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1. Introduction and Definitions 

 With count-valued outcomes  y∈ 0,1,…,M{ }  
identification of average treatment effects (ATEs) 

presents no special considerations beyond those involved with continuous outcomes. If features of the 

distribution of treatment effects (TEs) are of interest, however, count-valued outcomes raise subtle yet 

important considerations beyond those involved with continuous outcomes. Since such outcomes are 

encountered often in empirical health research an assessment of how their count-valued nature affects 

(partial) identification of treatment-effect distributions seems warranted. 

 Fan and Park, 2010, (FP) provide key results for partial identification (PI) of TE distributions 

with continuous outcomes. This paper shows that a subtlety that can be ignored in the continuous case 

must be addressed with count-valued outcomes. Specifically, distinguishing strict from weak inequalities 

is essential for defining best bounds on count-valued outcomes' TE distributions. Key is the simple 

recognition that  Pr Z ≤ a( ) = 1− Pr Z ≥ a( )  holds for continuous but not for count-valued Z.1 

 The count-valued potential outcomes are  y0  and  y1  with 
 
y j ∈V = 0,1,…,M{ } . M is assumed to 

be finite, an assumption made mainly for computational and expositional reasons since most results go 

through if V is unbounded. The joint distribution 
 
Pr y0,y1( ) = Pr y0 = j, y1 = k( ) = pjk  

has support  V × V . 

 The unobservable TE is  Δ = y1 − y0 . It merits noting that the difference that defines TE is a 

meaningful one if the 
 
y j  have true ratio-scale measures but not if the 

 
y j  are arbitrarily-labeled ordinal-

scale outcomes (see Stevens, 1946), the latter encountered often in empirical health research. The support 

of the TE distribution  FΔ δ( )  is 
 
T = −M,− M −1( ),…,M{ } .  FΔ δ( ) = Pr Δ ≤ δ( )  is defined as is typical 

based on a weak inequality with respect to its support points in T. To illustrate, for M=3 figure 1 depicts 

the sample space, TEs, and joint probability distribution. The sum of the blue dots' 
 
p jk  ( 0 ≤ k ≤ j≤ M ) 

equals  Pr Δ ≤ δ( )  for  δ = 0 . 

 The goal is to identify the TE distribution  Pr Δ ≤ δ( )  for all  δ ∈T .  Pr Δ ≤ δ( )  cannot generally be 

point identified—though  Pr Δ ≤ M( ) = 1 is trivially point identified—but informative PI may be possible. 

Let D denote the binary treatment that gives rise to  y0  and  y1 . As is standard the observed outcomes y 

are given by  y = Dy1 + 1− D( )y0 . Like FP assume that the marginal distributions 
 
Pr y j( )  are point 

																																								 																					
1 Machado and Santos Silva, 2005, and Manski, 2007 (page 40), raise related considerations in the context 
of quantile TEs.  
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identified from treatments being randomly assigned. PI of  Pr Δ ≤ δ( )  then follows from careful derivation 

of its Boole-Fréchet-Hoeffding (BFH) lower and upper bounds (LB, UB) that are based exclusively on 

the identified marginal distributions 
 
Pr y j( ) . 

 Sections 2 and 3 present the results for 
 
LB Pr Δ ≤ δ( )( )  and 

 
UB Pr Δ ≤ δ( )( ) , respectively. Section 

4 presents an illustrative empirical example. Section 5 concludes. To streamline the discussion proofs and 

additional discussion appear in the Appendix. 

 

2. Best Lower Bounds on 
  
Pr Δ≤δ( )  

 Let the best LB on  Pr Δ ≤ δ( )  be denoted 
 
LB* Pr Δ ≤ δ( )( ) . 

 

Proposition 1: 

 a. For each  t ∈V  and  δ ∈T  an identifiable LB on  Pr Δ ≤ δ( )  is 

  
 
max 0,Pr y1 ≤ t( )− Pr y0 + δ < t( ){ } .      (2.a) 

 b. For each  δ ∈T  the identifiable best LB on  Pr Δ ≤ δ( )  is 

  
 
LB* Pr Δ ≤ δ( )( ) = maxt∈V max 0,Pr y1 ≤ t( )− Pr y0 + δ < t( ){ } .   (2.b) 

 

Proof: See Appendix section A.1. 

 

 The key finding of this section arises from comparison of expressions (2.a) and (2.b) (note the 

strict inequalities in the max{...} arguments' subtrahends) with, respectively, 

 

 
 
max 0,Pr y1 ≤ t( )− Pr y0 + δ ≤ t( ){ }         (2.c) 

and 

 
 
maxt∈V max 0,Pr y1 ≤ t( )− Pr y0 + δ ≤ t( ){ } .      (2.d) 

 

(note the weak inequalities in the max{...} arguments' subtrahends). Expression (2.d) is this paper's 

representation of FP's equation (2): 
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FL δ( ) = supy max F1 y( )− F0 y− δ( )( ),0( ) .      (FP.2) 

 

With continuous outcomes the distinctions between (2.a) and (2.c) and between (2.b) and (2.d) vanish—

thus rationalizing FP not drawing the distinction in their Lemma 2.1—but with count-valued outcomes 

they do not. Thus while (2.d) is an identifiable LB on  Pr Δ ≤ δ( )  that would arise from applying (FP.2), 

(2.b) will in general be a better (indeed best) LB. 

 So long as both (2.a) and (2.c) are in  0,1( )  then (2.a) exceeds (2.c) by 

 

 
 
Pr y0 + δ ≤ t( )− Pr y0 + δ < t( ) = Pr y0 = t − δ, y1 = k( )k=0

M∑     
(2.e) 

 

for each  t ∈V . As such 
 
LB* Pr Δ ≤ δ( )( )

 
from (2.b) must be at least as large as (2.d). Since it 

corresponds to a fraction 
 

1
M+1  of the joint sample space the difference (2.e) may be empirically 

meaningful, especially when M is not large. Note also that the difference between (2.b) and (2.d) may in 

some data turn out to be a difference between a positive (informative) and a zero (uninformative) best LB. 

 

3. Best Upper Bounds on 
  
Pr Δ≤δ( )  

 Let the best UB on  Pr Δ ≤ δ( )  be denoted 
 
UB* Pr Δ ≤ δ( )( ) .  

 

Proposition 2:  

 a. For each  t ∈V  and  δ ∈T  two identifiable UBs on  Pr Δ ≤ δ( )  are 

  
 
1− max 0,Pr y0 ≤ t( )− Pr y1 ≤ t + δ( ){ }    and     (3.a) 

  
 
1− max 0,Pr y0 < t( )− Pr y1 < t + δ( ){ } .      (3.b) 

 b. For each  δ ∈T  the identifiable best UB on  Pr Δ ≤ δ( )  is 

  
 
UB* Pr Δ ≤ δ( )( ) = 1− maxt∈V max 0,Pr y0 ≤ t( )− Pr y1 ≤ t + δ( ){ }   (3.c) 

                             
 
= 1− maxt∈V max 0,Pr y0 < t( )− Pr y1 < t + δ( ){ } .  (3.d) 

 

Proof: See Appendix section A.2. 
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 Note that 
 
UB* Pr Δ ≤ δ( )( ) =

 
1− LB* Pr Δ > δ( )( ) . One feature of the TE distribution  Pr Δ ≤ δ( )  

that may be of interest (Mullahy, 2018) is  Pr Δ > 0( ) = 1− Pr Δ ≤ 0( ) . It follows that 

 

 
 
LB* Pr Δ > 0( )( ) = LB* 1− Pr Δ ≤ 0( )( ) = 1− UB* Pr Δ ≤ 0( )( ) .    (3.e) 

 

Attention to which inequalities are strict and which are weak is again critical. 

 

4. An Illustrative Example 

 The 2015 Health Survey of England (HSE) elicits the specific dates in the week preceding a 

subject's interview on which the subject engaged in some form of vigorous or moderate exercise (see 

Mullahy, 2022, for details on the HSE). Preliminary inspection of the sample suggests that weekly totals 

of such exercise days may tend to be greater in spring and summer than in fall and winter. For this 

example survey interview dates may plausibly be treated as if randomly assigned. To gauge the "effect" 

of season on weekly exercise frequency the treatment D is defined to be one if the interview took place in 

the second or third quarter of 2015 (spring and summer, N=3,167) and zero otherwise (winter and fall, 

N=3,602). The PI task is to compute the best bounds on  Pr Δ ≤ δ( )  over the TE distribution support 

 T = −7,−6,…,7{ } . The resulting 
 
UB* Pr Δ ≤ δ( )( )  

and  
 
LB* Pr Δ ≤ δ( )( )  are shown in columns 2 and 3 

of table 1 and are depicted in figure 2.2 

 

5. Conclusions 

 A subtlety that is ignorable when computing bounds on continuous outcomes' TE distributions is 

consequential for count-valued outcomes, particularly if M is not large. Obtaining best bounds with 

count-valued outcomes is straightforward using this paper's results.3 In empirical work 
 
LB* Pr Δ ≤ δ( )( )  

and 
 
UB* Pr Δ ≤ δ( )( )  can be estimated via standard analogy principle methods. 

 

Acknowledgements 

 Thanks are owed to Chris Adams, Chuck Manski, and Dan Millimet for sharing helpful insights. 

																																								 																					
2 The bounds are computed using an author-written Stata program that is available here. 
3 It may sometimes be possible to obtain tighter bounds by making (unverifiable) assumptions about the 
joint distribution  Pr y0,y1( ) . See section A.3 of the Appendix for discussion. 

https://uwmadison.box.com/s/xd0dj8x757iqabotpiyjzuuobzvt6yg0
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Appendix 

 

A.1: Lower Bounds 

 

Proof of Proposition 1— For each  δ ∈T : 

 

 Pr Δ ≤ δ( ) = Pr y1 − y0 ≤ δ( )            (A1.1) 

      = Pr y1 ≤ y0 + δ( )         (A1.2) 

      ≥ Pr y1 ≤ t ≤ y0 + δ( )    for any  t ∈V       (A1.3) 

       = Pr y1 ≤ t ∧  t ≤ y0 + δ( )        (A1.4) 

      
 
≥ max 0,Pr y1 ≤ t( ) + Pr y0 + δ ≥ t( )−1{ }      (A1.5)  

     
 
= max 0,Pr y1 ≤ t( ) + 1− Pr y0 + δ < t( )( )−1{ }      (A1.6) 

     
 
= max 0,Pr y1 ≤ t( )− Pr y0 + δ < t( ){ } ,      (A1.7) 

 

where (A1.5) is a BFH LB on (A1.4) for any  t ∈V , which is a valid LB since  Pr Δ ≤ δ( ) ≥

 
max 0,Pr y1 ≤ t( )− Pr y0 + δ < t( ){ }  and which is identifiable since it relies only the identified marginal 

distributions 
 
Pr y j( ) . This proves part (a) of Proposition 1.  

 Since (A1.7) is the largest valid bound at each  t ∈V  (see Intuition below) then the best LB is the 

maximum of (A1.7) over  t ∈V , i.e. 

 

 
 
LB* Pr Δ ≤ δ( )( ) = maxt∈V max 0,Pr y1 ≤ t( )− Pr y0 + δ < t( ){ } .    (A1.8) 

 

This proves part (b) of Proposition 1. ■ 

 

Intuition— Defining an identifiable best lower bound requires using only information contained in the 

marginal distributions 
 
Pr y j( )  that are identified by assumption. The basic structure of any such bounds 

will be based on a difference in marginal probabilities of the sort shown in (A1.8). This can be visualized 

in figure A2 for the case of M=3,  δ = 0 , and  t = 2 . At  t = 2  the top panel depicts  Pr y1 ≤ t( )− Pr y0 < t( )  
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in expression (2.a) as the sum of the blue dots' 
 
p jk  minus the sum of the orange squares' 

 
p jk . The bottom 

panel depicts  Pr y1 ≤ t( )− Pr y0 ≤ t( )  in expression (2.c) analogously. It is immediately evident that at 

 t = 2 —and, by similar reasoning, for any  t ∈V —(2.a) cannot be smaller and will in general be greater 

than (2.c). 

 Any bound claiming to be a best bound will thus turn out to be the difference in the overall joint 

probability of a subset 
 
R(+)  of the points 

 
y0,y1( ) Δ ≤ δ{ }  minus the overall joint probability of a subset 

 
R(–)  of the points 

 
y0,y1( ) Δ > δ{ } , i.e. 

 

  
 

Pr(y0 ,y1)∈R(+ )
∑ y0,y1( )− Pr(y0 ,y1)∈R(–)

∑ y0,y1( ) .     (A1.9) 

    

Such a  difference will necessarily be no larger than the overall joint probability of the points in 
 
R(+)  

which in turn is no larger than the overall joint probability of all the points satisfying 
 

y0,y1( ) Δ ≤ δ{ } . It 

is thus a valid lower bound. 

 To appreciate that (A1.8) is the best such lower bound suppose the possible existence of an even 

better (greater) lower bound, 

 

 
 
LB** Pr Δ ≤ δ( )( ) = max 0,Pr A1( )− Pr A0( ){ } ≥ LB* Pr Δ ≤ δ( )( )             (A1.10) 

 

for events 
 
A j  in the marginal distributions 

 
Pr y j( ) . For LB** to exceed LB* it must hold either that (a) 

 Pr A1( ) > Pr y1 ≤ t( )  (e.g.  Pr A1( ) = Pr y1 ≤ t + k( ),  k ∈ 1,2,…{ } ), or that (b)  Pr A0( ) <  Pr y0 + δ < t( )  (e.g. 

 Pr A0( ) < Pr y0 + δ < t − k( ),  k ∈ 1,2,…{ } ) so that for some index sets 
 
S(+)  and 

 
S(–)  defined implicitly by 

 Pr A0( )  and  Pr A1( ) , 

 

       
 

Pr(y0 ,y1)∈S(+ )
∑ y0,y1( )− Pr(y0 ,y1)∈S(–)

∑ y0,y1( )  ≥  Pr(y0 ,y1)∈R(+ )
∑ y0,y1( )− Pr(y0 ,y1)∈R(–)

∑ y0,y1( ) . 

                    (A1.11) 

 

It is straightforward to show, however, that for either (a) or (b) the difference  Pr A1( )− Pr A0( )  results in 
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at least one point in 
 

y0,y1( ) Δ > δ{ }  being included in the index set 
 
S(+)  in (A1.11) so that LB** cannot 

be a valid lower bound since it may exceed  Pr Δ ≤ δ( ) . 

 

A.2: Upper Bounds 

 

Proof of Proposition 2— For each  δ ∈T : 

 

  Pr Δ ≤ δ( ) = Pr y1 − y0 ≤ δ( )            (A2.1) 

       = 1− Pr y1 − y0 > δ( )          (A2.2) 

       = 1− Pr y1 − δ > y0( )          (A2.3) 

      
 
≤1− Pr y1 − δ ≥

a t ≥b y0( )
   

for any  t ∈V .     (A2.4) 

 

If one and only one of the inequalities  ≥a  or  ≥b  in (A2.4) is strict then (A2.4) necessarily follows from 

(A2.3) since then  Pr y1 − δ > t ≥ y0( ) ≤ Pr y1 − δ > y0( )  or  Pr y1 − δ ≥ t > y0( ) ≤  Pr y1 − δ > y0( ) . If neither 

of the inequalities  ≥a  or  ≥b  in (A2.4) is strict then (2.4) will not necessarily follow from (A2.3). If both 

inequalities  ≥a  and  ≥b  in (A2.4) are strict then (A2.4) will be too large to serve as the basis of a best UB 

relative to other identifiable alternatives. The relevant cases for determining a best UB thus involve one 

and only one of  ≥a  or  ≥b  being strict. It is shown below that 
 
UB* Pr Δ ≤ δ( )( )  is the same regardless of 

which one is strict. 

 

Case 1:  ≥a  is strict,  ≥b
 is weak. Then continuing from (A2.4): 

 

  1− Pr y1 − δ > t ≥ y0( ) = 1− Pr y1 − δ > t ∧  t ≥ y0( )      (A2.5) 

        
 
≤1− max 0,Pr y1 > t + δ( ) + Pr t ≥ y0( )−1{ }     (A2.6) 

        
 
= 1− max 0, 1− Pr y1 ≤ t + δ( )( ) + Pr y0 ≤ t( )−1{ }    (A2.7) 

    
 
= 1− max 0,Pr y0 ≤ t( )− Pr y1 ≤ t + δ( ){ } ,       (A2.8) 
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where (A2.6) is one minus a BFH LB on the subtrahend in (A2.5). This proves expression (3.a) in part (a) 

of Proposition 2. 

 

Then: 

 
 
UB* Pr Δ ≤ δ( )( ) = mint∈V 1− max 0,Pr y0 ≤ t( )− Pr y1 ≤ t + δ( ){ }{ }    (A2.9) 

      
 
= 1− maxt∈V max 0,Pr y0 ≤ t( )− Pr y1 ≤ t + δ( ){ } .               (A2.10) 

 

This proves expression (3.c) in part (b) of Proposition 2. 

 

Case 2:  ≥b  is strict,  ≥a  is weak.  Then continuing from (A2.4): 

 

  1− Pr y1 − δ ≥ t > y0( ) = 1− Pr y1 − δ ≥ t ∧  t > y0( )      (A2.11) 

    
 
≤1− max 0,Pr y1 ≥ t + δ( ) + Pr t > y0( )−1{ }                     (A2.12) 

    
 
= 1− max 0, 1− Pr y1 < t + δ( )( ) + Pr y0 < t( )−1{ }                            (A2.13) 

    
 
= 1− max 0,Pr y0 < t( )− Pr y1 < t + δ( ){ } ,                (A2.14) 

 

where (A2.12) is one minus a BFH LB on the subtrahend in (A2.11). This proves expression (3.b) in part 

(a) of Proposition 2. 

 

Then: 

 
 
UB* Pr Δ ≤ δ( )( ) = mint∈V 1− max 0,Pr y0 < t( )− Pr y1 < t + δ( ){ }{ }                   (A2.15) 

                   
 
= 1− maxt∈V max 0,Pr y0 < t( )− Pr y1 < t + δ( ){ } .               (A2.16) 

 

This proves expression (3.d) in part (b) of Proposition 2.  

 The equivalence of (3.c) and (3.d) claimed in part (b) of Proposition 2 can be shown by noting 

that 
 
Pr y j < 0( ) = 0  and 

 
Pr y j ≤ M( ) = 1  so that the  maxt∈V  operation is essentially running over the same 

arguments but offset by one unit. To see this concretely consider M=3 and  δ = 0 . Then from (A2.10), 
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1− maxt∈V max 0,Pr y0 ≤ t( )− Pr y1 ≤ t( ){ } = 1− max

max 0,Pr y0 ≤ 0( )− Pr y1 ≤ 0( ){ },

max 0,Pr y0 ≤1( )− Pr y1 ≤1( ){ },

max 0,Pr y0 ≤ 2( )− Pr y1 ≤ 2( ){ },

                     0

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪

  (A2.17)
 

 

since 
 
max 0,Pr y0 ≤ 2( )− Pr y1 ≤ 2( ){ } , whereas from (A2.16), 

 

 

1− maxt∈V max 0,Pr y0 < t( )− Pr y1 < t( ){ } = 1− max

                     0,

max 0,Pr y0 < 1( )− Pr y1 < 1( ){ },

max 0,Pr y0 < 2( )− Pr y1 < 2( ){ },

max 0,Pr y0 < 3( )− Pr y1 < 3( ){ }

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪

                                                                    = 1− max

                      0,

max 0,Pr y0 ≤ 0( )− Pr y1 ≤ 0( ){ },

max 0,Pr y0 ≤1( )− Pr y1 ≤1( ){ },

max 0,Pr y0 ≤ 2( )− Pr y1 ≤ 2( ){ }

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪

 (A2.18) 

 

since 
 
max 0,Pr y0 < 0( )− Pr y1 < 0( ){ } = max 0,0− 0{ } = 0 . ■ 

 

A.3: Tightening Bounds by Invoking Additional Assumptions 

 As with continuous outcomes it is sometimes possible to obtain tighter bounds if one is willing to 

invoke nonverifiable assumptions about features of the joint distribution  Pr y0,y1( ) .  As an example of 

how such assumptions may come into play with count-valued outcomes suppose one considers as a 

candidate LB 

 

  Pr y0 = M( ) + Pr y1 = 0( ) .        (A3.1) 

 

The implied overall probability of this sum is depicted in figure A2 where the overall probability (A3.1) 

is the sum of the blue dots' 
 
p jk   plus twice the magenta dot's 

 
p jk . Obviously this cannot be a valid LB 

because of the double counting of  pM0 . Were  pM0  known then it could be subtracted from (A3.1) to give 

a valid LB,  
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max 0,Pr y0 = M( ) + Pr y1 = 0( )− pM0{ } .      (A3.2) 

 

Absent knowledge of  pM0  a valid LB could be obtained as  

 

 
 
max 0,Pr y0 = M( ) + Pr y1 = 0( )− UB pM0( ){ } ,      (A3.3) 

 

but all that is known without additional assumptions is that  pM0 ∈ 0,1⎡⎣ ⎤⎦ , implying  UB pM0( ) = 1, which 

is uninformative. 

 For illustrative purposes suppose one is willing to assume that 
 
p jk  is non-increasing in  j− k  for 

 j≥ k . That is, larger-magnitude differences Δ  are less likely than smaller-magnitude ones for 

nonpositive Δ . Call this assumption lower probability of large differences, or LPLD. Suppose that in 

addition to the bounds described in the paper's section 2 one considers the possibility that the best LB on 

 Pr Δ ≤ δ( )  might be improved by invoking LPLD. Specifically note that under LPLD 
 

2
M+1( ) M+2( )  is the 

largest possible value of  pM0 .4 Thus under LPLD  

 

 
 
max 0,Pr y0 = M( ) + Pr y1 = 0( )− 2

M+1( ) M+2( )
⎧
⎨
⎩

⎫
⎬
⎭

      (A3.4) 

 

is a valid LB. Under LPLD note that the lower bound (A3.4) will be valid only for  δ ≥ 0 . If  δ < 0  then 

the events  y0 = M  and  y1 = 0  in (A3.4) will include points  y0,y1( )  corresponding to both Δ ≤ δ  and 

Δ > δ . 

 The rightmost column in table 1 shows 
 
LB* Pr Δ ≤ δ( )( )  under LPLD. Invoking LPLD results in 

improvements on the best LBs at  δ = 0  and  δ = 1. Whether such tighter bounds are worth the cost of 

potentially invalid assumptions will depend on particular circumstances.  

																																								 																					
4 To see this set  Pr y0 = j, y1 = k( ) = 0  for all points  y0,y1( )  with  k > j . This leaves at most 

 
M+1( ) M+2( )

2  

points  y0,y1( )  with nonzero joint probability. If all such points have equal joint probability that 

probability would be 
 

2
M+1( ) M+2( ) . Under LPLD this is the largest possible  pM0  and is thus a UB on it. 
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Table 1: 
 
LB* Pr Δ ≤ δ( )( )  and 

 
UB* Pr Δ ≤ δ( )( )  for Weekly Total Days of Vigorous or Moderate 

Exercise Given Season-of-Year Treatment ( y0  is Fall/Winter;  y1  is Spring/Summer)— 
2015 Health Survey of England 

 

δ   
UB* Pr Δ ≤ δ( )( )  

 
LB* Pr Δ ≤ δ( )( )   

LB* Pr Δ ≤ δ( )( )  

under LPLD 
-7 .147 0 0 

-6 .180 0 0 

-5 .240 0 0 

-4 .318 0 0 

-3 .425 0 0 

-2 .556 0 0 

-1 .643 0 0 

0 .946 .303 .421 

1 1 .393 .421 

2 1 .521 .521 

3 1 .635 .635 

4 1 .720 .720 

5 1 .788 .788 

6 1 .827 .827 

7 1 1 1 
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Figure 1: Sample Space, TEs, and Joint Probability Distribution for M=3— 
Blue Dots Indicate  Δ ≤ 0 , Orange Squares Indicate  Δ > 0  
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Figure 2: 
 
LB* Pr Δ ≤ δ( )( )  and 

 
UB* Pr Δ ≤ δ( )( )  for Weekly Total Days of Vigorous or Moderate 

Exercise Given Season-of-Year Treatment ( y0  is Fall/Winter;  y1  is Spring/Summer)— 
2015 Health Survey of England 
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Figure A1: Contrasting Expressions (2.a) and (2.c), M=3,  δ = 0 , and  t = 2 — 
Top and Bottom Panels Correspond to (2.a) and (2.c), Respectively 
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Figure A2: Possible Improvement in 
 
LB* Pr Δ ≤ δ( )( )  from Assuming LPLD— 

 Pr y0 = M( ) + Pr y1 = 0( )  is the Sum of the Blue Dots' 
 
p jk  Plus Twice the Magenta Dot's 

 
p jk  
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