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ABSTRACT

Air pollution is known to negatively affect a range of health outcomes.  Wildfire smoke is an 
increasingly important contributor to air pollution, yet extreme smoke events are highly salient and 
could induce behavioral responses that alter health impacts. We combine geolocated data covering 
the near universe of 127 million emergency department (ED) visits in California with estimates of 
daily surface wildfire smoke PM2.5 concentrations and quantify how increasingly acute wildfire 
smoke events affect ED visits. Low or moderate levels of ambient smoke increase total visits by 
1-1.5% in the week following exposure, but extreme smoke days reduce total visits by 6-9%,
relative to a day with no smoke. Reductions persist for at least a month. Declines during extreme
exposures are driven by diagnoses not thought to be acutely impacted by pollution, including
accidental injuries, and come disproportionately from less insured populations. In contrast, health
outcomes with the strongest physiological link to short-term air pollution increase dramatically: ED
visits for asthma, COPD, and cough all increase by 30-110%in the week after one extreme smoke
day. Because low and moderate smoke days vastly outweigh extreme smoke days in our sample,
we estimate that smoke exposure was responsible for roughly 3,000 additional ED visits per year in
CA from 2006-2017.
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Introduction

Extreme weather and air pollution events are known to negatively affect a broad range of health
outcomes. For instance, there is a large body of evidence documenting increases in emergency
department (ED) visits for cardiovascular and respiratory conditions, injuries, infections, and
other conditions exacerbated by environmental stressors during or following heat waves,1–5 hur-
ricanes and other extreme weather,6–8 and intense pollution events.9–18 However, when environ-
mental conditions are sufficiently hazardous, people may alter their behavior in response, and
this avoidance behavior could shape health-seeking behaviors or health risks and, in turn, health
outcomes. Previous work has documented that changes in health seeking behavior lead to fewer
ED visits on snowy days and during hurricanes.6,19–21 At the same time, people may also alter
their behavior in ways that reduce certain health risks. For example, spending more time at home
can reduce time spent driving and lead to fewer car accidents and thus fewer trauma hospitaliza-
tions.22 Changes in ED visits, or any health outcome, following environmental stressors are then
a potentially complex combination of "direct" impacts on health outcomes that cannot be avoided,
and "indirect" impacts from the health or monetary costs that were incurred to avoid the expo-
sure. Comprehensive assessment of the societal impacts of extreme environmental events that
are likely to grow under future climate change,23 requires an accurate accounting of both types of
costs.

Here we focus on understanding health impacts of wildfire smoke, one of the fastest growing en-
vironmental health risk factors in the US and in many other countries. Wildfire smoke events
represent an increasingly common hazard faced by populations across the United States. Recent
estimates suggest that, over the past decade, the number of days with any smoke in the air has
roughly doubled, the number of days with smoke fine particulate matter (PM2.5) > 50µgm−3

has increased by a factor of 12, and the number of days with smoke PM2.5 > 100µgm−3 has
increased by a factor of more than 60.24 Growing evidence has begun to establish the negative
health effects of these exposures, especially for respiratory health.25

At the same time, increasingly extreme wildfire events are also highly salient, inducing observ-
able changes in health-seeking behavior, mobility, and health-protective investments.26 As wild-
fire smoke events become more extreme, these behavioral changes could increasingly shape ob-
served health outcomes. Here we focus on the impact of wildfire smoke exposure on visits to the
ED. Individual decisions to visit the ED balance tradeoffs of the perceived benefits from a visit
to the ED (which grow with more acute conditions such as severe asthma) and the costs, includ-
ing the perceived cost of exposure to extreme smoke. We highlight three channels through which
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wildfire smoke could induce behavioral responses that alter the decision to visit the ED. First, be-
havioral responses could modify exposures. For example, people may remain indoors and turn on
air purifiers, which is likely to ameliorate negative health impacts and reduce the number of ED
visits for conditions exacerbated by air pollution.27,28 Second, environmental conditions could
impact decisions to seek care in the ED.29 People may opt not to visit the ED because they prefer
to stay home (or are encouraged to stay at home by public officials), which could reduce ED visits
regardless of how health is impacted. Third, behavioral responses may affect the probability of
an injury occurring, even if that injury is unrelated to air pollution. For example, when people re-
main home, there is less opportunity to get into a car accident30 but potentially more opportunity
to have a home accident injury.31

While behavioral changes are more likely on the heaviest smoke days, it is less clear how, or if,
behavior will change in response to lower-intensity smoke exposures, which have also become
increasingly common. There is some recent evidence that people respond to wildfire smoke even
at low levels, with increases in internet searches for air quality information and decreases in phys-
ical mobility observable even at low and moderate smoke PM2.5 concentrations.26 However, it
remains unknown whether these changes in behavior are also enough to meaningfully change ex-
posures, injury risk, and/or treatment-seeking behavior among smoke-exposed populations. It
also remains poorly understood the extent to which short-term, low-level smoke exposures have
negative "direct" effects on health outcomes. This combined lack of information renders a com-
prehensive health impact assessment of wildfire smoke very difficult.

We combine data covering the near universe of ED visits in California from 2006-2017, repre-
senting 127 million individual visits to non-federal hospitals, with recently developed spatially
resolved estimates of daily surface PM2.5 concentrations from wildfire smoke. Over the study pe-
riod, both the number (Fig 1a) and rate (Fig S1) of total ED visits has increased over time, though
spatial patterns vary for different primary diagnoses across California (Fig S2). Wildfire smoke
has also been steadily increasing with substantial year-to-year variation (Fig 1c). We aggregate
our data to the zipcode-day level based on the patient’s zipcode of residence. We then estimate
the effect of wildfire smoke intensity on ED visit rates using a panel fixed effects estimator that
exploits local temporal variation in both exposure and outcome. While average wildfire smoke
exposure is related to a suite of characteristics that could plausibly be correlated with ED visit
rates,32 local-level variation in daily exposure is highly random, driven by idiosyncrasies in where
and when fires start and how the wind blows on a given day. Panel estimators that exploit within-
location variation over time – and which are commonly employed in related environmental set-
tings – plausibly isolate the impact of variation in smoke exposure from other time-invariant and
time-varying factors that could be correlated with both wildfire smoke exposure and ED visits. In
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addition to location and day-of-week fixed effects, our model includes month-of-year fixed effects
to account for average seasonality in both ED visits (Fig S3) and wildfire smoke, and wildfire-
season by year fixed effects to control flexibly for trends in both smoke and hospitalizations in
fire- and non-fire seasons. Because both health impacts and the decision to seek treatment can
occur well after the time of exposure, we include up to four weeks of daily lags in our models. To
understand how ED visits respond to different intensities of exposure, we estimate ED visits as
flexible non-linear functions of wildfire smoke PM2.5, using both flexible polynomials and non-
parametric binned models.

Our primary analysis examines how total (i.e., all-cause) ED visits respond to wildfire smoke
events. To distinguish the health impacts of wildfire smoke from the impacts of being close to a
fire, we estimate responses both for the full sample and for the sub-sample of zipcodes far from
active fires that are still affected by wildfire smoke. To better disentangle direct physiologic re-
sponses to smoke from indirect impacts induced by behavioral changes, we then estimate cause-
specific responses where ED visits are grouped by the principal diagnosis associated with each
visit (based on International Classification of Disease groupings). We evaluate whether effects
differ by age and by health insurance status.

We find that moderate smoke concentrations (days with average smoke PM2.5 concentrations in
the 5-15 µgm−3 range) increase total ED visit rates, but extreme smoke concentrations (daily
smoke concentrations > 50µgm−3) substantially decrease ED visits. Responses differ substan-
tially by diagnosis: for most acute respiratory conditions, ED visits increase monotonically scale
with wildfire smoke intensity, whereas for the most common diagnoses in the ED, including ac-
cidental injuries and stomach pain of unknown cause, visits decline at high smoke levels. We
estimate that in the week following a day with 50 µgm−3 of wildfire smoke (99th percentile expo-
sure), ED visits for asthma increase 110%, while visits for accidental injuries decline by 19%.
These competing effects have, to our knowledge, not been directly observed in the pollution-
health literature, although short-term reductions in hospitalizations have been noted in the face
of wildfire smoke33 and during exposure to other environmental stressors such as hurricanes and
snowstorms6,19–21

The overall net impact of wildfire smoke on ED visits is a combination of increasing visits on
low-smoke-intensity days and declining visits on high-intensity days. Because low-intensity
days vastly outnumber high-intensity days in our data, our estimates suggest that wildfire smoke
in California increased total ED visits in every year of our sample, with an average increase of
roughly 3000 additional annual ED visits. This estimated increase represents about a fifth as
many excess ED visits as have been attributed to one of the worst heatwaves in state history (16,166).5
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While precise quantitative statements about the welfare impact of wildfire smoke are challenging
given existing data – e.g. we do not have data with which to price or value the avoidance behavior
– qualitative analysis suggests overall welfare losses from smoke but perhaps ambiguous effects
on very bad smoke days. Individuals derive many benefits from days with no smoke in the air, in-
cluding less need to protect themselves with purifiers or masks, increased enjoyment of outdoor
spaces, and relative ease in seeking medical care. However, seeking medical care can also create
negative externalities, if individuals only pay a portion of the cost of their ED visit and if visits
for non-urgent conditions – which can make up a substantial portion of total visits34,35 – make
treatment of urgent conditions more difficult. At low levels of smoke exposure, we find little ob-
vious evidence of avoidance behavior and clear evidence of an increase in ED visits, relative to
a day with no smoke; on these days, welfare effects are likely negative. On very smokey days,
however, we see a decline in injuries and a reduction in treatment-seeking behavior for a range of
non-urgent symptoms; we also see a substantial increase in respiratory-related visits. The net ef-
fect of these competing channels depends on the relative size of the harm from the increased res-
piratory visits and any long-term harm from medical treatment foregone, relative to the benefits
of a less-crowded ED and a reduction in so-called ‘inappropriate-use’ ED visits. While it seems
plausible that harms from the former outweigh benefits from the latter, further work is needed to
precisely quantify these tradeoffs.

1 Data and empirical approach

1.1 Data

ED data Data on emergency department visits come from California’s Department of Health
Care Access and Information (HCAI) (known as the Office of Statewide Health Planning and De-
velopment (OSHPD) prior to 2021). Our sample of the Emergency Department patient visit level
dataset covers all of the approximately 127 million ED visits that occurred in non-federal facili-
ties in California between January 1, 2006 and December 31, 2017. It does not include visits to
federally run hospitals such as the VA. A summary of total ED visits and visits by ICD grouping
is shown in Fig 1a.

Each record within the data consists of a single visit, also referred to as an outpatient encounter.
Reported ED encounters include only those patients who had face-to-face contact with a provider.
If a patient left without being seen, the patient did not have a face-to-face encounter with a provider
and therefore the ED encounter does not constitute a visit and thus is not included in the data.
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The data do include patients that were admitted to the hospital through the emergency department
but do not include visits to Urgent Care centers or other service outlets not classified as Emer-
gency Departments. For each visit we observe the date of admission, patient characteristics (zip-
code of residence, age at time of service, self-reported race, sex), primary diagnosis, up to 20
secondary diagnoses, and hospital identifier.

For the main analysis we calculated daily zipcode level rates by zipcode of residence for total
ED visits and separately for ED visits by primary diagnosis ICD grouping. To calculate daily
rates we divided the total zipcode count of visits in a given grouping on that service date by the
zip code population from the ACS in that year (see below for additional details). USPS zipcodes
were mapped to ZCTAs and ZCTAs with 0 population were omitted from our sample. In total,
2,710 unique zipcodes of residence appear in our data. After dropping out-of-state zipcodes and
mapping to ZCTAs, we were left with 9,208,683 zipcode (now ZCTA) by day observations corre-
sponding to 2,101 zipcodes and 4,383 days spanning Jan 1, 2006 through Dec 31, 2017.

In addition to all-age all-cause rates and all-age rates by primary diagnosis we also calculated
all-cause rates by age group (0-4, 5-17, 18-34, 25-64, 65+). To calculate daily age-specific rates
for all-cause ED visits we summed the number of visits by age group in each zip-day and then di-
vided by the age-group specific populations derived from the ACS. We do not calculate diagnosis-
specific rates by age-group because the number of visits within each diagnosis by age group bin
are too small to be stable.

We calculated the distance traveled for each visit as the distance from the centroid of the patient’s
residential zip code to the centroid of the zip code where the ED was located. To identify ED clo-
sures we calculated the total number of visits per day at each ED and then assumed any ED with
0 visits on a given date was closed. Distance to nearest open ED was then calculated at the zip-
day level as the distance from residential zipcode centroid to the centroid of the zip code where
the nearest ED open on that date was located.

Each visit in our dataset is associated with a primary diagnosis, which corresponds to a single
ICD code as well as up to 20 secondary diagnoses that each correspond to separate ICD codes.
Over the course of our sample all Emergency Departments in California transitioned from ICD-9
to ICD-10 codes. The transition occurred at different times for different hospitals. The groupings
used here are based on ICD-9 groupings that were then mapped to ICD-10 codes relying primar-
ily on the Centers for Medicare & Medicaid Services General Equivalence Mappings.36 However,
for some outcomes there are no 1-to-1 mappings between ICD-9 and ICD-10. In these cases we
assigned additional ICD-10 codes to match the ICD-9 categories used in effort to avoid discrete
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jumps in diagnosis-specific rates of ED visits across the ICD-9 to ICD-10 transition. The ICD-9
and ICD-10 codes corresponding to each grouping used in the analysis are listed in the Supple-
ment. Note that our main finding that all-cause ED visits decline at high smoke levels does not
rely on the patient’s diagnosis and thus is not influenced by ICD code groupings.

To calculate ED visit rates, we divide zipcode-day visits by zip level population. Single year an-
nual zipcode population estimates are not available, so we rely on the 5-year averages derived
from the American Community Survey (ACS) with the middle year in the running 5-year period
corresponding to the year of the ED visit. For example, we estimate 2012 population for a given
zipcode as the 5-year average population corresponding to that zipcode from 2010-2014 derived
from the ACS. In addition to time-varying zipcode populations, average all-age and age-group
specific zipcode populations across the sample period were calculated and used as regression
weights for the corresponding regressions.

Wildfire smoke Estimates of smoke exposures come recently released estimates of daily wild-
fire smoke PM2.5 concentrations for 10x10km2 grid cells across the contiguous United States.
These daily wildfire-driven PM2.5 concentrations were derived with a machine learning model
that used a combination of ground, satellite, and reanalysis data sources as inputs and was trained
on daily estimates of wildfire smoke PM2.5 concentrations at EPA pollution monitors.24 The
model was optimized to predict within-location variation in smoke PM2.5 over time which is im-
portant given our empirical approach relies on temporal rather than spatial variation in smoke ex-
posures to estimate impacts. One limitation of the estimated smoke PM2.5 concentrations is that
there are no associated uncertainty estimates so we are unable to formally incorporate uncertainty
in exposure measurement into our statistical models of impacts.

To assign exposures to each zipcode (ZCTA) day from 2006-2017 we calculated the population
weighted average smoke PM2.5 concentration across grid cells using population data from the
Gridded Population of the World (GPW), v4.37 A summary of the data is shown in Fig 1c-d.
On average, zipcodes in our sample experienced 30.4 days with smoke per year. Among those
smoke-days, nearly half were associated with low smoke PM2.5 concentrations (0-5 µgm−3).
Another 38% of smoke-days were associated with moderate smoke PM2.5 concentrations (5-25
µg/m−3) and 12% of smoke-days were associated with smoke PM2.5 concentrations above 25
µgm−3 .

Additional covariates In some specifications, we include daily temperature and daily rainfall as
covariates. Daily temperature and rainfall were derived from PRISM38 which estimate daily min
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and max temperature and total rainfall for 1km2 grid cells across the United States. Following the
procedure used to process smoke PM2.5 data, we calculated daily population weighted averages
across grid cells to derive zipcode by day averages. Population weights were derived from using
population data from the Gridded Population of the World (GPW), v437 by resampling popula-
tions to the PRISM grid and taking pop-weighted averages of daily temperature and rainfall at the
zipcode by day level.

To assess whether our estimated impacts are in fact due to smoke exposure or due to proximity to
fire itself, we estimate and control for zip code distance to active fires. Our estimates for distance
to active fire come from previous work32 and are calculated the distance from zipcode centroid
to the center of the nearest active fire point cluster each day. Fire point clusters are spatially con-
centrated groups of pixels identified using remotely sensing data from MODIS as having ongoing
burning on that day. The purpose of clustering identified fire pixels rather than using every indi-
vidual pixel identified as having fire is to distinguish active wildfires from other events that looks
similar in the MODIS fire data. See ref32 for details on the clustering algorithm used to identify
groups of pixels found to best represent active wildfires.

For heterogeneity analysis, we include additional demographic and socioeconomic data from
ACS. Five year averages from the American Community Survey covering 2011-2015 were used
to represent average community-level characteristics across our 2006-2017 sample. Zipcode level
average insurance coverage rates and income were derived from ACS variable B27015: ‘Health
insurance coverage status and type by household income in the past 12 months’). This variable
provides population counts by insurance status and income group. To derive population counts
by health insurance coverage status we summed across income groups and to derive population
counts by income group we summed across health insurance coverage status. Population counts
were then used to derive population shares for each sub-group.

A similar approach was used to characterize the population not speaking English (ACS variable
B06007: ‘Place of birth by language spoken at home and ability to speak English in the United
States’). This variable provides population counts for people who speak English “less than ‘very
well’" separately by the primary language spoken at home and origin (native/non-native). To es-
timate the share of the population that speaks English less than ‘very well’, sub-populations were
summed across places of birth and languages spoken at home to derive the total number of people
that “‘speaks English less than ‘very well’". These totals were then used to calculate proportion
of the population

These zipcode level average community characteristics were used either to stratify regressions
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(in the case of health insurance) or merely in a descriptive manner to help characterize the pop-
ulations stratified by health insurance coverage rates (language ability, income) as shown in Fig
S12.

1.2 Empirical approach

We model daily zipcode ED visit rates as a function of wildfire smoke on the day-of-visit and on
days leading up the ED visit. Specifically we estimate ED visit rates per 100,000 people (y) in
zipcode z in county c on date d and day-of-week w as a function of wildfire smoke and controls.

yzcdw =
L∑
l=0

βlf(smokezcw,d−l) + αXzcdw + δz + θcm + ηys + ωw + εzcdw (1)

Fixed effects at the zipcode level account for time-invariant differences across space (δz ), at the
year by season level account for trends in exposure and outcomes over time (ηys), at the county by
month level account for regional seasonality in exposure and outcomes (θcm) and at the day-of-
week level account for weekly cycles in ED visits (ωw). The motivation for allowing time trends
to vary separately by wildfire season (May - October) and non-wildfire season is that there is ex-
treme seasonality in certain diagnoses such as respiratory infections (Fig S3) and the conditions
that drive high rates of infection are likely to vary over time and may be (likely negatively) cor-
related with conditions that influence the intensity of the wildfire smoke season. By allowing the
wildfire and non-wildfire trends to vary separately we account for trends in non-wildfire season
conditions that are important drivers of winter-time conditions like influenza.

Effects are calculated from OLS regression estimates of Equation (1) with various non-linear
functional forms for f(smokezcw,d−l) considered including binned specifications, splines, and
higher order polynomials. Our main specification (shown in Fig 2) is a 4th degree polynomial
with 7 lags (day of visit plus seven additional daily lags for a total of eight terms per coefficient),
i.e.:

f(smokezcw,d−l) =
7∑

l=0

(
β1,lsmokezcw,d−l + β2,lsmoke2zcw,d−l + β3,lsmoke3zcw,d−l + β4,lsmoke4zcw,d−l

)
(2)

9



To derive the cumulative response of wildfire smoke, we sum the coefficients for each polynomial
degree across the day of visit and 7 additional lags. For example, β1 is estimated as

∑7
0 β1,l, β2

is estimated as
∑7

0 β2,l, and so on. The interpretation of the cumulative effect at, for example, a
smoke PM2.5 concentration of 25 µgm−3 is the effect of a day of smoke PM2.5 at 25 µgm−3 on
the total number of additional ED visits in the following 8 days (day of smoke plus seven addi-
tional days) relative to a day with no smoke PM2.5. Confidence intervals for the polynomial spec-
ification shown in Fig 2a are derived by bootstrapping the equation 1,000 times where we sample
zipcodes with replacement with probability proportional to their population.

The decomposition by diagnosis shown in Fig 2b is derived using the same approach described
above but from separate regressions for each of the 14 diagnoses. For each smoke PM2.5 concen-
tration responses for individual diagnoses are then divided into positive or negative effects, sorted
by magnitude, and plotted on top of each other. To account for multiple hypothesis testing we
apply the Bonferroni correction to diagnosis specific associations. For example, because we ana-
lyze 14 different primary ICD groupings, the estimated 95% confidence intervals for for diagnosis
specific associations (Fig S6) correspond to α = 0.05/14.

We also estimate a binned version of Eq 1 by dividing daily smoke PM2.5 concentrations into dis-
crete bins and then estimating separate coefficients for each bin. This binned specification takes
the form:

yzcdw =
7∑

l=0

(
B∑
b=1

β1,lsmokeBIN b
zcw,d−l

)
+ αXzcdw + δz + θcm + ηys + ωw + εzcdw (3)

where smokeBIN b
zcw,d−l is a dummy for whether smoke PM2.5 in zip z and county c on day of

week w and date d − l falls into the range of bin b. The main binned specification divides smoke
PM2.5 concentrations into five bins corresponding to smoke PM2.5 ranges of 0-5 (not inclusive of
0), 5-10, 10-25, 25-50, and > 50 µgm−3 . These cutoffs were selected to correspond to approxi-
mately the 50th, 75th, 90th, 95th, and 99th percentile of the smoke PM2.5 distribution (Fig 1d).
Additional versions of equation (3) are also estimated by alternatively dividing smoke PM2.5 into
6 equally spaced 10 µgm−3 bins (0-10, 10-20, 20-30, 30-40, 40-50, >50) or by dividing smoke
PM2.5 into equally spaced 25 µgm−3 bins (0-25, 25-50, > 50). Results for all versions of the
binned specifications are shown in Fig S4a. To derive the cumulative response across multiple
days for the binned models we sum the coefficients for each bin across all lags.
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Quantifying heterogeneity For cause- and age-specific regressions, we estimate Eq 3 sepa-
rately for each ED visit rate. For cause-specific analysis, we evaluate the hypothesis that wild-
fire smoke increases ED visits for a given cause across numerous outcomes. To account for these
multiple hypotheses we implement a Boneforroni correction to calculate adjusted 95% confidence
intervals corresponding to Eq 3. Namely, we first estimate the standard errors for the sum of each
bin’s coefficients across lags (clustered at the zipcode level) and then we use these standard errors
to calculate confidence intervals with α = 0.5

n
where n reflect the number of outcomes. We then

refer to the confidence intervals as Bonferroni-adjusted 95% confidence intervals. For example,
the 95% confidence intervals shown in Fig S6 are calculated as β̂ ± Φ(0.025/14) ∗ ŝe.

Because we do not observe insurance status at the individual level, we cannot calculate ED visit
rates specific to the insured (or uninsured) population. Instead, we divide zipcodes into terciles
based on the average percentage of the population that has health insurance during our sample as
reported in the American Community Survey. We then estimate Eq 3 separately for each subset
of zipcodes. This approach allows us to estimate separate responses by insurance coverage status.
However, average health insurance coverage rates are correlated with a suite of other factors (Fig
S12) that we cannot empirically disentangle. Thus, we interpret the stratification by insurance
coverage as a measure of vulnerability that includes insurance coverage and correlated factors.

Estimating ED Visits Attributable to Ambient Wildfire Smoke To estimate the number of
ED visits attributable to wildfire smoke, we utilize the response curve shown in Fig 2 which cor-
responds to a regression estimate of Equation 2 and multiply β1 − β4 by observed smoke PM2.5

estimates for each zipcode-day. Evaluating the estimated coefficients at observed smoke PM2.5

levels produces estimates of the change in all-cause ED visit rates for each zipcode and day. We
then scale these estimated rate changes by the population in each zipcode at the time and sum
across zipcodes and days in each year. The output of this calculation is an annual estimate of ad-
ditional ED visits statewide encompassing visits in the 7 days following every observed event
2006-2017. To estimate 95% confidence intervals on estimated attributable ED visits we follow
the same bootstrapping procedure (described above) that was used to estimate confidence inter-
vals on the response curve shown in Fig 2. Results of this estimation are shown in Fig S13.
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2 Results

We find that total (all-cause) ED visit rates increase in response to low or moderate intensity
wildfire smoke but decline in response to heavy smoke (Fig 2a). We estimate the largest posi-
tive effects on total ED visits when wildfire smoke PM2.5 is in the 5-15 µgm−3 range (for context
average non-smoke PM2.5 in California is 9 µgm−3 and the EPA 24-hour standard for total PM2.5

is 35 µgm−3). At this intensity, total ED visits increase by an average of 0.9 additional daily vis-
its per 100,000 (95% CI: 0.6-1.2) in the week following wildfire smoke. This change represents
a 1.1% increase over the sample baseline rate of 75.3 ED visits per 100,000. We find that the re-
sponse of total ED visits to wildfire smoke peaks at 10 µgm−3 of smoke PM2.5 (88th percentile
in our data) and declines thereafter becoming negative for smoke PM2.5 >20 µgm−3 (95th per-
centile smoke intensity). At smoke PM2.5 = 50 µgm−3 (99th percentile) we estimate that total
ED visits are lower by 7.3 visits per 100,000 (95% CI: 5.6-9.1) relative to a day in the same zip-
code without wildfire smoke, a 9.8% decline in ED visits. The shape of the all-cause ED visits
response is remarkably robust to modeling choices with respect to functional form, lag structure,
fixed effects, controls, and weighting schemes (Fig S4).

The observed dose-response of total ED visits to wildfire smoke is the net of diagnosis-specific
increases and decreases. Both the magnitude of the diagnosis-specific responses and the base-
line frequency of visits for that diagnosis influence each diagnosis’s contribution to the overall
response. Fig S5 shows the frequency of ED diagnoses across our entire sample. The most com-
mon reasons people visit the ED in our sample include accidental injuries, symptoms such as
cough or stomach pain of unknown cause, and respiratory conditions including respiratory tract
infections (RTI) and asthma.

We find that responses of ED visits to wildfire smoke different substantially by diagnosis (Fig 2b,
Fig S6). For most acute respiratory conditions we find increasing ED visits that monotonically
scale with wildfire smoke intensity (Fig S7). The strongest responses are observed for asthma,
COPD, and respiratory symptoms without a specific diagnosis (e.g., shortness of breath, cough),
all of which increase by more than 30% in the week after an extreme smoke day, relative to a day
without smoke (Fig 3). In contrast, for the most common diagnoses in the ED, most of which are
not thought to be directly exacerbated by pollution exposure, visits decline at increasingly ex-
treme smoke exposures; these declines more than offset respiratory increases and lead to an over-
all decline in total ED visits at extreme daily smoke concentrations. This is true even after limit-
ing our sample to zipcodes far from active fires and controlling for ED closures, suggesting that
the observed changes are driven by individual-level responses to smoke (Fig S4) and not individ-
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ual responses to nearby fires or changes in the supply of available care. Results are also robust
to including up to a month of lags of our smoke variable, reducing the likelihood that an extreme
smoke day is simply displacing non-smoke-related visits to a later day. Our results for ED visits
with principal diagnoses related to the circulatory system have wide confidence intervals and we
observe no clear response of ED visits for these causes to wildfire smoke (Fig 3).

In absolute terms, the most common ED visit diagnoses see the largest declines in response to
heavy wildfire smoke. However, the relative contribution of different diagnoses varied by smoke
intensity (Fig S8). This pattern is seen both in aggregate and on a smaller scale within the most
frequent principal diagnosis category, ‘symptoms’. Within this diagnosis grouping, ED visits
for non-respiratory symptoms like abdominal pain or digestive discomfort decline in response
to smoke while ED visits for respiratory related symptoms (classified as symptoms because they
are not diagnosed to have a specific cause like asthma or COPD), including cough and shortness
of breath, increase with wildfire smoke intensity (Figs 3 and Fig S9). At lower smoke intensities
the increases in visits for respiratory symptoms generate an increase in the overall symptoms cat-
egory, but as smoke intensity increases the decline in visits for non-respiratory symptoms dom-
inates. As a result, fewer visits for issues like stomach pain become a large part of the decline in
ED visits for symptoms, and in turn, total ED visits.

The largest contributor to the estimated decline in total ED visits at high wildfire smoke inten-
sities is fewer visits for accidental injuries (Fig S8), with declines observed for several different
types of injuries (Fig S10) including both more urgent (fractures) and less-urgent (superficial in-
juries) conditions (Fig 3). We estimate that in the week following a day with 50 µgm−3 of wild-
fire smoke (99th percentile exposure), ED visits for accidental injuries decline by 19% (95% CI:
9-30%) with visits for sprains, contusions, fractures, wounds and superficial injuries each esti-
mated to decline by 15-25%.

Responses also differ by age and by health insurance coverage, both of which influence baseline
ED utilization (young children and uninsured populations visit the ED at relatively higher rates in
our data - see Fig S11 and Fig S12c). While the increases in total ED visits in response to low
and moderate smoke levels are driven largely by additional visits for children under 5, the re-
duction in ED visits at high smoke intensities is driven primarily by reductions in visits among
adults 18-64 and, to a lesser extent, people over 65 (Fig S11). We find that the reduction in ED
visits for diagnoses that drive the observed decline at high smoke intensities, such as accidental
injuries and general symptoms, are largest in the least-insured zipcodes. For example, we esti-
mate that among less insured populations, ED visits for symptoms strongly decline in response to
high intensity wildfire smoke while populations with high levels of insurance coverage exhibit no
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changes (Fig 4a). In contrast, for diagnoses with the most clear physiological linkages to wildfire
smoke like asthma, we find that ED visits increase similarly across groups regardless of zipcode-
level insurance coverage (Fig 4b).

The overall net impact of wildfire smoke on ED visits is a combination of increasing visits on
low-smoke-intensity days and declining visits on high-intensity days. Because low-intensity days
vastly outnumber high-intensity days in our sample (see histograms, Fig 2), our estimates sug-
gest that wildfire smoke in California increased total ED visits in every year of our sample (Fig
S13). Estimated annual increases attributable to wildfire smoke range from a low of 975 addi-
tional visits in 2010 (95% CI: 727-1,270) to a high of 6,195 additional visits in 2016 (95% CI:
2,566-8,615). On average across our sample, we estimate that wildfire smoke is responsible for
3,010 additional annual ED visits across California (95% CI: 1,760-4,380).

Discussion

Our results are broadly consistent with previous findings that ED visits for acute respiratory con-
ditions increase following exposure to wildfire smoke.9–18 In addition, we find evidence that ED
visits for other conditions including general symptoms increase under low or moderate intensi-
ties of wildfire smoke. Collectively these impacts lead to increasing effects on total ED visits in
the week following low or moderate exposure. However, when ambient wildfire smoke concen-
trations exceed 20 µg/m3 (95th percentile smoke intensity in our sample), we find ED visit rates
actually decline for many causes not typically directly linked to air pollution exposure, such as
accidental injuries, abdominal pain, and digestive discomfort. While directly impacted conditions
like respiratory symptoms steadily increase at higher wildfire intensities, these ailments represent
a small fraction of total ED visits. For example, respiratory and cardiovascular diagnoses com-
bined account for less than 1 in 5 principal diagnoses in our sample and thus any increases in the
rates of these diagnoses at high smoke intensities are dominated by the accompanying decreases
in more common outcomes resulting in a net decline in total ED visits. These competing effects
have, to our knowledge, not been directly investigated in the pollution-health literature, although
short-term reductions in hospitalizations have been noted in the face of wildfire smoke33 and dur-
ing exposure to other environmental stressors such as hurricanes and snowstorms6,19–21

There are several potential mechanisms that could lead to fewer ED visits under extreme pollu-
tion conditions, including individuals being less likely to seek care, individuals changing their
behavior in ways that alter their pollution exposure and/or alter their risk for non-pollution-related
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injury, or interruptions in the "supply" of care if individuals who are proximate to fires cannot ac-
cess care due to emergency department closures. We find limited evidence that proximity to fire
amplified the response of ED visits to smoke, suggesting that alterations to the supply of medi-
cal services are unlikely to be driving our results. Similarly, we do not find strong evidence that
behavioral changes are effectively limiting smoke exposures: ED visits for respiratory conditions
increase steadily as ambient smoke concentrations worsen. This increase is consistent with ear-
lier findings of substantial infiltration of wildfire smoke into indoor residential environments,26

suggesting that staying at home is not sufficiently protective to avoid health impacts.

Our findings do suggest that alterations to health-seeking behavior and behaviorally-induced
changes in risks for non-pollution-related injury are critical determinants of smoke impacts. ED
visits for superficial injuries and non-acute symptoms decline following intense wildfire smoke
and do not rebound over the next month, suggesting individuals are often foregoing treatment
for non-urgent conditions. Similarly, ED visits for fractures, traumatic injuries, and other severe
injuries also decline following heavy smoke days and do not rebound, suggesting that reduced
opportunity for injury also plays an important role. These findings are consistent with earlier ev-
idence that found that on days with wildfire smoke PM2.5 > 50µgm−3, the number of people
who never leave their homes increases by approximately 10%.26 The share of people who leave
home briefly but still remain home for a higher than normal portion of the day is likely to be even
higher.

Available evidence regarding which age groups are most vulnerable to respiratory impacts from
wildfire smoke is mixed.25 Consistent with our hypothesis that responses are strongest among
sub-groups that utilize the ED more frequently, our age-specific results suggest that children un-
der 5 comprise the largest portion of observed increases in ED visits following smoke exposure.
Our results of similar magnitude increases in ED visits for asthma but differential decreases in
ED visits for symptoms and injuries across insurance terciles suggests that while population-wide
health, particularly among children, is negatively impacted by wildfire smoke, the overall decline
in ED visits at high smoke intensities is driven at least in part by changes in behaviors among
vulnerable populations for whom the ED may play a more prominent role as a healthcare service
provider. While we focus here on insurance coverage, which may directly influence ED utilization
(share of population with insurance coverage is negatively correlated with ED visit rates in our
data), this measure is also highly correlated with other factors that might influence the relation-
ship between wildfire smoke and ED visit rates including income, share of population that speaks
English less than ‘very well’, and frequency of ED visits and we are not able to disentangle the
effects of being insured from other co-varying factors (Fig S12).
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Despite the declines in ED visits at high smoke intensities, we find that wildfire smoke increases
total ED visits overall. Our estimated response curve indicates that total ED visits increase fol-
lowing exposure to wildfire smoke PM2.5 ≤ 20 µgm−3 but decline in response to higher smoke
intensities. However, only 5% of smoke-days have smoke PM2.5 > 20µgm−3. Given there are
more than 10 million ED visits per year in California, smoke induced ED visits represent a small
fraction of total ED visits. However the contribution of wildfire to ED visits for certain diagnoses
such as asthma are likely to be substantially higher. Moreover, the totals for all-cause ED visits
would be higher absent the behaviorally induced declines under the most extreme conditions. Our
attributed increase in ED visits in CA due to wildfire smoke in an average year (3,010) represents
about a fifth as many excess ED visits as have been attributed to one of the worst heatwaves in
state history (16,166).5

While precise quantitative statements about the welfare impact of wildfire smoke are difficult
given existing data – e.g. we do not have data with which to price or value the avoidance behavior
– qualitative analysis suggests overall welfare losses from smoke but perhaps ambiguous effects
on very bad smoke days. Individuals derive many benefits from days with no smoke in the air,
including less need to protect themselves with purifiers or masks, increased enjoyment of out-
door spaces, and relative ease in seeking medical care. However, seeking medical care can also
create negative externalities, if individuals only pay a portion of the cost of their ED visit and if
visits for non-urgent conditions – which can make up a substantial portion of total visits34,35 –
make treatment of urgent conditions more difficult. At low levels of smoke exposure, we find lit-
tle obvious evidence of avoidance behavior and clear evidence of an increase in ED visits, relative
to a day with no smoke; on these days, welfare effects are likely negative. On very smoke days,
however, we see a decline in injuries and a reduction in treatment-seeking behavior for a range of
non-urgent symptoms; we also see a substantial increase in respiratory-related visits. The net ef-
fect of these competing channels depends on the relative size of the harm from the increased res-
piratory visits and any long-term harm from medical treatment foregone, relative to the benefits
of a less-crowded ED and a reduction in so-called ‘inappropriate-use’ ED visits. While it seems
plausible that harms from the former outweigh benefits from the latter, further work is needed to
precisely quantify these tradeoffs.

There are a number of potential limitations to our approach. First, our unit of analysis is the zip-
code day and thus our exposure metric could be subject to mismeasurement, particularly for zip-
codes whose residents typically spend substantial time outside of their home zipcode. The extent
and impact of mismeasurement on parameter estimates depends on the spatial covariance of ex-
posure and whether work-related mobility is systematically related to daily wildfire exposure. As
earlier work demonstrates strong spatial covariance in exposure (i.e. nearby areas are exposed
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similarly) and that individuals are more likely to remain in their residence on smoky days,26 we
believe that the impact of this mismeasurement is likely small. Second, our exposure measure
reflects ambient conditions and thus does not account for variation in how much ambient pollu-
tion filters indoors. Observed differential effects across zipcodes could be partially explained by
systematic variations in the extent to which ambient wildfire smoke enters homes,26 which could
itself be further correlated with ED visit rates, though the direction and magnitude of these differ-
ences is difficult to predict and a critical area for future work. Third, our wildfire smoke measure
is modeled and we do not have uncertainty measures to propagate through our statistical analysis,
and thus confidence intervals in our outcomes models might be too small; this is a common chal-
lenge in the rapidly growing set of studies that use modeled pollution exposure data to estimate
dose-response functions. Fourth, our exposure metric characterizes PM2.5 from wildfire smoke,
not total PM2.5, and marginal effect of smoke PM2.5 may differ across levels of non-smoke PM2.5.
Fifth, while we observe detailed individual level ED visit data, we do not observe direct measure-
ments of injury severity which could allow us to better assess which behavioral mechanisms drive
the observed reduction in visits at high smoke intensities. Sixth, we also do not observe visits to
urgent care centers or drop-in clinics and thus cannot assess the extent of substitution from ED
utilization to other types of healthcare providers.

Wildfire smoke pollution is an increasingly important environmental hazard throughout much
of the US and globally. Our work contributes to an increasingly large body of evidence on the
negative impacts of wildfire smoke on health. As our ED data end in 2017, we are unable to mea-
sure the impacts of the more widespread extreme smoke exposures that occurred in 2018, 2020,
and 2021. Further tracking the impact of these exposures will be critical to understanding and
adapting to a warming climate, which is expected to make such exposures increasingly common
throughout much of the US in coming years.
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Figure 1: Data Summary. a Annual total ED visits in California 2006-2017 broken down by
primary diagnosis (see Supplement for ICD codes corresponding to each group). b Sub-group
breakdown for relevant diagnoses. Black labels indicate broader categories while white labels in-
dicate sub-categories. c Annual wildfire smoke frequency in California showing the population-
weighted average number of days across the state with wildfire smoke separately by smoke in-
tensity. d Histogram of smoke PM2.5 concentration on days with smoke present. Nearly half of
smoky days 2006-2017 had smoke PM2.5 less than 5 µgm−3 while 5% of smoky days had smoke
PM2.5 over 50 µgm−3.
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Figure 2: All-cause ED visits increase with additional exposure to moderate levels of smoke
pollution but decline dramatically on the most extreme days. a The estimated all-cause re-
sponse is derived from a zipcode level distributed lag regression model of daily ED visit rates on
a 4th degree polynomial of wildfire smoke intensity measures for the 7 days prior through day-
of visit (Equation 2). Coefficient estimates at each level of smoke intensity were summed across
lags to estimate the total effect of an additional day at a given exposure intensity on ED visits in
the following week. Shaded area indicates bootstrapped 95% confidence interval. Histogram at
the bottom shows the distribution of smoke intensity across smoke-days. b Responses separated
out by primary ICD grouping associated with the principal visit diagnosis. Each response comes
from a different regression with that group of ED visits as the outcome in Equation (2). The all-
cause response estimated from a separate regression and shown in panel a is plotted in black and
reflects the net effect of positive and negative impacts associated with different diagnoses.
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Figure 3: Responses to wildfire smoke vary by smoke intensity, whether diagnosis is directly
exacerbated by pollution, and behavioral mechanism. Responses shown in terms of percent-
age change relative to base rate for select diagnoses with primary ICD groupings in the left panel
and select sub-category groupings in the right column. Responses are shown for all primary
groupings in Fig S6 and for additional sub-groupings in Fig S7, S9-S10. The response in each
panel comes from a different binned regression where ED visits with a given principal diagnosis
are the outcome. Acronyms in labels: COPD = Chronic obstructive pulmonary disease, IHD =
ischemic heart disease.
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Figure 4: Declines in ED visits for general symptoms at high smoke PM2.5 come primarily
from reductions in visits by less insured populations whereas increases in ED visits for res-
piratory conditions occur regardless of insurance coverage. Large panels show population-
wide responses and small panels show responses estimated in separate regressions subsetting to
zipcodes in the bottom, middle, or top tercile of insurance coverage rates. Responses are plotted
as percentage changes from group-specific base-rates.
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Supplemental information

Figures

Figure S1: Trend in ED visit rates over time. Population-weighted average daily ED visit rates
across months of our sample.

Figure S2: Spatial patterns of ED visits. Left panel shows spatial distribution of average zip-
code level rates for all-cause ED visits. Right panels show average rates by primary diagnosis.
Areas not covered by zip codes are filled in with county-level averages. All maps are colored ac-
cording to visit rate quantiles in order to highlight the spatial distribution.
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Figure S3: Seasonality in ED visits by primary diagnosis. Each panel shows the population
weighted month-of-year average daily ED visit rate for a principal diagnosis grouping. Panels are
sorted from most (symptoms) to least (poison) frequent diagnosis. To highlight the seasonality in
diagnoses with widely varying rates, the vertical axes vary across panels. To quantify the impor-
tance of seasonality the maximum-minimum ratio (mmr) is calculated for each diagnosis group
as the ratio of the rate in the highest month to the rate in the lowest month and shown in the panel
text. Seasonality is largest in ED visits for respiratory conditions with the maximum-minimum
ratio (2.5) nearly twice as large as for the next most seasonal condition (poisonings = 1.4). All re-
maining diagnosis groupings exhibiting smaller month-to-month variation.
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Figure S4: Estimated response is robust to model functional form choice. The estimated re-
sponse of total ED visits to wildfire smoke is shown across different smoke intensity functional
forms, choice of fixed effects, lag structures, and with inclusion of different controls. The choices
for each dimension used in the main specification are shown in the panel subtitles. (Top left) Re-
sults are similar across binned and polynomial specifications. (Top right) Results shown across
different choices of fixed effects (cty = county, dow = day-of-week, moy = month-of-year, mos =
month-of-sample). (Middle left) Response shape is robust to inclusion of additional lags out to
as far as 4 weeks. (Middle right) Response shape is robust to inclusion of non-smoke PM2.5, dis-
tance traveled to ED, subsetting the sample to different distances away from active fires, and to
dropping all covariates beyond wildfire smoke PM2.5. (Bottom Left) Poisson model of ED visit
counts estimated separately for both 4th degree polynomial and binned specifications of smoke
PM2.5.
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Figure S5: Proportion of ED visits in California by primary diagnosis. Figure shows the
breakdown of primary diagnoses by group and sub-group (analogous to Figure 1b) for all visits
in California 2006-2017. Black labels indicate first-level categories and white labels indicate sub-
categories.
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Figure S6: Average cumulative effects of wildfire smoke on ED visit rates by principal di-
agnosis ICD grouping 2006-2017 for the 14 primary ICD groupings. Each response comes
from a different regression estimated where the number of visits with a given principal diagno-
sis is the outcome. All models are specified as binned models with the same controls used in our
main specification. To account for multiple hypothesis testing we apply the Bonferroni correc-
tion. Confidence intervals therefore reflect α = 0.05/14. Base rates shown are daily population
weighted average ED visits per 100,000 people with that outcome as the primary diagnosis.
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Figure S7: Cumulative effects of wildfire smoke on ED visits for different types of respira-
tory conditions. The response in each panel comes from a different binned regression where
ED visits with a given principal diagnosis are the outcome. Shaded areas indicate Bonferroni-
corrected 95% confidence intervals. ICD groupings correspond to Figs 1b and S5 and all ICD
codes corresponding to each grouping are listed in the supplement. Base rates shown are daily
population weighted average ED visits per 100,000 people with that outcome as the primary di-
agnosis. Acronyms in labels: RTI = respiratory tract infection. URI = upper respiratory infection.
Note, as illustrated in Fig 1b, that URI, bronchitis, pneumonia, and influenza are sub-types of
RTIs.
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Figure S8: Contributions of different diagnoses to estimated changes in ED visits in re-
sponse to wildfire smoke. Each panel highlights which diagnoses the estimated increases and
decreases in ED visits in response to wildfire smoke come from that are shown in Fig 2b. Top
panel shows when smoke PM2.5 is 10 µg/m−3 ED visits for most diagnoses increase, with 28%
of the increase coming for visits for undiagnosed symptoms. Only accidental injuries and infec-
tions show declines in ED visits with most of the decline coming from injuries. At high smoke
PM2.5=50µg/m−3 (bottom panel) only ED visits for respiratory conditions increase. Visits for all
other diagnoses decline.
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Figure S9: Cumulative effects of wildfire smoke on ED visits for different symptoms. The
response in each panel comes from a different binned regression where ED visits with a given
principal diagnosis are the outcome. Shaded areas indicate Bonferroni-corrected 95% confidence
intervals. ICD groupings correspond to Figs 1b and S5 and all ICD codes corresponding to each
grouping are listed in the supplement. Base rates shown are daily population weighted average
ED visits per 100,000 people with that outcome as the primary diagnosis. Acronyms in labels:
CVD = cardiovascular system.
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Figure S10: Cumulative effects of wildfire smoke on ED visits for different types of acciden-
tal injuries. The response in each panel comes from a different binned regression where ED vis-
its with a given principal diagnosis are the outcome. Shaded areas indicate Bonferroni-corrected
95% confidence intervals. ICD groupings correspond to Figs 1b and S5 and all ICD codes cor-
responding to each grouping are listed in the supplement. Base rates shown are daily population
weighted average ED visits per 100,000 people with that outcome as the primary diagnosis.
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Figure S11: All-cause ED visit response to wildfire smoke by age group. The cumulative ef-
fects of wildfire smoke on all-cause ED visits for different age groups. Results come from five
different regressions, one for each age group, with age specific zip by day ED visit rates as the
outcome. Regressions are weighted by the group-specific zip code population. Responses show
the cumulative impact of wildfire smoke PM2.5 across the day of ED visit and each day in the pre-
ceding week. The increase in total visits at moderate smoke PM2.5 levels is driven by additional
visits by children under 5 while the declines observed at high smoke PM2.5 concentrations are
driven by changes in the number of visits by adults.
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Figure S12: Insurance coverage is correlated with other measures of vulnerability. The sam-
ple split by share of population insured used is Fig 4 is shown here but for the distribution of dif-
ferent factors. (a) shows the sample split with insurance coverage rates, the measure used to gen-
erate the split shown in Fig 4. The population that is least insured is more likely to receive insur-
ance from a public provider (b), has higher rates of ED visits (c), has lower income (e) and higher
rates of non-English speakers (f). The distance from home zip code to the nearest is ED is similar
across groups (d). Colored lines on the x-axis indicate median values for corresponding group.
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Figure S13: Annual all-cause ED visits attributable to wildfire smoke. We apply the estimated
response curve shown in Fig 2 to estimated smoke PM2.5 concentrations24 in order to estimate
the annual number of excess ED visits attributable to smoke during our sample period (top). The
height of the bar indicates the main estimate and the vertical lines show the 95% CI. While our
estimated response curve indicates sharp declines in total ED visits at high smoke intensities,
most smoke-days are low to medium intensity which leads to an overall increase in ED visits at-
tributable to smoke. The bottom panel shows population-weighted average exposure by smoke
intensity. While 2008 and 2016 had a similar number of total days with smoke exposure, there
were far more high intensity smoke days in 2008 (bottom) leading to that year having less than
half the estimated attributable ED visits as 2016 (top).
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ICD Groupings Excel file with comprehensive list of outcomes and corresponding ICD-9 and
ICD-10 codes can be downloaded here.
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https://www.dropbox.com/s/mzumk3qfzk9s42a/heftneal-etal-2023-icd-codes.csv?dl=1
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