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Abstract

The United Nations Human Development Index (HDI) is arguably the most widely
used alternative to gross domestic product for measuring national development. This
is in large part due to its multidimensional nature, as it incorporates not only income,
but also education and health. However, the country-level resolution of the global HDI
data released by the Human Development Report Office of the United Nations Devel-
opment Programme (N=191 countries) has limited its use at the local level. Recent
efforts used survey data to produce HDI estimates for first-level administrative units
(e.g., states/provinces). Here, we build on recent advances in machine learning and
satellite imagery to develop the first global estimates of HDI for second-level admin-
istrative units (e.g., municipalities/counties, N = 61,530) and for a global 0.1

◦ × 0.1
◦

grid (N=819,309). To accomplish this we develop and validate a generalizable down-
scaling technique based on satellite imagery that allows for training and prediction
with observations of arbitrary shape and size. This enables us to train a model using
provincial administrative data and generate HDI estimates at the municipality and
grid levels. Our results indicate that more than half of the global population was
previously assigned to the incorrect HDI quintile within each country, due to aggrega-
tion bias resulting from lower resolution estimates. We also illustrate how these data
can improve decision-making. We make these high-resolution HDI estimates publicly
available in the hope that they increase understanding of human wellbeing globally
and improve the effectiveness of policies supporting sustainable development. We also
make available the satellite features necessary to increase the spatial resolution of any
other administrative data that is detectable via imagery.
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Introduction1

The Human Development Index (HDI) is widely used by policymakers and academics to2

summarize three key dimensions of wellbeing: the population’s health, human capital, and3

standard of living (1–4 ). A more comprehensive measure of wellbeing than income or wealth4

alone (2, 3, 5 ), HDI is used to categorize countries by their level of human development,5

which, in turn, can determine allocations of global resources (6 ). However, the United6

Nations Development Programme (UNDP) releases official global estimates of HDI annually7

only at the highly aggregated national level (N=191), preventing the use of the indicator8

in applications that require subnational information. Thus, measures of income remain the9

dominant metric for evaluating development progress within countries, in part because they10

are more readily available.11

In an effort to address this, non-UN researchers (7 ) recently processed extensive house-12

hold survey data in order to produce the first HDI estimates for first-level administrative13

units – i.e. provinces and states, hereafter called “provinces” (N=1,739). These efforts have14

substantially advanced our understanding of global development patterns, but province-level15

measures nonetheless remain too coarse for many modern policy applications where local in-16

formation is needed, such as community-level targeting of aid (8, 9 ). Furthermore, the17

reliance of current HDI estimates on slow, infrequent, and costly ground-based data col-18

lection limits the usability of HDI for most practical applications other than cross-national19

rankings.20

Here, we produce the first global estimates of HDI at the second administrative level – i.e.21

municipalities and counties, hereafter called “municipalities” (N=61,530) and for a global22

0.1◦× 0.1◦ (approximately 10km by 10km) grid. We construct these estimates by combining23

information from prior provincial estimates (2 ) with global daytime and nighttime satellite24

imagery (10, 11 ). Our approach builds on recent advances in machine-learning (12 ) to25

develop a general method that learns the relationship between imagery and an outcome26

of interest (here, HDI) using data from any set of political boundaries. We can then use27

that relationship to estimate the outcome for any other set of boundaries. Importantly,28

our method works for spatial units of arbitrary shape and size, so models can be trained29

on coarse-resolution outcome measurements and make predictions at finer resolution. We30

apply this method to transform provincial HDI measures into finer resolution estimates.31

While other such “downscaling” approaches typically rely on either theoretically informed32

relationships or simple dasymetric masks (13, 14 ) our approach to making predictions at33

finer resolution than the source labels uses machine learning and satellite imagery to identify34

complex spatial relationships between imagery and an outcome of interest.35
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A general approach to downscaling administrative data using satel-36

lite imagery and machine learning37

The combination of satellite imagery and machine learning (SIML) is increasingly used to38

predict socioeconomic variables at fine spatial resolution (12, 15–22 ). This approach enables39

information that is expensive to obtain through ground surveys to be estimated at low cost.40

While SIML estimates do not replicate ground surveys exactly (23–25 ), the quality of SIML41

estimates is now high enough that it can assist targeting of aid and program evaluation in42

remote communities where alternative sources of information are unavailable (8, 15, 24, 26,43

27 ).44

However, the ability of SIML systems to promote development is limited by the paucity45

of suitable observations for model training (15 ). This limitation is partly due to the design46

of modern SIML methods, since large quantities of administrative data are available, but47

existing systems are generally not designed to make use of them. To date, SIML approaches48

for predicting human outcomes have standardized the structure of both the training labels49

and corresponding imagery so that the unit of analysis is a regular spatial structure, such50

as a square. For example, many systems use convolutional neural networks (CNNs)(16, 17,51

20 ), which tend to perform well on diverse computer vision tasks. CNNs, however, typically52

require images to be a constant size and shape, such as 224 x 224 x 3 pixels in the case of the53

commonly used ResNet-18 (28 ). This restriction has caused prior studies to rely on coarse54

approximations for linking irregularly shaped labels to corresponding imagery, for example,55

by averaging polygon labels that overlap with the square image (12, 18 ). Such procedures56

can introduce considerable error when administrative polygons are much larger or smaller57

than the chosen square size. This is particularly relevant for HDI, for which data is globally58

available only for nations or provinces, which tend to be irregularly shaped and vary greatly59

in spatial extent. For example, the largest provincial polygon in our data is the Far Eastern60

Federal District of Russia, which is over 6 million km2, and the smallest is Banjul of Gambia,61

which is 7 km2. Developing a robust and widely applicable SIML system that can be trained62

on inputs that correspond with such diverse administrative structures requires an alternative63

strategy.64

In an ideal setting, we would solve for a function that could directly map a single satellite65

image “tile” (e.g. 1km × 1km) to the corresponding HDI for the same tile66

HDItile = f(satellite imagetile) + ϵtile (1)

where ϵ is the component of HDI that is not measurable with imagery. In theory, Eq. 167

could be solved directly with many learning approaches, such as a CNN (29 ), but this is68
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infeasible in practice because tile-level data on HDI (i.e. the left-hand side of Eq. 1, HDItile)69

does not exist. Instead, we observe only aggregated estimates of HDI over politically-defined70

regions (HDIcountry or HDIprovince) that correspond with large and irregular agglomerations71

of image tiles. For the SIML system described by f(·), this creates a mismatch between the72

spatial structure of inputs (image tiles) and outputs (administrative regions).73

We solve this problem by converting image tiles into a generalizable set of descriptive74

variables or “features,” Xtile, such that f(·) can be structured as linear in these features,75

f(satellite imagetile) = β ·Xtile, (2)

where β is a vector of weights (i.e. coefficients). Specifically, we construct a basis for the76

imagery such that outcomes of interest are well-represented by linear combinations of the77

basis vectors. This allows aggregate administrative measures of HDI to project onto corre-78

sponding aggregations of tile-level features with the same weights that would be recovered79

if the problem had been solved using only tile-level data. Thus, we learn the model80

HDIprovince = β ·

(
1

N

∑
tile∈province

Xtile

)
︸ ︷︷ ︸

X̄province

+ϵprovince (3)

and recover the same weights β that we would have recovered had we directly solved Eq.81

1 using the linearization in Eq. 2. See Supplementary Information S5 for an empirical82

validation of the scale-invariance of model weights using this approach. Note that X̄province83

is simply the vector of average tile-level features within a province. The weights β can84

then be used to generate predictions for arbitrary aggregations of tiles. We use these β to85

downscale HDI to the municipality level (β · X̄municipality = ˆHDImunicipality) and the tile level86

(β · X̄tile = ˆHDI tile).87

The benefits of linearizing this problem have been understood in general terms, since88

linear models of basic scalar image properties (e.g. “greenness”(30 ) or nighttime lights89

(31 )) have been widely used to downscale administrative-level data. However, to our knowl-90

edge, it has not been shown that such linearization is possible and skillful for the types of91

featurizations that capture complex spatial structures in imagery.92

Here we demonstrate that such a skillful linearization can be achieved by embedding rich93

image information using the Multi-task Observation using Satellite Imagery and Kitchen94

Sinks (MOSAIKS) approach (12 ). Converting images into MOSAIKS features95

(daytime satellite image → XMOSAIKS) provides a structured representation of the un-96

structured information within the satellite image that performs well in linear models. These97
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features summarize the joint distribution of color and textures within daytime tri-band op-98

tical imagery (see Methods 1 and Figure S1). We concatenate these features with features99

that summarize nighttime lights of locations (32, 33 ) (nighttime satellite image → XNL)100

to construct a linear model that downscales HDI using only satellite data (see Methods 3.2101

and 4.1).102

Figure 1: The MOSAIKS approach transforms satellite imagery for each admin-
istrative polygon into a vector of image features. (A) The location of Oromia, an
example province (ADM1 unit) within Ethiopia. (B) A composite of Planet imagery over
Oromia in 2019. (C) A sample of 0.01◦ x 0.01◦ image tiles. (D) Three examples of MOSAIKS
random convolutional features over Oromia; each pixel shows the feature value for a single
0.01◦ × 0.01◦ image (Xtile). (E) The corresponding aggregation of these MOSAIKS features
to the provincial polygon (ADM1) level for model training (X̄province). (F) Aggregation of
these same MOSAIKS features to the municipal polygon (ADM2) level for fine-resolution
prediction of HDI (X̄municipality). See Figure S1 for an illustration of how MOSAIKS features
are calculated and used to predict HDI.
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Results103

Our results have four sections. First we train and evaluate a global model for HDI at the104

province-level using aggregates of satellite features. Second, we implement multiple tests105

to validate that this model is skillful. Third, we generate the first high-resolution global106

HDI data using this procedure, and we evaluate how these estimates compare to existing107

aggregated estimates. Fourth, we illustrate how these new high-resolution estimates could108

alter decision-making when targeting aid.109

1. Predicting province-level HDI using satellite imagery110

Using province-level administrative HDI data for training (as in Equation 3 and Figure 1),111

we find that predictions made using linear aggregates of daytime and nighttime satellite112

image features, anchored to known country means, explain 96% of the variation in global113

provincial HDI values (Figure 2A, denoted “full variation performance”). Specifically, we114

train a model to predict provincial HDI deviations from each country mean and then add the115

known country mean to the predicted provincial deviations. We take this “mean-anchored”116

approach, because it reflects how SIML may be used to augment existing HDI data in practice117

(see Methods 4.4 and Supplementary Information S6.1 for a discussion of mean-anchoring).118

Since most HDI variation is across-countries rather than within-countries (Figure 2A-B),119

much of this performance predicting provincial variation is driven by the measured country120

means that the predictions are anchored to.121

The primary value of incorporating satellite imagery is to explain local-scale variation122

in HDI. As a first test of the model’s ability to explain local variation, we evaluate model123

performance predicting deviations in provincial HDI from the country mean. We find that124

model predictions explain 52% of this within-country provincial variation in HDI (Figure 2B;125

see Methods 4.2 for a discussion of performance metrics). This indicates that SIML-based126

provincial predictions of HDI add substantial fine-resolution information to existing national127

measures. Importantly, models trained on provincial deviations from the country-level HDI128

have higher performance predicting such deviations than models trained directly on the129

provincial values themselves (Table S1 col. 4). Intuitively, model weights are optimized130

to explain the smaller within-country variation in the demeaned model, rather than the131

larger across-country deviations (Figure 2 A-B). We use such “within-country” models as132

our primary model specification.133
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2. Validating downscaling of data below the province-level134

We cannot directly evaluate the performance of municipality-level or grid-level HDI predic-135

tions worldwide because such highly-resolved estimates have not been previously constructed.136

Nonetheless, we test the performance of our downscaling technique in three ways that allow137

predictions to be directly compared to “ground truth” at finer resolution than the training138

data. First, we directly compare our municipality-level HDI predictions to census-derived139

estimates in three countries where these data are available – Indonesia, Brazil, and Mexico.140

(9, 34, 35 ). Second, we train a model relating satellite imagery to the International Wealth141

Index (IWI) at the province level, and then construct downscaled predictions of IWI at the142

resolution of Demographic and Health Surveys (DHS) clusters where granular IWI measure-143

ments are available (36 ). The IWI is an alternative development indicator to HDI that omits144

measures of education and health. Third, we train a model to predict nighttime lights (NL),145

a common proxy for economic wellbeing (32, 37–42 ), using features constructed exclusively146

from daytime satellite imagery, and test whether our approach can downscale NL. Mirroring147

the structure of our HDI analysis, we train a model using only NL labels aggregated to the148

province level, and then evaluate predictions of NL at the municipality level. No test can149

directly validate the performance for downscaling HDI globally, since the data necessary for150

such a test do not exist; however, all three of these large-scale tests taken together document151

the effectiveness of our downscaling strategy in general – using global socioeconomic data152

similar to HDI – and for HDI in particular – using municipal HDI data for three countries.153

When evaluating estimates made at finer resolution than that of the training data, we154

mean-anchor downscaled estimates to the known provincial mean. This approach produces155

the best possible estimates by using the satellite-based model to explain within-province156

variation, which is previously unknown, and the known provincial values to explain the157

across-provincial variation.158

Downscaling HDI in Mexico, Brazil and Indonesia As a direct evaluation of HDI159

downscaling performance, we compare municipal HDI predictions from the satellite-based160

model trained on provincial HDI deviations from the country mean to municipal HDI derived161

from census-based calculations in Mexico (9 ), Brazil (35 ), and Indonesia (34 ) (Methods162

2.3). In Mexico, downscaled HDI predictions explain 45% of the municipal HDI variation163

overall (Figure 2C) and 29% of the within-province variation (Figure 2D). In Brazil, HDI164

predictions explain 48% of municipal HDI variation overall, and 20% of the within-province165

variation. And in Indonesia, HDI predictions explain 61% of the municipal HDI variation166

overall and 53% of the within-province variation. It is encouraging that HDI predictions align167

better with census-based measures for Indonesia than for Mexico or Brazil because measures168
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Figure 2: MOSAIKS models perform well predicting socioeconomic indicators,
including at downscaled resolution. (A) Observed and predicted HDI at the province
level. Note that the within-country variation is smaller than the across-country variation,
as illustrated by France, in yellow, and Ethiopia, in pink. (B) The same as (A), evaluat-
ing within-country variation. Provincial deviations from the country mean for France and
Ethiopia are now centered at 0, and the model is evaluated on how well it can differentiate
provinces that are relatively well and worse-off within countries. (C-D) Observed and pre-
dicted municipal HDI data in Mexico, Brazil and Indonesia. (E-G) Observed and predicted
IWI at the DHS cluster level. (H-J) Observed and predicted nighttime lights at the munici-
pality level. The vertical streaking in (H-J) are caused by countries that have very spatially
dense municipalities (Supplementary Information S6.3). Predictions are anchored to known
country or provincial means (Methods 4.4). All predictions are for the year 2019.



for Indonesia are from 2019, which aligns with our satellite-based predictions of within-169

province HDI variation, while measures for Mexico and Brazil are from 2010. These older170

HDI measures could differ from our satellite-based predictions in part due to changes in HDI171

since the measurements were taken. Additionally, some portion of the misalignment between172

satellite-based predictions and survey estimates likely arises as a result of errors in the survey173

data itself, a widely recognized issue (15 ) that we are unable to assess. Together, these results174

indicate that our method for SIML-based downscaling improves our understanding of the175

spatial distribution of HDI in these three example countries; although, it is not a complete176

substitute for survey-based estimates when such data are available.177

Downscaling the International Wealth Index We test the ability of our approach178

to downscale IWI internationally by training a model on province-level aggregates of IWI179

and then predicting IWI across DHS clusters. This is a more difficult task than predicting180

municipality-level values and an equally difficult task as predicting at the 0.1◦ × 0.1◦ grid-181

level, since DHS clusters tend to be even finer resolution than municipalities and about the182

same size as the HDI grid (DHS cluster ≈ 180 km2, municipality ≈ 2,000 km2, grid tile ≈ 120183

km2). Models are trained on 862 provincial observations within 85 countries and evaluated at184

51,996 DHS clusters (Table S1). Analogous to our approach with HDI, models are trained on185

province-level deviations from country-level means and predictions are re-centered to match186

the observed province-level mean, as these values are known (see Methods S6.2). Downscaled187

IWI predictions explain 67% of the variation in IWI across all DHS clusters (Figure 2E) and188

56% of the variation in IWI across DHS clusters within countries (i.e. of cluster deviations189

from the country mean, Figure 2F). Importantly, this approach is also able to predict 36%190

of the variation in IWI within the provincial units that it was trained on (Figure 2G). This191

result demonstrates the ability of our downscaling approach to generate skillful global-scale192

predictions at resolutions higher than the training data, and also its ability generalize to193

measures other than HDI.194

Downscaling nighttime lights To further evaluate our approach in a global test, we195

train a model on aggregate provincial NL and evaluate predictions at municipal resolution.196

NL are not a direct measure of human welfare; however, they are generally correlated with197

income and other development indicators (38–40, 43, 44 ). NL have even been used along198

with population to construct development indicators correlated with HDI (e.g. (41 )). NL199

are particularly useful here because they allow us to design a validation test where true sub-200

national values are known worldwide. Mirroring our HDI process, we train the model using201

provincial deviations from the country mean, and then construct municipal values as the pre-202
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dicted municipal deviations from the country mean plus the known country mean (Methods203

S6.3). Downscaled NL predictions capture 70% of municipal variation in NL globally (Figure204

2H), 63% of the municipal variation within countries (Figure 2I), and, most importantly, 57%205

of the variation across municipalities within provinces (Figure 2J). These results further re-206

inforce the ability of our approach to downscale global province-level data and underscore its207

generalizability to other non-HDI outcomes. Unlike the two downscaling experiments above,208

this experiment relies entirely on features generated using only daytime imagery (Figure S2).209

210

Comparisons to municipal data on HDI, IWI, and NL indicate that models trained on211

provincial data can explain 20-57% of within-province municipal variation. Collectively, these212

three experiments demonstrate that our approach effectively combines coarse socioeconomic213

measurements with satellite data to produce skillful estimates at spatial resolutions finer214

than the province-level training data.215

3. Additional evaluation of model performance216

Model performance for components of HDI One motivation for using MOSAIKS217

features to downscale HDI is their ability to predict a diversity of ground-based measures.218

This is particularly relevant for predicting HDI, since it is constructed from components219

that capture human health, education, and income. To consider which components of HDI220

are best captured by our estimates, we retrain models to predict each component of HDI221

separately. We find that MOSAIKS models explain 92% (5%) of the full (within-country)222

variation in provincial life expectancy, 93% (51%) of mean years of schooling, 90% (27%)223

of expected years of schooling, and 97% (56%) of gross national income per capita (GNIpc)224

(Table S3). While the components of HDI do tend to be correlated (Table S4), these results225

indicate that instead of just capturing income, predictions of HDI using satellite imagery226

maintain the ability to capture multiple dimensions of human wellbeing. These results227

also help explain what aspects of human development satellite features are able to capture,228

indicating their ability to explain local variation in education and income as well as their229

difficulty predicting aspects of health. Predictions of HDI made from combinations of its230

individually predicted components perform nearly identically to the direct predictions of231

HDI used throughout this analysis.232

Further model evaluation including model, model performance across global regions, and233

the value of combining daytime and nighttime imagery are discussed in Supplementary In-234

formation S2. While it remains untestable how accurately the approach can downscale HDI235

globally, we find that the approach can predict substantial global variation in HDI and its236
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components, and that it can downscale both HDI in three countries and variables related to237

HDI globally with accuracy.238

4. Global municipality-level and grid-level estimates of HDI239

We use our model for within-country HDI (from Results Sections 1–2) to estimate HDI for240

61,530 municipalities and 819,309 0.1◦ × 0.1◦ grid tiles (Figure 3), the finest resolutions at241

which HDI has been estimated globally (Methods 4.5). We make these municipal and grid-242

level estimates of HDI publicly available for download at mosaiks.org/hdi. Estimates are243

available annually from 2012-2021. We also similarly produce and make available estimates244

of the individual components of HDI.245

Our high-resolution estimates enable a substantially more detailed understanding of hu-246

man development compared with national and provincial measures (Figure 3 A,B vs. C,D).247

Both municipal and grid-level estimates reveal within-province heterogeneity of HDI that248

was previously un-resolved (Figures S3, S4). The gridded HDI estimates tend to be higher249

along major roadways, especially at the intersection of roadways (Figure S5). Boarders, such250

as between Turkey, Georgia, Armenia, Azerbaijan, Iraq and Iran, are less apparent in the251

fine resolution estimates, indicating a greater continuity in human development across space252

than in the provincial maps. The wealthier city centers and poorer suburbs of capital cities253

such as Moscow, Russia and Antananarivo, Madagascar are also visible in the municipal and254

grid estimates, but obscured in the provincial estimates. The contribution of environmental255

features to human development is illustrated in eastern Pakistan and northwestern India,256

where human development is higher in the plains bordering the Indus River and its tribu-257

taries, and lower in neighboring deserts. Similarly, within Sonora and Sinaloa in Mexico,258

coastal areas show higher human development than inland regions. This local heterogeneity259

in HDI indicates that uniform assignment of HDI to populations based on their country or260

province of residence is inaccurate because it groups together populations with very different261

levels of human development.262

We use our estimates to quantify the degree of aggregation bias that occurs when using263

only province-level estimates. Aggregation bias occurs here because small units (i.e. grids264

or municipalities) are assigned the HDI of a larger unit (i.e. a province), which does not265

reflect local conditions. For example, a small urban region, where HDI is high, embedded266

in a province that also contains large, less developed rural areas, will be assigned a HDI267

level that is too low when provincial measures are used. We quantify how frequently such268

mis-assignment occurs within countries by assigning populations to a quintile of HDI within269

their national HDI distribution based on provincial, municipal, or grid-level estimates. We270
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Figure 3: Global HDI estimates at the municipal and grid levels. (A) Official
United Nations HDI at the country level (45 ) (B) HDI data at the province level from Smits
and Permanyer (7 ). (C) Municipal level estimates of HDI produced here. (D) Grid level
estimates of HDI at the 0.1◦ by 0.1◦ (approximately 10km by 10km) level produced here.
Grey in the grid-level estimates indicates land area believed to be unsettled (46 ). All data
shown are for the year 2019.



then evaluate how frequently the province-level estimates agree with the more highly resolved271

estimates (Figure 4).272

We find that a majority of the global population (58% using municipal estimates and 65%273

using grid estimates) is assigned to a different within-country HDI quintile compared to when274

using provincial estimates. For example, of the population measured to be in the bottom two275

HDI quintiles using provincial estimates, 8.5% are reassigned to the top two HDI quintiles276

using municipal estimates and 12.9% using grid-estimates. Grid-level estimates reveal larger277

amounts of aggregation bias due to their finer resolution. Based on our grid-level estimates,278

we estimate that 20.4% (21.0%) of the global population is one quintile lower (higher) than279

assigned using provincial estimates, and 9.5% (9.3%) are two quintiles lower (higher).280

B

Previously considered 
to be in 3rd quintile, 
but now considered 
to be in top quintile

Previously and 
currently considered 
to be in the top 
quintile  (no change)

A

Figure 4: Municipal and grid-level estimates of HDI assign more than half of
the global population to a different within-country HDI quintile than provincial
estimates. (A) Shows the difference in estimated HDI quintile, within countries, using
provincial vs. municipal data. (B) shows the same analysis using grid-level HDI estimates.
Colors show the estimated HDI quintile using provincial data from (7 ), where yellow is high
human development and purple is low human development. All data is from 2019. Bins along
the x-axis show estimated HDI quintiles using the municipal and grid level data produced
in this study. Hatch marks indicate no change in quintile assignment using municipal data.
When provincial data do not allow for the creation of five distinct bins, the population is
assigned first to the middle bin, followed by the neighboring bins. For example, if a country
does not have any province-level data, the entire population is assumed to be in the middle
quintile for that country. For this reason, a greater fraction of the global population is
assigned to the middle quintile (33%) than to the outer quintiles when using the provincial
data.
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5. Illustrative application: targeting policy in Mexico281

To explore how our new HDI measures could improve the efficiency of development policies,282

we conduct a simulation exercise for Mexico. We simulate how a geographically targeted283

policy based on provincial vs municipal HDI data (Figure 5A-B) might achieve different284

outcomes, noting that previous work has shown that more spatially granular targeting can285

produce meaningful welfare gains (17, 47–50 ). We study Mexico because “ground truth”286

estimates of HDI enable us to benchmark performance (9 ).287

The use of municipality-level data improves the number of program recipients correctly288

targeted. Supposing that the program director aims to provide assistance to the 10% of in-289

dividuals with the lowest HDI, accuracy of program targeting increases by 11.4% percentage290

points (from 32.3% to 43.7%) when using municipal data (Figure 5E, assuming the standard291

deviation of individual HDI within each municipality is 0.1, see Methods 4.6). Use of the292

municipal data also results in a much greater geographic dispersion of targeted municipalities293

(Figure 5C-D). Evaluation of targeting performance using a receiver operating characteris-294

tic curve (8 ) gives similar results (Figure 5F, Methods 4.6). Replicating this analysis for295

Indonesia also gives consistent results (Figure S11).296

This application illustrates how fine-resolution HDI estimates can improve targeting297

of policies that would otherwise use coarser provincial measures, even though these fine-298

resolution estimates are imperfect. Using provincial measures implicitly assumes no within-299

provincial variation in HDI, so any positive ability to predict variation within provinces300

improves understanding of the spatial distribution of HDI. Users of these fine-resolution esti-301

mates should consider their specific policy context to determine whether these fine-resolution302

estimates, which explain 29% of the within-province HDI variation in Mexico, 20% in Brazil,303

and 53% in Indonesia, provide sufficient additional information to be useful in their setting.304

These estimates may be particularly valuable in data poor settings, where traditional data305

sources such as surveys are less available and reliable (15 ); only about half of the world’s306

poorest countries have conducted a census in the last decade (16, 26 ). These estimates may307

also be useful in cross-country settings where a consistent metric of welfare is desired.308
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Figure 5: Spatially granular HDI measures can improve decision-making. (A)
HDI for 2019 at the province level of observation (7 ) (B) HDI estimates for 2019 at the
municipality level produced in this paper. (C) Lowest HDI provinces that would be targeted
until 10% of the country’s population is reached. (D) Lowest HDI municipalities that would
be targeted until 10% of the country’s population is reached. Hashing in (C) and (D) shows
the marginal province and municipality that would be partially targeted. (E) Targeting
accuracy (true positive rate) as a function of the assumed standard deviation of HDI within
each municipality. (F) ROC curves illustrate the degree of improvement that comes with
targeting at the municipality level relative to the province level (assumed SD of 0.1 within
each municipality).



Conclusion309

We produce and make publicly available the first global-scale, high-resolution estimates of310

HDI, enabling the use of broad-based measures of wellbeing for local decision-making and311

policy prioritization. We achieve this by developing an approach for generating spatially312

granular development indicators using SIML models trained on spatially aggregated and313

inconsistently structured administrative data. Since many forms of non-HDI data are also314

available only for administrative regions, we believe this generalizable method will increase315

the range of outcomes that can be used as labels in SIML models, which are currently316

constrained by limited training data (15 ).317

Our strategy is motivated by the limited resolution of available training data for HDI, but318

our results do not exhibit obvious compromises in performance relative to alternatives that319

exploit high-resolution labels. A related benchmark in this literature achieves ρ2 = 0.63-0.67320

predicting a wealth index when training and evaluating at the DHS cluster resolution (16,321

51 ). Though we train at the provincial level, not the DHS cluster level, our performance322

predicting DHS cluster IWI is competitive with this previous analysis (ρ2 = 0.71; Table323

S1, col 1). Another benchmark in this literature achieves an R2 of 0.54 predicting RWI,324

which is conceptually identical to what we call within-country IWI, at the same DHS cluster325

level (17 ) (metric taken from a replication of their Figure 3B). Again, despite training at326

the provincial level rather than the DHS cluster level we achieve a within-country R2 of 0.56327

predicting IWI at the cluster level. Direct comparison to both of these benchmarks, however,328

is complicated by differences in training and evaluation methodologies including our focus329

on explaining within-province variation and our corresponding mean-anchoring approach.330

Here, we use satellite imagery due to its rich information content, global availability,331

and near uniformity in quality across countries. To evaluate whether additional satellite332

data sources beyond visual daytime imagery and nighttime imagery might improve HDI333

estimates, we follow ref. (22 ) and add to the baseline model three additional index-based334

features constructed from Sentinel-2A satellite imagery that integrate knowledge of spectral335

properties of different ground conditions: the Normalized Difference Vegetation Index, Nor-336

malized Difference Water Index, and Normalized Difference Built-Up Index. We find that337

the model performance is essentially unchanged (Table S5), indicating that these additional338

features do not provide additional information beyond what is already captured by the MO-339

SAIKS and NL features. While it is important to note that there is a limit to how well340

socioeconomic variables can be predicted using satellite imagery generally, and adding these341

additional features did not improve performance in this case, future work should nonetheless342

explore whether incorporating additional imagery sources and/or other ancillary data can343
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improve these estimates (52 ).344

This approach to producing HDI estimates can be viewed as a type of regression-based345

technique for small area estimation using satellite imagery (53, 54 ). Though data limita-346

tions in this setting – including the lack of fine-resolution global surveys of HDI – preclude347

the direct implementation of most commonly used small area estimation techniques (e.g.,348

(55 )), this approach follows the general small area estimation framework of combining lim-349

ited measurements of the variable of interest (provincial HDI) with universally available350

axillary data informing the variable of interest (satellite imagery) to make accurate and351

precise fine-resolution predictions. A key difference between more traditional small area es-352

timation techniques and ours is that we use a global-level auxiliary dataset that does not353

suffer from the challenge of construct validity across countries, although this comes with a354

tradeoff of needing to assume some degree of consistency between imagery and conditions355

on the ground. A recent comparison of poverty maps for Malawi produced using i) a small356

area estimation approach combining survey data and census data and ii) an alternative ap-357

proach combining survey data and geospatial indicators including satellite imagery found358

that the two approaches produced very similar estimates, with a correlation exceeding 0.9359

(56 ). This, paired with the performance of satellite imagery predicting HDI shown here,360

indicates that satellite imagery can be an effective substitute for census information when361

producing fine-resolution estimates of human wellbeing in settings where census data is not362

available. In locations where reliable census data is available, satellite imagery could serve363

as a complementary source of information.364

One important property of the errors in our estimates, common in machine learning (12,365

24, 25 ), is that our predictions exhibit lower variance than the true values. For example, in366

Mexico the standard deviation of our satellite-derived estimates is approximately half that367

of census-derived values. Survey and other traditional approaches to data collection remain368

critical to informing the state of global human development and complement satellite models,369

which cannot be trained or evaluated without ground-truth measures.370

We have produced global downscaled estimates of HDI for 2012-2021 by combining ex-371

isting provincial measures with fine-resolution satellite estimates. This approach estimates372

municipal HDI in each year by adding satellite-based estimates of municipal HDI deviations373

from the provincial mean, which are time-constant, onto time-varying provincial values cal-374

culated from surveys (7 ). These municipal values are appropriate for applications comparing375

levels of HDI across locations within a specific moment in time. They cannot be used to eval-376

uate changes in the distribution of HDI within-provinces over time. Current data does not377

allow us to distinguish performance between our validated approach and an approach that378

estimates local trends in HDI (Figure S8 and Supplementary Information S3). Developing379
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additional approaches for tracking and validating subnational trends in HDI is an important380

area for future research.381

A benefit of our approach is its mathematical transparency (57 ), relative to deep learning382

alternatives; however, like most computer vision approaches, it is a challenge to explain why383

our model generates a particular prediction. To explore which specific phenomena are cor-384

related with our HDI estimates, we examine how predicted HDI values associate with other385

variables globally, an approach similar to some prior efforts to evaluate model predictions386

(54 ). We find that municipalities with higher road density (full variation ρ2=0.24, within-387

country ρ2=0.14) and building density (full variation ρ2=0.07, within-country ρ2=0.16) tend388

to have higher predicted HDI (Figure S9, Supplementary Information S4). Population has389

a weak association with HDI across the globe (full variation ρ2=0.02), but within countries,390

more densely populated municipalities tend to have higher HDI (ρ2=0.33). In contrast,391

cooler countries tend to have higher HDI (full variation ρ2=0.12), but temperature has lit-392

tle association with HDI within countries (ρ2=0.0). Terrain ruggedness, forest cover, crop393

cover, and rainfall have little to no association with our HDI estimates. Collectively this394

analysis indicates that our HDI estimates capture image information related to built in-395

frastructure and the density of human settlements, but also indicates that there is residual396

image information beyond these factors that contribute to the HDI estimates – together the397

variables analyzed above explain 32% of the full variation in municipal HDI estimates and398

33% of the within-country variation in a multiple linear regression analysis. Broadly, policy-399

makers benefit from algorithmically-informed decisions that are transparent and explainable400

(58 ). Future work should investigate improvements in remote sensing model interpretability401

that can support transparent policy-making and aid in understanding potential sources of402

systematic bias (57, 59, 60 ).403

We emphasize that the approach described here can be used to predict a wide variety of404

labels for which country, province, and/or municipality level labels exist. To facilitate this405

use, we make the features used in this analysis publicly available at the country, province, and406

municipality level via https://mosaiks.org/hdi (10 ). We offer these features aggregated407

to these administrative-unit levels using both area and population weights. Each of these408

files is relatively small, ≈ 3 GB or less, and thus possible to process on a desktop computer.409

For comparison, the global set of features is ≈ 3 TB and the raw imagery is ≈ 30 TB. We410

hope that researchers and decision-makers can leverage these features, along with their own411

administrative datasets, to produce new downscaled estimates of socially-relevant outcomes.412

Such spatially granular data may create new opportunities for achieving global development413

goals.414
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Methods415

1 Overview416

To transform satellite imagery into descriptive features that exhibit high performance in417

linear models, we build on the recent development of MOSAIKS, an approach that achieves418

performance competitive with CNNs using an unsupervised image embedding combined with419

a linear ridge regression model (12 ). The linearity of ridge regression enables the scale invari-420

ance of our downscaling approach (12 ). MOSAIKS random convolutional features combined421

with ridge regression have been shown to be skillful at solving diverse prediction problems422

—such as forest cover, population, elevation, and house price— using only imagery as inputs423

and using only a single linear specification. This property makes MOSAIKS a particularly424

appealing approach for predicting HDI, which is constructed from multiple development in-425

dicators. Each MOSAIKS feature for a tile describes the similarity between the satellite426

image and a smaller patch of imagery, and is calculated as a nonlinear transformation of the427

image’s pooled convolution with a random sub-image from the sample (12, 61 ). For example,428

a feature whose patch was sampled from a city might inform how urban an image is, while429

a feature whose patch was sampled from farmland might inform how agricultural an image430

is. Together, thousands of MOSAIKS features form a basis that can skillfully describe the431

rich structure contained within large imagery datasets through simple linear combinations432

of the features. For details on how MOSAIKS captures visual information from satellite433

imagery see Figure S1, as well as the Methods sections “Theoretical foundations” and “Con-434

volutional random kitchen sinks”, and the Supplementary Information section “Alternative435

interpretations relating MOSAIKS to kernels and CNNs” of ref. (12 ).436

To compute local HDI via SIML, we transform a dataset of global Planet imagery (≈ 5m437

resolution) into a set of 4000 general-purpose MOSAIKS features (X) for 0.01◦ × 0.01◦ tiles438

(≈ 1km × 1km; Figure 1) (10 ). We supplement these MOSAIKS features with features that439

flexibly characterize the distribution of nighttime lights in each tile (Methods 3.2). While440

past measures of economic and human wellbeing have tended to focus on nighttime lights441

alone (37–42 ), inclusion of high-resolution daytime imagery improves model predictions of442

HDI, especially in regions with low HDI (Supplementary Information S2). Visual imagery443

may improve performance by better resolving HDI variation in areas without electrification444

that are nearly dark, or by better differentiating between highly populated poorer areas445

and less populated richer areas, which can have similar brightness in nightlight data (20 ).446

We then learn a model that is linear in these features (β · X) and use this linear model447

to estimate HDI at high resolution. While we focus this analysis on the downscaling of448
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HDI, this approach is generalizable to other types of administrative data associated with449

irregularly-shaped political units.450

For both training and prediction, we average image features for administrative poly-451

gons using population weights (Figure 1D, grid-scale predictions follow a similar procedure)452

(46 ). This results in one vector of image features for each province and municipality in the453

world. To learn the relationship between the image features and HDI, we train a model on454

province-level HDI labels and aggregated province-level image features (Figure 1E). We then455

predict municipality-level HDI using the municipality-level image features (Figure 1F), and456

we predict 0.1
◦ × 0.1

◦
grid HDI using features for that grid.457

Throughout this analysis we use the term “province”, the abbreviation “ADM1” to refer458

to first-level administrative regions; and “municipality”, “ADM2” to refer to second-level459

administrative regions, though the terminology for these units varies by country. For ex-460

ample, “state” and “county” are the designations used for ADM1 and ADM2 units in the461

United States.462

Our fine-resolution global HDI estimates were produced in collaboration with researchers463

at the Human Development Report Office of UNDP (Supplementary Information S1), but464

data released with this paper should not be considered official United Nations indicators.465

2 Label data466

2.1 HDI467

The United Nations Human Development Index is a composite measure used to assess a468

country’s average achievements in three key dimensions of human development: health, edu-469

cation, and standard of living (4 ). Health is measured by life expectancy at birth; education470

is evaluated using a combination of mean years of schooling for adults and expected years471

of schooling for children; and standard of living is assessed through gross national income472

per capita (GNIpc), adjusted for purchasing power parity. The HDI applies a logarithmic473

transformation to GNIpc to account for the diminishing benefits of increased income. Each474

of these components is normalized on a scale from 0 to 1, and the HDI is calculated as475

the geometric mean of the three dimension indices, giving equal weight to each dimension.476

This method allows the HDI to reflect not just economic wealth, but also broader aspects of477

well-being. In 2019, the average HDI across countries was 0.72, with a standard deviation478

of 0.15, a minimum of 0.36 in Somalia and a maximum of 0.96 in Switzerland. (Figure 3A).479
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2.2 Province-level HDI480

National-level HDI data originate from the UNDP Human Development Data Center and481

are updated every year (45 ). UNDP uses data from the World Bank, UNESCO, UNICEF,482

DHS, UN Stats, and other organizations to create these national-level indicators (4 ).483

Province-level data on HDI and its components come from the Global Data Lab (GDL)484

Subnational HDI Database V7.0 (7, 62 ). We omit 3% of the observations, which do not485

match with the associated GDL shapefile. The resulting province-level HDI dataset contains486

1,739 provincial observations from 159 countries. Additionally, we include 20 country-level487

observations that do not have subnational province units (e.g., Qatar). For the majority of488

model training and evaluation we use provincial HDI data from 2019, the same year as the489

MOSAIKS image features. We use provincial HDI data from 2012-2021 for mean-anchoring490

the global fine-resolution HDI estimates for that time period.491

2.3 Municipality-level HDI492

We compare our municipal HDI estimates with census-derived municipal estimates for HDI,493

where these data exist.494

Indonesia Time series estimates of HDI at the municipality level are made publicly avail-495

able by Badan Pusat Statistik (BPS), the statistics agency of Indonesia (63 ). We use esti-496

mates from 2019, which makes these, to our knowledge, the only available municipal HDI497

data that come from the same year as our satellite imagery.498

Brazil The Human Development Report Office of the United Nations Development Pro-499

gramme has derived HDI data at the municipality level for Brazil, using census data (35 ).500

The most recent year these data are available is 2010, which we use in this analysis. The501

census-derived data have a different mean than the 2019 HDI data that we use elsewhere in502

this analysis; though, this has no influence on the within-country or within-province eval-503

uation metrics (Figure 2 C,D) because predictions and observations are demeaned at the504

country and province level, respectively, before the metrics are calculated.505

Mexico Census derived estimates of HDI are also available in Mexico for the year 2010,506

constructed by ref. (9 ). As with Brazil, these data have a different mean than the 2019507

HDI data; though, again, that has no influence on the within-country or within-province508

evaluation metrics.509
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When certain components of HDI are not directly available at the municipal level, produc-510

ers of these datasets use close proxies. For example the BPS calculates municipal HDI data511

in Indonesia using data on real expenditure rather than GNIpc (34 ). And when calculating512

municipal HDI in Mexico, ref. (9 ) use the child survival rate rather than life expectancy513

at birth for the health index and an asset index rather than GNIpc for the standard of514

living index. Likewise, provincial HDI estimates are also constructed using proxies when515

direct measurements of HDI components are not available (7 ). Discrepancies in how HDI is516

calculated at the municipal and provincial levels may contribute to differences between our517

satellite-based HDI estimates and these survey-based HDI estimates.518

2.4 IWI Data519

IWI data also come from GDL. These data are publicly available at the country and province520

levels and we use these data for 2019. GDL also provided us IWI data at the DHS cluster521

level, which are not publicly available. We use cluster-level IWI estimates from 2012 through522

2019 in this analysis. We drop observations that do not overlap a parent province polygon523

and for which no imagery is available. This results in 51,996 DHS cluster observations from524

41 countries.525

We match all label data to time-constant satellite image features from 2019. Because526

these features are not contemporaneous with all labels, our results present a conservative527

estimate of the ability of SIML to measure HDI globally. Given that HDI variation is528

substantially larger over space than time, however, perfectly contemporaneous measures529

would likely improve performance only modestly (Supplementary Information S3).530

3 Creation of features531

3.1 MOSAIKS features532

We create daytime image features using Planet’s Surface Reflectance Basemaps product from533

2019, which has a pixel resolution of 4.77m x 4.77m at the equator. These quarterly mosaics534

are processed by Planet to minimize cloud cover, balance color across seasons, and remove535

seams from images (10, 11 ). We use data from quarter 3 because it corresponds with less536

ice coverage in the northern hemisphere and less cloud cover in the tropics. We follow the537

methods described in Rolf et al. (2021) to generate a set of 4000 task agnostic daytime image538

features using random convolutional features (10, 12 ). Two thousand of these features use539

a patch size of 4 x 4 x 3 pixels, and the other two thousand use a patch size of 6 x 6 x 3540

pixels. The third dimension of the patch size refers to the number of color bands (i.e., red,541
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green, and blue) that are available in Planet imagery. We selected these patch sizes because542

they maximized performance across three non-HDI prediction tasks: predicting nightlight543

intensity, road length, and forest cover at the global level. We tested patch sizes ranging544

from 3 x 3 x 3 to 10 x 10 x 3 and found that using a combination of two different patch sizes545

(with 2,000 patches each) outperformed using a single patch size (with 4,000 patches) across546

all three tasks.547

We create features for all land tiles with available imagery on a global 0.01◦ x 0.01◦548

equal-angle grid, amounting to ≈ 151 million feature vectors in total (10 ). Features become549

sparse above 60◦ latitude, due to a lack of available imagery. Figure 1C shows individual550

images spanning 0.01◦ x 0.01◦, along with their corresponding MOSAIKS feature values.551

We create polygon-level feature vectors by averaging values across the feature tiles asso-552

ciated with each polygon. Each administrative polygon is represented by a single vector of553

4000 daytime image features. We assign each feature tile to the administrative polygon that554

contains its centroid. For small municipal and DHS polygons that do not contain any tile555

centroids, we represent the polygon by the nearest feature tile. When averaging, we weight556

by population using data from the Global Human Settlement Layer (GHS-POP) (46 ). We557

use the GHS-POP data product for the year 2020 at 30 arcsecond (0.008◦) resolution.558

3.2 Nighttime light features559

We create non-linear NL features from the Visible Infrared Imaging Radiometer Suite (VI-560

IRS) average masked data product (32 ). We use the V2.1 annual composite from the year561

2019. The data has global coverage at 15 arcsecond (0.004◦) resolution. Radiance units562

are expressed as nW/cm2/sr. We assign the small number of pixels with negative radiance563

values to have a value of zero.564

We create features that flexibly characterize the distribution of the NL data using indi-565

cator variables that represent whether the radiance value of each NL pixel falls into each of566

21 bins. The first bin represents radiance values of zero. The next 20 bins represent radiance567

values that fall into evenly spaced quantiles of the global distribution of positive NL values.568

Analogous to aggregating the daytime imagery features to the polygon level, we calculate569

the population-weighted average value for each of the 21 bins for a given polygon. These570

polygon-level NL features denote the fraction of each polygon’s population that is covered571

by NL values represented by each of the 21 bins. This approach allows NL to associate572

non-linearly with the outcome variables in our linear models.573

We compute average nighttime light features for polygons by weighting by population in574

our main analysis. Thus, changes in VIIRS grid cell sizes caused by latitude do not affect575
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these feature values (64 ), since total population in each cell is measured independently576

of pixel area. We also verify that population-weighted features, which should have higher577

performance than area-weighted features because HDI is measured on a per-person basis (not578

per-area) do indeed have higher performance. For within-country provincial performance,579

R2 = 0.52 using population-weighted features, and R2 = 0.24 using area-weighted features,580

which were constructed accounting for the change in the VIIRS grid cell size with latitude.581

Use of the “average masked” VIIRS data product should generally have background,582

biomass burning, and aurora radiance removed (33 ). To the extent there is still unmasked583

flaring in the NL data, we anticipate that the use of population-weighting when constructing584

the NL features minimizes this bias, as oil producing areas are typically sparsely populated.585

4 Analysis586

4.1 General model specification587

All models are trained at either the country or province level and use either the 4000 MO-588

SAIKS daytime imagery features, the 21 NL features, or both. We train models using a589

five-fold cross-validation procedure with basic ridge hyper-parameter tuning. Data are split590

by country during cross-validation to account for spatial autocorrelation and to ensure that591

the model is predicting provincial outcomes when no observations from within the same592

country have been observed. We apply a clipping procedure that restricts model predictions593

to the minimum and maximum value observed in the training data. Hyper-parameter tuning594

is done with this clipping procedure. We allow for a different hyper-parameter between the595

MOSAIKS and NL feature sets, though this has only a minor impact on our results.596

The general linearized model, representing Eq. 3, that we implement is597

Y = β0 + β1 XMOSAIKS + β2 XNL + ϵ (4)

Where Y is used to refer to the HDI, IWI, or NL labels interchangeably. We use this same598

model but predict each outcome separately. XMOSAIKS is the matrix of daytime MOSAIKS599

features and XNL is the matrix of nightlight features. We learn β0, β1, and β2 using ridge600

regression, following Rolf et al. (12 ). When predicting the NL outcome, we always exclude601

the XNL feature matrix. For each outcome, we report performance for models trained at the602

country, province, and within-country levels (Table S1). Model training is further detailed603

in Supplementary Information S6.1.604
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4.2 Performance metrics605

For each model specification, we report two metrics, both of which are used in the literature.606

The coefficient of determination (R2), used to evaluate related models by Chi et al. (17 )607

and others, describes the accuracy of the raw model predictions and is a direct measure608

of model skill. The square of the correlation coefficient (ρ2), used by Jean et al. (20 ) and609

others, scores performance after allowing model predictions to be linearly re-scaled before610

they are compared to observed values. We calculate both of these metrics when evaluating611

the full variation in labels and when decomposing the variation in labels into components612

that are visible within-countries or within-provinces (in contrast to between-countries and613

between-provinces).614

Full variation performance The “full variation” performance metrics describe how well615

we estimate subnational HDI globally when we use all information available to us. To616

calculate full variation performance, we calculate ρ2 and R2 on the predicted and observed617

values of subnational HDI directly. This evaluates the ability of model predictions to capture618

the total variation in the observed values – i.e. variation across countries, across provinces619

within countries, and across municipalities or DHS clusters within provinces. Because most620

of the variation in HDI and other outcomes is between countries (Figure 2A-B), a large621

portion of the model’s full variation performance comes directly from the mean-anchoring622

procedure (when it is used). Thus, the full variation performance metrics do not precisely623

evaluate the model’s ability to predict local variation in isolation, and so they are not our624

preferred evaluation metric for understanding model performance within countries. Instead,625

we focus our analysis on within-country and, when applicable, within-province performance.626

Within-country performance The “within-country” performance measures the amount627

of variation in the provincial deviations from the country mean that can be explained by the628

model. This metric evaluates the ability of the model to explain local variation in the outcome629

by removing large-scale variation in the outcome across countries in the demeaning step630

before predictions and observations are compared. To calculate within-country performance,631

we calculate ρ2 and R2 after demeaning predictions and observed values at the country level632

(i.e., after subtracting the predicted and observed country average value from each predicted633

and observed data point, respectively).634

Within-province performance The “within-province” performance metric evaluates the635

ability of the model to explain hyper-local variation in the outcome, such as which DHS636

clusters within each province have higher or lower IWI. It does this by removing all between-637
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province variation in the predicted and observed values before they are compared. To calcu-638

late within-province performance, we calculate ρ2 and R2 after demeaning predictions and639

observed values at the province level.640

4.3 Model evaluation641

Evaluation of HDI at the same provincial resolution as model training When642

reporting model performance at the same resolution as training (Figure 2 top row, Table643

S1 upper section, and Table S3), we evaluate predictions from the validation folds of a five-644

fold spatial cross-validation procedure in which models are trained and evaluated on data645

from non-overlapping sets of countries. This enables more observations to be used when646

evaluating model performance. We also evaluate models on a held-out test set of countries647

that were not included when tuning the HDI model. Before analysis, we set aside ≈ 20%648

of the provincial HDI data to be used as a final evaluation test set by randomly sampling649

35 countries and their respective provinces. Evaluation on this test set was conducted after650

all hyper-parameter tuning and analysis decisions were made. We find that performance is651

not meaningfully different in the validation and tests sets, which indicates that the models652

evaluated on the validation folds did not over-fit to the data (Table S2).653

Evaluation of HDI, IWI and NL at finer resolution than model training In the654

downscaling experiments, we evaluate performance using fine-resolution municipal or DHS655

cluster observations that were not used for model training or tuning. After tuning the model656

using cross-validation we retrain the model using the optimal hyper-parameters on all the657

province or country observations before predicting at downscaled resolution.658

4.4 Mean-anchoring659

In our primary within-country model, we anchor our estimates to country or province-level660

means depending on the experiment. Estimates from models trained on provincial or national661

observations in “levels” (Table S1) are never mean-anchored.662

Anchoring to country means The procedure for anchoring to the country mean is663

illustrated in the top row of Figure 2, where we evaluate performance at the same resolution664

as model training. Our within-country model is trained to predict within-country anomalies,665

so in order to predict HDI in “levels” (Figure 2A), we add back the known country average666

HDI (Equation S2). This procedure enables us to calculate full variation performance (Figure667

2A) but has no impact on the reported within-country performance (Figure 2B).668
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Anchoring to provincial means In the downscaling application, our goal is to produce669

the best possible estimates at fine resolution. Thus, when producing downscaled estimates670

of IWI and HDI, we anchor our predictions to the observed provincial value of the outcome671

(Equation S8). This re-centering procedure impacts the full variation performance and the672

within-country performance but does not impact the within-province performance (Table673

S1). Note that we anchor municipal NL estimates to country means, rather than provincial674

means, because we find that this improves the estimates (Supplementary Information S6.3).675

Mean anchoring and model evaluation are further detailed in Supplementary Information676

S6.1.677

4.5 Producing downscaled estimates of HDI678

To produce fine-resolution estimates of HDI, we take the local estimates of HDI that we679

predict using satellite imagery and mean-anchor them to province-year values from 2012-680

2021. This approach uses existing provincial values to explain provincial HDI over space and681

time, and then supplements that with information on local (i.e. within-province) variation682

in HDI predicted by the satellite imagery. This approach assume that the spatial pattern683

of HDI within provinces does not change over time; relaxing this assumption gives similar684

results (Supplementary Information S3). While in principle we could apply this approach685

to make estimates in years earlier than 2012, going farther back in time may make the686

assumption of a constant pattern of within-province HDI less strong. The year 2012 is the687

earliest for which we evaluated sub-provincial variation using IWI data.688

Municipality-level HDI We use the within-country model specified in Equation S1a689

to estimate HDI at the municipality level, using a municipality (ADM2) shapefile from690

geoBoundaries (65 ). We anchor municipality estimates by centering predicted deviations on691

the observed province-level HDI value for each year, following the procedure for downscaled692

IWI predictions (Equation S8). We do not release HDI estimates for municipalities that693

cannot be linked to a parent province with a province-level HDI estimate from Smits and694

Permanyer (7 ) because there is not a known provincial value to anchor on.695

Grid-level HDI To produce 0.1◦ × 0.1◦ estimates of HDI, we similarly use the within-696

country model specified in Equation S1a. We make predictions using MOSAIKS features697

at 0.1◦ × 0.1◦ resolution. This results in gridded estimates of HDI at approximately 10km2
698

resolution. We mask out locations where humans are not believed to be settled based on699

GHS-POP (46 ) (keeping areas with population > 0) and then mean-anchor our tile estimates700
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such that the population-weighted average of the grid tiles within each province matches701

known provincial HDI values.702

4.6 Targeting applications703

In Figure 5 we evaluate how access to more granular HDI data improves the number of704

program recipients correctly targeted. We assume the goal is to provide a uniform transfer705

to those at or below the tenth percentile of the HDI distribution. Following Smythe and706

Blumenstock (2022) (8 ), the program is geographically targeted and all individuals within707

targeted regions receive the same transfer, a practice used to reduce administrative costs708

(47, 66 ). If the administrator has access to only provincial HDI measures, then eligibil-709

ity is determined at the province-level. Alternatively, using our municipal estimates, the710

administrator is able to target the program at the municipality level.711

We evaluate performance using the census-derived municipality-level HDI measurements712

(9 ) — which are not used to train our model. These are the same census-derived measures713

used to evaluate performance in Figure 2C-D and discussed above (Methods 2.3). Because714

these estimates are municipality-level aggregates, we simulate HDI for individuals — i.e.715

the targets of the policy — by imposing additional assumptions about the distribution of716

HDI across individuals within a municipality. We assume HDI within each municipality has717

a truncated normal distribution (bounded between 0 and 1) that is centered around the718

census-derived municipality mean (Figure S6).719

The degree to which municipal HDI measures improve targeting performance relative to720

provincial measures depends somewhat on the assumed dispersion of individual HDI values721

within municipalities (Methods 4.6). Assuming lower (higher) dispersion leads to larger722

(smaller) absolute — though similar proportional — gains (Figure 5E and Figure S6).723

When evaluating performance using a receiver operating characteristic curve (ROC)724

curve, (Figure 5F) the aim is still to provide assistance to the 10% of individuals with the725

lowest HDI, but the fraction of the total population targeted is modified to examine how the726

true positive (individuals with low HDI correctly given aid) and false positive (individuals727

with HDI above the desired cutoff incorrectly given aid) rates change accordingly. Moving728

from left to right on the x-axis in Figure 5F implies a greater number of people receiving729

assistance. The area under the curve (AUC) shows the efficiency of the targeting. The AUC730

increases by 0.1 (+13% from 0.76 to 0.86) when municipal data are used instead of provincial731

data, indicating improved targeting performance when the budget constraint is varied.732

As an additional robustness check, we repeat this policy targeting experiment using733

Indonesia municipality data (63 ) and observe a similar increase in AUC under the same734
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assumptions (11% from 0.62 to 0.69). This is shown in Figure S11.735
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Code availability Replication code is available at736

github.com/Global-Policy-Lab/hdi_downscaling_mosaiks.737
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Predicted at province level (n=1,381)
Full variation performance Within-country performance
ρ2 R2 ρ2 R2

(1) (2) (3) (4)
HDI trained at:

Within-country (n=1,363) 0.96 0.96 0.52 0.52
Province level (n=1,381) 0.83 0.83 0.44 0.24
Country level (n=145) 0.74 0.74 0.28 < 0

Predicted at municipality level in Indonesia (n=505)
Within-country performance Within-province performance
ρ2 R2 ρ2 R2

(3) (4) (5) (6)
HDI trained at:

Within-country (n=1,363) 0.62 0.61 0.53 0.53
Province level (n=1,381) 0.5 0.37 0.51 0.37
Country level (n=145) 0.35 < 0 0.36 < 0

Predicted at municipality level in Brazil (n=5,584)
Within-country performance Within-province performance
ρ2 R2 ρ2 R2

(3) (4) (5) (6)
HDI trained at:

Within-country (n=1,363) 0.48 0.48 0.33 0.20
Province level (n=1,381) 0.46 0.36 0.31 < 0
Country level (n=145) 0.29 < 0 0.18 < 0

Predicted at municipality level in Mexico (n=2,457)
Within-country performance Within-province performance
ρ2 R2 ρ2 R2

(3) (4) (5) (6)
HDI trained at:

Within-country (n=1,363) 0.5 0.45 0.31 0.29
Province level (n=1,381) 0.31 0.31 0.26 0.23
Country level (n=145) 0.16 < 0 0.12 < 0

Predicted at DHS cluster level (n=51,996)
Full variation performance Within-country performance Within-province performance
ρ2 R2 ρ2 R2 ρ2 R2

(1) (2) (3) (4) (5) (6)
IWI trained at :

Within-country (n=862) 0.71 0.67 0.56 0.56 0.36 0.36
Province level (n=862) 0.44 0.28 0.21 0.08 0.24 0.1
Country level (n=85) 0.31 < 0 0.13 < 0 0.13 < 0

Predicted at municipality level (n=62,536)
Full variation performance Within-country performance Within-province performance
ρ2 R2 ρ2 R2 ρ2 R2

NL trained only on (1) (2) (3) (4) (5) (6)
MOSAIKS at:

Within-country (n=2,852) 0.73 0.7 0.64 0.63 0.61 0.57
Province level (n=2,852) 0.65 0.61 0.57 0.45 0.53 0.35
Country level (n=170) 0.44 0.3 0.36 0.08 0.31 < 0

Table S1: Performance for models trained to predict HDI, IWI, and population-weighted
nightlight luminosity (NL). Models for HDI and IWI use a combination of MOSAIKS and
population-weighted NL features. We show performance evaluated at the province level for
HDI and evaluate downscaled performance for HDI, IWI, and NL. Performance scatters from
the within-country models are shown in Figure 2. All predictions are made for the year 2019.



Predicted at province level (n=378)
Full variation performance Within-country performance
ρ2 R2 ρ2 R2

(1) (2) (3) (4)
HDI trained at: Features

Within-country MOSAIKS+NL 0.97 0.97 0.43 0.42
Province level MOSAIKS+NL 0.87 0.87 0.4 0.09
Country level MOSAIKS+NL 0.79 0.79 0.29 < 0

Table S2: This is similar to the upper portion of Table S1 except that here we have evaluated
on a 35 country (≈ 20%) test set that was not used during model tuning. The modest
reported differences in the validation-set and test-set performances when evaluating within-
country performance could be due to either noise from the small sample size of the test set,
or to overfitting. We test this and find that noise from the small test set is likely to be
the explanation. The average within-country test-set performance across 30 random 80%
validation-set and 20% test-set splits, using the same training and evaluation procedure, is
very close to that of the original validation set: R2 = 0.51 for MOSAIKS + NL.



Predicted at province level (n=1,381)
Full variation performance Within-country performance
ρ2 R2 ρ2 R2

(1) (2) (3) (4)
HDI trained at: Features

Within-country (n=1,363) MOSAIKS+NL 0.96 0.96 0.52 0.52
MOSAIKS 0.95 0.95 0.42 0.42
NL 0.95 0.95 0.45 0.45

Province level (n=1,381) MOSAIKS+NL 0.83 0.83 0.44 0.24
MOSAIKS 0.76 0.75 0.0.31 < 0
NL 0.60 0.60 0.44 < 0

Country level (n=145) MOSAIKS+NL 0.74 0.74 0.28 < 0
MOSAIKS 0.62 0.58 0.16 < 0
NL 0.59 0.53 0.44 < 0

Predicted at province level (n=1,381)
Full variation performance Within-country performance
ρ2 R2 ρ2 R2

(1) (2) (3) (4)
Life expectancy trained at: Features

Within-country (n=1,363) MOSAIKS+NL 0.92 0.92 0.05 0.05
MOSAIKS 0.92 0.92 0.01 0.01
NL 0.92 0.92 0.05 0.05

Province level (n=1,381) MOSAIKS+NL 0.69 0.69 0.03 < 0
MOSAIKS 0.66 0.66 0.02 < 0
NL 0.43 0.43 0.06 < 0

Country level (n=145) MOSAIKS+NL 0.6 0.57 0.02 < 0
MOSAIKS 0.57 0.53 0.02 < 0
NL 0.42 0.32 0.06 < 0

Predicted at province level (n=1,381)
Full variation performance Within-country performance
ρ2 R2 ρ2 R2

(1) (2) (3) (4)
Mean years schooling trained at: Features

Within-country (n=1,363) MOSAIKS+NL 0.93 0.93 0.51 0.51
MOSAIKS 0.91 0.91 0.41 0.41
NL 0.92 0.92 0.45 0.45

Province level (n=1,381) MOSAIKS+NL 0.75 0.75 0.49 0.43
MOSAIKS 0.7 0.7 0.41 0.31
NL 0.56 0.56 0.44 0.26

Country level (n=145) MOSAIKS+NL 0.73 0.72 0.46 0.3
MOSAIKS 0.6 0.6 0.24 < 0
NL 0.56 0.53 0.42 < 0

Predicted at province level (n=1,381)
Full variation performance Within-country performance
ρ2 R2 ρ2 R2

(1) (2) (3) (4)
Expected years schooling trained at: Features

Within-country (n=1,363) MOSAIKS+NL 0.9 0.9 0.28 0.27
MOSAIKS 0.89 0.89 0.27 0.26
NL 0.88 0.88 0.15 0.15

Province level (n=1,381) MOSAIKS+NL 0.56 0.56 0.21 0.09
MOSAIKS 0.5 0.5 0.2 0.06
NL 0.39 0.39 0.15 < 0

Country level (n=145) MOSAIKS+NL 0.54 0.53 0.2 < 0
MOSAIKS 0.44 0.41 0.07 < 0
NL 0.38 0.35 0.14 < 0

Predicted at province level (n=1,381)
Full variation performance Within-country performance
ρ2 R2 ρ2 R2

(1) (2) (3) (4)
GNIpc trained at: Features

Within-country (n=1,363) MOSAIKS+NL 0.97 0.97 0.56 0.56
MOSAIKS 0.95 0.95 0.4 0.4
NL 0.96 0.96 0.55 0.55

Province level (n=1,381) MOSAIKS+NL 0.79 0.79 0.36 < 0
MOSAIKS 0.68 0.68 0.25 < 0
NL 0.59 0.59 0.52 < 0

Country level (n=145) MOSAIKS+NL 0.56 < 0 0.23 < 0
MOSAIKS 0.46 < 0 0.1 < 0
NL 0.31 < 0 0.12 < 0

Table S3: Similar to the top section of Table S1 except that here we show performance for
each HDI component and also show performance with different combinations of features.



HDI Life expectancy Mean years schooling Expected years schooling

Life expectancy 0.79
Mean years schooling 0.84 0.52
Expected years schooling 0.82 0.57 0.61
GNIpc 0.62 0.46 0.5 0.44

Within-country HDI Life expectancy Mean years schooling Expected years schooling

Life expectancy 0.31
Mean years schooling 0.82 0.12
Expected years schooling 0.65 0.1 0.46
GNIpc 0.17 0.03 0.1 0.07

Table S4: Individual components of HDI tend to be correlated. We report the squared
Pearson’s correlation coefficient (ρ2) between HDI and its components at the province level.
We also report the squared correlation coefficients after demeaning provincial observations
by country. This ρ2 metric used here is intended to be comparable to the metrics reported
in Tables S1 and S3. Notably, within-country correlation between HDI and GNIpc is low,
yet we are still able to predict those separate outcomes with considerable skill.

Predicted at province level
Full variation performance Within-country performance
ρ2 R2 ρ2 R2

(1) (2) (3) (4)
HDI trained at: Features

Within-country (n=1,363) NDVI+NDWI+NDBI 0.92 0.92 0.03 0.02
NDVI+NDWI+NDBI+MOSAIKS+NL 0.96 0.96 0.52 0.52
MOSAIKS+NL (for reference) 0.96 0.96 0.52 0.52

Table S5: Performance for models trained with additional features at the provincial level.
Specifically, we use Sentinel 2A imagery downloaded at approximately 500m resolution (67 ).
Following, (22 ) we process Sentinel 2A imagery to calculate the Normalized Difference Veg-
etation Index (NDVI), Normalized Difference Water Index (NDWI), and Normalized Dif-
ference Built-up Index (NDBI). We then create population-weighted features in the same
manner as done with the NL features (see Methods 3.2).
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Figure S1: An illustration of generating MOSAIKS features for two cartoon im-
ages, and using the features to predict HDI and other example outcomes. (A)
MOSAIKS random convolutional features capture the information within satellite imagery
by measuring how similar each image is to a fixed set of small patches of imagery. Similarity
is measured mathematically using a moving-window dot product, or “convolution.” The
parts of each image that are similar to each patch are shown, with greater similarity leading
to larger feature values. The green patch, for example, is similar to the parts of the imagery
containing green trees. Image 1 has a greater feature value for this patch because it has
more trees than image 2. Collectively, MOSAIKS features capture information on the color
and texture of the imagery, which represent the content of the imagery (e.g., trees, roads,
and lakes). (B) Features associate differently with different outcomes: images that are more
similar to the green patch tend to have higher forest cover, and images that are more sim-
ilar to the grey patch tend to have more roads. Regressing HDI onto these features learns
how higher or lower feature values associate with higher or lower HDI, and in turn, how to
predict HDI using these features. Each dot in each scatter represents an image, and the
arrow represents the direction in the feature space of increasing forest, roads, or HDI. The
direction of the arrow is learned by the regression. For more details on MOSAIKS features
and how they can be used to predict a broad range of outcomes see ref. (12 ).



Figure S2: A MOSAIKS model trained at the province level can effectively pre-
dict NL at the municipality level. These maps show population-weighted NL luminos-
ity that has been predicted using MOSAIKS. (A) Population-weighted NL averaged up to
the provincial polygon for 2019. These are the data used to train the model. (B) True
population-weighted NL at the municipality level. (C) Predicted population-weighted NL
at the municipality level. (D) Municipalities ranked by luminosity within Texas, a sin-
gle province in the United States. (E) Predicted nightlight luminosity rank within Texas.
(F) Municipalities ranked by luminosity within Oromia, a single province in Ethiopia. (G)
Predicted nightlight luminosity rank within Oromia. Panels D-G illustrate the downscaling
efficacy of MOSAIKS. Each of these polygons (Texas and Oromia) represent a single training
observation. All predictions come from a within-country model with predictions anchored
to the country mean. Note that panels A-C use the same colorbar. See Table S1 for detailed
performance metrics.
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Figure S5: Regional maps of HDI estimates at the municipal and grid levels. (A-
B) HDI estimates on Hispaniola (C-D) HDI estimates around the Bay of Bengal (E-F) HDI
estimates around the Gulf of Guinea. All panels show country, province, and municipality
borders as solid lines. Dashed lines show major roadways. Grey in the grid-level estimates
indicates land area believed to be unsettled (46 ).
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Figure S6: The improvement in geographic targeting efficacy from using mu-
nicipal values (ADM2) depends on the assumed variability of individual-level
HDI within municipalities. ROC curves as in Figure 5F for different assumed standard
deviations (SD) of individual-level HDI within municipalities. Using municipal instead of
provincial HDI estimates increases the AUC by 0.11 (+14% from 0.81 to 0.92) when the
within-municipality HDI standard deviation is assumed to be 0.05 and by 0.06 (+9% from
0.65 to 0.71) when it is assumed to be 0.2. Histograms show the distribution of simulated
individual-level HDI for each assumed SD, using a truncated normal distribution centered
on the municipal values for Mexico calculated by Permanyer (9 ).



Figure S7: Heterogeneity of HDI and IWI predictions. On the left we show het-
erogeneity in HDI performance evaluated at the province level. On the right, we show
heterogeneity in IWI performance evaluated at the DHS cluster level. (A) HDI performance
as a function of parent country HDI. (B) IWI performance as a function of parent country
HDI. (C) Mapped performance of HDI within-countries (within-country MOSAIKS + NL
model). (D) Mapped performance of IWI within-provinces (within-country MOSAIKS +
NL model). (E) Standard deviation of provincial HDI by country (F) Standard deviation of
DHS cluster-level IWI within-provinces by country.



Figure S8: Prediction of provincial HDI from 2012 to 2021 using satellite imagery.
(A-B) This figure is a replication of Figure 2A-B evaluated using a panel of provincial
HDI from 2012-2021 and time static VIIRS features from 2019. Full variation performance
is shown on the left and within-country performance is shown on the right. Each point
represents a provincial-year observation and points are colored by year. Predicted provincial
values are mean-anchored to the known country-year value. (C-D) This is a a similar
replication of Figure 2A-B trained and evaluated using annually varying VIIRS features.
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Figure S9: Municipality-level HDI estimates can be partially predicted by other
variables estimated at global scale. Each point in each scatter represents the estimated
HDI value and the value of another globally available variable for a municipality. See Sup-
plementary Information S4 for details.
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Figure S10: Model weights for the IWI model are similar when trained at the
provinicial or DHS cluster level. (A)We show that estimates of IWI are nearly identical
from the model with reduced dimensionality and the primary IWI model specification. (B)
Each point represents the contribution to the model of a single feature. The points are colored
by their rank order importance after principle component analysis. R2 and ρ2 are weighted
by the explained variance under PCA. See Supplementary Information S5 for additional
details.



Figure S11: Additional illustrative application: targeting policy in Indonesia. Iden-
tical analysis as in Figure 5 using data from Indonesia. (A) HDI for 2019 at the province
level of observation (7 ) (B) HDI estimates for 2019 at the municipality level produced in
this paper. (C) Lowest HDI provinces that would be targeted until 10% of the country’s
population is reached. (D) Lowest HDI municipalities that would be targeted until 10% of
the country’s population is reached. Hashing in (C) and (D) shows the marginal province
and municipality that would be partially targeted. (E) Targeting accuracy (true positive
rate) as a function of the assumed standard deviation of HDI within each municipality. (F)
ROC curves illustrate the degree of improvement that comes with targeting at the munici-
pality level relative to the province level (assumed SD of 0.1 within each municipality).



S1 Supplementary discussion of the co-production of971

the analysis and estimates of HDI972

This analysis and the associated estimates of the UN HDI were co-produced by a team of973

academics and practitioners aiming to develop measures of HDI that reflect the understand-974

ing and needs of both practitioners and policymakers (68, 69 ). The effort was initiated by975

researchers and practitioners from the United Nations Development Programme (UNDP),976

coordinated by Dr. Heriberto Tapia, head of research for the Human Development Report977

Office and a co-author of this study. The Human Development Report Office is responsible978

for producing and publishing official HDI statistics for the United Nations. Members of the979

UNDP approached academic members of the team in 2021, with the goal of increasing the980

resolution of the HDI globally based on the growing demand for consistent disaggregated data981

following an impartial global standard. The combined team (practitioners and academics)982

jointly refined a project design and secured grants from third-parties and funding from the983

UNDP. Project implementation, writing, and dissemination was a joint and iterative process984

involving all team members.985

Throughout the project, the team worked deliberately to ensure mutual knowledge trans-986

fer, with the academics learning what applications and aspects of modeling are most impor-987

tant to practitioners, and the practitioners learning the technical aspects of the model’s988

development. The practitioners and academics collectively identified model performance as989

a primary priority, with model generalizability, simplicity, transparency and interpretability990

as additional design goals. Motivated by the results of this project, the UNDP is engaging991

in follow-on work that predicts the United Nations Multidimensional Poverty Index using992

the methods developed here. Academic members of our team are supporting and advising993

this follow-on work in an effort designed to solidify the transfer of this technology to UNDP994

and to build UNDP’s technical capacity internally.995

The UNDP team is particularly interested in satellite-based measurements of HDI for996

three reasons. First, satellite-based measurements adhere to relatively impartial technologically-997

led standards that facilitate international comparisons, a key attribute of UN indicators.998

Second, the integration of satellite imagery with machine learning creates new opportunities999

for using the HDI in policymaking. In the short term, this new data can facilitate planning1000

and resource allocation within countries. In the medium term, these estimates should be-1001

come a key input for analyzing the interaction between socioeconomic and geophysical data1002

in studying the effects of climate change on people. This will be crucial for designing a new1003

generation of policy responses through a global lens. Third, the availability of a database1004

and a replicable method for generating these estimates is expected to address equity issues.1005
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In a rapidly changing world, there is an increasing need for information for decision-making.1006

Wealthier countries have high-quality surveys and the resources to power a data revolution.1007

In contrast, poorer countries and communities, where data is most needed, face significant1008

constraints in both surveys and analytical capacity. The availability of both a database and1009

a standard, replicable method for generating these estimates is expected to be a valuable1010

global public good.1011

S2 Supplementary discussion of model performance1012

Model performance across regions Analyzing the performance of MOSAIKS models1013

across space, we find that performance tends to be the highest in low income regions, espe-1014

cially sub-Saharan Africa, where such measurements are likely to be of greatest value (Figure1015

S7A,C). Specifically, we find that MOSAIKS models explain more variation of province-level1016

HDI deviations from the country mean in areas of low human development (HDI < 0.6,1017

R2 = 0.57) than in areas of medium or high human development (HDI > 0.6, R2 = 0.43,1018

Figure S7A). We also see this pattern in predictions of DHS cluster-level IWI deviations1019

from the province mean, with performance increasing monotonically from R2 = 0.09 for1020

countries with the highest HDI values to R2 = 0.52 for countries with the lowest HDI values1021

(Figure S7B,D). This improved performance may be due to increased variance of HDI and1022

IWI values within these countries (Figure S7E-F), which provides more variation to exploit1023

during model training. Alternatively, variations in wellbeing being may be relatively easier1024

to see from satellite imagery in areas with lower human development. Relatedly, model per-1025

formance for both HDI and IWI is higher in regions with higher inequality, highlighting the1026

particular value of these estimates in regions of high inequality (p < 0.01 for both HDI and1027

IWI; pearson’s ρ is 0.33 for HDI and 0.53 for IWI comparing the within-country standard1028

deviation of provincial values and the within-country predictive performance, measured by1029

ρ2).1030

Motivated by these differences in performance across regions, we test whether the re-1031

lationship between image features and HDI varies spatially. We do so by training an ad-1032

ditional model that allows the MOSAIKS features to have a continent-specific relationship1033

with provincial HDI. We observe a small drop in within-country performance relative to the1034

baseline model (from R2 = 0.52 to 0.49), indicating that increasing the complexity of the1035

model in this way does not improve out-of-sample performance.1036

Value from combining daytime and nighttime imagery The MOSAIKS-based ap-1037

proach can use image features from multiple sensors simultaneously when training models,1038
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a property that is used throughout this analysis to predict HDI from both daytime and1039

nighttime imagery. Analyzing the performance of MOSAIKS models based on the type of1040

satellite imagery used, we find that daytime and nighttime imagery together explain 7%1041

more variation in provincial HDI deviations from the country mean than does nighttime im-1042

agery alone, improving model fit by 16% from R2 = 0.45 to 0.52 (Table S3). This improved1043

performance from using daytime and nighttime imagery together is strongest in regions of1044

low human development (HDI < 0.6) (Figure S7A), consistent with a previous finding that1045

models using daytime imagery outperform models using nighttime imagery when predicting1046

assets of the poorest populations in five African countries (20 ). Analyzing model perfor-1047

mance for each component of HDI, we see that the improved performance predicting HDI1048

using daytime and nighttime imagery stems from improved or comparable performance pre-1049

dicting each component of HDI (largest change in R2 is 0.12 for expected years of schooling,1050

smallest is no change in R2 for life expectancy, Table S3).1051

In exploratory analysis of subsamples, we have observed that in several middle income1052

countries with HDI between 0.7 and 0.8 (including those where we have municipal variation1053

in HDI), within-country R-squared is sometimes higher when models are trained on nighttime1054

imagery alone, relative to models that combine MOSAIKS and nighttime imagery. However,1055

for other parts of the HDI distribution and on average, as described above, MOSAIKS1056

features appear to add performance to the full model. We currently cannot explain why1057

a nightlights-only model performs best for these particular countries when predicting HDI,1058

and we do not know if this phenomena extends to non-HDI outcomes. In future work, we1059

hope to present a more complete analysis that more fully evaluates how data from many1060

satellite sensors, including others not used in this analysis, can be effectively and efficiently1061

combined in SIML applications.1062

Model performance training at the country-level To evaluate performance in an1063

extremely data-limited setting, we re-train our model using only country-level data. Despite1064

a low number of training observations (N = 85 to 170 across experiments) these models1065

maintain 36% to 54% of the performance of our preferred models trained using provincial1066

deviations from the country mean (N = 862 to 2,852) when evaluated on the relative ordering1067

of predicted and observed values using ρ2 in all experiments (Table S1). This indicates1068

that our approach can achieve competitive predictive performance detecting locations with1069

relatively higher and lower HDI even when trained on few and coarse observations of the1070

variable of interest. Performance predicting the exact level of HDI is lower, especially when1071

evaluated within-country, likely due to the large difference in the magnitude of HDI variation1072

across countries versus within countries, discussed above (Figure 2A,B).1073
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S3 Supplementary analysis of temporal changes in the1074

local distribution of HDI1075

We focus this manuscript on estimating fine-resolution spatial variation in HDI because ex-1076

isting provincial measures do not resolve within-province differences in human wellbeing,1077

and because spatial variation in HDI is generally larger than temporal variation. We con-1078

struct fine-resolution global estimates of HDI from 2012-2021 by combining time-varying1079

estimates of provincial HDI from (7 ) with time-constant estimates of the local (i.e. within-1080

province) distribution of HDI based on satellite imagery. Here, we conduct an additional1081

experiment where we test whether allowing HDI to vary over time locally might improve1082

model performance. Specifically, we compare our primary estimates (Figures 2 A-B and S81083

A-B), which are made assuming a time-constant distribution of provincial HDI with another1084

set of estimates that are made allowing for a time-varying distribution of provincial HDI1085

(Figure S8 C-D). We find that these two approaches have near identical performance pre-1086

dicting historical HDI from 2012-2021. This motivates our use of the simpler model that1087

assumes an approximately time-constant distribution of HDI as our primary specification1088

when constructing municipal and grid-level estimates. Details of this analysis are described1089

below.1090

To allow estimates of the local variation in HDI to change over time, we estimate a1091

model similar to our primary specification (Equation S1a) but extended to train on and1092

predict a global panel of HDI at the provincial level from 2012-2021. This model specifies1093

HDI in each province and year as a linear function of VIIRS NL features for the relevant1094

year and the MOSAIKS features from 2019. This allows the time-varying NL features in1095

the model to predict changes over time in the distribution of provincial HDI. We do not1096

allow the MOSAIKS features for the high-resolution visual imagery to change over time1097

due to image data availability and computational limitations. In the models that allow for1098

both time-constant and time-varying local HDI, we mean-anchor provincial estimates at the1099

known national mean value for each year. Model evaluation using spatial cross-validation is1100

conducted in the same way as in Figure 2, except that instead of evaluating on observations1101

from a global cross-section of 2019 provincial data we evaluate on a global panel of provincial1102

observations from 2012-2021.1103

We find that our primary model performance predicting a global cross-section of 20191104

data (Figure 2 A-B) is similar to the performance of the same model predicting a global1105

panel of HDI from 2012-2021 (Figure S8 C-D), as well as the performance of a similar model1106

that allows for time-varying changes in local HDI predicting a global panel of HDI from 2012-1107

2021 (Figure S8 A-B). Both the model assuming time-constant HDI estimates and the model1108
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allowing for time-varying HDI estimates achieve an R2 = 0.96 explaining provincial variation1109

in the entire sample from 2012 – 2021. The former achieves an R2 = 0.53 explaining within-1110

country variation in the same sample, and the latter achieves an R2 = 0.54 – an improvement1111

of 2% from allowing the NL features to change over time. The model performance evaluated1112

for each year is also similar for both approaches – with R2s ranging between 0.96–0.97 for1113

explaining variation across all provinces, and R2s between 0.52–55 for explaining provincial1114

variation within countries.1115

The similarity in performance between the model that uses time-constant and time-1116

varying local HDI estimation suggests that the local-scale variation we predict with satellite1117

imagery (here, within-country variation) is nearly constant over time for the period of ob-1118

servation (2012-2021). This time-consistency is further evidenced by the relatively stable1119

performance predicting within-country variation each year, using models both with time-1120

varying and time-constant NL features. Indeed, after removing country-specific national1121

time trends, the spatial variation in HDI within each country across provinces is 60× larger1122

than the respective temporal variation. The relatively large amount of variation in HDI1123

across space and the relative time-consistency of the local pattern of HDI both motivate the1124

focus of this analysis on increasing the spatial resolution of HDI globally.1125

1126

S4 Supplementary discussion of model transparency1127

and interpretability1128

The models employed in this analysis were designed to maximize predictive performance,1129

based on co-development with our team members at the United Nations Development Pro-1130

gramme (Supplementary Information S1) and feedback from other practitioners, who gen-1131

erally identified model performance as the most important property of the model. Other1132

important aspects of model development are model transparency and interpretability (57 )1133

(Figures S1 and S9).1134

Model transparency Model transparency is the ability to clearly convey the model, its1135

design, and its estimation (57 ). Transparency is a strength of the MOSAIKS approach used1136

and developed here. The features are can be precisely described mathematically (12 ) and1137

conveyed simply: each feature measures the similarity between a small patch of imagery1138

and the image of interest, where similarity is measured using a moving dot product (i.e.,1139

convolution) of the patch over the imagery. This is illustrated in the cartoon developed in1140
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Figure S1, which shows how three example patches capture the amount of trees, roads, and1141

lakes in imagery. One explanation of how the MOSAIKS approach works is that the model1142

predicts HDI in new areas where HDI is not known by assigning the (weighted) average1143

value of HDI from places where HDI is known that look similar in the imagery (see Supple-1144

mentary Note 2.3 in (12 ) for details). The linear model structure is also straightforward,1145

especially compared with more complicated structures like a deep convolutional neural net-1146

work or gradient boosted decision tree. We relate the image features to HDI using a linear1147

ridge regression, which, unlike many more complex models, has an analytical solution. The1148

simplicity and transparency of the MOSAIKS approach makes it straightforward to fully1149

describe, understand and use (12 ). The work in this manuscript extends the ability of the1150

MOSAIKS approach to learn the relationship between imagery and an outcome of interest1151

using labels from any set of political boundaries, while maintaining a transparent design.1152

Model interpretability Model interpretability is the ability to understand what aspects1153

of the input data are responsible for model predictions (57 ). To better interpret what aspects1154

of the imagery are captured by our HDI estimates, we examine whether our municipality1155

HDI estimates are correlated with known variables that can be constructed at the municipal-1156

ity level (Figure S9). Specifically, we construct municipality-level estimates for population1157

density, road density, building density, terrain ruggedness, forest cover, crop cover, maximum1158

temperature, and precipitation. Data for each of these variables is publicly available. We1159

create a measure of each variable at the municipal level using the source data product and1160

our municipality (ADM2) shapefile from geoBoundaries (65 ).1161

Population density Municipal population density data were constructed as the popula-1162

tion count from GHS-POP divided by the area of the municipality (62 ).1163

Building density Building density data at the municipality level were constructed using1164

the gridded building data product from Microsoft Bing Maps (≈ 0.2 × 0.2 degree resolution)1165

(70 ). This data is relatively coarse compared to the municipality size, so we assume a uni-1166

form distribution of buildings within the source raster when averaging building density over1167

municipal polygons. We take this approach for all raster datasets used in this interpretability1168

analysis.1169

Road density Municipal road density estimates were constructed by calculating the length1170

of road in each municipal polygon and dividing by the polygon area. Road data are from1171

Open Street Maps (71 ). To facilitate computation we calculate road density over a 1%1172
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sample of global land area before averaging to the municipal level (≈1 km2 sampled every1173

≈10km in the North-South and East-West directions). Municipality observations that do1174

not contain a sampled road density observation are dropped from this analysis.1175

Terrain ruggedness Municipal ruggedness data were constructed using the global raster1176

created by Shaver et al. (72 ) at 1km × 1km resolution. In this dataset “the ruggedness1177

of any given 1 km2 area is determined by measuring how the average elevation of that area1178

differs from all those of neighboring 1 km2 areas” (72 ). Municipal values are calculated as1179

the average of ruggedness values within each municipality.1180

Forest cover Forest cover data come from the Hansen et al. data product (73 ), which is1181

available at 30m × 30m resolution. Municipal estimates are calculated as the average forest1182

cover over the municipal polygon.1183

Crop cover Crop cover data come from the Ramankutty et al. data product available at1184

0.08 × 0.08 degree resolution (74, 75 ). For each municipality we calculate the fraction of1185

the polygon area covered by cropland.1186

Maximum temperature We construct a measure of typical maximum annual tempera-1187

ture from the Climate Prediction Center gridded data product at 0.5 × 0.5 degree resolution1188

(76 ). Specifically, we retrieve roughly a decade of daily data (2007-2018) and calculate the1189

maximum temperature observed in each grid cell each year. We then take the average across1190

years and over each municipal polygon.1191

Precipitation Precipitation data are from the NASA IMERG annual average precipita-1192

tion data product at 0.1 × 0.1 degree resolution (77 ). We calculate municipal values as the1193

average of gridded values over each municipal polygon.1194

1195

To estimate the fraction of variance explained by each of these variables individually we1196

execute a simple linear regression of our municipal HDI estimates on each variable. Within-1197

country estimates are calculated after demeaning the HDI estimates and each variable by1198

country. To estimate the fraction of variance explained by all of these variables together we1199

execute a multiple linear regression of our municipal HDI estimates on all variables together.1200

Before estimating this latter regression we used mean-imputation to fill in any missing values.1201
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S5 Supplementary discussion assessing consistency of1202

model weights across spatial scales1203

A key feature of our approach is that it can be trained on and make predictions for units1204

of arbitrary shape and size. We employ this approach to train on global provincial HDI1205

data and make predictions of HDI for global municipalities and a 0.1
◦ × 0.1

◦
grid. For this1206

approach to be effective, model weights estimated at the provincial level, must be able to1207

make skillful predictions at the municipal and grid levels.1208

One way to understand how this approach works is to see that, in a linear model, the1209

relationship between aggregated outcomes and aggregated features should be similar to the1210

relationship between disaggregated outcomes and features. This is illustrated in Equations1211

2-3 of the main text. Rolf et al (12 ) provide additional mathematical explanation for relating1212

predictions made using MOSAIKS features at image and sub-image scales. A primary goal1213

of this manuscript is to propose that this approach can be used to address the challenge of1214

limited training data in remote sensing applications by allowing for training on irregularly1215

structured and sized observations – which is not discussed in ref. (12 ) – and to empirically test1216

whether this works in practice. The primary evidence supporting this are the downscaling1217

tests reported in Figure 2 and Table S1.1218

Here, we additionally explore the question of why the approach works by empirically1219

testing whether model weights estimated at aggregated and disaggregated scales are similar.1220

To do so, we compare model weights between models of IWI trained at the provincial (N =1221

862) and DHS cluster (N = 51,996) scales. We use IWI for this experiment because there1222

are a large number of aggregated and unaggregated observations that span the same spatial1223

extent.1224

A challenge in designing this experiment is that MOSAIKS features are correlated with1225

each other, and there are a large number of features relative to the number of training1226

observations. This means that the same information could load onto different features even1227

when training and retraining at the same scale if we do not introduce additional constraints1228

to the feature set. Put another way, different sets of model weights could give the same1229

predictions and represent the same relationship between the imagery and outcome of interest.1230

This is not an issue in our main application, since the set of weights obtained at an aggregated1231

scale will remain valid if applied to a disaggregated scale, and vice versa. However, there is1232

no guarantee that the same weights will be obtained if models are independently fit at both1233

scales, since there are multiple valid ways to represent the data using the model features.1234

Thus, for this experiment, we first transform our features into an orthogonal basis.1235

We use Principal Components Analysis (PCA) to project the MOSAIKS features into1236
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a feature space with independent (i.e., uncorrelated) features that contain the same infor-1237

mation as the original features, following ref. (17 ). PCA can also be used to reduce the1238

dimensionality of the feature space, which can aid interpretation in this setting by focusing1239

on features that explain most of the variation in the imagery, and thus likely in the outcome1240

of interest. We find that 100 PCA features explain > 99.9% of the variation in the original1241

4,000 MOSAIKS features in this context, and that a model trained using these 100 PCA1242

features provides essentially identical predictions to a model trained using the 4000 original1243

features (Figure S10A). This PCA model is thus practically identical to our MOSAIKS-1244

based model but with independent features that represent an orthogonal basis. We use1245

these orthogonalized and rotated MOSAIKS features to analyze whether model weights are1246

consistent when training at different levels of aggregation.1247

Using these orthogonal MOSAIKS features, we find that model weights estimated using1248

the (aggregated) provincial data are very similar to model weights that are independently1249

estimated using (disaggregated) DHS cluster data (R2=0.75, Figure S10A). Note that when1250

calculating R2 in this setting we weight by the fraction of variance in the MOSAIKS features1251

each component explains, so that greater weight is placed on features that explain more1252

variation in the MOSAIKS features, and likewise, in IWI. The high correspondence between1253

weights estimated at aggregated and disaggregated scales indicates that the same satellite1254

information is being used in the same way to predict IWI at both scales. This helps to1255

explain how our approach is able to achieve skill in the downscaling applications illustrated1256

in Figure 2 and Table S1.1257

S6 Supplementary methods1258

Note that in the supplementary methods we use the subscript p to refer to provincial or1259

first-level administrative regions; and the subscript m to refer to municipality or second-1260

level administrative regions. We use the subscript c to denote observations at the country1261

level.1262

S6.1 HDI model training1263

Within-country model training Because our focus is explaining subnational variation

in HDI, we specifically train our primary model to predict within-country deviations of HDI.

To do this, we first demean subnational observations by country and then train a model

to use imagery to predict these residualized deviations. Specifically, we transform observed

ADM1 HDI for province p (HDIADM1
p ) into the deviation of this value from the country

63



mean HDI (H̃DI
ADM1

p ). We then solve a ridge regression to predict H̃DI
ADM1

p based only

on provincial daytime (X̃ADM1
MOSAIKS,p) and nightlight (X̃ADM1

NL,p ) features that have been simi-

larly residualized relative to the country mean values for these variables. We learn the model

H̃DI
ADM1

p = β0 + β1 X̃ADM1
MOSAIKS,p + β2 X̃ADM1

NL,p + ϵp (S1a)

where :

H̃DI
ADM1

p = HDIADM1
p −

∑
p∈c

HDIADM1
p

Nc

(S1b)

X̃ADM1
MOSAIKS,p = XADM1

MOSAIKS,p −
∑
p∈c

XADM1
MOSAIKS,p

Nc

(S1c)

X̃ADM1
NL,p = XADM1

NL,p −
∑
p∈c

XADM1
NL,p

Nc

. (S1d)

Here, Nc is the number of provinces in country c. Note that we restrict predictions from this1264

demeaned model to be between the observed minimum and maximum HDI deviations from1265

the country mean.1266

Anchoring to country means via re-centering To evaluate full variation performance1267

using the within-country model (Table S1, col. 1-2) we need HDI predictions in “levels”1268

rather than predicted deviations from the country mean. To construct predicted HDI values1269

in “levels” we anchor our estimates to country means, since they are observed and used in1270

the estimation procedure. Practically, this means we add the country mean HDI, which was1271

subtracted from the observations before model training, back onto the predicted deviations:1272

̂HDIADM1
p =

̂̃
HDIADM1

p +
∑
p∈c

HDIADM1
p

Nc

(S2)

Note that it is not necessary to implement this procedure when evaluating within-country1273

performance.1274
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Province and country model training In Table S1, we additionally report performance

for models trained on province and country-level data directly. Unlike the within-country

model, these models are trained on values in “levels” instead of deviations from the country

mean. In these experiments, we learn the models:

Province model:

HDIADM1
p = β0 + β1X

ADM1
MOSAIKS,p + β2X

ADM1
NL,p + ϵp (S3)

Country model:

HDIADM0
c = β0 + β1 XADM0

MOSAIKS,c + β2 XADM0
NL,c + ϵc (S4)

We do not apply a mean-anchoring procedure with these models as their predictions are1275

already in “levels” rather than predicted deviations. Note that 20 of the 179 total countries1276

do not have subnational data (e.g., Qatar) and that these 20 country-only observations are1277

included in both province and country models.1278

S6.2 Downscaling validation with IWI1279

Labels IWI is similar to the wealth index reported in DHS surveys, except that it was1280

created to be comparable across countries (36 ). IWI data are available both for provincial1281

polygons, which we use for training, and for DHS clusters, which we use for evaluation. For1282

each survey cluster, DHS provides coordinate points associated with the cluster centroid.1283

To protect privacy, the actual GPS coordinates of the center of each cluster are randomly1284

displaced by up to 2km for urban clusters and up to 5km for rural clusters, with a random1285

1% of rural cluster coordinates displaced by up to 10km. According to DHS, the displaced1286

coordinate is guaranteed to fall within the same DHS-provided administrative boundaries as1287

the true cluster centroid. To map these point observations to administrative polygons, we1288

spatially buffer urban cluster coordinates using a 2km radius and rural cluster coordinates1289

using a 10km radius. We then clip these buffers to the finest DHS-provided administrative1290

boundaries that are available.1291

Training We train within-country, province level, and country level IWI models following1292

the structure of models for HDI (Methods Section S6.1). Provincial IWI observations are1293

denoted IWIADM1
p .1294

The within-country IWI model, our preferred model specification, takes the same form
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as Equation S1a:

ĨWI
ADM1

p = β0 + β1 X̃ADM1
MOSAIKS,p + β2 X̃ADM1

NL,p + ϵp (S5a)

where :

ĨWI
ADM1

p = IWIADM1
p −

∑
p∈c

IWIADM1
p

Nc

(S5b)

Note that X̃ADM1
MOSAIKS,i and X̃ADM1

NL,i are the same feature matrices defined in Equation S1c1295

and S1d but with a different number of observations due to differing availability of outcome1296

data.1297

Prediction We evaluate the IWI model performance at a finer resolution than it was1298

trained. We use the trained provincial model (Equation S5a) to produce predictions of IWI1299

at the DHS cluster level and compare those predictions to the cluster-level IWI measurements1300

from the GDL, which were not used for model training. We calculate DHS cluster-level1301

features in the same way as for the other administrative polygons.1302

To make predictions of IWI deviations from the country mean at the DHS cluster level

using the within-country model trained on provincial deviations from the country mean, we

multiply model weights with the demeaned DHS cluster-level satellite features:

̂̃
IWIDHS

d = β̂0 + β̂1 X̃DHS
MOSAIKS,d + β̂2 X̃DHS

NL,d (S6)

where d indexes DHS cluster and β̂0, β̂1, and β̂2 are estimated in Equation S5a. Tildes denote1303

that these predictions are predicted deviations from the country mean. In our within-country1304

IWI model, we demean DHS cluster-level satellite image features by the same country average1305

feature values as in the training procedure:1306

X̃DHS
MOSAIKS,d = XDHS

MOSAIKS,d −
∑
p∈c

XADM1
MOSAIKS,p

Nc

(S7a)

X̃DHS
NL,d = XDHS

NL,d −
∑
p∈c

XADM1
NL,p

Nc

(S7b)

where we note that these averages are constructed by averaging province-level features, but1307
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have similar values that averages of nationally-representative sets of cluster-level features1308

would have.1309

Anchoring to provincial means via re-centering To construct estimates of cluster-

level IWI in levels ( ̂IWIDHS
d ), we anchor predicted cluster-level deviations from the country

mean (
̂̃

IWIDHS
d ) to the known provincial value (IWIADM1

p ) using a provincial level adjust-

ment:

̂IWIDHS
d =

̂̃
IWIDHS

d + IWIADM1
p −

∑
d∈p

̂̃
IWIDHS

d

Np︸ ︷︷ ︸
centers DHS clusters to known provincial values

(S8)

Here, Np denotes the number of DHS clusters contained by ADM1 polygon p, and IWIADM1
p1310

denotes the observed ADM1-level value for polygon p. This anchors the mean of our DHS1311

cluster-level predictions within each provincial polygon to the respective known province1312

value used in training.1313

S6.3 Downscaling validation using nighttime lights as labels1314

In our analysis of the downscaling perfomance of our approach, we design an experiment in1315

which NL are used as labels and are not used as features (Figure S2). This experiment is1316

useful because it is the only validation experiment where the ground truth data are available1317

globally and at municipal resolution. Thus, this experiment allows us to evaluate predictions1318

at a downscaled resolution for the entire globe using a procedure that mirrors how we will1319

generate downscaled HDI estimates (such global high resolution labels do not exist for our1320

other outcomes). We do not expect NL predictions to be perfect proxies for HDI data in1321

this regard, but if NL can be downscaled successfully, it provides support for the procedure1322

we use to downscale HDI.1323

Labels We use population estimates from GHS-POP and fine resolution NL data from1324

VIIRS to create a population-weighted average NL raidance at the province level. NL obser-1325

vations are population-weighted to mirror the construction of HDI, which is also population-1326

weighted. Combining NL observations with population is also common practice when using1327

NL as a development indicator (41, 43, 44 ). We construct municipality-level NL observations1328

using a municipal (ADM2) shapefile from geoBoundaries (65 ), which links municipalities to1329

provincial “parent” polygons.1330
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We exclude Ireland from the geoBoundaries ADM2 dataset because Irish municipalities1331

(ADM2 units) are so small that they alone represent 45% of the global municipality observa-1332

tions. Thus, they would be over-represented in global performance metrics relative to their1333

size if not removed.1334

The vertical streaking patterns in the scatter plots in Figure 2H-J are caused by other1335

countries that also have very spatially dense municipalities, though not to the same degree1336

as Ireland. Because many within-province predictions are clipped at the observed minimum1337

or maximum within-country deviation, this creates vertical streaking at the extremes in 2J.1338

When the country-level mean values are added back, this results in vertical streaking at an1339

arbitrary point along the x-axis in 2H-I. The three countries that mostly account for this1340

effect are Great Britain (≈ 9,000 units), Spain (≈ 8,000 units), and Brazil (≈ 5,000 units).1341

Training We train a model using only MOSAIKS features constructed from daytime im-1342

agery to predict NL:1343

NL = β0 + β1 XMOSAIKS + ϵ (S9)

This model structure is broadly the same training procedure described in Methods Section1344

S6.1 and in Equation 4; however, we do not include NL features when predicting average1345

NL luminosity. NL is also now a vector of scalar NL observations rather than a matrix of1346

features.1347

Prediction To generate municipal predictions, indexed by m, from the within-country1348

model, we first create municipal predictions of NL deviations from the country mean. We1349

demean XADM2
MOSAIKS,m by country by subtracting the country mean feature values and then1350

multiplying the resulting demeaned features by the estimated model weights. This corre-1351

sponds to what is done when evaluating downscaled IWI performance in Section S6.2 and1352

shown in Equation S7a.1353

Anchoring to country means via re-centering When converting the predicted munic-1354

ipal NL deviations from the country mean (
̂̃

NLADM2
m ) into predicted municipal NL values in1355

levels ( ̂NLADM2
m ), we anchor values to the known country mean:1356

̂NLADM2
m =

̂̃
NLADM2

m +
∑
p∈c

NLADM1
p

Nc

(S10)

Note that we anchor fine resolution NL predictions to the known country mean rather than1357

the provincial mean (following Equation S2 rather than Equation S8) because we find that1358
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this substantially improves full variation performance. Most of the variation in nightlight1359

luminosity occurs within countries, rather than between countries, which is considerably1360

different from what we observe for HDI and IWI. Importantly, the choice to use a different1361

re-centering procedure for NL does not impact the downscaled within-province performance1362

(Figure 2J), which we believe provides the most important evaluation of downscaling per-1363

formance.1364
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