
NBER WORKING PAPER SERIES

GLOBAL HIGH-RESOLUTION ESTIMATES OF THE UNITED NATIONS HUMAN 
DEVELOPMENT INDEX USING SATELLITE IMAGERY AND MACHINE-LEARNING

Luke Sherman
Jonathan Proctor

Hannah Druckenmiller
Heriberto Tapia

Solomon M. Hsiang

Working Paper 31044
http://www.nber.org/papers/w31044

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
March 2023

This work was supported by a grant from the Human Development Report Office of the United 
Nations Development Programme. We thank Pedro Conceicao and seminar participants at The 
Workshop in Environmental Economics and Data Science, the WIDER Development Conference 
(Bogota), IDinsight, and the American Geophysical Union Fall Meeting for their valuable 
feedback. We thank the Global Data Lab for sharing DHS cluster-level data on the International 
Wealth Index. The views expressed herein are those of the authors and do not necessarily reflect 
the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2023 by Luke Sherman, Jonathan Proctor, Hannah Druckenmiller, Heriberto Tapia, and 
Solomon M. Hsiang. All rights reserved. Short sections of text, not to exceed two paragraphs, 
may be quoted without explicit permission provided that full credit, including © notice, is given 
to the source.



Global High-Resolution Estimates of the United Nations Human Development Index Using 
Satellite Imagery and Machine-learning
Luke Sherman, Jonathan Proctor, Hannah Druckenmiller, Heriberto Tapia, and Solomon M. 
Hsiang
NBER Working Paper No. 31044
March 2023
JEL No. C1,C8,I32,R1

ABSTRACT

The United Nations Human Development Index (HDI) is arguably the most widely used 
alternative to gross domestic product for measuring national development. This is in large part 
due to its multidimensional nature, as it incorporates not only income, but also education and 
health. However, the low country-level resolution of the global HDI data released by the Human 
Development Report Office of the United Nations Development Programme (N=191 countries) 
has limited its use at the local level. Recent efforts used labor-intensive survey data to produce 
HDI estimates for first-level administrative units (e.g., states/provinces). Here, we build on recent 
advances in machine learning and satellite imagery to develop the first global estimates of HDI 
for second-level administrative units (e.g., municipalities/counties, N = 61,591) and for a global 
0.1 × 0.1 degree grid (N=806,361). To accomplish this we develop and validate a generalizable 
downscaling technique based on satellite imagery that allows for training and prediction with 
observations of arbitrary shape and size. This enables us to train a model using provincial 
administrative data and generate HDI estimates at the municipality and grid levels. Our results 
indicate that more than half of the global population was previously assigned to the incorrect HDI 
quintile within each country, due to aggregation bias resulting from lower resolution estimates. 
We also illustrate how these data can improve decision-making. We make these high resolution 
HDI estimates publicly available in the hope that they increase understanding of human wellbeing 
globally and improve the effectiveness of policies supporting sustainable development. We also 
make available the satellite features and software necessary to increase the spatial resolution of 
any other global-scale administrative data that is detectable via imagery.
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Introduction1

The Human Development Index (HDI) has been widely used by policymakers and academics2

since the 1990s to summarize three key dimensions of well-being: the population’s health,3

human capital, and standard of living (1–4 ). It was developed to be a more comprehen-4

sive measure of well-being than income or wealth alone (2, 3, 5 ) and is commonly used5

to categorize countries by their level of human development, which, in turn, can determine6

allocations of global resources, such as development assistance or the prices for international7

drugs (6 ). However, the Human Development Report Office of the United Nations Develop-8

ment Programme (HDRO/UNDP) releases official global estimates of HDI annually only at9

the highly aggregated national level (N=191), preventing the use of the indicator in appli-10

cations that require sub-national information. Thus, while HDI is often considered a more11

meaningful metric of wellbeing than income, measures of income remain the dominant metric12

for evaluating development progress within countries in part because they are more readily13

available.14

In an effort to address this, non-UN researchers (7 ) recently collated and processed ex-15

tensive household survey data in order to produce the first HDI estimates for provinces and16

states, political units known as “first-level administrative units” or “ADM1 units”. This17

extended previous such estimates (8 ) to the global scale. By constructing HDI estimates18

for ADM1 units (N=1,765), these efforts have substantially advanced our understanding of19

global development patterns, but these measures nonetheless remain too coarse for many20

modern policy applications where granular local information is needed, such as community-21

level aid targeting (9 ). Indeed, there tends to be substantial inequality in human devel-22

opment within ADM1 units (10 ). Furthermore, the reliance of all current HDI estimates23

on slow, infrequent, and costly global-scale ground-based data collection sharply limits the24

usability of HDI for most practical applications other than cross-national rankings.25

Here, we produce the first global estimates of HDI at the level of municipalities and26

counties (N=61,591), known as “second-level administrative units” or “ADM2 units”, and27

for a global 0.1◦ × 0.1◦ (approximately 10km by 10km) grid. We construct these estimates28

by combining information from prior ADM1 estimates (2 ), described above, and global29

daytime and nighttime satellite imagery (11, 12 ). To do this, we build on recent advances30

in machine-learning (13 ) to develop a general method that learns the relationship between31

satellite imagery and an outcome of interest (here, HDI) using imagery and measurements32

of the outcome from any set of political boundaries. We can then use that relationship33

to estimate the outcome for any other set of boundaries. Importantly, our method works34

for political units or grids of arbitrary shape and size, so models can be trained on coarse-35
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resolution outcome measurements and make predictions at finer resolution, as detailed below.36

We apply this method to transform HDI measured for ADM1 units into finer resolution global37

estimates. Note that our fine-resolution global HDI estimates were produced in collaboration38

with researchers at the HDRO/UNDP and funded by the HDRO/UNDP, but data released39

with this paper should not be considered official United Nations indicators.40

A general method for downscaling administrative data using satel-41

lite imagery and machine learning42

The combination of satellite imagery and machine learning (SIML) is increasingly used to43

predict socioeconomic variables remotely at fine spatial resolution (13–17 ). The appeal of44

this approach is that it may enable information that is expensive to obtain through ground45

surveys to be estimated at low cost, thereby enabling more frequent data collection. In46

practice, SIML estimates generally do not replicate ground surveys exactly and researchers47

are actively studying the nature and impact of errors in SIML predictions (18, 19 ); however,48

the quality of SIML estimates is now high enough that it can assist targeting of aid and49

program evaluation in remote communities where alternative sources of information are50

unavailable (9, 14, 18, 20, 21 ).51

Currently, the ability of SIML systems to promote development is limited by the paucity52

of suitable observations for model training (14 ). This limitation, however, is partly due to53

the design of modern SIML methods, since large quantities of untapped administrative data54

are available, but existing systems are not designed to make use of them. To date, SIML55

approaches for predicting human outcomes require standardizing the structure of both the56

training labels and corresponding imagery so that the unit of analysis is a regular spatial57

structure, such as a square. For example, many systems use convolutional neural networks58

(CNNs)(15, 16, 22 ), which were originally developed to recognize “natural images” (e.g.59

photos taken from a hand-held camera) and tend to perform well on diverse computer vision60

tasks. These CNNs, however, typically require images to be a specific and constant size61

and shape, such as 224 x 224 x 3 pixels in the case of the commonly used ResNet-18 (23 ).62

This restriction has caused prior studies to rely on coarse approximations for linking irreg-63

ularly shaped labels to corresponding imagery, for example, by interpolating or averaging64

polygon labels that overlap with the square image (13, 17 ). Such procedures can introduce65

considerable error when administrative polygons are much larger or smaller than the chosen66

square size. This is particularly relevant for HDI, for which data is globally available only67

for relatively large political units, such as nations or provinces, which tend to be irregularly68

shaped and vary greatly in spatial extent. For example, the largest provincial polygon in69
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our data is the Far Eastern Federal District of Russia, which is over 6 million km2, and the70

smallest is Banjul of Gambia, which is 7 km2. Developing a robust and widely applicable71

SIML system that can be trained on inputs that correspond with such diverse administrative72

structures requires an alternative strategy.73

Training SIML systems using administrative data that correspond with irregular political74

units is a general challenge for many researchers. In an ideal setting, we would solve for75

a function that could directly map a single satellite image “tile,” eg. 1km×1km, to the76

corresponding HDI for the same tile77

HDItile = f(satellite imagetile) + ϵtile (1)

where ϵ is the component of HDI that is not measurable with imagery. In theory, Eq. 1 could78

be solved directly with many learning approaches, such as using a CNN or other techniques79

(13, 24 ), but this is infeasible in practice because tile-level data on HDI (i.e. the left-hand80

side of Eq. 1, HDItile) does not exist. Instead, we can observe only aggregated estimates of81

HDI over politically-defined regions (HDIcountry or HDIprovince) that correspond with large82

and irregular agglomerations of image tiles. For the SIML system described by f(·), this83

creates a mismatch between the spatial structure of inputs (satellite image tiles) and outputs84

(political administrative regions).85

We solve this problem by converting image tiles into a generalizable set of descriptive86

features Xtile, such that f(·) can be structured as linear in these features87

f(satellite imagetile) = β ·Xtile, (2)

where β is a vector of weights. An obstacle to achieving this has been the notion that HDI88

may be a complex nonlinear function of information contained within the original image.89

However, if a suitable linearization of the image information can be achieved—specifically, if90

a basis for the imagery can be constructed such that outcomes of interest are well-represented91

by linear combinations of the basis vectors—then aggregate administrative measures of HDI92

will project onto corresponding aggregations of tile-level features with the same weights that93

would be recovered if the problem had been solved using only tile-level data. Thus, we aim94

to learn a model95

HDIprovince = β ·

(
1

N

∑
tile∈province

Xtile

)
︸ ︷︷ ︸

X̄province

+ϵprovince (3)

and recover the same weights β that we would have recovered had we directly solved Eq. 196
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using the linearization in Eq. 2. Note that X̄province is simply the vector of average tile-level97

features within a province. The weights β can then be used to generate predictions for arbi-98

trary aggregations of tiles. Specifically, we use these β to downscale HDI to the municipality99

level (β · X̄municipality = ˆHDImunicipality) and the tile level (β · X̄tile = ˆHDI tile). The benefits100

of linearizing this problem have been understood in general terms, since linear models of101

basic scalar image properties (e.g. “greenness”(25 ) or nighttime luminosity (26 )) have been102

widely used to downscale administrative-level data. However, to our knowledge, it has not103

been shown that such linearization is possible and skillful for the types of featurizations that104

capture complex spatial structures in imagery and enable modern high-performance SIML105

prediction.106

To transform satellite imagery into descriptive features that exhibit high performance in107

linear models, we build on the recent development of Multi-task Observation using Satellite108

Imagery and Kitchen Sinks (MOSAIKS), an approach that achieves performance competitive109

with CNNs using an unsupervised image embedding combined with a linear ridge regression110

model (13 ). MOSAIKS features have been shown to be skillful at solving diverse prediction111

problems —such as forest cover, population, elevation, and house price— using only im-112

agery as inputs and using only a single linear specification. This property makes MOSAIKS113

a particularly appealing approach for predicting HDI, which is constructed from multiple114

development indicators. Each MOSAIKS feature for a tile describes the similarity between115

the satellite image and a smaller patch of imagery, and is calculated as a nonlinear trans-116

formation of the image’s pooled convolution with a random sub-image from the sample (i.e.117

random convolutional features (27 )). Together, MOSAIKS features form a basis that can118

skillfully describe the rich structure contained within large imagery datasets through simple119

linear combinations of the features (13 ).120

To compute local HDI via SIML, we transform a dataset of global Planet imagery (∼4m121

resolution) into general-purpose MOSAIKS features (X) for 0.01◦ x 0.01◦ tiles (≈ 1km x122

1km; Figure 1A-D) (11 ). We supplement these MOSAIKS features with features that flex-123

ibly characterize the distribution of nighttime lights in each tile (Methods 2.2). We then124

learn a model that is linear in these features (β · X) and use this linear model to estimate125

HDI at high resolution. Specifically, for both training and prediction, we assign image fea-126

tures to administrative polygons that contain the centroid of each tile and average them127

to the polygon-scale using population weights (Figure 1D, grid-scale predictions follow a128

similar procedure) (28 ). This results in one vector of image features for each province and129

municipality in the world. To learn the relationship between the image features and HDI,130

we train a ridge regression on province-level HDI labels and aggregated province-level image131

features (Figure 1E). We then predict municipality-level HDI using the municipality-level132
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image features (Figure 1F), and we predict 0.1
◦ × 0.1

◦
grid HDI using features for that grid.133

We tune the ridge hyper-parameter using 5-fold cross-validation and evaluate performance134

using a held-out test set (Methods 3.1). While we focus this analysis on the downscaling135

of HDI, this approach is generalizable to other types of administrative data associated with136

irregularly-shaped political units.137

Figure 1: MOSAIKS is used to transform satellite imagery for each administra-
tive polygon into a vector of image features. (A) The location of Oromia, an example
province (ADM1 unit) within Ethiopia. (B) A composite of Planet imagery over Oromia
in 2019. (C) A sample of 0.01◦ x 0.01◦ image tiles. (D) Three examples of MOSAIKS
features over Oromia; each pixel shows the feature value for a single 0.01◦ x 0.01◦ image
(Xtile). (E) The corresponding aggregation of these MOSAIKS features to the provincial
polygon (ADM1) level for model training (X̄province). (F) Aggregation of these same MO-
SAIKS features to the municipal polygon (ADM2) level for fine-resolution prediction of HDI
(X̄municipality).
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Results138

Our results have four sections. First we train and evaluate a global model for HDI at the139

province-level using aggregates of satellite features. Second, we implement multiple tests140

to validate that this model is skillful at downscaling data sets similar to our global HDI141

data, since direct global validation against HDI is impossible. Third, we generate the first142

high-resolution global HDI data using this procedure and we evaluate how these estimates143

compare to existing aggregated estimates. Last, we illustrate how these new high-resolution144

estimates could alter decision-making when targeting aid.145

1. Predicting province-level HDI using satellite imagery146

Using province-level administrative HDI data for training (as in Equation 3 and Figure 1),147

we find that predictions made using linear aggregates of MOSAIKS daytime and nighttime148

satellite image features, anchored to known country means, explain 96% of the variation in149

global provincial HDI values (Figure 2A, denoted “full variation performance”). Specifically,150

we train a model to predict provincial HDI deviations from the country mean and then151

add the known country mean onto the predicted provincial deviations. We take this mean-152

anchored approach because it reflects how SIML may be used to augment existing HDI data153

in practice. Evaluating the ability of this model to predict provincial HDI deviations from154

the country mean directly, we find that it explains 46% of the within-country variation in155

HDI (Figure 2B, Methods 3.2). This indicates that SIML provincial predictions of HDI156

add substantial fine-resolution information to existing national measures and supports our157

mean-anchoring approach. If we hide country-level data from the model and train on and158

predict provincial values directly (without anchoring estimates to country means), we find159

that the model explains 79% of the total (i.e. both across- and within-country) variation in160

provincial HDI (Table S1).161

The greater difficulty predicting HDI variation within countries relative to across coun-162

tries is due, in part, to the relatively smaller within-country variation available for model163

training and evaluation, as illustrated by the yellow and pink observations of provincial val-164

ues for France and Ethiopia in Figure 2A and their demeaned values in Figure 2B. We note165

that models trained on provincial HDI deviations from the country-level HDI have higher166

performance predicting such deviations than models trained directly on the provincial values167

themselves (Table S1 col. 4). This results from model weights being optimized to explain168

the smaller within-country variation in the demeaned model, rather than the larger across-169

country deviations, leading to higher skill when predicting local-level variation. As we aim to170

predict local-level variation in HDI, in the following analysis we present results from models171
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trained on deviations from the country mean and emphasize performance for the relatively172

more difficult task of predicting local (i.e. within-country and within-province) variation.173

Positive performance (i.e. R2 > 0) explaining variation within the level of model training174

(evaluated below) indicates that model predictions are able to improve our understanding of175

the spatial distribution of human development.176

Evaluation metrics for the provincial models above are calculated using a spatial-cross-177

validation procedure in which models are trained and evaluated on data from non-overlapping178

sets of countries. Similar performance is achieved in a held out test set from countries not179

previously used for model testing or training, indicating that the model was not over-fit to180

the training data (province-level full variation performance is R2 = 0.96 and within-country181

performance is R2 = 0.39, Table S2).182

2. Validating downscaling of data below the province-level183

We cannot directly evaluate the performance of municipality-level or grid-level HDI predic-184

tions worldwide because such highly-resolved estimates have not been previously constructed.185

Nonetheless, we test the performance of our downscaling technique using three alternative186

sources of similar data that allow predictions to be directly compared to “ground truth” at187

finer resolution than the province level. First, we directly compare our municipality-level188

HDI predictions in Mexico to a unique set of available survey-based estimates of HDI at the189

same resolution (10 ). Unfortunately, to the best of our knowledge, similar survey-based vali-190

dation samples are not available outside of Mexico, preventing us from conducting analogous191

global-scale validation. Second, we train a model relating satellite imagery to the Interna-192

tional Wealth Index (IWI) at the province level, and then construct downscaled predictions193

of IWI at the resolution of Demographic and Health Surveys (DHS) clusters where granular194

IWI measurements are available (29 ). The IWI is an alternative development indicator to195

HDI that omits measures of education and health. Third, we train a model to predict night-196

time luminosity (NL), a common proxy for economic wellbeing (30–34 ), using MOSAIKS197

features constructed exclusively from daytime satellite imagery, and test whether our ap-198

proach can downscale nighttime luminosity. Mirroring the structure of our HDI analysis,199

we train a model using only nighttime luminosity labels aggregated to the province-level,200

and then evaluate predictions of luminosity at the municipality-level. None of these three201

tests can directly validate the performance for downscaling HDI globally; however, all three202

tests taken together document the effectiveness of our downscaling strategy in general, using203

socioeconomic data that are similar to HDI.204

When evaluating estimates made at finer resolution than that of the training data, we205
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first find the optimal ridge hyperparameter using a spatial-cross-validation procedure, again206

splitting the data by country, and then re-train a new model using all of the available coarse207

resolution data before predicting at fine resolution. We generally mean-anchor downscaled208

estimates to the known provincial mean (Methods Section 3.4). This approach uses the209

satellite-based model to explain within-province variation, which is previously unknown, and210

the measured provincial values to explain the across-provincial variation, which is previously211

known, to produce the best possible estimates.212

Comparison of downscaled HDI to municipality HDI measurements in Mexico213

As a direct evaluation of HDI downscaling performance, we compare municipal HDI predic-214

tions from the satellite-based MOSAIKS model trained on provincial HDI deviations from215

the country mean to municipality HDI derived from census-based calculations in Mexico in216

ref. [(10 )]. Downscaled HDI predictions explain 40% of the municipal HDI variation in217

Mexico overall (Figure 2C, municipal predictions centered to the known provincial mean)218

and and 23% of the within-province variation (Figure 2D). These results indicate that our219

method for SIML-based downscaling substantially improves our understanding of the spatial220

distribution of HDI within Mexico; although, importantly, they are not a complete substitute221

for survey-based estimates when such data are available. However, since survey-based HDI222

estimates at the global scale do not exist, SIML-based estimates may be the only available223

option in many contexts.224

Downscaling the International Wealth Index across DHS clusters We test the225

ability of MOSAIKS to downscale IWI internationally by training a model on province-level226

aggregates of IWI and then predicting IWI across DHS clusters. This is a more difficult task227

than predicting municipality-level values and an equally difficult task as predicting at the228

0.1◦× 0.1◦ grid-level, since DHS clusters tend to be even finer resolution than municipalities229

and about the same size as the HDI grid (DHS cluster average area ≈ 180 km2, municipality230

average area ≈ 2,000 km2, HDI grid cell area ≈ 120 km2). Models are trained on 863231

provincial observations within 86 countries and evaluated at 51,996 DHS clusters (Table232

S1). Analogous to our approach with HDI, models are trained on province-level deviations233

from country-level means and predictions are re-centered to match the observed province-234

level mean, as these values are known and represented in the training data (see Methods235

Section 3.6). Downscaled IWI predictions explain 75% of the variation in IWI across all DHS236

clusters (Figure 2E) and 59% of the variation in IWI across DHS clusters within countries237

(i.e. of cluster deviations from the country mean, Figure 2F). Importantly, this approach238

is also able to predict variation in IWI within the provincial units that it was trained on,239
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Figure 2: MOSAIKS models perform well at regular and downscaled resolution.
(A) Observed and predicted HDI at the province level (country mean added to predicted
deviations from country means). Note that the within-country variation is smaller than the
across-country variation, as illustrated by France, in yellow, and Ethiopia, in pink. (B)
Within-country observations and predictions of HDI. Provincial deviations from the country
mean for France and Ethiopia are now centered at 0, and the model is evaluated on how
well it can differentiate provinces that are relatively well and worse off within countries. (C)
Predicted HDI at the municipality level in Mexico and census-derived data from Permanyer
(2013) (10 ). (D) Predicted and census-derived HDI within Mexico’s provincial units. (E)
Observed and predicted IWI at the DHS cluster level (re-centered on province mean). (F)
Observed and predicted IWI at the DHS cluster level within countries. (G) Observed and
predicted IWI at the DHS cluster level within provinces. (H) Observed and predicted popu-
lation weighted NL at the municipality level (country mean added back). (I) Observed and
predicted NL at the municipality level within countries. (J) Observed and predicted NL at
the municipality level within provinces.



explaining 38% of the variation in IWI cluster values within provinces (Figure 2G). This240

result demonstrates the ability of our downscaling approach to generate skillful global-scale241

predictions at resolutions higher than the training data, and also its ability generalize to242

measures other than HDI.243

Downscaling nighttime luminosity globally using only daytime imagery To fur-244

ther evaluate our approach in a global test, we train a model on aggregate provincial night-245

time luminosity and evaluate predictions at municipal resolution. Nighttime lights are not246

a direct measure of human welfare; however, they are generally correlated with income and247

other indicators of development (32–34 ) and are useful here because they allow us to design248

a validation test where true subnational values are known worldwide. We train and evaluate249

the model using provincial deviations from the country mean, and then predict municipal250

values as the predicted municipal deviations from the country mean plus the known country251

mean (Methods Section 3.7). Downscaled luminosity predictions capture 78% of municipal252

variation in nighttime lights globally (Figure 2H), 65% of the municipal variation within253

countries (Figure 2I), and, most importantly, 59% of the variation across municipalities254

within provinces (Figure 2J). These results further reinforce the ability of our approach to255

downscale global province-level data and underscore its generalizability to other non-HDI256

outcomes. Unlike the two downscaling experiments above, this experiment relies entirely on257

features generated using only daytime imagery (Figure S1).258

259

Collectively, these three downscaling experiments demonstrate that our approach effec-260

tively combines coarse socioeconomic measurements with satellite data to produce skillful261

estimates of these measures at spatial resolutions finer than the aggregated province-level262

training data.263

3. Global municipality-level and grid-level estimates of HDI264

We use our model for subnational HDI (from Results Sections 1,2) to estimate HDI for 61,591265

municipalities and 806,361 0.1◦×0.1◦ grid cells (Figure 3), the finest resolutions at which HDI266

has been estimated globally. Specifically, we use the model that was trained on provincial267

deviations from the country mean, using both daytime and nighttime satellite image features,268

to make predictions of the within-country distribution of HDI at the municipal and grid269

levels. We then center the mean of these estimates on the observed provincial means from270

Smits and Permanyer (7 ) (see Methods Section 3.8). We make these municipal and grid-level271

estimates of HDI publicly available for download at mosaiks.org/hdi.272
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Figure 3: Global HDI estimates at the municipal and grid levels. (A) Official
United Nations HDI at the country level (35 ) (B) HDI data at the province level from Smits
and Permanyer (7 ). (B) Municipal level estimates of HDI produced here. (C) Grid level
estimates of HDI at the 0.1◦ by 0.1◦ (approximately 10km by 10km) level produced here.
Grey in the grid-level estimates indicates land area believed to be unsettled (36 ). All data
shown are for the year 2018.



Our high-resolution estimates enable a substantially more detailed understanding of hu-273

man development compared with national and provincial measures (Figure 3 A,B vs. C,D).274

Both municipal and grid-level estimates reveal within-province heterogeneity of HDI that275

was previously un-resolved (Figures S2, S3). The gridded HDI estimates tend to be rela-276

tively higher along major roadways, and especially at the intersection of roadways (Figure277

S4). Boarders, such as between Turkey, Georgia, Armenia, Azerbaijan, Iraq and Iran, are278

less apparent in the fine resolution estimates, indicating a greater continuity in human de-279

velopment across space than in the provincial maps. The wealthier city centers and poorer280

suburbs of capital cities such as Moscow in Russia and Antananarivo in Madagascar are also281

visible in the municipal and grid estimates, but obscured in the provincial estimates. The282

contribution of environmental features to human development is illustrated in eastern Pak-283

istan and northwestern India, where human development is higher in the plains bordering the284

Indus River and its tributaries, and much lower in the neighboring deserts. Similarly, within285

Sonora and Sinaloa in Mexico, the coastal areas show relatively higher human development286

than the inland regions. This revealed local heterogeneity in HDI indicates that uniform as-287

signment of HDI to populations based on their country or province of residence is inaccurate288

because it groups together populations with very different levels of human development.289

Comparing the grid-level and municipal estimates, we see that while the grid-level esti-290

mates capture HDI variation within municipal polygons, they do not represent boundaries291

as sharply as the municipality-level estimates, which are mapped to boundaries in their con-292

struction. For example, grid-level estimates along coastlines can be extended incorrectly into293

the ocean, and small portions of the Dominican Republic that border Haiti are estimated to294

have a considerably lower HDI than they likely should due to the imperfect match between295

the administrative boundaries and the grid (Figure S4B). Municipal estimates capture these296

boundaries more precisely (Figure S4A).297

We use our estimates to quantify the degree of aggregation bias that occurs when using298

only province-level estimates. Aggregation bias occurs in this setting because small units299

(i.e. grids or municipalities) are assigned the aggregate HDI of a larger unit (i.e. a province),300

but that assignment does not reflect the specific conditions within the smaller units. For301

example, a small urban region, where HDI tends to be high, embedded in a province that302

also contains large rural areas, where HDI tends to be lower, will be assigned a HDI level303

that is too low when coarse provincial measures are used. We quantify how frequently such304

mis-assignment occurs within countries by assigning populations to a quintile of HDI within305

their national HDI distribution based on provincial, municipal, or grid-level estimates. We306

then evaluate how frequently the province-level estimates agree with the more highly resolved307

estimates (Figure 4).308
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We find that a majority of the global population (53% using municipal estimates and309

63% using grid estimates) is assigned to a different within-country HDI quintile compared310

to when using provincial estimates. For example, of the population measured to be in the311

bottom two HDI quintiles by the provincial estimates, 6.1% are measured to be in the top312

two HDI quintiles by the municipal estimates and 10.3% by the grid-estimates. Grid-level313

estimates tend to reveal larger amounts of aggregation bias in the provincial estimates due to314

their finer resolution. Based on our grid-level estimates, we estimate that 22.2% (18.4%) of315

the global population is one quintile lower (higher) than assigned using provincial estimates,316

and 5.4% (5.9%) are two quintiles lower (higher). Aggregation bias is especially concerning317

for communities with lower human development that live nearby communities with higher318

human development who, for example, might miss receiving assistance from development319

programs if only coarse HDI estimates were used to determine the allocation of aid. We320

calculate that over a hundred million people (1.3% of the global population) measured by321

the provincial estimates to be among the 40% most developed in their countries are measured322

by the grid-level estimates to actually be among the 20% least developed.323

4. Illustrative application: targeting policy in Mexico324

To explore how these new HDI measures could improve the efficiency of development policies,325

we conduct a simulation exercise for Mexico. We simulate how a geographically targeted326

policy based on provincial vs municipal HDI data (Figure 5A-B) might achieve different327

outcomes, noting that previous work has shown that more spatially granular targeting can328

produce meaningful welfare gains (16, 37–39 ). We study the context of Mexico because329

we can access “ground truth” estimates of HDI (10 ), discussed earlier (recall Figure 2C-D),330

which can be used to evaluate the performance of the targeting exercise.331

We consider a hypothetical scenario in which a program administrator has a fixed budget332

of aid to distribute to some portion of the population of Mexico. We suppose the admin-333

istrator would like to target individuals with the lowest HDI. Following Chi et al. (16 ),334

we assume that the program will be geographically targeted and that all individuals within335

targeted regions will receive the same transfer, a practice used to reduce administrative costs336

(37, 40 ). If the administrator has access to only province-level HDI measures, then eligibility337

is determined at the province-level. Alternatively, using our municipal-level estimates, the338

administrator is able to target the program at the municipality level. We evaluate how access339

to more granular HDI data improves the number of program recipients that are correctly340

targeted.341

We evaluate the performance of the two targeting strategies using the census-derived342
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A B

Previously considered 
to be in 3rd quintile, 
but now considered 
to be in top quintile

Previously and 
currently considered 
to be in the top 
quintile  (no change)

Figure 4: Municipal and grid-level estimates of HDI assign more than half of
the global population to a different within-country HDI quintile than provincial
estimates. (A) Shows the difference in estimated HDI quintile, within countries, using
provincial vs. municipal data. (B) shows the same analysis using grid-level HDI estimates.
Colors show the estimated HDI quintile using provincial data from (7 ), where yellow is
high human development and purple is low human development. Bins along the x-axis
show estimated HDI quintiles using the municipal and grid level data produced in this
study. Hatch marks indicate no change in quintile assignment using municipal data. When
provincial data do not allow for the creation of five distinct bins, the population is assigned
first to the middle bin, followed by the neighboring bins. For example, if a country does not
have any province-level data, the entire population is assumed to be in the middle quintile
for that country. For this reason, a greater fraction of the global population is assigned to
the middle quintile (32%) than to the outer quintiles when using the provincial data.



municipality-level HDI measurements (10 ) — which are not used to train our model — as343

the basis for ground truth. These estimates are municipality-level aggregates, so we simulate344

HDI for individuals–i.e. the targets of the policy–by imposing additional assumptions about345

the distribution of HDI across individuals within a municipality. We assume HDI within346

each municipality has a truncated normal distribution (bounded between 0 and 1) that is347

centered around the census-derived municipality mean (Figure S5). Because this distribution348

is not observable, we test the sensitivity of our results to different assumptions about the349

dispersion of this distribution.350

The use of municipality-level data improves the number of program recipients correctly351

targeted. Supposing that the program director has funds to target 10% of the population352

and aims to provide assistance to the 10% of individuals with the lowest HDI, accuracy of353

program targeting increases by 7.9% percentage points (from 33.9% to 41.8%) when using354

municipal data compared with provincial data, assuming a within-municipality HDI standard355

deviation of 0.1 (Figure 5E). Use of the municipal data results in a much greater geographic356

dispersion of targeted municipalities (Figure 5C-D).357

Targeting performance can also be evaluated using a receiver operating characteristic358

curve (ROC) curve (9 ). In this exercise, the aim is still to provide assistance to the 10%359

of individuals with the lowest HDI, but the fraction of the total population targeted is360

modified to examine how the true positive (individuals with low HDI correctly given aid)361

and false positive (individuals with HDI above the desired cutoff incorrectly given aid) rates362

change accordingly. Moving from left to right on the x-axis in Figure 5F implies a greater363

number of people receiving assistance. The area under the curve (AUC) shows the efficiency364

of the targeting, with higher values indicating that the HDI estimates help the program365

administrator better distinguish between individuals with low and high HDI. The AUC366

increases by 0.08 (+12% from 0.76 to 0.85) when municipal data are used instead of provincial367

data, indicating improved targeting performance across this range of program constraints.368

The degree to which municipal HDI measures improve targeting performance relative to369

provincial measures depends on how dispersed individual HDI values are within municipal-370

ities, with lower (higher) assumed dispersion leading to larger (smaller) absolute — though371

similar proportional — gains (Figure 5E and Figure S5). Given the absence of ground-truth372

for individual-level HDI measures on which to evaluate performance, this simple exercise is373

not intended to produce numerically accurate results, but rather to demonstrate how access374

to more spatially granular data on human development might allow a program administrator375

to better direct resources towards those who need them most.376
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HDI

HDI at province level (Smits and Permanyer, 2019)

HDI at municipality level (this study)

Targeting lowest 10% of the population at province level

Targeting lowest 10% of the population at municipality level

Figure 5: Spatially granular HDI measures can improve decision-making. (A) HDI
at the provinice level of observation (7 ) (B) HDI estimates at the municipality level produced
in this paper. (C) Lowest HDI provinces that would be targeted until 10% of the country’s
population is reached. (D) Lowest HDI municipalities that would be targeted until 10% of
the country’s population is reached. Hashing in (C) and (D) shows the marginal province and
municipality that would be partially targeted. (E) Targeting accuracy (true positive rate)
as a function of the assumed standard deviation of HDI within each municipality. (F) ROC
curves illustrate the degree of improvement that comes with targeting at the municipality
level relative to the province level (assumed SD of 0.1 within each municipality).



Discussion of model performance377

Model performance for components of HDI One motivation for using MOSAIKS378

features to downscale HDI is their ability to predict a diversity of ground-based measures.379

This is particularly relevant for predicting HDI, since it is constructed from components380

that capture human health, education, and income. To consider which components of HDI381

are best captured by our estimates, we retrain models to predict each component of HDI382

separately. We find that MOSAIKS models explain 93%/7% of the full/within-country383

variation in provincial life expectancy, 93%/48% of mean years of schooling, 90%/22% of384

expected years of schooling, and 96%/46% of gross national income per capita (GNIpc)385

(Table S3). While the components of HDI do tend to be correlated (Table S4), these results386

indicate that instead of just capturing income, predictions of HDI using satellite imagery387

maintain the ability to capture multiple dimensions of human wellbeing. Predictions of HDI388

made from combinations of its individually predicted components perform nearly identically389

to the direct predictions of HDI used throughout this analysis.390

Model performance across regions Analyzing the performance of MOSAIKS models391

across space, we find that performance tends to be the highest in low income regions, espe-392

cially sub-Saharan Africa, where such measurements are likely to be of greatest value (Figure393

S6A,C). Specifically, we find that MOSAIKS models explain more variation of province-level394

HDI deviations from the country mean in areas of low human development (HDI < 0.6,395

R2 = 0.56) than in areas of medium or high human development (HDI > 0.6, R2 = 0.29,396

Figure S6A). We also see this pattern in predictions of DHS cluster-level IWI deviations397

from the province mean, with performance increasing monotonically from R2 = 0.24 for398

countries with the highest HDI values to R2 = 0.48 for countries with the lowest HDI values399

(Figure S6B,D). This improved performance may be due to increased variance of HDI and400

IWI values within these countries (Figure S6E-F), which provides more variation to exploit401

during model training. Alternatively, variations in well-being being may be relatively easier402

to see from satellite imagery in areas with lower human development. Relatedly, model per-403

formance for both HDI and IWI is higher in regions with higher inequality, highlighting the404

particular value of these estimates in regions of high inequality (p < 0.01 for both HDI and405

IWI; pearson’s ρ is 0.30 for HDI and 0.48 for IWI comparing the within-country standard406

deviation of provincial values and the within-country predictive performance, measured by407

ρ2).408

Value from combining daytime and nighttime imagery The MOSAIKS system can409

use image features from multiple sensors simultaneously when training models, a property410
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that is used throughout this analysis to predict HDI from both daytime and nighttime im-411

agery. Analyzing the performance of MOSAIKS models based on the type of satellite imagery412

used, we find that daytime and nighttime imagery together explain 8% more variation in413

provincial HDI deviations from the country mean than does nighttime imagery alone, im-414

proving model fit by 21% (Table S1). This improved performance from using daytime and415

nighttime imagery together is especially strong in regions of low human development (HDI416

< 0.6) (Figure S6A), consistent with a previous finding that models using daytime imagery417

outperform models using nighttime imagery when predicting assets of the poorest popula-418

tions in five African countries (22 ). Analyzing model performance for each component of419

HDI, we see that the improved performance predicting HDI using daytime and nighttime420

imagery stems from improved or comparable performance predicting each component of HDI421

(largest change in R2 is 0.10 for mean years of schooling, smallest is no change in R2 for life422

expectancy, Table S3).423

Model performance training at the country-level To evaluate performance in an424

extremely data-limited setting, we re-train our model using only country-level data. Despite425

a low number of training observations (N = 86 to 170 across experiments) these models426

maintain 44% to 87% of the performance of our preferred models trained using provincial427

deviations from the country mean (N = 863 to 2,848) when evaluated on the relative ordering428

of predicted and observed values using ρ2 in all experiments (Table S1). This indicates429

that our approach can achieve competitive predictive performance detecting locations with430

relatively higher and lower HDI even when trained on few and coarse observations of the431

variable of interest. Performance predicting the exact level of HDI is lower, especially when432

evaluated within-country, likely due to the large difference in the magnitude of HDI variation433

across countries versus within countries, discussed above (Figure 2A,B).434

Conclusion435

We produce and make freely available the first global-scale high-resolution estimates of HDI,436

enabling the use of broad-based measures of well-being for local decision-making and the pri-437

oritization of local policy actions. We achieve this by developing an approach for generating438

spatially granular measures of human well-being using SIML models trained on coarse and439

inconsistently structured administrative data. Since many forms of non-HDI data are also440

available only for administrative regions, we believe this generalizable method will increase441

the range of outcomes that can be used as labels in SIML models, as limited training data442

currently constrains the production and societal impact of SIML systems (14 ). To support443
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researchers that may apply this approach to other outcomes, we also make freely available444

aggregations of features to the political boundaries used for training and prediction in this445

analysis.446

Broadly, our approach of predicting outcomes at a fine resolution globally using only447

a small sample of coarse resolution labels differs considerably from what has been done in448

the poverty mapping literature to-date. For example, existing SIML literature using DHS449

asset measures has trained and evaluated at the same spatial scale, and has generally only450

considered observations from African countries, whereas we include all available data in our451

models (15, 22, 33 ).452

Our strategy is motivated by the limited resolution of available training data for HDI, but453

our results do not exhibit major or obvious compromises in performance relative to existing454

alternatives that exploit high-resolution labels. The benchmark in this literature achieves455

ρ2 = 0.63 to 0.67 predicting a wealth index when training and evaluating at the DHS cluster456

resolution (15, 41 ). Though we do not train at the DHS cluster level, our performance457

predicting DHS cluster IWI is competitive with this previous analysis. We achieve lower458

performance when training on province values (ρ2 = 0.5) and higher performance (ρ2 = 0.75)459

when training on within-country anomalies and re-centering our estimates to the observed460

province averages (Table S1, col 1). Direct comparison, however, is complicated by the461

differences in training and evaluation methodologies.462

Nonetheless, our study has several important limitations. First, there is a limit to how463

well every socioeconomic variable can be predicted using satellite imagery. While incorporat-464

ing additional training data and imagery sources could further improve our performance, it465

is unlikely that any SIML system could predict 100% of the variation in HDI. One important466

property of the errors in our estimates, common in machine learning predictions generally467

and SIML predictions specifically (13, 18, 19 ), is that our predictions exhibit lower variance468

than the true values. For example, in Mexico where we predict 40% of municipal varia-469

tion in HDI, the standard deviation of our satellite-derived estimates is approximately half470

that of census-derived values. As SIML measurements improve, survey and other traditional471

approaches to data collection will remain critical to informing the state of global human472

development and will continue to complement satellite models, which cannot be trained or473

evaluated without ground-truth measures.474

Second, our model estimates and their evaluation are limited by the quality of HDI475

observations. For example, the province-level data on HDI that we use come from Smits and476

Permanyer (2019), whose estimates of HDI and its component indicators are also imperfect477

(7 ). Generally, such errors in training data reduce model performance, indicating that478

improved provincial measures could benefit our approach. Relatedly, errors in evaluation479

21



data tend to lead to overly conservative estimates of model performance, as SIML estimates480

may differ from ground data in part due to errors in the ground data itself (14 ).481

A third limitation is that we focus on producing cross-sectional estimates. While we482

expect that our fine-resolution estimates of HDI will be useful in many ways, we also expect483

researchers, governments and non-government organizations to be additionally interested in484

changes to HDI over time. Evaluating the ability of our downscaling approach and other485

SIML systems to capture such changes is an important area for future investigation.486

We emphasize that the approach described here can likely be used to predict a wide487

variety of labels for which country, province, and/or municipality level labels exist. To488

facilitate this use, we make the MOSAIKS features used in this analysis publicly available at489

the country, province, and municipality level via https://mosaiks.org/hdi (11 ). We offer490

these features aggregated to these administrative-unit levels using both area and population491

weights. Each of these files is relatively small, ≈ 3 GB or less, and thus relatively easy to492

process on a desktop computer. For comparison, the global set of features is ≈ 3 TB and493

the raw imagery is ≈ 30 TB. We hope that agencies and policymakers can leverage these494

published features, along with their own administrative datasets, to produce new downscaled495

estimates of socially-relevant outcomes. We believe that such spatially granular data will496

create new opportunities for achieving global development goals.497
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Methods498

Throughout this analysis we use the term “province”, the abbreviation “ADM1”, and the499

subscript p to refer to first-level administrative regions; and “municipality”, “ADM2” and the500

subscript m to refer to second-level administrative regions, though the terminology for these501

units varies by country. For example, “state” and “county” are the designations used for502

ADM1 and ADM2 units in the United States. We use the subscript c to denote observations503

at the country level.504

1 Label data505

National-level HDI data originate from the UNDP Human Development Data Center and506

are updated every year (35 ). HDRO/UNDP uses data from the World Bank, UNESCO,507

UNICEF, DHS, UN Stats, and other organizations to create these national-level indicators508

(4 ). We use data from 2018, as those were the most recently available data when we began509

our analysis.510

Province-level data on HDI and its components come from the Global Data Lab (GDL)511

Sub-national HDI Database V4.0 (7, 42 ). We omit 3% of the observations, which do not512

match with the associated GDL shapefile. The resulting province-level HDI dataset contains513

1,707 provincial observations from 157 countries. Additionally, we include 22 country-level514

observations that do not have subnational province units (e.g., Qatar). Again, we use provin-515

cial HDI data from 2018, as those were the most recently available data when we began our516

analysis.517

IWI data also come from GDL. These data are publicly available at the country and518

province levels and we use these data for 2018. GDL also provided us IWI data at the519

DHS cluster level, which are not publicly available. We use cluster-level IWI estimates from520

2012 through 2019 in this analysis. We drop observations that do not overlap a parent521

province polygon and for which no imagery is available. This results in 51,996 DHS cluster522

observations from 41 countries.523

Wematch all label data to time-constant satellite image features. The MOSAIKS daytime524

features are from 2019 imagery, and the nightlight features are from 2013 imagery. Because525

these features are not contemporaneous with all labels, our results present a conservative526

estimate of the ability of SIML to measure HDI globally. Given that HDI variation is sub-527

stantially larger over space than time, however, we believe that perfectly contemporaneous528

measures would likely improve performance only modestly.529
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2 Creation of features530

2.1 MOSAIKS features531

We create daytime image features using Planet’s Surface Reflectance Basemaps product from532

2019, which has a pixel resolution of 4.77m x 4.77m at the equator. These quarterly mosaics533

are processed by Planet to minimize cloud cover, balance color across seasons, and remove534

seams from images (11, 12 ). We use data from quarter 3 because it corresponds with less535

ice coverage in the northern hemisphere and less cloud cover in the tropics. We follow the536

methods described in Rolf et al. (2021) to generate a set of 4000 task agnostic daytime537

image features using Random Convolutional Features (RCF) (11, 13 ). Two thousand of538

these features use a patch size of 4 x 4 x 3 pixels, and the other two thousand use a patch539

size of 6 x 6 x 3 pixels. The third dimension of the patch size refers to the number of color540

bands (i.e., red, green, and blue) that are available in Planet imagery. We selected these541

patch sizes because they maximized performance across three non-HDI prediction tasks:542

predicting nightlight intensity, road length, and forest cover at the global level. We tested543

patch sizes ranging from 3 x 3 x 3 to 10 x 10 x 3 and found that using a combination of two544

different patch sizes (with 2,000 patches each) outperformed using a single patch size (with545

4,000 patches) across all three tasks.546

We create features for all land tiles with available imagery on a global 0.01◦ x 0.01◦547

equal-angle grid, amounting to ≈ 151 million feature vectors in total. Features become548

sparse above 60◦ latitude, due to a lack of available imagery. Figure 1C shows individual549

images spanning 0.01◦ x 0.01◦, along with their corresponding MOSAIKS feature values.550

We create polygon-level feature vectors by averaging values across the feature tiles asso-551

ciated with each polygon. Each administrative polygon is represented by a single vector of552

4000 daytime image features. We assign each feature tile to the administrative polygon that553

contains its centroid. For small municipal and DHS polygons that do not contain any tile554

centroids, we represent the polygon by the nearest feature tile. When averaging, we weight555

by population using data from the Gridded Population of the World V4 (GPW) (28 ). The556

GPW data product has global coverage at the 30 arcsecond (0.008◦) resolution.557

2.2 Nighttime light features558

We create non-linear NL features from Defense Meteorological Satellite Program (DMSP)559

stable lights data (30 ). Specifically, we use an annual composite from the year 2013, the560

last year that composites are available for which sources of light contamination have been561

removed. The data has global coverage at 30 arcsecond (0.008◦) resolution. We use DMSP562
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data because it is widely used in the literature (32–34 ) and has a more uniform luminosity563

distribution than the more recent data from the Visible Infrared Imaging Radiometer Suite.564

DMSP luminosity values range from 0 to 63. We do not directly create random convolutional565

features from these NL data because the pixels are so large that each tile would not contain566

meaningful spatial structure. There are on average 1.5 NL pixels per tile.567

Instead, we create features that flexibly characterize the distribution of the NL data568

using indicator variables that represent whether the luminosity value of each NL pixel falls569

into each of 20 bins. The 20 bins are comprised of a single bin at zero and 19 equally-570

spaced bins from 0 to 63. Due to the coarse resolution of the NL data, this basis captures571

similar information to what random convolutional features would capture if implemented,572

but is computationally simpler to implement. Analogous to aggregating the daytime imagery573

features to the polygon level, we calculate the population-weighted average NL luminosity574

value in each of the 20 bins for a given polygon. These polygon-level NL features denote the575

fraction of each polygon’s population that is covered by nighttime light values represented576

by each of the 20 bins. This approach allows NL to associate non-linearly with the outcome577

variables in our linear models.578

3 Analysis579

3.1 General model specification580

All models are trained at either the country or province level and use either the 4000 MO-581

SAIKS daytime imagery features, the 20 NL features, or both. We train models using a582

five-fold cross-validation procedure with basic ridge hyper-parameter tuning. Data are split583

by country during cross-validation to account for spatial autocorrelation and to ensure that584

the model is predicting provincial outcomes when no observations from within the same585

country have been observed. We apply a clipping procedure that restricts model predictions586

to the minimum and maximum value observed in the training data. Hyper-parameter tuning587

is done with this clipping procedure. We allow for a different hyper-parameter between the588

MOSAIKS and NL feature sets, though this has only a minor impact on our results.589

The general linearized model, representing Eq. 2, that we implement is590

Y = β0 + β1 XMOSAIKS + β2 XNL + ϵ (4)

Where Y is used to refer to the HDI, IWI, or NL labels interchangeably. We use this same591

model but predict each outcome separately. XMOSAIKS is the matrix of daytime MOSAIKS592

features and XNL is the matrix of nightlight features. We learn β0, β1, and β2 using ridge593
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regression, following Rolf et al. (13 ). When predicting the NL outcome, we always exclude594

the XNL feature matrix. For each outcome, we report performance for models trained at the595

country, province, and within-country levels (Table S1).596

3.2 Performance metrics597

For each model specification, we report two metrics, both of which are used in the literature.598

The coefficient of determination (R2), used to evaluate related models by Chi et al. (16 )599

and others, describes the accuracy of the raw model predictions and is a direct measure600

of model skill. The square of the correlation coefficient (ρ2), used by Jean et al. (22 ) and601

others, scores performance after allowing model predictions to be linearly re-scaled before602

they are compared to observed values. We calculate both of these metrics when evaluating603

the full variation in labels and when decomposing the variation in labels into components604

that are visible within-countries or within-provinces (in contrast to between-countries and605

between-provinces).606

Full variation performance The “full variation” performance metrics describe how well607

we estimate subnational HDI globally when we use all information available to us. To608

calculate full variation performance, we calculate ρ2 and R2 on the predicted and observed609

values of subnational HDI directly. This evaluates the ability of model predictions to capture610

the total variation in the observed values – i.e. variation across countries, across provinces611

within countries, and across municipalities or DHS clusters within provinces. Because most612

of the variation in HDI and other outcomes is between countries (Figure 2A-B), a large613

portion of the model’s full variation performance comes directly from the mean-anchoring614

procedure (when it is used). Thus, the full variation performance metrics do not precisely615

evaluate the model’s ability to predict local variation in isolation, and so they are not our616

preferred evaluation metric for understanding model performance within countries. Instead,617

we focus our analysis on within-country and, when applicable, within-province performance.618

Within-country performance The “within-country” performance measures the amount619

of variation in the provincial deviations from the country mean that can be explained by the620

model. This metric evaluates the ability of the model to explain local variation in the outcome621

by removing large-scale variation in the outcome across countries in the demeaning step622

before predictions and observations are compared. To calculate within-country performance,623

we calculate ρ2 and R2 after demeaning predictions and observed values at the country level624

(i.e., after subtracting the predicted and observed country average value from each predicted625

and observed data point, respectively).626
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Within-province performance The “within-province” performance metric evaluates the627

ability of the model to explain hyper-local variation in the outcome, such as which DHS628

clusters within each province have higher or lower IWI. It does this by removing all between-629

province variation in the predicted and observed values before they are compared. To calcu-630

late within-province performance, we calculate ρ2 and R2 after demeaning predictions and631

observed values at the province level.632

3.3 Model evaluation633

Evaluation of HDI at the same provincial resolution as model training When634

reporting model performance at the same resolution as training (Figure 2 top row, Table S1635

upper section, and Table S3), we evaluate predictions from the validation folds of the five-636

fold cross-validation procedure. This enables more observations to be used when evaluating637

model performance. We also evaluate models on a held-out test set of countries that were not638

included when tuning the HDI model. Before analysis, we set aside 20% of the provincial HDI639

data to be used as a final evaluation test set by randomly sampling 35 countries and their640

respective provinces. Evaluation on this test set was conducted after all hyper-parameter641

tuning and analysis decisions were made. We find that performance is not meaningfully642

different in the validation and tests sets, which indicates that the models evaluated on the643

validation folds did not over-fit to the data (Table S2).644

Evaluation of HDI, IWI and NL at finer resolution than model training In the645

downscaling experiments, we evaluate performance using fine-resolution municipal or DHS646

cluster observations that were not used for model training or tuning. After tuning the model647

using cross-validation we retrain the model using the optimal hyper-parameters on all the648

ADM1 or ADM0 observations before predicting at downscaled resolution.649

3.4 Mean anchoring650

In our primary within-country model, we anchor our estimates to country or province-level651

means depending on the experiment. Estimates from models trained on provincial or national652

observations in “levels” (Equations 7,8) are never mean-anchored.653

Anchoring to country means The procedure for anchoring to the country mean is654

illustrated in the top row of Figure 2, where we evaluate performance at the same resolution655

as model training. Our within-country model is trained to predict within-country anomalies,656

so in order to predict HDI in “levels” (Figure 2A), we add back the known country average657
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HDI (Equation 6). This procedure enables us to calculate full variation performance (Figure658

2A) but has no impact on the reported within-country performance (Figure 2B).659

Anchoring to provincial means In the downscaling application, our goal is to produce660

the best possible estimates at fine resolution. Thus, when producing downscaled estimates661

of IWI and HDI, we anchor our predictions to the observed provincial value of the outcome662

(Equation 12). This re-centering procedure impacts the full variation performance and the663

within-country performance but does not impact the within-province performance (Table664

S1). Note that we anchor municipal NL estimates to country means, rather than provincial665

means, because we find that this improves the estimates (Methods Section 3.7).666

3.5 HDI model training667

Within-country model training Because our focus is explaining subnational variation

in HDI, we specifically train our primary model to predict within-country deviations of HDI.

To do this, we first demean subnational observations by country and then train a model

to use imagery to predict these residualized deviations. Specifically, we transform observed

ADM1 HDI for province p (HDIADM1
p ) into the deviation of this value from the country

mean HDI (H̃DI
ADM1

p ). We then solve a ridge regression to predict H̃DI
ADM1

p based only

on provincial daytime (X̃ADM1
MOSAIKS,p) and nightlight (X̃ADM1

NL,p ) features that have been simi-

larly residualized relative to the country mean values for these variables. We learn the model

H̃DI
ADM1

p = β0 + β1 X̃ADM1
MOSAIKS,p + β2 X̃ADM1

NL,p + ϵp (5a)

where :

H̃DI
ADM1

p = HDIADM1
p −

∑
p∈c

HDIADM1
p

Nc

(5b)

X̃ADM1
MOSAIKS,p = XADM1

MOSAIKS,p −
∑
p∈c

XADM1
MOSAIKS,p

Nc

(5c)

X̃ADM1
NL,p = XADM1

NL,p −
∑
p∈c

XADM1
NL,p

Nc

. (5d)
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Here, Nc is the number of provinces in country c. Note that we restrict predictions from this668

demeaned model to be between the observed minimum and maximum HDI deviations from669

the country mean.670

Anchoring to country means via re-centering To evaluate full variation performance671

using the within-country model (Table S1, col. 1-2) we need HDI predictions in “levels”672

rather than predicted deviations from the country mean. To construct predicted HDI values673

in “levels” we anchor estimate to country means, since they are observed and used in the674

estimation procedure. Practically, this means we add the country mean HDI, which was675

subtracted from the observations before model training, back onto the predicted deviations:676

̂HDIADM1
p =

̂̃
HDIADM1

p +
∑
p∈c

HDIADM1
p

Nc

(6)

Note that it is not necessary to implement this procedure when evaluating within-country677

performance.678

Province and country model training In Table S1, we additionally report performance

for models trained on province and country-level data directly. Unlike the within-country

model, these models are trained on values in “levels” instead of deviations from the country

mean. In these experiments, we learn the models:

Province model:

HDIADM1
p = β0 + β1X

ADM1
MOSAIKS,p + β2X

ADM1
NL,p + ϵp (7)

Country model:

HDIADM0
c = β0 + β1 XADM0

MOSAIKS,c + β2 XADM0
NL,c + ϵc (8)

We do not apply a mean-anchoring procedure with these models as their predictions are679

already in “levels” rather than predicted deviations. Note that 22 of the 179 total countries680

do not have subnational data (e.g., Qatar) and that these 22 country-only observations are681

included in both province and country models.682
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3.6 Downscaling validation with IWI683

Labels IWI is similar to the wealth index reported in DHS surveys, except that it was684

created to be comparable across countries (29 ). IWI data are available both for provincial685

polygons, which we use for training, and for DHS clusters, which we use for evaluation. For686

each survey cluster, DHS provides coordinate points associated with the cluster centroid.687

To protect privacy, the actual GPS coordinates of the center of each cluster are randomly688

displaced by up to 2km for urban clusters and up to 5km for rural clusters, with a random689

1% of rural cluster coordinates displaced by up to 10km. According to DHS, the displaced690

coordinate is guaranteed to fall within the same DHS-provided administrative boundaries as691

the true cluster centroid. To map these point observations to administrative polygons, we692

spatially buffer urban cluster coordinates using a 2km radius and rural cluster coordinates693

using a 10km radius. We then clip these buffers to the finest DHS-provided administrative694

boundaries that are available.695

Training We train within-country, province level, and country level IWI models following696

the structure of models for HDI (Methods Section 3.5). Provincial IWI observations are697

denoted IWIADM1
p .698

The within-country IWI model, our preferred model specification, takes the same form

as Equation 5a:

ĨWI
ADM1

p = β0 + β1 X̃ADM1
MOSAIKS,p + β2 X̃ADM1

NL,p + ϵp (9a)

where :

ĨWI
ADM1

p = IWIADM1
p −

∑
p∈c

IWIADM1
p

Nc

(9b)

Note that X̃ADM1
MOSAIKS,i and X̃ADM1

NL,i are the same feature matrices defined in Equation 5c and699

5d but with a different number of observations due to differing availability of outcome data.700

Prediction We evaluate the IWI model performance at a finer resolution than it was701

trained. We use the trained provincial model (Equation 9a) to produce predictions of IWI at702

the DHS cluster level and compare those predictions to the cluster-level IWI measurements703

from the GDL, which were not used for model training. We calculate DHS cluster-level704

features in the same way as for the other administrative polygons.705

To make predictions of IWI deviations from the country mean at the DHS cluster level

using the within-country model trained on provincial deviations from the country mean, we
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multiply model weights with the demeaned DHS cluster-level satellite features:

̂̃
IWIDHS

d = β̂0 + β̂1 X̃DHS
MOSAIKS,d + β̂2 X̃DHS

NL,d (10)

where d indexes DHS cluster and β̂0, β̂1, and β̂2 are estimated in Equation 9a. Tildes denote706

that these predictions are predicted deviations from the country mean. In our within-country707

IWI model, we demean DHS cluster-level satellite image features by the same country average708

feature values as in the training procedure:709

X̃DHS
MOSAIKS,d = XDHS

MOSAIKS,d −
∑
p∈c

XADM1
MOSAIKS,p

Nc

(11a)

X̃DHS
NL,d = XDHS

NL,d −
∑
p∈c

XADM1
NL,p

Nc

(11b)

where we note that these averages are constructed by averaging province-level features, but710

have similar values that averages of nationally-representative sets of cluster-level features711

would have.712

Anchoring to provincial means via re-centering To construct estimates of cluster-

level IWI in levels ( ̂IWIDHS
d ), we anchor predicted cluster-level deviations from the country

mean (
̂̃

IWIDHS
d ) to the known provincial value (IWIADM1

p ) using a provincial level adjust-

ment:

̂IWIDHS
d =

̂̃
IWIDHS

d + IWIADM1
p −

∑
d∈p

̂̃
IWIDHS

d

Np︸ ︷︷ ︸
centers DHS clusters to known provincial values

(12)

Here, Np denotes the number of DHS clusters contained by ADM1 polygon p, and IWIADM1
p713

denotes the observed ADM1-level value for polygon p. This anchors the mean of our DHS714

cluster-level predictions within each provincial polygon to the respective known province715

value used in training.716
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3.7 Downscaling validation using nighttime lights as labels717

In our analysis of the downscaling perfomance of our approach, we design an experiment in718

which NL are used as labels and are not used as features (Figure S1). This experiment is719

useful because it is the only validation experiment where the groundtruth data are available720

globally and at municipal resolution. Thus, this experiment allows us to evaluate predictions721

at a downscaled resolution for the entire globe using a procedure that mirrors how we will722

generate downscaled HDI estimates (such global high resolution labels do not exist for our723

other outcomes). We do not expect NL predictions to be perfect proxies for HDI data in724

this regard, but if NL can be downscaled successfully, it provides support for the procedure725

we use to downscale HDI.726

Labels We use population estimates from GPW and fine resolution NL data from DMSP727

to create a population-weighted average NL luminosity at the province level. NL observa-728

tions are population-weighted to mirror the construction of HDI, which is also population-729

weighted. We construct municipality-level NL observations using a municipal (ADM2) shape-730

file from geoBoundaries (43 ), which links municipalities to provincial “parent” polygons.731

We exclude Ireland from the geoBoundaries ADM2 dataset because Irish municipalities732

(ADM2 units) are so small that they alone represent 45% of the global municipality observa-733

tions. Thus, they would be over-represented in global performance metrics relative to their734

size if not removed. Still, we find similar performance to the global results when evaluating735

downscaled NL for Ireland. Full variation R2 = 0.68 and within-province R2 = 0.38 when736

predicting NL for Ireland’s very small municipality units. The vertical and horizontal streak-737

ing patterns in the scatter plots in Figure 2 are caused by three other countries that also738

have very spatially dense municipalities, though not to the same degree as Ireland. This,739

in turn, leads them to have very similar true and predicted values, which is compounded740

by the bunching of nightlight values at the maximum and minimum of the sensor range.741

The countries are Great Britain (≈ 9,000 units), Spain (≈ 8,000 units), and Brazil (≈ 5,000742

units).743

Training We train a model using only MOSAIKS features constructed from daytime im-744

agery to predict NL:745

NL = β0 + β1 XMOSAIKS + ϵ (13)

This model structure is broadly the same training procedure described in Methods Section746

3.5 and in Equation 4; however, we do not include NL features when predicting average747

NL luminosity. NL is also now a vector of scalar NL observations rather than a matrix of748
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features.749

Prediction To generate municipal predictions, indexed by m, from the within-country750

model, we first create municipal predictions of NL deviations from the country mean. We751

demean XADM2
MOSAIKS,m by country by subtracting the country mean feature values and then752

multiplying the resulting demeaned features by the estimated model weights. This corre-753

sponds to what is done when evaluating downscaled IWI performance in Section 3.6 and754

shown in Equation 11a.755

Anchoring to country means via re-centering When converting the predicted munic-756

ipal NL deviations from the country mean (
̂̃

NLADM2
m ) into predicted municipal NL values in757

levels ( ̂NLADM2
m ), we anchor values to the known country mean:758

̂NLADM2
m =

̂̃
NLADM2

m +
∑
p∈c

NLADM1
p

Nc

(14)

Note that we anchor fine resolution NL predictions to the known country mean rather than759

the provincial mean (following Equation 6 rather than Equation 12) because we find that760

this substantially improves full variation performance. Most of the variation in nightlight761

luminosity occurs within countries, rather than between countries, which is considerably762

different from what we observe for HDI and IWI. Importantly, the choice to use a different763

re-centering procedure for NL does not impact the downscaled within-province performance764

(Figure 2J), which we believe provides the most important evaluation of downscaling per-765

formance. After re-centering, 20% of downscaled NL predictions are outside of range of766

valid values for the DMSP nightlight raster. We winsorize these values to the limits of the767

allowable range prior to evaluating performance.768

3.8 Producing downscaled estimates of HDI769

Municipality-level HDI We follow the downscaling approach for IWI described in Sec-770

tion 3.6, but adjusted for HDI data, to produce municipality (ADM2) level estimates of HDI.771

We use the within-country model specified in Equation 5a to estimate HDI at the munic-772

ipality level, using a municipality (ADM2) shapefile from geoBoundaries (43 ). We anchor773

municipality estimates by centering predicted deviations on the observed province-level HDI774

value, identical to the procedure for downscaled IWI predictions (Equation 12). We do not775

release HDI estimates for municipalities that cannot be linked to a parent province with a776

province-level HDI estimate from Smits and Permanyer (7 ) because there is not a known777
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provincial value to anchor on.778

Grid-level HDI To produce 0.1◦ × 0.1◦ estimates of HDI, we similarly use the within-779

country model specified in Equation 5a. However, we make predictions at the native resolu-780

tion of the MOSAIKS features (0.01◦ × 0.01◦). This results in gridded estimates of HDI at781

approximately 1km2 resolution. We mask out locations where humans are not believed to be782

settled based on the Global Human Settlement Layer (36 ) (keeping areas with population783

> 0) and then mean-anchor our tile estimates such that the population-weighted average784

of the grid tiles within each province matches known provincial HDI values. Population785

weights are taken from GPW. Finally, we down-sample predictions to a 0.1◦ × 0.1◦ grid786

to reduce noise and more closely match the spatial scale of the DHS clusters used in our787

finest-resolution downscaling validation experiment.788

3.9 Downscaling validation with HDI data in Mexico789

We compare our municipal HDI estimates with census-derived municipal estimates for HDI,790

which are available in Mexico for the year 2010 (10 ). The census-derived data have a different791

mean than the 2018 HDI data that we use elsewhere in this analysis; though, this has no792

influence on the within-country or within-province evaluation metrics (Figure 2 C,D) because793

predictions and observations are demeaned at the country and province level, respectively,794

before the metrics are calculated (Methods 3.2).795
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Code availability Replication code is available at796

github.com/lukesherman/hdi_downscaling_mosaiks.797
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Data availability All data used in this analysis, other than the DHS cluster-level IWI data799

from the Global Data Lab, is from free, publicly available sources. Details on how to access800
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HDI estimates are available at mosaiks.org/hdi.802
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Predicted at province level (n=1,363)
Full variation performance Within-country performance
ρ2 R2 ρ2 R2

(1) (2) (3) (4)
HDI trained at: Features

Within-country (n=1,344) MOSAIKS+NL 0.96 0.96 0.46 0.46
MOSAIKS 0.95 0.95 0.35 0.34
NL 0.95 0.95 0.39 0.38

Province level (n=1,363) MOSAIKS+NL 0.79 0.79 0.36 0.08
MOSAIKS 0.72 0.72 0.23 < 0
NL 0.58 0.58 0.38 < 0

Country level (n=144) MOSAIKS+NL 0.71 0.69 0.4 < 0
MOSAIKS 0.6 0.58 0.15 < 0
NL 0.59 0.5 0.38 < 0

Predicted at municipality level in Mexico (n=2,457)
Within-country performance Within-province performance
ρ2 R2 ρ2 R2

(3) (4) (5) (6)
HDI trained at: Features

Within-country (n=1,344) MOSAIKS+NL 0.43 0.4 0.23 0.23
MOSAIKS 0.48 0.44 0.3 0.29
NL 0.5 0.43 0.32 0.27

Province level (n=1,363) MOSAIKS+NL 0.07 < 0 0.05 < 0
MOSAIKS 0.12 < 0 0.11 < 0
NL 0.2 < 0 0.19 < 0

Country level (n=144) MOSAIKS+NL 0.19 < 0 0.15 < 0
MOSAIKS 0.11 < 0 0.08 < 0
NL 0.21 < 0 0.19 < 0

Predicted at DHS cluster level (n=51,996)
Full variation performance Within-country performance Within-province performance
ρ2 R2 ρ2 R2 ρ2 R2

(1) (2) (3) (4) (5) (6)
IWI trained at : Features

Within-country (n=863) MOSAIKS+NL 0.75 0.75 0.59 0.59 0.39 0.38
MOSAIKS 0.69 0.68 0.48 0.47 0.22 0.2
NL 0.76 0.76 0.59 0.59 0.39 0.39

Province level (n=864) MOSAIKS+NL 0.5 0.38 0.3 0.19 0.19 < 0
MOSAIKS 0.37 0.31 0.14 < 0 0.08 < 0
NL 0.4 < 0 0.3 0.02 0.27 < 0

Country level (n=86) MOSAIKS+NL 0.41 < 0 0.3 < 0 0.25 < 0
MOSAIKS 0.27 0.09 0.12 < 0 0.08 < 0
NL 0.42 < 0 0.33 < 0 0.29 < 0

Predicted at municipality level (n=62,487)
Full variation performance Within-country performance Within-province performance
ρ2 R2 ρ2 R2 ρ2 R2

(1) (2) (3) (4) (5) (6)
NL trained at Features

Within-country (n=2,848) MOSAIKS 0.79 0.78 0.66 0.65 0.61 0.59
Province level (n=2,848) MOSAIKS 0.76 0.76 0.63 0.61 0.58 0.55
Country level (n=170) MOSAIKS 0.6 0.58 0.44 0.38 0.4 0.3

Table S1: Performance for models trained to predict HDI, IWI, and population-weighted
nightlight luminosity (NL). We show performance evaluated at the province level for HDI
and evaluate downscaled performance for HDI in Mexico, IWI, and NL. Performance scatters
from the within-country models are shown in Figure 2.



Predicted at province level (n=366)
Full variation performance Within-country performance
ρ2 R2 ρ2 R2

(1) (2) (3) (4)
HDI trained at: Features

Within-country MOSAIKS+NL 0.96 0.96 0.41 0.39
MOSAIKS 0.96 0.96 0.26 0.25
NL 0.96 0.96 0.37 0.37

Province level MOSAIKS+NL 0.79 0.79 0.38 < 0
MOSAIKS 0.79 0.77 0.24 < 0
NL 0.65 0.63 0.35 < 0

Country level MOSAIKS+NL 0.73 0.7 0.36 < 0
MOSAIKS 0.71 0.67 0.11 < 0
NL 0.65 0.62 0.34 < 0

Table S2: This is similar to the upper portion of Table S1 except that here we have evaluated
on a 35 country (≈ 20%) test set that was not used during model tuning. There is only a
slight decline in within-country performance as compared to Table S1.



Predicted at province level (n=1,363)
Full variation performance Within-country performance
ρ2 R2 ρ2 R2

(1) (2) (3) (4)
Life expectancy trained at: Features

Within-country MOSAIKS+NL 0.93 0.93 0.07 0.07
MOSAIKS 0.93 0.93 0.02 0.02
NL 0.93 0.93 0.07 0.07

Province level MOSAIKS+NL 0.68 0.68 0.03 < 0
MOSAIKS 0.66 0.66 0.02 < 0
NL 0.42 0.42 0.07 < 0

Country level MOSAIKS+NL 0.54 0.47 0.07 < 0
MOSAIKS 0.49 0.46 0.02 < 0
NL 0.44 0.36 0.08 < 0

Predicted at province level (n=1,363)
Full variation performance Within-country performance
ρ2 R2 ρ2 R2

(1) (2) (3) (4)
Mean years schooling trained at: Features

Within-country MOSAIKS+NL 0.93 0.93 0.48 0.48
MOSAIKS 0.91 0.91 0.37 0.37
NL 0.92 0.92 0.39 0.38

Province level MOSAIKS+NL 0.69 0.69 0.33 0.22
MOSAIKS 0.63 0.62 0.23 < 0
NL 0.52 0.52 0.37 0.16

Country level MOSAIKS+NL 0.65 0.63 0.32 < 0
MOSAIKS 0.54 0.51 0.1 < 0
NL 0.53 0.52 0.36 < 0

Predicted at province level (n=1,363)
Full variation performance Within-country performance
ρ2 R2 ρ2 R2

(1) (2) (3) (4)
Expected years schooling trained at: Features

Within-country MOSAIKS+NL 0.9 0.9 0.23 0.22
MOSAIKS 0.89 0.89 0.19 0.19
NL 0.89 0.89 0.13 0.13

Province level MOSAIKS+NL 0.58 0.58 0.17 < 0
MOSAIKS 0.56 0.56 0.16 < 0
NL 0.42 0.42 0.14 < 0

Country level MOSAIKS+NL 0.52 0.46 0.15 < 0
MOSAIKS 0.49 0.46 0.12 < 0
NL 0.42 0.37 0.14 < 0

Predicted at province level (n=1,363)
Full variation performance Within-country performance
ρ2 R2 ρ2 R2

(1) (2) (3) (4)
GNIpc trained at: Features

Within-country MOSAIKS+NL 0.96 0.96 0.46 0.46
MOSAIKS 0.95 0.95 0.31 0.31
NL 0.96 0.96 0.45 0.45

Province level MOSAIKS+NL 0.71 0.71 0.38 0.03
MOSAIKS 0.62 0.61 0.18 < 0
NL 0.56 0.56 0.43 < 0

Country level MOSAIKS+NL 0.54 < 0 0.17 0.08
MOSAIKS 0.42 < 0 0.06 0.04
NL 0.4 < 0 0.16 0.09

Table S3: This is similar to the top section of Table S1 except that here we show performance
for each HDI component evaluated at the province level.



HDI Life expectancy Mean years schooling Expected years schooling

HDI
Life expectancy 0.79
Mean years schooling 0.84 0.54
Expected years schooling 0.83 0.6 0.62
GNIpc 0.63 0.44 0.51 0.46

Within-country HDI Life expectancy Mean years schooling Expected years schooling

HDI
Life expectancy 0.32
Mean years schooling 0.83 0.14
Expected years schooling 0.65 0.11 0.46
GNIpc 0.2 0.04 0.11 0.1

Table S4: Individual components of HDI tend to be correlated. We report the squared
Pearson’s correlation coefficient (ρ2) between HDI and its components at the province level.
We also report the squared correlation coefficients after demeaning provincial observations
by country. This ρ2 metric used here is intended to be comparable to the metrics reported in
Tables S1 and S3. Notably, within-country correlation between HDI and GNIpc is low, yet
we are still able to predict those separate outcomes with considerable skill using MOSAIKS.
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Figure S1: A MOSAIKS model trained at the province level can effectively predict
NL at the municipality level. These maps show population-weighted NL luminosity that
has been predicted using MOSAIKS. (A) Population-weighted NL averaged up to the provin-
cial polygon. These are the data used to train the model. (B) True population-weighted
NL at the municipality level. (C) Predicted population-weighted NL at the municipality
level (country mean added back). (D) Municipalities ranked by luminosity within Texas, a
single province in the United States. (E) Predicted nightlight luminosity rank within Texas.
(F) Municipalities ranked by luminosity within Oromia, a single province in Ethiopia. (G)
Predicted nightlight luminosity rank within Oromia. Panels D-G illustrate the downscaling
efficacy of MOSAIKS. Each of these polygons (Texas and Oromia) represent a single training
observation. All predictions come from a within-country model (country mean added back).
Note that panels A-C use the same colorbar. See Table S1 for detailed performance metrics.
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Figure S4: Regional maps of HDI estimates at the municipal and grid levels. (A-
B) HDI estimates on Hispaniola (C-D) HDI estimates around the Bay of Bengal (E-F) HDI
estimates around the Gulf of Guinea. All panels show country, province, and municipality
borders as solid lines. Dashed lines show major roadways. Grey in the grid-level estimates
indicates land area believed to be unsettled (36 ).



Figure S5: The improvement in geographic targeting efficacy from using mu-
nicipal values (ADM2) depends on the assumed variability of individual-level
HDI within municipalities. ROC curves as in Figure 5F for different assumed standard
deviations (SD) of individual-level HDI within municipalities. Using municipal instead of
provincial HDI estimates increases the AUC by 0.09 (+11% from 0.82 to 0.91) when the
within-municipality HDI standard deviation is assumed to be 0.05 and by 0.05 (+8% from
0.65 to 0.7) when it is assumed to be 0.2. Histograms show the distribution of simulated
individual-level HDI for each assumed SD, using a truncated normal distribution centered
on the ADM2 values calculated by Permanyer (10 ).



Figure S6: Heterogeneity of HDI and IWI predictions. On the left we show het-
erogeneity in HDI performance evaluated at the province level. On the right, we show
heterogeneity in IWI performance evaluated at the DHS cluster level. (A) HDI performance
as a function of parent country HDI. (B) IWI performance as a function of parent country
HDI.(C) Mapped performance of HDI within-countries (within-country MOSAIKS + NL
model). (D) Mapped performance of IWI within-provinces (within-country MOSAIKS +
NL model). (E) Standard deviation of provincial HDI by country (F) Standard deviation of
DHS cluster-level IWI within-provinces by country.




