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ABSTRACT

While hypothesis testing is a highly formalized activity, hypothesis generation remains largely 
informal. We propose a systematic procedure to generate novel hypotheses about human 
behavior, which uses the capacity of machine learning algorithms to notice patterns people might 
not. We illustrate the procedure with a concrete application: judge decisions about who to jail. 
We begin with a striking fact: The defendant’s face alone matters greatly for the judge’s jailing 
decision. In fact, an algorithm given only the pixels in the defendant’s mugshot accounts for up to 
half of the predictable variation. We develop a procedure that allows human subjects to interact 
with this black-box algorithm to produce hypotheses about what in the face influences judge 
decisions. The procedure generates hypotheses that are both interpretable and novel: They are not 
explained by demographics (e.g. race) or existing psychology research; nor are they already 
known (even if tacitly) to people or even experts. Though these results are specific, our procedure 
is general. It provides a way to produce novel, interpretable hypotheses from any high-
dimensional dataset (e.g. cell phones, satellites, online behavior, news headlines, corporate 
filings, and high-frequency time series). A central tenet of our paper is that hypothesis generation 
is in and of itself a valuable activity, and hope this encourages future work in this largely “pre-
scientific” stage of science.
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1 Introduction

Science is curiously asymmetric. New ideas are meticulously tested using data, statistics
and formal models. Yet those ideas originate in a notably less meticulous process involving
intuition, inspiration and creativity. The asymmetry between how ideas are generated ver-
sus tested is noteworthy because idea generation is also, at its core, an empirical activity.
Creativity begins with “data” (albeit data stored in the mind), which are then “analyzed”
(albeit analyzed through a purely psychological process of pattern recognition). What feels
like inspiration is actually the output of a data analysis run by the human brain. Despite this,
idea generation largely happens off stage, something that typically happens before “actual
science” begins.1 Things are likely this way because there is no obvious alternative. The
creative process is so human and idiosyncratic that it would seem to resist formalism.

That may be about to change because of two developments. First, human cognition is no
longer the only way to notice patterns in the world. Machine learning algorithms can also
notice patterns, including patterns people might not notice themselves. These algorithms can
work not just with structured, tabular data but also with the kinds of inputs that traditionally
could only be processed by the mind, like images or text. Second, at the same time data
on human behavior is exploding: second-by-second price and volume data in asset markets,
high-frequency cellphone data on location and usage, CCTV camera and police “bodycam”
footage, news stories, children’s books, the entire text of corporate filings and so on. The
kind of information researchers once relied on for inspiration is now machine readable: what
was once solely mental data is increasingly becoming actual data.2

We suggest these changes can be leveraged to expand how we generate hypotheses. Cur-
rently, researchers do of course look at data to generate hypotheses, as in exploratory data
analysis (EDA). But EDA depends on the idiosyncratic creativity of investigators who must
decide what statistics to calculate. In contrast, we suggest capitalizing on the capacity of
machine learning algorithms to automatically detect patterns, especially ones people might
never have considered. A key challenge, however, is that we require hypotheses that are
interpretable to people. One important goal of science is to generalize knowledge to new con-
texts. Predictive patterns in a single dataset alone are rarely useful; they become insightful
when they can be generalized. Currently, that generalization is done by people, and people
can only generalize things they understand. The predictors produced by machine learning

1The question of hypothesis generation has been a vexing one in philosophy, as it appears to follow a process
distinct from deduction and has been sometimes called “abduction” (see Schickore (2018) for an overview). A
fascinating economic exploration of this topic can be found in Heckman and Singer (2017), which outlines a
strategy for how economists should proceed in the face of surprising empirical results. Finally, there is a small
but growing literature that uses machine learning in science. In the next section we discuss how our approach
is similar in some ways and different in others.

2See Einav and Levin (2014); Varian (2014); Athey (2017); Mullainathan and Spiess (2017); Gentzkow et
al. (2019) and Adukia et al. (2021) on how these changes can affect economics.
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algorithms are, however, notoriously opaque—hard-to-decipher “black boxes.” We propose a
procedure that integrates these algorithms into a pipeline that results in human-interpretable
hypotheses that are both novel and testable.

While our procedure is broadly applicable, we illustrate it in a concrete application:
judicial decision-making. Specifically we study pre-trial decisions about which defendants are
jailed versus set free awaiting trial, a decision that by law is supposed to hinge on a prediction
of the defendant’s risk (Dobbie and Yang, 2021).3 This is also a substantively interesting
application in its own right because of the high stakes involved and mounting evidence that
judges make these decisions less than perfectly (Kleinberg et al., 2018; Rambachan et al.,
2021; Angelova et al., 2022).

We begin with a striking fact. When we build a deep learning model of the judge—one
that predicts whether the judge will detain a given defendant—a single factor emerges as
having large explanatory power: the defendant’s face. A predictor that uses only the pixels
in the defendant’s mugshot explains from one-quarter to nearly one-half of the predictable
variation in detention.4 Defendants whose mugshots fall in the bottom quartile of predicted
detention are 20.4 percentage points more likely to be jailed than those in the top quartile.
By comparison, the difference in detention rates between those arrested for violent versus
non-violent crimes is 4.8 pp. Notice what this finding is and is not. We are not claiming the
mugshot predicts defendant behavior; that would be the long-discredited field of phrenology
(Schlag, 1997). We instead claim the mugshot predicts judge behavior: how the defendant
looks correlates strongly with whether the judge chooses to jail them.5

Has the algorithm found something new in the pixels of the mugshot or simply redis-
covered something long known or intuitively understood? After all, psychologists have been
studying people’s reactions to faces for at least 100 years (Todorov et al., 2015; Todorov and
Oh, 2021), while economists have shown that judges are influenced by factors (like race) that
can be seen from someone’s face (Arnold et al., 2018, 2020). When we control for age, gender,
race, skin color, and even the facial features suggested by previous psychology research (dom-
inance, trustworthiness, attractiveness and competence), none of these factors (individually
or jointly) meaningfully diminishes the algorithm’s predictive power (see Panel A of Figure
I). It is perhaps worth noting that the algorithm on its own does rediscover some of the signal

3In practice, there are a number of additional nuances, as discussed in Subsection 3.1 and Appendix B.1.
4This is calculated for some of the most commonly-used measures of predictive accuracy, AUC and R2,

recognizing that different measures could yield somewhat different shares of variation explained. We emphasize
the word predictable here: past work has shown that judges are “noisy” and decisions are hard to predict
(Kahneman et al., 2022). As a consequence, a predictive model of the judge can do better than the judge
themselves (Kleinberg et al., 2018).

5In Section 4.2, we examine whether the mugshot’s predictive power can be explained by underlying risk
differences. There, we tentatively conclude that the predictive power of the face likely reflects judicial error,
but that working assumption is not essential to either our results or the ultimate goal of the paper: uncovering
hypotheses for later careful testing.
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from these features: in fact, collectively these known features explain 22.3% of the variation
in predicted detention (see Panel B of Figure I). The key point is that the algorithm has
discovered a great deal more as well.

Perhaps we should control for something else? Figuring out that “something else” is itself
a form of hypothesis generation. To avoid a possibly endless—and misleading—process of
generating other controls, we take a different approach. We show mugshots to subjects and
ask them to guess who the judge will detain, and incentivize them for accuracy. These guesses
summarize the facial features people readily (even if implicitly) believe influence jailing.
While subjects are modestly good at this task, the algorithm is much better. It remains
highly predictive even after controlling for these guesses. The algorithm seems to have found
something novel beyond what scientists have previously hypothesized, and beyond whatever
patterns people can even recognize in data (whether or not they can articulate them).

What, then, are the novel facial features the algorithm has discovered? If we are unable
to answer that question, we will have simply replaced one black box (the judge’s mind)
with another (an algorithmic model of the judge’s mind). We propose a solution whereby
the algorithm can communicate what it “sees.” Specifically, our procedure begins with a
mugshot and “morphs” it to create a mugshot that maximally increases (or decreases) the
algorithm’s predicted detention probability. The result is pairs of synthetic mugshots that
can be examined to understand and articulate what differs within the pairs. The algorithm
discovers, and people name that discovery. In principle we could have instead just shown
subjects actual mugshots with higher versus lower predicted detention odds. But faces are
so rich that, between any pair of actual mugshots, many things will happen to be different
and most will be unrelated to detention (akin to the curse of dimensionality). Simply looking
at pairs of actual faces can, as a result, lead to many spurious observations. Morphing
creates counterfactual synthetic images that are as similar as possible except with respect to
detention odds, to minimize extraneous differences and help focus on what truly matters for
judge detention decisions.

Importantly, we do not generate hypotheses by looking at the morphs ourselves; instead,
they are shown to independent study subjects (M-Turk or Prolific workers) in an experimental
design. Specifically, we showed subjects pairs of morphed images and asked them to guess
which image the algorithm predicts to have higher detention risk. Subjects were given both
incentives and feedback, so they had motivation and opportunity to learn the underlying
patterns. While subjects initially guess the judge’s decision correctly from these morphed
mugshots at about the same rate as they do when looking at “raw data,” that is, actual
mugshots (modestly above the 50% random guessing mark), they quickly learn from these
morphed images what the algorithm is seeing and reach an accuracy of nearly 70%. At the
end, subjects are asked to put words to the differences they see across images within each
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pair; that is, to name what they think are the key facial features the algorithm is relying
on to predict judge decisions. Comfortingly, there is substantial agreement on what subjects
see: a sizable share of subjects all name the same feature. To verify whether the feature they
identify is in fact used by the algorithm, a separate sample of subjects independently coded
mugshots for this new feature. We then show that the new feature is indeed correlated with
the algorithm’s predictions. What subjects think they’re seeing is indeed what the algorithm
is also “seeing”.

Having discovered a single feature, we can iterate the procedure—the first feature explains
only a fraction of what the algorithm has captured, suggesting there are many other factors to
be discovered. We again produce morphs, but this time hold the first feature constant: that
is, we orthogonalize so that the pairs of morphs do not differ on the first feature. When these
new morphs are shown to subjects, they consistently name a second feature, which again
correlates with the algorithm’s prediction. Both features are quite important. They explain
a far larger share of what the algorithm sees than all the other variables (including race
and skin color) besides gender. These results establish our main goals: show the procedure
produces meaningful communication, and that it can be iterated.

What are the two discovered features? The first can be called “well-groomed” (e.g.,
tidy, clean, groomed, versus unkept, disheveled, sloppy look), while the second can be called
“heavy-faced” (e.g., wide facial shape, puffier face, wider face, rounder face, heavier). These
features are not just predictive of what the algorithm sees, but also of what judges actually
do (Panel C, Figure I). We find that both well-groomed and heavy-faced defendants are more
likely to be released, even controlling for demographic features and known facial features from
psychology. Detention rates of defendants in the top and bottom quartile of well-groomedness
differ by 5.5 pp (24% of the base rate) while the top versus bottom quartile difference in heavy-
facedness is 7 pp (about 30% of the base rate). Both differences are larger than the 4.8 pp
detention rate difference between those arrested for violent versus non-violent crimes. Not
only are these magnitudes substantial, these hypotheses are novel even to practitioners who
work in the criminal justice system (in a public defender’s office and a legal aid society).

Establishing whether these hypotheses are truly causally related to judge decisions is
obviously beyond the scope of the present paper. But we nonetheless present a few additional
findings that are at least suggestive. These novel features do not appear to be simply proxies
for factors like substance abuse, mental health, or socio-economic status. Moreover, we
carried out a lab experiment in which subjects are asked to make hypothetical pre-trial release
decisions as if they were a judge. They are shown information about criminal records (current
charge, prior arrests) along with mugshots that are randomly morphed in the direction of
higher or lower values of well-groomed (or heavy-faced). Subjects tend to detain those with
higher-risk structured variables (criminal records), all else equal, suggesting they are taking
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the task seriously. These same subjects, though, are also more likely to detain defendants
who are less heavy-faced or well-groomed, even though these were randomly assigned.

Ultimately, though, this is not a paper about well-groomed or heavy-faced defendants,
nor are its implications limited to faces or judges. It develops a general procedure that can
be applied wherever behavior can be predicted using rich (especially high-dimensional) data.
Development of such a procedure has required overcoming two key challenges.

First, to generate interpretable hypotheses, we must overcome the notorious black box
nature of most machine learning algorithms. Unlike with a regression, one cannot simply
inspect the coefficients. A modern deep learning algorithm, for example, can have tens of
millions of parameters. Non-inspectability is especially problematic when the data are rich
and high-dimensional since the parameters are associated with primitives such as pixels. This
problem of interpretation is fundamental and still remains an active area of research.6 We
resolve this problem by combining several different ingredients, some borrowed, some new.
We rely on existing generative models to effectively synthesize faces, but use a new variant of
gradient techniques to create our morphs. These component parts are combined in a way that
is better suited for social science applications and distinct from other existing approaches (at
least as far as we know).

Second, we must overcome what we might call the Rorschach test problem. Suppose we,
the authors, were to look at these morphs and generate a hypothesis. We would not know
if the procedure played any meaningful role. Perhaps the morphs, like ink blots, are merely
canvases onto which we project our creativity.7 Put differently, a single research team’s
idiosyncratic judgments lacks the kind of replicability we desire of a scientific procedure. To
overcome this problem, it is key that we use independent (non-researcher) subjects to inspect
the morphs. The fact that a sizable share of subjects all name the same discovery suggests
human-algorithm communication has occurred and the procedure is replicable, rather than
reflecting some unique spark of creativity.

At the same time, the fact that our procedure is not fully automatic implies that it will
be shaped and constrained by people. Human subjects are needed to name the discoveries.
So whole new concepts that humans do not yet understand cannot be produced. Such break-
throughs clearly happen (e.g., gravity or probability) but are beyond the scope of procedures
such as ours. People also play a crucial role in curating the data the algorithm sees. Here,
for example, we the researchers chose to include mugshots. So the creative acquisition of rich
data is an important human input into this hypothesis generation procedure.8

6For reviews of the interpretability literature see Doshi-Velez and Kim (2017); Marcinkevičs and Vogt
(2020); we discuss this literature and our approach below.

7Of course even if the hypotheses that are generated are the result of idiosyncratic creativity, this can still
be useful. For example, Swanson (1986) and Swanson (1988) generated two novel medical hypotheses: the
possibility that magnesium affects migraines; and that fish oil may alleviate Peychaud’s syndrome.

8But conversely, given a data set, our procedure has a built-in advantage: one could imagine a huge number
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Our procedure can be applied to a broad range of settings, and will be particularly
useful for data that are not already intrinsically interpretable. Many datasets contain a few
variables that already have clear, fixed meanings and are unlikely to lead to novel discoveries.
In contrast, images, text and time series are rich high-dimensional data with many possible
interpretations. Just as there is an ocean of plausible facial features, these sorts of data
contain a large set of potential hypotheses that an algorithm can search through. Such
data are increasingly available and used by economists, including news headlines, legislative
deliberations, annual corporate reports, FOMC statements, Google searches, student essays,
resumes, court transcripts, doctor notes, satellite images, housing photos, and medical images.
Our procedure could, for example, raise hypotheses about what kinds of news lead to over-
or under-reaction of stock prices, which features of a job interview increase racial disparities,
or what features of an X-ray drive misdiagnosis.

Central to this work is the belief that hypothesis generation is a valuable activity in and
of itself. So, beyond whatever the value might be of our specific procedure and empirical
application, we hope these results also inspire greater attention to this traditionally “pre-
scientific” stage of science.

2 A Simple Framework for Discovery

In this section we develop a simple framework to clarify the goals of hypothesis generation and
how it differs from testing, discuss how people currently generate hypotheses, how algorithms
might help, and our specific approach to algorithmic hypothesis generation and how that
differs from existing methods. (Appendix A has a more formal treatment).

2.1 The goals of hypothesis generation

What criteria should we use for assessing hypothesis generation procedures? Two that we
focus on here are interpretability and empirical plausibility. We care about interpretability
because science is in large part about helping people make forecasts into new contexts, and
people can only do that with hypotheses they meaningfully understand. Consider an unin-
terpretable hypothesis like: “this set of defendants is more likely to be jailed than that set,”
but we cannot articulate a reason why. From that hypothesis, nothing could be said about
a new set of courtroom defendants. In contrast an interpretable hypothesis like “skin color
affects detention” has implications not only for other samples of defendants but even for en-
tirely different settings. We could ask whether skin color also affects, say, police enforcement
choices or whether these effects differ by time of day. By virtue of being interpretable, these
hypotheses let us use a wider set of knowledge (police may share racial biases; skin color is not

of hypotheses that, while possible, are not especially useful because they are not measurable. Our procedure
is by construction guaranteed to generate hypotheses that are measurable in a data set.
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as easily detected at night9). Interpretable descriptions let us generalize to novel situations,
in addition to being easier to communicate to key stakeholders and lending themselves to
interpretable solutions.

By empirically plausible we mean there exists some correlation between h(x) and y. Our
ultimate aim is to uncover causal relationships. But causality can only be known after causal
testing. That begs the question of how to come up with ideas worth causally testing, and
how we’d recognize them when we see them. Many true hypotheses need not be visible in
raw correlations. Those can only be identified with background knowledge (e.g., theory).
Other procedures would be required to surface those. Our focus here is on searching for true
hypotheses that are visible in raw correlations. Not every correlation will turn out to be a
true hypothesis, but generating such hypotheses and then invalidating them is in and of itself
a valuable activity. Debunking spurious correlations has long been one of the most useful
roles of empirical work. And understanding what confounders produce those correlations can
also be useful.

There are two additional goals for hypothesis generation, both of which we ensure ex
post. First, we require hypotheses be novel. In what follows, we aim to orthogonalize against
known factors, recognizing that it may be hard (or impossible) to orthogonalize against all
known hypotheses. Second, we require hypotheses be testable (Popper, 2005). But what can
be tested is hard to define ex ante, in part because it depends on the specific hypothesis
and the potential experimental setups. Creative empiricists over time often find ways to test
hypotheses that previously seemed untestable.10 As a result, we ensure both of these criteria
after the fact: by screening the generated hypotheses for novelty and testability.

2.2 Human hypothesis generation

A key feature of much human hypothesizing from data seems to be our tendency to notice
contrasts.11 Humans essentially look at a subset of all data and look for something that
differentiates positive and negative cases with respect to some outcome. We typically focus
on differences that hold in these data, rather than “out of sample.”

Human hypothesis generation has the advantage of generating hypotheses that are in-
terpretable: by construction the ideas that human beings come up with are understandable
by human beings. But as a procedure for generating new ideas, human creativity has the
drawback of often being idiosyncratic and so not necessarily replicable. A novel hypothesis

9See for example the clever paper by Grogger and Ridgeway (2006) that uses this source of variation to
examine this question.

10For example, isolating the causal effects of gender on labor market outcomes is a daunting task, but the
clever test in Goldin and Rouse (2000) overcomes the identification challenges by using variation in screening
of orchestra applicants.

11Of course the psychology (and sociology) of this process is enormously complex; see for example Langley
et al. (1987). We are just trying to capture just some high-level features.
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is novel exactly because one person noticed it when many others did not. A large body of
evidence shows that human judgments have a great deal of “noise”: it is not just that differ-
ent people draw different conclusions from the same observations, but even the same person
may notice different things at different times (Kahneman et al., 2022). Nor are we able to
introspect and understand why we notice specific things those times we do notice them.12

Nor will human-generated hypotheses necessarily be empirically plausible. The intuition
is related to “over fitting”: even with no noise in y, there is randomness in which observations
are in the data we inspect. That can lead to idiosyncratic differences between y = 0 and
y = 1 cases. As the number of comprehensible hypotheses gets large, there is a “curse of
dimensionality”: many plausible hypotheses for these idiosyncratic differences. That is, many
different hypotheses can look good in sample, but need not work out of sample.

Consider a simple example: Suppose x = (x1, . . . , xk) is a k-dimensional binary vector,
all possible values of x are equally likely, and the true function in nature relating x to y only
depends on the first dimension of x so the function h1 is the only true hypothesis and the
only empirically plausible hypothesis. Even with such a simple true hypothesis, people can
generate non-plausible hypotheses. Imagine a pair of data points (x0, 0) and (x1, 1). Since
the data distribution is uniform, x0 and x1 will differ on k

2 dimensions in expectation. A
person looking at only one pair of observations would have a high chance of generating an
empirically implausible hypothesis. Looking at more data, the probability of discovering an
implausible hypothesis declines. But the problem still remains.

2.3 Algorithmic Hypothesis Generation

How might algorithms help with this activity? Supervised learning tools in machine learning
are designed to generate predictions, m(x), that are accurate in new (out-of-sample) data.13

That is, algorithms generate hypotheses that are empirically plausible by construction.14

Moreover machine learning can detect patterns in data that humans cannot. Algorithms can
notice, for example, that livestock all tend to be oriented north (Begall et al., 2008), whether
someone is about to have a heart attack based on subtle indications in an EKG (Mullainathan
and Obermeyer, 2022), or that a piece of machinery is about to break (Mobley, 2002).

The challenge is that most machine learning prediction functions are not interpretable.
For this type of statistical model to yield an interpretable hypothesis, its parameters must

12This is related to what Autor (2014) called “Polanyi’s paradox,” the idea that people’s understanding of
how the world works is beyond our capacity to explicitly describe it. For discussions in psychology about the
difficulty of people to access their own cognition see for example Wilson (2004) and Pronin (2009).

13Some canonical references include Hastie et al. (2009), Breiman (2001), Jordan and Mitchell (2015) and
Breiman et al. (2017). For discussions about how machine learning connects to economics see Belloni et al.
(2014), Varian (2014), Mullainathan and Spiess (2017), Athey (2018) and Athey and Imbens (2019).

14Of course there is not always predictive signal in any given data application. But that is equally an issue
for human hypothesis generation. At least with machine learning, we have formal procedures for determining
whether there is any signal that holds out of sample.
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be interpretable. That can happen in some simple cases. For example, if we had a data set
where each dimension of x was interpretable (such as individual structured variables in a
tabular dataset) and we used a predictor such as OLS (or LASSO), then we could just read
the hypotheses from the non-zero coefficients: which variables are significant? Even in that
case, interpretation is challenging because machine learning tools, built to generate accurate
predictions rather than to apportion explanatory power across explanatory variables, yield
coefficients that can be unstable across realizations of the data (Mullainathan and Spiess,
2017).15 Often interpretation is much less straightforward than that. If x is an image, text or
time series, the estimated models (such as convolutional neural networks) can have literally
millions of parameters. Moreover the models are defined on granular inputs that have no
particular meaning: if we knew the algorithm weighted a particular pixel, what have we
actually learned? In these cases, the estimated model m is itself not interpretable. Our focus
is on these contexts where algorithms, as “black-box” models, are not readily interpreted.

Ideally one might marry people’s unique knowledge of what is comprehensible with an
algorithm’s superior capacity to find meaningful correlations in data; to have the algorithm
discover new signal and then have humans name that discovery. How to do that is not
straightforward. We might imagine formalizing the set of interpretable prediction functions,
and then focus on creating machine learning techniques that search over functions in that
set. But mathematically characterizing those functions is typically not possible. Or we might
consider seeking insight from a low-dimensional representation of face space, or “eigenfaces,”
which are a common teaching tool for principal components analysis (Sirovich and Kirby,
1987). But those turn out not to provide much useful insight for our purposes.16 In some
sense it is obvious why: the subset of actual faces is unlikely to be a linear subspace of the
space of pixels. If we took two faces and linearly interpolated them the resulting image would
not look like a face. Some other method is needed.

Our approach is to construct counterfactual pairs of synthetic mugshot images that differ
in their predicted detention odds, but are as similar as possible along other dimensions that
are irrelevant to judge detention decisions. This requires not just an algorithmic model of
y but an algorithmic model of the data distribution of faces within pixel space, p(x). That
model of p(x) frees the algorithm from being constrained by the particular set of pairs found
in the data set of actual mugshots, and allows for the construction of entirely new data points
that differ only along relevant dimensions, since we can use the prediction m(x) to choose the
new matching points. That is, for any given data point this procedure allows us to construct

15The intuition here is quite straightforward: If two predictor variables are highly correlated, the weight
that the algorithm puts on one versus the other can change from one draw of the data to the next depending
on the idiosyncratic noise in the training dataset, but since the variables are highly correlated the predicted
outcome values themselves (hence predictive accuracy) can be quite stable.

16See Appendix Figure A.I, which shows the top 9 eigenfaces for the dataset we describe below, which
together explain 62% of the variation.
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new data points that answer the counterfactual question: How would this point be different
if it had a higher or lower m(x) value?

With these synthetic “morphed” counterfactuals in hand, we can then harness two key
human capacities: the ability of people to notice differences in otherwise similar observations;
and the unique human knowledge of what is a meaningful hypothesis. Because people are
not looking at actual data, they are effectively naming m(x). They are projecting the algo-
rithm into their own language—the set of hypotheses that are comprehensible. As a result,
mechanically, this produces comprehensible hypotheses.

At the same time, because m(x) is known to have signal for y, relative to having people
look at pairs of actual instances this morphing procedure is more likely to produce empirically
plausible hypotheses. Left on their own, people seek to identify any differences across data
points that differ in y. Because they only have one particular data set, that approach can
lead to people to see differences in raw data that hold in that sample but not others. But with
our morphing procedure, humans are now looking at morphed instances to spot differences in
m(x), and we know m(x) is a reliable out-of-sample predictor.17 Relatedly, the matching of
nearest neighbors in our morphing procedure reduces the curse of dimensionality. Morphed
synthetic pairs will now have fewer plausible candidates for what may be different between
them exactly because we have ensured they differ as little as possible.18

Finally, it is worth noting a few additional advantages of algorithmic hypothesis gen-
eration relative to human generation. First, though it is not explicit here, given a set of
known hypotheses, we can orthogonalize with respect to those dimensions to ensure that the
algorithm is producing something novel.19 Second, other methods of producing hypotheses
(observation, conversation, introspection) may produce theories that are hard to measure in
data. By construction, our procedure only produces hypotheses that are measurable.

2.4 Related Methods

Concurrent with our own work, a few papers in computer science have developed related
methods mostly for application to what we call “automation” tasks: to automate with AI
something that a human can do nearly perfectly like image classification (Is this image of
a dog or a cat?). Interpretability techniques are needed for those applications in large part

17By way of intuition, this is why we are usually better off interpreting a regression than individual data
points that go into the regression.

18An analogy with OLS provides an easy intuition for why this helps: A regression is in effect a way to
calculate in-sample correlations, and the standard errors tell us whether those correlations are real or due
to sampling noise. Adding controls lowers standard errors because lowering the residual noise makes it more
likely that in-sample correlations are more likely to hold out-of-sample. That is the same effect here: By
matching on m(x) instead of y, we are reducing residual noise and increasing the chance that noticed patterns
are genuine ones.

19In our particular application, we do not do this, in part because we are curious to explicitly examine
algorithms’ capacity to rediscover known hypotheses.
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to ensure the algorithm is not picking up on spurious signal. If for example every dog in a
dataset was photographed outdoors and every cat photographed indoors the algorithm might
key on the background and then mispredict in more representative data; interpretability is
a diagnostic tool to guard against that problem. But these other recent methods are not so
well suited for applications like predicting human behavior.

For example, like us, Lang et al. (2021) also combines a predictive supervised learning
model m(x) with a generative model for images p(x), specifically a generative adversarial
network, or GAN (Goodfellow et al., 2014b). But their approach assumes the latent space of
faces for the GAN is composed of disentangled attributes that cleanly separate y = 1 from
y = 0 cases. This approach can work with automation tasks where the algorithm’s predictive
accuracy can be quite high, but their key assumption is less likely to hold when trying to use
an algorithm to learn predictors of human behavior, for which predictive accuracy is usually
far lower.20 For example for automation tasks like image classification, predictive accuracy
(AUC) can be on the order of 0.99; that is, in a dataset split evenly between y = 1 and
y = 0 cases there is a 99% chance that a randomly selected positive case will have a higher
predicted value than a random negative case. In contrast, our model of judge decisions using
the face only achieves an AUC of .625. These very real limits to predictability—common to
nearly all social science applications—require different approaches.

In addition many of these existing papers in the interpretability literature use methods
that only work with a very particular sort of generative model, such as a StyleGan (Karras
et al., 2019) or a variational auto-encoder (Miller et al., 2019). In contrast, our approach
is agnostic to the particular generative model used, including those that use other types of
high-dimensional data, not just images, and so is more generally applicable.

Our approach is also part of a growing literature that aims to integrate machine learning
into the way science is conducted. A very common use (outside of economics) is in what
could be called “closed world problems”: situations where the fundamental laws are known,
but drawing out predictions is computationally hard. For example, the biochemical rules of

20Relatedly, Narayanaswamy et al. (2020) develop a procedure that is able to ensure new synthetic instances
stay on the data distribution within the context of outcomes that can be predicted very well; in applications
like ours, where the outcome is human behavior and so intrinsically difficult to predict, their approach would
have difficulty ensuring new morphed face images actually still look like faces. Ghandeharioun et al. (2021)
develop a procedure that is unlikely to work when the predictive model draws on attributes that interact in
their influence on the classification outcome (for example, if the effect of long hair on the odds of some outcome
is different for men versus women). Liu et al. (2019) develop a procedure that seeks to generate new synthetic
instances that simultaneously maximize the difference in the class prediction, m(x), while minimizing the
difference in pixel values between the original and new morphed synthetic image. But image pixel values are
not the same as visual image similarity to humans. So their procedure can lead to morphed counterfactuals
that are close in pixel space but do not look visually similar to study subjects (that is, do not hold visually
constant other key features of the image that are irrelevant to the prediction). Moreover their procedure has
been shown to work only on small (low resolution) images: they test their procedure on the MNIST character
dataset where the image resolutions are 28x28, and on the CelebA dataset where resolution is 178x218, while
our mugshot images are substantially larger (400x480).
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how proteins fold are known but it has been very hard to predict the final shape of a protein.
In such cases, machine learning has provided fundamental breakthroughs, in effect by making
very hard-to-compute outcomes computable in a feasible timeframe.21

Progress has been far more limited with applications where the relationship between x and
y is unknown (“open world” problems), like human behavior. First, machine learning here has
been useful at generating unexpected findings, but that are not hypotheses themselves. For
example, Pierson et al. (2021) show that a deep learning algorithm is better able to predict
patient pain from an X-ray than clinicians can: there are physical knee defects that medicine
currently does not understand. But that study is not able to isolate what those defects are.22

Second, machine learning has also been used to explore investigator-generated hypotheses,
such as Mullainathan and Obermeyer (2022) who examine “physicians suffer from limited
attention when diagnosing patients.” Finally, a few papers take on the same problem that we
do. Fudenberg and Liang (2019) and Peterson et al. (2021) have used algorithms to predict
play in games, and choices between lotteries. They then inspected those algorithms to produce
their insights. Similarly, Kleinberg et al. (2018) and Sunstein (2021) use algorithmic models
of judges and inspect those models to generate hypotheses.23 Our proposal builds on these
papers. Rather than focusing on generating an insight for a specific application, we suggest a
procedure that can be broadly used for many applications. And, importantly, our procedure
does not rely on researcher inspection of algorithmic output. As noted above, when an expert
researcher with a track record of generating scientific ideas uses some procedure to generate
an idea, how do we know whether the result is due to the procedure or the researcher? By
relying on a fixed algorithmic procedure that human subjects can interface with, hypothesis
generation goes from being an idiosyncratic act of individuals to a replicable process.

3 Application and Data
3.1 Judicial Decision Making

While our procedure is broadly applicable, we illustrate it through a specific application to the
US criminal justice system. We choose this application partly because of its social relevance.
It is also an exemplar of the type of application where our hypothesis generation procedure
can be helpful. Its key ingredients—a clear decision-maker, a large number of choices (over 10
million people are arrested each year in the US) that are recorded in data, and, increasingly,
high-dimensional data that can also be used to model those choices, such as mugshot images,

21Examples of applications of this type include Carleo et al. (2019), He et al. (2019), Davies et al. (2021)
and Jumper et al. (2021), and Pion-Tonachini et al. (2021).

22As other examples, researchers have found that retinal images alone can unexpectedly predict gender of
patient or macular edema (Korot et al., 2021; Narayanaswamy et al., 2020)

23Closest is Miller et al. (2019), which morphs EKG output but stops at the point of generating realistic
morphs and does not carry this through to generating interpretable hypotheses.

12



police body-worn cameras, and text from arrest reports or court transcripts—are shared with
a variety of other applications.

Our specific focus is on pre-trial hearings. Within 24-48 hours after arrest, a judge must
decide where the defendant will await trial, in jail or at home. This is a consequential decision.
Cases typically take 2-4 months to resolve, sometimes up to 9-12 months. Jail affects people’s
families, their livelihoods, and the chances of a guilty plea (Dobbie et al., 2018). On the other
hand, someone who is released could potentially re-offend.24

While pre-trial decisions are by law supposed to hinge on the defendant’s risk of flight or
re-arrest if released (Dobbie and Yang, 2021), studies show that judges’ decisions deviate from
those guidelines in a number of ways. For starters, judges seem to systematically mis-predict
defendant risk (Jung et al., 2017; Kleinberg et al., 2018; Rambachan et al., 2021; Angelova
et al., 2022), partly because judges over-weight the charge for which people are arrested
(Sunstein, 2021). Judge decisions can also depend on extra-legal factors like race (Arnold
et al., 2018, 2020), whether the judge’s favorite football team lost (Eren and Mocan, 2018),
weather (Heyes and Saberian, 2019), the cases the judge just heard (Chen et al., 2016), and
if the hearing is on the defendant’s birthday (Chen and Philippe, 2020). These studies each
test a hypothesis that some human being was clever enough to think up. But there remains
a great deal of unexplained variation in judges’ decisions. The challenge of expanding the set
of hypotheses for understanding this variation without losing the benefit of interpretability
is the motivation for our own analysis here.

3.2 Administrative Data

We obtained data from Mecklenburg County, North Carolina, the second-most populated
county in the state (over 1 million residents) that includes North Carolina’s largest city
(Charlotte). The county is similar to the rest of the US in terms of economic conditions (2021
poverty rates were 11.0% versus 11.4%, respectively), although the share of Mecklenburg
County’s population that is non-Hispanic white is lower than the US as a whole (56.6%
versus 75.8%).25 We rely on three sources of administrative data:26

• The Mecklenburg County Sheriff’s Office (MCSO) publicly posts arrest data for the
past 3 years, which provides information on defendant demographics like age, gender
and race, as well as the charge for which someone was arrested.

• The North Carolina Administrative Office of the Courts (NCAOC) maintains records
on the judge’s pre-trial decisions (detain, release, etc.)

24Additional details about how the system works are in Appendix B.
25For Black non-Hispanic the figures for Mecklenburg County versus the US were 33.3% versus 13.6%. See

https://www.census.gov/programs-surveys/sis/resources/data-tools/quickfacts.html
26Details on how we operationalize these variables are in Appendix B.
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• Data from the North Carolina Department of Public Safety includes information about
the defendant’s prior convictions and incarceration spells, if any.

We also downloaded photos of the defendants from the MCSO public website (so-called
“mugshots”),27 which capture a frontal view of each person from the shoulders up in front of
a gray background. These images are 400 pixels wide by 480 pixels high, but we pad them
with a black boundary to be square 512 × 512 images to conform with the requirements of
some of the machine learning tools described below. In Figure II, we give readers a sense of
what these mugshots look like but with two important caveats. First, given concerns about
how the over-representation of disadvantaged groups in discussions of crime can contribute to
stereotyping (Bjornstrom et al., 2010), we illustrate the key ideas of the paper using images
for non-Hispanic white males. Second, out of sensitivity to actual arrestees, we do not wish to
display actual mugshots (which are available at the MCSO’s website28). Instead, the paper
only shows mugshots that are synthetic, generated using GANs as described in Section 5.2.

These data capture much of the information the judge has available at the time of the
pre-trial hearing, but not all of it. Both the judge and the algorithm see structured variables
about each defendant like defendant demographics, current charge, and prior record. Because
the mugshot (which the algorithm uses) is taken not long before the pre-trial hearing, it should
be a reasonable proxy for what the judge sees in court. The additional information the judge
has but the algorithm does not includes the narrative arrest report from the police, and what
happens in court. While pre-trial hearings can be quite brief in many jurisdictions, often
not more than just a few minutes, the judge may nonetheless hear statements from police,
prosecutors, defense lawyers and sometimes family members. Defendants themselves usually
have their lawyers speak for them and so do not say much at these hearings.

We downloaded 81, 166 arrests made between January 18, 2017, and January 17, 2020,
involving 42, 353 unique defendants. We apply several data filters, like dropping cases without
mugshots (Appendix Table A.I.), leaving 51, 751 observations. Because our goal is inference
about new out-of-sample (OOS) observations, we partition our data as follows:

• A train set of N = 23, 138 cases, constructed by taking arrests through July 17, 2019,
grouping arrests by arrestee,29 randomly selecting 70% to the training-plus-validation
dataset, then randomly selecting 70% of those arrestees for the training data specifically.

• A validation set of N = 9, 604 cases used to report OOS performance in this draft,
consisting of the remaining 30% in the combined training-plus-validation data frame.

27The mugshot seems to have originated in Paris in the 1800s (https://law.marquette.edu/facultyblog/
2013/10/a-history-of-the-mug-shot/). The etymology of the term is unclear, possibly based on “mug”
as slang for either the face or an “incompetent person” or “sucker” since only those who get caught are
photographed by police (https://www.etymonline.com/word/mug-shot)

28https://mecksheriffweb.mecklenburgcountync.gov/
29We partition the data by arrestee, not arrest, to ensure people show up in only one of the partitions to

avoid inadvertent information “leakage” across data partitions.
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• A hold-out set of N = 19, 009 cases we use to report OOS performance after the paper
is accepted (to avoid inadvertently overfitting the OOS data as we respond to seminar
or referee suggestions, etc.). This consists of the N = 13, 728 cases for the last 6 months
of our data period (July 17, 2019, to January 17, 2020) plus a random sample of 30%
of those arrested before July 17, 2019.

Descriptive statistics are shown in Table I. Relative to the county as a whole, the arrested
population substantially over-represents men (78.7%) and Black residents (69.4%). The av-
erage age of arrestees is 31.8 years. Judges detain 23.4% of cases, and in 25.1% of arrests
the person is re-arrested before their case is resolved (so about one-third of those released).
Randomization of arrestees to the training versus validation data sets seems to have been
successful, as shown in Table I. None of the pairwise comparisons has a p-value below 0.10
(see Appendix Table A.II). A multivariate analysis of variance test of the joint null hypothesis
that the training-validation differences for all variables are all zero yields p = 0.42.30

3.3 Human Labels

The administrative data capture many key features of each case but omit some other impor-
tant ones. We solve these data insufficiency problems through a series of human intelligence
tasks (HITs), which involve having study subjects on one of two possible platforms (Amazon’s
Mechanical Turk, or Prolific) assign labels to each case from looking at the mugshots. More
details are in Appendix Table A.III. We use data from these HITs mostly to understand how
the algorithm’s predictions relate to already-known determinants of human decision-making,
and hence the degree to which the algorithm is discovering something novel.

One set of HITs filled in demographic-related data: ethnicity; skin tone (since people
are often stereotyped on skin color, or “colorism” (Hunter, 2007)), reported on an 18-point
scale; the degree to which defendants appear more stereotypically Black on a 9-point scale
(Eberhardt et al. (2006) show this affects criminal justice decisions); and age, to compare
to administrative data for label quality checks.31 Because demographics tend to be easy for
people to see in images, we collect just one label per image for each of these variables. To
confirm one label is enough, we repeated the labeling task for 100 images but now collected 10
labels for each image; we see additional labels add little information.32 Another data quality

30To account for the non-independence of observations, i.e., arrests, across individual arrestees, we re-shape
the data into “long” format—a row for each arrest-and-variable—then adjust the degrees of freedom in the
usual ANOVA F-test for the number of separate arrestees in the data set.

31For an example HIT task see Appendix Figure A.II.
32For age and skin tone, we calculated the average pairwise correlation between two labels sampled (without

replacement) from the 10 possibilities, repeated across different random pairs. The Pearson correlation was
0.765 for skin tone, 0.741 for age, and between age assigned labels versus administrative data, 0.789. The
maximum correlation between the average of the first k labels collected and the k + 1 label is not all that
much higher for k = 1 than k = 9 (0.733 versus 0.837).
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check comes from the fact that the distributions of skin color ratings do systematically differ
by defendant race (Appendix Figure A.III).

A second type of HIT measured facial features that previous psychology research has
shown affect human judgments. The specific set of facial features we focus on come from
the influential study by Oosterhof and Todorov (2008) of people’s perceptions of the facial
features of others. When subjects are asked to provide descriptions of different faces, principal
components analysis suggests just two dimensions account for about 80% of the variation: (1)
Trustworthiness and (2)Dominance. We also collected data on two other facial features shown
to be associated with real world decisions like hiring or who to vote for: (3) Attractiveness
and (4) Competence (Frieze et al., 1991; Little et al., 2011; Todorov and Oh, 2021).33

We asked subjects to rate images for each of these psychological features on a 9-point
scale. Because these psychological features may be less obvious than demographic features,
we collected three labels per training-data set image and five per validation-data set image.34

There is substantial variation in the ratings that subjects assign to different images for each
of these features (see Appendix Figure A.VI). And the ratings from different subjects for the
same feature and image are highly correlated: inter-rater reliability measures (Cronbach’s
α) range from 0.92 to 0.97 (Appendix Figure A.VII), similar to those reported in studies
like Oosterhof and Todorov (2008).35 The information gain from collecting more than a few
labels per image is modest.36 For summary statistics see Appendix Table A.IV.

Finally, we also tried to capture people’s implicit or tacit understanding of the determi-
nants of judges’ decisions by asking subjects to predict which mugshot out of a given pair
would be detained, with images in each pair matched on gender, race and five-year age brack-
ets.37 We incentivized study subjects for correct predictions and give them feedback over the
course of the 50 image pairs that they see in order to facilitate learning. We treat the first
10 responses per subject as a “learning set” that we exclude from our analysis.

4 The surprising importance of the face

The first step of our hypothesis-generation procedure is to build an algorithmic model of
some behavior, which in our case here is the judge’s detention decision. A sizable share of
the predictable variation in judge decisions comes from a surprising source: the defendant’s

33For an example of the consent form and instructions given to labelers, see Appendix Figures A.IV and
A.V.

34We actually collected at least three and at least five, but the averages turned out to be very close to the
minimums, equal to 3.17 and 5.07, respectively.

35For example in Oosterhof and Todorov (2008), Supplemental Materials Table S2, they report Cronbach’s
α values of 0.95 for attractiveness, and 0.93 for both trustworthy and dominant.

36See Appendix Figure A.VIII, which shows that the change in the correlation between the (k+ 1)-th label
with the mean of the first k labels declines after three labels.

37For an example see Appendix Figure A.IX.
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face. Facial features implicated by past research explain just a modest share of this predictable
variation. The algorithm seems to have found a novel discovery.

4.1 What drives judge decisions?

We begin by predicting judge pre-trial detention decisions (y = 1 if detain, y = 0 if release)
using all the inputs available (x). We use the training data set to construct two separate
models for the two types of data available. We apply gradient boosted decision trees to predict
judge decisions using the structured administrative data (current charge, prior record, age,
gender), ms(x); and for the unstructured data (raw pixel values from the mugshots) we
train a convolutional neural network (CNN), mu(x). Each model returns an estimate of y (a
predicted detention probability) for a given x. Because these initial steps of our procedure
use standard machine learning methods, we relegate their discussion to the appendix.

We pool the signal from both models to form a single weighted-average model mp(x) =
[β̂sms(x) + β̂umu(x)] using a so-called “stacking” procedure where the data are used to
estimate the relevant weights.38 Combining structured and unstructured data is an active
area of deep-learning research, often called fusion modeling (Yuhas et al., 1989; Lahat et al.,
2015; Ramachandram and Taylor, 2017; Baltrušaitis et al., 2019). We have tried several of
the latest fusion architectures; none improve on our ensemble approach.

Judge decisions do indeed have some predictable structure. We report predictive per-
formance as the area under the receiver operating characteristic (ROC) curve, or “AUC,”
which is a measure of how well the algorithm rank-orders cases with values from 0.5 (random
guessing) to 1.0 (perfect prediction). Intuitively, AUC can be thought of as the chance that
a uniformly randomly selected detained defendant has a higher predicted detention likeli-
hood than a uniformly randomly selected released defendant. The algorithm built using all
candidate features, mp(x), has an AUC of 0.780 (see Appendix Figure A.X).

What is the algorithm using to make its predictions? Just a single type of input captures
a sizable share of the total signal: the defendant’s face. The algorithm built using only the
mugshot image, mu(x), has an AUC of 0.625 (see Appendix Figure A.X). Since an AUC of 0.5
represents random prediction, in AUC terms the mugshot accounts for (0.625−0.5)/(0.780−
0.5) = 44.6% of the predictive signal about judicial decisions.

Another common way to think about predictive accuracy is in R2 terms. While our data
are high dimensional (because the facial image is a high-dimensional object), the algorithm’s
prediction of the judge’s decision based on the facial image, mu(x), is a scalar, and so can

38We use the validation data set to both estimate β̂ and then also evaluate the accuracy of mp(x). While
this could lead to overfitting in principle, since we are only estimating a single parameter, this does not matter
much in practice; we get very similar results if we randomly partition the validation data set by arrestee, use
a random 30% of the validation data set to estimate the weights, then measure predictive performance in the
other random 70% of the validation data set.
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be easily included in a familiar regression framework. Like AUC, measures like R2 and mean
squared error capture how well a model rank-orders observations by predicted probabilities,
but R2, unlike AUC, also captures how close predictions are to observed outcomes (calibra-
tion).39 The R2 from regressing y against ms(x) and mu(x) in the validation data is 0.11.
Regressing y against mu(x) alone yields an R2 of 0.03. So depending on how we measure
predictive accuracy, around a quarter (0.03/0.11 = 27.3%) to a half (44.6%) of the predicted
signal about judges’ decisions is captured by the face.

Average differences are another way to see what drives judges’ decisions. For any given
feature xk, we can calculate the average detention rate for different values of the feature. For
example, for the variable measuring whether the defendant is male (xk = 1) versus female
(xk = 0), we can calculate and plot E[y|xk = 1] versus E[y|xk = 0]. As shown in Appendix
Figure A.XI, the difference in detention rates equals 4.8 pp for those arrested for violent
versus non-violent crimes, 10.2 pp for males versus females, and 4.3 pp for bottom versus top
quartile of skin tone, which are all sizable relative to the baseline detention rate of 23.3% in
our validation data set. By way of comparison, average detention rates for the bottom versus
top quartile of the mugshot-algorithm’s predictions, mu(x), differ by 20.4 pp.

In what follows, we seek to understand more about the mugshot-based prediction of the
judge’s decision, which we refer to simply as m(x) in the remainder of the paper.

4.2 Judicial Error?

So far we have shown that the face predicts judges’ behavior. Are judges right to use face
information? To be precise, by “right” we do not mean a broader ethical judgment: for
many reasons one could argue it is never ethical to use the face. But suppose we take a
rather narrow (exceedingly narrow) formulation of “right.” Recall the judge is meant to
make jailing decisions based on the defendant’s risk. Is the use of these facial characteristics
consistent with that objective? Put differently, if we account for defendant risk differences, do
these facial characteristics still predict judge decisions? The fact that judges rely on the face
in making detention decisions is in itself a striking insight regardless of whether the judges
use appearance as a proxy for risk or are committing a cognitive error.

At first glance the most straightforward way to answer this question would be to regress re-
arrest against the algorithm’s mugshot-based detention prediction. That yields a statistically
significant relationship: The coefficient (and standard error) for the mugshot equals 0.6127
(0.0461) with no other explanatory variables in the regression versus 0.5151 (0.0527) with all
the explanatory variables (as in the final column, Table 3). But the interpretation here is
not so straightforward.

39The MSE for a linear probability model’s predictions is related to the “Brier score” (Brier et al., 1950).
For a discussion of how this relates to AUC and calibration, see Murphy (1973).
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The challenge of interpretation comes from the fact that we have only measured crime
rates for the released defendants. The problem with having measured crime, not actual
crime, is that whether someone is charged with a crime is itself a human choice, made
by police. If the choices police make about when to make an arrest are affected by the
same biases that might afflict judges, then measured re-arrest rates may correlate with facial
characteristics simply due to measurement bias. The problem created by having measures
of re-arrest only for released defendants is that if judges have access to private information
(defendant characteristics not captured by our dataset), and judges use that information to
inform detention decisions, then the released and detained defendants may be different in
unobservable ways that are relevant for re-arrest risk (Kleinberg et al., 2018).

With these caveats in mind, at the very least we can perform a bounding exercise. We
created a predictor of re-arrest risk (see Appendix C) and then regress judges’ decisions on
predicted re-arrest risk. We find that a 1-unit change in predicted re-arrest risk changes judge
detention rates by 0.6103 (standard error 0.0213). By comparison, we found that a 1-unit
change in the mugshot (by which we mean the algorithm’s mugshot-based prediction of the
judge detention decision) changes judge detention rates by 0.6963 (standard error 0.0383; see
column 1 of Table III). That means if the judges were reacting to the defendant’s face only
because the face is a proxy for re-arrest risk, the difference in re-arrest risk for those with
a 1-unit difference in the mugshot would need to be 0.6963/0.6103 = 1.141. But when we
directly regress re-arrest against the algorithm’s mugshot-based detention prediction we get
a coefficient of 0.6172 (standard error 0.0460). Clearly 0.6172 < 1.141; that is, the mugshot
does not seem to be strongly related enough to re-arrest risk to explain the judge’s use of the
mugshot in making detention decisions.40

Of course this leaves us with the second problem with our data mentioned above: we
only have crime data on the released. It is possible the relationship between the mugshot
and risk could be very different among the 23.3% of defendants who are detained (which
we cannot observe). Put differently, while the mugshot-risk relationship among the 76.7%
of the defendants who are released is 0.6172, what we really want to know is the mugshot-
risk relationship among all defendants, which equals (0.767 · 0.6172) + (0.233 ·X). For this
mugshot-risk relationship among all defendants to equal 1.141, X would need to be 2.985;
that is, the relationship between the mugshot and re-arrest risk would need to be nearly five
times as great among the detained defendants as among the released. This would imply an
implausibly large effect of the mugshot on re-arrest risk relative to the size of the effects on

40Note how this comparison helps mitigate the problem that police arrest decisions could depend on a
person’s face. When we regress re-arrest against the mugshot, that estimated coefficient may be heavily
influenced by how police arrest decisions respond to the defendant’s appearance. In contrast when we regress
judge detention decisions against predicted re-arrest risk, some of the variation across defendants in re-arrest
risk might come from the effect of the defendant’s appearance on the probability a police officer makes an
arrest, but a great deal of the variation in predicted risk presumably comes from people’s behavior.
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re-arrest risk of other defendant characteristics.41

In addition, the results from Section 6.2 call into question that these characteristics are
well-understood proxies for risk. As we show there, experts who understand pre-trial (public
defenders and legal aid society staff) do not recognize the signal about judge decision-making
that the algorithm has discovered in the mugshot. These considerations as a whole—that
measured rearrest is itself biased, the bounding exercise and the failure of experts to recreate
this signal—together lead us to tentatively conclude that it is unlikely that what the algorithm
is finding in the face is merely a well-understood proxy for risk, but rather reflects errors in
the judicial decision-making process. Of course, that presumption is not essential for the rest
of the paper, which asks: what exactly has the algorithm discovered in the face?

4.3 Is the algorithm discovering something new?

Previous studies already tell us a number of things about what shapes the decisions of judges
and other people. For example, we know people stereotype by gender (Avitzour et al., 2020),
age (Dahl and Knepper, 2020; Neumark et al., 2016) and race or ethnicity (Bertrand and
Mullainathan, 2004; Arnold et al., 2018, 2020; Goncalves and Mello, 2021; Hoekstra and
Sloan, 2020; Fryer Jr, 2020). Is the algorithm just rediscovering known determinants of
people’s decisions, or discovering something new? We address this in two ways. We first
ask how much of the algorithm’s predictions can be explained by already-known features
(Table II). We then ask how much of the algorithm’s predictive power in explaining actual
judges’ decisions is diminished when we control for known factors (Table III). We carry out
both analyses for three sets of known facial features: (i) demographic characteristics, (ii)
psychological features and (iii) incentivized human guesses.42

Columns (1) to (3) of Table II show the relationship of the algorithm’s predictions to
demographics. The predictions vary enormously by gender (men have predicted detention
likelihoods 11.9 pp higher than women), less so by age,43 and by different indicators of race
or ethnicity. With skin tone scored on a 0 − 1 continuum, defendants whom independent
raters judge to be at the lightest end of the continuum are 4.4 pp less likely to be detained
than those rated to have the darkest skin tone (column 3). Conditional on skin tone, Black

41The average mugshot-predicted detention risk for the bottom and top quartiles equal 0.127 and 0.332;
that difference times 2.985 implies a re-arrest risk difference of 59.3 pp. By way of comparison, the difference
in re-arrest risk between those who are arrested for a felony crime rather than a less-serious misdemeanor
crime is equal to just 7.8 pp.

42In our main exhibits, we impose a simple linear relationship between the algorithm’s predicted detention
risk and known facial features like age or psychological variables, for ease of presentation. We show our results
are qualitatively similar with less parametric specifications in Appendix Tables A.VI, A.VII, and A.VIII.

43With a coefficient value of 0.0006 on age (measured in years), the algorithm tells us that even a full decade’s
difference in age has 5% the impact on detention likelihood compared to the effects of gender (10x0.0006 = 0.6
pp higher likelihood of detention, versus 11.9 pp).
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defendants have a 1.9 pp lower predicted likelihood of detention compared to whites.44

Column (4) of Table II shows how the algorithm’s predictions relate to facial features im-
plicated by past psychological studies as shaping people’s judgments of one another. These
features also turn out to help explain the algorithm’s predictions of judges’ detention de-
cisions: People judged by independent raters to be 1 standard deviation more attractive,
competent or trustworthy have lower predicted likelihood of detention equal to 0.51, 0.83
and 0.41 pp, respectively, or 2.2%, 3.6% and 1.8% of the base rate.45 Those whom subjects
judge are 1 standard deviation more dominant-looking have a higher predicted likelihood of
detention of 0.35 pp (or 1.5%).

How do we know we have controlled for everything relevant from past research? The
literature on what shapes human judgments in general is vast; perhaps there are things
that are relevant for judges’ decisions specifically that we have inadvertently excluded? One
way to solve this problem would be to do a comprehensive scan of past studies of human
judgment and decision-making, and then decide which results from different non-criminal
justice contexts might be relevant for criminal justice. But that itself is a form of human-
driven hypothesis generation, bringing us right back to where we started.

To get out of this box, we take a different approach. Instead of enumerating individual
characteristics, we ask people to embody their beliefs in a guess, which ought to be the com-
pound of all these characteristics. We can then ask whether the algorithm has rediscovered
this human guess (and later whether it has discovered more). We ask independent subjects
to look at pairs of mugshots matched by gender, race and 5-year age bins and forecast which
defendant is more likely to be detained by a judge. We provide a financial incentive for accu-
rate guesses to increase the chances subjects take this exercise seriously.46 We also provide
subjects with an opportunity to learn by showing subjects 50 image pairs with feedback after
each pair about which defendant the judge detained. We treat the first 10 image pairs from
each subject as learning trials and only use data from the last 40 image pairs. This approach
is intended to capture anything that influences judges’ decisions that subjects could recog-
nize, from subtle signs of things like socio-economic status or drug use or mood, to things

44Appendix Table A.V shows that Hispanic ethnicity, which we measure from subject ratings from looking
at mugshots, is not statistically significantly related to the algorithm’s predictions. Column (2) of Table II
showed that conditional on gender, Black defendants have a slightly higher predicted detention odds than
white defendants (0.3 pp), but this is not quite significant (t = 1.3). Column (1) of Appendix Table A.V
shows that conditioning on Hispanic ethnicity and having stereotypically Black facial features—as measured
in Eberhardt et al. (2006)—increases the size of the Black-white difference in predicted detention odds (now
equal to 0.8 pp) as well as the difference’s statistical significance (t = 2.2).

45This comes from multiplying the effect of each 1 unit change in our 9-point scale associated, equal to
0.55, 0.91 and 0.48 percentage points, respectively, with the standard deviation of the average label for each
of these psychological features for each image, which equal 0.923, 0.911 and 0.844, respectively.

46As discussed in Appendix Table A.III, we offer subjects a $3.00 base rate for participation plus an incentive
of 5 cents per correct guess. With 50 image pairs shown to each participant, they could increase their earnings
by another $2.50, or up to 83% above the base compensation.
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people can recognize but not articulate.
It turns out subjects are modestly good at this task (Table II). Subjects guess which

mugshot is more likely to be detained at a rate of 51.4%, which is statistically significant from
the random-guessing 50% threshold. When we regress the algorithm’s predicted detention
rate against these subject guesses, the coefficient is 3.99 pp, equal to 17.1% of the base rate.

Together, the findings in Table II are somewhat remarkable. The only input the algorithm
had access to was the raw pixel values of each mugshot, yet it has re-discovered findings from
decades of previous research and human intuition. Yet these features collectively explain
only a fraction of the variation in the algorithm’s predictions: the R2 is only 0.2228. That
by itself does not tell us much. It is possible that the remaining variation is prediction
error—components of the prediction that do not explain actual judges’ decisions.

In Table III, we therefore test whether the algorithm uncovers any additional signal for
actual judge decisions, above and beyond the influence of these known factors. The algorithm
by itself produces an R2 of 0.0331 (column 1), substantially higher than all previously known
features taken together, which produce an R2 of 0.0162 (column 5), or the human guesses
alone which produce an R2 of 0.0025 (so we can see the algorithm is much better at predicting
detention from faces than people are). Another way to see that the algorithm has detected
signal above and beyond these known features is that the coefficient on the algorithm pre-
diction when included alone in the regression, 0.6963 (column 1), barely changes when we
condition on everything else, now equal to 0.6171 (column 7). The algorithm seems to have
discovered some novel source of signal that better predicts judge detention decisions.47

5 Algorithm-human communication

The algorithm has made a discovery: something about the defendant’s face explains judge
decisions, above and beyond the facial features implicated by existing research. But what is
it about the face that matters? Without an answer, we are left with a discovery of an un-
satisfying sort. We will have simply replaced one black box hypothesis-generation procedure
(human creativity) with another (the algorithm). In what follows we first demonstrate how
existing methods like saliency maps cannot solve this challenge in our application, and then
discuss our solution to that problem.

47Table III gives us another way to see how much of previously known features are rediscovered by the
algorithm. That the algorithm’s prediction plus all previously known features yields an R2 of just 0.0380 (col.
7), not much larger than with the algorithm alone, suggests the algorithm has discovered most of the signal
in these known features. But not necessarily all: these other known features often do remain statistically
significant predictors of judges’ decisions even after controlling for the algorithm’s predictions (last column).
One possible reason is that, given finite samples, the algorithm has only imperfectly reconstructed factors such
as “age,” or “human guess.” So controlling for these factors directly adds additional signal.
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5.1 The challenge of explanation

The problem of algorithm-human communication stems from the fact that we cannot sim-
ply look inside the algorithm’s “black box” and see what it is doing because m(x) is so
complicated. A common solution in computer science is to forget about looking inside the
algorithmic black box and focus instead on drawing inferences from curated outputs of that
box. Many of these methods involve gradients: Given a prediction function m(x), we can
calculate the gradient ∇m(x) = dm

dx (x). This lets us determine, at any given input value,
what change in the input vector maximally changes the prediction.48 The idea of gradients
is useful for image classification tasks because it allows us to tell which pixel image values
are most important for changing the predicted outcome.

For example, a widely used method known as “saliency maps” uses gradient information
to highlight which specific pixels are most important for predicting the outcome of interest
(Baehrens et al., 2010; Simonyan et al., 2014). This approach works well for many applications
like determining whether a given picture contains a given type of animal, a common task in
ecology (Norouzzadeh et al., 2018). What distinguishes a cat from a dog? A saliency map
for a cat detector might highlight pixels around, say, the cat’s head: what is most cat-like is
not the tail, paws or torso, but the eyes, ears and whiskers. But more complicated outcomes
of the sort social scientists study may depend on complicated functions of the entire image.

Even if saliency maps were more selective in highlighting pixels in applications like ours,
for hypothesis generation they also suffer from a second limitation: they do not convey enough
information to enable people to articulate interpretable hypotheses. In the cat detector
example, a saliency map can tell us that something about the cat’s (say) whiskers are key
for distinguishing cats from dogs. But what about that feature matters? Would a cat look
more like a dog if its whiskers were, say, longer? Or shorter? More (or less?) even in length?
People need to know not just what features matter but how they must change to change the
prediction. For hypothesis generation, the saliency map under-communicates with humans.

To test the ability of saliency maps to help with our application, we focused for starters
on a facial feature that people already understand and can easily recognize from a photo:
age. We first build an algorithm that predicts each defendant’s age from their mugshot. For
a representative image, as in the top left of Figure III, we can then highlight which pixels
are most important for predicting age, shown in the top right.49 A key limitation of saliency
maps is easy to see: Because age (like many human facial features) is a function of almost
every part of a person’s face, the saliency map highlights almost everything.

48Imagine a linear prediction function like m(x1, x2) = pβ1x1 + pβ2x2. If our best estimates suggested pβ2 = 0,
the maximum change to the prediction comes from incrementally changing x1.

49As noted above, to avoid contributing to the stereotyping of minorities in discussions of crime, in our
exhibits we show images for non-Hispanic white males, although in our HITs we use images representative of
the larger defendant population.
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An alternative to simply highlighting high-leverage pixels is to change them in the direc-
tion of the gradient of the predicted outcome, to—ideally—create a new face that now has a
different predicted outcome, what we call “morphing.” This new image answers the counter-
factual question: “How would this person’s face change to increase their predicted outcome?”
Our approach builds on the ability of people to comprehend ideas through comparisons, so
we can show morphed image pairs to subjects to have them name the differences that they
see. Figure IV summarizes our semi-automated hypothesis-generation pipeline. (For more
details see Appendix C.) The benefit of morphed not actual mugshot images is to isolate the
differences across faces that matter for the outcome of interest. Morphing, by reducing noise,
also reduces the risk of spurious discoveries.

Figure V illustrates how this morphing procedure works in practice, and also highlights
some of the technical challenges that arise. Let the box in the top panel represent the space
of all possible images—all possible combinations of pixel values for, say, a 512 × 512 image.
Within this space, we can apply our mugshot-based predictor of the known facial feature,
age, to identify all images with the same predicted age, as shown by the contour map of the
prediction function. Imagine picking some random initial mugshot image. We could then
follow the gradient to find an image with a higher predicted value of the outcome y.

The challenge is that most points in this image space are not actually face images. So
simply following the gradient will usually take us off the data distribution of face images,
as illustrated abstractly in the top panel of Figure V. What this means in practice is shown
in the bottom-left panel of Figure III: The result is an image that has a different predicted
outcome (in the figure, illustrated for age) but no longer looks like a real instance—that is,
no longer looks like a realistic face image. This “naive” morphing procedure will not work
without some way to ensure the new point we wind up on in image space corresponds to a
realistic face image.

5.2 Building a Model of the Data Distribution

To ensure morphing leads to realistic face images, we need a model of the data distribution
p(x)—in our specific application, the set of images that are faces. We rely on an unsupervised
learning approach to this problem.50 Specifically, we use generative adversarial networks
(GANs), originally introduced to generate realistic new images for a variety of tasks (see for
example Goodfellow et al. (2014b)).51

A GAN is built by training two algorithms that “compete” with each another, the gen-
50Modeling p(x) through a supervised learning task would involve assembling a large set of images, having

subjects label each of these images for whether they contain a realistic face, then predict those labels using the
image pixels as inputs. But this supervised learning approach is costly because it requires extensive annotation
of a large training data set.

51Kaji et al. (2020), Athey et al. (2021) and Athey et al. (2022) are recent uses of GANs in economics.
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erator G and the classifier C: the generator creates synthetic images and the classifier (or
“discriminator”), presented with synthetic or real images, tries to distinguish which is which.
A good discriminator pressures the generator to produce images that are harder to distinguish
from real; and in turn, a good generator pressures the classifier to get better at discriminating
real from synthetic images. Data on actual faces is used to train the discriminator, which
then results in the generator being trained as it seeks to fool the discriminator. With machine
learning, the performance of both C and G improve with successive iterations of training. A
perfect G would output images where the classifier C does no better than random guessing.
Such a generator would by definition limit itself to the same input space that defines real
images; that is, the data distribution of faces. (Additional discussion of GANS in general,
and how we construct our GAN specifically, are in Appendix C.)

To build our GAN and evaluate its expressiveness we use standard training metrics,
which turn out to compare favorably to what we see with other widely used GAN models on
other data sets (see Appendix C.3 for details). A more qualitative way to judge our GAN
comes from visual inspection; some examples of synthetic face images are in Figure II. Most
importantly, the GAN we build (as is true of GANs in general) is not generic. GANs are
specific. They do not generate “faces,” but instead seek to match the distribution of pixel
combinations in the training data. So, for example, our GAN trained using mugshots would
never generate generic Facebook profile photos, or celebrity headshots.

Figure V illustrates how having a model such as the GAN lets morphing stay on the data
distribution of faces and produce realistic images. We pick a random point in the space of
faces (mugshots), and then use the algorithmic predictor of the outcome of interest m(x) to
identify nearby faces that are similar in all respects except those relevant for the outcome.
Notice this procedure requires that faces closer to one another in GAN latent space should
look relatively more similar to one another to a human in pixel space. Otherwise we might
make a small movement along the gradient and wind up with a face that looks different in
all sorts of other ways that are irrelevant to the outcome. That is, we need the GAN to not
just model the support of the data, but also to provide a meaningful distance metric.

When we produce these morphs, what can possibly change as we morph? There is in
principle no limit. The changes need not be local: features such as skin color, which involves
many pixels, could change. So could features such as attractiveness, where the pixels that
need to change to make a face more attractive vary from face to face: the “same” change may
make one face more attractive and another less so. Anything represented in the face could
change, as could anything beyond the face that matters for the outcome (if, for example,
localities varied in both detention rates and the type of background they have someone stand
in front of for mugshots).

In practice, though, there is a limit. What can change depends on how rich and expressive
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the estimated GAN itself is. If the GAN, for example, fails to capture a certain kind of face
or a dimension of the face, then we are unlikely to be able to morph on that dimension.
The morphing procedure is only as complete as the GAN is expressive. Assuming the GAN
expresses a feature, then if m(x) truly depends on that feature, morphing will likely display
it. Nor is there any guarantee that in any given application the classifier m(x) will find novel
signal for the outcome y, or that the GAN successfully learns the data distribution (Nalisnick
et al., 2018), or that subjects can detect and articulate whatever signal the classifier algorithm
has discovered. Determining the general conditions under which our procedure will work is
something we leave to future research. Whether our procedure can work for the specific
application of judge decisions is the question to which we turn next.52

5.3 Validating the Morphing Procedure

We return now to our algorithmic prediction of a known facial feature—age—and see what
morphing by age produces as a way to validate or test our procedure. Now when we follow
the gradient of the predicted outcome (age), by constraining ourselves to stay on the GAN’s
latent space of faces we wind up with a new age-morphed face that does indeed look like a
realistic face image as shown in the bottom right of Figure III. We seem to have successfully
developed a model of the data distribution and a way to move around on that surface to
create realistic new instances.

To figure out if algorithm-human communication occurs, we run these age-morphed image
pairs through our experimental pipeline (Figure IV). Our procedure is only useful if it is
replicable—that is, if it does not depend on the idiosyncratic insights of any particular person.
For that reason, the people looking at these images and articulating what they see should not
be us (the investigators carrying out this study), but rather a sample of external, independent
study subjects. In our application, we use Prolific workers (see Appendix Table A.III).
Reliability or replicability is indicated by the agreement in the subject responses: lots of
subjects see and articulate the same thing in the morphed images.

We asked subjects to look at 50 age-morphed image pairs selected at random from a
population of 100 pairs, and told them the images within each pair differ on some hidden
dimension but did not tell them what that was.53 We asked subjects to guess which image

52Some ethical issues are worth considering. One is bias. With human hypothesis generation there is the
risk people “see” an association that impugns some group yet has no basis in fact. In contrast our procedure by
construction only produces empirically plausible hypotheses. A different concern is the vulnerability of deep
learning to adversarial examples: tiny, almost imperceptible changes in an image changing it’s classification
for the outcome y, so that mugshots that look almost identical (that is, are very “similar” in some visual image
metric) have dramatically different m(x). This is a problem because tiny changes to an image don’t change
the nature of the object; see for example Szegedy et al. (2013) and Goodfellow et al. (2014a). In practice
such instances are quite rare in nature, indeed so rare they usually occur only if intentionally (maliciously)
generated.

53Appendix Figure A.XII gives an example of this task and the instructions given to participating subjects
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expresses that hidden feature more, gave them feedback about the right answer, treated the
first 10 image pairs as learning examples, and calculated accuracy on the remaining 40 images.
Subjects correctly selected the older image 97.8% of the time.

The final step was to ask subjects to name what differs within image pairs. Making sense
of these responses requires some way to group them into semantic categories. Each subject
comment could include several concepts (e.g., “wrinkles, gray hair, tired”). We standardized
these verbal descriptions by removing punctuation, using only lower-case characters, and
removing stop words. We then gave 3 research assistants not otherwise involved in the
project these responses and asked them to create their own categories that together would
capture all the responses (see Appendix A.XIII). We also gave them an illustrative subject
comment and highlighted the different “types” of categories (descriptive physical features, i.e.,
“thick eyebrows,” descriptive impression category, i.e., “energetic,” but also an illustration of
a category of comment that is too vague to lend itself to useful measurement, i.e., “ears”).
In our validation exercise 81.5% of subject reports fall into the semantic categories of either
age or the closely related feature of hair color.54

5.4 Understanding the Judge Detention Predictor

Having validated our algorithm-human communication procedure for the known facial feature
of age, we are now ready to apply it to generate a new hypothesis about what drives judge
detention decisions. To do this we combine the mugshot algorithm predictor of judges’
detention decisions, m(x), with our GAN of the data distribution of mugshot images, then
create new synthetic image pairs morphed with respect to the likelihood the judge would
detain the defendant (see Figure IV).

The top panel of Figure VI shows a pair of such images. Underneath we show an “image
strip” of intermediate steps, along with each image’s predicted detention rate. With an overall
detention rate of 23.3% in our validation data set, morphing takes us from about one-half
the base rate (13%) up to nearly twice the base rate (41%). Additional examples of morphed
image pairs are shown in Figure VII.

We showed 54 subjects 50 detention-risk-morphed image pairs each, asked them to predict
which defendant would be detained, offered them financial incentives for correct answers,55

and gave them feedback on the right answer. Appendix Figure A.XV shows how accurate

to complete it. Each subject was tested on 50 image pairs selected at random from a population of 100 images.
Subjects were told that for every pair, one image was higher in some unknown feature, but not given details
as to what the feature might be. As in the exercise for predicting detention, feedback was given immediately
after selecting an image, and a 5 cent bonus was paid for every correct answer.

54In principle this semantic grouping could be carried out in other ways, for example, with automated
procedures involving natural language processing.

55See Table A.III for a high-level description of this human intelligence task, and Appendix Figure A.XIV
for a sample of the task and the subject instructions.
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subjects are as they get more practice across successive morphed image pairs. With the initial
image-pair trials, subjects are not much better than random guessing, in the range of what we
see when subjects look at pairs of actual mugshots (where accuracy is 51.4% across the final
40 mugshot-pairs people see). But unlike what happens when subjects look at actual images,
when looking at morphed image pairs subjects seem to quickly learn what the algorithm is
trying to communicate to them. Accuracy increased by over 10 pp after the 20th morphed
image pair and reached 67% after 30 image pairs. Compared to looking at actual mugshots,
the morphing procedure accomplished its goal of making it easier for subjects to see what in
the face matters most for detention risk.

We then asked subjects to articulate the key differences they saw across morphed image
pairs. The result seems to be a reliable hypothesis—a facial feature that a sizable share
of subjects name. In the top panel of Figure VIII, we present a histogram of individual
tokens (cleaned words from worker comments) in “word cloud” form, where word size is
approximately proportional to frequency.56 Some of the most common words are “shaved,”
“cleaner,” “length,” “shorter,” “moustache” and “scruff.” To form semantic categories, we
use a procedure similar to what we describe above for our validation exercise for the known
feature of age.57 Grouping tokens into semantic categories, nearly 40% of the subjects see
and name a similar feature that they think helps explain judge detention decisions: how
well-groomed the defendant is (see the bottom panel of Figure VIII).58

Can we confirm that what the subjects think the algorithm is seeing is what the algorithm
actually sees? We asked a separate set of 343 independent subjects (M-Turk workers) to label
the 32, 881 mugshots in our combined training and validation data sets for how well-groomed
each image was perceived to be on a 9-point scale59 For datasets of our size these labeling
costs are fairly modest, but in principle those costs could be much more substantial (or even
prohibitive) in some applications.

56We drop every token of just 1 or 2 characters in length, as well as connector words without real meaning
for this purpose, like “had,” “the” and “and,” as well as words that are relevant to our exercise but generic,
like “jailed,” “judge” and “image.”

57We enlisted 3 research assistants blinded to the findings of this study and asked them to come up with
semantic categories that captured all subject comments. Since each RA mapped each subject comment to
5% of semantic categories on average, if the RA mappings were totally uncorrelated, we would expect to see
agreement of at least two RA categorizations about 5% of the time. What we actually see is if one research
assistant made an association, 60% of the time another RA would make the same association. We assign a
comment to a semantic category when at least two of the RAs agree on the categorization.

58Moreover what subjects see does not seem to be particularly sensitive to which images they see. (As a
reminder, each subject sees 50 morphed image pairs randomly selected from a larger bank of 100 morphed
image pairs). If we start with a subject who says they saw “well-groomed” in the morphed image pairs they
saw, for other subjects who saw 21 or fewer images in common (so saw mostly different images) they also
report seeing well-groomed 31% of the time, versus 35% among the population. We select the threshold of 21
images because this is the smallest threshold in which at least 50 pairs of raters are considered.

59See Appendix Table A.III and Appendix Figure A.XVI. This comes to a total of 192, 280 individual labels,
an average of 3.2 labels per image in the training set and an average of 10.8 labels per image in the validation
set. Sampling labels from different workers on the same image, these ratings have a correlation of 0.14.
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Table IV suggests algorithm-human communication has successfully occurred: our new
hypothesis, call it h1(x), is correlated with the algorithm’s prediction of the judge, m(x). If
subjects were mistaken in thinking they saw well-groomed differences across images, there
would be no relationship between well-groomed and the detention predictions. Yet what we
actually see is the R2 from regressing the algorithm’s predictions against well-groomed equals
0.0247, or 11% of the R2 we get from a model with all the explanatory variables (0.2361). In
a bivariate regression the coefficient (−0.0172) implies that a one-standard-deviation increase
in well-groomed (1.0118 points on our 9-point scale) is associated with a decline in predicted
detention risk of 1.74 pp, or 7.5% of the base rate. Another way to see the explanatory power
of this hypothesis is to note that this coefficient hardly changes when we add all the other
explanatory variables to the regression (equal to −0.0153 in the final column) despite the
substantial increase in the model’s R2.

5.5 Iteration

Our procedure is also iterable. The first novel feature we discovered, well-groomed, explains
some—but only some—of the variation in the algorithm’s predictions of the judge. We can
iterate our procedure to generate hypotheses about the remaining residual variation as well.
Note that the order in which features are discovered will depend not just on how important
each feature is in explaining the judge’s detention decision, but also on how salient each
feature is to the subjects who are viewing the morphed image pairs. So explanatory power for
the judge’s decisions need not monotonically decline as we iterate and discover new features.

To isolate the algorithm’s signal above and beyond what is explained by well-groomed,
we wish to generate a new set of morphed image pairs that differ in predicted detention
but hold well-groomed constant. That would help subjects see other novel features that
might differ across the detention-risk-morphed images, without subjects getting distracted by
differences in well-groomed.60 But iterating the procedure raises several technical challenges.
To see these technical challenges, consider first what would in principle seem to be the most
straightforward way to orthogonalize, in the GAN’s latent face space:

• Use training data to build predictors of detention risk, m(x), and the facial features to
orthogonalize against, h1(x),

• Pick a point on the GAN latent space of faces,
• Collect the gradients with respect to m(x) and h1(x),
• Use the Gram-Schmidt process to move within the latent space towards higher predicted

detention risk m(x), but orthogonal to h1(x),
• Show new morphed image pairs to subjects, have them name a new feature.

60It turns out that skin tone is another feature that winds up being correlated with well-groomed, so we
orthogonalize on that as well as well-groomed. To simplify the discussion, we use “well-groomed” as a stand-in
for both of the features we orthogonalize against, well-groomed plus skin tone.
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The challenge with implementing this playbook in practice is that we do not have labels
for well-groomed for the GAN-generated synthetic faces. Moreover, it would be infeasible
to collect this feature for use in this type of orthogonalization procedure.61 That means we
cannot orthogonalize against well-groomed, only against predictions of well-groomed. And
orthogonalizing with respect to a prediction is an error-prone process whenever the predictor
is imperfect (as it is here).62 The errors in the process accumulate as we take many morphing
steps. Worse, that accumulated error is not expected to be zero on average. Because we
are morphing in the direction of predicted detention, and we know predicted detention is
correlated with well-groomed, the prediction error will itself be correlated with well-groomed.

So we instead use a different approach. We build a new detention-risk predictor with
a curated training data set, limited to pairs of images matched on the features to be or-
thogonalized against. For each detained observation (yi = 1), we find a released observation
(yj = 0) with h1(xi) = h1(xj). Because within that training data set y is now orthogonal to
h1(x), we can use the gradient of the orthogonalized judge predictor to move in GAN latent
space to create new morphed images that have different detention odds but are similar with
respect to well-groomed.63 We call these “orthogonalized morphs,” which we then feed into
the same experimental pipeline shown in Figure IV.64 An open question for future work is
how many iterations are possible before the dimensionality of the matching problem required
for this procedure would create problems.

Examples from this orthogonalized image-morphing procedure are in Figure IX. Changes
in facial features across morphed images are notably different from those in the first iteration
of morphs as in Figure VI. From these examples, it appears possible that orthogonalization
may be slightly imperfect; sometimes they show subtle differences in “well groomed” and per-
haps age. As with the first iteration of the morphing procedure, the second (orthogonalized)
iteration of the procedure again generates images that vary substantially in their predicted
risk, from 0.07 up to 0.27 (see Appendix Figure A.XVIII).

Still, there is a salient new signal: when presented to subjects they name a second facial
61To see why, consider the mechanics of the procedure. Since we orthogonalize as we create morphs,

we would need labels at each morphing step. This would entail us producing candidate steps (new morphs),
collecting data on each of the candidates, picking one that has the same well-groomed value and then repeating.
Moreover, until the labels are collected at a given step, the next step could not be taken. Since producing a
final morph requires hundreds of such intermediate morphing steps, the whole process would be so time- and
resource-consuming as to be infeasible.

62While we can predict demographic features like race and age (above/below median age) nearly perfectly,
with AUC values close to 1, for predicting well-groomed, the mean absolute error of our out-of-sample pre-
diction is 0.63, which is plus or minus over half a slider value for this 9-point-scaled variable. One reason it is
harder to predict well-groomed is because the labels, which come from human subjects looking at and labeling
mugshots, are themselves noisy, which introduces irreducible error.

63For additional details see Appendix Figure A.XVII and Appendix C.
64There are a few additional technical steps required, discussed in Appendix C.For details on the HIT we

use to get subjects to name the new hypothesis from looking at orthogonalized morphs, and the follow-up HIT
we use to generate independent labels for that new hypothesis or facial feature, see Appendix Table A.III.
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feature, as shown in Figure X. We showed 52 subjects (Prolific workers) 50 orthogonalized
morphed image pairs and asked them to name the differences they see. The word cloud
shown in the top panel of Figure X shows that some of the most common terms reported by
subjects include “big,” “wider,” “presence,” “rounded,” “body,” “jaw” and “head.” When we
ask independent RAs to group the subject tokens into semantic groups, we can see as in the
bottom of the figure that a sizable share of subject comments (around 22%) refer to a similar
facial feature, h2(x): how “heavy-faced” or “full-faced” the defendant is.

This second facial feature (like the first) is again related to the algorithm’s prediction of
the judge. When we ask a separate sample of subjects (343 M-turk workers, see Appendix
Table A.III) to independently label our validation images for heavy-facedness, we can see the
R2 from regressing the algorithm’s predictions against heavy-faced yields an R2 of 0.0384
(column 1 of Table V). With a coefficient of −0.0182 (0.0009), the results imply that a
one-standard-deviation change in heavy-facedness (1.1946 points on our 9-point scale) is
associated with a reduced predicted detention risk of 2.17 pp, or 9.3% of the base rate.
Adding in other facial features implicated by past research substantially boosts the adjusted
R2 of the regression but barely changes the coefficient on heavy-facedness.

In principle, the procedure could be iterated further. After all, well-groomed, heavy-faced
plus previously known facial features all taken together still only explain 27% of the variation
in the algorithm’s predictions of the judges’ decisions. So long as there is residual variation,
the hypothesis-generation crank could be turned again and again. But since our goal is not
to fully explain judges’ decisions but rather to illustrate that the procedure works and is
iterable, we leave this for future work (ideally done on data from other jurisdictions as well).

6 Evaluating These New Hypotheses

In this section we consider whether the new hypotheses our procedure has generated meet
our final criterion: empirical plausibility. We then show that these facial features are not just
new to the scientific literature, but also apparently to criminal justice practitioners, before
turning to whether these correlations might reflect some underlying causal relationship.

6.1 Do These Hypotheses Predict What Judges Actually Do?

Empirical plausibility need not be implied by the fact that our new facial features are corre-
lated with the algorithm’s predictions of judges’ decisions. The algorithm is, after all, not a
perfect predictor. In principle, well-groomed and heavy-faced might be correlated with the
part of the algorithm’s prediction that is unrelated to judge behavior, or m(x)− y.

But in Table VI, we show that our two new hypotheses are indeed empirically plausible.
The adjusted R2 from regressing judges’ decisions against heavy-faced equals 0.0042 (column
1), while for well-groomed the figure is 0.0021 (column 2) and for both together the figure
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equals 0.0061 (column 3). As a benchmark, the adjusted R2 from all variables (other than the
algorithm’s overall mugshot-based prediction) in explaining judges’ decisions equals 0.0218
(column 6). So the explanatory power of our two novel hypotheses alone equals about 28%
of what we get from all the variables together.

For a sense of the magnitude of these correlations, the coefficient on heavy-faced of
−0.0234 (0.0036) in column (1) and on well-groomed of −0.0198 (0.0043) in column (2) imply
that one-standard-deviation changes in each variable are associated with reduced detention
rates equal to 2.8 and 2.0 pp respectively, or 12.0% and 8.9% of the base rate. Interestingly,
the final column (7) shows heavy-faced remains statistically significant even when we control
for the algorithm’s prediction. The discovery procedure led us to a facial feature that, when
measured independently, captures signal above and beyond what the algorithm itself found.65

6.2 Do Practitioners Already Know This?

Our procedure has identified two hypotheses that are new not only to the existing research
literature, but also new to our study subjects. Yet the study subjects we have collected data
from so far likely have relatively little experience with the criminal justice system. A reader
might wonder: do experienced criminal justice practitioners already know that these “new”
hypotheses affect judge decisions? The practitioners might have learned the influence of these
facial features from day-to-day experience.

To answer this question, we carried out two smaller-scale data collections with a sample
of N = 15 staff at a public defender’s office and a legal aid society. We first asked an open-
ended question: On what basis do judges decide to detain versus release defendants pre-
trial? Practitioners talked about judge misunderstandings of the law, people’s prior criminal
records, and judge under-appreciation for the social contexts in which criminal records arise.
Aside from the defendant’s race, nothing about the appearance of defendants was mentioned.

We then showed practitioners pairs of actual mugshots and asked them to guess which
person is more likely to be detained by a judge (as we had done with M-turk and Prolific
workers). This yields a sample of 360 detention forecasts. After seeing these mugshots we
also asked practitioners an open-ended question about about what they think matters about
the defendant’s appearance for judge detention decisions. There were a few mentions of well-
groomed and one mention of something related to heavy-faced, but these were far from the
most frequently mentioned features, as seen in Appendix Figure A.XX.

The practitioner forecasts do indeed seem to be more accurate than those of “regular”
study subjects. Column 5 of Table VII shows that defendants whom the practitioners predict
will be detained are 29.2 pp more likely to actually be detained, even after controlling for
the other known determinants of detention from past research. This is nearly four times the

65(See Appendix Figure A.XIX).
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effect of forecasts made by Prolific workers, as shown in the last column of Table VI. The
practitioner guesses (unlike the regular study subjects) are even about as accurate as the
algorithm; the R2 from the practitioner guess (0.0165 in column (1)) is similar to the R2

from the algorithm’s predictions (0.0166 in column (6)).
Yet practitioners do not seem to already know what the algorithm has discovered. We

can see this in several ways in Table VI. First, the sum of the adjusted R2 values from
the bivariate regressions of judge decisions against practitioner guesses and judge decisions
against the algorithm mugshot-based prediction is not so different from the adjusted R2 from
including both variables together in the same regression (0.0165 + 0.0166 = 0.0331 from
columns 1 plus 6, versus 0.0338 in column 7). We see something similar for the novel features
of well-groomed and heavy-faced specifically as well.66 The practitioners and the algorithm
seem to be tapping into largely unrelated signal.

6.3 Exploring Causality

Are these novel features actually causally related to judge decisions? Fully answering that
question is clearly beyond the scope of the present paper. But we can present some additional
evidence that is at least suggestive.

For starters we can rule out some obvious potential confounders. With the specific hy-
potheses in hand, identifying the most important concerns with confounding becomes much
easier. In our application, well-groomed and heavy-faced could in principle be related to
things like (say) the degree to which the defendant has a substance-abuse problem, is strug-
gling with mental health, or their socio-economic status (SES). But as shown in a series of
appendix tables, we find that when we have study subjects independently label the mugshots
in our validation dataset for these features then control for them, our novel hypotheses remain
correlated with both the algorithmic predictions of the judge and actual judge decisions.67 Or
we might wonder whether heavy-faced is simply a proxy for something that previous mock-
trial-type studies suggest might matter for criminal justice decisions, “baby-faced” (Berry and
Zebrowitz-McArthur, 1988).68 But when we have subjects rate mugshots for baby-facedness,

66The adjusted R2 of including the practitioner forecasts plus well-groomed and heavy-facedness together
(column 3, equal to 0.0246) is not that different from the sum of the R2 values from including just the
practitioner forecasts (0.0165 in column 1) plus that from including just well-groomed and heavy-faced (equal
to 0.0131 in column 2 of Table VII).

67In Appendix Table A.IX we show that controlling for one obvious indicator of a substance-abuse issue—
arrest for drugs—does not seem to substantially change the relationship between full-faced or well-groomed
and the predicted detention decision. Appendix Tables A.X and A.XI show a qualitatively similar pattern of
results for the defendant’s mental health and SES, which we measure by getting a separate sample of subjects
to independently rate validation dataset mugshots for. We see qualitatively similar results when the dependent
variable is the actual rather than predicted judge decision; see Appendix Tables A.XIII, A.XIV and A.XV.

68Characteristics of having a baby face included large eyes, narrow chin, small nose and high, raised eyebrows.
For a discussion of some of the larger literature on how that feature shapes the reactions of other people
generally, see for example Zebrowitz et al. (2009).
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our full-faced measure remains strongly predictive of the algorithm’s predictions and actual
judge decisions; see Appendix Tables A.XII and A.XVI.

In addition, we carried out a laboratory-style experiment with Prolific workers. We ran-
domly morphed synthetic mugshot images in the direction of either higher or lower well-
groomed (or full-faced), randomly assigned structured variables (current charge and prior
record) to each image, explained to subjects the detention decision judges are asked to make,
and then asked them which from each pair of subjects they would be more likely to detain if
they were the judge. The framework from Mobius and Rosenblat (2006) helps clarify what
this lab experiment gets us: Appearance might affect how others treat us because others are
reacting to something about our own appearance directly, or because our appearance affects
our own confidence, or because our appearance affects our own effectiveness in oral commu-
nication. The experiment’s results shut down these latter two mechanisms and isolate the
effects of something about appearance per se, recognizing it remains possible well-groomed
and heavy-faced are correlated with some other aspect of appearance.69

The study subjects recommend for detention those subjects with higher-risk structured
variables (like current charge and prior record), which at the very least suggests they are
taking the task seriously. Holding these other case characteristics constant, we find that
the subjects also are more likely to recommend for detention those defendants who are less
well-groomed or less heavy-faced (see Appendix Table A.XVII). Qualitatively, these results
support the idea that well-groomed and heavy-faced could have a causal effect. It is not
clear that the magnitudes in these experiments necessarily have much meaning: The subjects
are not actual judges, and the context and structure of choice is very different from actual
detention decisions. Still, it is worth nothing that the magnitudes implied by our results are
non-trivial. Changing well-groomed or heavy-faced has the same effect on subject decisions
as a movement within the predicted re-arrest risk distribution of 4 and 6 percentile points,
respectively (see Appendix D for details). While of course only an actual field experiment
could conclusively determine causality here, carrying out that type of field experiment might
seem more worthwhile to an investigator in light of the lab experiment’s results.

Is this enough empirical support for these hypotheses to justify incurring the costs of
causal testing? The empirical basis for these hypotheses would seem to be at least as strong
as (or perhaps stronger than) the informal standard currently used to decide whether an
idea is promising enough to test, which in our experience comes from some combination
of observing the world, brainstorming, and perhaps some exploratory investigator-driven
correlational analysis. What might such causal testing look like? One possibility would
follow in the spirit of Goldin and Rouse (2000) and compare detention decisions in settings
where the defendant is more versus less visible to the judge to alter the salience of appearance.

69For additional details see Appendix D.
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For example, many jurisdictions have continued to use some version of virtual hearings even
after the pandemic.70 In Chicago the court system has the defendant appear virtually but
everyone else is in person, and the court system of its own volition has over time changed the
size of the monitors used to display the defendant to court participants. One could imagine
adding some planned variation to screen size or distance or angle to the judge. These video
feeds could in principle also be randomly selected for AI adjustment to the defendant’s level
of well-groomedness or heavy-facedness (this would probably fall into a legal gray area). Or
in the case of well-groomed, one could imagine a field experiment that changed this aspect
of the defendant’s actual appearance prior to the court hearing. We are not claiming these
are the right designs, but rather intend only to illustrate that with new hypotheses in hand
economists are positioned to deploy the sort of creativity and rigorous testing that have
become the hallmark of the field’s efforts at causal inference.

7 Conclusion

We have presented here a new semi-automated procedure for hypothesis generation. We
then applied this new procedure to a concrete, socially important application: why judges
jail some defendants and not others. Our procedure suggests two novel hypotheses: Some
defendants appear more well-groomed or more heavy-faced than others.

Beyond the specific findings from our illustrative application, our empirical analysis here
also illustrates a “playbook” for other applications. Start with a high-dimensional predictor
m(x) of some behavior of interest. Build an unsupervised model of the data distribution,
p(x). Then combine the models for m(x) and p(x) in a morphing procedure to generate new
instances that answer the counterfactual question: What would a given instance look like
with higher or lower likelihood of the outcome? Show morphed pairs of instances to subjects
and get them to name what they see as the differences between morphed instances. Get other
subjects to independently rate instances for whatever the new hypothesis is; do these labels
correlate with both m(x) and the behavior of interest, y? If so, we have a new hypothesis
worth causal testing. This playbook is broadly applicable whenever three conditions are met.

The first condition is that we have a behavior we can statistically predict. The application
we examine here fits because the behavior is both clearly defined and measured for many cases.
A study of, say, human creativity would be more challenging because it is not clear that can
be measured (Said-Metwaly et al., 2017). A study of why US presidents use nuclear weapons
during wartime would be challenging because of so few cases.

The second condition relates to what input data are available to predict behavior. Our
procedure is likely to add only modest value in applications where we only have traditional

70https://www.nolo.com/covid-19/virtual-criminal-court-appearances-in-the-time-of-the-covid-19.
html.
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structured variables, because those structured variables already make sense to people. More-
over the structured variables are usually already hypothesized to affect different behaviors,
which is why economists ask about them on surveys. Our procedure will be more helpful
with unstructured, high-dimensional data like images, language and time series. The deeper
point is that the collection of such high-dimensional data is often incidental to the scientific
enterprise. We have images because the justice system photographs defendants during book-
ing. Schools collect text from students as part of required assignments. Cellphones create
location data as part of cell-tower “pings.” These high-dimensional data implicitly contain
an endless number of “features.”

Moreover, such high-dimensional data have already been found to predict outcomes in
many economically relevant applications. Student essays predict graduation. Newspaper text
predicts political slant of writers and editors. FOMC notes predict asset returns or volatility.
X-ray images or EKG results predict doctor diagnoses (or misdiagnoses). Satellite images
predict the income or health of a place. Many more relationships such as these remain to
be explored. From such prediction models, one could readily imagine human inspection of
morphs leading to novel features. For example, suppose high-frequency data on volume and
stock prices are used to predict future excess returns, for example, to understand when the
market over- or under-values a stock. Morphs of these time series might lead us to discover
the kinds of price paths that produce over-reaction. After all, some investors have even named
such patterns (e.g., “head and shoulders,” “double bottom”) and trade on them.

The final condition is to be able to morph the input data to create new instances that
differ in the predicted outcome. This requires some unsupervised learning technique to model
the data distribution. The good news is that a number of such techniques are now available
that work well with different types of high-dimensional data. We happen to use GANs
here because they work well with images. But our procedure can accomodate a variety
of unsupervised models. For example for text we can use other methods like Bidirectional
Encoder Representations from Transformers (BERT) (Devlin et al., 2018), or for time series
we could use variational auto-encoders (VAEs) (Kingma and Welling, 2013).

Finally, it is worth emphasizing that hypothesis generation is not hypothesis testing. Each
follows its own logic and one procedure should not be expected to do both. Each requires
different methods and approaches. What is needed to creatively produce new hypotheses is
different from what is needed to carefully test a given hypotheses. Testing is about the cura-
tion of data, an effort to compare comparable subsets from the universe of all observations.
But the carefully controlled experiment’s focus on isolating the role of a single pre-specified
factor limits the ability to generate new hypotheses. Generation is instead about bringing as
much data to bear as possible, since the algorithm can only consider signal within the data
available to it. The more diverse the data sources, the more scope for discovery. An algorithm
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could have discovered judge decisions are influenced by football losses, as in Eren and Mocan
(2018), but only if we thought to merge court records with massive archives of news stories as
assembled by Leskovec et al. (2009). For generating ideas, creativity in experimental design
useful for testing is replaced by creativity in data assembly and merging.

More generally we hope to raise interest in the curious asymmetry we began with. Idea
generation need not remain such an idiosyncratic or nebulous process. Our framework hope-
fully illustrates that this process can also be modeled. And our results illustrate that such
activity could bear actual empirical fruit. At a minimum, these results will hopefully spur
more theoretical and empirical work on hypothesis generation rather than leave this as a
largely “pre-scientific” activity.
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Table I: Summary statistics for Mecklenburg County NC Data, 2017-2020

Train+Validation
Set

Train Set Validation Set Untouched
Lock-Box Data

Sample Size 32742 23138 9604 19009

Outcome
Judge detains defendant 0.234 0.234 0.233 Untouched
Defendant re-arrested before trial 0.251 0.250 0.251 Untouched

Defendant Characteristics
Age 31.793 31.859 31.631 Untouched
Male 0.787 0.789 0.782 Untouched
White 0.277 0.279 0.274 Untouched
Black 0.694 0.693 0.695 Untouched
Other 0.029 0.028 0.031 Untouched

Arrest Year
2017 0.359 0.359 0.358 Untouched
2018 0.411 0.411 0.412 Untouched
2019 0.230 0.230 0.230 Untouched

Arrest Charge
Violent 0.343 0.343 0.343 Untouched
Property 0.322 0.324 0.317 Untouched
Drug 0.205 0.204 0.207 Untouched
Gun 0.080 0.079 0.084 Untouched
Other 0.264 0.264 0.264 Untouched

Arrest Charge Severity
Felony 0.424 0.422 0.428 Untouched
Non-Felony 0.576 0.578 0.572 Untouched

Defendant Prior Record
Any Prior Conviction 0.462 0.463 0.458 Untouched
Prior Felony Conviction 0.332 0.334 0.328 Untouched
Prior Non-Felony Conviction 0.318 0.318 0.318 Untouched

Notes: This table reports descriptive statistics for our full data set and analysis subsets, which cover the period January
18, 2017, through January 17, 2020, from Mecklenburg County, NC. The untouched data set consists of data from the
last 6 months of our study period (July 17, 2019, through January 17, 2019) plus a subset of cases through July 16,
2019, selected by randomly selecting arrestees. The remainder of the data set is then randomly assigned by arrestee
to our training data set (used to build our algorithms) or our validation set (on which we report results in this paper
draft). Once the paper is accepted, we will report final results for the untouched data set. For additional details of our
data filters and partitioning procedures, see Table A.I. We define pre-trial release as being released on the defendant’s
own recognizance (ROR) or having been assigned and then posting cash bail requirements within three days of arrest.
We define re-arrest as experiencing a new arrest before adjudication of the focal arrest, with detained defendants being
assigned 0 values for the purposes of this table. Arrest Charge categories reflect the most serious criminal charge for
which a person was arrested, using the FBI Uniform Crime Reporting hierarchy rule in cases where someone is arrested
and charged with multiple offenses. The multiple analyses of variance for the test of the joint null hypothesis that the
difference in means across all variables is jointly zero has a p-value equal 0.4166. For pairwise p-values, please see the
appendix Table A.II.
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Table II: Is the algorithm rediscovering known facial features?

Dependent variable:
Algo Judge Detain Prediction

(1) (2) (3) (4) (5)
Male .1186∗∗∗ .1179∗∗∗ .1153∗∗∗ .1138∗∗∗ .1140∗∗∗

(.0025) (.0025) (.0025) (.0025) (.0025)
Age .0006∗∗∗ .0006∗∗∗ .0003∗∗∗ .0003∗∗∗

(.0001) (.0001) (.0001) (.0001)
Black .0029 −.0185∗∗∗ −.0168∗∗∗ −.0171∗∗∗

(.0023) (.0037) (.0036) (.0036)
Asian −.0204∗ −.0232∗∗ −.0210∗ −.0216∗

(.0115) (.0115) (.0114) (.0114)
Indigenous American .0103 .0061 .0135 .0126

(.0241) (.0240) (.0238) (.0238)
Skin-Tone −.0441∗∗∗ −.0411∗∗∗ −.0417∗∗∗

(.0059) (.0058) (.0058)
Attractiveness −.0055∗∗∗ −.0051∗∗∗

(.0016) (.0016)
Competence −.0091∗∗∗ −.0087∗∗∗

(.0017) (.0017)
Dominance .0037∗∗∗ .0030∗∗

(.0012) (.0012)
Trustworthiness −.0048∗∗∗ −.0041∗∗

(.0016) (.0016)
Human Guess .0399∗∗∗

(.0062)
Constant .1595∗∗∗ .1391∗∗∗ .1771∗∗∗ .2393∗∗∗ .2173∗∗∗

(.0022) (.0039) (.0064) (.0089) (.0095)
Observations 9,604 9,604 9,604 9,604 9,604
Adjusted R2 .1954 .1992 .2038 .2195 .2228

Notes: The table above presents the results of regressing an algorithmic prediction of judge detention
decisions against each of the different explanatory variables as listed in the rows, where each column
represents a different regression specification. The algorithm was trained using mugshots from the training
data set; the regressions reported here are carried out using data from the validation data set. Data on
skin tone, attractiveness, competence, dominance, and trustworthiness comes from asking subjects to assign
feature ratings to mugshot images from the Mecklenburg County, NC Sheriff’s Office public website (see
text). The human guess about the judges’ decision comes from showing workers on the Prolific platform
pairs of mugshot images and asking them to report which defendant they believe the judge would be more
likely to detain. Regressions follow a linear probability model and also include indicators for unknown race
and unknown gender.
P-Values: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table III: Does algorithm predict judge behavior after controlling for known factors?

Dependent variable:
Judge Detain Decision

(1) (2) (3) (4) (5) (6) (7)
Algo Judge Detain Prediction .6963∗∗∗ .6262∗∗∗ .6171∗∗∗

(.0383) (.0433) (.0434)
Male .1040∗∗∗ .0978∗∗∗ .0940∗∗∗ .0228∗ .0244∗∗

(.0105) (.0106) (.0108) (.0117) (.0117)
Age −.0008∗∗ −.0009∗∗ −.0013∗∗∗ −.0015∗∗∗ −.0015∗∗∗

(.0004) (.0004) (.0004) (.0004) (.0004)
Black −.0139 −.0651∗∗∗ −.0618∗∗∗ −.0513∗∗∗ −.0521∗∗∗

(.0098) (.0156) (.0156) (.0154) (.0154)
Asian −.0753 −.0818∗ −.0754 −.0623 −.0638

(.0490) (.0490) (.0489) (.0484) (.0484)
Indigenous American .0626 .0524 .0670 .0585 .0568

(.1024) (.1023) (.1021) (.1011) (.1010)
Skin-Tone −.1059∗∗∗ −.1004∗∗∗ −.0747∗∗∗ −.0762∗∗∗

(.0251) (.0251) (.0249) (.0249)
Attractiveness −.0017 −.0053 −.0019 −.0011

(.0063) (.0067) (.0067) (.0067)
Competence −.0192∗∗∗ −.0207∗∗∗ −.0150∗∗ −.0144∗∗

(.0073) (.0072) (.0072) (.0072)
Dominance .0160∗∗∗ .0095∗ .0071 .0057

(.0050) (.0051) (.0051) (.0051)
Trustworthiness −.0190∗∗∗ −.0135∗ −.0105 −.0092

(.0070) (.0071) (.0070) (.0070)
Human Guess .0852∗∗∗

(.0265)
Constant .0576∗∗∗ .1868∗∗∗ .2780∗∗∗ .3054∗∗∗ .3928∗∗∗ .2429∗∗∗ .1981∗∗∗

(.0106) (.0165) (.0272) (.0258) (.0381) (.0391) (.0415)
Naive-AUC .625 .56 .571 .549 .586 .633 .635
Observations 9,604 9,604 9,604 9,604 9,604 9,604 9,604
Adjusted R2 .0331 .0101 .0119 .0049 .0162 .0370 .0380

Notes: This table reports the results of estimating a linear probability specification of judges’ detain decisions against
different explanatory variables within the validation set described in Table 1. The algorithmic predictions of the judges’
detain decision come from our convolutional neural network algorithm built using the defendants’ face image as the only
feature, using data from the training data set. Measures of defendant demographics and current arrest charge come from
government administrative data obtained from a combination of Mecklenburg County, NC and state agencies. Measures
of skin tone, attractiveness, competence, dominance and trustworthiness come from subject ratings of mugshot images
(see text). Human guess variable comes from showing subjects pairs of mugshot images and asking subjects to identify
the defendant they think the judge would be more likely to detain. Regression specifications also include indicators for
unknown race and unknown gender.
P-Values: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table IV: Correlation between well-groomed (first novel feature) and algorithm’s prediction

Dependent variable:
Algo Judge Detain Prediction

(1) (2) (3) (4) (5) (6)
Well-Groomed −.0172∗∗∗ −.0188∗∗∗ −.0184∗∗∗ −.0185∗∗∗ −.0158∗∗∗ −.0153∗∗∗

(.0011) (.0010) (.0010) (.0010) (.0012) (.0012)
Male .1201∗∗∗ .1192∗∗∗ .1166∗∗∗ .1153∗∗∗ .1154∗∗∗

(.0024) (.0024) (.0024) (.0025) (.0025)
Age .0003∗∗∗ .0002∗∗∗ .0002∗∗ .0002∗∗

(.0001) (.0001) (.0001) (.0001)
Black .0050∗∗ −.0168∗∗∗ −.0165∗∗∗ −.0168∗∗∗

(.0023) (.0036) (.0036) (.0036)
Asian −.0138 −.0165 −.0153 −.0160

(.0113) (.0113) (.0113) (.0113)
Indigenous American .0211 .0169 .0181 .0172

(.0237) (.0236) (.0236) (.0236)
Skin-Tone −.0449∗∗∗ −.0437∗∗∗ −.0440∗∗∗

(.0058) (.0058) (.0058)
Attractiveness .0006 .0008

(.0016) (.0016)
Competence −.0062∗∗∗ −.0060∗∗∗

(.0017) (.0017)
Dominance .0036∗∗∗ .0031∗∗

(.0012) (.0012)
Trustworthiness −.0029∗ −.0024

(.0016) (.0016)
Human Guess .0339∗∗∗

(.0062)
Constant .3348∗∗∗ .2486∗∗∗ .2346∗∗∗ .2736∗∗∗ .2767∗∗∗ .2568∗∗∗

(.0054) (.0051) (.0065) (.0082) (.0092) (.0099)
Observations 9,604 9,604 9,604 9,604 9,604 9,604
Adjusted R2 .0247 .2249 .2262 .2310 .2337 .2361
Notes: This table shows the results of estimating a linear probability specification regressing algorithmic prediction of
judges’ detain decision against different explanatory variables, using data from the validation set of cases fromMecklenburg
County, NC. Algorithmic predictions of judges’ decisions come from applying an algorithm built with face images in the
training data set to validation set observations. Data on well-groomed, skin tone, attractiveness, competence, dominance
and trustworthiness come from subject ratings of mugshot images (see text). Human guess variable comes from showing
subjects pairs of mugshot images and asking subjects to identify the defendant they think the judge would be more likely
to detain. Regression specifications also include indicators for unknown race and unknown gender.
P-Values: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table V: Correlation between heavy-faced (second novel feature) and algorithm’s prediction

Dependent variable:
Algo Judge Detain Prediction

(1) (2) (3) (4) (5) (6) (7)
Heavy-Faced −.0182∗∗∗ −.0175∗∗∗ −.0169∗∗∗ −.0176∗∗∗ −.0178∗∗∗ −.0183∗∗∗ −.0182∗∗∗

(.0009) (.0009) (.0008) (.0008) (.0008) (.0008) (.0008)
Well-Groomed −.0163∗∗∗ −.0179∗∗∗ −.0170∗∗∗ −.0170∗∗∗ −.0137∗∗∗ −.0133∗∗∗

(.0011) (.0010) (.0010) (.0010) (.0012) (.0012)
Male .1193∗∗∗ .1180∗∗∗ .1152∗∗∗ .1127∗∗∗ .1129∗∗∗

(.0024) (.0024) (.0024) (.0024) (.0024)
Age .0005∗∗∗ .0005∗∗∗ .0004∗∗∗ .0004∗∗∗

(.0001) (.0001) (.0001) (.0001)
Black .0057∗∗∗ −.0179∗∗∗ −.0181∗∗∗ −.0183∗∗∗

(.0022) (.0035) (.0035) (.0035)
Asian −.0115 −.0145 −.0134 −.0140

(.0111) (.0110) (.0110) (.0110)
Indigenous American .0078 .0030 .0046 .0039

(.0232) (.0231) (.0230) (.0230)
Skin-Tone −.0488∗∗∗ −.0469∗∗∗ −.0472∗∗∗

(.0057) (.0057) (.0056)
Attractiveness −.0035∗∗ −.0034∗∗

(.0016) (.0016)
Competence −.0062∗∗∗ −.0061∗∗∗

(.0016) (.0016)
Dominance .0063∗∗∗ .0058∗∗∗

(.0012) (.0012)
Trustworthiness −.0004 .00003

(.0016) (.0016)
Human Guess .0286∗∗∗

(.0060)
Constant .3485∗∗∗ .4230∗∗∗ .3340∗∗∗ .3133∗∗∗ .3568∗∗∗ .3597∗∗∗ .3423∗∗∗

(.0050) (.0070) (.0065) (.0073) (.0089) (.0098) (.0104)
Observations 9,604 9,604 9,604 9,604 9,604 9,604 9,604
Adjusted R2 .0384 .0603 .2579 .2613 .2669 .2711 .2727
Notes: This table shows the results of estimating a linear probability specification regressing algorithmic prediction of judges’
detain decision against different explanatory variables, using data from the validation set of cases from Mecklenburg County,
NC. Algorithmic predictions of judges’ decisions come from applying algorithm built with face images in the training data
set to validation set observations. Data on heavy-faced, well-groomed, skin tone, attractiveness, competence, dominance and
trustworthiness come from subject ratings of mugshot images (see text). Human guess variable comes from showing subjects pairs
of mugshot images and asking subjects to identify the defendant they think the judge would be more likely to detain. Regression
specifications also include indicators for unknown race and unknown gender.
P-Values: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

43



Table VI: Do well-groomed and heavy-faced (first and second novel features) correlate with judge
decisions?

Dependent variable:
Judge Detain Decision

(1) (2) (3) (4) (5) (6) (7)
Heavy-Faced −.0234∗∗∗ −.0226∗∗∗ −.0223∗∗∗ −.0218∗∗∗ −.0111∗∗∗

(.0036) (.0036) (.0036) (.0037) (.0037)
Well-Groomed −.0198∗∗∗ −.0185∗∗∗ −.0124∗∗ −.0100∗ −.0022

(.0043) (.0043) (.0051) (.0051) (.0051)
Algo Judge Detain Prediction .5842∗∗∗

(.0449)
Male .0918∗∗∗ .0959∗∗∗ .0928∗∗∗ .0269∗∗

(.0107) (.0108) (.0108) (.0118)
Age −.0011∗∗∗ −.0013∗∗∗ −.0012∗∗∗ −.0014∗∗∗

(.0004) (.0004) (.0004) (.0004)
Black −.0645∗∗∗ −.0624∗∗∗ −.0643∗∗∗ −.0535∗∗∗

(.0156) (.0156) (.0156) (.0154)
Asian −.0737 −.0726 −.0701 −.0620

(.0488) (.0489) (.0488) (.0484)
Indigenous American .0490 .0683 .0524 .0501

(.1019) (.1021) (.1019) (.1010)
Skin-Tone −.1062∗∗∗ −.1038∗∗∗ −.1076∗∗∗ −.0801∗∗∗

(.0250) (.0251) (.0250) (.0249)
Attractiveness −.0084 .0004 −.0045 −.0025

(.0067) (.0070) (.0070) (.0070)
Competence −.0194∗∗∗ −.0175∗∗ −.0176∗∗ −.0141∗

(.0072) (.0073) (.0073) (.0072)
Dominance .0109∗∗ .0076 .0108∗∗ .0075

(.0052) (.0051) (.0052) (.0051)
Trustworthiness −.0085 −.0104 −.0075 −.0075

(.0071) (.0071) (.0071) (.0070)
Human Guess .1023∗∗∗ .1049∗∗∗ .0986∗∗∗ .0819∗∗∗

(.0267) (.0268) (.0268) (.0266)
Constant .3569∗∗∗ .3280∗∗∗ .4418∗∗∗ .4436∗∗∗ .3642∗∗∗ .4665∗∗∗ .2666∗∗∗

(.0196) (.0209) (.0276) (.0446) (.0429) (.0462) (.0483)
Naive-AUC .544 .531 .553 .601 .592 .601 .637
Observations 9,604 9,604 9,604 9,604 9,604 9,604 9,604
Adjusted R2 .0042 .0021 .0061 .0215 .0183 .0218 .0387
Notes: This table reports the results of estimating a linear probability specification of judges’ detain decisions against different
explanatory variables within the validation set described in Table I. The algorithmic predictions of the judges’ detain decision
come from our convolutional neural network algorithm built using the defendants’ face image as the only feature, using data
from the training data set. Measures of defendant demographics and current arrest charge come from Mecklenburg County
administrative data. Data on heavy-faced, well-groomed, skin tone, attractiveness, competence, dominance and trustworthiness
come from subject ratings of mugshot images (see text). Human guess variable comes from showing subjects pairs of mugshot
images and asking subjects to identify the defendant they think the judge would be more likely to detain. Regression specifications
also include indicators for unknown race and unknown gender.
P-Values: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table VII: Results from criminal justice practitioner sample

Dependent variable:
Judge Detain Decision

(1) (2) (3) (4) (5) (6) (7) (8)
Criminal Justice Practitioner Guess .4172∗∗∗ .3635∗∗ .2924∗ .4244∗∗∗ .3395∗∗

(.1576) (.1592) (.1593) (.1562) (.1567)
Algo Judge Detain Prediction .6201∗∗∗ .6307∗∗∗ .7555∗∗∗

(.2335) (.2315) (.2717)
Well-Groomed −.0455∗ −.0362 −.0273 −.0206

(.0261) (.0263) (.0305) (.0306)
Heavy-Faced −.0394∗ −.0363∗ −.0411∗ −.0387∗

(.0217) (.0216) (.0217) (.0217)
Male −.0696 −.0680 −.1579∗∗

(.0655) (.0653) (.0725)
Age −.0036 −.0035 −.0032

(.0029) (.0029) (.0028)
Black −.1683∗ −.1706∗ −.1454

(.0934) (.0931) (.0926)
Skin-Tone −.3901∗∗ −.3895∗∗ −.3192∗∗

(.1568) (.1562) (.1562)
Attractiveness −.0062 −.0090 .0049

(.0448) (.0447) (.0432)
Competence .0021 .0039 .0005

(.0441) (.0440) (.0434)
Dominance .0512∗ .0475 .0334

(.0307) (.0307) (.0304)
Trustworthiness −.1113∗∗ −.1031∗∗ −.1145∗∗

(.0446) (.0447) (.0443)
Constant .2855∗∗∗ .9205∗∗∗ .6778∗∗∗ 1.4446∗∗∗ 1.2442∗∗∗ .3377∗∗∗ .1226 .7930∗∗∗

(.0831) (.1662) (.1965) (.2728) (.2929) (.0646) (.1018) (.2679)
Naive-AUC .572 .577 .602 .643 .653 .576 .607 .661
Observations 360 360 360 360 360 360 360 360
Adjusted R2 .0165 .0131 .0246 .0384 .0449 .0166 .0338 .0582
Notes: This table shows the results of estimating judges’ detain decision using a linear probability specification of different explanatory
variables on a subset of the validation set. The criminal justice practitioner’s guess about the judge decision comes from showing
15 different public defenders and legal aid society members actual mugshot images of defendants and asking them to report which
defendant they believe the judge would be more likely to detain. The pairs are selected in such way to be congruent in gender and race
but discordant in detention outcome. The algorithmic predictions of judges’ detain decisions come from applying the algorithm, which
is built with face images in the training data set, to validation set observations. Measures of defendant demographics and current
arrest charge come from Mecklenburg County, NC administrative data. Data on heavy-faced, well-groomed, skin tone, attractiveness,
competence, dominance and trustworthiness come from subject ratings of mugshot images (see text). Regression specifications also
include indicators for unknown race and unknown gender.
P-Values: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Panel A: Correlates of judge detention decision, with and without mugshot algorithm prediction

Panel B: Correlates of algorithm prediction of judge detention decision

Panel C: Correlates of novel features (new hypotheses) and judge detention decision

Figure I: Correlates of judge detention decision and algorithmic prediction of judge decision

Notes: Panel A above summarizes the explanatory power of a regression model in explaining judge detention decisions, controlling for the different explanatory variables indicated
at left (by the shaded tiles), either on their own (indicated by the dark circles) or together with the algorithmic prediction of the judge decisions (triangles). Each row represents a
different regression specification. By "other facial features" we mean variables that previous psychology research suggest matter for how faces influence people’s reactions to others
(dominance, trustworthiness, competence and attractiveness). 95% confidence intervals around our R2 estimates come from drawing 10,000 bootstrap samples from the validation data
set. Panel B shows the relationship between the different explanatory variables as indicated at left by the shaded tiles with the algorithmic prediction itself as the outcome variable in
the regressions. And, Panel C examines the correlation with judge decisions of the two novel hypotheses generated by our procedure about what facial features affect judge detention
decisions: well-groomed and heavy-faced.
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Figure II: Illustrative facial images

Notes: This figure shows facial images that illustrate the format of the mugshots posted publicly
on the Mecklenberg County, North Carolina sheriff’s office website. These are not real mugshots of
actual people who have been arrested, but are instead synthetic. Moreover, given concerns about how
the over-representation of disadvantaged groups in discussions of crime can exacerbate stereotyping,
we illustrate the key ideas of our paper using images for non-Hispanic white males. However, in our
human intelligence tasks that ask subjects to provide labels (ratings for different image features), we
show subjects images that are representative of the Mecklenberg County defendant population as a
whole.
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(a) Initial face (b) Saliency map

(c) Naive age-morphed image (d) Morphs from our procedure

Figure III: Candidate algorithm-human communication vehicles for a known facial feature:
Age

Notes: The first panel shows a randomly selected point in the GAN latent space for a non-Hispanic
white male defendant. The second panel shows a saliency map that highlights the pixels that are most
important for an algorithmic model that predicts the defendant’s age from the mugshot image. The
third panel shows an image changed or “morphed” in the direction of older age, based on the gradient
of the image-based age prediction, using the “naive” morphing procedure that does not constrain the
new image to lie on the face manifold (see text). The final panel shows the image morphed to the
maximum age using our actual preferred morphing procedure.
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Figure IV: Hypothesis generation pipeline

Notes: The above diagram illustrates all the algorithmic components in our procedure by presenting a full pipeline for algorithmic interpre-
tation.
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(a) Naïve morphing leads off manifold and results in non-faces

(b) Our procedure stays on manifold and morphs are faces

Figure V: Morphing images for detention risk on and off the face manifold

Notes: The exhibits above show the difference between an unconstrained (naive) morphing procedure and
our preferred new morphing approach. In both panels, the background represents the image space (set of all
possible pixel values) and the blue line represents the set of all pixel values that correspond to any face image
(the face manifold). The orange lines show all images that have the same predicted outcome (isoquants in
predicted outcome). The initial face (point on the outermost contour line) is a randomly selected face in
GAN face space. From there we can naively follow the gradients of an algorithm that predicts some outcome
of interest from face images. As shown in Panel (a), this takes us off the face manifold and yields a non-face
image. Alternatively, with a model of the face manifold, we can follow the gradient for the predicted outcome
while ensuring that the new image is again a realistic instance as shown in Panel (b).
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(a) Side-by-side mugshot detention morphs with detention probabilities of 0.41 and 0.13 respectively

(b) Transformations of the face along selected steps of the morphing process

(c) Detention-probabilities for images in panel (b)

Figure VI: Illustration of morphed faces along detention gradient

Notes: The top panel shows the result of selecting a random point on the GAN latent face space for
a white Hispanic male defendant, then using our new morphing procedure to increase the predicted
detention risk of the image to 0.41 (at left) or reduce the predicted detention risk down to 0.13 (at
right). The overall average detention rate in the validation data set of actual mugshot images is 0.23
by comparison. The second panel shows the different intermediate images between these two end
points, while the third panel underneath shows the predicted detention risk for each of the images in
the middle panel.
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Figure VII: Examples of morphing along the gradients of face-based detention predictor
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(a) A word cloud of the comments

(b) Frequencies of comments by theme

Figure VIII: Subject reports of what they see between detention-risk-morphed image pairs

Notes: The top panel shows a word cloud of subject reports about what they see as the key difference
between image pairs where one is a randomly selected point in the GAN latent space and the other is
morphed in the direction of a higher predicted detention risk. Words are approximately proportion-
ately sized to the frequency of subject mentions. The bottom panel shows the frequency of semantic
groupings of those open-ended subject reports (see text for additional details).
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Figure IX: Examples of morphing along the orthogonal gradients of the face-based detention pre-
dictor
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(a) A word cloud of the comments

(b) Frequencies of comments by theme

Figure X: Subject reports of what they see between detention-risk-morphed image pairs,
orthogonalized to first novel feature discovered (well-groomed)

Notes: Top panel shows a word cloud of subject reports about what they see as the key difference
between image pairs, where one is a randomly selected point in the GAN latent space and the other is
morphed in the direction of a higher predicted detention risk, where we are moving along the detention
gradient orthogonal to well-groomed and skin tone (see text). The bottom panel shows the frequency
of semantic groupings of these open-ended subject reports (see text for additional details).
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A Appendix A: Conceptual Framework
A.1 A Simple Framework for Discovery
In this section, we develop a simple framework to clarify the goals of hypothesis generation,
how it differs from testing, and how algorithms can help. The goal is to organize thinking
around these largely unmodeled questions rather than to prove intricate, formal results. The
focus of our model—and our work—is the act of generating hypotheses given some data about
the world, as opposed to, say, deriving hypotheses from formal models.

A.2 Setup
We assume the overall goal is to understand how some outcome (y) depends on some input
(x). Simply finding any function from x to y is not enough. Instead, for us, understanding
requires that we uncover “interpretable” functions that relate the two. The goal of hypothesis
generation is to uncover candidate interpretable functions. Testing—which we do not model—
happens next: It verifies whether a given candidate function in fact explains the relationship
between y and x. The hypotheses are to be generated from some data, which we assume
consist of (y, x) pairs that are from a distribution D. We will also assume that x ∈ Rk is a
k-dimensional real vector, y ∈ {0, 1} is some binary outcome, and that there is some function
f∗ : Rk → {0, 1} such that y = f∗(x) for all (x, y) sampled from D.71

Though our framework is general, to make it concrete, we will describe it using the appli-
cation we study in the rest of the paper: x is a mugshot (a picture of an arrested individual’s
face) and y is the judge’s decision to detain a defendant. Images can be represented as a
vector of pixel values, where each element of the vector indicates the intensity of a given color
(red, green or blue) at a particular point in the image. A 1, 024 by 1, 024 pixel image could
be expressed as a vector of length 3, 145, 728 (1, 024 × 1, 024 × 3). So each mugshot x is an
element of Rk, the space of all possible pixel combinations. A variety of other inputs can be
represented similarly. Suppose a diary entry (x) is related to whether a person is depressed
or not (y). The entry can be “vectorized” by replacing each word with an ID. The entry can
be represented with a series of concatenated word IDs followed by a series of dummy vectors
to make sure all vectorized entries have similar length.

In this framework, we are not interested in the estimates produced by f∗, but rather
in uncovering “interpretable” functions that explain how x relates to y. For example, skin
color and attractiveness (as judged by a certain group) are interpretable functions that can
be calculated for a given image x. In the diary example, interpretable functions might
include a measure of whether the text is “sad”, or if it “discusses self more than others,”
or “discusses emotions”; all of these are interpretable functions of the input vector which
have some meaning to people. But the converse is not true: Most mathematical functions
of images are not interpretable, and have no meaning to us. With this in mind, let H be
the set of all possible hypotheses—the set of every function from input data x to the chosen
outcome y. We assume there is also some set I ⊆ H of interpretable functions, which are the
functions that admit some human-understandable description.72 We also assume for a given

71Relaxing the simplifying assumptions that y is binary and that there is no noise in the relationship between
x and y does not substantively change the setup or the substance of our results.

72Note the set I is not static: Fundamental innovations such as the discovery of calculus or probability can
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data distribution D with associated function f∗, there is a set of comprehensible functions,
Φ∗ = {φ∗1, ...φ∗j} ⊂ I,

that together explain the human interpretable component of the ground-truth. That is, f∗
can be written as

f∗(x) = φ∗1(x) + φ∗2(x) + · · ·+ φ∗j (x)︸ ︷︷ ︸
Interpretable

+∆∗(x). (1)

Reality may be interpretable, but need not be, hence ∆∗(x). The goal of discovery is to
find a candidate set of comprehensible functions Φ ⊂ I, such that

fΦ(x) =
∑
ϕ∈Φ

ϕ(x)

is as close to f∗ as possible, as measured by some error function such as likelihood (or
mean-squared error for continuous outcomes). Finding such Φ is desirable partly because
interpretable insights are portable. Learning that skin color predicts detention has broader
implications: We may now want to ask whether skin color affects police use of force or
whether these effects differ by time of day. By virtue of being interpretable, the functions in
I let us use a wider set of knowledge (police may share racial biases, or skin color is not as
easily detected at night). We seek interpretable descriptions because they let us generalize
to novel situations, in addition to being easier to communicate to key stakeholders and lend
themselves to interpretable solutions. The interpretable set here models the set of ideas
for which we have some broader understanding, which in turn lets us perform these acts of
generalization.

It is worth pointing out what makes this task hard (or easy). Suppose we simply built
a model m(x) that predicts y. For that model itself to yield an interpretable hypothesis, its
parameters must be interpretable. That can happen in some simple cases. For example, if
we had a data set where each dimension of x was interpretable (such as individual structured
variables in a tabular dataset) and we used a predictor such as OLS (or LASSO), then we
could just read the hypotheses from the non-zero coefficients: which variables are significant?
Even in that case, interpretation is challenging because machine learning tools, built to
generate accurate predictions, yield coefficients that can be quite unstable and change with
small perturbations in the data (Mullainathan and Spiess, 2017).73 And often interpretation
is much less straightforward than that. If x is an image, text or time series, the estimated
models (such as convolutional networks) are defined on granular inputs and have no particular
meaning: if we knew the algorithm weighted a particular pixel, what have we actually learned?
In these cases, the estimated model m is itself not interpretable, nor is it readily apparent
how we might decompose m into interpretable sub-components in the same way that we
have decomposed f∗ in (1). Our focus is on these contexts where algorithms, as “black-box”
models, are not readily interpreted.

expand the set of functions that “make sense” to us. But for present purposes we take I as given, and do not
focus on ground-breaking discoveries that truly expand our basic capacity to represent the world.

73The intuition here is quite straightforward: If two predictor variables are highly correlated, the weight
that the algorithm puts on one versus the other can change from one draw of the data to the next depending
on the idiosyncratic noise in the training dataset, but since the variables are highly correlated the predicted
outcome values themselves (hence predictive accuracy) can be quite stable.
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A.3 The Discovery Problem
To understand the challenge of making such discoveries, we first define the process of extract-
ing candidate hypotheses from a given dataset. Expressed in the language of our framework,
a discovery process P takes a data set D as input, and returns a function h as output. The
output function h is our candidate hypothesis. The process P may be random, meaning that
hypotheses drawn from P(D) may be different each time. Having drawn a candidate hypoth-
esis h we can then evaluate h as a candidate element of Φ, but this is a separate problem to
discovery. We call P a discovery procedure, and we call h the hypothesis.

Under our definition, each of the following is considered a discovery procedure: a re-
searcher fitting a linear regression; fitting a black-box machine learning model to a dataset
(the model is the hypothesis); or a researcher arriving at a hypothesis by manually inspecting
a dataset and having a creative inspiration. So we need to define what distinguishes a “good”
discovery process from a poor one. We introduce three properties of a discovery process.

Definition. Suppose that we have a distribution D over data sets, and a discovery procedure
P for data sets drawn from D. Let D be a single data set drawn from D, and let h = P(D)
be a hypothesis drawn from the discovery procedure. We define three criteria for measuring
the the quality of P.

Comprehensibility: The generated hypotheses should be ones that people can under-
stand. Comprehensibility is defined as

ξ(P) = PD(h ∈ I).
Plausibility: Under the data-generating distribution, the generated hypothesis should
at least be predictive of y. Plausibility is defined as

π(P) = PD
(

cor(h(x), y) > 0
)
.

Replicability: Repeating the discovery procedure should lead to the same hypothesis.
Let D′ be another data set drawn from D, and let h′ = P(D′) be another hypothesis
drawn from the discovery procedure on the new data set. Replicability is defined as

ρ(P) = PD(h = h′).
For all three criteria, probabilities and expectations are taken over new draws from the original
data-generating process D.74

We note four points about these criteria. First, why do we include replicability? It is
hard to systematically assess a procedure that is highly idiosyncratic. We would not be
able to assess the quality of a procedure, or whether a produced hypothesis was due to the
procedure or simply a random draw (hence the problem with human creativity). Second,
does plausibility necessarily and mathematically imply replicability? If a procedure only
finds plausible candidates, is it not by construction replicable? The extent to which this
is true depends on the size of the plausible set—if there are few plausible hypotheses, high

74As a result, the performance of a given procedure can depend on D, which is intuitive: some procedures
may do better for some data-generating processes than others. Additionally, We could have included another
criterion here: novelty. Because some of the hypotheses φ∗i (x) may already be discovered, we may wish our
hypothesis generation procedure to generate a new, previously undiscovered hypothesis. We exclude this here
because we could imagine the procedure being applied to y − φ′(x) where φ′ is the already known factor that
influences y.
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replicability will follow. But if there are many plausible hypotheses, then this need not be
the case. Third, crucially, note that veracity is not included as a criterion; that is, h need
not necessarily be true. We do not require that h ∈ Φ∗, nor do we require that changing h(x)
would change y.75 Requiring veracity sets entirely too high a bar. Finally, both plausibility
and comprehensibility can just as easily be defined as properties of the individual hypothesis
generated by a procedure (we will apply these definitions below in our empirical work). In
contrast, replicability can only be defined as a property of the overall procedure.

A.4 Human hypothesis generation
First, we consider human hypothesis generation, since this is a natural starting point and
benchmark for more data-driven procedures such as the one we propose below. The psychol-
ogy (and sociology) of the human hypothesis generation procedure is enormously complex
(see for example Langley et al. (1987)), so our goal is only to capture a few key properties
in a simple model. A few definitions will be helpful. Given a data set D, define a matched
pair as two observations (y0, x0) and (y1, x1) from D, where y0 = 0 and y1 = 1. Let E be a
set of matched pairs. A hypothesis h is consistent with a matched pair if h(x0) < h(x1). We
say that a hypothesis h is consistent with a set of pairs if it is consistent with all the pairs in
the set. We write HE for the set of hypotheses consistent with E, and we write IE = I ⋂HE
for the set of interpretable hypotheses consistent with E. With these definitions in hand, we
can define the human hypothesis generation procedure.

Procedure. Assume that we have some data set D. The human hypothesis-generating pro-
cedure is a creative process we denote by Pc and operates by:

Cognitive Constraints: Uniformly sampling (without replacement) n matched pairs
to form a set E.76
Inspiration: Picking one hypothesis at random from IE, the set of interpretable hy-
potheses consistent with E.
Advantageous prior: Possibly picking true hypotheses with higher probability. With
probability α, the hypothesis is chosen from Φ∗, the set of true hypotheses. With proba-
bility 1−α, the hypothesis is picked uniformly at random from IE \Φ∗, the set of untrue
interpretable hypotheses consistent with E.

The procedure Pc is parameterized by n (how much data people can meaningfully process) and
α (the extent to which they have some special access to what is actually true).

That is, people look at a subset of data and within that subset look for something that
differentiates positive from negative cases. Typically, they focus on differences that hold in
the dataset, rather than “out of sample.”

So how does human hypothesis generation fare on our three criteria? Almost by construc-
tion, it does well on comprehensibility. People produce hypotheses that make sense to us as
people. But human hypothesis generation fares less well on our other two criteria.

75Specifically, if we changed only the part of x that affected h(x) and held the rest constant, y should change.
Importantly, note that veracity (unlike plausibility) does not depend on the data-generating process: it is a
feature of the true function, not the specific way we draw data.

76Notice in our rendition, for simplicity, we have not allowed for intrinsic biases in what humans might notice,
such as confirmatory or categorical biases that might lead them to systemically notice certain relationships
that are not there. Such biases would worsen both human hypothesis generation and our suggested procedure.

60



Human discovery procedures are not particularly replicable. A large body of evidence
shows that human judgments have a great deal of “noise”: different people draw different
conclusions from the same observations, and worse, the same person may notice different
things at different times (Kahneman et al., 2022). More broadly, there is a great deal of
randomness in what data are attended to and which hypotheses are inspired. This inherent
noisiness of human judgments is embodied in our understanding of creativity. We do not just
accommodate the lack of replicability; at times, we celebrate it: happy for the luck involved
in the singular sparks of insight that advance our thinking.

Nor does the human procedure necessarily produce empirically plausible hypotheses. The
reason is subtle, but important. To understand the nature of the problem, consider the
following trivial stylized example. Suppose that x = (x1, . . . , xk) is a k-dimensional binary
vector and that all k dimensions are comprehensible, so that the hypothesis hi(x) = xi is
in I for all i. Further, suppose that f∗(x) = x1; that is, the true function relating x to y
only depends on the first dimension of x. And to make matters simple, assume that PD(x)
is uniform, meaning all possible values of x are equally likely. In this setting, the function
h1 is the only true hypothesis, and the only empirically plausible hypothesis. However, even
in this stylized setup where the true hypothesis is actually quite simple, people can end up
generating non-plausible hypotheses.

To see this, consider a pair of data points (x0, 0) and (x1, 1). Since p is uniform, x0 and x1
will differ on k

2 dimensions in expectation. So there are a number of interpretable, consistent,
but implausible hypotheses. A person looking at only one pair of observations would have a
high chance of generating an empirically implausible hypothesis. Of course, as the number of
matched pairs n increases, the probability of discovering an implausible hypothesis declines.
But the problem still remains. The intuition here is related to “over fitting”: even though
there is no noise in y, there is randomness in which observations happen to be in D, and even
more so for the n pairs sampled in E. That randomness can lead to idiosyncratic differences
between the y = 0 and y = 1 cases. As the number of comprehensible hypotheses gets
large, there is a “curse of dimensionality”: there are many plausible hypotheses for these
idiosyncratic differences. That is, many different hypotheses can look good in sample, but
they need not work out of sample. We realize that human-recognized patterns may not
even be actually be present, which is why a first step in applied work is often to see if the
hypothesis holds in a correlational sense.

A.5 Algorithmic hypothesis generation
We now consider how algorithms may help with hypothesis generation. We will assume, for
simplicity, that for a given data set D, an algorithm m exists that can predict y from x.
Specifically, we have access to a black box algorithm, which from any data set D produces
m(x) that predicts y out of sample. Given such a black box predictor, in principle, we
already have one hypothesis-generating procedure: simply output m(x). Since m(x) predicts
y from x, it is by construction empirically plausible. But in practice, m(x) is highly unlikely
to be comprehensible. Even simple machine learning algorithms rarely produce prediction
functions that are meaningful hypotheses. This helps us see the strengths and weaknesses of
both algorithms and humans for purposes of hypothesis generation:

• Human hypotheses are comprehensible but may not be empirically plausible.
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• Algorithmic hypotheses are empirically plausible but may not be comprehensible.

Our goal is to marry people’s unique knowledge of what is comprehensible with an algo-
rithm’s superior capacity to find meaningful correlations in data. One approach might be to
formalize the set I and then focus on creating machine learning techniques that search over
functions in I. But mathematically characterizing I is often not possible. This is related
to what Autor (2014) called “Polanyi’s paradox,” the idea that people’s understanding of
how the world works is largely beyond our capacity to explicitly describe it. Our failure
to appreciate this paradox, and believe we understand more of our thinking than we do, is
called the “introspection illusion” (Pronin, 2009). In our running example, how would we
mathematically, or even verbally, characterize the set of functions of facial images (mugshots)
that “make sense” to people? Instead we assume I remains unique, non-formalizable, tacit
knowledge of people. Yet progress is still possible:

Procedure. Suppose that D is some data-generating distribution, and that we have a data
set D sampled from D, and a density function p such that p(x) > 0 if and only if x can be
sampled from D. Further, assume that we have an algorithm m that predicts y, and some
fixed values qm and pm such that

min
D
{m(x)} < qm < pm < max

D
{m(x)}.

The algorithmic hypothesis procedure is a discovery process that operates by:
Morphing Sample a random data point x0 from the generative process p. Then, find
points x− and x+ as solutions to the following problem:

x− = arg min
x
{‖x− x0‖ : m(x) ≤ qm and p(x) > 0}

x+ = arg min
x
{‖x− x0‖ : m(x) ≥ pm and p(x) > 0}.

Naming Show a human n such (x−, x+) pairs. Ask them to name a feature that
differentiates these pairs. Specifically, they generate a hypothesis h ∈ I, if there is one,
that they view as differentiating the pairs.

We write Pm for the algorithmic hypothesis procedure, or what we will also call the morphing
hypothesis procedure.

The definitions of x− and x+ serve the same function as the matched pair in the human
hypothesis procedure. However, thanks to the density function p, we can find x− and x+

such that the matching pair are both “close” (in some metric) to the original sampled point
x0. As we will see, this is the critical property of the algorithmic hypothesis procedure that
improves the quality of the hypotheses that are output.

Morphing requires not just an algorithmic model of y but an algorithmic model of p. That
model of p frees the algorithm from being constrained by the particular set of pairs found in
the data set D and allows for the construction of entirely new data points that differ only
along relevant dimensions, since we can use the prediction m(x) to choose the new matching
points. Put differently, for any given data point, this procedure allows us to construct new
data points that answer the counterfactual question: How would this point be different if it
had a higher or lower m(x) value? Our approach to solving the given definitions to find x−
and x+ is discussed in further detail in Section 5.
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The second part of this procedure merely harnesses a known human capacity: the ability
to notice differences in otherwise similar observations. Having people articulate hypotheses
from looking at morphed data points rather than at raw data has two advantages:

• Left to their own devices, people seek to identify any differences across data points that
differ in y. Because they only have one particular data set, that approach is prone to
over fitting: differences that may hold in that particular sample but not others. But
with our morphing procedure, humans are now looking for differences in m(x), and we
know m(x) is a reliable out-of-sample predictor. By way of intuition, this is why we
are usually better off interpreting a regression than individual data points that go into
the regression. Although there is no noise in the setup we use here, the same basic
intuition carries through.

• The matching of nearest neighbors reduces the curse of dimensionality. Pairs (x−, x+)
will now have fewer plausible candidates for what may be different between them exactly
because we have ensured they differ as little as possible.77

This procedure marries the algorithm’s capacity to find signal with unique human knowl-
edge of what is a meaningful hypothesis. Because people are not looking at actual data, they
are effectively naming m(x). They are projecting the algorithm into their own language—the
set of hypotheses that are comprehensible. As a result, mechanically, this produces compre-
hensible hypotheses. At the same time, because m(x) is known to have signal for y, this
procedure is more likely to produce empirically plausible hypotheses.

We conclude by examining how our semi-automated procedure and human hypothesis
generation compare. To do so, we will need to make an assumption about how the implausible
hypotheses behave. In particular, we need to guarantee that in any given sample draw,
the rate at which implausible hypotheses are consistent with any particular sample falls off
sufficiently fast with sample size. To ensure this, we will assume the following two conditions
hold for D. First, for any distinct hypotheses h, h′ ∈ I and any matching pair e, we assume
hypotheses are consistent independently PD(h′ ∈ Ie | h ∈ Ie) = PD(h′ ∈ Ie). Second, for
any implausible hypotheses h, h′ ∈ I \ Φ∗ and any random pair of matching images (or
random pair of matching morphs) e, we assume hypotheses are consistent equiprobably:
PD(h ∈ Ie) = PD(h′ ∈ Ie). These assure the “concentration of mass” property we require
(surely other assumptions would as well). Given these assumptions about D, we can show
the following.

Proposition 1. Suppose that we have some data-generating distribution D with data set D.
Let Ph be the human hypothesis procedure with n pairs and advantageous prior with parameter
p. Let Pm be the algorithmic hypothesis procedure with n pairs and parameters qm, pm. Assume
also that the advantageous prior α is more advantageous than random choice; that is, assume
that α > |Φ∗|

|I\Φ∗| . There exist constants N , CΦ and Cm such that if
(i) People do not look at too many pairs n < N ,
77An analogy with OLS provides an easy intuition for why this helps: A regression is in effect a way to

calculate in-sample correlations, and the standard errors tell us whether those correlations are real or due
to sampling noise. Adding controls lowers standard errors because lowering the residual noise makes it more
likely that in-sample correlations are more likely to hold out-of-sample. That is the same effect here: By
matching on m(x) instead of y, we are reducing residual noise and increasing the chance that noticed patterns
are genuine ones.
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(ii) The problem is complex enough. That is, the relative number of comprehensible hy-
potheses that are true is sufficiently small: |Φ∗|

|I\Φ∗| < CΦ, and
(iii) Implausible hypotheses are consistent with matching morph pairs sufficiently rarely:

PD(h ∈ Iem) < Cm for any hypothesis h ∈ I \Φ∗ and any random matching morph pair
em,

then
• Morphing produces plausible hypotheses at a higher rate: π(Pm) ≥ π(Pc),
• Morphing is more replicable: ρ(Pm) ≥ ρ(Pc), and
• Both procedures produce comprehensible hypotheses ξ(Pm) = ξ(Pc) = 1.

(See below for a sketch proof of Proposition 1.)
The proposition highlights how a morphing procedure could be useful in principle. We

now assess whether it works in practice. In what follows, we will implement this procedure
to generate a hypothesis h(x). In the ideal setup of our framework, such an h represents
meaningful communication. Whether that is actually the case is an empirical question. We
do not test for comprehensibility because, as pointed out, by definition any h produced by
people is comprehensible. But we will directly measure whether what people see is also what
the algorithm “sees”: whether in fact h(x) predicts m(x). And we will assess the procedure
on two dimensions we have already described: reliability (what fraction of subjects name the
same h); and plausibility (whether h predicts y).

Finally, it is worth noting a few additional advantages of algorithmic generation that
are not highlighted by this proposition. First, though it is not explicit here, given a set of
known hypotheses, we can orthogonalize with respect to those dimensions to ensure that the
algorithm is producing something novel.78 Second, other methods of producing hypotheses
(observation, conversation, introspection) may produce theories that are hard to measure in
data. By construction, our procedure only produces hypotheses that are measurable.

A.6 A proof of Proposition 1
Sketch proof of Proposition 1. Suppose that we have some data generating distribution D.
Let D be a data set drawn from D. Let Pc be the human hypothesis procedure with n pairs
and advantageous prior with parameter α. Let Pm be the algorithmic hypothesis procedure
with n pairs and parameters qm, pm. Let Ec be a random set of n matched pairs randomly
drawn from a matching process on D, and let Em be a random set of n matched morph pairs
randomly drawn from the morphing process.

Our strategy for the proof will be as follows. First, we will use the assumed conditions
on Pc and Pm to derive some more convenient identities used throughout the proof. We will
then find some upper and lower bounds on PD(P(D) = h) for both hypothesis generating
procedures, and under different conditions on h ∈ I. Finally, given these bounds, we will
use the definitions of plausibility and reproducibility to directly prove the claims from the
proposition statement.

We begin by producing some convenient identities involving the input parameters. First,
we let K = |I \ Φ∗|, and assume that we have some fixed positive integer N > n. Next, since

78In our particular application, we do not do this, in part because we are curious to explicitly examine
algorithms’ capacity to rediscover known hypotheses.
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we have assumed that implausible hypotheses are consistent equiprobably, we know that
PD(h ∈ Iec) and PD(h ∈ Iem) are both independent of h ∈ I \ Φ∗, ec ∈ Ec, and em ∈ Em.
Hence, we can define constants ξc and ξm by

ξc = PD(h ∈ Iec) and ξm = PD(h ∈ Iem),
where h ∈ I \ Φ∗ is any implausible hypothesis, ec ∈ Ec is any single matching pair, and
em ∈ Em is any single matched morph pair. Further, since matching pairs are sampled
independently,

PD(h ∈ IEc) = ξnc , and PD(h ∈ IEm) = ξnm

whenever h ∈ I \ Φ∗ is an implausible hypothesis. We now define constants βh = ξnh and
βm = ξnm. Now, the given assumptions on I and Φ imply that we can fix CΦ so that

CΦ ≤ ξNh ,
which implies that

βh = ξnh ≥ ξNh ≥
|Φ∗|
K

. (2)

Similarly, the given assumption on consistent hypotheses implies that we can fix Cm such
that

Cm ≤
(
1− α

1
K

) 1
N ,

which implies that
βm = ξnm ≤ ξNm = CNm ≤ 1− α

1
K ,

and hence that
α < (1− βm)K . (3)

We now turn our attention to proving some identities involving the hypotheses in H. We have
assumed that for a given matched pair e, hypotheses inH are consistent with e independently.
For any set of hypotheses IE such that Φ∗ ⊆ IE ⊆ I, this implies that

PD(IEc = IE) = βkc (1− βc)K−k, and PD(IEm = IE) = βkm(1− βm)K−k. (4)
We will also use the fact that there are exactly

(K
k

)
distinct possible values for IE such that

|IE | = |Φ∗|+ k and Φ∗ ⊆ IE ⊆ I.
We will now find bounds on the probability that a given hypothesis h is an element of

IE , for both the human discovery process and the morph discovery process. We know that
for any hypothesis h ∈ H,

PD(Pc(D) = h | IEc) =


0 if h /∈ IEc

1−α
|IEc |

if h ∈ IEc \ Φ∗

α
|Φ∗| if h ∈ Φ∗.

(5)

For plausible hypotheses, (5) is sufficient to calculate an unconditional likelihood that Pc
produces a plausible hypothesis as output. That is, for any h ∈ Φ∗,

PD(Pc(D) = h | h ∈ Φ∗) = α

|Φ∗| . (6)
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Conversely, for the morphing discovery process, we see that

PD(Pm(D) = h | IEm) =

0 if h /∈ IEm

1
|IEm |

if h ∈ IEm .

Focusing on the probability of producing an implausible hypothesis, we see that

PD(Pm(D) = h | h ∈ I \ Φ∗) =
∑
Em⊆I

PD(Pm(D) = h | IEm) · PD(Em)

=
∑
Eh⊆I

[ 1
|IEm |

]
· 1{h ∈ Eh} · PD(Em)

=
K−1∑
k=0

1
k + 1 + |Φ∗| ·

(
K − 1
k

)
· βk+1

m (1− βm)(K−1)−k

≤ 1
K
·
K−1∑
k=0
·
(

K

k + 1

)
· βk+1

m (1− βm)K−(k+1)

= 1− (1− βm)K
K

.

In order to form the inequality above, we have used the identity that for any positive integer
k such that k ≤ K,

1
k + 1

(
K

k

)
= 1
K + 1

(
K + 1
k + 1

)
.

Using complementarity and the assumption of equiprobability, we know that

PD(Pm(D) = h | h ∈ Φ∗) = 1
|Φ∗| · (1−K · PD(Pm(D) = h | h ∈ I \ Φ∗)).

Hence,

PD(Pm(D) = h | h ∈ Φ∗) ≥ (1− βm)K
|Φ∗| . (7)

Having now derived various upper and lower bounds for the probability that a given hypoth-
esis is returned by either discovery process, we are now ready to proceed with the body of the
proof. We will show by direct substitution that each of the claims made in the proposition
hold.

We will begin with plausibility. We know by definition that a hypothesis h ∈ I is plausible
if and only if h ∈ Φ∗. Hence, we can measure the plausibility of either procedure P by

π(P) = PD(P(D) ∈ Φ∗) =
∑
h∈Φ∗

PD(P(D) = h).

But for any plausible hypothesis h ∈ Φ∗, (7) and (6) mean that

PD(Pm(D) = h | h ∈ Φ∗)− PD(Pc(D) = h | h ∈ Φ∗) ≥ (1− βm)K
|Φ∗| − α

|Φ∗| ≥ 0, (8)

using the assumption that α < Cα and (3). But this directly implies that
π(Pm) ≥ π(Pc),

which proves the first claim of the proposition.
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We will now focus on the replicability of Pc and Pm. Let D′ be another draw from the
data-generating process D. Then for either generating procedure P we see that

ρ(P) = PD
(
P(D) = P(D′)

)
=
∑
h∈I

PD(P(D) = h) · PD
(
P(D′) = h

)
.

Hence,
ρ(P) = |Φ∗| · PD(P(D) = h | h ∈ Φ∗)2 +K · PD(P(D) = h | h ∈ I \ Φ∗)2. (9)

Now, using (9), we consider the difference in replicability between the human and algorithmic
hypothesis generating procedures directly. For convenience, we define the variable

γm = PD(Pm(D) = h | h ∈ Φ∗).
Then (9) becomes

ρ(Pm) = |Φ∗| · γ2
m +K ·

(1− |Φ∗| · γm
K

)2
= |Φ∗| · γ2

m + (1− |Φ∗| · γm)2

K
.

Then we can use (9) to see that

ρ(Pm)− ρ(Pc) = |Φ∗| ·
(
γ2
m −

α2

|Φ∗|2

)
+ 1
K
·
(
(1− |Φ∗| · γm)2 − (1− α)2

)
= |Φ∗| ·

(
γ2
m −

α2

|Φ∗|2

)
− 2|Φ∗|

K
·
(
γm −

α

|Φ∗|

)
+ |Φ

∗|2

K

(
γ2
m −

α2

|Φ∗|2

)

= |Φ∗| ·
(
γm −

α

|Φ∗|

)
·
[(

1 + |Φ
∗|
K

)
·
(
γm + α

|Φ∗|

)
− 2
K

]
.

Now, clearly |Φ∗| is non-negative. Further, (8) and the assumption of equiprobability implies
that γm ≥ α

|Φ∗| , so the second factor of the above expression is also non-negative. For the
third and final term, we re-use the result that γm ≥ α

|Φ∗| and the assumption that α > |Φ∗|
K

to see that (
1 + |Φ

∗|
K

)
·
(
γm + α

|Φ∗|

)
>

(
1 + |Φ

∗|
K

)
· 2
K

>
2
K
.

Thus, the third term of the product above is also strictly positive. But this directly implies
that

ρ(Pm) ≥ ρ(Pc),
which proves the second claim of the proposition, and completes the proof.

B Appendix B: Data and Institutional Details
B.1 Pre-trial detention decisions
When someone is arrested in the United States, they must be brought in front of a judge
(usually within 24–28 hours) to decide what should happen to the defendant as they await
resolution of their case. This decision under the law is supposed to hinge on the defendant’s
risk of flight (skipping future court hearings) or public safety risk (re-arrest). That is, it is
supposed to hinge on a prediction. In most jurisdictions, the decision options available to the
judge at this hearing include:
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• Release the defendant outright, often known as released on recognizance (ROR),
• Release the defendant conditional on their providing some collateral, such as cash bail,

with the intention of ensuring re-appearance at future court dates,
• Release the defendant with the requirement that they be monitored by some electronic

location tracking device,
• Order the defendant detained.
One implication is that defendants can wind up in jail awaiting trial for at least two rea-

sons, first because the judge explicitly ordered them to jail, and second because the defendant
cannot come up with the required collateral for release. While judges are supposed to set
collateral requirements that defendants can come up with to get released, in practice (from
our own observations of court proceedings in different jurisdictions) it would appear that
judges sometimes intentionally set bail at a level that the defendant cannot make, as a sort
of back-door way to ensure detention. In our own analysis, we follow Kleinberg et al. (2018)
and abstract from the nuances of this range of choices and just focus on the binary outcome
of whether the defendant was detained (either because they were remanded by the judge
outright, or had a cash bail set above what they could pay) versus were released (regardless
of whether they were ROR’d or assigned a bail they were able to post).

This process can vary somewhat across different jurisdictions within the US. For example,
in some places, judges do not have the option of explicitly ordering a defendant sent to jail
without the possibility of posting collateral for release. (That is, the judge cannot order
detention directly.) Some jurisdictions allow judges to release defendants under an order to
participate in pre-trial services, which can include periodic reporting to a pre-trial services
officer. Some jurisdictions are beginning to prohibit judges from requiring they post collateral
or bail to get released, either just for selected offenses or for all cases across the board. Some
jurisdictions require judges to consider only flight risk, not safety risk.

In the specific jurisdiction from which we have obtained data here, Mecklenburg County,
North Carolina, the very first hearing for the defendant is overseen not by a judge, but by
a “magistrate” (who is like a judge, but is not elected). Defendants not released by the
magistrate are booked into jail and see a judge the next day (Redcross et al., 2019). Starting
in 2014, judges were given access to a pre-trial risk prediction tool developed by the Arnold
Foundation called the Public Safety Assessment (Redcross et al., 2019). The PSA gives
judges predictions from a logistic regression for three separate outcomes: (1) risk of failure
to appear (FTA) in court at a required future hearing; (2) risk of any new criminal activity
(NCA); and (3) risk of any new violent criminal activity (NVCA). The PSA makes these
predictions using factors like age, current charge, and prior record.79 Because defendants can
only be detained if the magistrate and judge agree on detention, and because the magistrate’s
decision is made in the shadow of the judge, and because (more pragmatically) the data we
have do not separately identify the magistrate’s decision from that of the judge, we follow
Redcross et al. (2019) and combine both decisions into a single detain-versus-release outcome.

How do these cases get resolved? A large share will simply wind up being dropped (see
for example Agan et al. (2021)). Among those cases that result in a finding of guilt, the large
majority will be resolved through a plea deal rather than through a trial. The decision about
what the punishment should be for a guilty defendant depends on a wider range of factors

79See https://advancingpretrial.org/psa/factors/.
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than does the pre-trial detention decision. Beyond recidivism risk (key for pre-trial detention
decisions), sentencing decisions also depend on considerations such as society’s sense of just
desserts, the defendant’s remorse, and impacts on victims.

B.2 Mecklenburg County criminal justice data
We downloaded a total of 81, 166 arrest records from the public MCSO website. We apply
a number of filters to these data to form our final analysis data sets that exclude cases that
are missing some key information needed for our analysis, contain some obvious data error,
or capture cases that are not subject to a normal pre-trial detention decision by the judge.
The complete list of filters are described in Table A.A.I and include:

• We drop cases that are missing at least one piece of key information, such as the
defendant’s mugshot (a key input to predicting judge decisions), the court case ID
(which we need to link the criminal justice data sets together), the charge for which the
defendant was arrested (which we need to predict defendant re-arrest risk), and bond
information or jail stay information (which is part of determining whether defendants
are detained versus released).

• The case is listed as a “non-arrest,” which often means this is related to a probation or
parole violation or a case related to a federal warrant. We exclude these because the
pre-trial detention decisions are typically quite different from “normal” cases.

• There is clearly some error in the data, for example, the arrest date is listed as coming
after the date the case was resolved in court.

• The arrest was disposed of within three days. These are excluded since the magistrate or
judge decision may be quite different in these cases; that is, if the strength or weakness
of the case is observable to magistrates and judges, they might automatically release
the case if they realize it will just be dropped very quickly.

The filters taken together eliminate about one-third of the arrests that occurred during
our observation period.

We also apply one final filter to the lock-box hold-out data set as well. Part of this hold-
out data set consists of arrests made in the last 6 months of our data period, so that we
can test the predictive accuracy of our models in a new time period. To avoid inadvertent
information leakage, we drop cases for people who were arrested during this time period and
also show up as having been arrested in the training data set.

To construct our measure of “release,” we count everyone who left jail not more than three
days after arrest. This will include everyone who was released on their own recognizance
(RORd) by the judge, as well as people who are assigned cash bail by the judge (they are
required to post collateral to get released) and are able to make that bail fairly quickly. In
the data, we see only a modest share of people get released much more than three days after
the date of the arrest, so our results should not be very sensitive to adjusting this threshold
out further.

Our measure of “re-arrest” combines information from the MCSO data on all arrests,
together with the NCAOC data set on when each case (past arrest) gets resolved. So for a
given arrest, we can see whether the defendant has a new arrest that shows up in the MCSO
data set that is filed prior to resolution of the initial arrest according to the NCAOC data.

Unfortunately, our data do not allow us to construct a usable measure of whether the
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defendant skips court (or “failure to appear,” FTA). In principle, that could create an omitted
variable bias concern, if the defendant characteristics we examine in this paper were correlated
with FTA. But since the defendant characteristics are facial features, we think this risk of
bias (in the econometric sense of the term) is not serious.

From the raw data we construct features corresponding to:
• The type of charge for which the defendant has been arrested (violent crimes, property

crimes, drug crimes, or other offenses), and
• Detailed measures of whether the defendant has been convicted of these different types

of crimes at different points in the past 1, 3, 5 and 10 years.
In nearly half of all arrests, the defendant is charged with more than one offense. We

follow the usual approach within criminology and classify each case by the most serious charge
using the FBI’s Uniform Crime Reporting system hierarchy. We then group crimes into our
four broad categories of crime types (violent, property, drug and other), combining arrests for
both more and less serious versions of each type of crime in each category. (So, for example,
assaults that fall into the FBI “part 1” or more serious category would get counted as violent
crimes alongside assaults that are counted as “part 2” crimes.) For predicting defendant
risk, we also experiment with providing the algorithm access to more detailed current charge
descriptions (like “possession of less than 0.5 ounces of marijuana,” “larceny” and “armed
robbery”) as well as higher-level aggregations of charges (drug, property or violent crime
charges).

Because the MCSO’s website makes arrest data (and hence mugshots) available for the
past 3 years on a rolling basis, other researchers can use the code we post to scrape mugshots
off the MCSO website and carry out a similar analysis to what is reported here.

The mugshot photos are taken from a standard distance with the defendant standing
in front of a flat gray wall looking at the camera. There are no side-view facial images in
this dataset. Defendants are presumably asked to remove glasses or hats, since none of the
images include those accoutrements. It is usually possible to see part of the defendant’s
shirt. Most defendants are wearing whatever they had on when they were arrested, although
some defendants look to be wearing jumpsuits of the sort that many correctional facilities
issue to inmates. These may be defendants who were charged with an offense they allegedly
committed while in detention, or with an offense they allegedly committed prior to being
detained but where sufficient evidence for charging was not possible to accumulate until after
the defendant was already detained for some other offense.

C Appendix C: Methods
In this appendix, we discuss our methods for predicting judges’ decisions and defendant risk,
generating mugshots using GANs, and our procedure for generating morphed image pairs,
including how we iterate our procedure and orthogonalize subsequent image morphings for
the hypotheses discovered during earlier morphing cycles.

C.1 Predicting judges’ decisions and defendant risk
The data we have downloaded from North Carolina include both structured variables (age,
current charge, etc.) and unstructured, high-dimensional data sources like mugshot images.
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As noted in the text, we build separate types of models for the structured data (gradient
boosted decision trees) and unstructured data (convolutional neural networks, or CNNs). For
our models that rely on both structured and unstructured data, we use a stacking procedure
that forms new predictions that are weighted averages of the structured data predictor and
unstructured data predictor, with the data used to select the weight. Since we are using
standard machine learning methods at this stage of our analysis, we focus our discussion here
on high-level descriptions.80

A decision tree recursively partitions the data through a series of top-down “splits” of the
data by values of the features, x, where each split is selected to minimize some loss function
L(y,m(x)) (for example, likelihood for binary outcomes or squared error for continuous out-
comes). The result is a tree with M terminal nodes, where each terminal node is internally
as similar as possible with respect to y. If each node i covers a region of the feature space
Ri, then the prediction within each node is ci = P(y = 1|x ∈ Ri), and the prediction from
this decision tree is given by

ms(x) =
M∑
i=1

ci · 1{x ∈ Ri},

where 1 is the indicator function, which is 1 if the argument is true, and zero otherwise. The
“deeper” the tree (the more levels of splits), the better the tree is at fitting the relationship
between x and y, but the more unstable (sensitive to small changes in the data) the tree
can be. This challenge is often overcome by generating multiple versions of the predictor by
perturbing either the training data set or the algorithm construction method and then com-
bining them, what Breiman (1998) calls “perturbing and combining.” A different approach
(the one we use here) is to build a series of “shallower” trees that are less unstable, but at the
cost of fitting the data less well than a deeper tree would. To reduce bias in the statistical
sense of the term, we use boosting to build a series of trees iteratively, which increasingly
up-weight the observations most poorly predicted to that point.

The logic behind the CNN method is perhaps easiest to see by considering its alternatives.
To an algorithm, a 512×512 black-and-white image is essentially just 262, 144 pixel values.81
It is clear that a simple linear function would be of little use, since the meaning of any one
pixel’s shading depends on other pixels. But estimating a regression that tried to allow every
one of the 262, 144 pixel values to interact with every other pixel becomes intractable. This
approach would also ignore the topography of the data; in an image, the shading of a pixel
will be correlated with that of nearby pixels. This helps us see why early AI attempts to go
directly from the “raw” image to prediction led to poor performance.

The basic idea behind a deep-learning neural network is to construct a series of interme-
diate layers between the inputs and the final classification outputs where the earliest layers
try to learn the most concrete concepts (for images this would be, for example, edges or
corners), and each subsequent layer learns increasingly abstract, complicated concepts (such

80For excellent overviews of decision trees and gradient boosting methods at various levels of technical detail,
see for example Bishop and Nasrabadi (2006), Breiman (2001), Breiman et al. (2017), Freund et al. (1999),
Hastie et al. (2009), and James et al. (2013). Examples of excellent discussions of deep-learning methods at
various levels of technical complexity include Yegnanarayana (2009), LeCun et al. (2010), Krizhevsky et al.
(2012), LeCun et al. (2015), Nielsen (2015), Rawat and Wang (2017), and Gurney (2018).

81For a color image, there are three times as many values, since pixels have red, blue and green shadings.
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as what combination of edges, corners, etc. make up an eye, and then what combination
of eye-like, nose-like and mouth-like concepts, in what relation to one another, make up a
face, etc.). Because some of the early intermediate features are not specific to any given
image application, it is possible to improve a CNN’s performance through “pre-training” and
learning some of these intermediate concepts from other data sources. A convolutional neural
network (CNN) is a specific version of a neural network designed to work particularly well
with image processing tasks. The specific version of a CNN that we estimate here is known
as a residual network, which enables the estimation of more accurate deeper networks; see
He et al. (2016).

The main binary outcome variable (y) we seek to predict in this classification exercise
is an indicator for whether the judge detains rather than releases a given defendant as they
await resolution of their case. For purposes of being able to morph faces with our generative
adversarial network (GAN) for basic demographic features, we estimate a “multi-head” CNN
that predicts four outcomes simultaneously:

• Release (released versus detained),
• Gender (male versus female),
• Race (Black versus white or other race),
• Age (above or below the sample median age of 29).
As noted above, what slightly complicates our analysis here is the fact that our “inputs” to

predicting the judges’ decision (x) include both image data (the red, green and blue shading
values for each pixel in the images) and standard structured variables. Estimating a single
residual network using both types of data creates estimation challenges because the network
can “learn” the signal in the structured data much more easily than it can from the image
data, and so winds up under-optimizing the available signal from the images. To address
that problem, we estimate the stacked ensemble algorithm described in the main text and
above.

The image data are fed into a 50-layer residual network (“resnet50”) that consists of 4
convolutional blocks and 2048 output neurons, using a gentle decay learning rate schedule
(see He et al. (2016)). Because the more basic features of images are not specific to the types
of images being analyzed, we can improve performance of this network by pre-training it on
a separate set of images. The resnet50 we use here was pre-trained on ImageNet data82 with
an ACC@1 score of 76.130 and ACC@5 of 92.862. We also tried a 15-layer residual network,
or ‘resnet15,’ and a Mobile Net V2, and selected the resnet50 as best given its out-of-sample
predictive accuracy.

To estimate defendant risk of re-arrest, we use only the sample of defendants who are
released by the judge as our training data set. The reason is that re-arrest is defined as having
a new arrest in between the original or focal arrest and resolution of that case (dismissal, a
finding of innocence or guilt, etc.), since the judge’s release decision is supposed to hinge on
risk of re-arrest through case resolution. Defendants who are detained through the end of their
case are missing data on whether they would have been re-arrested had they been released.
Using this subsample as our training data set, we build a gradient boosted tree algorithm
whose inputs are the structured data we have from Mecklenburg County. Specifically, we give
the algorithm access to detailed current charge information (we partition 824 unique charge

82https://www.image-net.org/

72

https://www.image-net.org/


descriptions into four categories: violent, drug, property, and gun-crime charges) prior record
information, and demographic variables. The AUC of this algorithm in the validation set of
released defendants equals 0.735, which is comparable to other risk predictors such as the
proof-of-concept model built using New York City data in Kleinberg et al. (2018), which
had an AUC of 0.707 in predicting FTA risk (the outcome judges are asked to consider in
New York State). For purposes of the analysis presented in the main exhibits, we can assign
predicted re-arrest risk values to everyone in the validation data set (since that prediction
is a function of structured covariates available for everyone) that enables us to, for example,
regress detention outcomes against predicted risk and other variables.

C.2 Alternative methods for algorithmic interpretability
The problem we face—understanding what our algorithm sees in the face—has emerged as a
central challenge in machine learning research. A variety of techniques have been developed
for interpreting or explaining how machine learning algorithms form their predictions (see
Marcinkevičs and Vogt (2020) for a recent review).83 Here, we give a high-level overview of
how those techniques relate to our work.

A first major divide in the literature is whether we are seeking explanations that are
already measured. One category of explanability methods can only provide explanations
using measured high-level features. For example, Li et al. (2018), Ghorbani et al. (2019),
Zhang et al. (2018), and Chen et al. (2019) among others develop interpretability tools that
highlight not individual pixels that are important for classification, as in saliency maps, but
higher-level concepts or prototypical parts within these images, such as wheels helping classify
the presence of a van in an image. But all these approaches require the explanatory features
to already be coded: the data must contain for each image, for example, information on
whether “wheel” was present or not.84 In these examples, the goal is typically not discovery
but instead either to explain the model to people to aid in decisions, sometimes as required
by explanation (Wachter et al., 2018), or to assess the robustness of models, such as whether
a breast cancer detector is looking in the right place (Bai et al., 2021). Moreover, since the
potential explanations are already in the data set, one could go further: rather than building
a black-box model and explaining it, build one that is explainable to begin with.85 All these
techniques can be used for unstructured data, such as images or text, but only when the
potential explanations are already coded in the data.

In the same category, closer to our approach is work on controllable generation (Lee and
Seok, 2019). This work also relies on an unsupervised model (often a GAN), but the goal
here is to be able to generate images with certain characteristics, which are once again the
features already measured in the data. For example, rather than generating synthetic faces,

83For simplicity, we will use the phrase “explanations” to describe what we seek from the model. In the
literature, some use the phrase “explanations” and “interpretations” differently.

84In our example, our mugshots do not begin with any annotations. Moreover, if we were to choose what
to annotate, we would choose the features we already believe are important, such as competence and trust-
worthiness. The discovered features (e.g., “heavy-faced” or “well-groomed”) were discovered from the pixels
not because we had already chosen to measure them. We annotate them in the data once they have been
discovered as part of the validation exercise.

85See, for example, Holte (1993), Rudin et al. (2010), Freitas (2014), Letham et al. (2015), Angelino et al.
(2018), Jung et al. (2017), Chen and Rudin (2018), Ustun and Rudin (2019), Rudin (2019), and the references
therein.

73



the goal would be to generate an old face, and this is done when age is measured in the data
during training.86

By way of contrast, our data do not already have “heavy-faced” or “well-groomed” defined.
Without these annotations, the previous methods cannot work. To make them work, one
could imagine collecting labels on an extremely large set of facial features and then apply
one of the approaches described above. The challenge in doing this is the enormous effort
needed to codify so many different facial features.87 In some sense, it is akin to the problem
of hypothesis generation: what features should we annotate?

More recent work on interpretability has focused on situations where the potential ex-
planation is not already coded in the data (some of it referred to as “counterfactual expla-
nations”). Here, the idea is to morph input images, as we are doing, rather than simply
highlight regions. We are far from the first to combine the idea of a generative model with a
predictive model to provide explanations (Chang et al., 2018). In a different context, Miller
et al. (2019) introduces an idea much like our procedure, where a Variational Autoencoder
is used as the generative model. More recent work in this same vein can be found in Ghan-
deharioun et al. (2021); Lang et al. (2021) and Liu et al. (2019). Our approach firmly fits
in this last category of approaches. Some of these recent attempts to generate counterfac-
tual images use an approach that trains the GAN and the predictor m(x) together at the
same time (Lang et al., 2021; Ghandeharioun et al., 2021). In principle, it is possible these
alternative methods could produce even better counter-factual morphings than does our own
procedure, although given the quality of our own morphs there would seem to be at best
modest room for improvement. In any case our own procedure has the practical advantage
of requiring substantially less computational time to implement.

C.3 Generative Adversarial Networks
Generative adversarial networks (GANs) were developed initially as procedures for creating
realistic, but fake, images (see for example Goodfellow et al. (2014b), Goodfellow et al.
(2020)).

As noted in the text, a GAN is built by training two algorithms that “compete” with each
other, the generator G and the classifier C: the generator creates synthetic images and the
classifier (or “discriminator”), presented with synthetic or real images, tries to distinguish

86One could think of our approach, in spirit, as controllable generation but for situations where rather than
generating for a known feature (e.g., age), we are generating according to a predictor (e.g., predicted detention
probability). While conceptually these are the same, in implementation, we take a slightly different approach.
Typically, for controllable generation, the GAN itself is trained differently so that individual dimensions of
interest (e.g., age) are represented individually in the latent space. We instead built a generic mugshot GAN
and morph. The reason we chose that approach is that, unlike age, the prediction of detention itself is a very
"noisy" label, an imperfect judgment of detention risk. So while the differences between faces in age is quite
dramatic, the differences in detention probability can be more subtle.

87A recent ambitious paper has tried to tackle this problem. Peterson et al. (2022) collected millions of
labels on hundreds of facial features and then created a predictive model of them for synthetic faces. The
challenge, however, is that this model is built on synthetic faces, whereas we would need such a model for
actual images (mugshots). Deep learning models are known to not transfer across distributions. In fact, when
we attempt to use the results of this paper, we find our mugshots do not map into these synthetic faces in
any meaningful way. The failure is a reminder that while humans tend to think of “faces” in the abstract,
algorithms model very specific distributions of pixel combinations. It is why we must build our own generative
model of mugshots rather than use extremely well-developed generative models of “faces.”
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which is which. A good discriminator pressures the generator to produce images that are
harder to distinguish from real, and in turn, a good generator pressures the classifier to get
better at discriminating real from synthetic images. Data on actual faces is used to train
the discriminator, which then results in the generator being trained as it seeks to fool the
discriminator.

Specifically, the generator is a function that maps a (typically multivariate) random vari-
able z to the target space of images in Rk. That is, the generator produces random images
G(z) that seek to follow the distribution of the actual data set of real images, p(x). The
discriminator outputs the probability a given image x is a real image, C(x) ∈ [0, 1], seeking
to maximize this probability for real images and minimizing the probability for generated
images G(z). The loss function for C given generator G equals:

LC = −Ex∼p(x)[logC(x)]− Ez∼pz [log(1− C(G(z)))].
The generator seeks to increase the chances the discriminator incorrectly classifies generated
images as real images, or C(G(z)). The loss function for the generator is Ez∼pz [log(1 −
C(G(z)))], although in other applications variations of this function are often used instead.
The two algorithms essentially “play” against one other trying to create fake images that
pass as real ones, and detect which images are fake. The objective function for the GAN is:

min
G

max
D

Ex∼p(x)[logC(x)] + Ez∼pz [log(1− C(G(z)))].

With machine learning, the performance of both C and G improve with successive iterations
of training. A perfect G would output images where the classifier C does no better than
random guessing. Such a generator would by definition limit itself to the same input space
that defines real images; that is, the manifold of faces.

We use a StyleGAN2 developed by Karras et al. (2019), which is widely regarded as one
of the most successful GAN architectures to date. Our GAN is trained on 33,100 mugshot
images, each of which is structured as 512 pixels by 512 pixels, with a black boundary and
centered faces.

One common measure for assessing a GAN’s quality is the Frechet inception distance
(FID) (Heusel et al., 2017), which is a measure of the difference between the distribution
of GAN-generated images relative to the original images used to train the GAN.88 On our
subsample of male arrestees in the Mecklenburg data set, we obtain an FID of 1.71. By way
of comparison, StyleGAN2 trained on the flicker-faces HQ data set (FFHQ), which contains
70,000 high-quality, high-resolution (1024x1024) images, equals 2.84.89 We likely do better
because the space of mugshots is a smaller, less rich space than the space of faces in the
Flickr dataset.

Another pair of performance measures we use are precision and recall (Sajjadi et al.,
2018), which are analogous to, but distinct from, common metrics of the same name used in

88Calculation of the FID measure begins with a general off-the-shelf image CNN (an Inception V3 classifier)
and then uses the final layer of that classifier as a way to represent images. We then calculate the distribution
of real and synthetic images in this representation space. The FID metric is the square of the Wasserstein
distance between these two distributions, with lower values indicating better performance.

89As noted above, to avoid stereotyping in discussions of crime and criminal justice, we illustrate the key
ideas in our paper using images just for non-Hispanic white males. So the GAN performance statistics we
report here are from a StyleGAN2 trained just on males in our mugshot data set, which as shown in Table I
accounts for the large majority of our sample.
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predictive modeling. Precision measures the chance that a randomly generated image from
the GAN is close to some real image from the training data, while recall measures the chance
that a random image from the training data is close to some image generated by the GAN.
Or, roughly speaking, precision is how often images with a positive pp(x) look like a face,
while recall measures how much of the training data is assigned a positive pp(x) by the GAN.
Our GAN has a precision of 0.7784 and a recall of 0.5741; by comparison, a StyleGAN or
StyleGAN2 trained on the FFHQ dataset can achieve a precision up to 0.721 and a recall of
0.492 (Karras et al., 2020) (higher values are better for both precision and recall).

To calculate the gradient for predicted judge detention risk in face-space, for any given
point in the latent face space (that is, for any given GAN-generated face), we identify the
set of GAN-generated images in the neighborhood of the selected point and apply our judge
decision predictor (discussed above) to the target face as well as each of the nearby face
images. We identify the direction of the gradient in face space, then, as being in the direction
of those GAN-generated images that have the largest change in predicted detention likelihood.

C.4 Morphing
As outlined in Subsection A.5, the goal of morphing is to produce two images, x− and
x+, which have very different predicted probabilities of detention while having very similar
visual appearance. Our morphing process uses gradient descent to find these images, and we
introduce some variations to this process to produce orthogonalized morphs.

To produce a collection of morph pairs, we first fix a small positive constant α for the
step size, and the constants qm and pm required by the definition of the algorithmic hypothesis
procedure Pm. We set α = 0.1, as this was sufficiently small to ensure that all gradient descent
updates decrease the predicted outcome variable when producing x− (or increased, in for the
case of x+). We set qm = 0.1 and pm = 0.35, since these values fall in the bottom and top deciles
of the predicted values of detention, respectively. To produce a single morph pair (x−, x+),
we first sample a random seed z0 from the GAN’s latent space. We sampled z0 following the
default approach used by (Karras et al., 2020), including setting the truncation parameter
ψ = 0.5, as this avoids sampling values for z0 that are excessively unlikely. To calculate the
first image x−, we let z− = z0. Given the point z−, the corresponding synthetic mugshot is
G(z−), and the corresponding predicted detention risk is m(G(z−)). By completing a single
forward and backward pass through the composition of both m and G, we can calculate
∇m(G(z−)), the gradient of predicted detention risk with respect to our current value of z−.
We can then update the value of z− by subtracting the gradient scaled by the step size:

z− ← z− − α · ∇m(G(z−)).
Since both m and G are differentiable, this reduces the predicted detention risk, provided
α is small enough. That is, m(G(z−)) < m(G(z0)) after a single iteration of the above
process. This very similar to the standard gradient descent-based training procedure used
for many deep learning models, except that we are updating the input value z− and keeping
the coefficients ofm and G fixed. By iterating this process, the value of z− eventually satisfies
m(G(z−)) ≤ qm. Once this condition is satisfied, we terminate the gradient descent process,
and set x− = G(z−). We employ a similar process to calculate x+: We set z+ = z0, reverse the
direction of morphing by making the update α← −α, and iterate the same gradient descent
process until m(G(z+)) ≥ pm. We then set x+ = G(z+). The end result is a morphing pair
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(x−, x+) that satisfies the requirements of Pm.
To produce our orthogonal morphs, we make two variations to the above morphing pro-

cess. The goal of these variations is to produce a morphing pair (x−, x+) that vary by a
maximal margin in the outcome dimension (detention risk), while varying by a minimal mar-
gin in the x′ covariates (well-groomed and skin tone). For the first variation, when running
the morphing process, we replace the original model m with a CNN trained on a data set
restricted to a sample of observation pairs that match on x′ but are discordant in their values
of y (which we refer to as our “x′-matched data set”). We also extend the labelling process
for skin tone and well-groomed labels by having subjects independently rate the training data
set (most of our previous labeling was for images in the validation data set only, since up to
this point we did not need labels for training), so that this new CNN can predict both skin
tone and well-groomed. We then calculate the values of our morphed points z− and z+ in
the same manner as above. Since these points are produced with a model that is matched on
the x′ covariates, G(z−) and G(z+) have a smaller difference in predicted covariate values.

However, because of the noise in some of our measures of x′, we make an additional
variation. For this second variation, given the final values of z− and z+, we do a random
search in the neighborhood of the new points. We set ε to be one-tenth of the Euclidean
distance between z− and z+, and sample a series of points z′ that are multivariate random
normal variables with mean z+ and standard deviation ε (where each dimension of z′ is
independent). We continue this sampling until a value of z′ is found whose predicted detention
risk matches that of z+ and whose predicted covariate values match those of z− to a tolerance
of 0.001. We then set x− = G(z−) and x+ = G(z′). This gives us a morphing pair (x−, x+)
with a large separation in predicted detention risk, but a small separation in the predicted
covariate values. Note that for the first procedure, we use the CNN trained on the x′-matched
data set, and for the second procedure we use the original predictive model m. The final
result is a pair of mugshots, G(z−) and G(z+), one having a high probability of detention,
the other a low probability of detention, and each having similar predicted skin tone and
similar predicted well-groomed scores. We also address one final subtlety of the specific GAN
we use here (styleGAN2). Because this model also infuses some Gaussian noise into various
layers of the generator, there are additional free latent variables that can be considered during
the morphing process. However, the final stages include a huge number of Gaussian noise
variables (up to 512 × 512 variables). Morphing over all of these variables would allow us
to effectively morph the image away from the manifold of images. To solve this, we morph
over these noise layers, but with a step size that is reduced by a factor of 100, to avoid large
changes. We also use an exponentially decaying step size, to prevent the parameters in these
layers from drifting too far from their original values. Finally, we also morph over only the
final 7 noise layers, keeping the initial 8 noise layers fixed, since early noise layers can have a
larger influence over the appearance of the final face.

C.4.1 A Pseudocode for Morphing

A summary of our morphing algorithm is outlined below in pseudocode format:
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Algorithm 1 Targeted face morphing algorithm
Require: StyleGAN2 generator g : R512 → R3×512×512

Require: Detention predictor m : R3×512×512 → R
Require: Covariate predictor h : R3×512×512 → R
Require: Initial input z ∈ R512

Require: Step size α ∈ (0, 1)
Require: Bound y+ ∈ R

Ensure: Final output z ∈ R512 satisfies m(g(z)) ≥ y+

function Morph(g, m, h, z, α, y+)
repeat

// Collect predictions
x← g(z)
py ← m(x)
ph← h(x)

// Collect gradients
ηy = ∇zpy

ηh = ∇zph
// Orthogonalize first argument against the second
η = Orthogonalize(ηy,ηh)

// Update latent vector
z ← z + αη

until py ≥ y+

return z
end function

D Appendix D: Randomized Lab Experiment
In this appendix we describe the randomized lab experiment we carry out to test the causal
relationship between detention decisions and well-groomed and heavy-faced.

The causal interpretation of our new hypotheses is that heavy-faced or well-groomed
defendants are released more often because these facial characteristics directly affect how
judges form judgments (consciously or unconsciously). Potential confounding arises from the
fact that the judge has information that our algorithm does not (as we describe in Section
3), mainly what happens in the hearing itself. Mobius and Rosenblat (2006) show that
people’s appearance can shape how confident they act, as well as their oral communication
skills. Carrying that logic over to our application, it is possible that people who are more
heavy-faced or well-groomed either act more confident in court (as signaled by for example
their body language, eye contact with the judge or prosecutor, etc.), or are better able to
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explain themselves to either the judge or (more likely, since most defendants say little in court
at pre-trial detention hearings) their own defense lawyer. These alternate mechanisms are
interesting because they suggest different psychologies (and even implicate the psychologies
of different people, e.g., the prosecutor or public defender rather than the judge).

We carry out a laboratory experiment that shuts down these two potential channels
of confounding to isolate the independent causal effect of defendant appearance on judicial
assessments of each defendant’s pre-trial risk. At a very high level we carried out two versions
of the following experiment, once morphing with respect to well-groomed and once morphing
with respect to heavy-faced:

• Describe to subjects the pre-trial system and how the judge must make a decision about
who to detain awaiting trial based on a prediction of risk. We then ask them to imagine
they are the judge, from different pairs of defendants, which would they be more likely
to recommend for detention?

• Subjects are shown 15 defendant pairs as a training period. In this stage they are shown
actual pairs of mugshots along with structured attributes of each defendant: age, race
/ ethnicity, the current charge for which the person was arrested, and prior record.
After each selection the subject is given feedback about whether the subject chose the
defendant at higher risk.

• Subjects are then given 5 minutes to make detention selections without feedback during
the testing period, and shown information for up to 45 morphed defendant pairs for the
well-groomed experiment (randomly selected from a bank of 49 morphed pairs) and
similarly up to 45 morphed pairs for the heavy-faced experiment (randomly selected
from a bank of 48 morphed pairs). The information shown for each defendant includes
the structured variables as described above, as well as synthetic images morphed with
respect to either well-groomed or heavy-faced in the direction of higher- or lower risk as
described further below. The time limit is intended to mirror the actual decision-making
environment of many bond-court environments, where there is not endless amounts of
time available to hear each case.

Additional details about the experimental paradigm and analysis include:
• First, we randomly selected 100 synthetic face images from the GAN’s latent space
• Second, we randomly assign each synthetic face some values for the structured variables.

This is done by extracting real structured-variable values from the actual Mecklenberg
dataset (demographics plus current charge plus prior record). We then randomly as-
sign structured variables to synthetic images conditional on the demographics of the
structured variables matching the demographics of the synthetic face image. Note this
implies that current charge and prior record is not truly random across all face images,
but that does not pose a problem given our experimental design.

• We randomly pair up the synthetic defendants. We do this by randomly ordering the
synthetic images and their associated structured variables and pairing them up in that
order. Let (s) index synthetic pairs. The outcome variable we will analyze below has
yis = 1 if the study subject (i) chooses to detain the defendant that has the lower of the
randomly-assigned order numbers within pair (s); for convenience call that the “top”
defendant and the defendant ranked below in the pair the “bottom” defendant.

• For each novel facial feature (well-groomed and heavy-faced), we create two variants
of each synthetic image pair (s). One variant morphs the top defendant’s image along
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the gradient of our feature in the direction towards lower risk, and morphs the bottom
defendant’s image along the gradient of the feature towards higher risk, indicated by
vs = 1. For the second variant, vs = 0, we do the reverse: morph the top image towards
higher risk and the bottom image towards lower risk.

• For each study subject, we randomly select 45 of the 50 defendant pairs to show them
(randomly ordered on a per-subject basis), and for each defendant pair, we randomize
which variant of the defendant pair they are shown.

We enrolled a total of 500 study subjects on the Prolific platform for the well-groomed ex-
periment, and another 500 subjects for the heavy-faced experiment. We limited participation
to US-based study subjects and limited our release for data collection to business hours (US
time zones). We offered subjects $2.00 up-front participation incentive plus $0.05 incentive
per correct guess during the main evaluation data collection stage. On average subjects in
the well-groomed experiment considered 36.5 morphed pairs each, while the figure is 37.1
for the heavy-faced version of the experiment. Our dataset is structured at the level of the
respondent-and-defendant-pair, so this leaves us with a total of 18, 269 observations for the
well-groomed experiment and 18, 548 observations for the heavy-faced experiment.

Our estimating equation is given as follows, with δs a set of defendant-pair fixed effects:
yis = γ0 + γ1vis+ δs + εis

For our statistical analysis, we cluster the standard errors by respondent (similar results
hold if we cluster by respondent and image-pair using the approach from Cameron et al.
(2011)). Conditioning on participant fixed effects yields very similar results.

We find that subjects use the structured variables in a way that is consistent with both
selecting defendants at higher risk for re-arrest and also consistent with the judge’s own use
of those variables. The share of subjects who select the defendant within each pair whose
structured variables put them at higher risk for re-arrest was 65.6% in the well-groomed
version of the experiment and 58.7% in the heavy-faced experiment (as a reminder 50% is
the random guessing benchmark). The share of subjects who select the defendant whose
structured variables put them at elevated odds of having been detained by the judge equals
70.1% in the well-groomed experiment and 63.1% in the heavy-faced experiment. This tells
us not only that the study subjects are taking the task seriously on average (they are not
all just guessing randomly), but also that they are making sensible use of the structured
variables in this experimental paradigm.

At the same time we also find subjects respond to the random morphings of the defendant
faces, above and beyond the effects of the structured variables, as seen in Appendix Table
A.XVII. Defendants are 1.3 percentage points more likely to recommend for detention the
relatively more well-groomed defendant’s image (p = 0.055) and 1.9 percentage points more
likely for the more heavy-faced image (p < 0.01). The table shows that the results are not
sensitive to conditioning on study subject fixed effects, which if anything slightly increase
the magnitude of our point estimates while shrinking slightly our standard errors (and so
together reducing the p-values for our estimates).

It is important to understand what our causal experiment is and is not isolating. Our
morphs try to hold other features of these faces constant besides heavy-faced and well-
groomed, but visual inspection makes clear that these two novel facial features are also
unavoidably correlated to some degree with other aspects of a defendant’s face. Given our
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data, making such distinctions is difficult; fully teasing these apart might require something
like a field experiment inside a local jail that provides grooming assistance to defendants
before they walk into court, which is beyond the scope of our analysis here. But from a
pragmatic perspective, the exact mechanism may be less relevant given the inequity of the
outcome.90 These mechanisms—aspects of appearance correlated with heavy-facedness or
well-groomedness—do sit in a similar orbit with each other. These are “confounders” but
they do not suggest radically different explanations for the larger pattern of results.

Other caveats worth keeping in mind include the fact that our study subjects are Prolific
workers, not judges. Moreover our subjects are making these decisions in a very different
context from which the judges make actual detention decisions. These results should not be
considered a substitute for a full-fledged randomized field experiment, but rather might be
considered instead another input into the decision a researcher might make about whether
to incur the costs of causal testing for our two novel hypotheses.

While these findings are mainly intended to qualitatively establish some relationship, it is
perhaps worth noting that the magnitudes implied by our analysis are not trivial. With our
randomized morphing procedure, the contrast between the two images the subject sees is on
average 3.7 standard deviations different with respect to well-groomed (where the standard
deviation in well-groomed is calculated for the validation subsample). For the full-faced
version of the experiment, the average image contrast is 4.4 standard deviations. So the
subject is essentially selecting which defendant to detain comparing images at the bottom
versus the top of the well-groomed (or heavy-faced) distributions. As a benchmark, we can
compare the effect of the image to that of the structured variables (current charge, prior
record), which as a reminder were randomly assigned to images conditional on race, sex,
and age. We statistically relate these structured variables to re-arrest risk among the actual
sample of Mecklenburg County defendants, so for each hypothetical defendant in the causal
experiment we can calculate the predicted re-arrest risk implied by their structured variables.
We calculate that a defendant with structured variables that put them at the top decile of
the predicted re-arrest risk distribution is 31 percentage points more likely to be selected
for detention by the subjects compared to a defendant in the bottom decile of the predicted
re-arrest distribution. So moving along the full distribution of well-groomed or heavy-faced
has 4.2% and 6.1% of the effect of moving along the full distribution of re-arrest risk, or
equivalently, equal to about a 4 and 6 percentile point movement within the re-arrest risk
distribution.91

90Recall the discussion in Section 4.2 argues against the possibility that these facial characteristics are
proxies for risk.

91We calculate the effect of re-arrest risk on the subject’s detention recommendation through a separate
analysis where we assign a +1 value if the LHS image is in the top decile of predicted re-arrest risk or the RHS
image is in the bottom decile of predicted re-arrest risk, and −1 if the reverse situation is true, 0 else. The
effect on subject decisions from moving across the entire predicted risk distribution is twice the coefficient on
this variable.
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Table A.I: Sample construction steps and data missingness filters

Procedure / Data Relevant
Sample Size

Notes

Raw Data 81166 Total number of arrests downloaded from Mecklenburg County, NC Sheriff’s Office public website from January 18, 2017
through January 17, 2020

Filters

Non-arrest (8312) These arrest cases either pertain to probation and parole violations that do not result in new bookings, or can reflect more
serious apprehensions pursuant to federal warrants. They do not involve any local pre-trial detention adjudications.

Missing case info (6238) Arrests without court case IDs on at least one arrest charge, which means we cannot link arrests to judge pre-trial detention
decisions.

Outside observation window (4737) The arrest data is matched with inmate data and court record data. These all come from different observation windows. We
only consider arrests that fall within the observation window of all three datasets.

Arrested during jail term (3218) The arrest date occurs at a time when the individual is already in jail (e.g., due to an offense against another inmate or guard),
which typically means pre-trial hearing results in detention – so the judge decision is quite different from out-of-jail arrests.

All cases disposed within 3 days (2229) Court cases which are disposed very quickly (within three days). For cases dismissed within such a relatively short time frame,
it is likely that judge detention decisions are influenced by a knowledge that dismissal is likely.

Arrested after disposal (1072) Arrests with a disposal date occurring earlier than arrest date. This appears to arise from a data recording error.

Charges missing (542) These records have no charges listed on the MCSO website in the arrest search. We omit them because we cannot define all
outcomes without charges.

Missing inmate dates (266) Arrests with a linked inmate record that has missing committed and released date fields. These entries are removed, as we
cannot produce all outcomes reliably.

Missing mugshot (71) The records with a missing mugshot on MCSO website

Prisoner level separation (2730) Since partitioning is implemented at the arrest level, we avoid data spillage at the prisoner level by removing prisoners in the
lock-box set who also have an arrest record in the training set or the validation set.

Relevant Sample 51751

Stratified Sample Partitioning

Train Set 23138 This is the set on which we trained our judge prediction algorithm.
Validation Set 9604 We use this set to report out-of-sample performance in this draft.
Untouched Lock-Box Set 19009 The untouched data we have set aside for measuring the model’s final performance.

Notes: The table above reports how we construct our working data sets by applying various filters during the pre-processing stage.
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Table A.II: Test of balance between training dataset and validation dataset

Train Set Validation Set Pairwise
comparison
p-value

Sample Size 23138 9604

Outcome
Judge detain defendant 0.234 0.233 0.811
Defendant re-arrested before trial 0.250 0.251 0.836

Defendant Characteristics
Age 31.859 31.631 0.103
Male 0.789 0.782 0.184
White 0.279 0.274 0.443
Black 0.693 0.695 0.783
Other 0.028 0.031 0.205

Arrest Charge
Violent 0.343 0.343 0.990
Property 0.324 0.317 0.234
Drug 0.204 0.207 0.504
Gun 0.079 0.084 0.106
Other 0.264 0.264 0.981

Arrest Charge Severity
Felony 0.422 0.428 0.292
Non-Felony 0.578 0.572

Defendant Prior Record
Any Prior Conviction 0.463 0.458 0.433
Prior Felony Conviction 0.334 0.328 0.324
Prior Non-Felony Conviction 0.318 0.318 0.979

Notes: This table reports descriptive statistics for our full data set and analysis subsets, which covers the period January
18, 2017, through January 17, 2020, from Mecklenburg County, NC. The untouched holdout data set consists of data
from the last 6 months of our study period (July 17, 2019, through January 17, 2019) plus a subset of cases through
July 16, 2019, selected by randomly selecting arrestees. The remainder of the data set is then randomly assigned by
arrestee to our training data set (used to build our algorithms) or our validation set (on which we report results in
this paper draft). Once the paper is accepted, we will report final results for the untouched data set. For additional
details of our data filters and partitioning procedures, see Table A.I. We define pre-trial release as being released on
the defendant’s own recognizance (ROR) or having been assigned and then posting cash bail requirements within three
days of arrest. We define re-arrest as experiencing a new arrest before adjudication of the focal arrest, with detained
defendants being assigned 0 values for purposes of this table. The pairwise comparison p-value comes from calculating a
t-test statistic for the null hypothesis of equivalence of means for a given variable (described by each row label) between
the training data set and the validation data set.
P-Values: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.III: Human Intelligence Tasks

Common Name Survey
Number

Short Description Final Dataset Subjects Compensation Additional Notes

Qualifying task 1 Subjects label 25 images across known variables, in order to
identify high-quality raters.

Ratings from several MTurk workers, used to identify
a qualified subpopulation of 343 MTurk workers.

600 MTurk
Workers

8¢ per image This survey was periodically re-run
when a larger or updated
population of raters was required.
In total, 343 qualified MTurk
Workers were identified across all
qualification surveys.

Data collection
labelling task
part A

2 Subjects label 25 images on sliders for attractiveness,
dominance, competence, trustworthiness and well-groomed, a
free text input for age, a swatch for skin tone, and a selection
for race.

Labels for 32881 images. Includes at least one label
for age, race, and skin tone for all images in training
and validation, at least three labels for all sliders in
training dataset, and at least five labels for all sliders
in validation dataset.

343 Qualified
MTurk Workers

8¢ per image The results from all labelling
surveys was combined to produce a
single image-label dataset.

Data collection
labelling task
part B

3 Subjects label 25 images on sliders for attractiveness,
dominance, competence, trustworthiness, well-groomed,
heavy-faced, and potentially other features.

See above. 343 Qualified
MTurk Workers

5¢ per image The results from this survey were
merged with the other image label
datasets.

Afro-centric
features

4 Format is similar to survey 3, but sliders shown are for
afrocentric features.

See above. 35 MTurk
Workers from
qualified
population

5¢ per image Workers were informed that the
HIT contained "sensitive material".
The results from this survey were
merged with the other image label
datasets.

Labelling quality
check

5 Format is identical to survey 2, but each hit is repeated with
multiple subjects.

100 images each with 10 labels. 40 MTurk
Workers from
qualified
population

5¢ per image The results from this survey were
merged with the other image label
datasets.

Human guess
labelling task

6 Subjects are presented with 50 pairs of mugshots, and
instructed to select which person they believe was detained.
They are given feedback after each selection (so they can
learn to identify patterns), and paid a 5 cent incentive for
every correct guess. Each pair is matched to contain the
same age bin, race, and sex.

Human guesses for 29,750 image pairs. The final
dataset has at least three guesses for 8,001 images,
with average of 7.4 guesses per image. Coverage is
79% for images.

595 Prolific
Workers

$3.00 base rate,
plus a bonus of 5¢
for every correct
guess

Because image pairs are matched
on age bins, race, and sex, about
21 percent of our validation images
do not have a proper match, and
hence do not receive a human
guess feature.

Morph labelling
(along detention
gradients)

7 Format and incentive is identical to survey 6, but image
pairs shown are all morphed pairs with a high/low detain
probability.

Comments described interpreted difference in image
pairs, as seen by each Prolific worker. Also, guesses
from each prolific worker to get a global masurement
of accuracy.

54 Prolific
Workers

$3.00 base rate,
plus a bonus of 5¢
for every correct
guess

Morph labelling
(along residual
gradients)

8 Format and incentive is identical to survey 6, but image pairs
shown are all morph pairs with a high/low detain probability,
and a similar estimated skin tone and well-groomed score.

Comments described interpreted difference in image
pairs, as seen by each Prolific worker. Also, guesses
from each prolific worker to get a global
measurement of accuracy.

52 Prolific
Workers

$3.00 base rate,
plus a bonus of 5¢
for every correct
guess

Morph labelling
(along age
gradients)

9 Format and incentive is identical to survey 6, but image
pairs shown are all morph pairs with a high/low estimated
age. Participants are not told what the "hidden
characteristic" is, and must identify it from feedback.

Comments described interpreted difference in image
pairs, as seen by each Prolific worker. Also, guesses
from each prolific worker to get a global masurement
of accuracy.

52 Prolific
Workers

$3.00 base rate,
plus a bonus of 5¢
for every correct
guess

Data collection
labelling task
part C

10 Similar to Surveys 2 and 3; subjects label 25 images on slides
for mental illness, socioeconomic status, and baby-faced

Labels for 9604 images. Includes at least three labels
per image for all images in the validation set.

42 MTurk
Workers from
qualified
population

4.8¢ - 5¢ per
image, depending
on number of
sliders

The results from this survey were
merged with the other image label
data sets.

Laboratory
experiment
(well-groomed
and heavy-faced)

11 Subjects are presented with pairs of arrest records containing
mugshots and information about the defendant’s criminal
history, charges, age and race. They select which person
should be detained based on their risk of re-arrest. After a
training phase of 15 pairs with feedback, subjects complete
up to 48 selections without feedback within a 5-minute time
limit as an evaluation phase. During the evaluation phase,
each pair has been morphed so that one randomly selected
mugshot exhibits a novel feature (well-groomed or
heavy-faced) more strongly, with the other mugshot morphed
in the opposite direction.

During the evaluation phase, we collected a total of
18268 and 18548 selections for well-groomed and
heavy-faced respectively, based on 96 different pairs
of arrest records. The 96 pairs come from 48 different
pairs of arrest records, with two variations depending
on which mugshot is selected for morphing up versus
down.

1000 Prolific
Workers (500 per
feature)

$2.00 base rate,
plus a bonus of 5¢
for every selection
that matches a
linear regression
predicting the
riskier defendant.

Notes: The table above provides a short description of different rounds of data collection via human intelligence tasks. It specifies the objectives and the procedure of each task as well as its
incentive structure.
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Table A.IV: Summary statistics for human-labeled known facial features from existing psychological
research

Mean Label Value

Population Attractiveness Competence Dominance Trustworthiness Human Guess
Full Sample 3.827 3.792 4.255 3.221 0.496

Race:
Black 3.831 3.810 4.318 3.245 0.496
White 3.786 3.728 4.106 3.137 0.494
Asian 3.708 3.801 3.819 3.312 0.500
Indian 4.388 4.024 4.012 3.600 0.500
Unknown 4.251 4.031 4.299 3.443 0.505

Age Groups:
< 25 4.167 3.902 4.193 3.363 0.495
25 < X < 34 3.904 3.833 4.284 3.202 0.497
> 34 3.451 3.657 4.284 3.108 0.496

Detained:
True 3.753 3.704 4.283 3.124 0.511
False 3.850 3.819 4.246 3.250 0.491

Notes: This table shows mean values for each sample sub-group defined at left (row labels) for each human-rated
psychological feature indicated in the column heading. Rating ranges were from 1 (low) to 9 (high). Standard
deviations of the above labels measured on the full sample size are as follows: attractiveness (0.923), competence
(0.911), dominance (0.947), and trustworthiness (0.844). Ratings were conducted on face images (mugshots) taken
from Mecklenburg County, NC Sheriff’s Office public website. Ratings of attractiveness, competence, dominance and
trustworthiness come from subject ratings of mugshot images (see text). Human guess variable comes from showing
subjects pairs of mugshot images and asking subjects to identify the defendant they think the judge would be more
likely to detain.
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Table A.V: Human labeled features for ethnicity and stereotypically Black appearance

Dependent variable:
Algo Judge Detain Prediction Judge Detain Decision

(1) (2) (3) (4)
Male .1168∗∗∗ .1149∗∗∗ .1022∗∗∗ .0260∗∗

(.0025) (.0025) (.0106) (.0117)
Age .0006∗∗∗ .0003∗∗∗ −.0008∗∗ −.0014∗∗∗

(.0001) (.0001) (.0004) (.0004)
Asian .0048 .0028 −.0086 −.0146

(.0045) (.0045) (.0193) (.0191)
Black .0080∗∗ .0034 −.0013 −.0135

(.0036) (.0036) (.0152) (.0153)
Hispanic .0061 .0045 −.0175 −.0241

(.0043) (.0043) (.0184) (.0182)
Indigenous American .0089 .0063 .0097 .0003

(.0095) (.0094) (.0403) (.0398)
Stereotypically Black Appearance .0004 −.0018∗∗ .0001 −.0037

(.0006) (.0008) (.0027) (.0034)
Skin-Tone −.0288∗∗∗ −.0466∗

(.0062) (.0262)
Attractiveness −.0050∗∗∗ −.0011

(.0016) (.0067)
Competence −.0087∗∗∗ −.0146∗∗

(.0017) (.0072)
Dominance .0030∗∗ .0058

(.0012) (.0051)
Trustworthiness −.0042∗∗ −.0094

(.0016) (.0070)
Human Guess .0407∗∗∗ .0851∗∗∗

(.0062) (.0265)
Algo Judge Detain Prediction .6240∗∗∗

(.0434)
Constant .1347∗∗∗ .2059∗∗∗ .1803∗∗∗ .1761∗∗∗

(.0042) (.0103) (.0180) (.0446)
Observations 9,604 9,604 9,604 9,604
Adjusted R2 .2014 .2222 .0097 .0369

Notes: The table above presents a summary of the results of main paper Tables II and III using an additional
feature introduced in the literature that measures the degree to which a person’s facial appearance resembles
that of a stereotypically Black person which has been found to be closely connected to sentencing decisions
(see Eberhardt et al. (2006)). Moreover, the administrative records of MCSO on race are replaced with
human labels which capture perceived racial ethnicity of defendants based on their faces. The data on racial
ethnicity and stereotypically Black appearance come from subject ratings of mugshot images (see text).
Stereotypically Black appearance is coded from 1 (perceived least stereotypically Black) to 9 (perceived
most stereotypically Black). For descriptions of other variables, refer to Tables II and III. Regressions follow
a linear probability model and also include indicators for unknown racial ethnicity and unknown gender.
The base factor levels for gender and ethnicity are female and Caucasian.
P-Values: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.VI: Sensitivity analysis: Non-parametric specifications for skin-tone and known psycho-
logical features

Dependent variable:
Algo Judge Detain Prediction Judge Detain Decision

(1) (2) (3) (4) (5)
Heavy-Faced −.0180∗∗∗ −.0220∗∗∗ −.0118∗∗∗

(.0008) (.0037) (.0037)
Well-Groomed −.0134∗∗∗ −.0109∗∗ −.0033

(.0011) (.0051) (.0051)
Algo Judge Detain Prediction .6065∗∗∗ .5699∗∗∗

(.0443) (.0458)
Male .1133∗∗∗ .1120∗∗∗ .0246∗∗ .0912∗∗∗ .0274∗∗

(.0025) (.0024) (.0118) (.0108) (.0119)
Age .0003∗∗∗ .0004∗∗∗ −.0014∗∗∗ −.0011∗∗∗ −.0013∗∗∗

(.0001) (.0001) (.0004) (.0004) (.0004)
Black −.0223∗∗∗ −.0243∗∗∗ −.0557∗∗∗ −.0716∗∗∗ −.0578∗∗∗

(.0040) (.0039) (.0174) (.0175) (.0174)
Asian −.0238∗∗ −.0166 −.0639 −.0714 −.0620

(.0112) (.0109) (.0487) (.0490) (.0487)
Indigenous American .0107 .0011 .0645 .0578 .0571

(.0234) (.0226) (.1014) (.1022) (.1014)
Human Guess .0387∗∗∗ .0275∗∗∗ .0840∗∗∗ .0959∗∗∗ .0803∗∗∗

(.0061) (.0059) (.0266) (.0268) (.0267)
Constant .0958∗∗∗ .2731∗∗∗ .0118 .2536∗∗∗ .0980∗∗

(.0076) (.0108) (.0333) (.0487) (.0499)
Indicators for Skin-Tone? YES YES YES YES YES

Indicators for Psychological Features? YES YES YES YES YES

Observations 9,604 9,604 9,604 9,604 9,604
Adjusted R2 .2496 .2987 .0371 .0224 .0379
Notes: The above table replicates the richest specifications of main paper Tables II, III, V and VI, but now relaxing the linearity
assumption for skin tone and known psychological features. The table shows results of estimating a linear probability specification
regressing algorithmic prediction of judge detain decision (columns (1) and (2)) and actual judges’ detain decision (columns (3)
through (5)) against different explanatory variables, using data from the validation set separately for male and female defendants.
The Algorithmic predictions of judges’ decisions come from applying an algorithm built with face images in the training data set
to validation set observations. Measures of defendant demographics and current arrest charge come from Mecklenburg County
administrative data. Data on heavy-faced, well-groomed, skin tone, attractiveness, competence, dominance and trustworthiness
come from subject ratings of mugshot images (see text). Human guess variable comes from showing subjects pairs of mugshot
images and asking subjects to identify the defendant they think the judge would be more likely to detain. The base factor levels
for gender and race are female and white. Regression specifications also include indicators for unknown race and unknown gender.
P-Values: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.VII: Cross gender sensitivity analysis: Non-parametric specification for skin-tone and known psychological features

Dependent variable:
Algo Judge Detain Prediction Judge Detain Decision

Male Defendants Female Defendants Male Defendants Female Defendants

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Heavy-Faced −.0193∗∗∗ −.0106∗∗∗ −.0191∗∗∗ −.0078∗ −.0277∗∗∗ −.0232∗∗∗

(.0010) (.0014) (.0043) (.0044) (.0066) (.0067)
Well-Groomed −.0128∗∗∗ −.0174∗∗∗ −.0072 .0002 −.0254∗∗∗ −.0179∗

(.0013) (.0020) (.0060) (.0059) (.0097) (.0098)
Algo Judge Detain Prediction .6027∗∗∗ .5814∗∗∗ .5376∗∗∗ .4297∗∗∗

(.0505) (.0523) (.1020) (.1054)
Age .0004∗∗∗ .0006∗∗∗ −.0003∗ −.0004∗∗ −.0014∗∗∗ −.0010∗∗ −.0014∗∗∗ −.0012 −.0016∗ −.0014∗

(.0001) (.0001) (.0002) (.0002) (.0005) (.0005) (.0005) (.0008) (.0008) (.0008)
Black −.0028 −.0068 −.0786∗∗∗ −.0761∗∗∗ −.0441∗∗ −.0494∗∗ −.0455∗∗ −.1018∗∗∗ −.1394∗∗∗ −.1067∗∗∗

(.0048) (.0046) (.0065) (.0062) (.0209) (.0211) (.0209) (.0309) (.0298) (.0308)
Asian −.0091 −.0025 −.0625∗∗∗ −.0544∗∗∗ −.0536 −.0543 −.0528 −.0915 −.1106 −.0872

(.0129) (.0124) (.0209) (.0202) (.0560) (.0565) (.0561) (.0963) (.0962) (.0960)
Indigenous American .0173 .0087 −.0169 −.0251 −.0782 −.0780 −.0831 .3193∗∗ .2876∗∗ .2984∗∗

(.0300) (.0290) (.0316) (.0306) (.1307) (.1318) (.1307) (.1456) (.1458) (.1452)
Human Guess .0348∗∗∗ .0247∗∗∗ .0438∗∗∗ .0281∗∗ .0678∗∗ .0809∗∗∗ .0665∗∗ .1573∗∗∗ .1512∗∗∗ .1391∗∗

(.0069) (.0067) (.0120) (.0117) (.0303) (.0306) (.0303) (.0556) (.0558) (.0556)
Constant .1849∗∗∗ .3630∗∗∗ .1516∗∗∗ .3190∗∗∗ .0484 .3024∗∗∗ .0914 −.0064 .3863∗∗∗ .2492∗∗∗

(.0089) (.0126) (.0133) (.0189) (.0399) (.0572) (.0598) (.0630) (.0902) (.0959)
Indicators for Skin-Tone? YES YES YES YES YES YES YES YES YES YES

Indicators for Psychological Features? YES YES YES YES YES YES YES YES YES YES

Observations 7,511 7,511 2,092 2,092 7,511 7,511 7,511 2,092 2,092 2,092
Adjusted R2 .0783 .1395 .1990 .2542 .0264 .0106 .0266 .0482 .0477 .0550
Notes: The above table replicates the richest specifications of main paper Tables II, III, V, and VI, but now relaxing the linearity assumption for skin tone and psychological features
while introducing low-level interactions with defendant’s gender. The table shows results of estimating a linear probability specification regressing algorithmic prediction of judges’ detain
decision (columns (1) through (4)) and actual judges’ detain decision (columns (5) through (10)) against different explanatory variables, using data from the validation set separately
for male and female defendants. Algorithmic predictions of judges’ decisions come from applying algorithm built with face images in the training data set to validation set observations.
Data on well-groomed, skin tone, and psychological features (i.e., attractiveness, competence, dominance, and trustworthiness) come from subject ratings of mugshot images (see text).
Human guess variable comes from showing subjects pairs of mugshot images and asking subjects to identify the defendant they think the judge would be more likely to detain. Regression
specifications also include indicators for unknown race.
P-Values: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.VIII: Cross race sensitivity analysis: Non-parametric specification for skin-tone and known psychological features

Dependent variable:
Algo Judge Detain Prediction Judge Detain Decision

Black Defendants Non-Black Defendants Black Defendants Non-Black Defendants

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Heavy-Faced −.0174∗∗∗ −.0166∗∗∗ −.0210∗∗∗ −.0112∗∗ −.0214∗∗∗ −.0126∗

(.0010) (.0014) (.0044) (.0045) (.0067) (.0068)
Well-Groomed −.0184∗∗∗ −.0046∗∗ −.0111∗ −.0008 −.0114 −.0090

(.0014) (.0019) (.0062) (.0063) (.0090) (.0090)
Algo Judge Detain Prediction .5915∗∗∗ .5602∗∗∗ .5690∗∗∗ .5270∗∗∗

(.0532) (.0553) (.0852) (.0874)
Male .1442∗∗∗ .1415∗∗∗ .0592∗∗∗ .0607∗∗∗ .0435∗∗∗ .1245∗∗∗ .0453∗∗∗ −.0086 .0276 −.0045

(.0031) (.0030) (.0040) (.0039) (.0154) (.0135) (.0155) (.0189) (.0183) (.0190)
Age .0005∗∗∗ .0005∗∗∗ −.0002 −.00003 −.0013∗∗∗ −.0010∗∗ −.0013∗∗∗ −.0015∗∗ −.0015∗ −.0015∗

(.0001) (.0001) (.0002) (.0002) (.0005) (.0005) (.0005) (.0008) (.0008) (.0008)
Human Guess .0328∗∗∗ .0224∗∗∗ .0467∗∗∗ .0349∗∗∗ .0737∗∗ .0846∗∗∗ .0720∗∗ .1037∗∗ .1124∗∗ .0940∗

(.0072) (.0070) (.0111) (.0109) (.0312) (.0315) (.0313) (.0510) (.0515) (.0513)
Constant .0514∗∗∗ .2545∗∗∗ .1445∗∗∗ .2632∗∗∗ .2020∗∗∗ .4109∗∗∗ .2683∗∗∗ .0250 .2961∗∗∗ .1574∗

(.0172) (.0191) (.0121) (.0182) (.0745) (.0865) (.0870) (.0567) (.0858) (.0884)
Indicators for Skin-Tone? YES YES YES YES YES YES YES YES YES YES

Indicators for Psychological Features? YES YES YES YES YES YES YES YES YES YES

Observations 6,673 6,673 2,931 2,931 6,673 6,673 6,673 2,931 2,931 2,931
Adjusted R2 .3146 .3649 .1423 .1850 .0407 .0266 .0413 .0303 .0194 .0313
Notes: The above table replicates the richest specifications of main paper Tables II, III, V, and VI, but now relaxing the linearity assumption for skin tone and psychological features while
introducing low-level interactions with defendant’s race. The table shows results of estimating a linear probability specification regressing algorithmic prediction of judges’ detain decision
(columns (1) through (4)) and actual judges’ detain decision (columns (5) through (10)) against different explanatory variables, using data from the validation set separately for Black and
non-Black defendants. Algorithmic predictions of judges’ decisions come from applying an algorithm built with face images in the training data set to validation set observations. Data on
well-groomed, skin tone, and psychological features (i.e., attractiveness, competence, dominance and trustworthiness) come from subject ratings of mugshot images (see text). Human guess
variable comes from showing subjects pairs of mugshot images and asking subjects to identify the defendant they think the judge would be more likely to detain. Regression specifications
also include indicators for unknown race.
P-Values: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.IX: Relationship between novel features and algorithm’s prediction controlling for indicators of defendant drug involvement
Dependent variable:

Algo Judge Detain Prediction
Drug Possession Charge No Drug Possession Charge

(1) (2) (3) (4) (5) (6) (7)
Heavy-Faced −0.0181∗∗∗ −0.0189∗∗∗ −0.0182∗∗∗ −0.0167∗∗∗ −0.0184∗∗∗

(0.0009) (0.0008) (0.0008) (0.0021) (0.0009)
Well-Groomed −0.0172∗∗∗ −0.0153∗∗∗ −0.0133∗∗∗ −0.0098∗∗∗ −0.0141∗∗∗

(0.0011) (0.0012) (0.0012) (0.0028) (0.0013)
Male 0.1117∗∗∗ 0.1155∗∗∗ 0.1130∗∗∗ 0.0980∗∗∗ 0.1151∗∗∗

(0.0024) (0.0025) (0.0024) (0.0069) (0.0026)
Age 0.0004∗∗∗ 0.0002∗∗ 0.0004∗∗∗ 0.0002 0.0004∗∗∗

(0.0001) (0.0001) (0.0001) (0.0003) (0.0001)
Black −0.0187∗∗∗ −0.0168∗∗∗ −0.0183∗∗∗ −0.0119 −0.0194∗∗∗

(0.0035) (0.0036) (0.0035) (0.0087) (0.0038)
Asian −0.0187∗ −0.0160 −0.0140 0.0088 −0.0184

(0.0111) (0.0113) (0.0110) (0.0292) (0.0119)
Indigenous American −0.0006 0.0172 0.0040 0.0167 0.0002

(0.0232) (0.0236) (0.0230) (0.0527) (0.0255)
Skin-Tone −0.0453∗∗∗ −0.0440∗∗∗ −0.0472∗∗∗ −0.0387∗∗∗ −0.0489∗∗∗

(0.0057) (0.0058) (0.0056) (0.0139) (0.0062)
Attractiveness −0.0086∗∗∗ 0.0008 −0.0033∗∗ −0.0068∗ −0.0028

(0.0015) (0.0016) (0.0016) (0.0038) (0.0017)
Competence −0.0085∗∗∗ −0.0060∗∗∗ −0.0061∗∗∗ −0.0093∗∗ −0.0055∗∗∗

(0.0016) (0.0017) (0.0016) (0.0040) (0.0018)
Dominance 0.0059∗∗∗ 0.0031∗∗∗ 0.0058∗∗∗ 0.0064∗∗ 0.0057∗∗∗

(0.0012) (0.0012) (0.0012) (0.0028) (0.0013)
Trustworthiness −0.0014 −0.0024 0.00001 0.0018 −0.0002

(0.0016) (0.0016) (0.0016) (0.0040) (0.0017)
Human Guess 0.0336∗∗∗ 0.0339∗∗∗ 0.0286∗∗∗ 0.0170 0.0308∗∗∗

(0.0061) (0.0062) (0.0060) (0.0143) (0.0067)
Drug Possession 0.0049 −0.0020 0.0073∗∗ −0.0006 −0.0027

(0.0031) (0.0027) (0.0031) (0.0028) (0.0027)
Constant 0.3474∗∗∗ 0.3122∗∗∗ 0.3335∗∗∗ 0.2570∗∗∗ 0.3430∗∗∗ 0.3480∗∗∗ 0.3429∗∗∗

(0.0051) (0.0102) (0.0054) (0.0099) (0.0104) (0.0262) (0.0114)
Observations 9,604 9,604 9,604 9,604 9,604 1,442 8,162
Adjusted R2 0.0385 0.2627 0.0251 0.2360 0.2727 0.2014 0.2828

Notes: The table presents the results of running separate regressions (one regression per column) that relate the novel facial features to the algorithm’s overall prediction of judge detention decisions, with
some control for an indicator of the defendant’s drug involvement. Specifically we control for whether the defendant’s current charge is for drug possession in columns (1) through (5), which use the full
validation (test set) sample. In column (7) we re-run the analysis using just those defendants who have some indication of drug involvement, while column (8) uses the remaining sample of defendants.
P-Values: ∗p<.1; ∗∗p<.05; ∗∗∗p<.01
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Table A.X: Relationship between novel features and algorithm’s prediction controlling for indicator of defendant’s mental health
Dependent variable:

Algo Judge Detain Prediction
MI ≥ Median(MI) MI < Median(MI)

(1) (2) (3) (4) (5) (6) (7)
Heavy-Faced −0.0175∗∗∗ −0.0183∗∗∗ −0.0177∗∗∗ −0.0190∗∗∗ −0.0162∗∗∗

(0.0009) (0.0008) (0.0008) (0.0011) (0.0012)
Well-Groomed −0.0157∗∗∗ −0.0141∗∗∗ −0.0126∗∗∗ −0.0143∗∗∗ −0.0109∗∗∗

(0.0011) (0.0012) (0.0012) (0.0016) (0.0017)
Male 0.1129∗∗∗ 0.1168∗∗∗ 0.1139∗∗∗ 0.1132∗∗∗ 0.1142∗∗∗

(0.0024) (0.0025) (0.0024) (0.0033) (0.0036)
Age 0.0004∗∗∗ 0.0002∗∗ 0.0004∗∗∗ 0.0006∗∗∗ −0.00003

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
Black −0.0179∗∗∗ −0.0160∗∗∗ −0.0178∗∗∗ −0.0172∗∗∗ −0.0189∗∗∗

(0.0035) (0.0036) (0.0035) (0.0049) (0.0050)
Asian −0.0174 −0.0148 −0.0132 −0.0285 −0.0048

(0.0111) (0.0113) (0.0110) (0.0174) (0.0141)
Indigenous American 0.0004 0.0175 0.0045 −0.0312 0.0318

(0.0231) (0.0235) (0.0230) (0.0362) (0.0296)
Skin-Tone −0.0443∗∗∗ −0.0428∗∗∗ −0.0463∗∗∗ −0.0468∗∗∗ −0.0462∗∗∗

(0.0057) (0.0058) (0.0056) (0.0079) (0.0081)
Attractiveness −0.0076∗∗∗ 0.0013 −0.0029∗ −0.0012 −0.0055∗∗

(0.0015) (0.0016) (0.0016) (0.0022) (0.0022)
Competence −0.0077∗∗∗ −0.0053∗∗∗ −0.0056∗∗∗ −0.0072∗∗∗ −0.0040∗

(0.0016) (0.0017) (0.0016) (0.0023) (0.0024)
Dominance 0.0053∗∗∗ 0.0025∗∗ 0.0054∗∗∗ 0.0063∗∗∗ 0.0050∗∗∗

(0.0012) (0.0012) (0.0012) (0.0016) (0.0017)
Trustworthiness −0.0011 −0.0021 0.0002 0.0001 0.0001

(0.0016) (0.0016) (0.0016) (0.0023) (0.0022)
Human Guess 0.0311∗∗∗ 0.0313∗∗∗ 0.0270∗∗∗ 0.0210∗∗ 0.0346∗∗∗

(0.0061) (0.0062) (0.0060) (0.0085) (0.0086)
Mental Illness (MI) 0.0061∗∗∗ 0.0048∗∗∗ 0.0044∗∗∗ 0.0056∗∗∗ 0.0037∗∗∗

(0.0009) (0.0008) (0.0009) (0.0008) (0.0008)
Constant 0.3207∗∗∗ 0.2850∗∗∗ 0.3099∗∗∗ 0.2262∗∗∗ 0.3201∗∗∗ 0.3425∗∗∗ 0.3279∗∗∗

(0.0064) (0.0110) (0.0074) (0.0108) (0.0114) (0.0144) (0.0154)
Observations 9,604 9,604 9,604 9,604 9,604 5,068 4,536
Adjusted R2 0.0433 0.2656 0.0270 0.2399 0.2743 0.2746 0.2644

Notes: The table presents the results of running separate regressions (one regression per column) that relate the novel facial features to the algorithm’s overall prediction of judge detention
decisions, with some control for an indicator of the defendant’s mental health. Specifically we have a separate sample of study subjects independently rate mugshots in the validation (test
set) sample for their perceptions of the mental health of the person, and then control for that in the regressions shown in columns (1) through (5), which use the full validation (test set)
sample. In column (6) we re-run the analysis using just those defendants who are above median in their mental illness ratings, while column (7) uses the remaining sample of defendants.
P-Values: ∗p<.1; ∗∗p<.05; ∗∗∗p<.01
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Table A.XI: Relationship between novel features and algorithm’s prediction controlling for defendant’s perceived socio-economic status (SES)
Dependent variable:

Algo Judge Detain Prediction
SES ≥ Median(SES) SES < Median(SES)

(1) (2) (3) (4) (5) (6) (7)
Heavy-Face −0.0172∗∗∗ −0.0180∗∗∗ −0.0175∗∗∗ −0.0168∗∗∗ −0.0186∗∗∗

(0.0009) (0.0008) (0.0008) (0.0011) (0.0013)
Well-Groomed −0.0135∗∗∗ −0.0131∗∗∗ −0.0116∗∗∗ −0.0097∗∗∗ −0.0159∗∗∗

(0.0011) (0.0012) (0.0012) (0.0015) (0.0018)
Male 0.1121∗∗∗ 0.1157∗∗∗ 0.1132∗∗∗ 0.1067∗∗∗ 0.1237∗∗∗

(0.0024) (0.0025) (0.0024) (0.0031) (0.0039)
Age 0.0004∗∗∗ 0.0002∗∗ 0.0003∗∗∗ 0.0002 0.0005∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
Black −0.0228∗∗∗ −0.0211∗∗∗ −0.0218∗∗∗ −0.0198∗∗∗ −0.0222∗∗∗

(0.0035) (0.0036) (0.0035) (0.0043) (0.0062)
Asian −0.0195∗ −0.0175 −0.0153 −0.0074 −0.0359∗

(0.0110) (0.0112) (0.0110) (0.0130) (0.0204)
Indigenous American 0.0001 0.0166 0.0039 0.0115 −0.0269

(0.0230) (0.0234) (0.0229) (0.0258) (0.0482)
Skin-Tone −0.0397∗∗∗ −0.0381∗∗∗ −0.0422∗∗∗ −0.0438∗∗∗ −0.0434∗∗∗

(0.0057) (0.0058) (0.0057) (0.0070) (0.0095)
Attractiveness −0.0063∗∗∗ 0.0021 −0.0021 −0.0035∗ −0.0023

(0.0015) (0.0016) (0.0016) (0.0020) (0.0026)
Competence −0.0076∗∗∗ −0.0055∗∗∗ −0.0056∗∗∗ −0.0040∗ −0.0081∗∗∗

(0.0016) (0.0017) (0.0016) (0.0021) (0.0026)
Dominance 0.0054∗∗∗ 0.0027∗∗ 0.0054∗∗∗ 0.0048∗∗∗ 0.0068∗∗∗

(0.0012) (0.0012) (0.0012) (0.0015) (0.0018)
Trustworthiness −0.0014 −0.0026 −0.0002 −0.0020 0.0023

(0.0016) (0.0016) (0.0016) (0.0020) (0.0026)
Human Guess 0.0299∗∗∗ 0.0307∗∗∗ 0.0262∗∗∗ 0.0309∗∗∗ 0.0207∗∗

(0.0060) (0.0062) (0.0060) (0.0078) (0.0095)
Socioeconomic Status (SES) −0.0146∗∗∗ −0.0098∗∗∗ −0.0128∗∗∗ −0.0100∗∗∗ −0.0083∗∗∗

(0.0010) (0.0009) (0.0010) (0.0009) (0.0009)
Constant 0.4087∗∗∗ 0.3448∗∗∗ 0.3744∗∗∗ 0.2896∗∗∗ 0.3662∗∗∗ 0.3239∗∗∗ 0.3492∗∗∗

(0.0064) (0.0105) (0.0062) (0.0103) (0.0107) (0.0132) (0.0171)
Observations 9,604 9,604 9,604 9,604 9,604 5,651 3,953
Adjusted R2 0.0608 0.2714 0.0408 0.2449 0.2786 0.2504 0.2847

Notes: The table presents the results of running separate regressions (one regression per column) that relate the novel facial features to the algorithm’s overall prediction of judge detention
decisions, with some control for the defendant’s socio-economic status (SES). Specifically we have a separate sample of study subjects independently rate mugshots in the validation (test
set) sample for their perceptions of the defendant’s SES, then control for that in the regressions shown in columns (1) through (5), which use the full validation (test set) sample. In
columns (6) we re-run the analysis using just those defendants who are above median in their rated SES, while column (7) uses the remaining sample of defendants.
P-Values: ∗p<.1; ∗∗p<.05; ∗∗∗p<.01
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Table A.XII: Relationship between novel features and algorithm’s prediction controlling for defendant’s baby-faced feature
Dependent variable:

Algo Judge Detain Prediction
BF ≥ Median(BF) BF < Median(BF)

(1) (2) (3) (4) (5) (6) (7)
Heavy-Face −0.0156∗∗∗ −0.0177∗∗∗ −0.0172∗∗∗ −0.0136∗∗∗ −0.0212∗∗∗

(0.0009) (0.0009) (0.0009) (0.0011) (0.0013)
Well-Groomed −0.0140∗∗∗ −0.0140∗∗∗ −0.0128∗∗∗ −0.0121∗∗∗ −0.0137∗∗∗

(0.0011) (0.0012) (0.0012) (0.0015) (0.0018)
Male 0.1103∗∗∗ 0.1128∗∗∗ 0.1118∗∗∗ 0.1165∗∗∗ 0.1053∗∗∗

(0.0024) (0.0025) (0.0024) (0.0030) (0.0041)
Age 0.0003∗∗∗ −0.0001 0.0002∗∗ −0.0004∗∗∗ 0.0008∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
Black −0.0176∗∗∗ −0.0151∗∗∗ −0.0175∗∗∗ −0.0237∗∗∗ −0.0094∗

(0.0035) (0.0036) (0.0035) (0.0045) (0.0056)
Asian −0.0178 −0.0145 −0.0134 −0.0159 −0.0093

(0.0111) (0.0112) (0.0110) (0.0139) (0.0175)
Indigenous American 0.0007 0.0176 0.0048 0.0287 −0.0284

(0.0231) (0.0234) (0.0230) (0.0271) (0.0407)
Skin-Tone −0.0455∗∗∗ −0.0446∗∗∗ −0.0473∗∗∗ −0.0462∗∗∗ −0.0463∗∗∗

(0.0057) (0.0058) (0.0056) (0.0071) (0.0091)
Attractiveness −0.0082∗∗∗ 0.0005 −0.0033∗∗ −0.0036∗ −0.0019

(0.0015) (0.0016) (0.0016) (0.0020) (0.0025)
Competence −0.0084∗∗∗ −0.0062∗∗∗ −0.0061∗∗∗ −0.0046∗∗ −0.0068∗∗∗

(0.0016) (0.0017) (0.0016) (0.0021) (0.0026)
Dominance 0.0054∗∗∗ 0.0025∗∗ 0.0054∗∗∗ 0.0062∗∗∗ 0.0052∗∗∗

(0.0012) (0.0012) (0.0012) (0.0015) (0.0018)
Trustworthiness −0.0009 −0.0015 0.0003 −0.0001 −0.0010

(0.0016) (0.0016) (0.0016) (0.0020) (0.0025)
Human Guess 0.0327∗∗∗ 0.0322∗∗∗ 0.0281∗∗∗ 0.0241∗∗∗ 0.0317∗∗∗

(0.0061) (0.0062) (0.0060) (0.0077) (0.0095)
Baby-Faced (BF) −0.0133∗∗∗ −0.0052∗∗∗ −0.0141∗∗∗ −0.0092∗∗∗ −0.0042∗∗∗

(0.0010) (0.0010) (0.0010) (0.0010) (0.0010)
Constant 0.3897∗∗∗ 0.3325∗∗∗ 0.3770∗∗∗ 0.3006∗∗∗ 0.3578∗∗∗ 0.3264∗∗∗ 0.3510∗∗∗

(0.0058) (0.0108) (0.0061) (0.0109) (0.0110) (0.0136) (0.0161)
Observations 9,604 9,604 9,604 9,604 9,604 5,250 4,354
Adjusted R2 0.0563 0.2650 0.0446 0.2433 0.2741 0.2957 0.2256

Notes: The table presents the results of running separate regressions (one regression per column) that relate the novel facial features to the algorithm’s overall prediction of judge detention
decisions, with some control for the defendant’s degree of baby-facedness. Specifically we have a separate sample of study subjects independently rate mugshots in the validation (test set)
sample based on their relative baby-faced looks, then control for that in the regressions shown in columns (1) through (5), which use the full validation (test set) sample. In columns (6)
we re-run the analysis using just those defendants who are above median in their baby-faced ratings, while column (7) uses the remaining sample of defendants.
P-Values: ∗p<.1; ∗∗p<.05; ∗∗∗p<.01
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Table A.XIII: Relationship between novel features and judge decision controlling for indicators of defendant drug involvement
Dependent variable:

Judge Detain Decision
Drug Possession Charge No Drug Possession Charge

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Heavy-Faced −0.0237∗∗∗ −0.0227∗∗∗ −0.0221∗∗∗ −0.0179∗ −0.0225∗∗∗

(0.0036) (0.0036) (0.0037) (0.0094) (0.0040)
Well-Groomed −0.0199∗∗∗ −0.0128∗∗ −0.0103∗∗ −0.0117 −0.0100∗

(0.0043) (0.0051) (0.0051) (0.0128) (0.0056)
Algo Judge Detain Prediction 0.6172∗∗∗ 0.3612∗∗∗ 0.6552∗∗∗

(0.0434) (0.1163) (0.0467)
Male 0.0935∗∗∗ 0.0975∗∗∗ 0.0945∗∗∗ 0.0259∗∗ −0.0038 −0.0396 0.1090∗∗∗ 0.0350∗∗∗

(0.0108) (0.0108) (0.0108) (0.0117) (0.0312) (0.0331) (0.0115) (0.0126)
Age −0.0012∗∗∗ −0.0014∗∗∗ −0.0013∗∗∗ −0.0016∗∗∗ 0.0014 0.0013 −0.0016∗∗∗ −0.0019∗∗∗

(0.0004) (0.0004) (0.0004) (0.0004) (0.0012) (0.0012) (0.0004) (0.0004)
Black −0.0646∗∗∗ −0.0624∗∗∗ −0.0643∗∗∗ −0.0521∗∗∗ −0.1003∗∗ −0.0966∗∗ −0.0547∗∗∗ −0.0411∗∗

(0.0155) (0.0156) (0.0155) (0.0154) (0.0392) (0.0391) (0.0169) (0.0168)
Asian −0.0742 −0.0730 −0.0705 −0.0643 −0.2187∗ −0.2381∗ −0.0503 −0.0390

(0.0487) (0.0489) (0.0488) (0.0483) (0.1321) (0.1312) (0.0525) (0.0520)
Indigenous American 0.0495 0.0691 0.0530 0.0575 0.0833 0.0723 0.0468 0.0554

(0.1019) (0.1020) (0.1019) (0.1010) (0.2380) (0.2374) (0.1125) (0.1114)
Skin-Tone −0.1059∗∗∗ −0.1036∗∗∗ −0.1074∗∗∗ −0.0759∗∗∗ −0.1075∗ −0.0911 −0.1054∗∗∗ −0.0712∗∗∗

(0.0250) (0.0251) (0.0250) (0.0249) (0.0628) (0.0628) (0.0273) (0.0270)
Attractiveness −0.0082 0.0009 −0.0041 −0.0009 0.0097 0.0109 −0.0072 −0.0037

(0.0067) (0.0070) (0.0070) (0.0067) (0.0173) (0.0165) (0.0077) (0.0073)
Competence −0.0199∗∗∗ −0.0180∗∗ −0.0181∗∗ −0.0148∗∗ −0.0403∗∗ −0.0382∗∗ −0.0135∗ −0.0101

(0.0072) (0.0073) (0.0073) (0.0072) (0.0183) (0.0182) (0.0079) (0.0078)
Dominance 0.0113∗∗ 0.0079 0.0113∗∗ 0.0060 0.0120 0.0076 0.0108∗ 0.0055

(0.0052) (0.0051) (0.0052) (0.0051) (0.0129) (0.0127) (0.0056) (0.0056)
Trustworthiness −0.0088 −0.0106 −0.0077 −0.0095 −0.0193 −0.0224 −0.0053 −0.0068

(0.0071) (0.0071) (0.0071) (0.0070) (0.0183) (0.0181) (0.0077) (0.0076)
Human Guess 0.1032∗∗∗ 0.1057∗∗∗ 0.0993∗∗∗ 0.0861∗∗∗ 0.0723 0.0746 0.1051∗∗∗ 0.0886∗∗∗

(0.0267) (0.0268) (0.0268) (0.0265) (0.0648) (0.0643) (0.0294) (0.0290)
Drug Possession −0.0206∗ −0.0330∗∗∗ −0.0174 −0.0310∗∗ −0.0336∗∗∗ −0.0304∗∗

(0.0121) (0.0121) (0.0121) (0.0121) (0.0121) (0.0119)
Constant 0.3616∗∗∗ 0.4521∗∗∗ 0.3310∗∗∗ 0.3713∗∗∗ 0.4759∗∗∗ 0.2042∗∗∗ 0.5334∗∗∗ 0.3313∗∗∗ 0.4538∗∗∗ 0.1743∗∗∗

(0.0198) (0.0447) (0.0210) (0.0430) (0.0463) (0.0416) (0.1186) (0.1088) (0.0502) (0.0449)
Naive-AUC 0.546 0.605 0.533 0.596 0.605 0.637 0.615 0.624 0.609 0.645
Observations 9,604 9,604 9,604 9,604 9,604 9,604 1,442 1,442 8,162 8,162
Adjusted R2 0.0044 0.0222 0.0022 0.0189 0.0225 0.0385 0.0210 0.0251 0.0252 0.0439

Notes: The table presents the results of running separate regressions (one regression per column) that relate the novel facial features, or the algorithm’s overall prediction of
judge detention decisions, to actual judge detention decisions, with some control for an indicator of the defendant’s drug involvement. Specifically we control for whether the
defendant’s current charge is for drug possession in columns (1) through (6), which use the full validation (test set) sample. In columns (7) and (8) we re-run the analysis
using just those defendants who have some indication of drug involvement, while columns (9) and (10) use the remaining sample of defendants.
P-Values: ∗p<.1; ∗∗p<.05; ∗∗∗p<.01
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Table A.XIV: Relationship between novel features and judge decision controlling for indicator of defendant’s mental health

Dependent variable:
Judge Detain Decision

MI ≥ Median(MI) MI < Median(MI)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Heavy-Faced −0.0223∗∗∗ −0.0214∗∗∗ −0.0210∗∗∗ −0.0229∗∗∗ −0.0190∗∗∗

(0.0036) (0.0037) (0.0037) (0.0051) (0.0054)
Well-Groomed −0.0168∗∗∗ −0.0106∗∗ −0.0087∗ −0.0135∗ −0.0039

(0.0044) (0.0052) (0.0052) (0.0072) (0.0075)
Algo Judge Detain Prediction 0.6109∗∗∗ 0.4845∗∗∗ 0.7695∗∗∗

(0.0436) (0.0602) (0.0632)
Male 0.0939∗∗∗ 0.0981∗∗∗ 0.0946∗∗∗ 0.0266∗∗ 0.0897∗∗∗ 0.0352∗∗ 0.1010∗∗∗ 0.0145

(0.0108) (0.0108) (0.0108) (0.0118) (0.0147) (0.0161) (0.0159) (0.0173)
Age −0.0012∗∗∗ −0.0014∗∗∗ −0.0012∗∗∗ −0.0015∗∗∗ −0.0011∗ −0.0014∗∗∗ −0.0014∗∗ −0.0014∗∗

(0.0004) (0.0004) (0.0004) (0.0004) (0.0006) (0.0005) (0.0006) (0.0006)
Black −0.0634∗∗∗ −0.0611∗∗∗ −0.0633∗∗∗ −0.0514∗∗∗ −0.0484∗∗ −0.0409∗ −0.0793∗∗∗ −0.0640∗∗∗

(0.0156) (0.0156) (0.0156) (0.0154) (0.0219) (0.0218) (0.0222) (0.0218)
Asian −0.0718 −0.0707 −0.0689 −0.0623 −0.0484 −0.0385 −0.0850 −0.0807

(0.0488) (0.0489) (0.0488) (0.0484) (0.0775) (0.0772) (0.0625) (0.0615)
Indigenous American 0.0505 0.0687 0.0533 0.0575 0.0472 0.0596 0.0551 0.0387

(0.1019) (0.1020) (0.1019) (0.1010) (0.1614) (0.1607) (0.1308) (0.1287)
Skin-Tone −0.1047∗∗∗ −0.1019∗∗∗ −0.1061∗∗∗ −0.0754∗∗∗ −0.0810∗∗ −0.0554 −0.1354∗∗∗ −0.0994∗∗∗

(0.0250) (0.0251) (0.0250) (0.0249) (0.0352) (0.0351) (0.0357) (0.0352)
Attractiveness −0.0070 0.0012 −0.0037 −0.0002 −0.0048 −0.0045 −0.0029 0.0043

(0.0068) (0.0070) (0.0070) (0.0067) (0.0100) (0.0095) (0.0099) (0.0093)
Competence −0.0183∗∗ −0.0165∗∗ −0.0169∗∗ −0.0136∗ −0.0222∗∗ −0.0201∗∗ −0.0110 −0.0072

(0.0072) (0.0073) (0.0073) (0.0072) (0.0102) (0.0101) (0.0104) (0.0102)
Dominance 0.0101∗ 0.0067 0.0101∗ 0.0052 0.0178∗∗ 0.0123∗ 0.0016 −0.0032

(0.0052) (0.0052) (0.0052) (0.0051) (0.0072) (0.0071) (0.0075) (0.0074)
Trustworthiness −0.0081 −0.0099 −0.0072 −0.0088 −0.0058 −0.0086 −0.0099 −0.0103

(0.0071) (0.0071) (0.0071) (0.0070) (0.0102) (0.0101) (0.0099) (0.0097)
Human Guess 0.0986∗∗∗ 0.1009∗∗∗ 0.0958∗∗∗ 0.0824∗∗∗ 0.0991∗∗∗ 0.0957∗∗ 0.0929∗∗ 0.0672∗

(0.0268) (0.0268) (0.0268) (0.0266) (0.0380) (0.0378) (0.0378) (0.0373)
Mental Illness (MI) 0.0103∗∗∗ 0.0073∗∗ 0.0088∗∗ 0.0088∗∗ 0.0065∗ 0.0055

(0.0033) (0.0035) (0.0034) (0.0035) (0.0035) (0.0034)
Constant 0.3099∗∗∗ 0.4032∗∗∗ 0.2783∗∗∗ 0.3165∗∗∗ 0.4276∗∗∗ 0.1724∗∗∗ 0.4530∗∗∗ 0.2076∗∗∗ 0.4560∗∗∗ 0.1821∗∗∗

(0.0248) (0.0486) (0.0285) (0.0469) (0.0507) (0.0445) (0.0643) (0.0593) (0.0680) (0.0582)
Naive-AUC 0.548 0.602 0.535 0.594 0.602 0.636 0.598 0.613 0.605 0.663
Observations 9,604 9,604 9,604 9,604 9,604 9,604 5,068 5,068 4,536 4,536
Adjusted R2 0.0051 0.0219 0.0027 0.0188 0.0220 0.0381 0.0200 0.0277 0.0212 0.0498

Notes: The table presents the results of running separate regressions (one regression per column) that relate the novel facial features, or the algorithm’s overall prediction
of judge detention decisions, to actual judge detention decisions, with some control for an indicator of the defendant’s mental health. Specifically we have a separate sample
of study subjects independently rate mugshots in the validation (test set) sample for their perceptions of the mental health of the person, and then control for that in the
regressions shown in columns (1) through (6), which use the full validation (test set) sample. In columns (7) and (8) we re-run the analysis using just those defendants who
are above median in their mental illness ratings, while columns (9) and (10) use the remaining sample of defendants.
P-Values: ∗p<.1; ∗∗p<.05; ∗∗∗p<.01
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Table A.XV: Relationship between novel features and judge decision controlling for defendant’s perceived socioeconomic status (SES)

Dependent variable:
Judge Detain Decision

SES ≥ Median(SES) SES < Median(SES)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Heavy-Face −0.0220∗∗∗ −0.0208∗∗∗ −0.0205∗∗∗ −0.0163∗∗∗ −0.0267∗∗∗

(0.0036) (0.0037) (0.0037) (0.0047) (0.0058)
Well-Groomed −0.0143∗∗∗ −0.0086∗ −0.0067 −0.0053 −0.0114

(0.0044) (0.0052) (0.0052) (0.0066) (0.0083)
Algo Judge Detain Prediction 0.6012∗∗∗ 0.6809∗∗∗ 0.5040∗∗∗

(0.0438) (0.0564) (0.0690)
Male 0.0927∗∗∗ 0.0963∗∗∗ 0.0934∗∗∗ 0.0267∗∗ 0.0890∗∗∗ 0.0168 0.1001∗∗∗ 0.0408∗∗

(0.0107) (0.0107) (0.0107) (0.0118) (0.0135) (0.0147) (0.0177) (0.0196)
Age −0.0012∗∗∗ −0.0014∗∗∗ −0.0012∗∗∗ −0.0015∗∗∗ −0.0016∗∗∗ −0.0018∗∗∗ −0.0009 −0.0011∗

(0.0004) (0.0004) (0.0004) (0.0004) (0.0005) (0.0005) (0.0006) (0.0006)
Black −0.0713∗∗∗ −0.0698∗∗∗ −0.0707∗∗∗ −0.0572∗∗∗ −0.0504∗∗∗ −0.0368∗∗ −0.1046∗∗∗ −0.0915∗∗∗

(0.0156) (0.0157) (0.0156) (0.0155) (0.0187) (0.0185) (0.0278) (0.0278)
Asian −0.0750 −0.0751 −0.0725 −0.0649 −0.1278∗∗ −0.1233∗∗ 0.0499 0.0663

(0.0487) (0.0488) (0.0488) (0.0483) (0.0570) (0.0562) (0.0919) (0.0915)
Indigenous America 0.0501 0.0673 0.0524 0.0570 0.1625 0.1587 −0.3077 −0.2893

(0.1018) (0.1020) (0.1018) (0.1010) (0.1136) (0.1122) (0.2171) (0.2163)
Skin-Tone −0.0969∗∗∗ −0.0936∗∗∗ −0.0984∗∗∗ −0.0705∗∗∗ −0.0794∗∗∗ −0.0492 −0.1419∗∗∗ −0.1119∗∗∗

(0.0251) (0.0252) (0.0251) (0.0249) (0.0308) (0.0305) (0.0430) (0.0427)
Attractiveness −0.0046 0.0027 −0.0022 0.0012 −0.0098 −0.0059 0.0052 0.0083

(0.0068) (0.0070) (0.0071) (0.0067) (0.0088) (0.0083) (0.0118) (0.0112)
Competence −0.0180∗∗ −0.0167∗∗ −0.0168∗∗ −0.0135∗ −0.0059 −0.0030 −0.0322∗∗∗ −0.0286∗∗

(0.0072) (0.0073) (0.0073) (0.0072) (0.0094) (0.0092) (0.0115) (0.0115)
Dominance 0.0100∗ 0.0069 0.0100∗ 0.0053 0.0101 0.0061 0.0117 0.0055

(0.0052) (0.0051) (0.0052) (0.0051) (0.0067) (0.0066) (0.0081) (0.0080)
Trustworthiness −0.0086 −0.0107 −0.0079 −0.0092 −0.0111 −0.0103 −0.0032 −0.0072

(0.0071) (0.0071) (0.0071) (0.0070) (0.0089) (0.0088) (0.0116) (0.0115)
Human Guess 0.0963∗∗∗ 0.0995∗∗∗ 0.0941∗∗∗ 0.0812∗∗∗ 0.1098∗∗∗ 0.0895∗∗∗ 0.0749∗ 0.0719∗

(0.0267) (0.0268) (0.0268) (0.0265) (0.0343) (0.0339) (0.0427) (0.0425)
Socioeconomic Status (SES) −0.0204∗∗∗ −0.0162∗∗∗ −0.0188∗∗∗ −0.0174∗∗∗ −0.0153∗∗∗ −0.0115∗∗∗

(0.0038) (0.0041) (0.0039) (0.0041) (0.0041) (0.0040)
Constant 0.4410∗∗∗ 0.4984∗∗∗ 0.3862∗∗∗ 0.4211∗∗∗ 0.5108∗∗∗ 0.2456∗∗∗ 0.3829∗∗∗ 0.1426∗∗∗ 0.5578∗∗∗ 0.2803∗∗∗

(0.0250) (0.0467) (0.0241) (0.0449) (0.0476) (0.0447) (0.0582) (0.0518) (0.0770) (0.0693)
Naive-AUC 0.557 0.604 0.545 0.596 0.604 0.636 0.6 0.647 0.604 0.619
Observations 9,604 9,604 9,604 9,604 9,604 9,604 5,651 5,651 3,953 3,953
Adjusted R2 0.0072 0.0230 0.0044 0.0200 0.0231 0.0387 0.0194 0.0421 0.0226 0.0300

Notes: The table presents the results of running separate regressions (one regression per column) that relate the novel facial features, or the algorithm’s overall prediction of
judge detention decisions, to actual judge detention decisions, with some control for the defendant’s socio-economic status (SES). Specifically we have a separate sample of
study subjects independently rate mugshots in the validation (test set) sample for their perceptions of the defendant’s SES, then control for that in the regressions shown in
columns (1) through (6), which use the full validation (test set) sample. In columns (7) and (8) we re-run the analysis using just those defendants who are above median in
their rated SES, while columns (9) and (10) use the remaining sample of defendants.
P-Values: ∗p<.1; ∗∗p<.05; ∗∗∗p<.01
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Table A.XVI: Relationship between novel features and judge decision controlling for defendant’s baby-faced feature

Dependent variable:
Judge Detain Decision

BF ≥ Median(BF) BF < Median(BF)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Heavy-Face −0.0213∗∗∗ −0.0207∗∗∗ −0.0204∗∗∗ −0.0170∗∗∗ −0.0253∗∗∗

(0.0037) (0.0038) (0.0038) (0.0050) (0.0057)
Well-Groomed −0.0170∗∗∗ −0.0107∗∗ −0.0093∗ −0.0042 −0.0155∗∗

(0.0043) (0.0052) (0.0052) (0.0069) (0.0078)
Algo Judge Detain Prediction 0.6092∗∗∗ 0.6493∗∗∗ 0.5768∗∗∗

(0.0437) (0.0617) (0.0624)
Male 0.0902∗∗∗ 0.0925∗∗∗ 0.0913∗∗∗ 0.0235∗∗ 0.1036∗∗∗ 0.0297∗ 0.0779∗∗∗ 0.0154

(0.0108) (0.0108) (0.0108) (0.0117) (0.0137) (0.0153) (0.0176) (0.0185)
Age −0.0014∗∗∗ −0.0017∗∗∗ −0.0014∗∗∗ −0.0017∗∗∗ −0.0012∗ −0.0011∗ −0.0013∗∗ −0.0019∗∗∗

(0.0004) (0.0004) (0.0004) (0.0004) (0.0006) (0.0006) (0.0006) (0.0006)
Black −0.0631∗∗∗ −0.0602∗∗∗ −0.0630∗∗∗ −0.0510∗∗∗ −0.0531∗∗∗ −0.0364∗ −0.0755∗∗∗ −0.0701∗∗∗

(0.0156) (0.0156) (0.0156) (0.0154) (0.0205) (0.0203) (0.0240) (0.0238)
Asian −0.0724 −0.0706 −0.0693 −0.0625 −0.0731 −0.0610 −0.0639 −0.0646

(0.0488) (0.0489) (0.0488) (0.0484) (0.0641) (0.0635) (0.0752) (0.0746)
Indigenous American 0.0507 0.0688 0.0536 0.0574 0.1277 0.1196 −0.0646 −0.0541

(0.1019) (0.1020) (0.1019) (0.1010) (0.1251) (0.1238) (0.1745) (0.1732)
Skin-Tone −0.1064∗∗∗ −0.1045∗∗∗ −0.1078∗∗∗ −0.0771∗∗∗ −0.0816∗∗ −0.0503 −0.1379∗∗∗ −0.1106∗∗∗

(0.0250) (0.0251) (0.0250) (0.0249) (0.0327) (0.0324) (0.0389) (0.0387)
Attractiveness −0.0080 0.00004 −0.0044 −0.0010 −0.0003 0.0058 −0.0095 −0.0104

(0.0067) (0.0070) (0.0070) (0.0067) (0.0093) (0.0087) (0.0108) (0.0103)
Competence −0.0194∗∗∗ −0.0178∗∗ −0.0177∗∗ −0.0144∗∗ −0.0181∗ −0.0144 −0.0146 −0.0128

(0.0072) (0.0073) (0.0073) (0.0072) (0.0098) (0.0096) (0.0110) (0.0108)
Dominance 0.0103∗∗ 0.0069 0.0103∗∗ 0.0053 0.0132∗ 0.0077 0.0076 0.0028

(0.0052) (0.0051) (0.0052) (0.0051) (0.0070) (0.0069) (0.0077) (0.0076)
Trustworthiness −0.0079 −0.0091 −0.0070 −0.0085 −0.0064 −0.0075 −0.0102 −0.0115

(0.0071) (0.0071) (0.0071) (0.0070) (0.0094) (0.0093) (0.0109) (0.0107)
Human Guess 0.1012∗∗∗ 0.1027∗∗∗ 0.0978∗∗∗ 0.0839∗∗∗ 0.0817∗∗ 0.0653∗ 0.1172∗∗∗ 0.1070∗∗∗

(0.0267) (0.0268) (0.0268) (0.0265) (0.0356) (0.0352) (0.0408) (0.0404)
Baby-Faced (BF) −0.0108∗∗∗ −0.0069 −0.0122∗∗∗ −0.0120∗∗∗ −0.0061 −0.0066

(0.0039) (0.0043) (0.0039) (0.0041) (0.0043) (0.0041)
Constant 0.3902∗∗∗ 0.4709∗∗∗ 0.3645∗∗∗ 0.4215∗∗∗ 0.4892∗∗∗ 0.2339∗∗∗ 0.3636∗∗∗ 0.1195∗∗ 0.5714∗∗∗ 0.2987∗∗∗

(0.0229) (0.0477) (0.0239) (0.0472) (0.0488) (0.0470) (0.0625) (0.0549) (0.0691) (0.0644)
Naive-AUC 0.547 0.601 0.539 0.595 0.602 0.636 0.602 0.639 0.604 0.631
Observations 9,604 9,604 9,604 9,604 9,604 9,604 5,250 5,250 4,354 4,354
Adjusted R2 0.0050 0.0217 0.0031 0.0191 0.0219 0.0381 0.0201 0.0383 0.0215 0.0351

Notes: The table presents the results of running separate regressions (one regression per column) that relate the novel facial features, or the algorithm’s overall prediction
of judge detention decisions, to actual judge detention decisions, with some control for the defendant’s perceived baby-facedness. Specifically we have a separate sample of
study subjects independently rate mugshots in the validation (test set) sample based on their relative baby-faced looks, and then control for that in the regressions shown in
columns (1) through (6), which use the full validation (test set) sample. In columns (7) and (8) we re-run the analysis using just those defendants who are above median in
their baby-faced ratings, while columns (9) and (10) use the remaining sample of defendants.
P-Values: ∗p<.1; ∗∗p<.05; ∗∗∗p<.01
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Table A.XVII: Laboratory experiment summary of results

(1) (2) (3) (4)
Well-Groomed -0.013∗ -0.014∗∗

(0.007) (0.007)
Heavy-Faced -0.019∗∗∗ -0.020∗∗∗

(0.007) (0.007)
Image Pair Fixed Effects? YES YES YES YES

Participant Fixed Effects? NO YES NO YES

Number of Subjects 500 500 500 500
Number of Subjects by Image Pair 18,268 18,268 18,548 18,548
Adjusted R2 0.400 0.401 0.344 0.348

Notes: The table shows the results of two separate randomized lab experiments that randomly morphs pairs of synthetic
GAN-generated images in the direction of one of the novel features produced by our hypothesis generation procedure,
either well-groomed or heavy-faced; that is, one image within each pair is morphed in the direction of a higher value of
the novel feature, and the other image within each pair is morphed in the other direction towards a lower value of the
novel feature. We then ask subjects to recommend which of the two defendants they would recommend for detention.
Defendants within each pair are also randomly assigned structured variables related to the current charge for which
the person was arrested, and their prior criminal record. The table shows the results on the subjectâs detention choice
of seeing an image that is more versus less well-groomed (the average difference is 3.7 standard deviations with respect
to the distribution of our main GAN-generated mugshot data set) or more versus less heavy-faced (average difference
is 4.4 standard deviations). Standard errors are clustered by respondent and image pair. See appendix test for main
estimating equation and additional details.
P-Values: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Appendix Figures
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Figure A.I: Eigenfaces

Notes: Eigenfaces method adequately reduces statistical complexity in face image representation but does
not provide any interpretable insights for our analysis.
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Figure A.II: Example of subject labeling exercise for skin-tone, age, and other features

Notes: The mugshot in the above exhibit is a synthetic computer-generated image used for illustration
purposes only. In the human intelligence tasks, however, subjects were shown actual defendant mugshots.
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Figure A.III: Distribution of skin-tone categories for full validation sample, and by defendant race

Notes: This figure shows the distribution of skin tone labels from our human intelligence task. These figures come from having human labelers
examine face images (mugshots) from Mecklenburg County, NC and recording the skin tone that is closest to the image in the raters view. The
top panel shows the histogram of skin tone values reported for the full validation sample; the middle panel is for African American defendants,
specifically, while the histogram for white defendants is at the bottom. We collected a total of 10,555 skin tone labels from a total of 77 human
raters.
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(a) The consent screen presented to M-turkers before commencing

(b) The instructions given to Prolific workers for the human guess tasks

Figure A.IV: Examples of consent and instructions shown to M-Turk and Prolific workers for
incentivized selection tasks
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Figure A.V: Example of instructions given to M-turkers for one of a labelling task
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Figure A.VI: Distribution of human ratings of psychological features based on face images

Notes: The standard deviations of these features (calculated on the average label per mugshot) are as follows: attractiveness (0.923), competence
(0.911), dominance (0.947), trustworthiness (0.844), well-groomed (1.012), and heavy-faced (1.195).
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Figure A.VII: Reliability measures for human-rated psychological features

Notes: This figure shows the estimates of Cronbach’s alpha (left panel) and Intraclass Correlation Coefficients
(right panel) for human ratings of psychological features taken from face images (mugshots) fromMecklenburg
County, NC Sheriff’s Office public website. Cronbach’s alpha (or Tau-equivalent reliability) is a coefficient
used to measure the reliability, or internal consistency, of a set of scale or test items. Cronbach’s alpha
coefficients above 0.80 and 0.90 are considered to be reliable and highly reliable, respectively. Intraclass
Correlation Coefficient (ICC) is a continuous inter-rater reliability measure which works for any number of
raters giving ratings to a fixed number of items. It provides an estimate of the extent to which the observed
amount of agreement among raters exceeds what would be expected if all raters made their ratings at random.
ICC values above 0.80 are considered as an indication of perfect agreement among subjects on the choices
of categories. In the above exhibit, Cronbach’s alpha coefficients are measured on a bespoke quality check
sample while Intraclass Correlation Coefficients are estimated on the entire population of observations.
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Figure A.VIII: Signal vs. noise in human ratings by number of ratings provided

Notes: The figure shows the results of taking the average of the first K labels provided by human raters for that psychological feature from looking
at a face image, and using that to predict the value of the next (K+ 1) human rating of that same image on the same psychological feature, reported
in root mean squared error terms. For each curve relating prediction error and number of labels, we also report the 95% confidence interval.

108



(a) The screen presented to workers when selecting an image.

(b) The screen presented to workers after selecting an image. In addition to the green outline, a popup
window appeared informing candidates if their selection was correct.

Figure A.IX: Example of human intelligence task assessing human performance at picking candi-
dates more likely to be detained.

Notes: The mugshots in the above exhibits are synthetic computer-generated images used for illustration
purposes only. In the human intelligence tasks, however, subjects were shown actual defendant mugshots.

109



Figure A.X: Accuracy of algorithmic models of judge decisions

Notes: The figure above shows predictive accuracy measures for two separate algorithms built to predict
judges’ detention decisions, one built using all of the variables available to us from the Mecklenburg County,
NC data set (structured variables like current charge, prior record, gender, age, etc.—see text and appendix—
as well as unstructured data from defendant’s mugshot) and the second built using just the face images alone.
The algorithms are built using data from the training data set. We then calculate prediction accuracy out-of-
sample on the validation data set (see Table 1 and text). The receiver operating characteristic (ROC) curve
plots the true positive rate and false positive rate for all possible classification thresholds; models that are
more predictively accurate will have ROC curves that lie relatively further to the northwest. AUC integrates
under the ROC curve and can be interpreted as the likelihood that a randomly selected positive (detained)
example would be assigned a higher detention likelihood by the algorithm than a randomly selected negative
(released) case; random guessing would produce an AUC of 0.5 and perfect prediction would correspond to
an AUC of 1.0. The shaded areas correspond to 95% confidence intervals computed using 2,000 stratified
bootstrap replicates that sample at the arrestee level.
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Figure A.XI: Relationship between detention rates and defendant characteristics

Notes: The figure above shows the average validation set detention rates for defendants by different defendant
characteristics: crime charge is violent vs. non-violent (first panel), defendant is male versus female (second
panel), defendant is in the lightest (Q4) versus darkest (Q1) skin tone shade according to independent subject
ratings of mugshots (third panel), and defendant is in lowest quartile of predicted risk (Q1) versus highest
quartile (Q4) according to mugshot-based predictor of judge detention decision (final panel). 95% confidence
intervals are shown at the top of each bar; overall average detention rate in the validation dataset is 23.3%.
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(a) The screen presented to workers when selecting an image.

(b) The screen presented to workers after selecting an image. In addition to the green outline, a popup
window appeared informing candidates if their selection was correct.

Figure A.XII: Example of unknown characteristic guessing exercise with predicted-age-morphed
pairs

Notes: Subjects were shown age-risk-morphed image pairs and asked to make a guess about the image
that exhibited that hidden characteristic more strongly. After completing this guessing exercise on 50 image
pairs, subjects were asked to write down the facial features that they believed were related to the algorithm’s
predictions. 112



Context: we ran a survey in which several subjects looked at two pictures. One of the pictures was "correct", the 

other was "incorrect", and the subjects had to guess which was which. After each selection, a popup told them if 

they were correct or incorrect, and they saw the next pair of photos. We then asked these people to describe how 

they were selecting the correct answer. That's the data you can see in the Google Doc! 

Task: I need you to go through each comment, and "categorize" or "tag" all the comments. You will have to read 

the comments to discover what categories might exist, and you will have to find every category each comment lies 

in. 

Example: Consider the comment "People with thicker eyebrows were correct, and people who looked energetic, 

and the ears". There are three different types of categories: a descriptive physical one ('thick eyebrows'), a 

descriptive impression category ('energetic'), and a vague one ('ears'). We want to tag each of these! The first two 

are good (this is something specific & measurable), and the last one is bad (not something that can be measured), 

but we still want the tag. 

Challenges: You'll notice they talk about lots of different features, and not always the same ones. Your task: we 

want to know every different feature mentioned by the subjects, and we want to know how many answers mention 

each feature. For example, the first response mentioned "a relaxed face". So I went down the entire list of 

comments, and made a note of every comment that talked about a "relaxed face", or "stressed face", or "relaxed 

expression", or something similar. The first response also mentioned a "neutral expression", so I went down the 

list and noted every response that mentioned this, or the opposite. We need to do this for all possible features. 

Final state: So, this should be fairly obvious, but our goal is to fill all of the columns with all of the features 

anybody mentions, and for every feature, we want to note which comments refer to that feature. 

 

Notes: 

We want to include opposites as the same feature. For example, stressed face / relaxed face is the same feature, 

since they are opposites; long hair / short hair are the same feature, but not the same feature as curly hair / straight 

hair; neutral face / happy face are not really the same feature, since the opposite of neutral might be anything. 

Features can be something physical (big eyes, crooked nose, long hair) OR something abstract (trustworthy, 

dangerous looking, competent). Physical features are easy to understand, but abstract features can be complicated. 

A good rule of thumb here might be: if I asked "based on their face, is this person [trustworthy]?", do you think 

people would have an answer? 

We are looking for features that are specific and measurable. A good rule of thumb is: good features are 

something about a face, bad features are just parts of a face.  

For example, "pursed lips" is good (specific, can be measured as true / false); "looks dangerous" is also good: it's 

specific (sort of), "short hair" and "long hair" are a single feature; "eyes" is bad (not specific, just a part of a face), 

so we wouldn't bother tracking this. There are plenty of typos. I think the person who mentioned a bear is really 

talking about a beard. 

Figure A.XIII: Instructions shown to independent RAs for the comment categorization task
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(a) Instructions shown to subjects before beginning the task.

(b) The screen presented to workers when selecting an image.

Figure A.XIV: Example of guessing exercise with detention-risk-morphed pairs

Notes: Subjects were shown detention-risk-morphed image pairs such as above and asked to predict which
artificial defendant would be more likely to face pre-trial detention. After completing this guessing exercise
on 50 image pairs, subjects were asked to write down the facial features that they believed were related to
the algorithm’s predictions.
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Figure A.XV: Subject performance guessing relative detention risk across morphed image pairs as
a function of number of images seen

Notes: The figure above shows subject accuracy rates in guessing which morphed image pair has a higher
detention risk, and how that changes as the subjects see more images. Each subject was shown 50 image
pairs matched on race, skin tone, age and gender; in our analysis, we treat the data from the first 10 images
each subject sees as learning examples and carry out our analyses using the last 40 image-pair results from
each subject.
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Figure A.XVI: An example of the M-turk labelling exercise

Notes: The mugshot in the above exhibit is a synthetic computer-generated image used for illustration
purposes only. In the human intelligence tasks, however, subjects were shown actual defendant mugshots.
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Figure A.XVII: Orthogonalization pipeline
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(a) Side-by-side mugshot orthogonal detention morphs with detention probabilities of 0.27 and 0.07 respectively

(b) Transformations of the face along selected steps of the orthogonal morphing process

(c) Detention-probabilities for images in panel (b)

Figure A.XVIII: Illustration of morphed faces along orthogonal gradients of detention predictor

Notes: The top panel shows the result of selecting a random point on the GAN latent face space for a white Hispanic
male defendant, then using our orthogonal morphing procedure to increase the predicted detention risk of the image
to 0.27 (at left) or reduce the predicted detention risk down to 0.07 (at right); the overall average detention rate
in the validation dataset of actual mugshot images is 0.23 by comparison. The second panel shows the different
intermediate images between these two end points, while the third panel underneath shows the predicted detention
risk for each of the images in the middle panel.
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Figure A.XIX: Relative magnitude of the algorithm’s discoveries on detention

Notes: The figure above shows the average validation set detention rates among different groups of defendants
using charge types, the demographic data of arrestees, and human ratings of our algorithmically generated
novel features. The set of bar charts compares the average detention rates for defendants by types of crime
charge (violent versus non-violent), by gender (male versus female), and similarly the average detention rates
for defendants across top (Q4) and bottom (Q1) quartiles of well-groomed and heavy-faced separately.
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(a) A word cloud of practitioners’ comments

(b) Frequencies of comments by theme

Figure A.XX: Criminal justice practitioner descriptions of contrast between released and detained
actual defendant faces

Notes: The top panel shows a word cloud of subject reports about what they see as the key difference between
image pairs, where one is a randomly selected actual mugshot and the other is another actual mugshot which
is selected to be congruous in race and gender but discordant in detention outcome. The bottom panel shows
the frequency of semantic groupings of these open-ended subject reports (see text for additional detail).
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