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1 Introduction

Empirical researchers utilizing panel data generally maintain the assumption that covariates

are strictly exogenous: realized values of past, current, and future explanatory variables are

independent of the time-varying structural disturbances or “shocks”.1 In many settings this

assumption is unrealistic. If the covariate is a policy, choice or dynamic state variable, then

agents may adjust its level in response to past shocks (as when, for example, a firm adjusts

its current capital expenditures in response to past productivity shocks).

When strict exogeneity is untenable, sequential exogeneity – sometimes called predeter-

minedness – may be palatable. A predetermined covariate varies independently of current

and future time-varying shocks, but general feedback, or dependence on past shocks, is al-

lowed. Assumptions of this type play an important role in, for example, production function

estimation (Olley and Pakes, 1996; Blundell and Bond, 2000).

In two seminar papers, Arellano and Bond (1991) and Arellano and Bover (1995), Manuel

Arellano and his collaborators presented foundational analyses of questions of identification,

estimation, efficiency and specification testing in linear panel data models with feedback.

Today such models are both well-understood and widely-used (see Arellano (2003) for a

textbook review).

In contrast, the properties of nonlinear models with feedback are much less well-

understood. In this paper we study binary choice. Most existing work in this area focuses on

the case where the covariate is either strictly exogenous or a lagged outcome. Under strict

exogeneity, Rasch (1960) and Andersen (1970) show that the coefficient on the covariate is

point-identified using two periods of data when shocks are logistic. Chamberlain (2010) pro-

vides conditions under which the logit case is the only one admitting point-identification with

two periods (Davezies et al. (2020) provide extensions of this result to the case of T > 2).

In the dynamic case, where the covariate is a lagged outcome, Cox (1958), Chamberlain

(1985) and Honoré and Kyriazidou (2000) derive conditions for point-identification of the

coefficient on the lagged outcome in the logit case, while Honoré and Tamer (2006) show how

to compute bounds on coefficients.

Results for binary choice panel models with predetermined covariates are scarce. Cham-

berlain (2022) studies identification and semiparametric efficiency bounds in a class of non-

linear panel data models with feedback; he provides both positive and negative results. In an

hitherto unpublished section of an early draft of that paper (Chamberlain, 1993), he proves

that the coefficient on a lagged outcome is not point-identified in a dynamic logit model when

only three periods of outcome data are available. Arellano and Carrasco (2003) and Honoré

1Dependence between the covariates and the time-invariant heterogeneity – the so-called “fixed effects” –
is, of course, allowed.
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and Lewbel (2002) study binary choice models with predetermined covariates. Arellano and

Carrasco (2003) assume that the dependence between the time-invariant heterogeneity and

the covariates is fully characterized by its conditional mean given current and lagged covari-

ates. Honoré and Lewbel (2002) assume that one of the covariates is independent of the

individual effects conditional on the other covariates.

In what follows we pose two questions. First, under what conditions is the coefficient

on a predetermined covariate in a binary choice panel data model point-identified? Second,

when the coefficient is only set-identified, how extreme is the failure of point-identification,

i.e., what is the width of the identified set?

Our analyses leave the dependence between the (time-invariant) unit-specific heterogene-

ity and the covariates unrestricted. We focus on the special case of a single binary prede-

termined covariate, leaving the feedback process from lagged outcomes, covariates and the

unit-specific heterogeneity onto future covariate realizations fully unrestricted. This is a

substantial relaxation of the strict exogeneity assumption.

Regarding point-identification, we provide a simple condition on the model which guaran-

tees that point-identification fails when T periods of data are available (and T is fixed). The

condition is satisfied in most familiar models of binary choice, including the logit one. This

finding contrasts with the prior work on logit models cited above, where point-identification

typically holds for a sufficiently long panel. The exponential binary choice model introduced

by Al-Sadoon et al. (2017) does not satisfy our condition. In fact, point-identification holds

in that case.

Regarding identified sets, we first show that sharp bounds on the coefficient can be com-

puted using linear programming techniques. Our method builds on Honoré and Tamer (2006),

however in contrast to their work, we allow for heterogeneous feedback. Second, we numer-

ically compute examples of identified sets. We find that, relative to the strictly exogenous

case, allowing for a predetermined covariate tends to increase the width of the identified

set. However, our calculations also suggest that the identified set can remain informative

under predeterminedness, even in panels with as few as two periods. Finally, as is true under

strict exogeneity, the width of the identified set decreases quickly as the number of periods

increases (in the examples we consider).

The balance of this paper proceeds as follows. In Section 2 we present the model. In

Section 3 we provide a condition that implies that the common parameter in this model is not

point-identified when T = 2. In Section 4 we show that our condition implies failure of point-

identification for all (finite) T . In Section 5 we show how to compute identified sets, and we

report the results of a small set of numerical illustrations. In Section 6 we describe potential

restrictions one could impose on the feedback process. These restrictions may restore point
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identification or shrink the identified set. Section 7 contains the customary conclusion which

signals the imminent end of our paper. Proofs are contained in the Appendix. Lastly,

replication codes are available as supplementary material.

2 The model

Available to the econometrician is a random sample of n units, each of which is followed for

T ≥ 2 time periods. In the identification analysis we focus on short panels, and keep T fixed

while considering a large-n population of individual units.

For any sequence of random variables Zt and any non-stochastic sequence zt, we use the

shorthand notation Zt:t+s = (Z ′t, ..., Z
′
t+s)

′ and zt:t+s = (z′t, ..., z
′
t+s)

′. In addition, we simply

denote Zt = Z1:t and zt = z1:t when the subsequence starts in the first period.

Let Yit ∈ {0, 1} and Xit ∈ {0, 1} denote a binary outcome and a binary covariate, respec-

tively. We assume that

Pr(Yit = 1 |Y t−1
i , X t

i , αi; θ) = F (θXit + αi), t = 1, . . . , T,

where αi ∈ Sα is a scalar individual effect, F (·) is a known differentiable cumulative distri-

bution function, and θ ∈ Θ is a scalar parameter.

We leave the distribution of αi |Xi1 unrestricted. In addition, for each t ≥ 2 we leave the

distribution of Xit |Y t−1
i , X t−1

i , αi unrestricted. Let

Pr
(
Xit = 1 |Y t−1

i = yt−1, X t−1
i = xt−1, αi = α

)
= Gt

yt−1,xt−1(α), t = 2, . . . , T,

denote the feedback process through which lagged outcomes, past covariates and hetero-

geneity affect the current covariate. We leave this process unrestricted, and only assume

that Gt
yt−1,xt−1(α) ∈ (0, 1). We denote as G ∈ GT the collection of all Gt

yt−1,xt−1(α), for all

t ∈ {2, ..., T}, yt−1 ∈ {0, 1}t−1, xt−1 ∈ {0, 1}t−1, and all α values.

To keep the formal analysis simple, throughout we assume that αi takes one of K values,

with known support points Sα = {α1, ..., αK}. This makes the model fully parametric. How-

ever this is not a limitation as our aim is to derive conditions under which point identification

fails. The conditions we provide will require sufficiently many support points. Define

Pr (αi = α |Xi1 = x1) = πx1(α),

the distribution of heterogeneity given the initial condition x1. We leave this object un-

restricted, only assuming that it belongs to the unit simplex on Sα. We rely on the pa-
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rameterization given by the 2(K − 1) × 1 vector π = (π′1, π
′
0)
′, where, for all x1 ∈ {0, 1},

πx1 = (πx1(α1), . . . , πx1(αK−1))
′ and πx1(αK) = 1 −

K−1∑
k=1

πx1(αk). The vector π ∈ Π is un-

restricted, except for the fact that πx1(α), for α ∈ Sα, belongs to the unit simplex. This

parameterization handles the fact that probability mass functions sum to one.

The (integrated) likelihood function conditional on the first period’s covariate is

Pr
(
Y T
i = yT , X2:T

i = x2:T |Xi1 = x1
)

=
∑
α∈Sα

T∏
t=1

F (θxt + α)yt [1− F (θxt + α)]1−yt︸ ︷︷ ︸
outcomes

×
T∏
t=2

Gt
yt−1,xt−1(α)xt [1−Gt

yt−1,xt−1(α)]1−xt︸ ︷︷ ︸
feedback

× πx1(α)︸ ︷︷ ︸
heterogeneity

. (1)

A key feature of a model with predetermined covariates is the dependence of the feedback

process on lagged outcomes, as reflected in the dependence of Gt on yt−1 in (1). When

this dependence is ruled out, the covariate is strictly exogenous, and the likelihood function

simplifies.2 Dynamic responses of covariates to lagged outcome realizations are central to

many economic models, including those where Xit is a choice variable, policy, or a dynamic

state variable.

For any (θ, π,G) ∈ Θ× Π× GT , and any (yT , x2:T ) ∈ {0, 1}2T−1, let Qx1(y
T , x2:T ; θ, π,G)

denote the right-hand side of (1). Moreover, let Qx1(θ, π,G) denote the 22T−1 × 1 vector

collecting all those elements, for all (yT , x2:T ) ∈ {0, 1}2T−1. Finally, let Q(θ, π,G) denote the

22T × 1 vector stacking Q1(θ, π,G) and Q0(θ, π,G). For a given (θ, π,G) ∈ Θ× Π× GT , we

define the identified set of θ as

ΘI =
{
θ̃ ∈ Θ : ∃(π̃, G̃) ∈ Π× GT : Q(θ̃, π̃, G̃) = Q(θ, π,G)

}
. (2)

The set in (2) includes all θ̃ ∈ Θ where, conditional on θ̃, it is possible to find a heterogeneity

distribution π̃ ∈ Π, and a feedback process G̃ ∈ GT , such that the resulting conditional

2Under strict exogeneity, the likelihood function factors as

Pr
(
Y Ti = yT , X2:T

i = x2:T |Xi1 = x1
)

=

[ ∑
α∈Sα

T∏
t=1

F (θxt + α)yt [1− F (θxt + α)]1−ytπxT (α)

]
× Pr

(
X2:T
i = x2:T |Xi1 = x1

)
,

where πxT (α) = Pr(αi = α |XT
i = xt).
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likelihood assigns the same probability to each of the 22T−1 possible data outcomes as the

true one (given both Xi1 = 0 and Xi1 = 1).

In the first part of the paper, we provide conditions on the model under which ΘI is not

a singleton. This corresponds to cases where θ is not point-identified. In the second part of

the paper, we report numerical calculations of ΘI for particular parameter values.

Our focus on θ is motivated by the extensive literature on the identification of coefficients

in binary choice models. However, in applications average marginal effects may also be of

interest. We leave the identification analysis of such quantities in models with predetermined

covariates to future work.

3 Failure of point-identification in two-period panels

We first present an analysis of point-identification in the two-period case, since this leads

to simple and transparent calculations. In the next section we generalize this result to

accommodate T ≥ 2 periods.

3.1 Assumptions and result

We start by imposing the following assumption on the population parameters.

Assumption 1. θ ∈ Θ, π ∈ Π, and G ∈ GT are all interior, and F (θx + α) ∈ (0, 1) for all

x ∈ {0, 1} and α ∈ Sα.

Assumption 1 places restrictions on the underlying parametric binary choice model and

heterogeneity distribution. It rules out heterogeneity distributions which induce a point mass

of “stayers” (i.e., units with such extreme values of α that they either always take the binary

action or they never do).

Next, we assume that the parameter point is regular in the sense of Rothenberg (1971).

Assumption 2. (θ, π,G) is a regular point of the Jacobian matrix ∇Q(θ, π,G).

The assumption of regularity is standard in the literature on the identification of para-

metric models (Rothenberg, 1971). In Assumption 2, it means that the rank of ∇Q(θ̃, π̃, G̃)

is constant for all (θ̃, π̃, G̃) in an open neighborhood of (θ, π,G). If F (·) is analytic, the

irregular points of ∇Q(θ, π,G) form a set of measure zero (Bekker and Wansbeek, 2001).

Thus, Assumption 2 is satisfied almost everywhere in the parameter space in many binary

choice models, including the probit and logit ones.
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We aim to provide a simple condition under which point-identification of θ fails when

T = 2. We start by observing that, when T = 2, the 22T−1 = 8 model outcome probabilities

given Xi1 = x1 are

Qx1(θ, π,G) =



Pr(Yi2 = 1, Xi2 = 1, Yi1 = 1 |Xi1 = x1; θ, π,G)

Pr(Yi2 = 1, Xi2 = 1, Yi1 = 0 |Xi1 = x1; θ, π,G)

Pr(Yi2 = 1, Xi2 = 0, Yi1 = 1 |Xi1 = x1; θ, π,G)

Pr(Yi2 = 1, Xi2 = 0, Yi1 = 0 |Xi1 = x1; θ, π,G)

Pr(Yi2 = 0, Xi2 = 1, Yi1 = 1 |Xi1 = x1; θ, π,G)

Pr(Yi2 = 0, Xi2 = 1, Yi1 = 0 |Xi1 = x1; θ, π,G)

Pr(Yi2 = 0, Xi2 = 0, Yi1 = 1 |Xi1 = x1; θ, π,G)

Pr(Yi2 = 0, Xi2 = 0, Yi1 = 0 |Xi1 = x1; θ, π,G)


,

which, given the structure of the model, coincide with

Qx1(θ, π,G) =



∑
α∈Sα F (θ + α)G2

1,x1
(α)F (θx1 + α)πx1(α)∑

α∈Sα F (θ + α)G2
0,x1

(α)[1− F (θx1 + α)]πx1(α)∑
α∈Sα F (α)[1−G2

1,x1
(α)]F (θx1 + α)πx1(α)∑

α∈Sα F (α)[1−G2
0,x1

(α)][1− F (θx1 + α)]πx1(α)∑
α∈Sα [1− F (θ + α)]G2

1,x1
(α)F (θx1 + α)πx1(α)∑

α∈Sα [1− F (θ + α)]G2
0,x1

(α)[1− F (θx1 + α)]πx1(α)∑
α∈Sα [1− F (α)] [1−G2

1,x1
(α)]F (θx1 + α)πx1(α)∑

α∈Sα [1− F (α)] [1−G2
0,x1

(α)][1− F (θx1 + α)]πx1(α)


. (3)

With this notation in hand we present the following lemma.

Lemma 1. Let T = 2. Suppose that Assumptions 1 and 2 hold, and that θ is point-identified.

Then, there exists x1 ∈ {0, 1} and a non-zero function φx1 : {0, 1}3 → R such that:

(i) for all α ∈ Sα and y1 ∈ {0, 1},

1∑
y2=0

φx1(y1, y2, 1)F (θ + α)y2 [1− F (θ + α)]1−y2 =
1∑

y2=0

φx1(y1, y2, 0)F (α)y2 [1− F (α)]1−y2 ;

(4)
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(ii) for all α ∈ Sα and x2 ∈ {0, 1},

1∑
y2=0

1∑
y1=0

φx1(y1, y2, x2)F (θx2 + α)y2 [1− F (θx2 + α)]1−y2F (θx1 + α)y1 [1− F (θx1 + α)]1−y1 = 0.

(5)

The proof of Lemma 1 exploits the fact that, if θ is point-identified, then it is also locally

point-identified. Together with the assumption that the parameter is regular, this allows us

to apply a result of Bekker and Wansbeek (2001) regarding the identification of subvectors,

which guarantees the existence of some x1 ∈ {0, 1} such that ∇θ′Qx1 does not belong to the

range of the matrix
[
∇π′x1

Qx1 ∇G′x1
Qx1

]
. We then show, using (3), that this implies the

existence of φx1 6= 0 such that (4) and (5) hold.

It is instructive to observe that condition (4) in Lemma 1 corresponds to the conditional

moment restriction

E [φXi1 (Yi1, Yi2, Xi2)|Xi1, Xi2, Yi1, αi] = E [φXi1 (Yi1, Yi2, Xi2)|Xi1, Yi1, αi] ,

while (5) implies the additional requirement that

E [φXi1 (Yi1, Yi2, Xi2)|Xi1, αi] = 0.

This formulation clarifies that a necessary condition for point identification of θ is the exis-

tence of a non-zero moment function, φXi1 (Yi1, Yi2, Xi2), with a mean that is invariant to Xi2

given αi and the past (i.e., the first period’s covariate and outcome). Such a moment function

is “feedback robust”, in the sense that it remains valid across all possible feedback processes.

This is the content of condition (4) in Lemma 1, while (5) imposes a similar invariance to

the distribution of unobserved heterogeneity.

To show that point identification fails, our focus here, we need to show that no such

non-zero moment function exists. It turns out that there is a very simple condition for this

in our model. Specifically, from Lemma 1 we obtain the following corollary.

Corollary 1. Let T = 2. Suppose that Assumptions 1 and 2 hold, and that 1, F (α), and

F (θ + α), for α ∈ Sα, are linearly independent, then θ is not point-identified.

Corollary 1 shows that a necessary condition for identification of θ is that 1, F (α), and

F (θ + α), for α ∈ Sα, are linearly dependent. This is a restrictive condition, as we show in

the next subsection.3

3Note that, when θ 6= 0, this condition cannot hold on the entire real line whenever F is strictly increasing
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Remark 1. Despite the negative result of Corollary 1, the sign of θ is identified provided

that F (·) is strictly increasing. Specifically, we show in Appendix C that

sign(θ) = sign (E [Yi2 − Yi1 |Xi1 = 0]) = sign (E [Yi1 − Yi2 |Xi1 = 1]) .

3.2 The logit model

Consider the logit model with a binary predetermined covariate, which corresponds to F (u) =
eu

1+eu
. In this case, the linear dependence condition of Corollary 1 requires that, for some non-

zero triplet (A,B,C),

A
eθ+α

1 + eθ+α
+B

eα

1 + eα
+ C = 0, for all α ∈ Sα.

However, this implies

Aeθeα(1 + eα) +Beα(1 + eθeα) + C(1 + eα)(1 + eθeα) = 0, for all α ∈ Sα,

which is a quadratic polynomial equation in eα. Therefore, provided that there are K ≥ 3

values in Sα, this implies

Aeθ +Beθ + Ceθ = 0, Aeθ +B + (1 + eθ)C = 0, C = 0,

which, provided that θ 6= 0, entails

A = B = C = 0,

contradicting the assumption that (A,B,C) is non-zero.

We have thus proved the following corollary.

Corollary 2. Consider the logit model with T = 2. Suppose that Assumptions 1 and 2 hold,

that θ 6= 0, and that Sα contains at least three points, then θ is not point-identified.

A precedent to Corollary 2 is given in the unpublished working paper by Chamberlain

(1993) mentioned in the introduction. In the model he considers, Xit = Yi,t−1 is a lagged

on R. Indeed, if 1, F (α), and F (θ + α), for α ∈ R, are linearly dependent, then for some non-zero triplet
(A,B,C) we have

AF (θ + α) +BF (α) + C = 0, for all α ∈ R.

This implies, by taking α → ±∞ that C = 0, and A + B = 0, which cannot hold if θ 6= 0 unless A = B =
C = 0, contradicting the assumption that (A,B,C) is non-zero.
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outcome, and T = 2 (hence, outcomes are observed for three periods). His model also includes

an additional regressor: an indicator for period t = 2.

3.3 The exponential model

Suppose now that, for u ≥ 0, F (u) = 1 − e−u. This corresponds to the exponential binary

choice model of Al-Sadoon et al. (2017). Note that here the support of F (·) is a strict subset

of the real line. In this case, letting

A = eθ, B = −1, C = 1− eθ,

we have

A[1− e−(θ+α)] +B[1− e−α] + C = 0.

Hence the non point-identification condition of Corollary 1 is not satisfied in the exponential

binary choice model.

In fact, in this case (4) and (5) are satisfied for

φx1(y1, y2, x2) = (1− y2)eθx2 − (1− y1)eθx1 ,

and θ is point-identified based on the conditional moment restriction

E[φXi1(Yi1, Yi2, Xi2) |Xi1] = 0,

that is,

E[(1− Yi2)eθXi2 − (1− Yi1)eθXi1 |Xi1] = 0.

See Wooldridge (1997) for several related results.

4 Failure of point-identification in T -period panels for

T > 2

In this section we generalize our analysis to an arbitrary number of periods and state our

main result.

4.1 Main result

The arguments laid out in the previous section extend to an arbitrary number of time periods,

T ≥ 2. Indeed, using a similar strategy to the proof of Lemma 1 and proceeding by induction,
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we obtain the following lemma.

Lemma 2. Let T ≥ 2. Suppose that Assumptions 1 and 2 hold, and that θ is point-identified.

Then, there exists x1 ∈ {0, 1} and a non-zero function φx1 : {0, 1}2T−1 → R such that:

(i) for all α ∈ Sα, s ∈ {0, ..., T − 2}, yT−(s+1) ∈ {0, 1}T−(s+1), xT−(s+1) ∈ {0, 1}T−(s+1),

∑
yT−s:T∈{0,1}s+1

φx1(y
T , x2:T )

T∏
t=T−s

F (θxt + α)yt [1− F (θxt + α)]1−yt (6)

does not depend on xT−s:T ;

(ii) for all α ∈ Sα and x2:T ∈ {0, 1}T−1,

∑
yT∈{0,1}T

φx1(y
T , x2:T )

T∏
t=1

F (θxt + α)yt [1− F (θxt + α)]1−yt = 0. (7)

Similarly to Lemma 1, Lemma 2 implies the existence of a moment function that is

“feedback robust”, in the sense that, for all s ∈ {0, ..., T − 2},

E
[
φXi1(Y

T
i , X

2:T
i ) |XT

i , Y
T−(s+1)
i , αi

]
= E

[
φXi1(Y

T
i , X

2:T
i ) |XT−(s+1)

i , Y
T−(s+1)
i , αi

]
,

while also requiring that

E
[
φXi1(Y

T
i , X

2:T
i ) |Xi1, αi

]
= 0.

From Lemma 2 we obtain the following corollary, which we also prove by induction. This

is our main result.

Corollary 3. Let T ≥ 2. Suppose that Assumptions 1 and 2 hold, and that 1, F (α), and

F (θ + α), for α ∈ Sα, are linearly independent, then θ is not point-identified.

4.2 Logit model

Using that, when θ 6= 0, 1, F (α), and F (θ + α), for α ∈ Sα, are linearly independent in

the logit model, Corollary 3 implies that in the logit model with a binary predetermined

covariate, θ is not point-identified irrespective of the number of time periods available. We

state this formally in a corollary.

Corollary 4. Consider the logit model with T ≥ 2. Suppose that Assumptions 1 and 2 hold,

that θ 6= 0, and that Sα contains at least three points, then θ is not point-identified.

This non point-identification result contrasts with prior work on logit panel data models.

Under strict exogeneity, Rasch (1960) and Andersen (1970) have established that θ is point-
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identified under mild conditions on Xit whenever T ≥ 2. In the dynamic logit model when

Xit = Yi,t−1, Chamberlain (1993) shows that θ is not point-identified when T = 2 (a result also

obtained as an implication of Corollary 1). However, Chamberlain (1985), and Honoré and

Kyriazidou (2000) in a model with covariates, show that θ is point-identified under suitable

conditions whenever T ≥ 3.4 By contrast, Corollary 4 shows that, when the feedback process

through which current covariates are influenced by lagged outcomes is unrestricted, the failure

of point-identification is pervasive irrespective of T , despite the logit structure.

5 Characterizing the identified set

The previous sections show that point-identification often fails in binary choice models with

a predetermined covariate. In this section, we explore the extent of non point-identification

by presenting numerical calculations of the identified set ΘI for specific parameter values.

5.1 Linear programming representation

We show that the identified set ΘI , defined by set (2) above, can be represented as a set of

θ values for which a certain linear program has a solution. This characterization facilitates

numerical computation of the identified set.

To do so, let us first focus on the T = 2 case. Let

ψx1(x2, y1, α) = Pr(Xi2 = x2, Yi1 = y1, αi = α |Xi1 = x1; θ̃, π̃, G̃),

for some hypothetical values (θ̃, π̃, G̃) ∈ Θ× Π× G2.
This probability vector satisfies the following restrictions:

ψx1(x2, y1, α) ≥ 0,
1∑

x2=0

1∑
y1=0

∑
α∈Sα

ψx1(x2, y1, α) = 1, (8)

and

1∑
x2=0

ψx1(x2, y1, α) = F (θ̃x1 + α)y1 [1− F (θ̃x1 + α)]1−y1
1∑

x2=0

1∑
y1=0

ψx1(x2, y1, α). (9)

Here (8) indicates that ψx1 is a probability vector, and (9) indicates that it needs to be

consistent with the outcome distribution in period 1.

4Since in the dynamic logit model Xit = Yi,t−1 is a lagged outcome, T ≥ 2 (respectively, T ≥ 3) requires
that individual outcomes be available for at least three (resp., four) periods.
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Then, θ̃ ∈ ΘI if and only if

Qx1(y2, y1, x2; θ, π,G) =
∑
α∈Sα

F (θ̃x2 + α)y2 [1− F (θ̃x2 + α)]1−y2ψx1(x2, y1, α), (10)

for some vectors ψx1 satisfying (8) and (9) for x1 ∈ {0, 1}. Since all of the equalities and

inequalities in (8), (9) and (10) are linear in ψx1 , it follows that one can verify whether θ̃ ∈ ΘI

by checking the existence of a solution to a linear program.5

The linear programming representation of ΘI extends to any number T ≥ 2 of periods.

To see this, let, for some (θ̃, π̃, G̃) ∈ Θ× Π× GT ,

ψx1(x
2:T , yT−1, α) = Pr(X2:T

i = x2:T , Y T−1
i = yT−1, αi = α |Xi1 = x1; θ̃, π̃, G̃).

In the Appendix we derive the following characterization of the (sharp) identified set ΘI .

Proposition 1. ΘI is the set of parameter values θ̃ ∈ Θ such that

Qx1(y
T , x2:T ; θ, π,G) =

∑
α∈Sα

F (θ̃xT + α)yT [1− F (θ̃xT + α)]1−yTψx1(x
2:T , yT−1, α), (11)

for some functions ψx1 : {0, 1}2T−2 × Sα → R, x1 ∈ {0, 1}, satisfying

ψx1(x
2:T , yT−1, α) ≥ 0,

∑
x2:T∈{0,1}T−1

∑
yT−1∈{0,1}T−1

∑
α∈Sα

ψx1(x
2:T , yT−1, α) = 1, (12)

and, for all s ∈ {2, ..., T},∑
xs:T∈{0,1}T−s+1

∑
ys:T−1∈{0,1}T−s

ψx1(x
2:T , yT−1, α)

= F (θ̃xs−1 + α)ys−1 [1− F (θ̃xs−1 + α)]1−ys−1

∑
xs:T∈{0,1}T−s+1

∑
ys−1:T−1∈{0,1}T−s+1

ψx1(x
2:T , yT−1, α).

(13)

Proposition 1 shows that one can verify whether θ̃ ∈ ΘI by checking the feasibility of a

linear program. In a setting with lagged outcomes and strictly exogenous covariates, Honoré

5Note that, to compute the identified set under the assumption of strict exogeneity, one can simply modify
this approach by adding to (8), (9) and (10) the additional restriction

ψx1
(x2, 1, α)

F (θ̃x1 + α)
=

ψx1
(x2, 0, α)

1− F (θ̃x1 + α)
for all (x2, x1, α),

which is also linear in ψx1 . The fact that, under strict exogeneity, ΘI can be computed using linear program-
ming was first established by Honoré and Tamer (2006).
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and Tamer (2006) provided an analogous linear programming representation of the identified

set. By contrast, in Proposition 1 we characterize the identified set of θ in the general

predetermined case where the Granger condition fails; i.e., when Gyt−1,xt−1(α) may depend

on yt−1, a situation that Honoré and Tamer (2006) did not consider but anticipated in their

conclusion.

5.2 Numerical illustration

In this section we compute identified sets in logit and probit models for a set of example

data generating processes (DGPs). In the DGPs, Xit follows a Bernoulli distribution on

{0, 1} with probabilities (1
2
, 1
2
), independent over time, and αi takes K = 31 values with

probabilities closely resembling those of a standard normal (a specification we borrow from

Honoré and Tamer, 2006), and is drawn independently of (Xi1, ..., XiT ). In the logit case,

F (u) = eu

1+eu
, and in the probit case, F (u) = Φ(u) for Φ the standard normal cdf. Lastly, we

vary θ between −1 and 1. Note that Xit is strictly exogenous in this data generating process.

We characterize identified sets in two scenarios: assuming that Xit are strictly exogenous,

and only assuming that Xit are predetermined.

In Figure 1 we report our numerical calculations of the identified set ΘI for the logit model

(in the left column panels) and for the probit model (in the right column panels). The three

vertical panels correspond to the T = 2, 3, 4 cases, respectively. In each graph, we report

two sets of upper and lower bounds: those computed while maintaining the strict exogeneity

assumption (in dashed lines) and those computed maintaining just predeterminedness (in

solid lines). We report the true parameter θ on the x-axis.

Focusing first on the logit case, shown in the left column of Figure 1, we see that the

identified set ΘI under strict exogeneity is a singleton for any value of θ and irrespective of

T . This is not surprising since θ is point-identified in the static logit model. In contrast,

the upper and lower bounds of the identified set do not coincide in the predetermined case,

consistent with our non point-identification result. At the same time, the identified sets

appear rather narrow, even when T = 2, and the width of the set tends to decrease rapidly

when T increases to three and four periods. This is qualitatively similar to the observation of

Honoré and Tamer (2006), who focused on dynamic probit models and found that the width

of the identified set tends to decrease rapidly with T .6

Focusing next on the probit case, shown in the right column of Figure 1, we see that the

6It is intuitive that ΘI gets tighter as T increases. Indeed, under large T , αi and θ are point-identified
based on the moment condition

E
((

Xit

1

)(
Yit −

exp(θXit + αi)

1 + exp(θXit + αi)

))
= 0,
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Figure 1: Identified sets in logit and probit models
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Notes: Upper and lower bounds of the identified set ΘI in a logit model (left column) and a probit model

(right column), for T = 2, 3, 4. The identified sets under strict exogeneity are indicated in dashed lines, the

sets under predeterminedness are indicated in solid lines. The population value of θ is given on the x-axis.
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identified set ΘI under strict exogeneity is not a singleton in this case. Moreover, allowing

the covariate to be predetermined increases the width of the identified set. However, as in

the logit case, the sets appear rather narrow, even when T = 2, and their widths decrease

quickly as T increases.

These calculations suggest that, while relaxing strict exogeneity tends to increase the

widths of the bounds, the identified sets under predeterminedness can be informative even

when the number of periods is very small. Of course, these conclusions are based on a

particular set of specific examples.

6 Restrictions on the feedback process

Our analysis suggests that failures of point-identification are widespread in binary choice

models with a predetermined covariate. In this section we describe possible restrictions on

the model that can strengthen its identification content. We focus on restrictions on the

feedback process, since restrictions on individual heterogeneity are rarely motivated by the

economic context.

6.1 Homogeneous feedback

In some applications one may want to restrict the feedback process to not depend on time-

invariant heterogeneity; that is, to impose that

Pr
(
Xit = 1 |Y t−1

i = yt−1, X t−1
i = xt−1, αi = α

)
= Gt

yt−1,xt−1 (14)

is independent of α. For example, in structural dynamic discrete choice models, researchers

may be willing to model the law of motion of state variables such as dynamic production

inputs as homogeneous across units. Kasahara and Shimotsu (2009) show how this assump-

tion can help identification in these models. Here we study how a homogeneity assumption

can lead to tighter identified sets in our setting.

To proceed, we focus on the case where T = 2. Given (14), the likelihood function takes

provided E

(
exp(θXit+αi)

[1+exp(θXit+αi)]2

(
Xit

1

)(
Xit

1

)′)
is non-singular.
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the form

Pr (Yi2 = y2, Xi2 = x2, Yi1 = y1 |Xi1 = x1)

=

{∑
α∈Sα

F (θx2 + α)y2 [1− F (θx2 + α)]1−y2F (θx1 + α)y1 [1− F (θx1 + α)]1−y1πx1(α)

}
× [G2

y1,x1
]x2 [1−G2

y1,x1
]1−x2 ,

where the likelihood factors due to the fact that the feedback process does not depend on α.

Hence, under Assumption 1 we have

Pr (Yi2 = y2, Xi2 = x2, Yi1 = y1 |Xi1 = x1)

[G2
y1,x1

]x2 [1−G2
y1,x1

]1−x2

=
∑
α∈Sα

F (θx2 + α)y2 [1− F (θx2 + α)]1−y2F (θx1 + α)y1 [1− F (θx1 + α)]1−y1πx1(α). (15)

A key observation to make about (15) is its right-hand-side coincides with the likelihood

function of a binary choice model with a strictly exogenous covariate (where in addition αi

is independent of Xi2 given Xi1). In turn, the left-hand side is weighted by the inverse of the

feedback process. This is similar to the inverse-probability-of-treatment-weighting approach

to dynamic treatment effect analysis in Jamie Robins’ work (e.g., Robins, 2000), with the

difference that here we focus on panel data models with fixed effects.

The similarity between (15) and the strictly exogenous case directly delivers point-

identification results and consistent estimators. For example, suppose that F is logistic.

Given that the left-hand side of (15) is point-identified, it follows from standard arguments

(Rasch, 1960, Andersen, 1970) that θ is point-identified. Moreover, a consistent estimator of

θ is obtained by maximizing the weighted conditional logit log-likelihood

n∑
i=1

ω̂i1{Yi1+Yi2 = 1}

{
Yi1 ln

(
exp(θ̃Xi1)

exp(θ̃Xi1) + exp(θ̃Xi2)

)
+ Yi2 ln

(
exp(θ̃Xi2)

exp(θ̃Xi1) + exp(θ̃Xi2)

)}
,

with weights

ω̂i =
{

[Ĝ2
Yi1,Xi1

]Xi2 [1− Ĝ2
Yi1,Xi1

]1−Xi2
}−1

,

for Ĝ2
y1,x1

a consistent estimate of the homogeneous feedback probabilities.7

7When Xit are continuous, demonstrating
√
n consistency of θ̂ would generally require imposing rate-of-

convergence and other requirements on the first-step estimation of the ω̂i weights.
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6.2 Markovian feedback

Another possible restriction on the feedback process is a Markovian condition, such as

Pr
(
Xit = 1 |Y t−1

i = yt−1, X t−1
i = xt−1, αi = α

)
= Gt

yt−1,xt−1
(α) (16)

is independent of (yt−2, xt−2). Such a condition may be natural in models where Xit is the

state variable in the agent’s economic problem (as in Rust, 1987 and Kasahara and Shimotsu,

2009, for example).

In order to characterize the identified set ΘI with the Markovian condition (16) added,

we augment the restrictions (11), (12) and (13) with the fact that, for all s ∈ {2, ..., T − 1},∑
xs+1:T∈{0,1}T−s+1

∑
ys:T−1∈{0,1}T−s ψx1(x

2:T , yT−1, α)∑
xs:T∈{0,1}T−s+1

∑
ys:T−1∈{0,1}T−s ψx1(x

2:T , yT−1, α)

does not depend on (ys−2, xs−2).

A difficulty arises in this case since this additional set of restrictions is not linear in ψx1 .

As a result, one would need to use different techniques to characterize the identified set in

the spirit of Proposition 1, and to establish conditions for (the failure of) point-identification

in the spirit of Corollary 3. Given this, we leave the analysis of identification in models with

Markovian feedback processes to future work.

7 Conclusion

In this paper we study a binary choice model with a binary predetermined covariate. The

analysis can easily be extended to general discrete covariates. We find that failures of point-

identification are widespread in this setting. Point identification fails in many binary choice

models, with apparently only a few exceptions (such as the exponential model). At the same

time, our numerical calculations of identified sets suggest that the bounds on the parameter

may be narrow, even in very short panels. This suggests that, while the strict exogeneity

assumption has identifying content, models with predetermined covariates and feedback may

still lead to informative empirical conclusions.

Although we have analyzed a binary choice model, our techniques can be used to study

other models with stronger identification content, such as models for count data (e.g., Poisson

regression, Wooldridge, 1997, Blundell et al., 2002) and models with continuous outcomes

(e.g., censored regression, Honore and Hu, 2004, and duration models, Chamberlain, 1985).

Deriving sequential moment restrictions in such nonlinear models was considered by Cham-

berlain (2022) and is further explored in our companion paper (Bonhomme et al., 2022).
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APPENDIX

A Proof of Lemma 1

For any m× n matrix A, we will denote as

R(A) = {Au : u ∈ Rn}

the range of A, as

N (A) = {u ∈ Rn : Au = 0}

the null space of A, and as A† the Moore-Penrose generalized inverse of A.

We now proceed to prove Lemma 1. Since θ is point-identified, it is locally point-identified.

Since (θ, π,G) is a regular point of ∇Q(θ, π,G) by Assumption 2, it follows from Theorem 8

in Bekker and Wansbeek (2001) that

∇θ′Q /∈ R

([
∇π′1

Q1 ∇G′1
Q1 0 0

0 0 ∇π′0
Q0 ∇G′0

Q0

])
. (A1)

Therefore, there must exist x1 ∈ {0, 1} such that

∇θ′Qx1 /∈ R
([
∇π′x1

Qx1 ∇G′x1
Qx1

])
, (A2)

and in the rest of the proof we will fix this x1 value.

Let φ̃x1 denote the projection of ∇θ′Qx1 onto the orthogonal complement of the vector space

spanned by the columns of
[
∇π′x1

Qx1 ∇G′x1
Qx1

]
; that is,

φ̃x1 = ∇θ′Qx1 −
[
∇π′x1

Qx1 ∇G′x1
Qx1

] [
∇π′x1

Qx1 ∇G′x1
Qx1

]†
∇θ′Qx1 .

It follows from (A2) that φ̃x1 6= 0. Moreover, since ι′Qx1(θ, π,G) = 1, where ι denotes a

conformable vector of ones, we have

ι′∇θ′Qx1 = 0, ι′∇π′x1
Qx1 = 0, ι′∇G′x1

Qx1 = 0. (A3)

It follows that ι′φ̃x1 = 0, implying that φ̃x1 cannot be constant.
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Now, since by construction

φ̃x1 ⊥ R
([
∇π′x1

Qx1 ∇G′x1
Qx1

])
,

we have

φ̃x1 ∈ N (∇πx1
Q′x1) ∩N (∇Gx1

Q′x1).

Next, let Pθ(x1, α) be the 8× 1 vector with elements

Pr(Yi2 = y2, Xi2 = x2, Yi1 = y1 |Xi1 = x1, αi = α),

for (y2, x2, y1) ∈ {0, 1}3. Since φ̃x1 ∈ N (∇πx1
Q′x1), we have, for all α ∈ Sα,

φ̃′x1Pθ(x1, α) = φ̃′x1Pθ(x1, αK) ≡ Cx1 ,

where we have used the fact that πx1(αK) = 1−
K−1∑
k=1

πx1(αk).

Let us define the following demeaned version of φ̃x1 :

φx1 = φ̃x1 − Cx1ι.

The 8×1 vector φx1 represents a function φx1 : {0, 1}3 7→ R. With some abuse of terminology

we will sometimes refer to φx1 as a vector and sometimes as a function.

Note that, since φ̃x1 is not constant, it follows that φx1 6= 0. Moreover, using (A2) and (A3)

we have

φx1 ∈ N (∇πx1
Q′x1) ∩N (∇Gx1

Q′x1),

from which it follows that

(i) ∇πx1
Q′x1φx1 = 0, (ii) ∇Gx1

Q′x1φx1 = 0.
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We are now going to use (i) and (ii) to show (4)-(5). From (ii) we get, for all α ∈ Sα,

πx1(α)

(
φx1(1, 1, 1)F (θ + α)F (θx1 + α)− φx1(1, 1, 0)F (α)F (θx1 + α)

+ φx1(1, 0, 1)[1− F (θ + α)]F (θx1 + α)− φx1(1, 0, 0)[1− F (α)]F (θx1 + α)

)
= 0,

πx1(α)

(
φx1(0, 1, 1)F (θ + α)[1− F (θx1 + α)]− φx1(0, 1, 0)F (α)[1− F (θx1 + α)]

+ φx1(0, 0, 1)[1− F (θ + α)][1− F (θx1 + α)]− φx1(0, 0, 0)[1− F (α)][1− F (θx1 + α)]

)
= 0.

This implies, using Assumption 1,

φx1(1, 1, 1)F (θ + α)− φx1(1, 1, 0)F (α) + φx1(1, 0, 1)[1− F (θ + α)]− φx1(1, 0, 0)[1− F (α)] = 0,

φx1(0, 1, 1)F (θ + α)− φx1(0, 1, 0)F (α) + φx1(0, 0, 1)[1− F (θ + α)]− φx1(0, 0, 0)[1− F (α)] = 0,

which coincides with (4).

Lastly, from (i) we get, for all α ∈ Sα,

φ′x1Pθ(x1, α) = φ′x1Pθ(x1, αK)

= φ̃′x1Pθ(x1, αK)− Cx1 ι′Pθ(x1, αK)︸ ︷︷ ︸
=1

= φ̃′x1Pθ(x1, αK)− φ̃′x1Pθ(x1, αK)

= 0,

which can be equivalently written as

1∑
y2=0

1∑
x2=0

1∑
y1=0

φx1(y1, y2, x2) Pr(Yi2 = y2, Xi2 = x2, Yi1 = y1 |Xi1 = x1, αi = α; θ) = 0.

Now, using (4), this implies that, for all x2 ∈ {0, 1},

1∑
y2=0

1∑
y1=0

φx1(y1, y2, x2) Pr(Yi2 = y2 |Xi2 = x2, αi = α; θ) Pr(Yi1 = y1 |Xi1 = x1, αi = α; θ) = 0,

which coincides with (5).
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B Proof of Corollary 1

The proof is by contradiction. Suppose that θ is point-identified. Then by (4) we have, for

some x1 ∈ {0, 1}, and for all y1 ∈ {0, 1} and α ∈ Sα,

φx1(y1, 0, 1)[1− F (θ + α)] + φx1(y1, 1, 1)F (θ + α) = φx1(y1, 0, 0)[1− F (α)] + φx1(y1, 1, 0)F (α).

Since 1, F (α), and F (θ + α), for α ∈ Sα, are linearly independent, we thus have, for all

y1 ∈ {0, 1},
φx1(y1, 0, 1) = φx1(y1, 1, 1) = φx1(y1, 0, 0) = φx1(y1, 1, 0). (A4)

Next, using (5) at x2 = 1 we have

φx1(1, 1, 1)F (θ + α)F (θx1 + α) + φx1(0, 1, 1)F (θ + α)[1− F (θx1 + α)]

+ φx1(1, 0, 1)[1− F (θ + α)]F (θx1 + α) + φx1(0, 0, 1)[1− F (θ + α)][1− F (θx1 + α)] = 0.

Using (A4) then gives

φx1(1, 1, 1)F (θx1 + α) + φx1(0, 1, 1)[1− F (θx1 + α)] = 0.

Now, since 1 and F (θx1 + α), for α ∈ Sα, are linearly independent, it follows that

φx1(1, 1, 1) = φx1(0, 1, 1) = 0.

Using (A4) then gives

φx1(1, 0, 1) = φx1(0, 0, 1) = 0.

Lastly, repeating the same argument starting with (5) at x2 = 0 gives

φx1(1, 1, 0) = φx1(0, 1, 0) = φx1(1, 0, 0) = φx1(0, 0, 0) = 0.

It follows that φx1 = 0, which leads to a contradiction.

23



C Proof of remark 1 (sign identification of θ)

Note that

E [Yi2 − Yi1 |Xi1 = 0] = E [E [Yi2 |Xi2, Yi1, Xi1 = 0, αi]− E [Yi1 |Xi1 = 0, αi] |Xi1 = 0]

= E [F (θXi2 + αi)− F (αi) |Xi1 = 0]

= E [(F (θ + αi)− F (αi))Xi2Yi1 + (F (θ + αi)− F (αi))Xi2(1− Yi1) |Xi1 = 0]

=
∑
α∈Sα

1∑
y1=0

(F (θ + α)− F (α))G2
y1,0

(α)F (α)y1(1− F (α))1−y1π0(α).︸ ︷︷ ︸
>0 by Assumption 1

(A5)

If θ = 0, (A5) implies that E [Yi2 − Yi1 |Xi1 = 0] = 0. Moreover, since F (·) is strictly in-

creasing, it follows that θ > 0 (respectively, < 0) and E [Yi2 − Yi1 |Xi1 = 0] > 0 (resp., < 0)

are equivalent. This implies that sign(θ) = sign (E [Yi2 − Yi1 |Xi1 = 0]). A similar argument

applied to Xi1 = 1 implies that sign(θ) = sign (E [Yi1 − Yi2 |Xi1 = 1]).

D Proof of Lemma 2

In what follows we assume T ≥ 3 having already proved the validity of the claim for T = 2

in Lemma 1.

Since θ is point-identified it is locally point-identified. Additionally, since (θ, π,G) is a regular

point of ∇Q(θ, π,G) by Assumption 2, we can appeal to Theorem 8 in Bekker and Wansbeek

(2001) and follow the same line of arguments as in the proof of Lemma 1 to conclude that

there exists x1 ∈ {0, 1} and a 22T−1 × 1 vector φx1 6= 0 such that

(i) ∇πx1
Q′x1φx1 = 0, (ii) ∇Gx1

Q′x1φx1 = 0.

We will now prove (6) and (7) using finite induction.

Let us start with (6). Given s ∈ {0, ..., T − 2}, let P(s) denote the statement that, for all

yT−(s+1) ∈ {0, 1}T−(s+1) and xT−(s+1) ∈ {0, 1}T−(s+1),

∑
yT−s:T∈{0,1}s+1

φx1(y
T , x2:T )

T∏
t=T−s

F (θxt + α)yt [1− F (θxt + α)]1−yt

does not depend on xT−s:T .
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Base case:

Condition (ii) implies that (
∂Qx1

∂GT
yT−1,xT−1(α)

)′
φx1 = 0,

or equivalently that

1∑
yT=0

1∑
xT=0

φx1(y
T , x2:T )F (θxT + α)yT [1− F (θxT + α)]1−yT (−1)1−xT

×
T−1∏
t=2

F (θxt + α)yt [1− F (θxt + α)]1−ytGt
yt−1,xt−1(α)xt [1−Gt

yt−1,xt−1(α)]1−xt

× F (θx1 + α)y1 [1− F (θx1 + α)]1−y1 = 0.

Using Assumption 1, this simplifies to

1∑
yT=0

1∑
xT=0

φx1(y
T , x2:T )F (θxT + α)yT [1− F (θxT + α)]1−yT (−1)1−xT = 0,

which implies that

1∑
yT=0

φx1(y
T , x2:T )F (θxT + α)yT [1− F (θxT + α)]1−yT

does not depend on xT .

Thus, P(0) is true.

Induction step:

Suppose that P(0), . . . ,P(s) are true for s ∈ {0, . . . , T − 3}. We are going to show that

P(s+ 1) is true.

Condition (ii) implies that  ∂Qx1

∂G
T−(s+1)

yT−(s+2),xT−(s+2)(α)

′ φx1 = 0.
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If s < (T − 3), this corresponds to∑
yT−(s+1):T∈{0,1}s+2

∑
xT−(s+1):T∈{0,1}s+2

φx1(y
T , x2:T )

×
T∏

t=T−s

F (θxt + α)yt [1− F (θxt + α)]1−ytGt
yt,xt(α)xt [1−Gt

yt,xt(α)]1−xt

× F (θxT−(s+1) + α)yT−(s+1) [1− F (θxT−(s+1) + α)]1−yT−(s+1)(−1)1−xT−(s+1)

×
T−(s+2)∏
t=2

F (θxt + α)yt [1− F (θxt + α)]1−ytGt
yt−1,xt−1(α)xt [1−Gt

yt−1,xt−1(α)]1−xt

× F (θx1 + α)y1 [1− F (θx1 + α)]1−y1 = 0.

While if s = (T − 3), this corresponds to∑
y2:T∈{0,1}T−1

∑
x2:T∈{0,1}T−1

φx1(y
T , x2:T )

×
T∏
t=3

F (θxt + α)yt [1− F (θxt + α)]1−ytGt
yt,xt(α)xt [1−Gt

yt,xt(α)]1−xt

× F (θx2 + α)y2 [1− F (θx2 + α)]1−y2(−1)1−x2

× F (θx1 + α)y1 [1− F (θx1 + α)]1−y1 = 0.

Using Assumption 1 this gives, for all s ∈ {0, . . . , T − 3},∑
yT−(s+1):T∈{0,1}s+2

∑
xT−(s+1):T∈{0,1}s+2

φx1(y
T , x2:T )

×
T∏

t=T−s

F (θxt + α)yt [1− F (θxt + α)]1−ytGt
yt,xt(α)xt [1−Gt

yt,xt(α)]1−xt

× F (θxT−(s+1) + α)yT−(s+1) [1− F (θxT−(s+1) + α)]1−yT−(s+1)(−1)1−xT−(s+1) = 0. (A6)

Let Ls+1 denote the left-hand side of (A6). Exploiting successively the fact that

P(0), . . . ,P(s) are true, alongside the property that, for all t ∈ {T − s, ..., T},

1∑
xt=0

Gt
yt,xt(α)xt [1−Gt

yt,xt(α)]1−xt = 1, (A7)
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it is easy to see that

Ls+1 =
∑

yT−(s+1):T∈{0,1}s+2

1∑
xT−(s+1)=0

φx1(y
T , x2:T )

T∏
t=T−s

F (θxt + α)yt [1− F (θxt + α)]1−yt

× F (θxT−(s+1) + α)yT−(s+1) [1− F (θxT−(s+1) + α)]1−yT−(s+1)(−1)1−xT−(s+1) = 0.

Recalling that P(s) is true, this implies that

∑
yT−(s+1):T∈{0,1}s+1

φx1(y
T , x2:T )

T∏
t=T−(s+1)

F (θxt + α)yt [1− F (θxt + α)]1−yt

does not depend on xT−(s+1):T . Hence, P(s+ 1) is true. This concludes the proof of (6).

Finally, we show (7). As in the proof of Lemma 1, Condition (i) implies that∑
yT∈{0,1}T

∑
x2:T∈{0,1}T−1

φx1(y
T , x2:T )

×
T∏
t=2

F (θxt + α)yt [1− F (θxt + α)]1−ytGt
yt,xt(α)xt [1−Gt

yt,xt(α)]1−xt

× F (θx1 + α)y1 [1− F (θx1 + α)]1−y1 = 0.

Using (6) and (A7), it follows that

∑
yT∈{0,1}T

φx1(y
T , x2:T )

T∏
t=1

F (θxt + α)yt [1− F (θxt + α)]1−yt = 0,

which coincides with (7).

E Proof of Corollary 3

In what follows we assume T ≥ 3 having already proved the validity of the claim for T = 2

in Corollary 1.

The proof is by contradiction. Suppose that θ is point-identified. We will show that this

necessarily leads to φx1 = 0, which will contradict Lemma 2. To that end, we will first prove

via finite induction that φx1 must be a constant function.
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For s ∈ {1, ..., T − 2}, let P(s) denote the statement that there exists a function

φT−sx1
: {0, 1}2T−2s−1 → R such that, for all yT ∈ {0, 1}T and x2:T ∈ {0, 1}T−1, we have

φx1(y
T , x2:T ) = φT−sx1

(yT−s, x2:T−s).

Base case:

By (6), the quantity

1∑
yT=0

φx1(y
T , x2:T )F (θxT + α)yT [1− F (θxT + α)]1−yT (A8)

does not depend on xT . Hence

φx1(y
T−1, 1, x2:T−1, 1)F (θ + α) + φx1(y

T−1, 0, x2:T−1, 1)[1− F (θ + α)]

= φx1(y
T−1, 1, x2:T−1, 0)F (α) + φx1(y

T−1, 0, x2:T−1, 0)[1− F (α)].

By linear independence of 1, F (α), and F (θ + α), this implies that φx1(y
T , x2:T ) does not

depend on (yT , xT ). Hence P(1) is true.

Induction step

Suppose that P(s) is true for s ∈ {1, ..., T − 3}. Let us show that P(s+ 1) is true.

Since P(s) is true, we know that there exists a function φT−sx1
: {0, 1}2T−2s−1 → R

such that

φx1(y
T , x2:T ) = φT−sx1

(yT−s, x2:T−s).
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Thus, by (6), the quantity:

∑
yT−s:T∈{0,1}s+1

φx1(y
T , x2:T )

T∏
t=T−s

F (θxt + α)yt [1− F (θxt + α)]1−yt

=
1∑

yT−s=0

φT−sx1
(yT−s, x2:T−s)

∑
yT−(s−1):T∈{0,1}s

T∏
t=T−(s−1)

F (θxt + α)yt [1− F (θxt + α)]1−yt

× F (θxT−s + α)yT−s [1− F (θxT−s + α)]1−yT−s

=
1∑

yT−s=0

φT−sx1
(yT−s, x2:T−s)F (θxT−s + α)yT−s [1− F (θxT−s + α)]1−yT−s

does not depend on xT−s:T . Therefore,

φT−sx1
(yT−s−1, 1, x2:T−s−1, 1)F (θ + α) + φT−sx1

(yT−s−1, 0, x2:T−s−1, 1)[1− F (θ + α)]

= φT−sx1
(yT−s−1, 1, x2:T−s−1, 0)F (α) + φT−sx1

(yT−s−1, 0, x2:T−s−1, 0)[1− F (α)].

Since 1, F (α), and F (θ + α) are linearly independent, this implies P(s+ 1).

It follows from the previous induction argument that there exists a function φ2
x1

: {0, 1}3 → R
such that, for all (yT , x2:T ),

φx1(y
T , x2:T ) = φ2

x1
(y2, x2).

Using (6), the quantity

∑
y2:T∈{0,1}T−1

φx1(y
T , x2:T )

T∏
t=2

F (θxt + α)yt [1− F (θxt + α)]1−yt

=
1∑

y2=0

φ2
x1

(y2, x2)F (θx2 + α)y2 [1− F (θx2 + α)]1−y2

does not depend on x2:T . Therefore,

φ2
x1

(y1, 1, 1)F (θ + α) + φ2
x1

(y1, 0, 1)[1− F (θ + α)]

= φ2
x1

(y1, 1, 0)F (α) + φ2
x1

(y1, 0, 0)[1− F (α)].

Since 1, F (α), and F (θ+α) are linearly independent, this implies that there exists a function
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φ1
x1

: {0, 1} → R such that, for all (yT , x2:T ),

φx1(y
T , x2:T ) = φ1

x1
(y1).

Lastly, (7) implies

∑
yT∈{0,1}T

φx1(y
T , x2:T )

T∏
t=1

F (θxt + α)yt [1− F (θxt + α)]1−yt

=
∑

yT∈{0,1}T
φ1
x1

(y1)
T∏
t=1

F (θxt + α)yt [1− F (θxt + α)]1−yt

=
1∑

y1=0

φ1
x1

(y1)
∑

y2:T∈{0,1}T

T∏
t=1

F (θxt + α)yt [1− F (θxt + α)]1−yt

=
1∑

y1=0

φ1
x1

(y1)F (θx1 + α)y1 [1− F (θx1 + α)]1−y1

= 0.

Linear independence of 1, F (α), and F (θ + α) thus implies

φ1
x1

(0) = φ1
x1

(1) = 0.

Therefore, φx1 must be the null function, a contradiction.

F Proof of Proposition 1

It is immediate to verify that, if θ̃ ∈ ΘI , then (11), (12) and (13) are satisfied.

Conversely, suppose that (11), (12) and (13) are satisfied. Let

µx1(y
T , x2:T , α) = F (θ̃xT + α)yT [1− F (θ̃xT + α)]1−yTψx1(x

2:T , yT−1, α). (A9)

Using (12) we have

µx1(y
T , x2:T , α) ≥ 0,

∑
yT∈{0,1}T

∑
x2:T∈{0,1}T−1

∑
α∈Sα

µx1(y
T , x2:T , α) = 1,

so µx1 is a valid distribution function.
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Next, using (11) we have∑
α∈Sα

µx1(y
T , x2:T , α)

=
∑
α∈Sα

F (θ̃xT + α)yT [1− F (θ̃xT + α)]1−yTψx1(x
2:T , yT−1, α)

= Qx1(y
T , x2:T ; θ, π,G),

so µx1 is consistent with the conditional distribution Qx1(y
T , x2:T ; θ, π,G) of (Y T

i , X
2:T
i ) given

Xi1.

Next, using (13) we have, for all s ∈ {2, ..., T},∑
xs:T∈{0,1}T−s+1

∑
ys:T∈{0,1}T−s+1

µx1(y
T , x2:T , α)

=
∑

xs:T∈{0,1}T−s+1

∑
ys:T−1∈{0,1}T−s

{
1∑

yT=0

F (θ̃xT + α)yT [1− F (θ̃xT + α)]1−yT

}
ψx1(x

2:T , yT−1, α)

=
∑

xs:T∈{0,1}T−s+1

∑
ys:T−1∈{0,1}T−s

ψx1(x
2:T , yT−1, α)

= F (θ̃xs−1 + α)ys−1 [1− F (θ̃xs−1 + α)]1−ys−1

∑
xs:T∈{0,1}T−s+1

∑
ys−1:T−1∈{0,1}T−s+1

ψx1(x
2:T , yT−1, α)

= F (θ̃xs−1 + α)ys−1 [1− F (θ̃xs−1 + α)]1−ys−1

∑
xs:T∈{0,1}T−s+1

∑
ys−1:T∈{0,1}T−s+2

µx1(x
2:T , yT , α),

so, for all t ∈ {1, ..., T −1}, the conditional distributions of Yit given (Y t−1
i , X t−1

i , αi) induced

by µx1 coincide with the ones under the model, i.e., with F (θ̃xt + α)yt [1− F (θ̃xt + α)]1−yt .

Lastly, using (A9) we have

µx1(y
T , x2:T , α) = F (θ̃xT + α)yT [1− F (θ̃xT + α)]1−yTψx1(x

2:T , yT−1, α)

= F (θ̃xT + α)yT [1− F (θ̃xT + α)]1−yT
1∑

yT=0

µx1(y
T , x2:T , α),

so the conditional distribution of YiT given (Y T−1
i , XT−1

i , αi) induced by µx1 also coincides

with the one under the model.

This implies that θ̃ ∈ ΘI .
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