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1. Introduction and Definitions

With count-valued outcomes ye{O,l,...,M} identification of average treatment effects (ATES)

presents no special considerations beyond those involved with continuous outcomes. If features of the
distribution of treatment effects (TEs) are of interest, however, count-valued outcomes raise subtle yet
important considerations beyond those involved with continuous outcomes. Since such outcomes are
encountered often in empirical health research an assessment of how their count-valued nature affects
(partial) identification of treatment-effect distributions seems warranted.

Fan and Park, 2010, (FP) provide key results for partial identification (P1) of TE distributions
with continuous outcomes. This paper shows that a subtlety that can be ignored in the continuous case
must be addressed with count-valued outcomes. Specifically, distinguishing strict from weak inequalities

is essential for defining best bounds on count-valued outcomes' TE distributions. Key is the simple

recognition that Pr(Z < a) =1- Pr(Z > a) holds for continuous but not for count-valued Z.*

The count-valued potential outcomes are y, and y; with Y eV ={0,1,..., M} . M is assumed to

be finite, an assumption made mainly for computational and expositional reasons since most results go

through if V is unbounded. The joint distribution Pr(yo,yl) = Pr(y0 =)y, = k) =Pk has support VxV .
The unobservable TE is A=y, —Y,. It merits noting that the difference that defines TE is a
meaningful one if the Yj have true ratio-scale measures but not if the y;j are arbitrarily-labeled ordinal-

scale outcomes (see Stevens, 1946), the latter encountered often in empirical health research. The support
of the TE distribution FA(S) is T={—M,—(M—1),...,M}. FA(8)= Pr(ASS) is defined as is typical

based on a weak inequality with respect to its support points in T. To illustrate, for M=3 figure 1 depicts

the sample space, TEs, and joint probability distribution. The sum of the blue dots' Pik (0<k<jsM)
equals Pr(A < 8) for 6=0.

The goal is to identify the TE distribution Pr(A < 8) forall 6eT. Pr(A < 8) cannot generally be
point identified—though Pr(A < M) =1 is trivially point identified—but informative Pl may be possible.

Let D denote the binary treatment that gives rise to y, and y, . As is standard the observed outcomes y

are given by y=Dyl+(1— D)yo. Like FP assume that the marginal distributions Pr(yj) are point

! Machado and Santos Silva, 2005, and Manski, 2007 (page 40), raise related considerations in the context
of quantile TEs.



identified from treatments being randomly assigned. Pl of Pr(A < 8) then follows from careful derivation
of its Boole-Fréchet-Hoeffding (BFH) lower and upper bounds (LB, UB) that are based exclusively on

the identified marginal distributions Pr(yj) .

Sections 2 and 3 present the results for LB(Pr(A < 6)) and UB(Pr(A < 8)) respectively. Section

4 presents an illustrative empirical example. Section 5 concludes. To streamline the discussion proofs and

additional discussion appear in the Appendix.

2. Best Lower Bounds on Pr(A < 6)

Let the best LB on Pr(A < 8) be denoted LB*(Pr(A < 6))

Proposition 1:

a. Foreach teV and 8 € T an identifiable LB on Pr(A SS) is
max{O, Pr(y1 < t)— Pr(y0 +0< t)} : (2.a)
b. For each d e T the identifiable best LB on Pr(A < 8) is

LB*(Pr(A < 8)) =max, max{O, Pr(y1 < t)— Pr(y0 +6< t)} . (2.b)

Proof: See Appendix section A.1.

The key finding of this section arises from comparison of expressions (2.a) and (2.b) (note the

strict inequalities in the max{...} arguments' subtrahends) with, respectively,

max{O,Pr(y1 St)—Pr(y0 +6$t)} (2.c)
and

max, ., max{O, Pr(y1 < t)— Pr(y0 +0< t)} . (2.d)

(note the weak inequalities in the max{...} arguments' subtrahends). Expression (2.d) is this paper's

representation of FP's equation (2):



FL(S)=supy(max(F1(y)—Fo(y—S)),O). (FP.2)

With continuous outcomes the distinctions between (2.a) and (2.c) and between (2.b) and (2.d) vanish—

thus rationalizing FP not drawing the distinction in their Lemma 2.1—but with count-valued outcomes

they do not. Thus while (2.d) is an identifiable LB on Pr(A SS) that would arise from applying (FP.2),

(2.b) will in general be a better (indeed best) LB.
So long as both (2.a) and (2.c) are in (0,1) then (2.a) exceeds (2.c) by

Pr(y0 +8 st)— Pr(yO +8 <t) = ZI':A:OPr(yO =t-8,y, = k) (2.€)

for each teV. As such LB*(Pr(ASS)) from (2.b) must be at least as large as (2.d). Since it

corresponds to a fraction ﬁ of the joint sample space the difference (2.e) may be empirically

meaningful, especially when M is not large. Note also that the difference between (2.b) and (2.d) may in

some data turn out to be a difference between a positive (informative) and a zero (uninformative) best LB.

3. Best Upper Bounds on Pr(A < 6)

Let the best UB on Pr(A < 8) be denoted UB*(Pr(A < 6)) .

Proposition 2:

a.Foreach teV and e T two identifiable UBs on Pr(A <) are
1- max{O,Pr(yO St)—Pr(y1St+8)} and (3.2)
1- max{O,Pr(yO <t)-Pr(y, <t+8)} . (3.b)
b. For each § T the identifiable best UB on Pr(A<3) is
UB*(Pr(A < 8)) =1-max,_,, max{o, Pr(y, <t)-Pr(y, <t +5)} (3.c)

=1-max,, max{O,Pr(yo <t)—Pr(y1<t+6)}. (3.d)

Proof: See Appendix section A.2.



Note that UB*(Pr(A SS)) =1- LB*(Pr(A >8)) . One feature of the TE distribution Pr(A SS)

that may be of interest (Mullahy, 2018) is Pr(A > O) =1- Pr(A < 0) . It follows that
LB*(Pr(A>O))= LB*(l— Pr(Aso))zl— UB*(Pr(Aso)). (3.e)

Attention to which inequalities are strict and which are weak is again critical.

4. An lllustrative Example

The 2015 Health Survey of England (HSE) elicits the specific dates in the week preceding a
subject's interview on which the subject engaged in some form of vigorous or moderate exercise (see
Mullahy, 2022, for details on the HSE). Preliminary inspection of the sample suggests that weekly totals
of such exercise days may tend to be greater in spring and summer than in fall and winter. For this
example survey interview dates may plausibly be treated as if randomly assigned. To gauge the "effect"
of season on weekly exercise frequency the treatment D is defined to be one if the interview took place in

the second or third quarter of 2015 (spring and summer, N=3,167) and zero otherwise (winter and fall,

N=3,602). The PI task is to compute the best bounds on Pr(ASS) over the TE distribution support

T={—7,—6,...,7}. The resulting UB*(Pr(ASS)) and LB*(Pr(ASS)) are shown in columns 2 and 3

of table 1 and are depicted in figure 2.2

5. Conclusions
A subtlety that is ignorable when computing bounds on continuous outcomes' TE distributions is

consequential for count-valued outcomes, particularly if M is not large. Obtaining best bounds with

count-valued outcomes is straightforward using this paper's results.® In empirical work LB*(Pr(A < 8))

and UB*(Pr(A < 6)) can be estimated via standard analogy principle methods.
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Appendix

A.1l: Lower Bounds

Proof of Proposition 1— For each 6 T:

Pr(a<8)=Pr(y, -y, <d) (Al.1)
= Pr(y1 <Yo +8) (Al.2)
zPr(ylstSy0+6) forany teV (AL.3)
=Pr(y, <t A t<y,+3) (Al.4)
> max{O, Pr(y1 < t) + Pr(y0 +02> t)—l} (AL1.5)
= max{O,Pr(ylgt)+(1— Pr(yO +6<t))—1} (A1.6)
= max{O, Pr(y1 < t)— Pr(y0 +0< t)} , (AL.7)

where (Al5) is a BFH LB on (Al.4) for any teV , which is a valid LB since Pr(ASS)Z
max{O,Pr(y1 St)—Pr(y0 +0 <t)} and which is identifiable since it relies only the identified marginal
distributions Pr(yj) . This proves part (a) of Proposition 1.

Since (Al.7) is the largest valid bound at each te V (see Intuition below) then the best LB is the

maximum of (Al.7) over te 'V, i.e.
LB*(Pr(A < 8)) =max, max{O, Pr(y1 < t)— Pr(y0 +46< t)} . (A1.8)

This proves part (b) of Proposition 1. m

Intuition— Defining an identifiable best lower bound requires using only information contained in the

marginal distributions Pr(yj) that are identified by assumption. The basic structure of any such bounds

will be based on a difference in marginal probabilities of the sort shown in (A1.8). This can be visualized

in figure A2 for the case of M=3, d=0, and t=2. At t =2 the top panel depicts Pr(yl < t)— Pr(y0 < t)



in expression (2.a) as the sum of the blue dots' Pik minus the sum of the orange squares' Pik - The bottom

panel depicts Pr(ylst)—Pr(y0 st) in expression (2.c) analogously. It is immediately evident that at

t =2 —and, by similar reasoning, for any t eV —(2.a) cannot be smaller and will in general be greater
than (2.c).

Any bound claiming to be a best bound will thus turn out to be the difference in the overall joint

probability of a subset R(+) of the points {(yo,yl)‘A < 6} minus the overall joint probability of a subset

RO of the points {(yo,yl)‘A >6} ,i.e.

Z(yo.yl)eR(+) Pr(yo'yl)_z(yo,yl)eR(i) Pr(yo¥s)- (AL.9)

Such a difference will necessarily be no larger than the overall joint probability of the points in R(+)

which in turn is no larger than the overall joint probability of all the points satisfying {(yo,yl)‘A SS} Ct

is thus a valid lower bound.
To appreciate that (A1.8) is the best such lower bound suppose the possible existence of an even

better (greater) lower bound,

LB**(Pr(A < 6)) = max{o, Pr(A,)- Pr(Ao)} > LB*(Pr(A < 6)) (A1.10)

for events Aj in the marginal distributions Pr(yj). For LB** to exceed LB* it must hold either that (a)
Pr(A,)>Pr(y, <t) (eg. Pr(A,)=Pr(y, <t+k), ke{1.2...}), or that (b) Pr(Ay) < Pr(y,+3<t) (e,
Pr(AO) < Pr(y0 +0 <t—k), ke{l,z,...} ) so that for some index sets S(+) and S(_) defined implicitly by

Pr(A,) and Pr(A,),

Z(yo,yl)eS(+) Pr(yo’yl)_z(yo,yl)es(f) Pr(yo'yl) 2 Z(yo,yl)eR(+) Pr(yo’yl)_Z(yo,yl)eRH Pr(yo’yl) :

(A1.11)

It is straightforward to show, however, that for either (a) or (b) the difference Pr(Al)— Pr(AO) results in



at least one point in {(yo,yl)‘A >6} being included in the index set S(+) in (A1.11) so that LB** cannot

be a valid lower bound since it may exceed Pr(A < 8).

A.2: Upper Bounds

Proof of Proposition 2— For each 6 T:

Pr(a<8)=Pr(y, -y, <d) (A2.1)
=1-Pr(y,~y, >3) (A2.2)
=1-Pr(y, -5>y,) (A2.3)
<1- Pr(yl—éz"’1 t>P yo) forany teV. (A2.4)

If one and only one of the inequalities >? or >0 in (A2.4) is strict then (A2.4) necessarily follows from
(A2.3) since then Pr(yl—é >t> yo) < Pr(yl—S > yo) or Pr(y1—8 >t> yo) < Pr(yl—S > yO) . If neither
of the inequalities >* or >0 in (A2.4) is strict then (2.4) will not necessarily follow from (A2.3). If both

inequalities >? and >0 in (A2.4) are strict then (A2.4) will be too large to serve as the basis of a best UB

relative to other identifiable alternatives. The relevant cases for determining a best UB thus involve one
and only one of >? or >P being strict. It is shown below that UB*(Pr(A SS)) is the same regardless of

which one is strict.

Case 1: >? is strict, > js weak. Then continuing from (A2.4):

1-Pr(y, -8>t2y,)=1-Pr(y, - 8>t A t2y,) (A2.5)
<1- max{O,Pr(yl>t+6)+Pr(t2yO)—1} (A2.6)
=1- max{o,(l— Pr(y, <t+8))+Pr(y, sr)—1} (A2.7)
=1- max{o,Pr(y0 St)—Pr(y1St+6)}, (A2.8)



where (A2.6) is one minus a BFH LB on the subtrahend in (A2.5). This proves expression (3.a) in part (a)

of Proposition 2.

Then:

UB*(Pr(A < 8)) = mintev{l— max{O, Pr(y0 < t)— Pr(y1 <t +6)}} (A2.9)

=1-max,., max{O, Pr(y0 < t)— Pr(y1 <t+ 8)} . (A2.10)
This proves expression (3.c) in part (b) of Proposition 2.

Case 2: > is strict, > is weak. Then continuing from (A2.4):

1-Pry, -82t>y,)=1-Pr(y, - 82t A t>y,) (A2.11)
<1- max{O,Pr(yl2t+6)+Pr(t>yO)—1} (A2.12)
—1- max{o,(l— Pr(y, <t+8))+Pr(y, <t)—1} (A2.13)
=1- max{o,Pr(yO <t)-Pr(y, <t+6)}, (A2.14)

where (A2.12) is one minus a BFH LB on the subtrahend in (A2.11). This proves expression (3.b) in part

(a) of Proposition 2.

Then:

UB*(Pr(A < 8)) = mintev{l— max{O, Pr(y0 < t)— Pr(y1 <t +8)}} (A2.15)

=1-max,., max{O, Pr(y0 < t)— Pr(y1 <t+ 8)} . (A2.16)

This proves expression (3.d) in part (b) of Proposition 2.

The equivalence of (3.c) and (3.d) claimed in part (b) of Proposition 2 can be shown by noting

that Pr(yj <0) =0 and Pr(yj < M) =1 so that the max,_,, operation is essentially running over the same

arguments but offset by one unit. To see this concretely consider M=3 and 6 =0. Then from (A2.10),



max{O,Pr(y0 SO)— Pr(y1 < 0)}
max{O,Pr(y0 Sl)— Pr(y1 Sl) ,

1-max,_, max{0,Pr{y, <t)-Pr{y, <tJp =1-max (A2.17)
om0y <t)-Prly, <1 max{0,Pr(y, <2)-Pr(y, <2)}.
0
since max{O, Pr(y0 < 2) - Pr(y1 < 2)} , Whereas from (A2.16),
0,
max{O,Pr(y0 <1)— Pr(y1 <1)},
tomax o moc{o Pl <0l <t} <im0’ ) ey <o)
max{0,Pr(y, <3)-Pr(y, <3)}
(A2.18)

max{O, Pr(y0 < O)— Pr(y1 < 0)} ,

=1-—max max{O, Pr(yo Sl)— Pr(yl Sl) )

max{0,Pr(y, <2)-Pr(y, <2)}
since max{O,Pr(y0 <0)— Pr(y1 <O)} = max{0,0—O} =0.m

A.3: Tightening Bounds by Invoking Additional Assumptions

As with continuous outcomes it is sometimes possible to obtain tighter bounds if one is willing to

invoke nonverifiable assumptions about features of the joint distribution Pr(yo,yl). As an example of

how such assumptions may come into play with count-valued outcomes suppose one considers as a
candidate LB

Pr(y0 = M)+Pr(y1:0). (A3.1)

The implied overall probability of this sum is depicted in figure A2 where the overall probability (A3.1)

is the sum of the blue dots' Pik plus twice the magenta dot's Pik- Obviously this cannot be a valid LB

because of the double counting of p,,,. Were p,,, known then it could be subtracted from (A3.1) to give

avalid LB,

10



max{O,Pr(y0 = M)+Pr(y1=0)—pM0}. (A3.2)

Absent knowledge of p,,, a valid LB could be obtained as
max{O,Pr(y0 = M)+Pr(y1=0)—UB(pMO)}, (A3.3)

but all that is known without additional assumptions is that p,,, e[O,l], implying UB(pMO) =1, which
is uninformative.

For illustrative purposes suppose one is willing to assume that p;, is non-increasing in j—k for
j=k . That is, larger-magnitude differences ‘A‘ are less likely than smaller-magnitude ones for

nonpositive A. Call this assumption lower probability of large differences, or LPLD. Suppose that in

addition to the bounds described in the paper's section 2 one considers the possibility that the best LB on

Pr(ASS) might be improved by invoking LPLD. Specifically note that under LPLD mﬁm is the

largest possible value of p,,, 4 Thus under LPLD

max {0, Pr(y0 = M) + Pr(y1 = 0)—mﬁm} (A3.4)

is a valid LB. Under LPLD note that the lower bound (A3.4) will be valid only for 6>0. If §<0 then

the events y, =M and y; =0 in (A3.4) will include points (yo,yl) corresponding to both A<$ and
A>39.
The rightmost column in table 1 shows LB*(Pr(A < 6)) under LPLD. Invoking LPLD results in

improvements on the best LBs at =0 and 6 =1. Whether such tighter bounds are worth the cost of

potentially invalid assumptions will depend on particular circumstances.

(M+1)2(M+2)

points (yo,yl) with nonzero joint probability. If all such points have equal joint probability that

probability would be (—f(—j Under LPLD this is the largest possible p,,, and is thus a UB on it.
M+1)(M+2

*To see this set Pr(y0 =)y, = k) =0 for all points (yo,yl) with k> j. This leaves at most
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Table 1: LB*(Pr(A < 8)) and UB*(Pr(A < 8)) for Weekly Total Days of Vigorous or Moderate

Exercise Given Season-of-Year Treatment (y, is Fall/Winter; y, is Spring/Summer)—
2015 Health Survey of England

5 uB*(pr(a<8)) | LB*(pr(a<8)) LB*(pr(a <3))
under LPLD

7 147 0 0

6 180 0 0

5 240 0 0

4 318 0 0

3 425 0 0

2 556 0 0

1 643 0 0

0 946 303 421

1 1 393 421

2 1 521 521

3 1 635 635

4 1 720 720

5 1 788 788

6 1 827 827

7 1 1 1

12



Figure 1: Sample Space, TEs, and Joint Probability Distribution for M=3—
Blue Dots Indicate A <0, Orange Squares Indicate A >0

A=-1
21 Mp, o, ®,, ®,,
Y1
A=-2
11 Mp, @, @, @,
A=-3

Yo
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Figure 2: LB*(Pr(A < 6)) and UB*(Pr(A < 8)) for Weekly Total Days of Vigorous or Moderate

Exercise Given Season-of-Year Treatment (y, is Fall/Winter; y, is Spring/Summer)—
2015 Health Survey of England

75 1

A LB*(Pr(A <8)) ¥ UB*(Pr(A <))
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Figure Al: Contrasting Expressions (2.a) and (2.c), M=3, 6=0,and t=2—
Top and Bottom Panels Correspond to (2.a) and (2.c), Respectively

31 Mp, Wp,
2 . p22 . p32
Y1
1 ®p, ®,,
0 o Py ® Py
0 1 2 3
Yo
31 Mp, W, W p,,
2 . p32
Y1
1 o P3
0 o P3
0 1 2 3
Yo
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Figure A2: Possible Improvement in LB*(Pr(A 38)) from Assuming LPLD—
Pr(y0 = M)+ Pr(y1 = 0) is the Sum of the Blue Dots' Pik Plus Twice the Magenta Dot's Pik

3 o P

2 @),
Y1

1 . p31

Yo
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