tended to focus on nighttime lights
442 alone (37–42), inclusion of high-resolution daytime imagery improves model predictions of
443 HDI, especially in regions with low HDI (Supplementary Information S2). Visual imagery
444 may improve performance by better resolving HDI variation in areas without electrification
445 that are nearly dark, or by better differentiating between highly populated poorer areas
446 and less populated richer areas, which can have similar brightness in nightlight data (20).
447 We then learn a model that is linear in these features ($\beta \cdot X$) and use this linear model
448 to estimate HDI at high resolution. While we focus this analysis on the downscaling of

449 HDI, this approach is generalizable to other types of administrative data associated with
450 irregularly-shaped political units.

451 For both training and prediction, we average image features for administrative poly-
452 gons using population weights (Figure 1D, grid-scale predictions follow a similar procedure)
453 (46). This results in one vector of image features for each province and municipality in the
454 world. To learn the relationship between the image features and HDI, we train a model on
455 province-level HDI labels and aggregated province-level image features (Figure 1E). We then
456 predict municipality-level HDI using the municipality-level image features (Figure 1F), and
457 we predict $0.1^\circ \times 0.1^\circ$ grid HDI using features for that grid.

458 Throughout this analysis we use the term “province”, the abbreviation “ADM1” to refer
459 to first-level administrative regions; and “municipality”, “ADM2” to refer to second-level
460 administrative regions, though the terminology for these units varies by country. For ex-
461 ample, “state” and “county” are the designations used for ADM1 and ADM2 units in the
462 United States.

463 Our fine-resolution global HDI estimates were produced in collaboration with researchers
464 at the Human Development Report Office of UNDP (Supplementary Information S1), but
465 data released with this paper should not be considered official United Nations indicators.

466 2 Label data

467 2.1 HDI

468 The United Nations Human Development Index is a composite measure used to assess a
469 country’s average achievements in three key dimensions of human development: health, edu-
470 cation, and standard of living (4). Health is measured by life expectancy at birth; education
471 is evaluated using a combination of mean years of schooling for adults and expected years
472 of schooling for children; and standard of living is assessed through gross national income
473 per capita (GNIpc), adjusted for purchasing power parity. The HDI applies a logarithmic
474 transformation to GNIpc to account for the diminishing benefits of increased income. Each
475 of these components is normalized on a scale from 0 to 1, and the HDI is calculated as
476 the geometric mean of the three dimension indices, giving equal weight to each dimension.
477 This method allows the HDI to reflect not just economic wealth, but also broader aspects of
478 well-being. In 2019, the average HDI across countries was 0.72, with a standard deviation
479 of 0.15, a minimum of 0.36 in Somalia and a maximum of 0.96 in Switzerland. (Figure 3A).

480 **2.2 Province-level HDI**

481 National-level HDI data originate from the UNDP Human Development Data Center and
482 are updated every year (45). UNDP uses data from the World Bank, UNESCO, UNICEF,
483 DHS, UN Stats, and other organizations to create these national-level indicators (4).

484 Province-level data on HDI and its components come from the Global Data Lab (GDL)
485 Subnational HDI Database V7.0 (7, 62). We omit 3% of the observations, which do not
486 match with the associated GDL shapefile. The resulting province-level HDI dataset contains
487 1,739 provincial observations from 159 countries. Additionally, we include 20 country-level
488 observations that do not have subnational province units (e.g., Qatar). For the majority of
489 model training and evaluation we use provincial HDI data from 2019, the same year as the
490 MOSAIKS image features. We use provincial HDI data from 2012-2021 for mean-anchoring
491 the global fine-resolution HDI estimates for that time period.

492 **2.3 Municipality-level HDI**

493 We compare our municipal HDI estimates with census-derived municipal estimates for HDI,
494 where these data exist.

495 **Indonesia** Time series estimates of HDI at the municipality level are made publicly avail-
496 able by Badan Pusat Statistik (BPS), the statistics agency of Indonesia (63). We use esti-
497 mates from 2019, which makes these, to our knowledge, the only available municipal HDI
498 data that come from the same year as our satellite imagery.

499 **Brazil** The Human Development Report Office of the United Nations Development Pro-
500 gramme has derived HDI data at the municipality level for Brazil, using census data (35).
501 The most recent year these data are available is 2010, which we use in this analysis. The
502 census-derived data have a different mean than the 2019 HDI data that we use elsewhere in
503 this analysis; though, this has no influence on the within-country or within-province eval-
504 uation metrics (Figure 2 C,D) because predictions and observations are demeaned at the
505 country and province level, respectively, before the metrics are calculated.

506 **Mexico** Census derived estimates of HDI are also available in Mexico for the year 2010,
507 constructed by ref. (9). As with Brazil, these data have a different mean than the 2019
508 HDI data; though, again, that has no influence on the within-country or within-province
509 evaluation metrics.

510 When certain components of HDI are not directly available at the municipal level, produc-
511 ers of these datasets use close proxies. For example the BPS calculates municipal HDI data
512 in Indonesia using data on real expenditure rather than GNIpc (34). And when calculating
513 municipal HDI in Mexico, ref. (9) use the child survival rate rather than life expectancy
514 at birth for the health index and an asset index rather than GNIpc for the standard of
515 living index. Likewise, provincial HDI estimates are also constructed using proxies when
516 direct measurements of HDI components are not available (7). Discrepancies in how HDI is
517 calculated at the municipal and provincial levels may contribute to differences between our
518 satellite-based HDI estimates and these survey-based HDI estimates.

519 **2.4 IWI Data**

520 IWI data also come from GDL. These data are publicly available at the country and province
521 levels and we use these data for 2019. GDL also provided us IWI data at the DHS cluster
522 level, which are not publicly available. We use cluster-level IWI estimates from 2012 through
523 2019 in this analysis. We drop observations that do not overlap a parent province polygon
524 and for which no imagery is available. This results in 51,996 DHS cluster observations from
525 41 countries.

526 We match all label data to time-constant satellite image features from 2019. Because
527 these features are not contemporaneous with all labels, our results present a conservative
528 estimate of the ability of SIML to measure HDI globally. Given that HDI variation is
529 substantially larger over space than time, however, perfectly contemporaneous measures
530 would likely improve performance only modestly (Supplementary Information S3).

531 **3 Creation of features**

532 **3.1 MOSAIKS features**

533 We create daytime image features using Planet’s Surface Reflectance Basemaps product from
534 2019, which has a pixel resolution of 4.77m x 4.77m at the equator. These quarterly mosaics
535 are processed by Planet to minimize cloud cover, balance color across seasons, and remove
536 seams from images (10, 11). We use data from quarter 3 because it corresponds with less
537 ice coverage in the northern hemisphere and less cloud cover in the tropics. We follow the
538 methods described in Rolf et al. (2021) to generate a set of 4000 task agnostic daytime image
539 features using random convolutional features (10, 12). Two thousand of these features use
540 a patch size of 4 x 4 x 3 pixels, and the other two thousand use a patch size of 6 x 6 x 3
541 pixels. The third dimension of the patch size refers to the number of color bands (i.e., red,

542 green, and blue) that are available in Planet imagery. We selected these patch sizes because
543 they maximized performance across three non-HDI prediction tasks: predicting nightlight
544 intensity, road length, and forest cover at the global level. We tested patch sizes ranging
545 from 3 x 3 x 3 to 10 x 10 x 3 and found that using a combination of two different patch sizes
546 (with 2,000 patches each) outperformed using a single patch size (with 4,000 patches) across
547 all three tasks.

548 We create features for all land tiles with available imagery on a global $0.01^\circ \times 0.01^\circ$
549 equal-angle grid, amounting to ≈ 151 million feature vectors in total (10). Features become
550 sparse above 60° latitude, due to a lack of available imagery. Figure 1C shows individual
551 images spanning $0.01^\circ \times 0.01^\circ$, along with their corresponding MOSAIKS feature values.

552 We create polygon-level feature vectors by averaging values across the feature tiles asso-
553 ciated with each polygon. Each administrative polygon is represented by a single vector of
554 4000 daytime image features. We assign each feature tile to the administrative polygon that
555 contains its centroid. For small municipal and DHS polygons that do not contain any tile
556 centroids, we represent the polygon by the nearest feature tile. When averaging, we weight
557 by population using data from the Global Human Settlement Layer (GHS-POP) (46). We
558 use the GHS-POP data product for the year 2020 at 30 arcsecond (0.008°) resolution.

559 3.2 Nighttime light features

560 We create non-linear NL features from the Visible Infrared Imaging Radiometer Suite (VI-
561 IRS) average masked data product (32). We use the V2.1 annual composite from the year
562 2019. The data has global coverage at 15 arcsecond (0.004°) resolution. Radiance units
563 are expressed as $\text{nW/cm}^2/\text{sr}$. We assign the small number of pixels with negative radiance
564 values to have a value of zero.

565 We create features that flexibly characterize the distribution of the NL data using indi-
566 cator variables that represent whether the radiance value of each NL pixel falls into each of
567 21 bins. The first bin represents radiance values of zero. The next 20 bins represent radiance
568 values that fall into evenly spaced quantiles of the global distribution of positive NL values.
569 Analogous to aggregating the daytime imagery features to the polygon level, we calculate
570 the population-weighted average value for each of the 21 bins for a given polygon. These
571 polygon-level NL features denote the fraction of each polygon's population that is covered
572 by NL values represented by each of the 21 bins. This approach allows NL to associate
573 non-linearly with the outcome variables in our linear models.

574 We compute average nighttime light features for polygons by weighting by population in
575 our main analysis. Thus, changes in VIIRS grid cell sizes caused by latitude do not affect

576 these feature values (64), since total population in each cell is measured independently
577 of pixel area. We also verify that population-weighted features, which should have higher
578 performance than area-weighted features because HDI is measured on a per-person basis (not
579 per-area) do indeed have higher performance. For within-country provincial performance,
580 $R^2 = 0.52$ using population-weighted features, and $R^2 = 0.24$ using area-weighted features,
581 which were constructed accounting for the change in the VIIRS grid cell size with latitude.

582 Use of the “average masked” VIIRS data product should generally have background,
583 biomass burning, and aurora radiance removed (33). To the extent there is still unmasked
584 flaring in the NL data, we anticipate that the use of population-weighting when constructing
585 the NL features minimizes this bias, as oil producing areas are typically sparsely populated.

586 4 Analysis

587 4.1 General model specification

588 All models are trained at either the country or province level and use either the 4000 MO-
589 SAIKS daytime imagery features, the 21 NL features, or both. We train models using a
590 five-fold cross-validation procedure with basic ridge hyper-parameter tuning. Data are split
591 by country during cross-validation to account for spatial autocorrelation and to ensure that
592 the model is predicting provincial outcomes when no observations from within the same
593 country have been observed. We apply a clipping procedure that restricts model predictions
594 to the minimum and maximum value observed in the training data. Hyper-parameter tuning
595 is done with this clipping procedure. We allow for a different hyper-parameter between the
596 MOSAIKS and NL feature sets, though this has only a minor impact on our results.

597 The general linearized model, representing Eq. 3, that we implement is

$$598 Y = \beta_0 + \beta_1 \mathbf{X}_{MOSAIKS} + \beta_2 \mathbf{X}_{NL} + \epsilon \quad (4)$$

600 Where Y is used to refer to the HDI, IWI, or NL labels interchangeably. We use this same
601 model but predict each outcome separately. $\mathbf{X}_{MOSAIKS}$ is the matrix of daytime MOSAIKS
602 features and \mathbf{X}_{NL} is the matrix of nightlight features. We learn β_0 , β_1 , and β_2 using ridge
603 regression, following Rolf et al. (12). When predicting the NL outcome, we always exclude
604 the \mathbf{X}_{NL} feature matrix. For each outcome, we report performance for models trained at the
605 country, province, and within-country levels (Table S1). Model training is further detailed
606 in Supplementary Information S6.1.

605 **4.2 Performance metrics**

606 For each model specification, we report two metrics, both of which are used in the literature.
607 The *coefficient of determination* (R^2), used to evaluate related models by Chi *et al.* (17)
608 and others, describes the accuracy of the raw model predictions and is a direct measure
609 of model skill. The *square of the correlation coefficient* (ρ^2), used by Jean *et al.* (20) and
610 others, scores performance after allowing model predictions to be linearly re-scaled before
611 they are compared to observed values. We calculate both of these metrics when evaluating
612 the full variation in labels and when decomposing the variation in labels into components
613 that are visible within-countries or within-provinces (in contrast to between-countries and
614 between-provinces).

615 **Full variation performance** The “full variation” performance metrics describe how well
616 we estimate subnational HDI globally when we use all information available to us. To
617 calculate full variation performance, we calculate ρ^2 and R^2 on the predicted and observed
618 values of subnational HDI directly. This evaluates the ability of model predictions to capture
619 the total variation in the observed values – i.e. variation across countries, across provinces
620 within countries, and across municipalities or DHS clusters within provinces. Because most
621 of the variation in HDI and other outcomes is between countries (Figure 2A-B), a large
622 portion of the model’s full variation performance comes directly from the mean-anchoring
623 procedure (when it is used). Thus, the full variation performance metrics do not precisely
624 evaluate the model’s ability to predict local variation in isolation, and so they are not our
625 preferred evaluation metric for understanding model performance within countries. Instead,
626 we focus our analysis on within-country and, when applicable, within-province performance.

627 **Within-country performance** The “within-country” performance measures the amount
628 of variation in the provincial deviations from the country mean that can be explained by the
629 model. This metric evaluates the ability of the model to explain local variation in the outcome
630 by removing large-scale variation in the outcome across countries in the demeaning step
631 before predictions and observations are compared. To calculate within-country performance,
632 we calculate ρ^2 and R^2 after demeaning predictions and observed values at the country level
633 (i.e., after subtracting the predicted and observed country average value from each predicted
634 and observed data point, respectively).

635 **Within-province performance** The “within-province” performance metric evaluates the
636 ability of the model to explain hyper-local variation in the outcome, such as which DHS
637 clusters within each province have higher or lower IWI. It does this by removing all between-

638 province variation in the predicted and observed values before they are compared. To calculate
639 within-province performance, we calculate ρ^2 and R^2 after demeaning predictions and
640 observed values at the province level.

641 4.3 Model evaluation

642 **Evaluation of HDI at the same provincial resolution as model training** When
643 reporting model performance at the same resolution as training (Figure 2 top row, Table
644 S1 upper section, and Table S3), we evaluate predictions from the validation folds of a five-
645 fold spatial cross-validation procedure in which models are trained and evaluated on data
646 from non-overlapping sets of countries. This enables more observations to be used when
647 evaluating model performance. We also evaluate models on a held-out test set of countries
648 that were not included when tuning the HDI model. Before analysis, we set aside $\approx 20\%$
649 of the provincial HDI data to be used as a final evaluation test set by randomly sampling
650 35 countries and their respective provinces. Evaluation on this test set was conducted after
651 all hyper-parameter tuning and analysis decisions were made. We find that performance is
652 not meaningfully different in the validation and tests sets, which indicates that the models
653 evaluated on the validation folds did not over-fit to the data (Table S2).

654 **Evaluation of HDI, IWI and NL at finer resolution than model training** In the
655 downscaling experiments, we evaluate performance using fine-resolution municipal or DHS
656 cluster observations that were not used for model training or tuning. After tuning the model
657 using cross-validation we retrain the model using the optimal hyper-parameters on all the
658 province or country observations before predicting at downscaled resolution.

659 4.4 Mean-anchoring

660 In our primary within-country model, we anchor our estimates to country or province-level
661 means depending on the experiment. Estimates from models trained on provincial or national
662 observations in “levels” (Table S1) are never mean-anchored.

663 **Anchoring to country means** The procedure for anchoring to the country mean is
664 illustrated in the top row of Figure 2, where we evaluate performance at the same resolution
665 as model training. Our within-country model is trained to predict within-country anomalies,
666 so in order to predict HDI in “levels” (Figure 2A), we add back the known country average
667 HDI (Equation S2). This procedure enables us to calculate full variation performance (Figure
668 2A) but has no impact on the reported within-country performance (Figure 2B).

669 **Anchoring to provincial means** In the downscaling application, our goal is to produce
670 the best possible estimates at fine resolution. Thus, when producing downscaled estimates
671 of IWI and HDI, we anchor our predictions to the observed provincial value of the outcome
672 (Equation S8). This re-centering procedure impacts the full variation performance and the
673 within-country performance but does not impact the within-province performance (Table
674 S1). Note that we anchor municipal NL estimates to country means, rather than provincial
675 means, because we find that this improves the estimates (Supplementary Information S6.3).
676 Mean anchoring and model evaluation are further detailed in Supplementary Information
677 S6.1.

678 4.5 Producing downscaled estimates of HDI

679 To produce fine-resolution estimates of HDI, we take the local estimates of HDI that we
680 predict using satellite imagery and mean-anchor them to province-year values from 2012-
681 2021. This approach uses existing provincial values to explain provincial HDI over space and
682 time, and then supplements that with information on local (i.e. within-province) variation
683 in HDI predicted by the satellite imagery. This approach assume that the spatial pattern
684 of HDI within provinces does not change over time; relaxing this assumption gives similar
685 results (Supplementary Information S3). While in principle we could apply this approach
686 to make estimates in years earlier than 2012, going farther back in time may make the
687 assumption of a constant pattern of within-province HDI less strong. The year 2012 is the
688 earliest for which we evaluated sub-provincial variation using IWI data.

689 **Municipality-level HDI** We use the within-country model specified in Equation S1a
690 to estimate HDI at the municipality level, using a municipality (ADM2) shapefile from
691 geoBoundaries (65). We anchor municipality estimates by centering predicted deviations on
692 the observed province-level HDI value for each year, following the procedure for downscaled
693 IWI predictions (Equation S8). We do not release HDI estimates for municipalities that
694 cannot be linked to a parent province with a province-level HDI estimate from Smits and
695 Permanyer (7) because there is not a known provincial value to anchor on.

696 **Grid-level HDI** To produce $0.1^\circ \times 0.1^\circ$ estimates of HDI, we similarly use the within-
697 country model specified in Equation S1a. We make predictions using MOSAIKS features
698 at $0.1^\circ \times 0.1^\circ$ resolution. This results in gridded estimates of HDI at approximately 10km^2
699 resolution. We mask out locations where humans are not believed to be settled based on
700 GHS-POP (46) (keeping areas with population > 0) and then mean-anchor our tile estimates

701 such that the population-weighted average of the grid tiles within each province matches
702 known provincial HDI values.

703 4.6 Targeting applications

704 In Figure 5 we evaluate how access to more granular HDI data improves the number of
705 program recipients correctly targeted. We assume the goal is to provide a uniform transfer
706 to those at or below the tenth percentile of the HDI distribution. Following Smythe and
707 Blumenstock (2022) (8), the program is geographically targeted and all individuals within
708 targeted regions receive the same transfer, a practice used to reduce administrative costs
709 (47, 66). If the administrator has access to only provincial HDI measures, then eligibil-
710 ity is determined at the province-level. Alternatively, using our municipal estimates, the
711 administrator is able to target the program at the municipality level.

712 We evaluate performance using the census-derived municipality-level HDI measurements
713 (9) — which are not used to train our model. These are the same census-derived measures
714 used to evaluate performance in Figure 2C-D and discussed above (Methods 2.3). Because
715 these estimates are municipality-level aggregates, we simulate HDI for *individuals* — i.e.
716 the targets of the policy — by imposing additional assumptions about the distribution of
717 HDI across individuals within a municipality. We assume HDI within each municipality has
718 a truncated normal distribution (bounded between 0 and 1) that is centered around the
719 census-derived municipality mean (Figure S6).

720 The degree to which municipal HDI measures improve targeting performance relative to
721 provincial measures depends somewhat on the assumed dispersion of individual HDI values
722 within municipalities (Methods 4.6). Assuming lower (higher) dispersion leads to larger
723 (smaller) absolute — though similar proportional — gains (Figure 5E and Figure S6).

724 When evaluating performance using a receiver operating characteristic curve (ROC)
725 curve, (Figure 5F) the aim is still to provide assistance to the 10% of individuals with the
726 lowest HDI, but the fraction of the total population targeted is modified to examine how the
727 true positive (individuals with low HDI correctly given aid) and false positive (individuals
728 with HDI above the desired cutoff incorrectly given aid) rates change accordingly. Moving
729 from left to right on the x-axis in Figure 5F implies a greater number of people receiving
730 assistance. The area under the curve (AUC) shows the efficiency of the targeting. The AUC
731 increases by 0.1 (+13% from 0.76 to 0.86) when municipal data are used instead of provincial
732 data, indicating improved targeting performance when the budget constraint is varied.

733 As an additional robustness check, we repeat this policy targeting experiment using
734 Indonesia municipality data (63) and observe a similar increase in AUC under the same

⁷³⁵ assumptions (11% from 0.62 to 0.69). This is shown in Figure S11.

736 **Code availability** Replication code is available at
737 github.com/Global-Policy-Lab/hdi_downscaling_mosaiks.

738

739 **Data availability** All data used in this analysis, other than the DHS cluster-level IWI data
740 from the Global Data Lab, is from free, publicly available sources. Details on how to access
741 data for replication can be found at github.com/Global-Policy-Lab/hdi_downscaling_mosaiks. HDI estimates are available at mosaiks.org/hdi.

743 **Funding** This work was supported by a grant from the Human Development Report Office of
744 the United Nations Development Programme. Additional support for this work comes from
745 the National Science Foundation Graduate Research Fellowship Program under Grant No.
746 DGE 2146752, the Harvard University Center for the Environment and Harvard University
747 Data Science Initiative, and AI for Earth supported by Microsoft and National Geographic.
748 Any opinions, findings, and conclusions or recommendations expressed in this material are
749 those of the authors and do not necessarily reflect the views of the National Science Foundation.
750

751

752 **Acknowledgements** We thank Tamara Carleton, Pedro Conceição, Esther Rolf, and semi-
753 inar participants at The Workshop in Environmental Economics and Data Science, the
754 WIDER Development Conference (Bogotá), IDinsight, and the American Geophysical Union
755 Fall Meeting for their valuable feedback. We also thank Tamara Carleton for contributions
756 to Fig. S1. We thank the Global Data Lab for sharing DHS cluster-level data on the Interna-
757 tional Wealth Index. We also thank Iñaki Permanyer and Arie Wahyu Wijayanto for helping
758 us access census-derived municipality data in Mexico and Indonesia respectively. The project
759 benefited from input and assistance from Jeanette Tseng, Jessica Katz, and Trinetta Chong.

760 References

- 761 1. P. Conceição, M. Kovacevic, T. Mukhopadhyay,
762 *Human Development: A Perspective on Metrics*, pp. 83–115, ISBN: 9780128190579.
- 763 2. I. Permanyer, J. Smits, *Population and Development Review*, ISSN: 17284457.
- 764 3. J. Klugman, F. Rodríguez, H. J. Choi,
765 The HDI 2010: New controversies, old critiques.
766 *Journal of Economic Inequality* **9**, 249–288, ISSN: 15691721 (2011).
- 767 4. *Technical notes - Human Development Report 2019*, 2019.
- 768 5. “Human Development Report 1990: Concept and Measurement of Human
769 Development”, tech. rep.
770 (United Nations Development Programme, New York, 1990).
- 771 6. H. Wolff, H. Chong, M. Auffhammer, Classification, Detection and Consequences of
772 Data Error: Evidence from the Human Development Index.
773 *Economic Journal* **121**, 843–870, ISSN: 00130133 (2011).
- 774 7. J. Smits, I. Permanyer, The subnational human development database.
775 *Scientific Data* **6**, 1–15, ISSN: 20524463,
776 (<https://doi.org/10.1038/sdata.2019.38>) (2019).
- 777 8. I. S. Smythe, J. E. Blumenstock,
778 Geographic microtargeting of social assistance with high-resolution poverty maps.
779 *Proceedings of the National Academy of Sciences* **119**, e2120025119 (2022).
- 780 9. I. Permanyer,
781 Using Census Data to Explore the Spatial Distribution of Human Development.
782 *World Development* **46**, 1–13, ISSN: 0305-750X (June 2013).
- 783 10. T. Carleton *et al.*,
784 *Multi-Task Observation Using Satellite Imagery and Kitchen Sinks (MOSAIKS) API*,
785 <https://api.mosaiks.org>, version 1.0, 2022.
- 786 11. Planet Team, *Planet Application Program Interface: In Space for Life on Earth*,
787 Planet, 2017, (<https://api.planet.com>).
- 788 12. E. Rolf *et al.*, A generalizable and accessible approach to machine learning with global
789 satellite imagery. *Nature Communications* 2021 **12**:1 **12**, 1–11, ISSN: 2041-1723
790 (July 2021).

791 13. P. M. Atkinson, Downscaling in remote sensing.
792 *International Journal of Applied Earth Observation and Geoinformation* **22**, Spatial
793 Statistics for Mapping the Environment, 106–114, ISSN: 1569-8432 (2013).

794 14. A. N. Rose, E. Bright, The LandScan global population distribution project: Current
795 state of the art and prospective innovation.
796 *Population Association of America 2014 Annual Meeting*, 1–21 (2014).

797 15. M. Burke, A. Driscoll, D. B. Lobell, S. Ermon,
798 Using satellite imagery to understand and promote sustainable development.
799 *Science* **371**, eabe8628 (2021).

800 16. C. Yeh *et al.*, Using publicly available satellite imagery and deep learning to
801 understand economic well-being in Africa.
802 *Nature Communications* **11**, 1–11, ISSN: 20411723 (Dec. 2020).

803 17. G. Chi, H. Fang, S. Chatterjee, J. E. Blumenstock,
804 Microestimates of wealth for all low-and middle-income countries.
805 *Proceedings of the National Academy of Sciences* **119**, e2113658119 (2022).

806 18. A. Khachiyan *et al.*,
807 Geographic microtargeting of social assistance with high-resolution poverty maps.
808 *American Economic Review: Insights* **4**, 491–506 (2022).

809 19. R. Engstrom, J. Hersh, D. Newhouse, Poverty from space: Using high resolution
810 satellite imagery for estimating economic well-being.
811 *The World Bank Economic Review* **36**, 382–412 (2022).

812 20. N. Jean *et al.*, Combining satellite imagery and machine learning to predict poverty.
813 *Science* **353**, 790–794, ISSN: 10959203 (Aug. 2016).

814 21. X. Zhang, J. Xu, S. Zhong, Z. Wang,
815 Assessing uneven regional development using nighttime light satellite data and
816 machine learning methods: evidence from county-level improved HDI in China.
817 *Land* **13**, 1524 (2024).

818 22. R. Ramadhan, A. W. Wijayanto, presented at the Proceedings of The International
819 Conference on Data Science and Official Statistics, vol. 2023, pp. 274–295.

820 23. E. Aiken, E. Rolf, J. Blumenstock,
821 *Fairness and representation in satellite-based poverty maps: Evidence of urban-rural*
822 *disparities and their impacts on downstream policy*, 2023,
823 arXiv: 2305.01783 (cs.LG).

824 24. N. Ratledge, G. Cadamuro, B. de la Cuesta, M. Stigler, M. Burke,
825 Using machine learning to assess the livelihood impact of electricity access.
826 *Nature* **611**, 491–495 (2022).

827 25. J. Proctor, T. Carleton, S. Sum,
828 “Parameter Recovery Using Remotely Sensed Variables”, tech. rep.
829 (National Bureau of Economic Research, 2023).

830 26. E. Aiken, S. Bellue, D. Karlan, C. Udry, J. E. Blumenstock,
831 Machine learning and phone data can improve targeting of humanitarian aid.
832 *Nature* **603**, 864–870 (2022).

833 27. L. Y. Huang, S. M. Hsiang, M. Gonzalez-Navarro, “Using satellite imagery and deep
834 learning to evaluate the impact of anti-poverty programs”, tech. rep.
835 (National Bureau of Economic Research, 2021).

836 28. Z. Li, F. Liu, W. Yang, S. Peng, J. Zhou,
837 A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects.
838 *IEEE Transactions on Neural Networks and Learning Systems*, 1–21 (2021).

839 29. N. Jean *et al.*,
840 Tile2vec: Unsupervised representation learning for spatially distributed data.
841 *Proceedings of the AAAI Conference on Artificial Intelligence* **33**, 3967–3974 (2019).

842 30. S. Mohanasundaram, K. Kasiviswanathan, C. Purnanjali, I. P. Santikayasa, S. Singh,
843 Downscaling Global Gridded Crop Yield Data Products and Crop Water Productivity
844 Mapping Using Remote Sensing Derived Variables in the South Asia.
845 *International Journal of Plant Production*, 1–16 (2022).

846 31. P. Rayner, M. Raupach, M. Paget, P. Peylin, E. Koffi, A new global gridded data set
847 of CO₂ emissions from fossil fuel combustion: Methodology and evaluation.
848 *Journal of Geophysical Research: Atmospheres* **115** (2010).

849 32. Annual VIIRS NL V2.1, (<https://eogdata.mines.edu/products/vnl/>).

850 33. C. D. Elvidge, M. Zhizhin, T. Ghosh, F.-C. Hsu, J. Taneja, Annual Time Series of
851 Global VIIRS Nighttime Lights Derived from Monthly Averages: 2012 to 2019.
852 *Remote Sensing* **13**, ISSN: 2072-4292,
853 (<https://www.mdpi.com/2072-4292/13/5/922>) (2021).

854 34. *Indeks Pembangunan Manusia* 2023, 2024,
855 (2025; <https://www.bps.go.id/en/publication/2024/05/13/8f77e73a66a6f484c655985a/indeks-pembangunan-manusia-2023.html>).

857 35. “Desenvolvimento Humano Para Além Das Médias”, tech. rep.
858 (United Nations Development Programme & Instituto de Pesquisa Econômica
859 Aplicada, Brasília, 2017), (2025; https://portalantigo.ipea.gov.br/portal/index.php?option=com_content&view=article&id=30025).

860

861 36. J. Smits, R. Steendijk, The International Wealth Index (IWI).
862 *Social Indicators Research* 2014 122:1 **122**, 65–85, ISSN: 1573-0921 (July 2014).

863 37. X. Chen, W. D. Nordhaus, Using luminosity data as a proxy for economic statistics.
864 *Proceedings of the National Academy of Sciences* **108**, 8589–8594, ISSN: 0027-8424
865 (May 2011).

866 38. J. V. Henderson, A. Storeygard, D. N. Weil,
867 Measuring Economic Growth from Outer Space.
868 *American Economic Review* **102**, 994–1028 (Apr. 2012).

869 39. A. Bruederle, R. Hodler,
870 Nighttime lights as a proxy for human development at the local level.
871 *PLOS ONE* **13**, 1–22 (Sept. 2018).

872 40. R. Bluhm, G. C. McCord, What Can We Learn from Nighttime Lights for Small
873 Geographies? Measurement Errors and Heterogeneous Elasticities.
874 *Remote Sensing* **14**, ISSN: 2072-4292 (2022).

875 41. C. D. Elvidge, K. E. Baugh, S. J. Anderson, P. C. Sutton, T. Ghosh,
876 The Night Light Development Index (NLDI): a spatially explicit measure of human
877 development from satellite data. *Social Geography* **7**, 23–35 (2012).

878 42. C. D. Elvidge *et al.*, A global poverty map derived from satellite data.
879 *Computers & Geosciences* **35**, 1652–1660, ISSN: 0098-3004 (2009).

880 43. P. Sutton, C. Elvidge, G. Tilottama, Estimation of Gross Domestic Product at
881 Sub-National Scales Using Nighttime Satellite Imagery.
882 *International Journal of Ecological Economics & Statistics* **8** (Jan. 2007).

883 44. I. McCallum *et al.*, Estimating global economic well-being with unlit settlements.
884 *Nature Communications* 2022 13:1 **13**, 1–8, ISSN: 2041-1723 (May 2022).

885 45. UNDP Human Development Data Center, 2019, (<http://hdr.undp.org/en/data>).

886 46. Global Human Settlement Layer - Population (GHS POP E2020),
887 (<https://ghsl.jrc.ec.europa.eu/download.php?ds=pop>).

888 47. C. Elbers, T. Fujii, P. Lanjouw, B. Özler, W. Yin,
889 Poverty alleviation through geographic targeting: How much does disaggregation help?
890 *Journal of Development Economics* **83**, 198–213 (2007).

891 48. M. Ravallion,
892 Poverty alleviation through regional targeting: A case study for Indonesia.
893 *The Economics of Rural Organization: Theory, Practice and Policy*, 373–77 (1993).

894 49. D. P. Coady, The welfare returns to finer targeting: The case of the PROGRESA
895 program in Mexico. *International tax and public finance* **13**, 217–239 (2006).

896 50. I. Smythe, J. Blumenstock,
897 Geographic Micro-Targeting of Social Assistance with High-Resolution Poverty Maps.
898 *Proceedings of ACM Conference (Conference'17)* **1** (2021).

899 51. C. Yeh *et al.*, SustainBench: Benchmarks for Monitoring the Sustainable Development
900 Goals with Machine Learning. arXiv: 2111.04724 (Nov. 2021).

901 52. N. Pokhriyal, D. C. Jacques,
902 Combining disparate data sources for improved poverty prediction and mapping.
903 *Proceedings of the National Academy of Sciences* **114**, E9783–E9792 (2017).

904 53. P. Corral, I. Molina, A. Cojocaru, S. Segovia,
905 *Guidelines to small area estimation for poverty mapping*
906 (World Bank Washington, 2022).

907 54. D. Newhouse, Small Area Estimation of Poverty and Wealth Using Geospatial Data:
908 What Have We Learned So Far? *Calcutta Statistical Association Bulletin* **76**, 7–32
909 (2024).

910 55. C. Elbers, J. O. Lanjouw, P. Lanjouw,
911 Micro-level estimation of poverty and inequality. *Econometrica* **71**, 355–364 (2003).

912 56. R. Van Der Weide, B. Blankespoor, C. Elbers, P. Lanjouw, How accurate is a poverty
913 map based on remote sensing data? An application to Malawi.
914 *Journal of Development Economics* **171**, 103352 (2024).

915 57. O. Hall, M. Ohlsson, T. Rögnvaldsson, A review of explainable AI in the satellite
916 data, deep machine learning, and human poverty domain.
917 *Patterns* **3**, 100600, ISSN: 2666-3899 (2022).

918 58. C. Coglianese, D. Lehr,
919 Regulating by Robot: Administrative Decision Making in the Machine-Learning Era.
920 *Georgetown Law Journal* **105** (2017).

921 59. J. L. Abitbol, M. Karsai, Interpretable socioeconomic status inference from aerial
922 imagery through urban patterns.
923 *Nature Machine Intelligence* **2**, 684–692, ISSN: 2522-5839 (2020).

924 60. K. Ayush, B. Uzkent, M. Burke, D. Lobell, S. Ermon, presented at the Proceedings of
925 the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20,
926 ed. by C. Bessiere, Special track on AI for CompSust and Human well-being,
927 pp. 4410–4416.

928 61. A. Rahimi, B. Recht, Weighted sums of random kitchen sinks: Replacing
929 minimization with randomization in learning.
930 *Advances in neural information processing systems* **21** (2008).

931 62. *Subnational-HDI Database V7.0*,
932 (https://globaldatalab.org/shdi/download_files/).

933 63. *BPS-Statitistics Indonesia - Data Query*,
934 (2025; <https://www.bps.go.id/en/query-builder>).

935 64. C. D. Elvidge, T. Ghosh, F.-C. Hsu, M. Zhizhin, M. Bazilian,
936 The dimming of lights in China during the COVID-19 pandemic.
937 *Remote Sensing* **12**, 2851 (2020).

938 65. D. Runfola *et al.*, geoBoundaries: A global database of political administrative
939 boundaries (CGAZ 3.0.0). *PLOS ONE* **15**, e0231866, ISSN: 1932-6203 (Apr. 2020).

940 66. R. Hanna, B. A. Olken, Universal basic incomes versus targeted transfers:
941 Anti-poverty programs in developing countries.
942 *Journal of Economic Perspectives* **32**, 201–26 (2018).

943 67. *Harmonized Sentinel-2 MSI: MultiSpectral Instrument, Level-2A (SR)*,
944 (2025; https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR_HARMONIZED).

945 68. A. V. Norström *et al.*,
946 Principles for knowledge co-production in sustainability research.
947 *Nature sustainability* **3**, 182–190 (2020).

948 69. A. Kliskey *et al.*, Building trust, building futures: Knowledge co-production as
949 relationship, design, and process in transdisciplinary science.
950 *Frontiers in Environmental Science* **11**, 137 (2023).

951 70. *Microsoft Bing Maps - Global ML Building Footprints*, (2024; <https://github.com/microsoft/GlobalMLBuildingFootprints/tree/main?tab=readme-ov-file>).

955 71. *Open Street Maps API*, (2021; https://wiki.openstreetmap.org/wiki/API_v0.6).

956 72. A. Shaver, D. B. Carter, T. W. Shawa,
957 Terrain ruggedness and land cover: Improved data for most research designs.
958 *Conflict Management and Peace Science* **36**, 191–218 (2019).

959 73. M. C. Hansen *et al.*, High-resolution global maps of 21st-century forest cover change.
960 *Science (New York, N.Y.)* **342**, 850–3, ISSN: 1095-9203 (Nov. 2013).

961 74. N. Ramankutty, A. T. Evan, C. Monfreda, J. A. Foley, Farming the planet: 1.
962 Geographic distribution of global agricultural lands in the year 2000.
963 *Global Biogeochemical Cycles* **22** (2008).

964 75. *EarthStat*, (2021; <http://www.earthstat.org/>).

965 76. *CPC Global Unified Temperature*,
966 (2024; <https://psl.noaa.gov/data/gridded/data.cpc.globaltemp.html>).

967 77. *NASA Global Precipitaion Measurement. IMERG Grand Average Precipitation
968 Climatology*,
969 (2024; <https://gpm.nasa.gov/data/imerg/precipitation-climatology>).

⁹⁷⁰ **Supplementary Information**

		Predicted at province level (n=1,381)				
		Full variation performance		Within-country performance		
		ρ^2	R^2	ρ^2	R^2	
HDI trained at:						
Within-country (n=1,363)	0.96	0.96	0.52	0.52		
Province level (n=1,381)	0.83	0.83	0.44	0.24		
Country level (n=145)	0.74	0.74	0.28	< 0		
Predicted at municipality level in Indonesia (n=505)						
		Within-country performance		Within-province performance		
		ρ^2	R^2	ρ^2	R^2	
		(3)	(4)	(5)	(6)	
HDI trained at:						
Within-country (n=1,363)		0.62	0.61	0.53	0.53	
Province level (n=1,381)		0.5	0.37	0.51	0.37	
Country level (n=145)		0.35	< 0	0.36	< 0	
Predicted at municipality level in Brazil (n=5,584)						
		Within-country performance		Within-province performance		
		ρ^2	R^2	ρ^2	R^2	
		(3)	(4)	(5)	(6)	
HDI trained at:						
Within-country (n=1,363)		0.48	0.48	0.33	0.20	
Province level (n=1,381)		0.46	0.36	0.31	< 0	
Country level (n=145)		0.29	< 0	0.18	< 0	
Predicted at municipality level in Mexico (n=2,457)						
		Within-country performance		Within-province performance		
		ρ^2	R^2	ρ^2	R^2	
		(3)	(4)	(5)	(6)	
HDI trained at:						
Within-country (n=1,363)		0.5	0.45	0.31	0.29	
Province level (n=1,381)		0.31	0.31	0.26	0.23	
Country level (n=145)		0.16	< 0	0.12	< 0	
Predicted at DHS cluster level (n=51,996)						
		Full variation performance		Within-country performance		Within-province performance
		ρ^2	R^2	ρ^2	R^2	ρ^2
		(1)	(2)	(3)	(4)	(5)
IWI trained at:						
Within-country (n=862)	0.71	0.67	0.56	0.56	0.36	0.36
Province level (n=862)	0.44	0.28	0.21	0.08	0.24	0.1
Country level (n=85)	0.31	< 0	0.13	< 0	0.13	< 0
Predicted at municipality level (n=62,536)						
		Full variation performance		Within-country performance		Within-province performance
		ρ^2	R^2	ρ^2	R^2	ρ^2
		(1)	(2)	(3)	(4)	(5)
NL trained only on MOSAIKS at:						
Within-country (n=2,852)	0.73	0.7	0.64	0.63	0.61	0.57
Province level (n=2,852)	0.65	0.61	0.57	0.45	0.53	0.35
Country level (n=170)	0.44	0.3	0.36	0.08	0.31	< 0

Table S1: Performance for models trained to predict HDI, IWI, and population-weighted nightlight luminosity (NL). Models for HDI and IWI use a combination of MOSAIKS and population-weighted NL features. We show performance evaluated at the province level for HDI and evaluate downscaled performance for HDI, IWI, and NL. Performance scatters from the within-country models are shown in Figure 2. All predictions are made for the year 2019.

		Predicted at province level (n=378)			
		Full variation performance		Within-country performance	
<i>HDI trained at:</i>	<i>Features</i>	ρ^2	R^2	ρ^2	R^2
		(1)	(2)	(3)	(4)
Within-country	MOSAIKS+NL	0.97	0.97	0.43	0.42
Province level	MOSAIKS+NL	0.87	0.87	0.4	0.09
Country level	MOSAIKS+NL	0.79	0.79	0.29	< 0

Table S2: This is similar to the upper portion of Table S1 except that here we have evaluated on a 35 country ($\approx 20\%$) test set that was not used during model tuning. The modest reported differences in the validation-set and test-set performances when evaluating within-country performance could be due to either noise from the small sample size of the test set, or to overfitting. We test this and find that noise from the small test set is likely to be the explanation. The average within-country test-set performance across 30 random 80% validation-set and 20% test-set splits, using the same training and evaluation procedure, is very close to that of the original validation set: $R^2 = 0.51$ for MOSAIKS + NL.

		Predicted at province level (n=1,381)			
HDI trained at:	Features	Full variation performance		Within-country performance	
		ρ^2 (1)	R^2 (2)	ρ^2 (3)	R^2 (4)
Within-country (n=1,363)	MOSAIKS+NL	0.96	0.96	0.52	0.52
	MOSAIKS	0.95	0.95	0.42	0.42
	NL	0.95	0.95	0.45	0.45
Province level (n=1,381)	MOSAIKS+NL	0.83	0.83	0.44	0.24
	MOSAIKS	0.76	0.75	0.31	< 0
	NL	0.60	0.60	0.44	< 0
Country level (n=145)	MOSAIKS+NL	0.74	0.74	0.28	< 0
	MOSAIKS	0.62	0.58	0.16	< 0
	NL	0.59	0.53	0.44	< 0

		Predicted at province level (n=1,381)			
Life expectancy trained at:	Features	Full variation performance		Within-country performance	
		ρ^2 (1)	R^2 (2)	ρ^2 (3)	R^2 (4)
Within-country (n=1,363)	MOSAIKS+NL	0.92	0.92	0.05	0.05
	MOSAIKS	0.92	0.92	0.01	0.01
	NL	0.92	0.92	0.05	0.05
Province level (n=1,381)	MOSAIKS+NL	0.69	0.69	0.03	< 0
	MOSAIKS	0.66	0.66	0.02	< 0
	NL	0.43	0.43	0.06	< 0
Country level (n=145)	MOSAIKS+NL	0.6	0.57	0.02	< 0
	MOSAIKS	0.57	0.53	0.02	< 0
	NL	0.42	0.32	0.06	< 0

		Predicted at province level (n=1,381)			
Mean years schooling trained at:	Features	Full variation performance		Within-country performance	
		ρ^2 (1)	R^2 (2)	ρ^2 (3)	R^2 (4)
Within-country (n=1,363)	MOSAIKS+NL	0.93	0.93	0.51	0.51
	MOSAIKS	0.91	0.91	0.41	0.41
	NL	0.92	0.92	0.45	0.45
Province level (n=1,381)	MOSAIKS+NL	0.75	0.75	0.49	0.43
	MOSAIKS	0.7	0.7	0.41	0.31
	NL	0.56	0.56	0.44	0.26
Country level (n=145)	MOSAIKS+NL	0.73	0.72	0.46	0.3
	MOSAIKS	0.6	0.6	0.24	< 0
	NL	0.56	0.53	0.42	< 0

		Predicted at province level (n=1,381)			
Expected years schooling trained at:	Features	Full variation performance		Within-country performance	
		ρ^2 (1)	R^2 (2)	ρ^2 (3)	R^2 (4)
Within-country (n=1,363)	MOSAIKS+NL	0.9	0.9	0.28	0.27
	MOSAIKS	0.89	0.89	0.27	0.26
	NL	0.88	0.88	0.15	0.15
Province level (n=1,381)	MOSAIKS+NL	0.56	0.56	0.21	0.09
	MOSAIKS	0.5	0.5	0.2	0.06
	NL	0.39	0.39	0.15	< 0
Country level (n=145)	MOSAIKS+NL	0.54	0.53	0.2	< 0
	MOSAIKS	0.44	0.41	0.07	< 0
	NL	0.38	0.35	0.14	< 0

		Predicted at province level (n=1,381)			
GNIpc trained at:	Features	Full variation performance		Within-country performance	
		ρ^2 (1)	R^2 (2)	ρ^2 (3)	R^2 (4)
Within-country (n=1,363)	MOSAIKS+NL	0.97	0.97	0.56	0.56
	MOSAIKS	0.95	0.95	0.4	0.4
	NL	0.96	0.96	0.55	0.55
Province level (n=1,381)	MOSAIKS+NL	0.79	0.79	0.36	< 0
	MOSAIKS	0.68	0.68	0.25	< 0
	NL	0.59	0.59	0.52	< 0
Country level (n=145)	MOSAIKS+NL	0.56	< 0	0.23	< 0
	MOSAIKS	0.46	< 0	0.1	< 0
	NL	0.31	< 0	0.12	< 0

Table S3: Similar to the top section of Table S1 except that here we show performance for each HDI component and also show performance with different combinations of features.

	HDI	Life expectancy	Mean years schooling	Expected years schooling
Life expectancy	0.79			
Mean years schooling	0.84	0.52		
Expected years schooling	0.82	0.57	0.61	
GNIpc	0.62	0.46	0.5	0.44
<hr/>				
<i>Within-country</i>	HDI	Life expectancy	Mean years schooling	Expected years schooling
Life expectancy	0.31			
Mean years schooling	0.82	0.12		
Expected years schooling	0.65	0.1	0.46	
GNIpc	0.17	0.03	0.1	0.07

Table S4: Individual components of HDI tend to be correlated. We report the squared Pearson’s correlation coefficient (ρ^2) between HDI and its components at the province level. We also report the squared correlation coefficients after demeaning provincial observations by country. This ρ^2 metric used here is intended to be comparable to the metrics reported in Tables S1 and S3. Notably, within-country correlation between HDI and GNIpc is low, yet we are still able to predict those separate outcomes with considerable skill.

HDI trained at:	Features	Predicted at province level			
		Full variation performance		Within-country performance	
		ρ^2	R^2	ρ^2	R^2
(1)	(2)	(3)	(4)		
Within-country (n=1,363)	NDVI+NDWI+NDBI	0.92	0.92	0.03	0.02
	NDVI+NDWI+NDBI+MOSAIKS+NL	0.96	0.96	0.52	0.52
	MOSAIKS+NL (for reference)	0.96	0.96	0.52	0.52

Table S5: Performance for models trained with additional features at the provincial level. Specifically, we use Sentinel 2A imagery downloaded at approximately 500m resolution (67). Following, (22) we process Sentinel 2A imagery to calculate the Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and Normalized Difference Built-up Index (NDBI). We then create population-weighted features in the same manner as done with the NL features (see Methods 3.2).

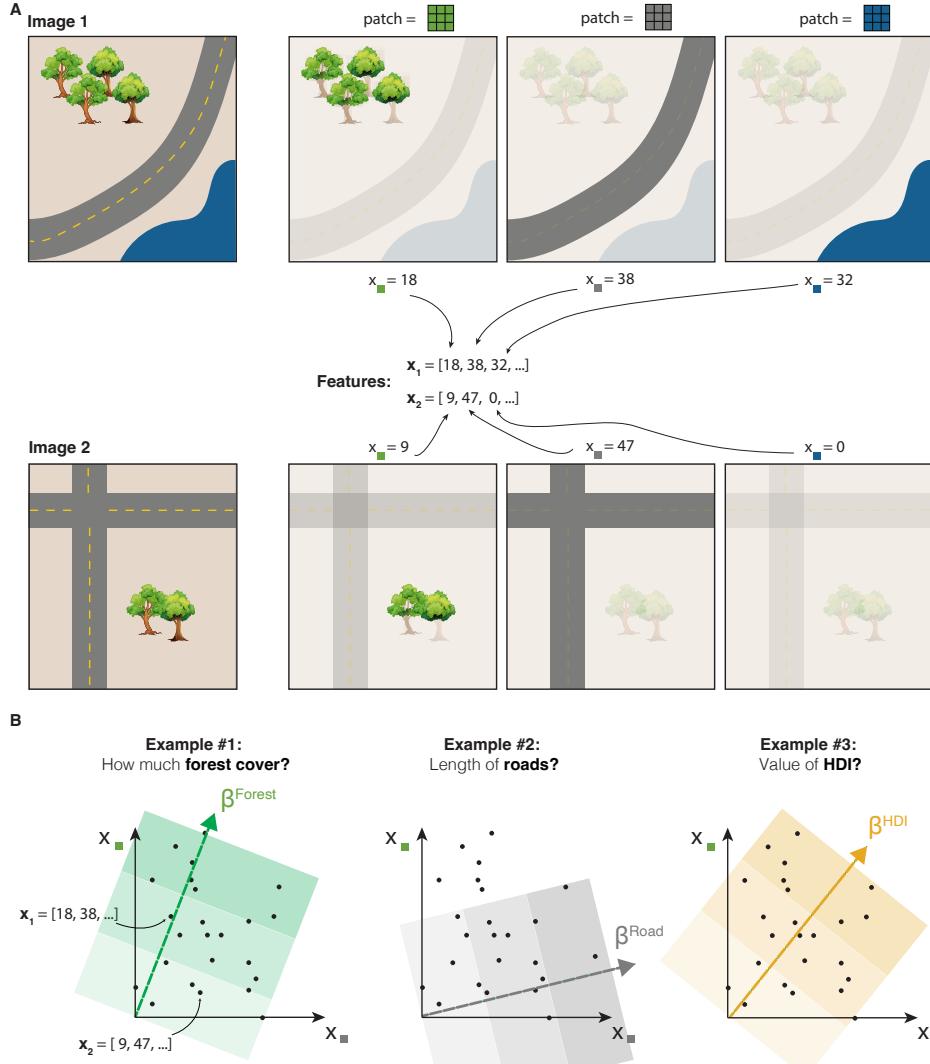


Figure S1: An illustration of generating MOSAIKS features for two cartoon images, and using the features to predict HDI and other example outcomes. (A) MOSAIKS random convolutional features capture the information within satellite imagery by measuring how similar each image is to a fixed set of small patches of imagery. Similarity is measured mathematically using a moving-window dot product, or “convolution.” The parts of each image that are similar to each patch are shown, with greater similarity leading to larger feature values. The green patch, for example, is similar to the parts of the imagery containing green trees. Image 1 has a greater feature value for this patch because it has more trees than image 2. Collectively, MOSAIKS features capture information on the color and texture of the imagery, which represent the content of the imagery (e.g., trees, roads, and lakes). (B) Features associate differently with different outcomes: images that are more similar to the green patch tend to have higher forest cover, and images that are more similar to the grey patch tend to have more roads. Regressing HDI onto these features learns how higher or lower feature values associate with higher or lower HDI, and in turn, how to predict HDI using these features. Each dot in each scatter represents an image, and the arrow represents the direction in the feature space of increasing forest, roads, or HDI. The direction of the arrow is learned by the regression. For more details on MOSAIKS features and how they can be used to predict a broad range of outcomes see ref. (12).

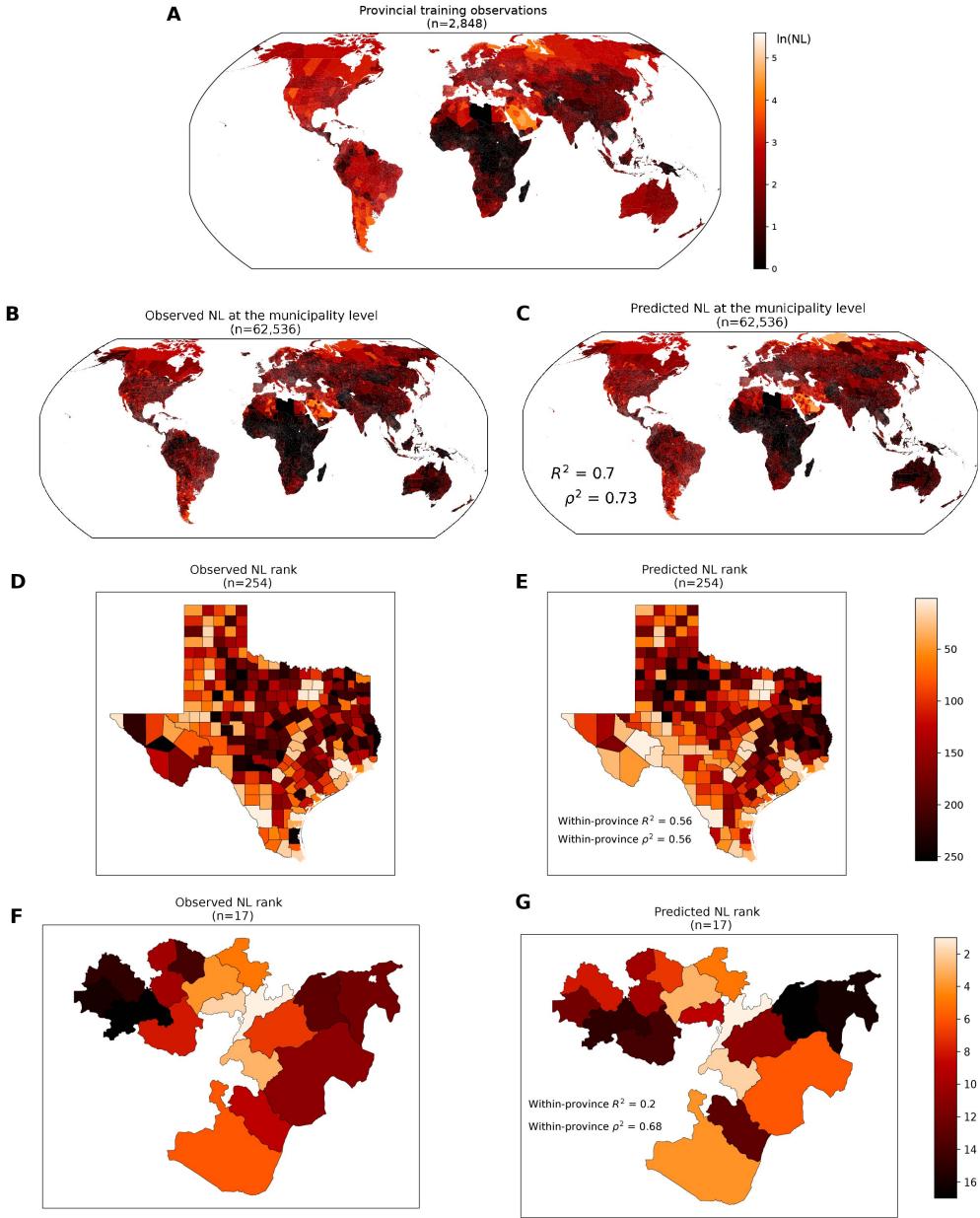


Figure S2: A MOSAIKS model trained at the province level can effectively predict NL at the municipality level. These maps show population-weighted NL luminosity that has been predicted using MOSAIKS. **(A)** Population-weighted NL averaged up to the provincial polygon for 2019. These are the data used to train the model. **(B)** True population-weighted NL at the municipality level. **(C)** Predicted population-weighted NL at the municipality level. **(D)** Municipalities ranked by luminosity within Texas, a single province in the United States. **(E)** Predicted nightlight luminosity rank within Texas. **(F)** Municipalities ranked by luminosity within Oromia, a single province in Ethiopia. **(G)** Predicted nightlight luminosity rank within Oromia. Panels D-G illustrate the downscaling efficacy of MOSAIKS. Each of these polygons (Texas and Oromia) represent a single training observation. All predictions come from a within-country model with predictions anchored to the country mean. Note that panels A-C use the same colorbar. See Table S1 for detailed performance metrics.

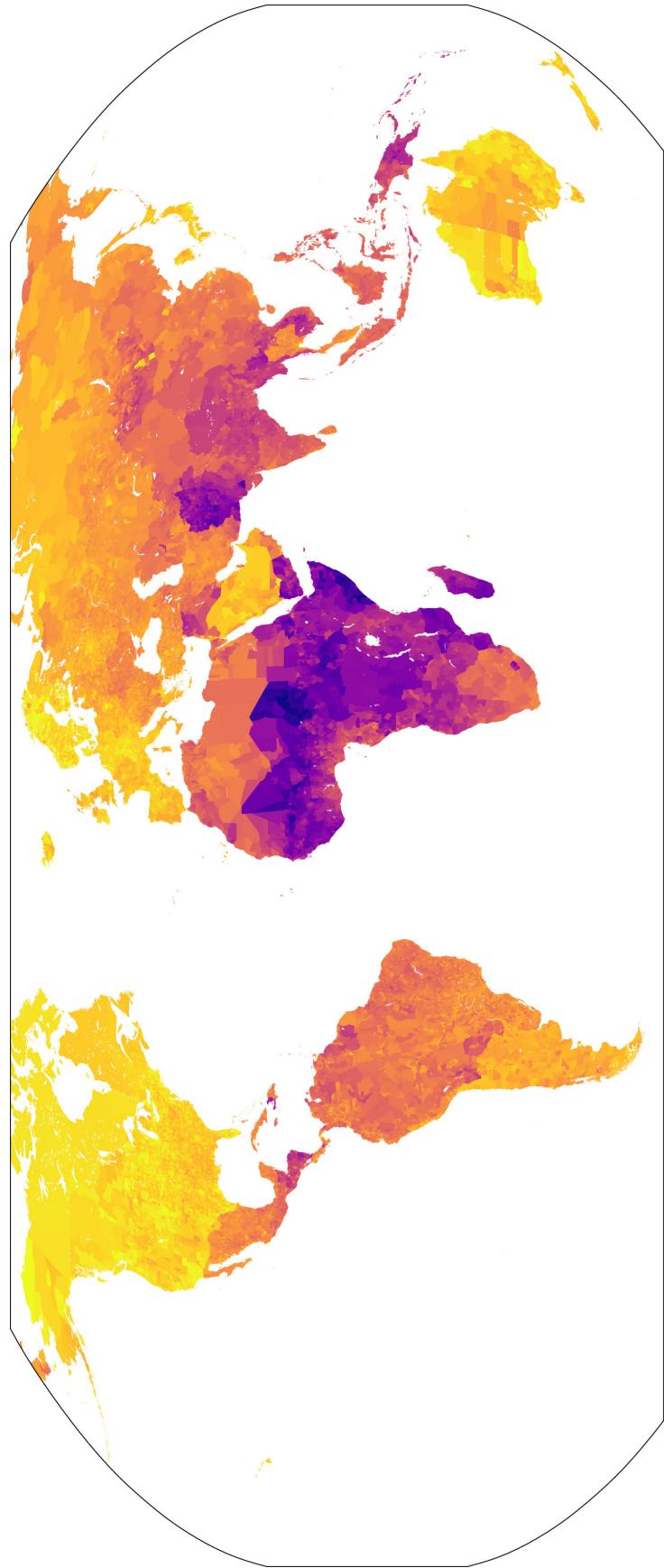


Figure S3: Full page map of HDI estimates at the municipal level. This is the same data as shown in Figure 3C.

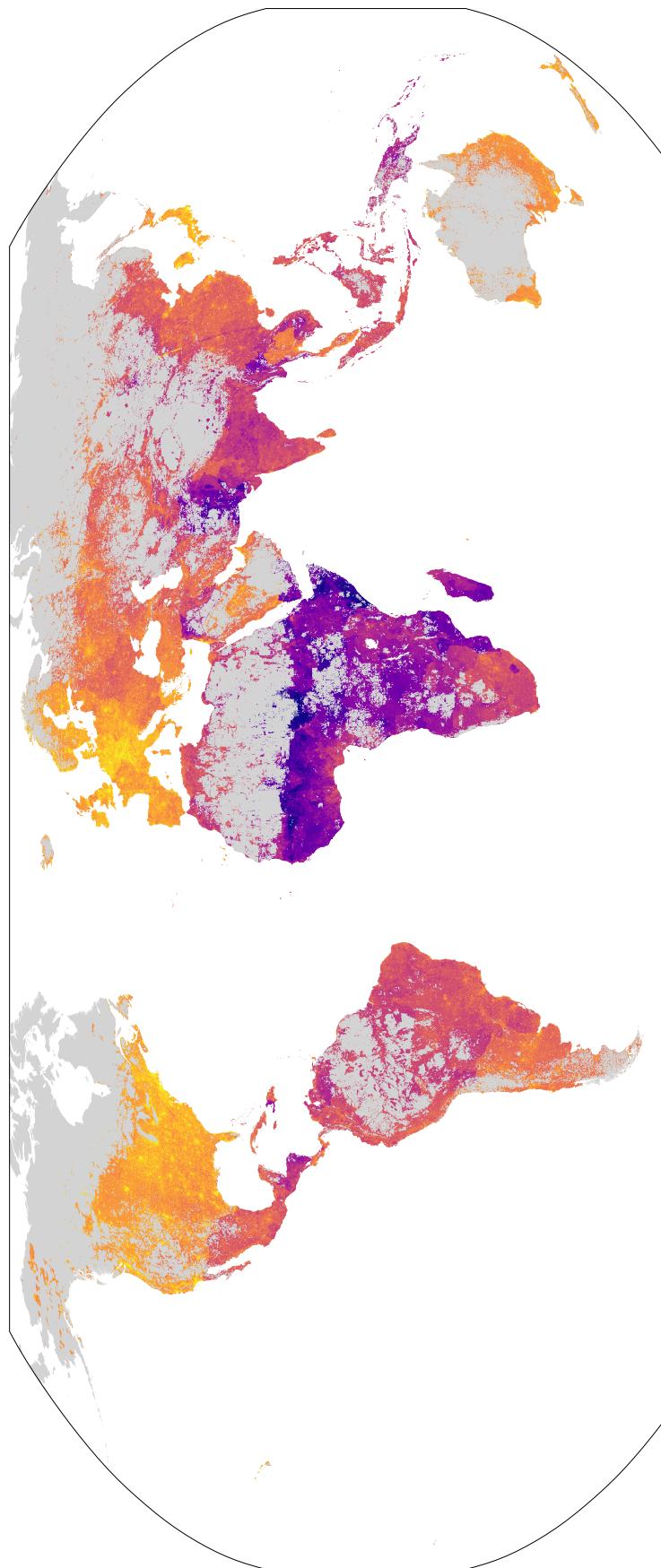


Figure S4: Full page map of HDI estimates at the grid level. This is the same data as shown in Figure 3D.

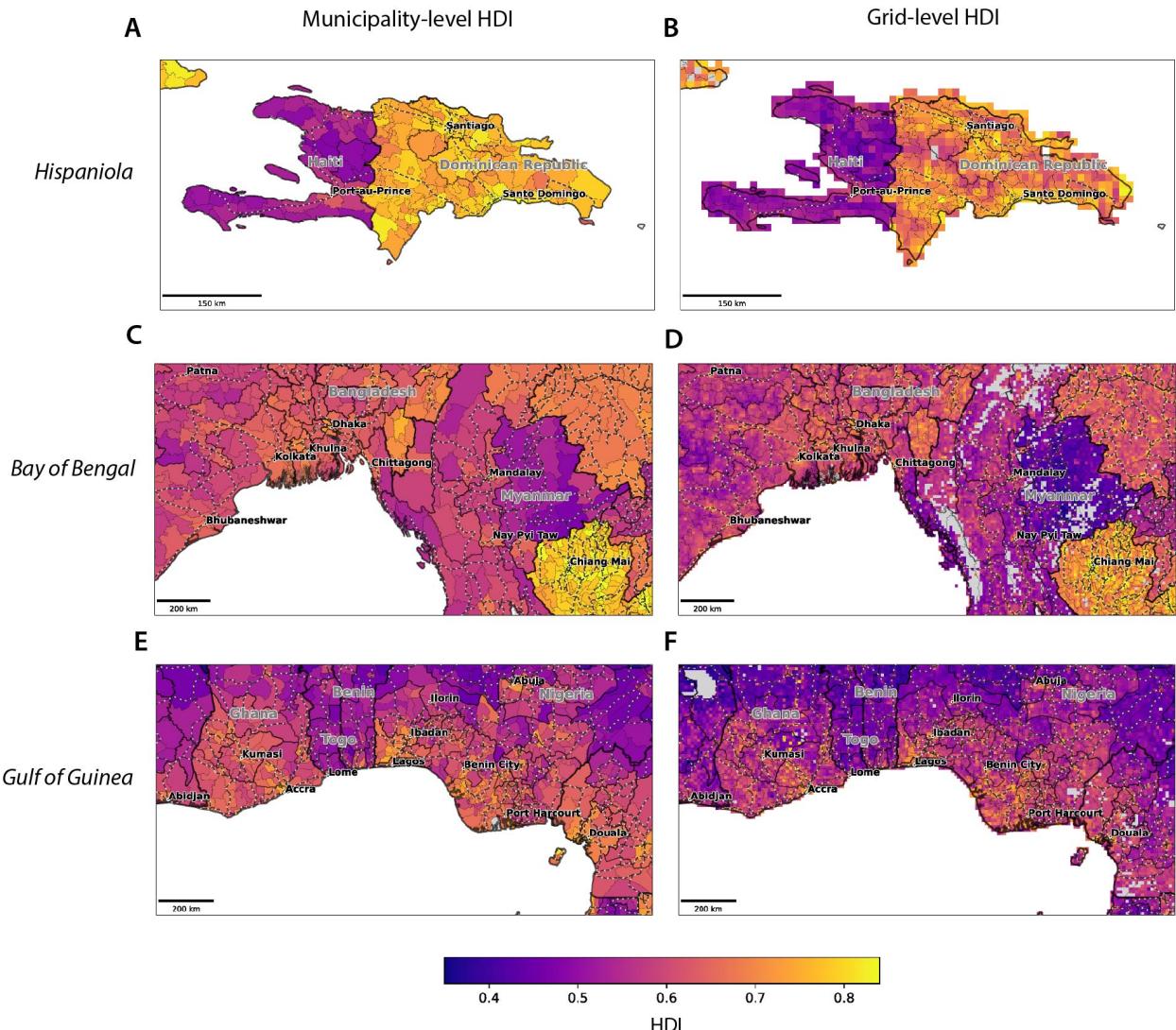


Figure S5: Regional maps of HDI estimates at the municipal and grid levels. (A-B) HDI estimates on Hispaniola (C-D) HDI estimates around the Bay of Bengal (E-F) HDI estimates around the Gulf of Guinea. All panels show country, province, and municipality borders as solid lines. Dashed lines show major roadways. Grey in the grid-level estimates indicates land area believed to be unsettled (46).

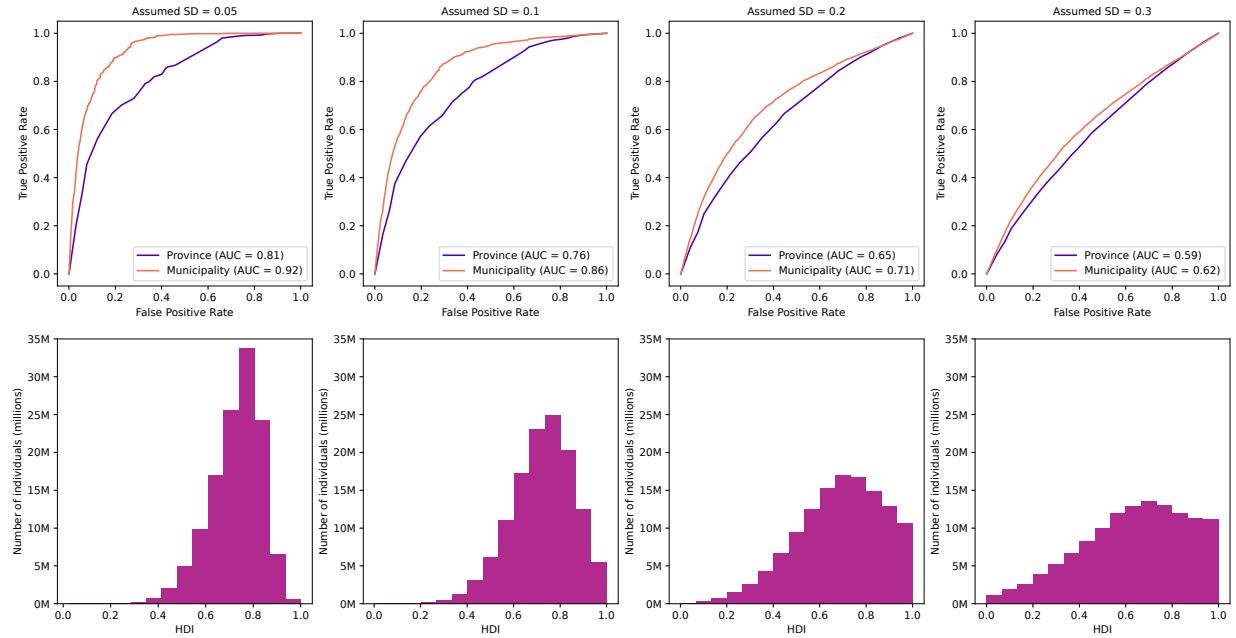


Figure S6: The improvement in geographic targeting efficacy from using municipal values (ADM2) depends on the assumed variability of individual-level HDI within municipalities. ROC curves as in Figure 5F for different assumed standard deviations (SD) of individual-level HDI within municipalities. Using municipal instead of provincial HDI estimates increases the AUC by 0.11 (+14% from 0.81 to 0.92) when the within-municipality HDI standard deviation is assumed to be 0.05 and by 0.06 (+9% from 0.65 to 0.71) when it is assumed to be 0.2. Histograms show the distribution of simulated individual-level HDI for each assumed SD, using a truncated normal distribution centered on the municipal values for Mexico calculated by Permanyer (9).

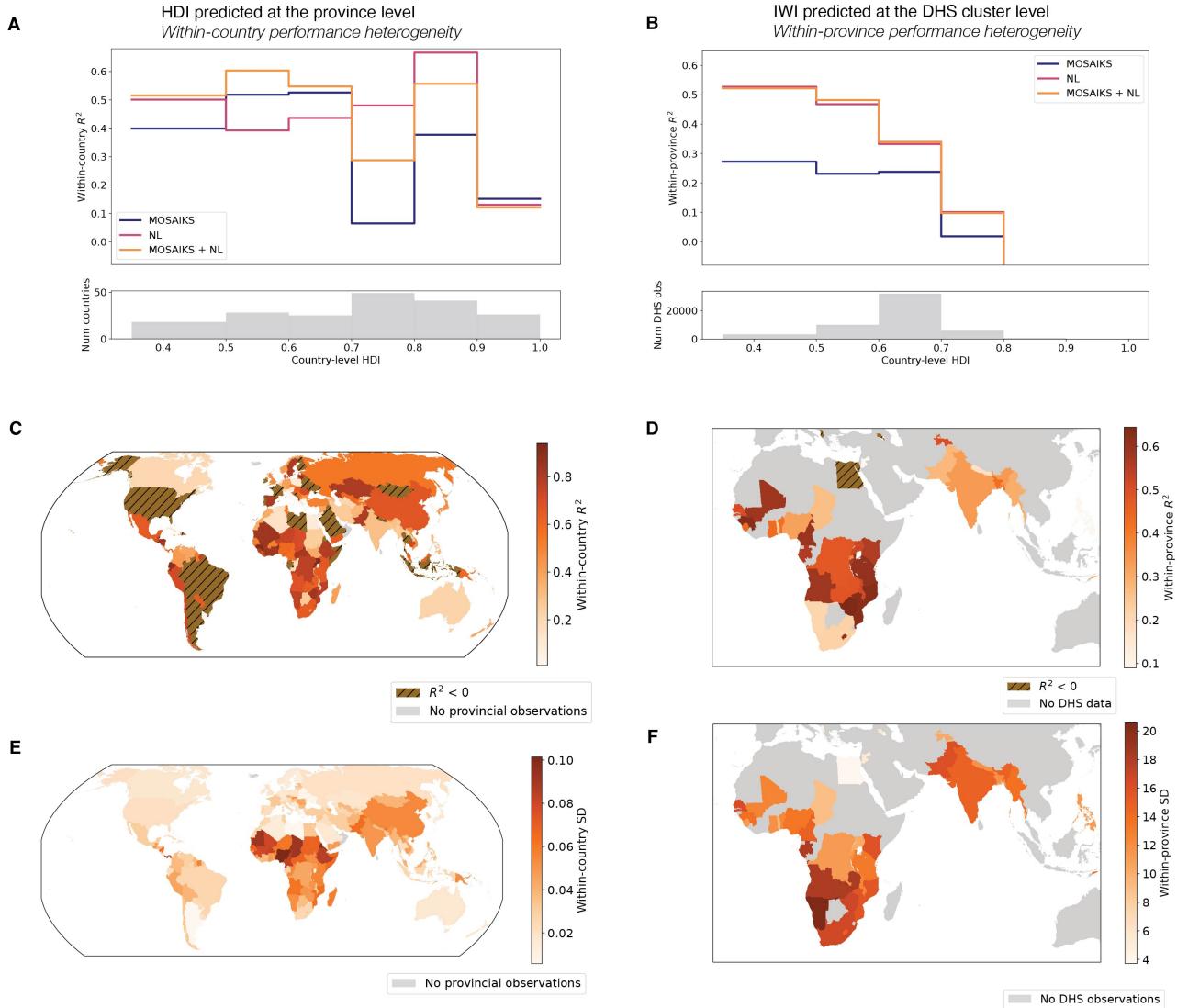


Figure S7: Heterogeneity of HDI and IWI predictions. On the left we show heterogeneity in HDI performance evaluated at the province level. On the right, we show heterogeneity in IWI performance evaluated at the DHS cluster level. **(A)** HDI performance as a function of parent country HDI. **(B)** IWI performance as a function of parent country HDI. **(C)** Mapped performance of HDI within-countries (within-country MOSAIKS + NL model). **(D)** Mapped performance of IWI within-provinces (within-country MOSAIKS + NL model). **(E)** Standard deviation of provincial HDI by country **(F)** Standard deviation of DHS cluster-level IWI within-provinces by country.

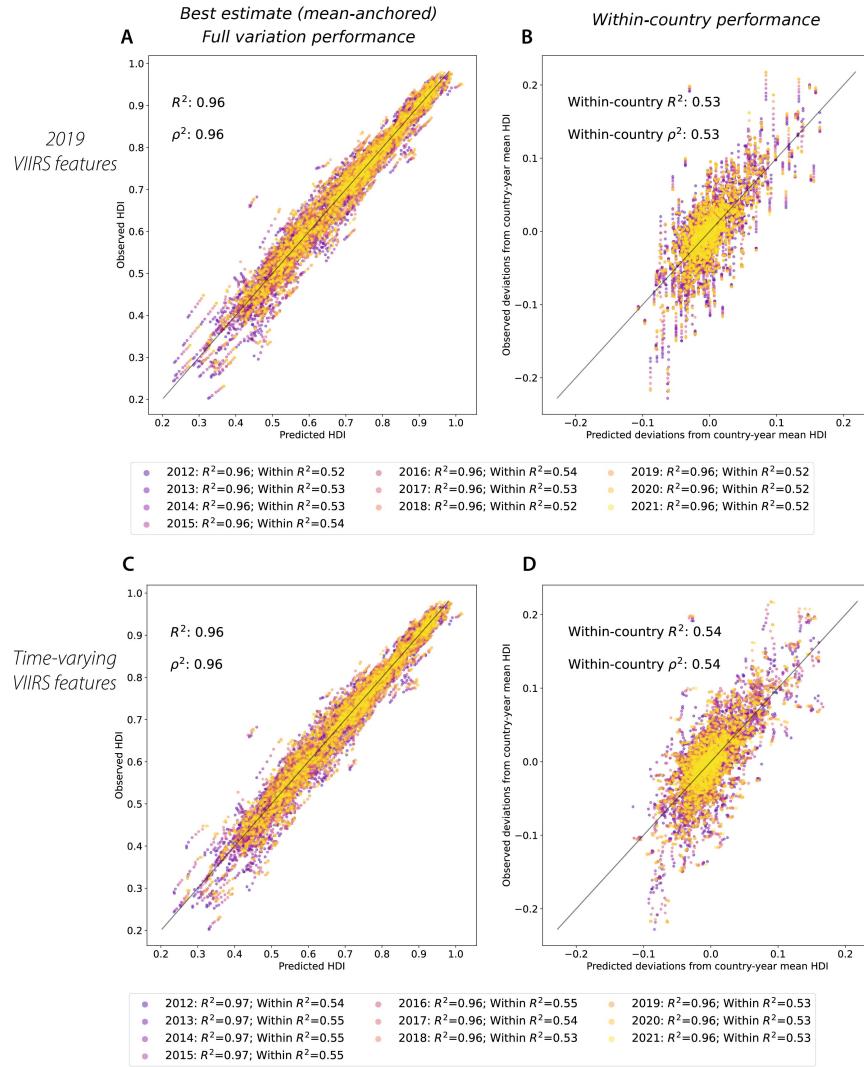


Figure S8: Prediction of provincial HDI from 2012 to 2021 using satellite imagery. (A-B) This figure is a replication of Figure 2A-B evaluated using a panel of provincial HDI from 2012-2021 and time static VIIRS features from 2019. Full variation performance is shown on the left and within-country performance is shown on the right. Each point represents a provincial-year observation and points are colored by year. Predicted provincial values are mean-anchored to the known country-year value. (C-D) This is a similar replication of Figure 2A-B trained and evaluated using annually varying VIIRS features.

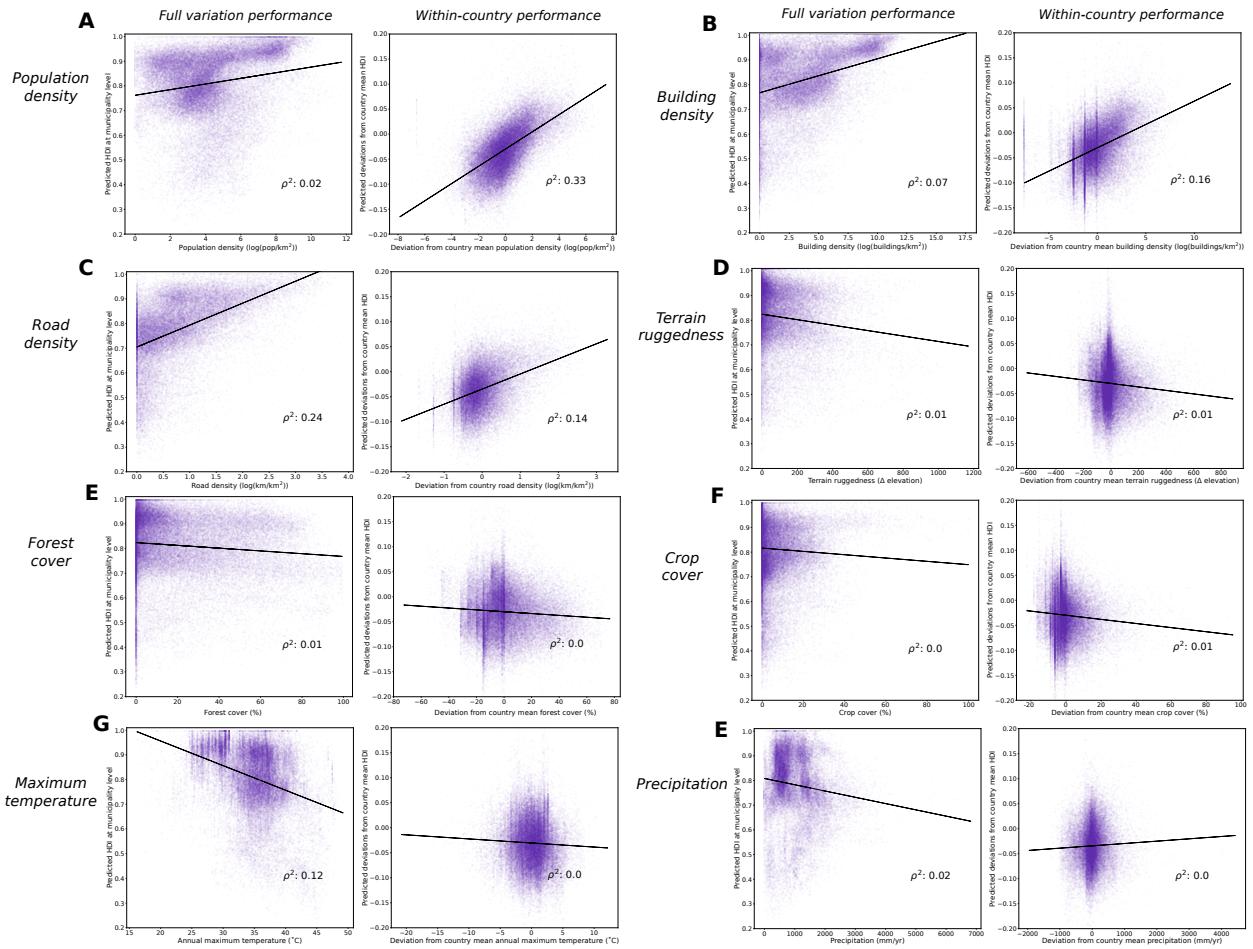


Figure S9: Municipality-level HDI estimates can be partially predicted by other variables estimated at global scale. Each point in each scatter represents the estimated HDI value and the value of another globally available variable for a municipality. See Supplementary Information S4 for details.

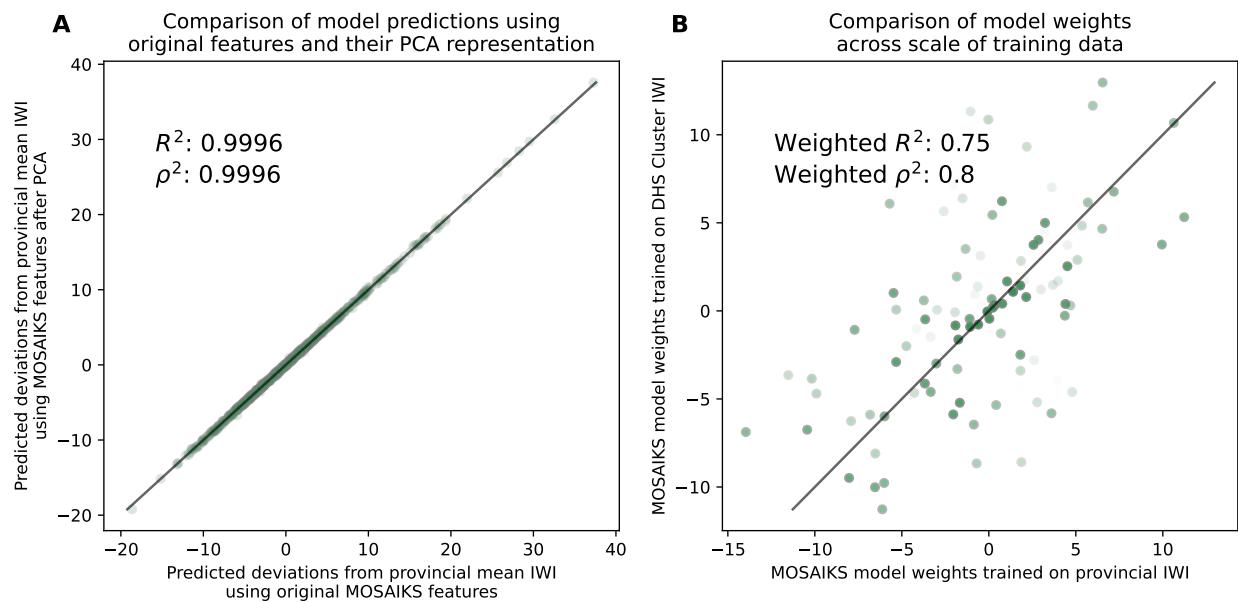


Figure S10: **Model weights for the IWI model are similar when trained at the provincial or DHS cluster level.** (A) We show that estimates of IWI are nearly identical from the model with reduced dimensionality and the primary IWI model specification. (B) Each point represents the contribution to the model of a single feature. The points are colored by their rank order importance after principle component analysis. R^2 and ρ^2 are weighted by the explained variance under PCA. See Supplementary Information S5 for additional details.

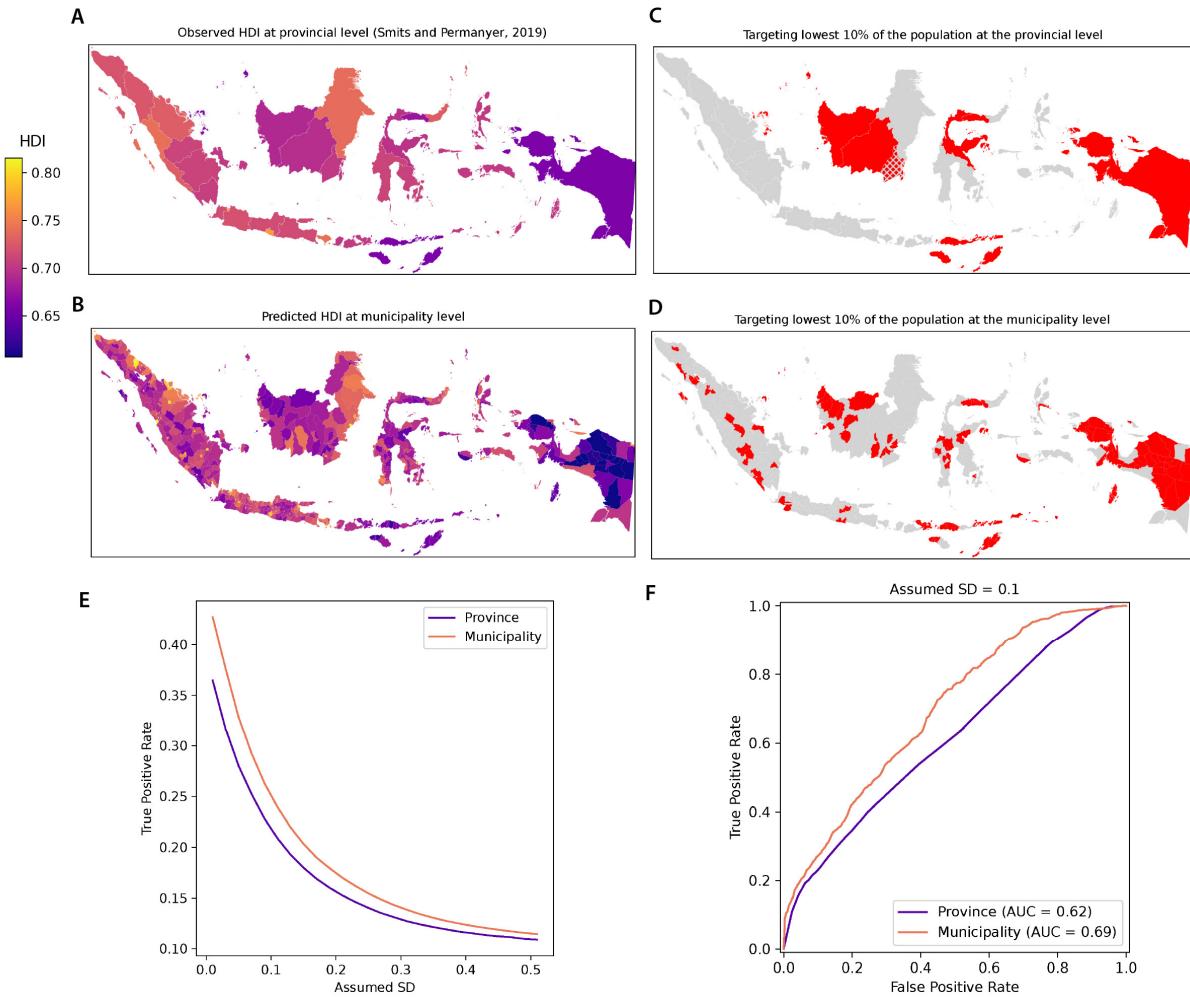


Figure S11: Additional illustrative application: targeting policy in Indonesia. Identical analysis as in Figure 5 using data from Indonesia. **(A)** HDI for 2019 at the province level of observation (7) **(B)** HDI estimates for 2019 at the municipality level produced in this paper. **(C)** Lowest HDI provinces that would be targeted until 10% of the country's population is reached. **(D)** Lowest HDI municipalities that would be targeted until 10% of the country's population is reached. Hashing in **(C)** and **(D)** shows the marginal province and municipality that would be partially targeted. **(E)** Targeting accuracy (true positive rate) as a function of the assumed standard deviation of HDI within each municipality. **(F)** ROC curves illustrate the degree of improvement that comes with targeting at the municipality level relative to the province level (assumed SD of 0.1 within each municipality).

971 **S1 Supplementary discussion of the co-production of**
972 **the analysis and estimates of HDI**

973 This analysis and the associated estimates of the UN HDI were co-produced by a team of
974 academics and practitioners aiming to develop measures of HDI that reflect the understand-
975 ing and needs of both practitioners and policymakers (68, 69). The effort was initiated by
976 researchers and practitioners from the United Nations Development Programme (UNDP),
977 coordinated by Dr. Heriberto Tapia, head of research for the Human Development Report
978 Office and a co-author of this study. The Human Development Report Office is responsible
979 for producing and publishing official HDI statistics for the United Nations. Members of the
980 UNDP approached academic members of the team in 2021, with the goal of increasing the
981 resolution of the HDI globally based on the growing demand for consistent disaggregated data
982 following an impartial global standard. The combined team (practitioners and academics)
983 jointly refined a project design and secured grants from third-parties and funding from the
984 UNDP. Project implementation, writing, and dissemination was a joint and iterative process
985 involving all team members.

986 Throughout the project, the team worked deliberately to ensure mutual knowledge trans-
987 fer, with the academics learning what applications and aspects of modeling are most impor-
988 tant to practitioners, and the practitioners learning the technical aspects of the model's
989 development. The practitioners and academics collectively identified model performance as
990 a primary priority, with model generalizability, simplicity, transparency and interpretability
991 as additional design goals. Motivated by the results of this project, the UNDP is engaging
992 in follow-on work that predicts the United Nations Multidimensional Poverty Index using
993 the methods developed here. Academic members of our team are supporting and advising
994 this follow-on work in an effort designed to solidify the transfer of this technology to UNDP
995 and to build UNDP's technical capacity internally.

996 The UNDP team is particularly interested in satellite-based measurements of HDI for
997 three reasons. First, satellite-based measurements adhere to relatively impartial technologically-
998 led standards that facilitate international comparisons, a key attribute of UN indicators.
999 Second, the integration of satellite imagery with machine learning creates new opportunities
1000 for using the HDI in policymaking. In the short term, this new data can facilitate planning
1001 and resource allocation within countries. In the medium term, these estimates should be-
1002 come a key input for analyzing the interaction between socioeconomic and geophysical data
1003 in studying the effects of climate change on people. This will be crucial for designing a new
1004 generation of policy responses through a global lens. Third, the availability of a database
1005 and a replicable method for generating these estimates is expected to address equity issues.

1006 In a rapidly changing world, there is an increasing need for information for decision-making.
1007 Wealthier countries have high-quality surveys and the resources to power a data revolution.
1008 In contrast, poorer countries and communities, where data is most needed, face significant
1009 constraints in both surveys and analytical capacity. The availability of both a database and
1010 a standard, replicable method for generating these estimates is expected to be a valuable
1011 global public good.

1012 **S2 Supplementary discussion of model performance**

1013 **Model performance across regions** Analyzing the performance of MOSAIKS models
1014 across space, we find that performance tends to be the highest in low income regions, espe-
1015 cially sub-Saharan Africa, where such measurements are likely to be of greatest value (Figure
1016 S7A,C). Specifically, we find that MOSAIKS models explain more variation of province-level
1017 HDI deviations from the country mean in areas of low human development ($HDI < 0.6$,
1018 $R^2 = 0.57$) than in areas of medium or high human development ($HDI > 0.6$, $R^2 = 0.43$,
1019 Figure S7A). We also see this pattern in predictions of DHS cluster-level IWI deviations
1020 from the province mean, with performance increasing monotonically from $R^2 = 0.09$ for
1021 countries with the highest HDI values to $R^2 = 0.52$ for countries with the lowest HDI values
1022 (Figure S7B,D). This improved performance may be due to increased variance of HDI and
1023 IWI values within these countries (Figure S7E-F), which provides more variation to exploit
1024 during model training. Alternatively, variations in well-being being may be relatively easier
1025 to see from satellite imagery in areas with lower human development. Relatedly, model per-
1026 formance for both HDI and IWI is higher in regions with higher inequality, highlighting the
1027 particular value of these estimates in regions of high inequality ($p < 0.01$ for both HDI and
1028 IWI; pearson's ρ is 0.33 for HDI and 0.53 for IWI comparing the within-country standard
1029 deviation of provincial values and the within-country predictive performance, measured by
1030 ρ^2).

1031 Motivated by these differences in performance across regions, we test whether the re-
1032 lationship between image features and HDI varies spatially. We do so by training an ad-
1033 ditional model that allows the MOSAIKS features to have a continent-specific relationship
1034 with provincial HDI. We observe a small drop in within-country performance relative to the
1035 baseline model (from $R^2 = 0.52$ to 0.49), indicating that increasing the complexity of the
1036 model in this way does not improve out-of-sample performance.

1037 **Value from combining daytime and nighttime imagery** The MOSAIKS-based ap-
1038 proach can use image features from multiple sensors simultaneously when training models,

1039 a property that is used throughout this analysis to predict HDI from both daytime and
1040 nighttime imagery. Analyzing the performance of MOSAIKS models based on the type of
1041 satellite imagery used, we find that daytime and nighttime imagery together explain 7%
1042 more variation in provincial HDI deviations from the country mean than does nighttime im-
1043 agery alone, improving model fit by 16% from $R^2 = 0.45$ to 0.52 (Table S3). This improved
1044 performance from using daytime and nighttime imagery together is strongest in regions of
1045 low human development ($HDI < 0.6$) (Figure S7A), consistent with a previous finding that
1046 models using daytime imagery outperform models using nighttime imagery when predicting
1047 assets of the poorest populations in five African countries (20). Analyzing model per-
1048 formance for each component of HDI, we see that the improved performance predicting HDI
1049 using daytime and nighttime imagery stems from improved or comparable performance pre-
1050 dicting each component of HDI (largest change in R^2 is 0.12 for expected years of schooling,
1051 smallest is no change in R^2 for life expectancy, Table S3).

1052 In exploratory analysis of subsamples, we have observed that in several middle income
1053 countries with HDI between 0.7 and 0.8 (including those where we have municipal variation
1054 in HDI), within-country R-squared is sometimes higher when models are trained on nighttime
1055 imagery alone, relative to models that combine MOSAIKS and nighttime imagery. However,
1056 for other parts of the HDI distribution and on average, as described above, MOSAIKS
1057 features appear to add performance to the full model. We currently cannot explain why
1058 a nightlights-only model performs best for these particular countries when predicting HDI,
1059 and we do not know if this phenomena extends to non-HDI outcomes. In future work, we
1060 hope to present a more complete analysis that more fully evaluates how data from many
1061 satellite sensors, including others not used in this analysis, can be effectively and efficiently
1062 combined in SIML applications.

1063 **Model performance training at the country-level** To evaluate performance in an
1064 extremely data-limited setting, we re-train our model using only country-level data. Despite
1065 a low number of training observations ($N = 85$ to 170 across experiments) these models
1066 maintain 36% to 54% of the performance of our preferred models trained using provincial
1067 deviations from the country mean ($N = 862$ to 2,852) when evaluated on the relative ordering
1068 of predicted and observed values using ρ^2 in all experiments (Table S1). This indicates
1069 that our approach can achieve competitive predictive performance detecting locations with
1070 relatively higher and lower HDI even when trained on few and coarse observations of the
1071 variable of interest. Performance predicting the exact level of HDI is lower, especially when
1072 evaluated within-country, likely due to the large difference in the magnitude of HDI variation
1073 across countries versus within countries, discussed above (Figure 2A,B).

1074 **S3 Supplementary analysis of temporal changes in the**
1075 **local distribution of HDI**

1076 We focus this manuscript on estimating fine-resolution spatial variation in HDI because ex-
1077 isting provincial measures do not resolve within-province differences in human wellbeing,
1078 and because spatial variation in HDI is generally larger than temporal variation. We con-
1079 struct fine-resolution global estimates of HDI from 2012-2021 by combining time-varying
1080 estimates of provincial HDI from (7) with time-constant estimates of the local (i.e. within-
1081 province) distribution of HDI based on satellite imagery. Here, we conduct an additional
1082 experiment where we test whether allowing HDI to vary over time locally might improve
1083 model performance. Specifically, we compare our primary estimates (Figures 2 A-B and S8
1084 A-B), which are made assuming a time-constant distribution of provincial HDI with another
1085 set of estimates that are made allowing for a time-varying distribution of provincial HDI
1086 (Figure S8 C-D). We find that these two approaches have near identical performance pre-
1087 dicting historical HDI from 2012-2021. This motivates our use of the simpler model that
1088 assumes an approximately time-constant distribution of HDI as our primary specification
1089 when constructing municipal and grid-level estimates. Details of this analysis are described
1090 below.

1091 To allow estimates of the local variation in HDI to change over time, we estimate a
1092 model similar to our primary specification (Equation S1a) but extended to train on and
1093 predict a global panel of HDI at the provincial level from 2012-2021. This model specifies
1094 HDI in each province and year as a linear function of VIIRS NL features for the relevant
1095 year and the MOSAIKS features from 2019. This allows the time-varying NL features in
1096 the model to predict changes over time in the distribution of provincial HDI. We do not
1097 allow the MOSAIKS features for the high-resolution visual imagery to change over time
1098 due to image data availability and computational limitations. In the models that allow for
1099 both time-constant and time-varying local HDI, we mean-anchor provincial estimates at the
1100 known national mean value for each year. Model evaluation using spatial cross-validation is
1101 conducted in the same way as in Figure 2, except that instead of evaluating on observations
1102 from a global cross-section of 2019 provincial data we evaluate on a global panel of provincial
1103 observations from 2012-2021.

1104 We find that our primary model performance predicting a global cross-section of 2019
1105 data (Figure 2 A-B) is similar to the performance of the same model predicting a global
1106 panel of HDI from 2012-2021 (Figure S8 C-D), as well as the performance of a similar model
1107 that allows for time-varying changes in local HDI predicting a global panel of HDI from 2012-
1108 2021 (Figure S8 A-B). Both the model assuming time-constant HDI estimates and the model

allowing for time-varying HDI estimates achieve an $R^2 = 0.96$ explaining provincial variation in the entire sample from 2012 – 2021. The former achieves an $R^2 = 0.53$ explaining within-country variation in the same sample, and the latter achieves an $R^2 = 0.54$ – an improvement of 2% from allowing the NL features to change over time. The model performance evaluated for each year is also similar for both approaches – with R^2 s ranging between 0.96–0.97 for explaining variation across all provinces, and R^2 s between 0.52–55 for explaining provincial variation within countries.

The similarity in performance between the model that uses time-constant and time-varying local HDI estimation suggests that the local-scale variation we predict with satellite imagery (here, within-country variation) is nearly constant over time for the period of observation (2012-2021). This time-consistency is further evidenced by the relatively stable performance predicting within-country variation each year, using models both with time-varying and time-constant NL features. Indeed, after removing country-specific national time trends, the spatial variation in HDI within each country across provinces is $60\times$ larger than the respective temporal variation. The relatively large amount of variation in HDI across space and the relative time-consistency of the local pattern of HDI both motivate the focus of this analysis on increasing the spatial resolution of HDI globally.

1126

1127 **S4 Supplementary discussion of model transparency 1128 and interpretability**

1129 The models employed in this analysis were designed to maximize predictive performance,
1130 based on co-development with our team members at the United Nations Development Pro-
1131 gramme (Supplementary Information S1) and feedback from other practitioners, who gen-
1132 erally identified model performance as the most important property of the model. Other
1133 important aspects of model development are model transparency and interpretability (57)
1134 (Figures S1 and S9).

1135 **Model transparency** Model transparency is the ability to clearly convey the model, its
1136 design, and its estimation (57). Transparency is a strength of the MOSAIKS approach used
1137 and developed here. The features are can be precisely described mathematically (12) and
1138 conveyed simply: each feature measures the similarity between a small patch of imagery
1139 and the image of interest, where similarity is measured using a moving dot product (i.e.,
1140 convolution) of the patch over the imagery. This is illustrated in the cartoon developed in

1141 Figure S1, which shows how three example patches capture the amount of trees, roads, and
1142 lakes in imagery. One explanation of how the MOSAIKS approach works is that the model
1143 predicts HDI in new areas where HDI is not known by assigning the (weighted) average
1144 value of HDI from places where HDI is known that look similar in the imagery (see Supple-
1145 mentary Note 2.3 in (12) for details). The linear model structure is also straightforward,
1146 especially compared with more complicated structures like a deep convolutional neural net-
1147 work or gradient boosted decision tree. We relate the image features to HDI using a linear
1148 ridge regression, which, unlike many more complex models, has an analytical solution. The
1149 simplicity and transparency of the MOSAIKS approach makes it straightforward to fully
1150 describe, understand and use (12). The work in this manuscript extends the ability of the
1151 MOSAIKS approach to learn the relationship between imagery and an outcome of interest
1152 using labels from any set of political boundaries, while maintaining a transparent design.

1153 **Model interpretability** Model interpretability is the ability to understand what aspects
1154 of the input data are responsible for model predictions (57). To better interpret what aspects
1155 of the imagery are captured by our HDI estimates, we examine whether our municipality
1156 HDI estimates are correlated with known variables that can be constructed at the municipal-
1157 ity level (Figure S9). Specifically, we construct municipality-level estimates for population
1158 density, road density, building density, terrain ruggedness, forest cover, crop cover, maximum
1159 temperature, and precipitation. Data for each of these variables is publicly available. We
1160 create a measure of each variable at the municipal level using the source data product and
1161 our municipality (ADM2) shapefile from geoBoundaries (65).

1162 **Population density** Municipal population density data were constructed as the popula-
1163 tion count from GHS-POP divided by the area of the municipality (62).

1164 **Building density** Building density data at the municipality level were constructed using
1165 the gridded building data product from Microsoft Bing Maps ($\approx 0.2 \times 0.2$ degree resolution)
1166 (70). This data is relatively coarse compared to the municipality size, so we assume a uni-
1167 form distribution of buildings within the source raster when averaging building density over
1168 municipal polygons. We take this approach for all raster datasets used in this interpretability
1169 analysis.

1170 **Road density** Municipal road density estimates were constructed by calculating the length
1171 of road in each municipal polygon and dividing by the polygon area. Road data are from
1172 Open Street Maps (71). To facilitate computation we calculate road density over a 1%

1173 sample of global land area before averaging to the municipal level ($\approx 1 \text{ km}^2$ sampled every
1174 $\approx 10\text{km}$ in the North-South and East-West directions). Municipality observations that do
1175 not contain a sampled road density observation are dropped from this analysis.

1176 **Terrain ruggedness** Municipal ruggedness data were constructed using the global raster
1177 created by Shaver et al. (72) at $1\text{km} \times 1\text{km}$ resolution. In this dataset “the ruggedness
1178 of any given 1 km^2 area is determined by measuring how the average elevation of that area
1179 differs from all those of neighboring 1 km^2 areas” (72). Municipal values are calculated as
1180 the average of ruggedness values within each municipality.

1181 **Forest cover** Forest cover data come from the Hansen et al. data product (73), which is
1182 available at $30\text{m} \times 30\text{m}$ resolution. Municipal estimates are calculated as the average forest
1183 cover over the municipal polygon.

1184 **Crop cover** Crop cover data come from the Ramankutty et al. data product available at
1185 0.08×0.08 degree resolution (74, 75). For each municipality we calculate the fraction of
1186 the polygon area covered by cropland.

1187 **Maximum temperature** We construct a measure of typical maximum annual tempera-
1188 ture from the Climate Prediction Center gridded data product at 0.5×0.5 degree resolution
1189 (76). Specifically, we retrieve roughly a decade of daily data (2007-2018) and calculate the
1190 maximum temperature observed in each grid cell each year. We then take the average across
1191 years and over each municipal polygon.

1192 **Precipitation** Precipitation data are from the NASA IMERG annual average precipita-
1193 tion data product at 0.1×0.1 degree resolution (77). We calculate municipal values as the
1194 average of gridded values over each municipal polygon.

1195
1196 To estimate the fraction of variance explained by each of these variables individually we
1197 execute a simple linear regression of our municipal HDI estimates on each variable. Within-
1198 country estimates are calculated after demeaning the HDI estimates and each variable by
1199 country. To estimate the fraction of variance explained by all of these variables together we
1200 execute a multiple linear regression of our municipal HDI estimates on all variables together.
1201 Before estimating this latter regression we used mean-imputation to fill in any missing values.

1202 **S5 Supplementary discussion assessing consistency of**
1203 **model weights across spatial scales**

1204 A key feature of our approach is that it can be trained on and make predictions for units
1205 of arbitrary shape and size. We employ this approach to train on global provincial HDI
1206 data and make predictions of HDI for global municipalities and a $0.1^\circ \times 0.1^\circ$ grid. For this
1207 approach to be effective, model weights estimated at the provincial level, must be able to
1208 make skillful predictions at the municipal and grid levels.

1209 One way to understand how this approach works is to see that, in a linear model, the
1210 relationship between aggregated outcomes and aggregated features should be similar to the
1211 relationship between disaggregated outcomes and features. This is illustrated in Equations
1212 2-3 of the main text. Rolf et al (12) provide additional mathematical explanation for relating
1213 predictions made using MOSAIKS features at image and sub-image scales. A primary goal
1214 of this manuscript is to propose that this approach can be used to address the challenge of
1215 limited training data in remote sensing applications by allowing for training on irregularly
1216 structured and sized observations – which is not discussed in ref. (12) – and to empirically test
1217 whether this works in practice. The primary evidence supporting this are the downscaling
1218 tests reported in Figure 2 and Table S1.

1219 Here, we additionally explore the question of *why* the approach works by empirically
1220 testing whether model weights estimated at aggregated and disaggregated scales are similar.
1221 To do so, we compare model weights between models of IWI trained at the provincial ($N =$
1222 862) and DHS cluster ($N = 51,996$) scales. We use IWI for this experiment because there
1223 are a large number of aggregated and unaggregated observations that span the same spatial
1224 extent.

1225 A challenge in designing this experiment is that MOSAIKS features are correlated with
1226 each other, and there are a large number of features relative to the number of training
1227 observations. This means that the same information could load onto different features even
1228 when training and retraining at the same scale if we do not introduce additional constraints
1229 to the feature set. Put another way, different sets of model weights could give the same
1230 predictions and represent the same relationship between the imagery and outcome of interest.
1231 This is not an issue in our main application, since the set of weights obtained at an aggregated
1232 scale will remain valid if applied to a disaggregated scale, and vice versa. However, there is
1233 no guarantee that the same weights will be obtained if models are independently fit at both
1234 scales, since there are multiple valid ways to represent the data using the model features.
1235 Thus, for this experiment, we first transform our features into an orthogonal basis.

1236 We use Principal Components Analysis (PCA) to project the MOSAIKS features into

1237 a feature space with independent (i.e., uncorrelated) features that contain the same information as the original features, following ref. (17). PCA can also be used to reduce the 1238 dimensionality of the feature space, which can aid interpretation in this setting by focusing 1239 on features that explain most of the variation in the imagery, and thus likely in the outcome 1240 of interest. We find that 100 PCA features explain $> 99.9\%$ of the variation in the original 1241 4,000 MOSAIKS features in this context, and that a model trained using these 100 PCA 1242 features provides essentially identical predictions to a model trained using the 4000 original 1243 features (Figure S10A). This PCA model is thus practically identical to our MOSAIKS- 1244 based model but with independent features that represent an orthogonal basis. We use 1245 these orthogonalized and rotated MOSAIKS features to analyze whether model weights are 1246 consistent when training at different levels of aggregation.

1247 Using these orthogonal MOSAIKS features, we find that model weights estimated using 1248 the (aggregated) provincial data are very similar to model weights that are independently 1249 estimated using (disaggregated) DHS cluster data ($R^2=0.75$, Figure S10A). Note that when 1250 calculating R^2 in this setting we weight by the fraction of variance in the MOSAIKS features 1251 each component explains, so that greater weight is placed on features that explain more 1252 variation in the MOSAIKS features, and likewise, in IWI. The high correspondence between 1253 weights estimated at aggregated and disaggregated scales indicates that the same satellite 1254 information is being used in the same way to predict IWI at both scales. This helps to 1255 explain how our approach is able to achieve skill in the downscaling applications illustrated 1256 in Figure 2 and Table S1.

1258 S6 Supplementary methods

1259 Note that in the supplementary methods we use the subscript p to refer to provincial or 1260 first-level administrative regions; and the subscript m to refer to municipality or second- 1261 level administrative regions. We use the subscript c to denote observations at the country 1262 level.

1263 S6.1 HDI model training

Within-country model training Because our focus is explaining subnational variation in HDI, we specifically train our primary model to predict within-country deviations of HDI. To do this, we first demean subnational observations by country and then train a model to use imagery to predict these residualized deviations. Specifically, we transform observed ADM1 HDI for province p (HDI_p^{ADM1}) into the deviation of this value from the country

mean HDI (\widetilde{HDI}_p^{ADM1}). We then solve a ridge regression to predict \widetilde{HDI}_p^{ADM1} based only on provincial daytime ($\widetilde{X}_{MOSAIKS,p}^{ADM1}$) and nightlight ($\widetilde{X}_{NL,p}^{ADM1}$) features that have been similarly residualized relative to the country mean values for these variables. We learn the model

$$\widetilde{HDI}_p^{ADM1} = \beta_0 + \beta_1 \widetilde{X}_{MOSAIKS,p}^{ADM1} + \beta_2 \widetilde{X}_{NL,p}^{ADM1} + \epsilon_p \quad (S1a)$$

where :

$$\widetilde{HDI}_p^{ADM1} = HDI_p^{ADM1} - \sum_{p \in c} \frac{HDI_p^{ADM1}}{N_c} \quad (S1b)$$

$$\widetilde{X}_{MOSAIKS,p}^{ADM1} = X_{MOSAIKS,p}^{ADM1} - \sum_{p \in c} \frac{X_{MOSAIKS,p}^{ADM1}}{N_c} \quad (S1c)$$

$$\widetilde{X}_{NL,p}^{ADM1} = X_{NL,p}^{ADM1} - \sum_{p \in c} \frac{X_{NL,p}^{ADM1}}{N_c}. \quad (S1d)$$

1264 Here, N_c is the number of provinces in country c . Note that we restrict predictions from this
 1265 demeaned model to be between the observed minimum and maximum HDI deviations from
 1266 the country mean.

1267 **Anchoring to country means via re-centering** To evaluate full variation performance
 1268 using the within-country model (Table S1, col. 1-2) we need HDI predictions in “levels”
 1269 rather than predicted deviations from the country mean. To construct predicted HDI values
 1270 in “levels” we anchor our estimates to country means, since they are observed and used in
 1271 the estimation procedure. Practically, this means we add the country mean HDI, which was
 1272 subtracted from the observations before model training, back onto the predicted deviations:

$$\widehat{HDI}_p^{ADM1} = \widetilde{HDI}_p^{ADM1} + \sum_{p \in c} \frac{HDI_p^{ADM1}}{N_c} \quad (S2)$$

1273 Note that it is not necessary to implement this procedure when evaluating within-country
 1274 performance.

Province and country model training In Table S1, we additionally report performance for models trained on province and country-level data directly. Unlike the within-country model, these models are trained on values in “levels” instead of deviations from the country mean. In these experiments, we learn the models:

Province model:

$$HDI_p^{ADM1} = \beta_0 + \beta_1 X_{MOSAIKS,p}^{ADM1} + \beta_2 X_{NL,p}^{ADM1} + \epsilon_p \quad (S3)$$

Country model:

$$HDI_c^{ADM0} = \beta_0 + \beta_1 X_{MOSAIKS,c}^{ADM0} + \beta_2 X_{NL,c}^{ADM0} + \epsilon_c \quad (S4)$$

1275 We do not apply a mean-anchoring procedure with these models as their predictions are
 1276 already in “levels” rather than predicted deviations. Note that 20 of the 179 total countries
 1277 do not have subnational data (e.g., Qatar) and that these 20 country-only observations are
 1278 included in both province and country models.

1279 S6.2 Downscaling validation with IWI

1280 **Labels** IWI is similar to the wealth index reported in DHS surveys, except that it was
 1281 created to be comparable across countries (36). IWI data are available both for provincial
 1282 polygons, which we use for training, and for DHS clusters, which we use for evaluation. For
 1283 each survey cluster, DHS provides coordinate points associated with the cluster centroid.
 1284 To protect privacy, the actual GPS coordinates of the center of each cluster are randomly
 1285 displaced by up to 2km for urban clusters and up to 5km for rural clusters, with a random
 1286 1% of rural cluster coordinates displaced by up to 10km. According to DHS, the displaced
 1287 coordinate is guaranteed to fall within the same DHS-provided administrative boundaries as
 1288 the true cluster centroid. To map these point observations to administrative polygons, we
 1289 spatially buffer urban cluster coordinates using a 2km radius and rural cluster coordinates
 1290 using a 10km radius. We then clip these buffers to the finest DHS-provided administrative
 1291 boundaries that are available.

1292 **Training** We train within-country, province level, and country level IWI models following
 1293 the structure of models for HDI (Methods Section S6.1). Provincial IWI observations are
 1294 denoted IWI_p^{ADM1} .

The within-country IWI model, our preferred model specification, takes the same form

as Equation S1a:

$$\widetilde{IWI}_p^{ADM1} = \beta_0 + \beta_1 \widetilde{X}_{MOSAIKS,p}^{ADM1} + \beta_2 \widetilde{X}_{NL,p}^{ADM1} + \epsilon_p \quad (S5a)$$

where :

$$\widetilde{IWI}_p^{ADM1} = IWI_p^{ADM1} - \sum_{p \in c} \frac{IWI_p^{ADM1}}{N_c} \quad (S5b)$$

1295 Note that $\widetilde{X}_{MOSAIKS,i}^{ADM1}$ and $\widetilde{X}_{NL,i}^{ADM1}$ are the same feature matrices defined in Equation S1c
1296 and S1d but with a different number of observations due to differing availability of outcome
1297 data.

1298 **Prediction** We evaluate the IWI model performance at a finer resolution than it was
1299 trained. We use the trained provincial model (Equation S5a) to produce predictions of IWI
1300 at the DHS cluster level and compare those predictions to the cluster-level IWI measurements
1301 from the GDL, which were not used for model training. We calculate DHS cluster-level
1302 features in the same way as for the other administrative polygons.

To make predictions of IWI deviations from the country mean at the DHS cluster level using the within-country model trained on provincial deviations from the country mean, we multiply model weights with the demeaned DHS cluster-level satellite features:

$$\widetilde{IWI}_d^{DHS} = \hat{\beta}_0 + \hat{\beta}_1 \widetilde{X}_{MOSAIKS,d}^{DHS} + \hat{\beta}_2 \widetilde{X}_{NL,d}^{DHS} \quad (S6)$$

1303 where d indexes DHS cluster and $\hat{\beta}_0$, $\hat{\beta}_1$, and $\hat{\beta}_2$ are estimated in Equation S5a. Tildes denote
1304 that these predictions are predicted deviations from the country mean. In our within-country
1305 IWI model, we demean DHS cluster-level satellite image features by the same country average
1306 feature values as in the training procedure:

$$\widetilde{X}_{MOSAIKS,d}^{DHS} = X_{MOSAIKS,d}^{DHS} - \sum_{p \in c} \frac{X_{MOSAIKS,p}^{ADM1}}{N_c} \quad (S7a)$$

$$\widetilde{X}_{NL,d}^{DHS} = X_{NL,d}^{DHS} - \sum_{p \in c} \frac{X_{NL,p}^{ADM1}}{N_c} \quad (S7b)$$

1307 where we note that these averages are constructed by averaging province-level features, but

1308 have similar values that averages of nationally-representative sets of cluster-level features
 1309 would have.

Anchoring to provincial means via re-centering To construct estimates of cluster-level IWI in levels (\widehat{IWI}_d^{DHS}), we anchor predicted cluster-level deviations from the country mean (\widehat{IWI}_d^{DHS}) to the known provincial value (IWI_p^{ADM1}) using a provincial level adjustment:

$$\widehat{IWI}_d^{DHS} = \widehat{IWI}_d^{DHS} + \underbrace{IWI_p^{ADM1} - \sum_{d \in p} \frac{\widehat{IWI}_d^{DHS}}{N_p}}_{\text{centers DHS clusters to known provincial values}} \quad (S8)$$

1310 Here, N_p denotes the number of DHS clusters contained by ADM1 polygon p , and IWI_p^{ADM1}
 1311 denotes the observed ADM1-level value for polygon p . This anchors the mean of our DHS
 1312 cluster-level predictions within each provincial polygon to the respective known province
 1313 value used in training.

1314 **S6.3 Downscaling validation using nighttime lights as labels**

1315 In our analysis of the downscaling performance of our approach, we design an experiment in
 1316 which NL are used as *labels* and are *not used as features* (Figure S2). This experiment is
 1317 useful because it is the only validation experiment where the ground truth data are available
 1318 globally and at municipal resolution. Thus, this experiment allows us to evaluate predictions
 1319 at a downscaled resolution for the entire globe using a procedure that mirrors how we will
 1320 generate downscaled HDI estimates (such global high resolution labels do not exist for our
 1321 other outcomes). We do not expect NL predictions to be perfect proxies for HDI data in
 1322 this regard, but if NL can be downscaled successfully, it provides support for the *procedure*
 1323 we use to downscale HDI.

1324 **Labels** We use population estimates from GHS-POP and fine resolution NL data from
 1325 VIIRS to create a population-weighted average NL radiance at the province level. NL obser-
 1326 vations are population-weighted to mirror the construction of HDI, which is also population-
 1327 weighted. Combining NL observations with population is also common practice when using
 1328 NL as a development indicator (41, 43, 44). We construct municipality-level NL observations
 1329 using a municipal (ADM2) shapefile from geoBoundaries (65), which links municipalities to
 1330 provincial “parent” polygons.

1331 We exclude Ireland from the geoBoundaries ADM2 dataset because Irish municipalities
 1332 (ADM2 units) are so small that they alone represent 45% of the global municipality observa-
 1333 tions. Thus, they would be over-represented in global performance metrics relative to their
 1334 size if not removed.

1335 The vertical streaking patterns in the scatter plots in Figure 2H-J are caused by other
 1336 countries that also have very spatially dense municipalities, though not to the same degree
 1337 as Ireland. Because many within-province predictions are clipped at the observed minimum
 1338 or maximum within-country deviation, this creates vertical streaking at the extremes in 2J.
 1339 When the country-level mean values are added back, this results in vertical streaking at an
 1340 arbitrary point along the x-axis in 2H-I. The three countries that mostly account for this
 1341 effect are Great Britain ($\approx 9,000$ units), Spain ($\approx 8,000$ units), and Brazil ($\approx 5,000$ units).

1342 **Training** We train a model using only MOSAIKS features constructed from daytime im-
 1343 agery to predict NL:

$$NL = \beta_0 + \beta_1 \mathbf{X}_{MOSAIKS} + \epsilon \quad (S9)$$

1344 This model structure is broadly the same training procedure described in Methods Section
 1345 S6.1 and in Equation 4; however, we do not include NL features when predicting average
 1346 NL luminosity. NL is also now a vector of scalar NL observations rather than a matrix of
 1347 features.

1348 **Prediction** To generate municipal predictions, indexed by m , from the within-country
 1349 model, we first create municipal predictions of NL deviations from the country mean. We
 1350 demean $\mathbf{X}_{MOSAIKS,m}^{ADM2}$ by country by subtracting the country mean feature values and then
 1351 multiplying the resulting demeaned features by the estimated model weights. This corre-
 1352 sponds to what is done when evaluating downscaled IWI performance in Section S6.2 and
 1353 shown in Equation S7a.

1354 **Anchoring to country means via re-centering** When converting the predicted munic-
 1355 ipal NL deviations from the country mean (\widehat{NL}_m^{ADM2}) into predicted municipal NL values in
 1356 levels (\widehat{NL}_m^{ADM2}), we anchor values to the known country mean:

$$\widehat{NL}_m^{ADM2} = \widehat{NL}_m^{ADM2} + \sum_{p \in c} \frac{NL_p^{ADM1}}{N_c} \quad (S10)$$

1357 Note that we anchor fine resolution NL predictions to the known country mean rather than
 1358 the provincial mean (following Equation S2 rather than Equation S8) because we find that

1359 this substantially improves full variation performance. Most of the variation in nightlight
1360 luminosity occurs within countries, rather than between countries, which is considerably
1361 different from what we observe for HDI and IWI. Importantly, the choice to use a different
1362 re-centering procedure for NL does not impact the downscaled within-province performance
1363 (Figure 2J), which we believe provides the most important evaluation of downscaling per-
1364 formance.