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Abstract

The United Nations Human Development Index (HDI) is arguably the most widely
used alternative to gross domestic product for measuring national development. This
is in large part due to its multidimensional nature, as it incorporates not only income,
but also education and health. However, the country-level resolution of the global HDI
data released by the Human Development Report Office of the United Nations Devel-
opment Programme (N=191 countries) has limited its use at the local level. Recent
efforts used survey data to produce HDI estimates for first-level administrative units
(e.g., states/provinces). Here, we build on recent advances in machine learning and
satellite imagery to develop the first global estimates of HDI for second-level admin-
istrative units (e.g., municipalities/counties, N = 61,530) and for a global 0.1 x 0.1°
grid (N=819,309). To accomplish this we develop and validate a generalizable down-
scaling technique based on satellite imagery that allows for training and prediction
with observations of arbitrary shape and size. This enables us to train a model using
provincial administrative data and generate HDI estimates at the municipality and
grid levels. Our results indicate that more than half of the global population was
previously assigned to the incorrect HDI quintile within each country, due to aggrega-
tion bias resulting from lower resolution estimates. We also illustrate how these data
can improve decision-making. We make these high-resolution HDI estimates publicly
available in the hope that they increase understanding of human wellbeing globally
and improve the effectiveness of policies supporting sustainable development. We also
make available the satellite features necessary to increase the spatial resolution of any
other administrative data that is detectable via imagery.
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Introduction

The Human Development Index (HDI) is widely used by policymakers and academics to
summarize three key dimensions of wellbeing: the population’s health, human capital, and
standard of living (1—4). A more comprehensive measure of wellbeing than income or wealth
alone (2, 8, 5), HDI is used to categorize countries by their level of human development,
which, in turn, can determine allocations of global resources (6). However, the United
Nations Development Programme (UNDP) releases official global estimates of HDI annually
only at the highly aggregated national level (N=191), preventing the use of the indicator
in applications that require subnational information. Thus, measures of income remain the
dominant metric for evaluating development progress within countries, in part because they
are more readily available.

In an effort to address this, non-UN researchers (7) recently processed extensive house-
hold survey data in order to produce the first HDI estimates for first-level administrative
units — i.e. provinces and states, hereafter called “provinces” (N=1,739). These efforts have
substantially advanced our understanding of global development patterns, but province-level
measures nonetheless remain too coarse for many modern policy applications where local in-
formation is needed, such as community-level targeting of aid (8, 9). Furthermore, the
reliance of current HDI estimates on slow, infrequent, and costly ground-based data col-
lection limits the usability of HDI for most practical applications other than cross-national
rankings.

Here, we produce the first global estimates of HDI at the second administrative level —1i.e.
municipalities and counties, hereafter called “municipalities” (N=61,530) and for a global
0.1° x 0.1° (approximately 10km by 10km) grid. We construct these estimates by combining
information from prior provincial estimates (2) with global daytime and nighttime satellite
imagery (10, 11). Our approach builds on recent advances in machine-learning (12) to
develop a general method that learns the relationship between imagery and an outcome
of interest (here, HDI) using data from any set of political boundaries. We can then use
that relationship to estimate the outcome for any other set of boundaries. Importantly,
our method works for spatial units of arbitrary shape and size, so models can be trained
on coarse-resolution outcome measurements and make predictions at finer resolution. We
apply this method to transform provincial HDI measures into finer resolution estimates.
While other such “downscaling” approaches typically rely on either theoretically informed
relationships or simple dasymetric masks (13, 14) our approach to making predictions at
finer resolution than the source labels uses machine learning and satellite imagery to identify

complex spatial relationships between imagery and an outcome of interest.
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A general approach to downscaling administrative data using satel-

lite imagery and machine learning

The combination of satellite imagery and machine learning (SIML) is increasingly used to
predict socioeconomic variables at fine spatial resolution (12, 15-22). This approach enables
information that is expensive to obtain through ground surveys to be estimated at low cost.
While SIML estimates do not replicate ground surveys exactly (23—25), the quality of SIML
estimates is now high enough that it can assist targeting of aid and program evaluation in
remote communities where alternative sources of information are unavailable (8, 15, 24, 26,
27).

However, the ability of SIML systems to promote development is limited by the paucity
of suitable observations for model training (15). This limitation is partly due to the design
of modern SIML methods, since large quantities of administrative data are available, but
existing systems are generally not designed to make use of them. To date, SIML approaches
for predicting human outcomes have standardized the structure of both the training labels
and corresponding imagery so that the unit of analysis is a regular spatial structure, such
as a square. For example, many systems use convolutional neural networks (CNNs)(16, 17,
20), which tend to perform well on diverse computer vision tasks. CNNs, however, typically
require images to be a constant size and shape, such as 224 x 224 x 3 pixels in the case of the
commonly used ResNet-18 (28). This restriction has caused prior studies to rely on coarse
approximations for linking irregularly shaped labels to corresponding imagery, for example,
by averaging polygon labels that overlap with the square image (12, 18). Such procedures
can introduce considerable error when administrative polygons are much larger or smaller
than the chosen square size. This is particularly relevant for HDI, for which data is globally
available only for nations or provinces, which tend to be irregularly shaped and vary greatly
in spatial extent. For example, the largest provincial polygon in our data is the Far Eastern
Federal District of Russia, which is over 6 million km?, and the smallest is Banjul of Gambia,
which is 7 km?. Developing a robust and widely applicable SIML system that can be trained
on inputs that correspond with such diverse administrative structures requires an alternative
strategy.

In an ideal setting, we would solve for a function that could directly map a single satellite

image “tile” (e.g. lkm x 1km) to the corresponding HDI for the same tile
HDIy. = f(satellite_imagee) + €ie (1)

where € is the component of HDI that is not measurable with imagery. In theory, Eq. 1

could be solved directly with many learning approaches, such as a CNN (29), but this is
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infeasible in practice because tile-level data on HDI (i.e. the left-hand side of Eq. 1, HDI;;.)
does not exist. Instead, we observe only aggregated estimates of HDI over politically-defined
regions (H DI.ountry 08 H DIy opinee) that correspond with large and irregular agglomerations
of image tiles. For the SIML system described by f(-), this creates a mismatch between the
spatial structure of inputs (image tiles) and outputs (administrative regions).

We solve this problem by converting image tiles into a generalizable set of descriptive

variables or “features,” Xy, such that f(-) can be structured as linear in these features,
f(satellite_imagee) = B - Xiite, (2)

where (5 is a vector of weights (i.e. coefficients). Specifically, we construct a basis for the
imagery such that outcomes of interest are well-represented by linear combinations of the
basis vectors. This allows aggregate administrative measures of HDI to project onto corre-
sponding aggregations of tile-level features with the same weights that would be recovered

if the problem had been solved using only tile-level data. Thus, we learn the model

1
HDIpmm'nce = B : (N Z th‘le) +€pmvince (3)

tile€Eprovince
NS

-~

Xprov'ince

and recover the same weights § that we would have recovered had we directly solved Eq.
1 using the linearization in Eq. 2. See Supplementary Information S5 for an empirical
validation of the scale-invariance of model weights using this approach. Note that Xpmvmce
is simply the vector of average tile-level features within a province. The weights § can
then be used to generate predictions for arbitrary aggregations of tiles. We use these g to
downscale HDI to the municipality level (8- X unicipatity = H DI municipality) and the tile level
(8- Xyite = HDI ).

The benefits of linearizing this problem have been understood in general terms, since
linear models of basic scalar image properties (e.g. “greenness”(30) or nighttime lights
(31)) have been widely used to downscale administrative-level data. However, to our knowl-
edge, it has not been shown that such linearization is possible and skillful for the types of
featurizations that capture complex spatial structures in imagery.

Here we demonstrate that such a skillful linearization can be achieved by embedding rich
image information using the Multi-task Observation using Satellite Imagery and Kitchen
Sinks (MOSAIKS) approach (12). Converting images into MOSAIKS features
(daytime_satellite_image — Xpyosarkxs) provides a structured representation of the un-

structured information within the satellite image that performs well in linear models. These
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features summarize the joint distribution of color and textures within daytime tri-band op-
tical imagery (see Methods 1 and Figure S1). We concatenate these features with features
that summarize nighttime lights of locations (32, 33) (nighttime_satellite_image — Xyr,)
to construct a linear model that downscales HDI using only satellite data (see Methods 3.2
and 4.1).

B

Provincial polygon image

Province-level polygons

s D E F
Featurizing: Training: Predicting:

Random convolutional features Random convolutional features Random convolutional features
at = 1km x 1km resolution averaged to provincial polygon level averaged to municipal polygon level

C

Planet image tiles

Feature 1 Feature 1

Feature 2 Feature 2

Feature k Feature k

Figure 1: The MOSAIKS approach transforms satellite imagery for each admin-
istrative polygon into a vector of image features. (A) The location of Oromia, an
example province (ADM1 unit) within Ethiopia. (B) A composite of Planet imagery over
Oromia in 2019. (C) A sample of 0.01° x 0.01° image tiles. (D) Three examples of MOSAIKS
random convolutional features over Oromia; each pixel shows the feature value for a single
0.01° x 0.01° image (Xe). (E) The corresponding aggregation of these MOSAIKS features
to the provincial polygon (ADM1) level for model training (Xprovince). (F) Aggregation of
these same MOSAIKS features to the municipal polygon (ADMZ2) level for fine-resolution

prediction of HDI (X, ,unicipatity)- See Figure S1 for an illustration of how MOSAIKS features
are calculated and used to predict HDI.
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Results

Our results have four sections. First we train and evaluate a global model for HDI at the
province-level using aggregates of satellite features. Second, we implement multiple tests
to validate that this model is skillful. Third, we generate the first high-resolution global
HDI data using this procedure, and we evaluate how these estimates compare to existing
aggregated estimates. Fourth, we illustrate how these new high-resolution estimates could

alter decision-making when targeting aid.

1. Predicting province-level HDI using satellite imagery

Using province-level administrative HDI data for training (as in Equation 3 and Figure 1),
we find that predictions made using linear aggregates of daytime and nighttime satellite
image features, anchored to known country means, explain 96% of the variation in global
provincial HDI values (Figure 2A, denoted “full variation performance”). Specifically, we
train a model to predict provincial HDI deviations from each country mean and then add the
known country mean to the predicted provincial deviations. We take this “mean-anchored”
approach, because it reflects how SIML may be used to augment existing HDI data in practice
(see Methods 4.4 and Supplementary Information S6.1 for a discussion of mean-anchoring).
Since most HDI variation is across-countries rather than within-countries (Figure 2A-B),
much of this performance predicting provincial variation is driven by the measured country
means that the predictions are anchored to.

The primary value of incorporating satellite imagery is to explain local-scale variation
in HDI. As a first test of the model’s ability to explain local variation, we evaluate model
performance predicting deviations in provincial HDI from the country mean. We find that
model predictions explain 52% of this within-country provincial variation in HDI (Figure 2B;
see Methods 4.2 for a discussion of performance metrics). This indicates that SIML-based
provincial predictions of HDI add substantial fine-resolution information to existing national
measures. Importantly, models trained on provincial deviations from the country-level HDI
have higher performance predicting such deviations than models trained directly on the
provincial values themselves (Table S1 col. 4). Intuitively, model weights are optimized
to explain the smaller within-country variation in the demeaned model, rather than the

)

larger across-country deviations (Figure 2 A-B). We use such “within-country” models as

our primary model specification.
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2. Validating downscaling of data below the province-level

We cannot directly evaluate the performance of municipality-level or grid-level HDI predic-
tions worldwide because such highly-resolved estimates have not been previously constructed.
Nonetheless, we test the performance of our downscaling technique in three ways that allow
predictions to be directly compared to “ground truth” at finer resolution than the training
data. First, we directly compare our municipality-level HDI predictions to census-derived
estimates in three countries where these data are available — Indonesia, Brazil, and Mexico.
(9, 34, 35). Second, we train a model relating satellite imagery to the International Wealth
Index (IWI) at the province level, and then construct downscaled predictions of IWT at the
resolution of Demographic and Health Surveys (DHS) clusters where granular IWI measure-
ments are available (36). The IWI is an alternative development indicator to HDI that omits
measures of education and health. Third, we train a model to predict nighttime lights (NL),
a common proxy for economic wellbeing (32, 37—42), using features constructed exclusively
from daytime satellite imagery, and test whether our approach can downscale NL. Mirroring
the structure of our HDI analysis, we train a model using only NL labels aggregated to the
province level, and then evaluate predictions of NL at the municipality level. No test can
directly validate the performance for downscaling HDI globally, since the data necessary for
such a test do not exist; however, all three of these large-scale tests taken together document
the effectiveness of our downscaling strategy in general — using global socioeconomic data
similar to HDI — and for HDI in particular — using municipal HDI data for three countries.

When evaluating estimates made at finer resolution than that of the training data, we
mean-anchor downscaled estimates to the known provincial mean. This approach produces
the best possible estimates by using the satellite-based model to explain within-province
variation, which is previously unknown, and the known provincial values to explain the

across-provincial variation.

Downscaling HDI in Mexico, Brazil and Indonesia As a direct evaluation of HDI
downscaling performance, we compare municipal HDI predictions from the satellite-based
model trained on provincial HDI deviations from the country mean to municipal HDI derived
from census-based calculations in Mexico (9), Brazil (35), and Indonesia (34) (Methods
2.3). In Mexico, downscaled HDI predictions explain 45% of the municipal HDI variation
overall (Figure 2C) and 29% of the within-province variation (Figure 2D). In Brazil, HDI
predictions explain 48% of municipal HDI variation overall, and 20% of the within-province
variation. And in Indonesia, HDI predictions explain 61% of the municipal HDI variation
overall and 53% of the within-province variation. It is encouraging that HDI predictions align

better with census-based measures for Indonesia than for Mexico or Brazil because measures
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Figure 2: MOSAIKS models perform well predicting socioeconomic indicators,
including at downscaled resolution. (A) Observed and predicted HDI at the province
level. Note that the within-country variation is smaller than the across-country variation,
as illustrated by France, in yellow, and Ethiopia, in pink. (B) The same as (A), evaluat-
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IWTI at the DHS cluster level. (H-J) Observed and predicted nighttime lights at the munici-
pality level. The vertical streaking in (H-J) are caused by countries that have very spatially
dense municipalities (Supplementary Information S6.3). Predictions are anchored to known
country or provincial means (Methods 4.4). All predictions are for the year 2019.
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for Indonesia are from 2019, which aligns with our satellite-based predictions of within-
province HDI variation, while measures for Mexico and Brazil are from 2010. These older
HDI measures could differ from our satellite-based predictions in part due to changes in HDI
since the measurements were taken. Additionally, some portion of the misalignment between
satellite-based predictions and survey estimates likely arises as a result of errors in the survey
data itself, a widely recognized issue (15) that we are unable to assess. Together, these results
indicate that our method for SIML-based downscaling improves our understanding of the
spatial distribution of HDI in these three example countries; although, it is not a complete

substitute for survey-based estimates when such data are available.

Downscaling the International Wealth Index We test the ability of our approach
to downscale IWI internationally by training a model on province-level aggregates of TWI
and then predicting IWI across DHS clusters. This is a more difficult task than predicting
municipality-level values and an equally difficult task as predicting at the 0.1° x 0.1° grid-
level, since DHS clusters tend to be even finer resolution than municipalities and about the
same size as the HDI grid (DHS cluster ~ 180 km?, municipality = 2,000 km?, grid tile ~ 120
km?). Models are trained on 862 provincial observations within 85 countries and evaluated at
51,996 DHS clusters (Table S1). Analogous to our approach with HDI, models are trained on
province-level deviations from country-level means and predictions are re-centered to match
the observed province-level mean, as these values are known (see Methods S6.2). Downscaled
IWTI predictions explain 67% of the variation in IWT across all DHS clusters (Figure 2E) and
56% of the variation in IWT across DHS clusters within countries (i.e. of cluster deviations
from the country mean, Figure 2F). Importantly, this approach is also able to predict 36%
of the variation in IWI within the provincial units that it was trained on (Figure 2G). This
result demonstrates the ability of our downscaling approach to generate skillful global-scale
predictions at resolutions higher than the training data, and also its ability generalize to

measures other than HDI.

Downscaling nighttime lights To further evaluate our approach in a global test, we
train a model on aggregate provincial NL and evaluate predictions at municipal resolution.
NL are not a direct measure of human welfare; however, they are generally correlated with
income and other development indicators (38—40, 43, 44). NL have even been used along
with population to construct development indicators correlated with HDI (e.g. (41)). NL
are particularly useful here because they allow us to design a validation test where true sub-
national values are known worldwide. Mirroring our HDI process, we train the model using

provincial deviations from the country mean, and then construct municipal values as the pre-
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dicted municipal deviations from the country mean plus the known country mean (Methods
S6.3). Downscaled NL predictions capture 70% of municipal variation in NL globally (Figure
2H), 63% of the municipal variation within countries (Figure 2I), and, most importantly, 57%
of the variation across municipalities within provinces (Figure 2J). These results further re-
inforce the ability of our approach to downscale global province-level data and underscore its
generalizability to other non-HDI outcomes. Unlike the two downscaling experiments above,

this experiment relies entirely on features generated using only daytime imagery (Figure S2).

Comparisons to municipal data on HDI, IWI, and NL indicate that models trained on
provincial data can explain 20-57% of within-province municipal variation. Collectively, these
three experiments demonstrate that our approach effectively combines coarse socioeconomic
measurements with satellite data to produce skillful estimates at spatial resolutions finer

than the province-level training data.

3. Additional evaluation of model performance

Model performance for components of HDI One motivation for using MOSAIKS
features to downscale HDI is their ability to predict a diversity of ground-based measures.
This is particularly relevant for predicting HDI, since it is constructed from components
that capture human health, education, and income. To consider which components of HDI
are best captured by our estimates, we retrain models to predict each component of HDI
separately. We find that MOSAIKS models explain 92% (5%) of the full (within-country)
variation in provincial life expectancy, 93% (51%) of mean years of schooling, 90% (27%)
of expected years of schooling, and 97% (56%) of gross national income per capita (GNIpc)
(Table S3). While the components of HDI do tend to be correlated (Table S4), these results
indicate that instead of just capturing income, predictions of HDI using satellite imagery
maintain the ability to capture multiple dimensions of human wellbeing. These results
also help explain what aspects of human development satellite features are able to capture,
indicating their ability to explain local variation in education and income as well as their
difficulty predicting aspects of health. Predictions of HDI made from combinations of its
individually predicted components perform nearly identically to the direct predictions of
HDI used throughout this analysis.

Further model evaluation including model, model performance across global regions, and
the value of combining daytime and nighttime imagery are discussed in Supplementary In-
formation S2. While it remains untestable how accurately the approach can downscale HDI

globally, we find that the approach can predict substantial global variation in HDI and its
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components, and that it can downscale both HDI in three countries and variables related to

HDI globally with accuracy.

4. Global municipality-level and grid-level estimates of HDI

We use our model for within-country HDI (from Results Sections 1-2) to estimate HDI for
61,530 municipalities and 819,309 0.1° x 0.1° grid tiles (Figure 3), the finest resolutions at
which HDI has been estimated globally (Methods 4.5). We make these municipal and grid-
level estimates of HDI publicly available for download at mosaiks.org/hdi. Estimates are
available annually from 2012-2021. We also similarly produce and make available estimates
of the individual components of HDI.

Our high-resolution estimates enable a substantially more detailed understanding of hu-
man development compared with national and provincial measures (Figure 3 A,B vs. C,D).
Both municipal and grid-level estimates reveal within-province heterogeneity of HDI that
was previously un-resolved (Figures S3, S4). The gridded HDI estimates tend to be higher
along major roadways, especially at the intersection of roadways (Figure S5). Boarders, such
as between Turkey, Georgia, Armenia, Azerbaijan, Iraq and Iran, are less apparent in the
fine resolution estimates, indicating a greater continuity in human development across space
than in the provincial maps. The wealthier city centers and poorer suburbs of capital cities
such as Moscow, Russia and Antananarivo, Madagascar are also visible in the municipal and
grid estimates, but obscured in the provincial estimates. The contribution of environmental
features to human development is illustrated in eastern Pakistan and northwestern India,
where human development is higher in the plains bordering the Indus River and its tribu-
taries, and lower in neighboring deserts. Similarly, within Sonora and Sinaloa in Mexico,
coastal areas show higher human development than inland regions. This local heterogeneity
in HDI indicates that uniform assignment of HDI to populations based on their country or
province of residence is inaccurate because it groups together populations with very different
levels of human development.

We use our estimates to quantify the degree of aggregation bias that occurs when using
only province-level estimates. Aggregation bias occurs here because small units (i.e. grids
or municipalities) are assigned the HDI of a larger unit (i.e. a province), which does not
reflect local conditions. For example, a small urban region, where HDI is high, embedded
in a province that also contains large, less developed rural areas, will be assigned a HDI
level that is too low when provincial measures are used. We quantify how frequently such
mis-assignment occurs within countries by assigning populations to a quintile of HDI within

their national HDI distribution based on provincial, municipal, or grid-level estimates. We
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Official United Nations HDI at the country level (UNDP, 2019)
~ e

Figure 3: Global HDI estimates at the municipal and grid levels. (A) Official
United Nations HDI at the country level (45) (B) HDI data at the province level from Smits
and Permanyer (7). (C) Municipal level estimates of HDI produced here. (D) Grid level
estimates of HDI at the 0.1° by 0.1° (approximately 10km by 10km) level produced here.
Grey in the grid-level estimates indicates land area believed to be unsettled (46). All data
shown are for the year 2019.
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then evaluate how frequently the province-level estimates agree with the more highly resolved
estimates (Figure 4).

We find that a majority of the global population (58% using municipal estimates and 65%
using grid estimates) is assigned to a different within-country HDI quintile compared to when
using provincial estimates. For example, of the population measured to be in the bottom two
HDI quintiles using provincial estimates, 8.5% are reassigned to the top two HDI quintiles
using municipal estimates and 12.9% using grid-estimates. Grid-level estimates reveal larger
amounts of aggregation bias due to their finer resolution. Based on our grid-level estimates,
we estimate that 20.4% (21.0%) of the global population is one quintile lower (higher) than

assigned using provincial estimates, and 9.5% (9.3%) are two quintiles lower (higher).
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7% 7% 6% 8%
19% 12% 17%
18% 19%
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| 48% | currently considered
' |/ to be in the top
, 28% quintile (no change)
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Municipality-level HDI quintile (this study) Grid-level HDI quintile (this study)
Province-level HDI quintile (Smits & Permanyer)
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Figure 4: Municipal and grid-level estimates of HDI assign more than half of
the global population to a different within-country HDI quintile than provincial
estimates. (A) Shows the difference in estimated HDI quintile, within countries, using
provincial vs. municipal data. (B) shows the same analysis using grid-level HDI estimates.
Colors show the estimated HDI quintile using provincial data from (7), where yellow is high
human development and purple is low human development. All data is from 2019. Bins along
the x-axis show estimated HDI quintiles using the municipal and grid level data produced
in this study. Hatch marks indicate no change in quintile assignment using municipal data.
When provincial data do not allow for the creation of five distinct bins, the population is
assigned first to the middle bin, followed by the neighboring bins. For example, if a country
does not have any province-level data, the entire population is assumed to be in the middle
quintile for that country. For this reason, a greater fraction of the global population is
assigned to the middle quintile (33%) than to the outer quintiles when using the provincial
data.
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5. Illustrative application: targeting policy in Mexico

To explore how our new HDI measures could improve the efficiency of development policies,
we conduct a simulation exercise for Mexico. We simulate how a geographically targeted
policy based on provincial vs municipal HDI data (Figure 5A-B) might achieve different
outcomes, noting that previous work has shown that more spatially granular targeting can
produce meaningful welfare gains (17, 47-50). We study Mexico because “ground truth”
estimates of HDI enable us to benchmark performance (9).

The use of municipality-level data improves the number of program recipients correctly
targeted. Supposing that the program director aims to provide assistance to the 10% of in-
dividuals with the lowest HDI, accuracy of program targeting increases by 11.4% percentage
points (from 32.3% to 43.7%) when using municipal data (Figure 5E, assuming the standard
deviation of individual HDI within each municipality is 0.1, see Methods 4.6). Use of the
municipal data also results in a much greater geographic dispersion of targeted municipalities
(Figure 5C-D). Evaluation of targeting performance using a receiver operating characteris-
tic curve (8) gives similar results (Figure 5F, Methods 4.6). Replicating this analysis for
Indonesia also gives consistent results (Figure S11).

This application illustrates how fine-resolution HDI estimates can improve targeting
of policies that would otherwise use coarser provincial measures, even though these fine-
resolution estimates are imperfect. Using provincial measures implicitly assumes no within-
provincial variation in HDI, so any positive ability to predict variation within provinces
improves understanding of the spatial distribution of HDI. Users of these fine-resolution esti-
mates should consider their specific policy context to determine whether these fine-resolution
estimates, which explain 29% of the within-province HDI variation in Mexico, 20% in Brazil,
and 53% in Indonesia, provide sufficient additional information to be useful in their setting.
These estimates may be particularly valuable in data poor settings, where traditional data
sources such as surveys are less available and reliable (15); only about half of the world’s
poorest countries have conducted a census in the last decade (16, 26). These estimates may

also be useful in cross-country settings where a consistent metric of welfare is desired.
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Figure 5: Spatially granular HDI measures can improve decision-making. (A)
HDI for 2019 at the province level of observation (7) (B) HDI estimates for 2019 at the
municipality level produced in this paper. (C) Lowest HDI provinces that would be targeted
until 10% of the country’s population is reached. (D) Lowest HDI municipalities that would
be targeted until 10% of the country’s population is reached. Hashing in (C) and (D) shows
the marginal province and municipality that would be partially targeted. (E) Targeting
accuracy (true positive rate) as a function of the assumed standard deviation of HDI within
each municipality. (F) ROC curves illustrate the degree of improvement that comes with
targeting at the municipality level relative to the province level (assumed SD of 0.1 within
each municipality).
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Conclusion

We produce and make publicly available the first global-scale, high-resolution estimates of
HDI, enabling the use of broad-based measures of wellbeing for local decision-making and
policy prioritization. We achieve this by developing an approach for generating spatially
granular development indicators using SIML models trained on spatially aggregated and
inconsistently structured administrative data. Since many forms of non-HDI data are also
available only for administrative regions, we believe this generalizable method will increase
the range of outcomes that can be used as labels in SIML models, which are currently
constrained by limited training data (15).

Our strategy is motivated by the limited resolution of available training data for HDI, but
our results do not exhibit obvious compromises in performance relative to alternatives that
exploit high-resolution labels. A related benchmark in this literature achieves p? = 0.63-0.67
predicting a wealth index when training and evaluating at the DHS cluster resolution (16,
51). Though we train at the provincial level, not the DHS cluster level, our performance
predicting DHS cluster IWT is competitive with this previous analysis (p> = 0.71; Table
S1, col 1). Another benchmark in this literature achieves an R? of 0.54 predicting RWI,
which is conceptually identical to what we call within-country IWI, at the same DHS cluster
level (17) (metric taken from a replication of their Figure 3B). Again, despite training at
the provincial level rather than the DHS cluster level we achieve a within-country R? of 0.56
predicting IWT at the cluster level. Direct comparison to both of these benchmarks, however,
is complicated by differences in training and evaluation methodologies including our focus
on explaining within-province variation and our corresponding mean-anchoring approach.

Here, we use satellite imagery due to its rich information content, global availability,
and near uniformity in quality across countries. To evaluate whether additional satellite
data sources beyond visual daytime imagery and nighttime imagery might improve HDI
estimates, we follow ref. (22) and add to the baseline model three additional index-based
features constructed from Sentinel-2A satellite imagery that integrate knowledge of spectral
properties of different ground conditions: the Normalized Difference Vegetation Index, Nor-
malized Difference Water Index, and Normalized Difference Built-Up Index. We find that
the model performance is essentially unchanged (Table S5), indicating that these additional
features do not provide additional information beyond what is already captured by the MO-
SAIKS and NL features. While it is important to note that there is a limit to how well
socioeconomic variables can be predicted using satellite imagery generally, and adding these
additional features did not improve performance in this case, future work should nonetheless

explore whether incorporating additional imagery sources and/or other ancillary data can
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improve these estimates (52).

This approach to producing HDI estimates can be viewed as a type of regression-based
technique for small area estimation using satellite imagery (53, 54). Though data limita-
tions in this setting — including the lack of fine-resolution global surveys of HDI — preclude
the direct implementation of most commonly used small area estimation techniques (e.g.,
(55)), this approach follows the general small area estimation framework of combining lim-
ited measurements of the variable of interest (provincial HDI) with universally available
axillary data informing the variable of interest (satellite imagery) to make accurate and
precise fine-resolution predictions. A key difference between more traditional small area es-
timation techniques and ours is that we use a global-level auxiliary dataset that does not
suffer from the challenge of construct validity across countries, although this comes with a
tradeoff of needing to assume some degree of consistency between imagery and conditions
on the ground. A recent comparison of poverty maps for Malawi produced using i) a small
area estimation approach combining survey data and census data and ii) an alternative ap-
proach combining survey data and geospatial indicators including satellite imagery found
that the two approaches produced very similar estimates, with a correlation exceeding 0.9
(56). This, paired with the performance of satellite imagery predicting HDI shown here,
indicates that satellite imagery can be an effective substitute for census information when
producing fine-resolution estimates of human wellbeing in settings where census data is not
available. In locations where reliable census data is available, satellite imagery could serve
as a complementary source of information.

One important property of the errors in our estimates, common in machine learning (12,
24, 25), is that our predictions exhibit lower variance than the true values. For example, in
Mexico the standard deviation of our satellite-derived estimates is approximately half that
of census-derived values. Survey and other traditional approaches to data collection remain
critical to informing the state of global human development and complement satellite models,
which cannot be trained or evaluated without ground-truth measures.

We have produced global downscaled estimates of HDI for 2012-2021 by combining ex-
isting provincial measures with fine-resolution satellite estimates. This approach estimates
municipal HDI in each year by adding satellite-based estimates of municipal HDI deviations
from the provincial mean, which are time-constant, onto time-varying provincial values cal-
culated from surveys (7). These municipal values are appropriate for applications comparing
levels of HDI across locations within a specific moment in time. They cannot be used to eval-
uate changes in the distribution of HDI within-provinces over time. Current data does not
allow us to distinguish performance between our validated approach and an approach that

estimates local trends in HDI (Figure S8 and Supplementary Information S3). Developing
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additional approaches for tracking and validating subnational trends in HDI is an important
area for future research.

A benefit of our approach is its mathematical transparency (57), relative to deep learning
alternatives; however, like most computer vision approaches, it is a challenge to explain why
our model generates a particular prediction. To explore which specific phenomena are cor-
related with our HDI estimates, we examine how predicted HDI values associate with other
variables globally, an approach similar to some prior efforts to evaluate model predictions
(54). We find that municipalities with higher road density (full variation p*=0.24, within-
country p?=0.14) and building density (full variation p?=0.07, within-country p*=0.16) tend
to have higher predicted HDI (Figure S9, Supplementary Information S4). Population has
a weak association with HDI across the globe (full variation p*=0.02), but within countries,
more densely populated municipalities tend to have higher HDI (p?=0.33). In contrast,
cooler countries tend to have higher HDI (full variation p*=0.12), but temperature has lit-
tle association with HDI within countries (p?=0.0). Terrain ruggedness, forest cover, crop
cover, and rainfall have little to no association with our HDI estimates. Collectively this
analysis indicates that our HDI estimates capture image information related to built in-
frastructure and the density of human settlements, but also indicates that there is residual
image information beyond these factors that contribute to the HDI estimates — together the
variables analyzed above explain 32% of the full variation in municipal HDI estimates and
33% of the within-country variation in a multiple linear regression analysis. Broadly, policy-
makers benefit from algorithmically-informed decisions that are transparent and explainable
(58). Future work should investigate improvements in remote sensing model interpretability
that can support transparent policy-making and aid in understanding potential sources of
systematic bias (57, 59, 60).

We emphasize that the approach described here can be used to predict a wide variety of
labels for which country, province, and/or municipality level labels exist. To facilitate this
use, we make the features used in this analysis publicly available at the country, province, and
municipality level via https://mosaiks.org/hdi (10). We offer these features aggregated
to these administrative-unit levels using both area and population weights. Each of these
files is relatively small, ~ 3 GB or less, and thus possible to process on a desktop computer.
For comparison, the global set of features is &~ 3 TB and the raw imagery is ~ 30 TB. We
hope that researchers and decision-makers can leverage these features, along with their own
administrative datasets, to produce new downscaled estimates of socially-relevant outcomes.
Such spatially granular data may create new opportunities for achieving global development

goals.
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Methods

1 Overview

To transform satellite imagery into descriptive features that exhibit high performance in
linear models, we build on the recent development of MOSAIKS, an approach that achieves
performance competitive with CNNs using an unsupervised image embedding combined with
a linear ridge regression model (12). The linearity of ridge regression enables the scale invari-
ance of our downscaling approach (12). MOSAIKS random convolutional features combined
with ridge regression have been shown to be skillful at solving diverse prediction problems
—such as forest cover, population, elevation, and house price— using only imagery as inputs
and using only a single linear specification. This property makes MOSAIKS a particularly
appealing approach for predicting HDI, which is constructed from multiple development in-
dicators. Each MOSAIKS feature for a tile describes the similarity between the satellite
image and a smaller patch of imagery, and is calculated as a nonlinear transformation of the
image’s pooled convolution with a random sub-image from the sample (12, 61). For example,
a feature whose patch was sampled from a city might inform how urban an image is, while
a feature whose patch was sampled from farmland might inform how agricultural an image
is. Together, thousands of MOSAIKS features form a basis that can skillfully describe the
rich structure contained within large imagery datasets through simple linear combinations
of the features. For details on how MOSAIKS captures visual information from satellite
imagery see Figure S1, as well as the Methods sections “Theoretical foundations” and “Con-
volutional random kitchen sinks”, and the Supplementary Information section “Alternative
interpretations relating MOSAIKS to kernels and CNNs” of ref. (12).

To compute local HDI via SIML, we transform a dataset of global Planet imagery (~ 5m
resolution) into a set of 4000 general-purpose MOSAIKS features (X)) for 0.01° x 0.01° tiles
(~ 1km x 1km; Figure 1) (10). We supplement these MOSAIKS features with features that
flexibly characterize the distribution of nighttime lights in each tile (Methods 3.2). While
past measures of economic and human wellbeing have tended to focus on nighttime lights
alone (87-42), inclusion of high-resolution daytime imagery improves model predictions of
HDI, especially in regions with low HDI (Supplementary Information S2). Visual imagery
may improve performance by better resolving HDI variation in areas without electrification
that are nearly dark, or by better differentiating between highly populated poorer areas
and less populated richer areas, which can have similar brightness in nightlight data (20).
We then learn a model that is linear in these features (5 - X) and use this linear model

to estimate HDI at high resolution. While we focus this analysis on the downscaling of
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HDI, this approach is generalizable to other types of administrative data associated with
irregularly-shaped political units.

For both training and prediction, we average image features for administrative poly-
gons using population weights (Figure 1D, grid-scale predictions follow a similar procedure)
(46). This results in one vector of image features for each province and municipality in the
world. To learn the relationship between the image features and HDI, we train a model on
province-level HDI labels and aggregated province-level image features (Figure 1E). We then
predict municipality-level HDI using the municipality-level image features (Figure 1F), and
we predict 0.1° x 0.1° grid HDI using features for that grid.

Throughout this analysis we use the term “province”, the abbreviation “ADM1” to refer
to first-level administrative regions; and “municipality”, “ADM2” to refer to second-level
administrative regions, though the terminology for these units varies by country. For ex-
ample, “state” and “county” are the designations used for ADM1 and ADM2 units in the
United States.

Our fine-resolution global HDI estimates were produced in collaboration with researchers
at the Human Development Report Office of UNDP (Supplementary Information S1), but

data released with this paper should not be considered official United Nations indicators.

2 Label data

2.1 HDI

The United Nations Human Development Index is a composite measure used to assess a
country’s average achievements in three key dimensions of human development: health, edu-
cation, and standard of living (4 ). Health is measured by life expectancy at birth; education
is evaluated using a combination of mean years of schooling for adults and expected years
of schooling for children; and standard of living is assessed through gross national income
per capita (GNIpc), adjusted for purchasing power parity. The HDI applies a logarithmic
transformation to GNIpc to account for the diminishing benefits of increased income. Each
of these components is normalized on a scale from 0 to 1, and the HDI is calculated as
the geometric mean of the three dimension indices, giving equal weight to each dimension.
This method allows the HDI to reflect not just economic wealth, but also broader aspects of
well-being. In 2019, the average HDI across countries was 0.72, with a standard deviation

of 0.15, a minimum of 0.36 in Somalia and a maximum of 0.96 in Switzerland. (Figure 3A).

21



480

481

482

483

484

485

487

488

489

490

491

492

493

494

495

496

499

500

501

502

503

504

505

506

507

508

509

2.2 Province-level HDI

National-level HDI data originate from the UNDP Human Development Data Center and
are updated every year (45). UNDP uses data from the World Bank, UNESCO, UNICEF,
DHS, UN Stats, and other organizations to create these national-level indicators (4 ).
Province-level data on HDI and its components come from the Global Data Lab (GDL)
Subnational HDI Database V7.0 (7, 62). We omit 3% of the observations, which do not
match with the associated GDL shapefile. The resulting province-level HDI dataset contains
1,739 provincial observations from 159 countries. Additionally, we include 20 country-level
observations that do not have subnational province units (e.g., Qatar). For the majority of
model training and evaluation we use provincial HDI data from 2019, the same year as the
MOSAIKS image features. We use provincial HDI data from 2012-2021 for mean-anchoring

the global fine-resolution HDI estimates for that time period.

2.3 Municipality-level HDI

We compare our municipal HDI estimates with census-derived municipal estimates for HDI,

where these data exist.

Indonesia Time series estimates of HDI at the municipality level are made publicly avail-
able by Badan Pusat Statistik (BPS), the statistics agency of Indonesia (63). We use esti-
mates from 2019, which makes these, to our knowledge, the only available municipal HDI

data that come from the same year as our satellite imagery.

Brazil The Human Development Report Office of the United Nations Development Pro-
gramme has derived HDI data at the municipality level for Brazil, using census data (35).
The most recent year these data are available is 2010, which we use in this analysis. The
census-derived data have a different mean than the 2019 HDI data that we use elsewhere in
this analysis; though, this has no influence on the within-country or within-province eval-
uation metrics (Figure 2 C,D) because predictions and observations are demeaned at the

country and province level, respectively, before the metrics are calculated.

Mexico Census derived estimates of HDI are also available in Mexico for the year 2010,
constructed by ref. (9). As with Brazil, these data have a different mean than the 2019
HDI data; though, again, that has no influence on the within-country or within-province

evaluation metrics.
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When certain components of HDI are not directly available at the municipal level, produc-
ers of these datasets use close proxies. For example the BPS calculates municipal HDI data
in Indonesia using data on real expenditure rather than GNIpc (34). And when calculating
municipal HDI in Mexico, ref. (9) use the child survival rate rather than life expectancy
at birth for the health index and an asset index rather than GNIpc for the standard of
living index. Likewise, provincial HDI estimates are also constructed using proxies when
direct measurements of HDI components are not available (7). Discrepancies in how HDI is
calculated at the municipal and provincial levels may contribute to differences between our

satellite-based HDI estimates and these survey-based HDI estimates.

2.4 IWI Data

IWI data also come from GDL. These data are publicly available at the country and province
levels and we use these data for 2019. GDL also provided us IWI data at the DHS cluster
level, which are not publicly available. We use cluster-level IWI estimates from 2012 through
2019 in this analysis. We drop observations that do not overlap a parent province polygon
and for which no imagery is available. This results in 51,996 DHS cluster observations from
41 countries.

We match all label data to time-constant satellite image features from 2019. Because
these features are not contemporaneous with all labels, our results present a conservative
estimate of the ability of SIML to measure HDI globally. Given that HDI variation is
substantially larger over space than time, however, perfectly contemporaneous measures

would likely improve performance only modestly (Supplementary Information S3).

3 Creation of features

3.1 MOSAIKS features

We create daytime image features using Planet’s Surface Reflectance Basemaps product from
2019, which has a pixel resolution of 4.77m x 4.77m at the equator. These quarterly mosaics
are processed by Planet to minimize cloud cover, balance color across seasons, and remove
seams from images (10, 11). We use data from quarter 3 because it corresponds with less
ice coverage in the northern hemisphere and less cloud cover in the tropics. We follow the
methods described in Rolf et al. (2021) to generate a set of 4000 task agnostic daytime image
features using random convolutional features (10, 12). Two thousand of these features use
a patch size of 4 x 4 x 3 pixels, and the other two thousand use a patch size of 6 x 6 x 3

pixels. The third dimension of the patch size refers to the number of color bands (i.e., red,
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green, and blue) that are available in Planet imagery. We selected these patch sizes because
they maximized performance across three non-HDI prediction tasks: predicting nightlight
intensity, road length, and forest cover at the global level. We tested patch sizes ranging
from 3 x 3 x 3 to 10 x 10 x 3 and found that using a combination of two different patch sizes
(with 2,000 patches each) outperformed using a single patch size (with 4,000 patches) across
all three tasks.

We create features for all land tiles with available imagery on a global 0.01° x 0.01°
equal-angle grid, amounting to ~ 151 million feature vectors in total (10). Features become
sparse above 60° latitude, due to a lack of available imagery. Figure 1C shows individual
images spanning 0.01° x 0.01°, along with their corresponding MOSAIKS feature values.

We create polygon-level feature vectors by averaging values across the feature tiles asso-
ciated with each polygon. Each administrative polygon is represented by a single vector of
4000 daytime image features. We assign each feature tile to the administrative polygon that
contains its centroid. For small municipal and DHS polygons that do not contain any tile
centroids, we represent the polygon by the nearest feature tile. When averaging, we weight
by population using data from the Global Human Settlement Layer (GHS-POP) (46). We
use the GHS-POP data product for the year 2020 at 30 arcsecond (0.008°) resolution.

3.2 Nighttime light features

We create non-linear NL features from the Visible Infrared Imaging Radiometer Suite (VI-
IRS) average masked data product (32). We use the V2.1 annual composite from the year
2019. The data has global coverage at 15 arcsecond (0.004°) resolution. Radiance units
are expressed as nW /cm?/sr. We assign the small number of pixels with negative radiance
values to have a value of zero.

We create features that flexibly characterize the distribution of the NL data using indi-
cator variables that represent whether the radiance value of each NL pixel falls into each of
21 bins. The first bin represents radiance values of zero. The next 20 bins represent radiance
values that fall into evenly spaced quantiles of the global distribution of positive NL values.
Analogous to aggregating the daytime imagery features to the polygon level, we calculate
the population-weighted average value for each of the 21 bins for a given polygon. These
polygon-level NL features denote the fraction of each polygon’s population that is covered
by NL values represented by each of the 21 bins. This approach allows NL to associate
non-linearly with the outcome variables in our linear models.

We compute average nighttime light features for polygons by weighting by population in

our main analysis. Thus, changes in VIIRS grid cell sizes caused by latitude do not affect
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these feature values (64), since total population in each cell is measured independently
of pixel area. We also verify that population-weighted features, which should have higher
performance than area-weighted features because HDI is measured on a per-person basis (not
per-area) do indeed have higher performance. For within-country provincial performance,
R? = 0.52 using population-weighted features, and R? = 0.24 using area-weighted features,
which were constructed accounting for the change in the VIIRS grid cell size with latitude.

Use of the “average masked” VIIRS data product should generally have background,
biomass burning, and aurora radiance removed (33). To the extent there is still unmasked
flaring in the NL data, we anticipate that the use of population-weighting when constructing

the NL features minimizes this bias, as oil producing areas are typically sparsely populated.

4 Analysis

4.1 General model specification

All models are trained at either the country or province level and use either the 4000 MO-
SAIKS daytime imagery features, the 21 NL features, or both. We train models using a
five-fold cross-validation procedure with basic ridge hyper-parameter tuning. Data are split
by country during cross-validation to account for spatial autocorrelation and to ensure that
the model is predicting provincial outcomes when no observations from within the same
country have been observed. We apply a clipping procedure that restricts model predictions
to the minimum and maximum value observed in the training data. Hyper-parameter tuning
is done with this clipping procedure. We allow for a different hyper-parameter between the
MOSAIKS and NL feature sets, though this has only a minor impact on our results.

The general linearized model, representing Eq. 3, that we implement is

Y = o+ B1 Xnosarxs + B2 Xy + € (4)

Where Y is used to refer to the HDI, IWI, or NL labels interchangeably. We use this same
model but predict each outcome separately. X057k is the matrix of daytime MOSAIKS
features and X, is the matrix of nightlight features. We learn 5y, 31, and (35 using ridge
regression, following Rolf et al. (72). When predicting the NL outcome, we always exclude
the Xy, feature matrix. For each outcome, we report performance for models trained at the
country, province, and within-country levels (Table S1). Model training is further detailed

in Supplementary Information S6.1.
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4.2 Performance metrics

For each model specification, we report two metrics, both of which are used in the literature.
The coefficient of determination (R?), used to evaluate related models by Chi et al. (17)
and others, describes the accuracy of the raw model predictions and is a direct measure
of model skill. The square of the correlation coefficient (p?), used by Jean et al. (20) and
others, scores performance after allowing model predictions to be linearly re-scaled before
they are compared to observed values. We calculate both of these metrics when evaluating
the full variation in labels and when decomposing the variation in labels into components
that are visible within-countries or within-provinces (in contrast to between-countries and

between-provinces).

Full variation performance The “full variation” performance metrics describe how well
we estimate subnational HDI globally when we use all information available to us. To
calculate full variation performance, we calculate p? and R? on the predicted and observed
values of subnational HDI directly. This evaluates the ability of model predictions to capture
the total variation in the observed values — i.e. variation across countries, across provinces
within countries, and across municipalities or DHS clusters within provinces. Because most
of the variation in HDI and other outcomes is between countries (Figure 2A-B), a large
portion of the model’s full variation performance comes directly from the mean-anchoring
procedure (when it is used). Thus, the full variation performance metrics do not precisely
evaluate the model’s ability to predict local variation in isolation, and so they are not our
preferred evaluation metric for understanding model performance within countries. Instead,

we focus our analysis on within-country and, when applicable, within-province performance.

Within-country performance The “within-country” performance measures the amount
of variation in the provincial deviations from the country mean that can be explained by the
model. This metric evaluates the ability of the model to explain local variation in the outcome
by removing large-scale variation in the outcome across countries in the demeaning step
before predictions and observations are compared. To calculate within-country performance,
we calculate p? and R? after demeaning predictions and observed values at the country level
(i.e., after subtracting the predicted and observed country average value from each predicted

and observed data point, respectively).

Within-province performance The “within-province” performance metric evaluates the
ability of the model to explain hyper-local variation in the outcome, such as which DHS

clusters within each province have higher or lower IWI. It does this by removing all between-
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province variation in the predicted and observed values before they are compared. To calcu-
late within-province performance, we calculate p? and R? after demeaning predictions and

observed values at the province level.

4.3 Model evaluation

Evaluation of HDI at the same provincial resolution as model training When
reporting model performance at the same resolution as training (Figure 2 top row, Table
S1 upper section, and Table S3), we evaluate predictions from the validation folds of a five-
fold spatial cross-validation procedure in which models are trained and evaluated on data
from non-overlapping sets of countries. This enables more observations to be used when
evaluating model performance. We also evaluate models on a held-out test set of countries
that were not included when tuning the HDI model. Before analysis, we set aside =~ 20%
of the provincial HDI data to be used as a final evaluation test set by randomly sampling
35 countries and their respective provinces. Evaluation on this test set was conducted after
all hyper-parameter tuning and analysis decisions were made. We find that performance is
not meaningfully different in the validation and tests sets, which indicates that the models
evaluated on the validation folds did not over-fit to the data (Table S2).

Evaluation of HDI, IWI and NL at finer resolution than model training In the
downscaling experiments, we evaluate performance using fine-resolution municipal or DHS
cluster observations that were not used for model training or tuning. After tuning the model
using cross-validation we retrain the model using the optimal hyper-parameters on all the

province or country observations before predicting at downscaled resolution.

4.4 Mean-anchoring

In our primary within-country model, we anchor our estimates to country or province-level
means depending on the experiment. Estimates from models trained on provincial or national

observations in “levels” (Table S1) are never mean-anchored.

Anchoring to country means The procedure for anchoring to the country mean is
illustrated in the top row of Figure 2, where we evaluate performance at the same resolution
as model training. Our within-country model is trained to predict within-country anomalies,
so in order to predict HDI in “levels” (Figure 2A), we add back the known country average
HDI (Equation S2). This procedure enables us to calculate full variation performance (Figure

2A) but has no impact on the reported within-country performance (Figure 2B).
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Anchoring to provincial means In the downscaling application, our goal is to produce
the best possible estimates at fine resolution. Thus, when producing downscaled estimates
of IWI and HDI, we anchor our predictions to the observed provincial value of the outcome
(Equation S8). This re-centering procedure impacts the full variation performance and the
within-country performance but does not impact the within-province performance (Table
S1). Note that we anchor municipal NL estimates to country means, rather than provincial
means, because we find that this improves the estimates (Supplementary Information S6.3).

Mean anchoring and model evaluation are further detailed in Supplementary Information
S6.1.

4.5 Producing downscaled estimates of HDI

To produce fine-resolution estimates of HDI, we take the local estimates of HDI that we
predict using satellite imagery and mean-anchor them to province-year values from 2012-
2021. This approach uses existing provincial values to explain provincial HDI over space and
time, and then supplements that with information on local (i.e. within-province) variation
in HDI predicted by the satellite imagery. This approach assume that the spatial pattern
of HDI within provinces does not change over time; relaxing this assumption gives similar
results (Supplementary Information S3). While in principle we could apply this approach
to make estimates in years earlier than 2012, going farther back in time may make the
assumption of a constant pattern of within-province HDI less strong. The year 2012 is the

earliest for which we evaluated sub-provincial variation using IWI data.

Municipality-level HDI We use the within-country model specified in Equation Sla
to estimate HDI at the municipality level, using a municipality (ADM2) shapefile from
geoBoundaries (65). We anchor municipality estimates by centering predicted deviations on
the observed province-level HDI value for each year, following the procedure for downscaled
IWTI predictions (Equation S8). We do not release HDI estimates for municipalities that
cannot be linked to a parent province with a province-level HDI estimate from Smits and

Permanyer (7) because there is not a known provincial value to anchor on.

Grid-level HDI To produce 0.1° x 0.1° estimates of HDI, we similarly use the within-
country model specified in Equation Sla. We make predictions using MOSAIKS features
at 0.1° x 0.1° resolution. This results in gridded estimates of HDI at approximately 10km?
resolution. We mask out locations where humans are not believed to be settled based on

GHS-POP (46) (keeping areas with population > 0) and then mean-anchor our tile estimates
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such that the population-weighted average of the grid tiles within each province matches

known provincial HDI values.

4.6 Targeting applications

In Figure 5 we evaluate how access to more granular HDI data improves the number of
program recipients correctly targeted. We assume the goal is to provide a uniform transfer
to those at or below the tenth percentile of the HDI distribution. Following Smythe and
Blumenstock (2022) (8), the program is geographically targeted and all individuals within
targeted regions receive the same transfer, a practice used to reduce administrative costs
(47, 66). If the administrator has access to only provincial HDI measures, then eligibil-
ity is determined at the province-level. Alternatively, using our municipal estimates, the
administrator is able to target the program at the municipality level.

We evaluate performance using the census-derived municipality-level HDI measurements
(9) — which are not used to train our model. These are the same census-derived measures
used to evaluate performance in Figure 2C-D and discussed above (Methods 2.3). Because
these estimates are municipality-level aggregates, we simulate HDI for individuals — i.e.
the targets of the policy — by imposing additional assumptions about the distribution of
HDTI across individuals within a municipality. We assume HDI within each municipality has
a truncated normal distribution (bounded between 0 and 1) that is centered around the
census-derived municipality mean (Figure S6).

The degree to which municipal HDI measures improve targeting performance relative to
provincial measures depends somewhat on the assumed dispersion of individual HDI values
within municipalities (Methods 4.6). Assuming lower (higher) dispersion leads to larger
(smaller) absolute — though similar proportional — gains (Figure 5E and Figure S6).

When evaluating performance using a receiver operating characteristic curve (ROC)
curve, (Figure 5F) the aim is still to provide assistance to the 10% of individuals with the
lowest HDI, but the fraction of the total population targeted is modified to examine how the
true positive (individuals with low HDI correctly given aid) and false positive (individuals
with HDI above the desired cutoff incorrectly given aid) rates change accordingly. Moving
from left to right on the x-axis in Figure 5F implies a greater number of people receiving
assistance. The area under the curve (AUC) shows the efficiency of the targeting. The AUC
increases by 0.1 (+13% from 0.76 to 0.86) when municipal data are used instead of provincial
data, indicating improved targeting performance when the budget constraint is varied.

As an additional robustness check, we repeat this policy targeting experiment using

Indonesia municipality data (63) and observe a similar increase in AUC under the same
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735 assumptions (11% from 0.62 to 0.69). This is shown in Figure S11.

30



736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

754

755

756

757

758

759

Code availability Replication code is available at

github.com/Global-Policy-Lab/hdi_downscaling_mosaiks.

Data availability All data used in this analysis, other than the DHS cluster-level IWI data
from the Global Data Lab, is from free, publicly available sources. Details on how to access
data for replication can be found at github.com/Global-Policy-Lab/hdi_downscaling_

mosaiks. HDI estimates are available at mosaiks.org/hdi.
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Predicted at province level (n=1,381)

Full variation performance

Within-country performance

p2 R2 p2 R2
(1) 2 3) (4)
HDI trained at:
Within-country (n=1,363) | 0.96 0.96 0.52 0.52
Province level (n=1,381) 0.83 0.83 0.44 0.24
Country level (n=145) 0.74 0.74 0.28 <0

Predicted at municipality level in Indonesia (n=505)

Within-country performance

Within-province performance

p R? 0 R?
(3) (4) () (6)
HDI trained at:
Within-country (n=1,363) 0.62 0.61 0.53 0.53
Province level (n=1,381) 0.5 0.37 0.51 0.37
Country level (n=145) 0.35 <0 0.36 <0

Predicted at municipalit,
Within-country performance

y level in Brazil (n=5,584)
Within-province performance

p RZ p2 R2
(3) (4) () (6)
HDI trained at:
Within-country (n=1,363) 0.48 0.48 0.33 0.20
Province level (n=1,381) 0.46 0.36 0.31 <0
Country level (n=145) 0.29 <0 0.18 <0

Predicted at municipality level in Mexico (n=2,457)

Within-country performance

Within-province performance

p2 RZ p2 R2
®3) (4) () (6)
HDI trained at:
Within-country (n=1,363) 0.5 0.45 0.31 0.29
Province level (n=1,381) 0.31 0.31 0.26 0.23
Country level (n=145) 0.16 <0 0.12 <0

Predicted at DHS cluster level (n=51,996)

Full variation performance

Within-country performance

Within-province performance

p2 R? [)2 RQ P2 R?
(1) (2) ®3) (4) () (6)
IWI trained at:
Within-country (n=_862) 0.71 0.67 0.56 0.56 0.36 0.36
Province level (n=862) 0.44 0.28 0.21 0.08 0.24 0.1
Country level (n=85) 0.31 <0 0.13 <0 0.13 <0

Predicted at municipality level (n=62,536)

Full variation performance

Within-country performance

Within-province performance

p2 R2 pz RQ /)2 RQ
NL trained only on (1) (2) 3) (4) (5) (6)
MOSAIKS at:
Within-country (n=2,852) | 0.73 0.7 0.64 0.63 0.61 0.57
Province level (n=2,852) 0.65 0.61 0.57 0.45 0.53 0.35
Country level (n=170) 0.44 0.3 0.36 0.08 0.31 <0

Table S1: Performance for models trained to predict HDI, IWI, and population-weighted
nightlight luminosity (NL). Models for HDI and IWI use a combination of MOSAIKS and
population-weighted NL features. We show performance evaluated at the province level for
HDI and evaluate downscaled performance for HDI, IWI, and NL. Performance scatters from
the within-country models are shown in Figure 2. All predictions are made for the year 2019.



Predicted at province level (n=378)

Full variation performance  Within-country performance
p2 R2 p2 R2
(1) (2) (3) (4)
HDI trained at: Features
Within-country MOSAIKS+NL || 0.97 0.97 0.43 0.42
Province level MOSAIKS+NL || 0.87 0.87 0.4 0.09
Country level MOSAIKS+NL || 0.79 0.79 0.29 <0

Table S2: This is similar to the upper portion of Table S1 except that here we have evaluated
on a 35 country (=~ 20%) test set that was not used during model tuning. The modest
reported differences in the validation-set and test-set performances when evaluating within-
country performance could be due to either noise from the small sample size of the test set,
or to overfitting. We test this and find that noise from the small test set is likely to be
the explanation. The average within-country test-set performance across 30 random 80%
validation-set and 20% test-set splits, using the same training and evaluation procedure, is
very close to that of the original validation set: R? = 0.51 for MOSAIKS + NL.



Predicted at province level (n=1,381)
Full variation performance — Within-country performance
2 2

P R P R
1) 2 ®3) (4)
HDI trained at: Features
Within-country (n=1,363) MOSAIKS+NL || 0.96 0.96 0.52 0.52
MOSAIKS 0.95 0.95 0.42 0.42
NL 0.95 0.95 0.45 0.45
Province level (n=1,381) MOSAIKS+NL || 0.83 0.83 0.44 0.24
MOSAIKS 0.76 0.75 0.0.31 <0
NL 0.60 0.60 0.44 <0
Country level (n=145) MOSAIKS+NL || 0.74 0.74 0.28 <0
MOSAIKS 0.62 0.58 0.16 <0
NL 0.59 0.53 0.44 <0
Predicted at province level (n=1,381)
Full variation performance  Within-country performance
Y R2 0 R?
W @) ®) )
Life expectancy trained at: Features
Within-country (n=1,363) MOSAIKS+NL | 0.92 0.92 0.05 0.05
MOSAIKS 0.92 0.92 0.01 0.01
NL 0.92 0.92 0.05 0.05
Province level (n=1,381) MOSAIKS+NL | 0.69 0.69 0.03 <0
MOSAIKS 0.66 0.66 0.02 <0
NL 0.43 0.43 0.06 <0
Country level (n=145) MOSAIKS+NL | 0.6 0.57 0.02 <0
MOSAIKS 0.57 0.53 0.02 <0
NL 0.42 0.32 0.06 <0
Predicted at province level (n=1,381)
Full variation performance  Within-country performance
ﬂ2 R? p2 R?
W @) ) @)
Mean years schooling trained at: Features
Within-country (n=1,363) MOSAIKS+NL || 0.93 0.93 0.51 0.51
MOSAIKS 0.91 0.91 0.41 0.41
NL 0.92 0.92 0.45 0.45
Province level (n=1,381) MOSAIKS+NL | 0.75 0.75 0.49 0.43
MOSAIKS 0.7 0.7 0.41 0.31
NL 0.56 0.56 0.44 0.26
Country level (n=145) MOSAIKS+NL | 0.73 0.72 0.46 0.3
MOSAIKS 0.6 0.6 0.24 <0
NL 0.56 0.53 0.42 <0

Predicted at province level (n=1,381)
Full variation performance  Within-country performance
5 .

P R s R?
(1) 2 3) (4)

Expected years schooling trained at: Features
Within-country (n=1,363) MOSAIKS+NL | 0.9 0.9 0.28 0.27
MOSAIKS 0.89 0.89 0.27 0.26
NL 0.88 0.88 0.15 0.15
Province level (n=1,381) MOSAIKS+NL | 0.56 0.56 0.21 0.09
MOSAIKS 0.5 0.5 0.2 0.06
NL 0.39 0.39 0.15 <0
Country level (n=145) MOSAIKS+NL || 0.54 0.53 0.2 <0
MOSAIKS 0.44 0.41 0.07 <0
NL 0.38 0.35 0.14 <0

Predicted at province level (n=1,381)
Full variation performance  Within-country performance

2 R? P R?
(1) 2 ®3) 4)
GNlIpc trained at: Features

Within-country (n=1,363) MOSAIKS+NL | 0.97 0.97 0.56 0.56
MOSAIKS 0.95 0.95 0.4 0.4

NL 0.96 0.96 0.55 0.55

Province level (n=1,381) MOSAIKS+NL | 0.79 0.79 0.36 <0
MOSAIKS 0.68 0.68 0.25 <0

NL 0.59 0.59 0.52 <0

Country level (n=145) MOSAIKS+NL || 0.56 <0 0.23 <0
MOSAIKS 0.46 <0 0.1 <0

NL 0.31 <0 0.12 <0

Table S3: Similar to the top section of Table S1 except that here we show performance for
each HDI component and also show performance with different combinations of features.



HDI Life expectancy Mean years schooling Expected years schooling

Life expectancy 0.79

Mean years schooling 0.84 0.52

Expected years schooling 0.82 0.57 0.61

GNIpc 0.62 0.46 0.5 0.44
Within-country HDI Life expectancy Mean years schooling Expected years schooling
Life expectancy 0.31

Mean years schooling 0.82 0.12

Expected years schooling 0.65 0.1 0.46

GNIpc 0.17 0.03 0.1 0.07

Table S4: Individual components of HDI tend to be correlated. We report the squared
Pearson’s correlation coefficient (p?) between HDI and its components at the province level.
We also report the squared correlation coefficients after demeaning provincial observations
by country. This p? metric used here is intended to be comparable to the metrics reported
in Tables S1 and S3. Notably, within-country correlation between HDI and GNIpc is low,
yet we are still able to predict those separate outcomes with considerable skill.

Predicted at province level

Full variation performance  Within-country performance
p2 RQ /)2 RZ
1) ) 3) 4)
HDI trained at: Features
Within-country (n=1,363) NDVI+NDWI+NDBI 0.92 0.92 0.03 0.02
NDVI+NDWI4+NDBI+MOSAIKS+NL || 0.96 0.96 0.52 0.52
MOSAIKS+NL (for reference) 0.96 0.96 0.52 0.52

Table S5: Performance for models trained with additional features at the provincial level.
Specifically, we use Sentinel 2A imagery downloaded at approximately 500m resolution (67).
Following, (22) we process Sentinel 2A imagery to calculate the Normalized Difference Veg-
etation Index (NDVI), Normalized Difference Water Index (NDWI), and Normalized Dif-
ference Built-up Index (NDBI). We then create population-weighted features in the same
manner as done with the NL features (see Methods 3.2).
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Figure S1: An illustration of generating MOSAIKS features for two cartoon im-
ages, and using the features to predict HDI and other example outcomes. (A)
MOSAIKS random convolutional features capture the information within satellite imagery
by measuring how similar each image is to a fixed set of small patches of imagery. Similarity
is measured mathematically using a moving-window dot product, or “convolution.” The
parts of each image that are similar to each patch are shown, with greater similarity leading
to larger feature values. The green patch, for example, is similar to the parts of the imagery
containing green trees. Image 1 has a greater feature value for this patch because it has
more trees than image 2. Collectively, MOSAIKS features capture information on the color
and texture of the imagery, which represent the content of the imagery (e.g., trees, roads,
and lakes). (B) Features associate differently with different outcomes: images that are more
similar to the green patch tend to have higher forest cover, and images that are more sim-
ilar to the grey patch tend to have more roads. Regressing HDI onto these features learns
how higher or lower feature values associate with higher or lower HDI, and in turn, how to
predict HDI using these features. Each dot in each scatter represents an image, and the
arrow represents the direction in the feature space of increasing forest, roads, or HDI. The
direction of the arrow is learned by the regression. For more details on MOSAIKS features
and how they can be used to predict a broad range of outcomes see ref. (12).
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Predicted NL at the municipality level
536)

(=625 (n=62,

B Observed NL at the municipality level C
2,536)

Observed NL rank Predicted NL rank
4

D (n=254) E (n=254)

50

100

150

200

250

Observed NL rank
F (n=17) G Predicted NL rank

(n=17)

oy

\‘\

Within-province R2 = 0.2 (\3
12

Within-province p? = 0.68
14
/ 16
.

Figure S2: A MOSAIKS model trained at the province level can effectively pre-
dict NL at the municipality level. These maps show population-weighted NL luminos-
ity that has been predicted using MOSAIKS. (A) Population-weighted NL averaged up to
the provincial polygon for 2019. These are the data used to train the model. (B) True
population-weighted NL at the municipality level. (C) Predicted population-weighted NL
at the municipality level. (D) Municipalities ranked by luminosity within Texas, a sin-
gle province in the United States. (E) Predicted nightlight luminosity rank within Texas.
(F) Municipalities ranked by luminosity within Oromia, a single province in Ethiopia. (G)
Predicted nightlight luminosity rank within Oromia. Panels D-G illustrate the downscaling
efficacy of MOSAIKS. Each of these polygons (Texas and Oromia) represent a single training
observation. All predictions come from a within-country model with predictions anchored
to the country mean. Note that panels A-C use the same colorbar. See Table S1 for detailed
performance metrics.
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A Municipality-level HDI B Grid-level HDI

Hispaniola

150 km 150 km

Bay of Bengal

Gulfof Guinea

0.4 05 0.6 0.7 0.8
HDI

Figure S5: Regional maps of HDI estimates at the municipal and grid levels. (A-
B) HDI estimates on Hispaniola (C-D) HDI estimates around the Bay of Bengal (E-F) HDI
estimates around the Gulf of Guinea. All panels show country, province, and municipality
borders as solid lines. Dashed lines show major roadways. Grey in the grid-level estimates
indicates land area believed to be unsettled (46).
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Figure S6: The improvement in geographic targeting efficacy from using mu-
nicipal values (ADMZ2) depends on the assumed variability of individual-level
HDI within municipalities. ROC curves as in Figure 5F for different assumed standard
deviations (SD) of individual-level HDI within municipalities. Using municipal instead of
provincial HDI estimates increases the AUC by 0.11 (+14% from 0.81 to 0.92) when the
within-municipality HDI standard deviation is assumed to be 0.05 and by 0.06 (+9% from
0.65 to 0.71) when it is assumed to be 0.2. Histograms show the distribution of simulated
individual-level HDI for each assumed SD, using a truncated normal distribution centered
on the municipal values for Mexico calculated by Permanyer (9).
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Figure S7: Heterogeneity of HDI and IWI predictions. On the left we show het-

erogeneity in HDI performance evaluated at the province level.

On the right, we show

heterogeneity in IWI performance evaluated at the DHS cluster level. (A) HDI performance
as a function of parent country HDI. (B) IWI performance as a function of parent country
HDI. (C) Mapped performance of HDI within-countries (within-country MOSAIKS + NL
model). (D) Mapped performance of IWI within-provinces (within-country MOSAIKS +
NL model). (E) Standard deviation of provincial HDI by country (F) Standard deviation of
DHS cluster-level IWI within-provinces by country.
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Figure S8: Prediction of provincial HDI from 2012 to 2021 using satellite imagery.
(A-B) This figure is a replication of Figure 2A-B evaluated using a panel of provincial
HDI from 2012-2021 and time static VIIRS features from 2019. Full variation performance
is shown on the left and within-country performance is shown on the right. Each point
represents a provincial-year observation and points are colored by year. Predicted provincial

values are mean-anchored to the known country-year value.

(C-D) This is a a similar

replication of Figure 2A-B trained and evaluated using annually varying VIIRS features.
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Figure S9: Municipality-level HDI estimates can be partially predicted by other
variables estimated at global scale. Each point in each scatter represents the estimated
HDI value and the value of another globally available variable for a municipality. See Sup-
plementary Information S4 for details.
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Figure S10: Model weights for the IWI model are similar when trained at the
provinicial or DHS cluster level. (A) We show that estimates of IWI are nearly identical
from the model with reduced dimensionality and the primary IWI model specification. (B)
Each point represents the contribution to the model of a single feature. The points are colored
by their rank order importance after principle component analysis. R? and p? are weighted
by the explained variance under PCA. See Supplementary Information S5 for additional
details.
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Figure S11: Additional illustrative application: targeting policy in Indonesia. Iden-
tical analysis as in Figure 5 using data from Indonesia. (A) HDI for 2019 at the province
level of observation (7) (B) HDI estimates for 2019 at the municipality level produced in
this paper. (C) Lowest HDI provinces that would be targeted until 10% of the country’s
population is reached. (D) Lowest HDI municipalities that would be targeted until 10% of
the country’s population is reached. Hashing in (C) and (D) shows the marginal province
and municipality that would be partially targeted. (E) Targeting accuracy (true positive
rate) as a function of the assumed standard deviation of HDI within each municipality. (F)
ROC curves illustrate the degree of improvement that comes with targeting at the munici-
pality level relative to the province level (assumed SD of 0.1 within each municipality).



= 51 Supplementary discussion of the co-production of

- the analysis and estimates of HDI

o3 This analysis and the associated estimates of the UN HDI were co-produced by a team of
aa academics and practitioners aiming to develop measures of HDI that reflect the understand-
o5 ing and needs of both practitioners and policymakers (68, 69). The effort was initiated by
o6 researchers and practitioners from the United Nations Development Programme (UNDP),
a7 coordinated by Dr. Heriberto Tapia, head of research for the Human Development Report
as  Office and a co-author of this study. The Human Development Report Office is responsible
oo for producing and publishing official HDI statistics for the United Nations. Members of the
o UNDP approached academic members of the team in 2021, with the goal of increasing the
se1 resolution of the HDI globally based on the growing demand for consistent disaggregated data
2 following an impartial global standard. The combined team (practitioners and academics)
ee3 jointly refined a project design and secured grants from third-parties and funding from the
s UNDP. Project implementation, writing, and dissemination was a joint and iterative process
ses involving all team members.

086 Throughout the project, the team worked deliberately to ensure mutual knowledge trans-
se7 fer, with the academics learning what applications and aspects of modeling are most impor-
ss tant to practitioners, and the practitioners learning the technical aspects of the model’s
w0 development. The practitioners and academics collectively identified model performance as
wo & primary priority, with model generalizability, simplicity, transparency and interpretability
o1 as additional design goals. Motivated by the results of this project, the UNDP is engaging
o2 in follow-on work that predicts the United Nations Multidimensional Poverty Index using
o3 the methods developed here. Academic members of our team are supporting and advising
os  this follow-on work in an effort designed to solidify the transfer of this technology to UNDP
ws and to build UNDP’s technical capacity internally.

996 The UNDP team is particularly interested in satellite-based measurements of HDI for
o7 three reasons. First, satellite-based measurements adhere to relatively impartial technologically-
ws led standards that facilitate international comparisons, a key attribute of UN indicators.
wo Second, the integration of satellite imagery with machine learning creates new opportunities
woo  for using the HDI in policymaking. In the short term, this new data can facilitate planning
wor  and resource allocation within countries. In the medium term, these estimates should be-
w2 come a key input for analyzing the interaction between socioeconomic and geophysical data
w3 in studying the effects of climate change on people. This will be crucial for designing a new
ws  generation of policy responses through a global lens. Third, the availability of a database

wos and a replicable method for generating these estimates is expected to address equity issues.
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In a rapidly changing world, there is an increasing need for information for decision-making.
Wealthier countries have high-quality surveys and the resources to power a data revolution.
In contrast, poorer countries and communities, where data is most needed, face significant
constraints in both surveys and analytical capacity. The availability of both a database and
a standard, replicable method for generating these estimates is expected to be a valuable

global public good.

S2 Supplementary discussion of model performance

Model performance across regions Analyzing the performance of MOSAIKS models
across space, we find that performance tends to be the highest in low income regions, espe-
cially sub-Saharan Africa, where such measurements are likely to be of greatest value (Figure
S7A,C). Specifically, we find that MOSAIKS models explain more variation of province-level
HDI deviations from the country mean in areas of low human development (HDI < 0.6,
R? = 0.57) than in areas of medium or high human development (HDI > 0.6, R* = 0.43,
Figure STA). We also see this pattern in predictions of DHS cluster-level IWI deviations
from the province mean, with performance increasing monotonically from R? = 0.09 for
countries with the highest HDI values to R? = 0.52 for countries with the lowest HDI values
(Figure S7B,D). This improved performance may be due to increased variance of HDI and
IWT values within these countries (Figure STE-F), which provides more variation to exploit
during model training. Alternatively, variations in wellbeing being may be relatively easier
to see from satellite imagery in areas with lower human development. Relatedly, model per-
formance for both HDI and IWT is higher in regions with higher inequality, highlighting the
particular value of these estimates in regions of high inequality (p < 0.01 for both HDI and
IWI; pearson’s p is 0.33 for HDI and 0.53 for IWI comparing the within-country standard
deviation of provincial values and the within-country predictive performance, measured by
p°).

Motivated by these differences in performance across regions, we test whether the re-
lationship between image features and HDI varies spatially. We do so by training an ad-
ditional model that allows the MOSAIKS features to have a continent-specific relationship
with provincial HDI. We observe a small drop in within-country performance relative to the
baseline model (from R? = 0.52 to 0.49), indicating that increasing the complexity of the

model in this way does not improve out-of-sample performance.

Value from combining daytime and nighttime imagery The MOSAIKS-based ap-

proach can use image features from multiple sensors simultaneously when training models,
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a property that is used throughout this analysis to predict HDI from both daytime and
nighttime imagery. Analyzing the performance of MOSAIKS models based on the type of
satellite imagery used, we find that daytime and nighttime imagery together explain 7%
more variation in provincial HDI deviations from the country mean than does nighttime im-
agery alone, improving model fit by 16% from R? = 0.45 to 0.52 (Table S3). This improved
performance from using daytime and nighttime imagery together is strongest in regions of
low human development (HDI < 0.6) (Figure STA), consistent with a previous finding that
models using daytime imagery outperform models using nighttime imagery when predicting
assets of the poorest populations in five African countries (20). Analyzing model perfor-
mance for each component of HDI, we see that the improved performance predicting HDI
using daytime and nighttime imagery stems from improved or comparable performance pre-
dicting each component of HDI (largest change in R? is 0.12 for expected years of schooling,
smallest is no change in R? for life expectancy, Table S3).

In exploratory analysis of subsamples, we have observed that in several middle income
countries with HDI between 0.7 and 0.8 (including those where we have municipal variation
in HDI), within-country R-squared is sometimes higher when models are trained on nighttime
imagery alone, relative to models that combine MOSAIKS and nighttime imagery. However,
for other parts of the HDI distribution and on average, as described above, MOSAIKS
features appear to add performance to the full model. We currently cannot explain why
a nightlights-only model performs best for these particular countries when predicting HDI,
and we do not know if this phenomena extends to non-HDI outcomes. In future work, we
hope to present a more complete analysis that more fully evaluates how data from many
satellite sensors, including others not used in this analysis, can be effectively and efficiently

combined in SIML applications.

Model performance training at the country-level To evaluate performance in an
extremely data-limited setting, we re-train our model using only country-level data. Despite
a low number of training observations (N = 85 to 170 across experiments) these models
maintain 36% to 54% of the performance of our preferred models trained using provincial
deviations from the country mean (N = 862 to 2,852) when evaluated on the relative ordering
of predicted and observed values using p? in all experiments (Table S1). This indicates
that our approach can achieve competitive predictive performance detecting locations with
relatively higher and lower HDI even when trained on few and coarse observations of the
variable of interest. Performance predicting the exact level of HDI is lower, especially when
evaluated within-country, likely due to the large difference in the magnitude of HDI variation

across countries versus within countries, discussed above (Figure 2A,B).
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S3 Supplementary analysis of temporal changes in the
local distribution of HDI

We focus this manuscript on estimating fine-resolution spatial variation in HDI because ex-
isting provincial measures do not resolve within-province differences in human wellbeing,
and because spatial variation in HDI is generally larger than temporal variation. We con-
struct fine-resolution global estimates of HDI from 2012-2021 by combining time-varying
estimates of provincial HDI from (7) with time-constant estimates of the local (i.e. within-
province) distribution of HDI based on satellite imagery. Here, we conduct an additional
experiment where we test whether allowing HDI to vary over time locally might improve
model performance. Specifically, we compare our primary estimates (Figures 2 A-B and S8
A-B), which are made assuming a time-constant distribution of provincial HDI with another
set of estimates that are made allowing for a time-varying distribution of provincial HDI
(Figure S8 C-D). We find that these two approaches have near identical performance pre-
dicting historical HDI from 2012-2021. This motivates our use of the simpler model that
assumes an approximately time-constant distribution of HDI as our primary specification
when constructing municipal and grid-level estimates. Details of this analysis are described
below.

To allow estimates of the local variation in HDI to change over time, we estimate a
model similar to our primary specification (Equation Sla) but extended to train on and
predict a global panel of HDI at the provincial level from 2012-2021. This model specifies
HDI in each province and year as a linear function of VIIRS NL features for the relevant
year and the MOSAIKS features from 2019. This allows the time-varying NL features in
the model to predict changes over time in the distribution of provincial HDI. We do not
allow the MOSAIKS features for the high-resolution visual imagery to change over time
due to image data availability and computational limitations. In the models that allow for
both time-constant and time-varying local HDI, we mean-anchor provincial estimates at the
known national mean value for each year. Model evaluation using spatial cross-validation is
conducted in the same way as in Figure 2, except that instead of evaluating on observations
from a global cross-section of 2019 provincial data we evaluate on a global panel of provincial
observations from 2012-2021.

We find that our primary model performance predicting a global cross-section of 2019
data (Figure 2 A-B) is similar to the performance of the same model predicting a global
panel of HDI from 2012-2021 (Figure S8 C-D), as well as the performance of a similar model
that allows for time-varying changes in local HDI predicting a global panel of HDI from 2012-
2021 (Figure S8 A-B). Both the model assuming time-constant HDI estimates and the model
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allowing for time-varying HDI estimates achieve an R? = 0.96 explaining provincial variation
in the entire sample from 2012 — 2021. The former achieves an R? = 0.53 explaining within-
country variation in the same sample, and the latter achieves an R? = 0.54 — an improvement
of 2% from allowing the NL features to change over time. The model performance evaluated
for each year is also similar for both approaches — with R?s ranging between 0.96-0.97 for
explaining variation across all provinces, and R?s between 0.52-55 for explaining provincial
variation within countries.

The similarity in performance between the model that uses time-constant and time-
varying local HDI estimation suggests that the local-scale variation we predict with satellite
imagery (here, within-country variation) is nearly constant over time for the period of ob-
servation (2012-2021). This time-consistency is further evidenced by the relatively stable
performance predicting within-country variation each year, using models both with time-
varying and time-constant NL features. Indeed, after removing country-specific national
time trends, the spatial variation in HDI within each country across provinces is 60x larger
than the respective temporal variation. The relatively large amount of variation in HDI
across space and the relative time-consistency of the local pattern of HDI both motivate the

focus of this analysis on increasing the spatial resolution of HDI globally.

S4 Supplementary discussion of model transparency

and interpretability

The models employed in this analysis were designed to maximize predictive performance,
based on co-development with our team members at the United Nations Development Pro-
gramme (Supplementary Information S1) and feedback from other practitioners, who gen-
erally identified model performance as the most important property of the model. Other
important aspects of model development are model transparency and interpretability (57)
(Figures S1 and S9).

Model transparency Model transparency is the ability to clearly convey the model, its
design, and its estimation (57). Transparency is a strength of the MOSAIKS approach used
and developed here. The features are can be precisely described mathematically (12) and
conveyed simply: each feature measures the similarity between a small patch of imagery
and the image of interest, where similarity is measured using a moving dot product (i.e.,

convolution) of the patch over the imagery. This is illustrated in the cartoon developed in
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Figure S1, which shows how three example patches capture the amount of trees, roads, and
lakes in imagery. One explanation of how the MOSAIKS approach works is that the model
predicts HDI in new areas where HDI is not known by assigning the (weighted) average
value of HDI from places where HDI is known that look similar in the imagery (see Supple-
mentary Note 2.3 in (12) for details). The linear model structure is also straightforward,
especially compared with more complicated structures like a deep convolutional neural net-
work or gradient boosted decision tree. We relate the image features to HDI using a linear
ridge regression, which, unlike many more complex models, has an analytical solution. The
simplicity and transparency of the MOSAIKS approach makes it straightforward to fully
describe, understand and use (12). The work in this manuscript extends the ability of the
MOSAIKS approach to learn the relationship between imagery and an outcome of interest

using labels from any set of political boundaries, while maintaining a transparent design.

Model interpretability Model interpretability is the ability to understand what aspects
of the input data are responsible for model predictions (57). To better interpret what aspects
of the imagery are captured by our HDI estimates, we examine whether our municipality
HDI estimates are correlated with known variables that can be constructed at the municipal-
ity level (Figure S9). Specifically, we construct municipality-level estimates for population
density, road density, building density, terrain ruggedness, forest cover, crop cover, maximum
temperature, and precipitation. Data for each of these variables is publicly available. We
create a measure of each variable at the municipal level using the source data product and

our municipality (ADM2) shapefile from geoBoundaries (65).

Population density Municipal population density data were constructed as the popula-
tion count from GHS-POP divided by the area of the municipality (62).

Building density Building density data at the municipality level were constructed using
the gridded building data product from Microsoft Bing Maps (& 0.2 x 0.2 degree resolution)
(70). This data is relatively coarse compared to the municipality size, so we assume a uni-
form distribution of buildings within the source raster when averaging building density over
municipal polygons. We take this approach for all raster datasets used in this interpretability

analysis.
Road density Municipal road density estimates were constructed by calculating the length

of road in each municipal polygon and dividing by the polygon area. Road data are from

Open Street Maps (71). To facilitate computation we calculate road density over a 1%
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sample of global land area before averaging to the municipal level (&1 km? sampled every
~10km in the North-South and East-West directions). Municipality observations that do

not contain a sampled road density observation are dropped from this analysis.

Terrain ruggedness Municipal ruggedness data were constructed using the global raster
created by Shaver et al. (72) at lkm x lkm resolution. In this dataset “the ruggedness
of any given 1 km? area is determined by measuring how the average elevation of that area
differs from all those of neighboring 1 km? areas” (72). Municipal values are calculated as

the average of ruggedness values within each municipality.

Forest cover Forest cover data come from the Hansen et al. data product (7%), which is
available at 30m x 30m resolution. Municipal estimates are calculated as the average forest

cover over the municipal polygon.

Crop cover Crop cover data come from the Ramankutty et al. data product available at
0.08 x 0.08 degree resolution (74, 75). For each municipality we calculate the fraction of

the polygon area covered by cropland.

Maximum temperature We construct a measure of typical maximum annual tempera-
ture from the Climate Prediction Center gridded data product at 0.5 x 0.5 degree resolution
(76). Specifically, we retrieve roughly a decade of daily data (2007-2018) and calculate the
maximum temperature observed in each grid cell each year. We then take the average across

years and over each municipal polygon.

Precipitation Precipitation data are from the NASA IMERG annual average precipita-
tion data product at 0.1 x 0.1 degree resolution (77). We calculate municipal values as the

average of gridded values over each municipal polygon.

To estimate the fraction of variance explained by each of these variables individually we
execute a simple linear regression of our municipal HDI estimates on each variable. Within-
country estimates are calculated after demeaning the HDI estimates and each variable by
country. To estimate the fraction of variance explained by all of these variables together we
execute a multiple linear regression of our municipal HDI estimates on all variables together.

Before estimating this latter regression we used mean-imputation to fill in any missing values.
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S5 Supplementary discussion assessing consistency of

model weights across spatial scales

A key feature of our approach is that it can be trained on and make predictions for units
of arbitrary shape and size. We employ this approach to train on global provincial HDI
data and make predictions of HDI for global municipalities and a 0.1° x 0.1 grid. For this
approach to be effective, model weights estimated at the provincial level, must be able to
make skillful predictions at the municipal and grid levels.

One way to understand how this approach works is to see that, in a linear model, the
relationship between aggregated outcomes and aggregated features should be similar to the
relationship between disaggregated outcomes and features. This is illustrated in Equations
2-3 of the main text. Rolf et al (12) provide additional mathematical explanation for relating
predictions made using MOSAIKS features at image and sub-image scales. A primary goal
of this manuscript is to propose that this approach can be used to address the challenge of
limited training data in remote sensing applications by allowing for training on irregularly
structured and sized observations — which is not discussed in ref. (12) — and to empirically test
whether this works in practice. The primary evidence supporting this are the downscaling
tests reported in Figure 2 and Table S1.

Here, we additionally explore the question of why the approach works by empirically
testing whether model weights estimated at aggregated and disaggregated scales are similar.
To do so, we compare model weights between models of IWI trained at the provincial (N =
862) and DHS cluster (N = 51,996) scales. We use IWI for this experiment because there
are a large number of aggregated and unaggregated observations that span the same spatial
extent.

A challenge in designing this experiment is that MOSAIKS features are correlated with
each other, and there are a large number of features relative to the number of training
observations. This means that the same information could load onto different features even
when training and retraining at the same scale if we do not introduce additional constraints
to the feature set. Put another way, different sets of model weights could give the same
predictions and represent the same relationship between the imagery and outcome of interest.
This is not an issue in our main application, since the set of weights obtained at an aggregated
scale will remain valid if applied to a disaggregated scale, and vice versa. However, there is
no guarantee that the same weights will be obtained if models are independently fit at both
scales, since there are multiple valid ways to represent the data using the model features.
Thus, for this experiment, we first transform our features into an orthogonal basis.

We use Principal Components Analysis (PCA) to project the MOSAIKS features into
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a feature space with independent (i.e., uncorrelated) features that contain the same infor-
mation as the original features, following ref. (17). PCA can also be used to reduce the
dimensionality of the feature space, which can aid interpretation in this setting by focusing
on features that explain most of the variation in the imagery, and thus likely in the outcome
of interest. We find that 100 PCA features explain > 99.9% of the variation in the original
4,000 MOSAIKS features in this context, and that a model trained using these 100 PCA
features provides essentially identical predictions to a model trained using the 4000 original
features (Figure S10A). This PCA model is thus practically identical to our MOSAIKS-
based model but with independent features that represent an orthogonal basis. We use
these orthogonalized and rotated MOSAIKS features to analyze whether model weights are
consistent when training at different levels of aggregation.

Using these orthogonal MOSAIKS features, we find that model weights estimated using
the (aggregated) provincial data are very similar to model weights that are independently
estimated using (disaggregated) DHS cluster data (R*=0.75, Figure S10A). Note that when
calculating R? in this setting we weight by the fraction of variance in the MOSAIKS features
each component explains, so that greater weight is placed on features that explain more
variation in the MOSAIKS features, and likewise, in IWI. The high correspondence between
weights estimated at aggregated and disaggregated scales indicates that the same satellite
information is being used in the same way to predict IWI at both scales. This helps to
explain how our approach is able to achieve skill in the downscaling applications illustrated
in Figure 2 and Table S1.

S6 Supplementary methods

Note that in the supplementary methods we use the subscript p to refer to provincial or
first-level administrative regions; and the subscript m to refer to municipality or second-
level administrative regions. We use the subscript ¢ to denote observations at the country

level.

S6.1 HDI model training

Within-country model training Because our focus is explaining subnational variation
in HDI, we specifically train our primary model to predict within-country deviations of HDI.
To do this, we first demean subnational observations by country and then train a model
to use imagery to predict these residualized deviations. Specifically, we transform observed
ADM1 HDI for province p (HDI”™!) into the deviation of this value from the country
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—— ADM1 . _ . —~—ADM1
mean HDI (HDI, ). We then solve a ridge regression to predict H DI, based only
on provincial daytime (Xﬁ%ﬂg}lm&p) and nightlight (Xﬁ’zi‘f 1) features that have been simi-

larly residualized relative to the country mean values for these variables. We learn the model

—~— ADM]1 ~ ~
HDI, =fo+ B X?\q/IDOAg}UKS,p + Bo X}%’Zﬁfl + € (Sla)
where :
—~— ADM1 HD[APM1
_ ADM1 p
HDI, " = HDLPM =) [ ——&— (S1b)
peEc ¢
VA A Xff)oj‘sd}m{s
DM DM ;
XMOS}&IKS,;D = XMosiles,p - Z Tp (Slc)
pEC ¢
~ XADMl
XD =X Y (S1d)
pEC ¢

Here, N, is the number of provinces in country c. Note that we restrict predictions from this
demeaned model to be between the observed minimum and maximum HDI deviations from

the country mean.

Anchoring to country means via re-centering To evaluate full variation performance
using the within-country model (Table S1, col. 1-2) we need HDI predictions in “levels”
rather than predicted deviations from the country mean. To construct predicted HDI values
in “levels” we anchor our estimates to country means, since they are observed and used in
the estimation procedure. Practically, this means we add the country mean HDI, which was

subtracted from the observations before model training, back onto the predicted deviations:

HDIIM = Do HDI™ S2
SV = HDIIPMY 43— (52)
pEC ¢

Note that it is not necessary to implement this procedure when evaluating within-country

performance.
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Province and country model training In Table S1, we additionally report performance
for models trained on province and country-level data directly. Unlike the within-country
model, these models are trained on values in “levels” instead of deviations from the country
mean. In these experiments, we learn the models:

Province model:

HDI[;‘DMl = 0o+ BlX?\L‘/lDoj\gilKS,p + B2Xﬁ€,¥l + e (S3)
Country model:
HDI!PMO = B + B4 X?f())ﬂggn(s,c + o Xﬁ%,}\fo + € (54)

We do not apply a mean-anchoring procedure with these models as their predictions are
already in “levels” rather than predicted deviations. Note that 20 of the 179 total countries
do not have subnational data (e.g., Qatar) and that these 20 country-only observations are

included in both province and country models.

S6.2 Downscaling validation with IWI

Labels IWI is similar to the wealth index reported in DHS surveys, except that it was
created to be comparable across countries (36). IWI data are available both for provincial
polygons, which we use for training, and for DHS clusters, which we use for evaluation. For
each survey cluster, DHS provides coordinate points associated with the cluster centroid.
To protect privacy, the actual GPS coordinates of the center of each cluster are randomly
displaced by up to 2km for urban clusters and up to 5km for rural clusters, with a random
1% of rural cluster coordinates displaced by up to 10km. According to DHS, the displaced
coordinate is guaranteed to fall within the same DHS-provided administrative boundaries as
the true cluster centroid. To map these point observations to administrative polygons, we
spatially buffer urban cluster coordinates using a 2km radius and rural cluster coordinates
using a 10km radius. We then clip these buffers to the finest DHS-provided administrative

boundaries that are available.

Training We train within-country, province level, and country level IWI models following
the structure of models for HDI (Methods Section S6.1). Provincial IWI observations are
denoted JWI/\PM!.

The within-country IWI model, our preferred model specification, takes the same form
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as Equation Sla:

—~—ADM]1 ~ ~
IWI, = Bo+ B X}\L‘JDOAS{}{IKS,ZJ + P2 Xﬁ[iﬁfl + € (Sha)
where :
—~—ADM1 DML TW [ADM1
IWI,  =IWIPMI N~ (S5b)

pec ¢

Note that }zﬁ%ﬂgleS,i and iﬁlgﬂf I are the same feature matrices defined in Equation Slc
and S1d but with a different number of observations due to differing availability of outcome
data.

Prediction We evaluate the IWI model performance at a finer resolution than it was
trained. We use the trained provincial model (Equation S5a) to produce predictions of TWI
at the DHS cluster level and compare those predictions to the cluster-level IWI measurements
from the GDL, which were not used for model training. We calculate DHS cluster-level
features in the same way as for the other administrative polygons.

To make predictions of IWI deviations from the country mean at the DHS cluster level
using the within-country model trained on provincial deviations from the country mean, we

multiply model weights with the demeaned DHS cluster-level satellite features:

—

IWIé)HS = BO + Bl Xﬁlégmks,d + 62 X%ﬁg (86)

where d indexes DHS cluster and Bg, Bl, and Bg are estimated in Equation Sha. Tildes denote
that these predictions are predicted deviations from the country mean. In our within-country
IWI model, we demean DHS cluster-level satellite image features by the same country average

feature values as in the training procedure:

XADMI
XDHS _ xbHS _ MOSAIKS,p (S7 )
MOSAIKS,d — “*MOSAIKS,d N, a
pEC ¢
_ XADMl
DHS _ ~yDHS NL,;p
XNL,d = XNL,d - E BN (S7b)

pec ¢

where we note that these averages are constructed by averaging province-level features, but
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have similar values that averages of nationally-representative sets of cluster-level features

would have.

Anchoring to provincial means via re-centering To construct estimates of cluster-

level IWT in levels (/W IPH5) we anchor predicted cluster-level deviations from the country

mean (IWIPH5) to the known provincial value (IWL'”*') using a provincial level adjust-

ment:
— == JWPHS
IWIPHS = [WIPHS ¢+ qwPMY — Wi (S8)
dep p

~
centers DHS clusters to known provincial values

Here, N, denotes the number of DHS clusters contained by ADM1 polygon p, and IWI;‘D M1
denotes the observed ADM1-level value for polygon p. This anchors the mean of our DHS
cluster-level predictions within each provincial polygon to the respective known province

value used in training.

S6.3 Downscaling validation using nighttime lights as labels

In our analysis of the downscaling perfomance of our approach, we design an experiment in
which NL are used as labels and are not used as features (Figure S2). This experiment is
useful because it is the only validation experiment where the ground truth data are available
globally and at municipal resolution. Thus, this experiment allows us to evaluate predictions
at a downscaled resolution for the entire globe using a procedure that mirrors how we will
generate downscaled HDI estimates (such global high resolution labels do not exist for our
other outcomes). We do not expect NL predictions to be perfect proxies for HDI data in
this regard, but if NL can be downscaled successfully, it provides support for the procedure

we use to downscale HDI.

Labels We use population estimates from GHS-POP and fine resolution NL data from
VIIRS to create a population-weighted average NL raidance at the province level. NL obser-
vations are population-weighted to mirror the construction of HDI, which is also population-
weighted. Combining NL observations with population is also common practice when using
NL as a development indicator (41, 43, 44). We construct municipality-level NL observations
using a municipal (ADM2) shapefile from geoBoundaries (65), which links municipalities to

provincial “parent” polygons.
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We exclude Ireland from the geoBoundaries ADM2 dataset because Irish municipalities
(ADM2 units) are so small that they alone represent 45% of the global municipality observa-
tions. Thus, they would be over-represented in global performance metrics relative to their
size if not removed.

The vertical streaking patterns in the scatter plots in Figure 2H-J are caused by other
countries that also have very spatially dense municipalities, though not to the same degree
as Ireland. Because many within-province predictions are clipped at the observed minimum
or maximum within-country deviation, this creates vertical streaking at the extremes in 2J.
When the country-level mean values are added back, this results in vertical streaking at an
arbitrary point along the x-axis in 2H-I. The three countries that mostly account for this
effect are Great Britain (a~ 9,000 units), Spain (= 8,000 units), and Brazil (= 5,000 units).

Training We train a model using only MOSAIKS features constructed from daytime im-
agery to predict NL:
NL = By + B1 Xnmosarxs + € (59)

This model structure is broadly the same training procedure described in Methods Section
S6.1 and in Equation 4; however, we do not include NL features when predicting average
NL luminosity. NL is also now a vector of scalar NL observations rather than a matrix of

features.

Prediction To generate municipal predictions, indexed by m, from the within-country
model, we first create municipal predictions of NL deviations from the country mean. We
demean X37544 g, by country by subtracting the country mean feature values and then
multiplying the resulting demeaned features by the estimated model weights. This corre-
sponds to what is done when evaluating downscaled IWI performance in Section S6.2 and

shown in Equation S7a.

Anchoring to country means via re-centering When converting the predicted munic-

_——

ipal NL deviations from the country mean (N LAPM2) into predicted municipal NL values in

levels (N LAPM2) we anchor values to the known country mean:

P [ NLADMl
NLAPM2 = NLAPM2 4% X (S10)
pec ¢

Note that we anchor fine resolution NL predictions to the known country mean rather than

the provincial mean (following Equation S2 rather than Equation S8) because we find that
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this substantially improves full variation performance. Most of the variation in nightlight
luminosity occurs within countries, rather than between countries, which is considerably
different from what we observe for HDI and IWI. Importantly, the choice to use a different
re-centering procedure for NL does not impact the downscaled within-province performance
(Figure 2J), which we believe provides the most important evaluation of downscaling per-

formance.
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