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ABSTRACT
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impact in year 1 than later years.  A cost analysis considers the affordability of extending similar 
programs.
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Introduction 
 
Performance of secondary school students in math courses is one of the best predictors of 
college outcomes and early career wages in the United States (Rose and Betts, 2004).  At 
the same time, the U.S. ranks poorly on international math tests.  For instance, the 2015 
Program for International Student Achievement (PISA), a test of 15-year old students 
conducted by the Organization for Economic Cooperation and Development (OECD), 
ranked the U.S. 40th on average score among participating education systems, which was 
significantly below the OECD average.  The U.S., with a mean score of 470, ranked far 
below the average score in the top-ranked country, Singapore, at 564 (OECD, 2016, Table 
I.5.1). Similarly, the 2015 Trends in International Mathematics and Science Study (TIMSS) 
illustrate that U.S. grade 8 math scores were significantly lower than scores for nine other 
countries (Provasnik et al., 2016, Figure 1b.).   
 
National Assessment of Education Progress (NAEP) data consistently show that U.S. 
students struggle with math and that their performance worsens in middle school, with 
proficiency rates dropping sharply between grades 4 and 8.  (See e.g. NCES, 2014 a,b,c.) 
Figure 1 shows that this drop-off in proficiency applies to data for the nation, California 
and the California district hosting the program which this paper discusses, San Diego 
Unified School District.   
 
This study provides a quantitative evaluation of a continuous improvement project, 
Changing the Odds, expressly designed to improve math achievement in high-need middle 
schools.  The project was funded as a Continuous Improvement grant by the U.S. 
Department of Education.  The key elements of the program, which lasted four years, 
included diagnostic mathematics assessments to identify topics that students had yet to 
master, peer coaching of math teachers to helped them design lessons that address these 
needs, and support for the Professional Learning Communities (PLCs) within each school.   
 
The intervention itself was co-designed by policymakers and subject matter specialists in 
the host district, San Diego Unified School District, and a university team at the University 
of California San Diego with expertise in diverse areas, including data driven decision 
making, diagnostic testing, and evaluation of educational reforms.   
 
Several bodies of literature underlie the program.  These include the literatures on data 
driven decision making (DDDM), Professional Learning Communities (PLCs) and 
Continuous Improvement.   
 
First, the literature on data driven decision making (DDDM) studies how teachers examine 
data about student performance in order to inform instructional changes that lead to 
improved learning (Datnow & Park, 2014).  Although studies have shown that appropriate 
use of student data can improve math outcomes (Feldman & Tung, 2001; Light et al., 
2005), diagnostic information on student strengths and weaknesses by itself does not 
guarantee improved outcomes.  Teachers need to know how to interpret the data, and how 
to help their students improve.   
 
The second body of literature motivating the intervention examines how teachers work 
together in Professional Learning Communities (PLCs) to improve their teaching (Honig & 
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Venkateswaran, 2012; Marsh, 2012; Means, Padilla, & Gallagher, 2010).  PLCs offer an 
opportunity for many types of collaboration, including jointly examining student work and 
test results to make plans to support student learning.  (See e.g. Blanc et al., 2010; Cosner, 
2011; Datnow & Park, 2019; White & Anderson, 2011.)  Again, as with DDDM, the 
existence of a PLC at a school does not by itself ensure improved teaching.  For example, 
Daly (2012) points out that PLCs consisting of teachers who have less expertise can lower 
teaching effectiveness due to misinterpretation of data by the group, and promulgation of 
ineffective teaching practices. 
 
The third body of literature which informed the Changing the Odds program is the work on 
Continuous Improvement.  Continuous Improvement (CI) research is based on the idea of 
quite frequent cycles of “Plan-Do-Study-Act” in which an initial plan is developed and 
implemented (Plan-Do) to be quickly followed by data gathering and analysis, reflection, 
and fine-tuning of the original plan (Study-Act) (Deming, 1986).  Under this approach, 
teachers can use annual measures of performance to change their instruction.  In addition a 
potentially more valuable approach is for teachers to use mini-cycles in which they design 
unit plans and the lesson plans within each unit, in light of what they have learned about 
their students’ recent progress.  Regular formative assessments, including exit slips to 
gauge student understanding at the end of a class, play a key role in helping teachers to 
study and then act by revising their teaching.   
 
The teacher-centric intervention evaluated in this paper encouraged middle school math 
teachers to use data to inform instruction.  A full-time resource teacher worked with the 
math teachers to build lessons that responded to data on students’ needs.  The work 
occurred in PLC meetings, in regular within-grade across-school unit planning days, 
through co-teaching by math teachers and the peer coach, and through an annual summer 
professional development event.   
 
This paper examines the math achievement of students at the schools participating in this 
program over the course of four years.  Difference-in-difference models show a statistically 
significant positive effect on math achievement in the Changing the Odds (CTO) schools.  
Supplementary analyses weakly suggest that the reform had a near zero effect in year 1 but 
a bigger effect in later years, which meshes with the increasing frequency of interaction 
between the peer coach and the schools’ math teachers over time.  
 
The next section describes the theory of action and how three central innovations 
influenced the intervention.  The next section describes the intervention in more detail, and 
also lays out the state testing programs that existed around the time of the intervention, and 
implications for design of the evaluation. Subsequent sections describe the empirical 
approach, data and results.  
 
Theory of Action 
Our theory of change draws upon the three important and intersecting innovations that are 
grounded in existing literature: Data-Driven Decision Making (DDDM), Professional 
Learning Communities (PLCs), and Continuous Improvement (CI).  The next section 
provides details on the intervention itself.  Here we summarize how the three approaches 
informed the core of the work.   
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Figure 2 provides a theory of change for the program, in which teachers receive training on 
how to use data to infer student needs, and curricular and pedagogical training to adjust 
their teaching to address these needs.  The continuous improvement aspect of the work 
prepared teachers to elicit student voice and formative assessments to reflect on and 
improve classes just taught.  In this way, the teachers implemented multiple cycles of using 
diagnostic and formative data in cycles of Plan-Do-Study-Act.  The ultimate goal, as shown 
in the final box in the figure, was to improve students’ math achievement. 
 
The theory of DDDM as well as practical evidence suggested to the team that a key to 
improving student learning in math is to elicit better information on how students are 
thinking about a given math topic, that is, both their understandings and misunderstandings.  
Thus, annual or semi-annual summative tests were not as useful as diagnostic tests where 
specific patterns of incorrect answers give clues as to student misunderstandings.  The 
annual test the team and teachers implemented was exactly such a diagnostic test.  The 
UCSD staff responsible for development and administration of this test regularly provided 
professional development to the math teachers, with an emphasis on examining the test 
results for their own students.  Similarly, much of the professional development focused on 
helping teachers design unit plans in a way that would elicit student voice and student 
thinking.  A variety of approaches were implemented with this in mind, including 
differentiated math problems that could be answered in different ways by students with 
different levels of understanding.  Teachers were trained to organize classroom gallery 
walks during which students would present their work to peers.  Another prominent 
example of this goal of eliciting student thinking was the development by teachers of exit 
slips for lessons in a given unit plan that would give teachers a sense of what topics had 
been mastered in a given lesson, and which had not.   
 
The PLC focus of the project took on an interesting turn that originated with the teachers 
themselves.  The teachers reported that working within grade levels across the four schools 
during the summer workshops was particularly helpful, and in years 2 through 4 the team 
facilitated day-long unit planning sessions, within grade and across schools, so that teachers 
could share what they were finding to work best to help students master the concepts that 
diagnostic testing, classroom math conversations and exit slips revealed to be areas where 
growth was needed.  This development, which can be viewed as an across-school PLC that 
supplemented the math PLCs within each school, was one of the examples of the 
continuous improvement nature of the project.   
 
Figure 3 illustrates the cyclical nature of the work, illustrating the two longer cycles during 
the two semesters, plus much more frequent mini-cycles.  Overall, the continuous 
improvement aspect of the project included cycles in fall and winter, with each fall cycle 
informed by the prior year’s statewide test results, but more importantly, by the diagnostic 
math test, as well as by teacher reviews of student progress.  These reviews influenced the 
content of the teacher workshop each August, and also helped teachers plan for which 
across-school unit plans to focus on developing within each grade during the coming year.  
These cycles of planning and implementing unit plans occurred every two to three months 
beginning in year 2.  The materials that the resource teacher and math teachers jointly 
selected and developed would then inform teaching for the subsequent month. Another 
element of the continuous improvement approach was the use of mini-cycles of co-
designing and co-teaching a specific lesson plan, followed by review, re-design, and re-
teaching of the unit plan in other classes, with teachers and a peer coach involved in the 
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entire Plan-Do-Study-Act cycles.  The cycles of shortest frequency were teachers’ practice 
of using exit slips to gauge student understanding of individual lessons. 
 
Further Background on the Intervention 
 
The CTO program was implemented in four high-need middle schools in the San Diego 
Unified School District (SDUSD), between the 2015-16 and 2018-19 school years.  The 
plan for the intervention was developed by the research team in conjunction with the 
district partners.  In particular, at a meeting to discuss whether UCSD and SDUSD should 
apply for the U.S. Department of Education grant, the district Superintendent agreed with 
the research team that the intervention was most needed in lower-performing schools.  She 
suggested the four schools, which subsequently agreed to participate.  The research team 
agreed to these four schools contingent upon the team being able to identify other similarly 
low-performing middle schools in the district.  The research team picked four comparison 
schools.  The match was performed primarily on the Academic Performance Index (API), 
which is a function of student scores on state tests in math and English Language Arts, and 
on the percentage of students scoring Basic or better on the state math test.  Although these 
were the two primary criteria used in the match, the research team also checked for a good 
match between these schools and the treatment schools on demographics.  Appendix Table 
1 shows the results of the match. On the two key match variable mentioned above, the p-
value for a test of identical test scores was 0.97 for the API and 0.81 for math scores.  
 
The approach had the following components:   
• DDDM, with regular provision to teachers of well-organized data provided by the 
university team and SDUSD, to pinpoint areas in which students struggle in math.  These 
included diagnostic assessments at the beginning of each semester and year-end diagnostic 
and summative assessments. Teachers were also encouraged (and trained) to use formative 
assessment data they gathered in their own classrooms. 
• PLCs (grade or department level team meetings) in which math teachers at a school 
worked together to use assessment data to monitor students’ progress, to improve the 
quality of math instruction, and to plan collaboratively. The resource teacher focused on 
innovative approaches to inspiring students to participate and to learn, along the lines 
suggested by authors such as Boaler (2015).  All schools had PLCs in place when the 
project began, and the project aimed to build upon this pre-existing structure. 
• Professional development support in the form of: 
1) a grant-funded project resource teacher who worked with math teachers in the four 
middle schools; 
2) curricular materials and professional development;  
3) a professional development consultant who was hired in years two through four to 
support the work of the resource teacher and to co-plan activities for teachers;  
4) opportunities for cross-school collaboration for math teachers at the four schools to 
engage in unit planning; and  
5) a two- to three-day Summer Math Summit each year for teachers and principals from the 
four schools, along with district administrators, the CTO resource teacher and the research 
team, to share lessons learned, to analyze end-of-year assessment data, to analyze student 
work for understandings and sources of misunderstanding (Ashlock, 2010), and to refine 
plans for the upcoming year;  
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6) assessment support from Mathematics Diagnostic Testing Project (MDTP) staff in how 
to make the best use of MDTP diagnostic tests and instructional support materials.  (The 
tests are described more fully below.) 
7) ongoing feedback from the UCSD research team to inform the process of continuous 
improvement. 
These intersecting project networks allowed the team to engage in improvement research 
(Bryk et al., 2011).   
 
Several of the district and university partners, as former teachers, had observed that 
resource teachers were useful supporters of classroom teachers in the host district, but that 
spreading a resource teacher’s time and talents across too many schools was unlikely to 
lead to large gains in student achievement.  This led to the decision, while in the planning 
stage, that the resource teacher to be hired as part of the project should devote her time to 
four schools.   
 
Once the intervention was underway, near the start of each school year students in the four 
schools were given diagnostic tests designed by the Mathematics Diagnostic Testing 
Project (MDTP).  The MDTP is a joint program of the California State University and the 
University of California.  It offers free diagnostic testing to math teachers throughout 
California. The MDTP is designed to allow teachers to obtain diagnostic testing of their 
students, with detailed feedback.  In a series of “readiness” tests, which test the skills 
prerequisite for good performance in an upcoming course, the MDTP uses a multiple 
choice test with carefully designed distractor answers.  Teachers receive, almost instantly, 
feedback on average student performance in each of several specific areas, and information 
on what the most common wrong answers were, and what student misconception probably 
led to the student choosing each wrong answer.  Students and their families receive 
feedback on areas in which students have adequate understanding and areas in which they 
need to improve.  Teachers can use the online response data to group students by their 
answers to specific questions, and to develop plans to address common misperceptions.   
 
Roughly a decade before the current study, for several years the host district made MDTP 
testing mandatory in certain grades.  Betts, Hahn and Zau (2017) find that this mandated 
use of MDTP led to improvements in subsequent math achievement for the affected grades. 
 
Findings from the MDTP tests were used to help the resource teacher and MDTP staff plan 
activities for the annual Summer Math Summit.  For instance, an early finding from the 
MDTP test results was that many students had memorized rules about operations on 
fractions, but lacked deep conceptual understanding.  This often led to student confusion 
about when to apply which rules.  Therefore, one Summer Math Summit devoted time to 
planning on instructional activities that could both correct and deepen students’ 
understanding of operations on fractions.  
 
Continuous improvement applied to the mini-cycles in which teachers would plan and then 
implement lessons, use formative assessments to assess how well students had mastered the 
material, and finally, adjust subsequent lessons.  These continuous improvement practices 
clearly led to changes over time in how the teachers worked together and with the resource 
teacher.   
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Figure 4 illustrates the approximate times when major changes occurred to the program.  
As the figure shows, the program evolved over time. 
 
Two important adjustments came in the second year.  At the first Summer Math Summit in 
August 2015 (the start of year 1), teachers expressed enthusiasm about working together 
across schools in within-grade groups, and asked for more of these events.  The UCSD 
team learned in year 1 that bringing teachers together across schools for unit planning after 
school was not practical, due both to variations in the schools’ bell times but also the 
parenting responsibilities that many of the teachers had after school.  No events of this type 
occurred in year 1.  In years 2, 3 and 4, a series of all-day unit planning events were 
conducted, within grade and across the four schools.  Teacher time was freed up during the 
school week by hiring substitute teachers for the unit planning days for a given grade.  
These events were well attended.   
 
A second important reform that began in year 2 (2016-17) involved a change in how the 
resource teacher was hosted in the district.  In year 1, like other district resource teachers, 
the project resource teacher was provided office space in the district headquarters.  In later 
years, the resource teacher was instead hosted in the four CTO schools on a rotating basis, 
leading to far more interactions with the math teachers.   
 
A third example of changes over time is that in year 3 and especially year 4, on several 
occasions teachers in the current host school worked with the resource teacher to design a 
lesson plan, then took turns co-teaching the material in each other’s classes, and refining 
the lesson plan at each iteration. 
 
Empirical Approach 
 
The empirical approach to studying whether student math achievement changed after the 
introduction of the program takes into account the timing of both the CTO program and the 
transition in California from one student testing system to another.  The first column of 
Table 1 shows the four years during which the CTO program was in effect.  The next two 
columns show the two standardized tests used in California in spring 2009 and later years.  
We start in 2008-2009 because one of the four CTO schools was reorganized in that year, 
meaning that comparing trends across schools in years before that would not be 
appropriate.  (To save space, henceforth we refer to school years by the year in which 
spring semester took place.)  
 
The second and third columns show the years in which the California Standards Test (CST) 
and the Smarter Balanced test were used in California.  As the table shows, the CST test 
was used up to 2013.  The state mandated no test in 2014 and then in 2015 introduced its 
version of the Smarter Balanced test.  A second complication is that the CST math test was 
grade-specific up to grade 7, but in grade 8 and higher, when students took different math 
courses, students also took different CST tests focused on the course taken. This makes it 
very difficult to compare the achievement level of students in grade 8 who took different 
CST tests.   
 
One quasi-experimental approach to evaluating the impact of the CTO program is to use a 
difference-in-difference approach, comparing achievement before and after the CTO 
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program began in the four CTO schools and comparison schools.  We pre-committed when 
designing the intervention to compare the four CTO schools to four other middle schools 
that we matched in 2014 based on 2013 test scores and demographics.  Appendix Table 1 
shows the variables upon which we matched.  The primary focus in matching was the two 
measures of achievement, with secondary attention paid to matching the demographics 
across the schools.  This can be seen in the higher p-values for the tests of no difference 
between the four CTO and the four comparison schools for the overall achievement 
measure, the Academic Performance Index (API) and math proficiency, relative to the p-
values for the demographic variables.  (In the table we we round the means so as not to 
reveal the identity of the eight schools inadvertently.)   
 
Several issues must be addressed when using CST math scores in the earlier years and 
Smarter Balanced test scores in later years.  The first issue is that we must restrict the 
analysis to math performance in grades 6 and 7 because there is no consistent way to 
compare CST scores among grade 8 students.   
 
Second, we must put the two tests on a common metric.  To do this, we converted all test 
scores to Z-scores, using the district average and standard deviation in each year and grade.  
Thus a math score of -0.2 means that the student scored 0.2 of a standard deviation below 
the district mean for the given grade and year.  By construction mean scores are zero in 
every year and grade.  This standardization, however, does not guarantee that the two tests 
are measuring math achievement in a similar way.  Given that no test was given in 2014, 
we assessed the relationship between the two tests as follows.  First, we correlated the 
Smarter Balanced test scores of grade 6 and 7 students in the district in 2015 with the same 
students’ scores two years earlier on the math CST.  The correlation was quite high, at 0.76.  
We repeated this calculation using CST scores in the same grades in 2013 relative to the 
students’ 2011 CST scores, and the correlation was slightly lower, at 0.69.  The implication 
is that comparing Z-scores from the Smarter Balanced and CST math tests in grades 6 and 7 
makes sense in that students’ rankings two years apart are quite stable.  This is true 
regardless of whether we use only CST data or whether we compare the first year of the 
Smarter Balanced tests to the same students’ scores on the CST two years earlier.   
 
Figures 5 and 6 show the grade 6 and 7 Smarter Balanced Z-scores in 2015 plotted against 
the same students’ 2013 CST scores, and the 2013 CST grade 6 and 7 scores plotted against 
the same students’ 2011 CST scores.  Figure 5 suggests a clear, almost linear, relationship 
between the new Smarter Balanced test scores and the CST scores from two years earlier.  
One distinction is that the CST scores become somewhat granular at the upper end, while 
the Smarter Balanced scores show a more continuous distribution across the range.  This 
likely reflects the use of computer-adaptive testing in Smarter Balanced, which can feed a 
more advanced set of questions to students who perform well on earlier questions on the 
test, reducing ceiling effects.  Apart from this, the strong relation between the two tests is 
quite apparent.  Figure 6, which plots CST scores against twice lagged CST scores, is very 
similar.  This suggests that comparing Z-scores from the two tests is meaningful.   
 
Because much of our analysis focuses on changes in Z-scores, we can also visually check 
that changes for students in their Z-scores on average center on 0, although often of course 
showing improvement or declines over time.  The red lines on the two figures show the 45 
degree line.  If given Z-scores on the two tests are capturing similar measures of math 
understanding, then on average the change in Z scores over two years for individual 
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students between 2013 and 2015 should be zero.  On average, then, individual student dots 
should fit along the red line, indicating that on average student changes in Z-scores are 0.  
Visually this appears to be roughly the case in Figure 5, which shows the Smarter Balanced 
Z score in 2015 plotted against the student’s CST score in 2013.  Figure 6, showing CST Z-
scores for students two years apart, shows a similar pattern relative to the 45 degree line.  
  
Figure 5 does show a slight curvature in the relation between Smarter Balanced math scores 
and the twice lagged math CST scores, for those with CST scores roughly two standard 
deviations above the district mean.  But because the CTO schools are low-performing 
schools, as are the four comparison schools, very few students in those schools had test 
scores in that range.  Figure 7 illustrates this, using grade 6 and 7 math CST scores in 2013 
for these eight schools.  The 95th percentile math Z-score for this sample was only 1.32, and 
the mean was -0.32.  
 
To assess the influence of the CTO program on student outcomes, we employ a difference-
in-difference approach.  These models combine CST and Smarter Balanced test scores.  
The main specification is as follows.  Let Sigst denote the math Z-score of student i in grade 
g and school s at time t.  To take into account past learning, we take a value-added 
approach, modeling the student’s annual change in math achievement ΔSigst.  By 
construction, since we use Z-scores based on district year by grade norms, the districtwide 
average change in Z-scores will be zero.  We model the individual student’s change as a 
function of year and grade dummy variables, a vector of student characteristics Xit, and a 
dummy variable to capture any differences in average learning over all the years observed 
between CTO and comparison schools.  The most important regressor, CTO*TREATist, 
captures the difference-in-difference, that is, the difference in test score changes at CTO 
schools after the treatment began, relative to the same before-after difference observed in 
comparison schools: 
 
(1a) ∆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖 + ∑ 𝑋𝑋𝑖𝑖𝑖𝑖,𝑗𝑗

𝐽𝐽
𝑗𝑗=1 𝜑𝜑𝑗𝑗  + 𝜃𝜃𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜋𝜋𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 ∗ 𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

 
In this equation, the Greek letters indicate coefficients to be estimated, except for the final 
term, 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, which is an error term.  This model allows for a fixed difference in the outcome 
between the CTO schools and the comparison schools, with θ measuring this difference.  
This is a useful measure because it indicates whether the treatment and comparison schools 
had similar changes in test scores in the pre-treatment years.  We also estimate the more 
traditional diff-in-diff model with fixed effects for each school, indicated by the λ terms 
below: 
 
(1b) ∆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖 + 𝜆𝜆𝑖𝑖 + ∑ 𝑋𝑋𝑖𝑖𝑖𝑖,𝑗𝑗

𝐽𝐽
𝑗𝑗=1 𝜑𝜑𝑗𝑗  + 𝜋𝜋𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 ∗ 𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

 
We estimate these models while clustering the error terms to allow for arbitrary correlations 
between all of the observations for a given school s.  Because we have only four treatment 
and four comparison schools, and clustered standard errors can become unreliable with a 
small number of clusters, we use the wild bootstrap approach of Cameron, Gelbach and 
Miller (2008).  In this approach we choose the wild weight using the Webb (2014) six-point 
distribution, which is preferable when the number of clusters is less than 10 or 12 (see e.g. 
Roodman, MacKinnon, Nielsen and Webb, 2019).    
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Because it is also worthwhile to see how CTO and comparison schools fared in each year of 
the CTO program, 2016-2019, we also estimate event study models.  These are variants of 
(1a) and (1b) that replace the CTOist*TREATist indicator with terms that interact CTOist 

with dummy variables for each year except 2013, the last year of the CST test and the last 
year in which we can observe gains in achievement prior to the start of the intervention.  
Thus, 2013 serves as the base year against which we compare the CTO-comparison 
difference in other years.  For example, the event study version of (1b) is  
(1c) ∆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖 + 𝜆𝜆𝑖𝑖 + ∑ 𝑋𝑋𝑖𝑖𝑖𝑖,𝑗𝑗

𝐽𝐽
𝑗𝑗=1 𝜑𝜑𝑗𝑗  + ∑ 𝛿𝛿𝑖𝑖12

𝑖𝑖=9 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 + 

+ � 𝜋𝜋𝑖𝑖

19

𝑖𝑖=16

𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

 
The time dummies now capture trends for the comparison schools.  The series of 
coefficients 𝛿𝛿𝑖𝑖 and 𝜋𝜋𝑖𝑖 represent period-specific differences between the CTO and 
comparison schools.  With 2013 as the omitted period for these CTO dummies, we can test 
the assumption in difference-in-difference models that in the pre-intervention period the 
trends were parallel between the CTO and comparison schools.  This will be the case if all 
of the 𝛿𝛿𝑖𝑖 terms are zero.  Conversely, if the 𝜋𝜋𝑖𝑖 terms are zero this indicates no impact of the 
CTO program. 
 
As mentioned previously, the researcher-practitioner team designed the intervention to 
focus its resources on four schools.  We reiterate this point here because the relatively small 
sample of schools means that only moderate or large effects were likely to be detectable.  
This is especially true for the event study which estimates the difference in outcomes 
between the CTO and comparison schools separately for each school year.   
 
To temper readers’ (and our own) expectations, it is useful to calculate the Minimum 
Detectable Effect Size (MDES) for our design.  Appendix Table 2 shows the results, using 
the Comparative Interrupted Time Series calculator in PowerUp! (Dong and Maynard, 
2013).  Those calculations assume that one is modeling the level of a standardized test 
score.  The MDES numbers in the second column show those MDES estimates for years 1 
to 4 of the intervention.  The rightmost column divides those MDES figures by the number 
of years the intervention has been in place to yield the average annual gain in Z-scores the 
CTO schools would need to show relative to the comparison schools to be detectable 80% 
of the time at the 5% level.   
 
The MDES in year 1 of the intervention is quite high, at 0.24.  This implies that for the 
event study, which seeks to estimate annual effects, the MDES for any year would be on 
this order.  However, for the main diff-in-diff model that estimates the average annual 
effect, by the end of the intervention in year 4, we translate the MDES in test score levels, 
which is 0.36 of a standard deviation in Z-scores, into an average annual effect of 
0.36/4=0.09.  Thus the diff-in-diff model that estimates the impact on average annual 
changes in Z-scores can detect a moderate effect.  
 
In a robustness check that restricts the test used to Smarter Balanced only, while still 
allowing a difference-in-difference comparison, we also model the levels of test scores, 
using the Smarter Balanced test scores available from 2015 through 2019.  (By modeling 
achievement level, rather than changes, we obtain one pre-treatment year.)  For this 
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approach we use the synthetic control approach (Abadie and Gardeazabal, 2003, Abadie 
Diamond and Hainmueller, 2010, 2015).  These authors’ method uses pre-treatment years 
to create a synthetic control, that is, a weighted average of non-treated units, by matching 
based on one or more variables that consist of a mix of linear combinations of the outcome 
in the pre-treatment periods and, optionally, predictors of those pretreatment outcomes.  In 
this method if the unit (school) we label as 1 is treated and there are J potential units that 
could serve as matches, the algorithm produces a JX1 vector of non-negative weights W 
that sum to 1.  The weights are chosen to minimize 

�(𝑋𝑋1 − 𝑋𝑋𝑜𝑜𝑊𝑊)′𝑉𝑉(𝑋𝑋1 − 𝑋𝑋𝑜𝑜𝑊𝑊) 
where X0 is a matrix of the variables upon which matching is to be performed, for each of J 
potential comparison schools, and X1 is a vector of the same variables for the treated unit.  
V is a symmetric and positive semidefinite matrix, which is chosen so that the weights 
chosen, W, lead to the smallest possible Root Mean Squared Prediction Error (RMSPE) for 
the outcome variable in the pre-treatment period.  In the second step, the entire path of 
outcomes is calculated for the synthetic control unit, which is calculated as the weighted 
average of the potential comparison units, and the effect of the intervention is estimated as 
the difference between the actual outcomes in each treatment year for the treated unit and 
the synthetic control.   
 
Inference is based on a permutation technique, where the non-treated units are one at a time 
assumed to be treated, with the remaining comparison units being used to create a synthetic 
control.  Suppose that the difference between the outcome for the actually treated unit 1 and 
the weighted outcome for its synthetic control in year b of treatment is 𝑎𝑎�1,𝑏𝑏.  One calculates 
the two-sided p-value for this estimated effect as the proportion of the times that this 
estimated effect, in absolute value, is less than or equal to the absolute value of the 
corresponding estimate for the J placebo estimates.  Below, the superscript PL indicates an 
estimate for one of the J placebos: 

(2) 𝑝𝑝 =  Pr (�𝑎𝑎�1,𝑏𝑏
𝑃𝑃𝑃𝑃 � ≥ �𝑎𝑎�1,𝑏𝑏�) =

∑ 1��𝑎𝑎�𝑗𝑗,𝑏𝑏�≥�𝑎𝑎�1,𝑏𝑏�� 𝑗𝑗≠1

𝐽𝐽
 

 
We use the adaptation of this method introduced by Cavallo, Galiani, Noy and Pantano 
(2013) for cases in which there is more than one unit treated, as in our case, where there are 
four schools.  Their approach is to calculate all possible placebo average effects by picking 
a single placebo estimate for each treated unit and then averaging across the four treated 
units.  This is repeated for all possible combinations.  For example, if there were two 
treated units with one having 20 possible comparison units and the second having 30 
possible comparison units, the number of combinations of averages of placebo effects 
would be 20 X 30 = 600.  The p-value for the average treatment effect is then the 
proportion of cases in which the actual average treatment effect is less than or equal to the 
averaged placebo effect, both calculated as absolute values.   
 
In our case we choose a single predictor, which is the 2015 mean math Z-score, which 
produces a very good pre-treatment fit.  This simple approach of matching based on the key 
outcome is an approach that dispels concerns that one can manipulate synthetic control 
findings by choosing repeatedly from a very wide set of covariates.  The pool used for 
potential comparison schools was all traditional public schools that, like the CTO schools, 
operated as middle schools enrolling students between grades 6 and 8.  There were 18 such 
schools.   
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One practical issue with inference for the synthetic control method is that if some of the 
placebo units have very poorly fitted synthetic controls in the pre-treatment period, the 
estimated impacts for these placebos could be very large. This would make our inference 
too conservative.  Following , Abadie Diamond and Hainmueller (2010) and Cavallo, 
Galiani, Noy and Pantano (2013), we restrict placebos to those with RMSPE less than a 
certain multiple of the RMSPE for the CTO schools.  We report results for the multiple set 
to 2, but we report how sensitive inferences change with different multiples. 
 
Assumptions and Limitations of the Study 
 
For the main analysis that uses difference in differences, the standard concerns apply.  Post-
treatment trends in the treated schools are assumed to have been parallel to the trends 
observed for the control schools, which is not testable.  Omitted variable bias is thus a 
concern.  Additional concerns specific to the data available are that the state switched from 
one test to another, with the first year of the new test in the spring before the intervention 
began.  We convert all test scores to Z scores so that we are comparing progress of students 
in each school to that of all students in the district in the given grade.  This should take into 
account any artifacts from the new testing regime, but uncertainty remains.  A second 
concern related to the data used for the difference-in-difference analysis is that the earlier 
test, which ended three years before the intervention began, makes it impossible to compare 
students' math performance in grades 8 or higher, so that this analysis focuses on outcomes 
in grades 6 and 7, but not grade 8.  A third concern is a lack of precision when estimating 
year-by-year effects.   
 
The supplementary synthetic control study is meant to address some of these concerns, by 
using only the new test, while creating a synthetic control using one pre-test year.  This 
obviates the need to compare results on two different tests, and it also allowed us to 
compare grade 6/7 results versus results that used all three middle school grades.  (The 
latter results showed positive and significant impacts in two of four treatment years versus 
one year for the former results.)  Despite these advantages, the synthetic control method 
shares two of the limitations of the difference-in-difference analysis: 1) there is a risk of 
omitted variable bias in any quasi-experimental study, and 2) there is a lack of precision 
(high Minimum Detectable Effect Size) when estimating year-by-year effects.   
 
Results 
 
Table 2 shows the difference-in-difference estimates for three variations of (1a) and (1b).  
The first three columns show results for model (1a) with no student demographic variables 
added (column 1), with indicators for female students and for four of five racial/ethnic 
categories (White, Black, Hispanic, Asian and Other) (column 2), and with these measures 
plus indicators for whether the student’s parents had a high school diploma or less, and for 
whether the student was ever an English Learner (EL) (column 3).  We use the “ever” EL 
indicator rather than current EL status because the latter could be an endogenous regressor.  
Columns 4 to 6 repeat these specifications but replace the CTO indicator with dummy 
variables for each school, as in model (1b).   
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The results are similar across specifications.  The CTO schools break significantly from the 
comparison school trend in the treatment years.  The models indicate annual changes in test 
scores in the CTO schools that are about 0.13 and 0.11 standard deviations above the 
changes observed in the comparison schools in the estimate for models (1a) and (1b) 
respectively.  (These differences are measured as the proportion of a standard deviation of 
the levels of test scores observed district-wide in the given school and year.)  These are 
meaningful differences.   
 
Recall that our power analysis suggested an MDES of a change in the Z-score averaging to 
0.09 per year over four years.  This aligns well with the actual level of significance we find, 
with effect sizes in the 0.11-0.13 range.  However, it also suggests that we are unlikely to 
find individual year-by-year impacts in an event study will be statistically significant.  The 
year 1 MDES was 0.24 which is about twice the average annual impact estimated in Table 
2.  
 
The event study models extend (1a) and (1b) by estimating differences in the dependent 
variable, math score changes, between CTO and comparison schools for each year.  We 
estimated the same six models shown in Table 2 for the diff-in-diff models.  Typically, 
when doing an event study one sets the comparison year to the year before the intervention 
starts.  However, because the CST ended in 2013 and the Smarter Balanced test did not 
start until 2015, we have test score changes for 2009 through 2013 and 2016 through 2019.  
We make 2013 the comparison year.  Table 3 shows results.  The table shows coefficients 
by year for the event-study versions of (1a) and (1b), such as model (1c), that include 
controls for gender and race/ethnicity.  The other four models produced results that were 
very similar.  Because wild-bootstrap confidence intervals need not be symmetric, we show 
the 95% confidence intervals to the right of the corresponding coefficients.  Figure 8 graphs 
the results along with the confidence intervals.  
 
When we disaggregate the contrast between CTO-comparison school into year-by-year 
calculations in this way, we lose precision.  As expected given the previously discussed 
power analysis, none of the CTO-year coefficients is significant. However, the coefficients 
in all four of the treatment years are positive, and come close to being significant in year 4 
in the model on the right of Table 3, which includes school fixed effects.  (The p-values on 
the year 4 (2019) coefficient are 0.13 and 0.12 in the two models in Table 3.)  These 
patterns are suggestive, but are not the same as a finding of a statistically significant effect 
in any given year.  
 
When comparing the coefficients for the estimated impacts in each year, perhaps the most 
striking variation is that the year 1 coefficient is the closest to zero of the four estimates, 
less than half that of any of the three later years.  This squares with the many improvements 
and extensions to the CTO program that were implemented in years 2 through 4.  Although 
an increased in the effect after year 1 seems plausible given both the coefficients and our 
knowledge of the history of the program, this conclusion should be regarded as extremely 
tentative, given the lack of precision in the year-by-year analysis.   
 
We now turn to results on various robustness checks.  
 
First, the research team matched the CTO schools to comparison schools in 2014 based on 
data available at that time.  It could be that better matches could be found, especially given 
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that data on schools in 2015, the year before the intervention began, were not available at 
the time of the match.  Second, instead of choosing four comparison schools, as we had 
done in 2014 before the project started, one could use a more sophisticated approach such 
as synthetic control to derive a weighted average of non-CTO schools for the comparison 
group.  Third, in spite of evidence above that the CST and Smarter Balanced tests are 
measuring math achievement in similar ways, it would be useful to see if similar results 
emerge without combining the two tests across years.  Fourth, on a closely related issue, the 
value-added models described above examine changes in students’ test scores for grades 6 
and 7 only, even though all the middle schools enrolled students in grades 6 through 8.  The 
lack of comparable CST scores in grade 8 necessitated this restriction.   
 
A robustness check that would respond to these all four of these concerns is to estimate a 
synthetic control model for 2015 through 2019, examining levels of Smarter Balanced 
scores.  We use test score levels, rather than changes, for these models because synthetic 
control models require at least on pre-treatment year, and Smarter Balanced testing debuted 
in 2015.  But this approach maintains the logic of the difference-in-difference approach by 
comparing CTO and comparison schools before and after the implementation of the CTO 
program in 2016.  One advantage of this approach is that it does not require us to combine 
Z-scores from different tests.  A second advantage is that we can match schools based on 
the 2015 Smarter Balanced data, from the year before the CTO program started.  A third 
advantage is that by using only Smarter Balanced testing years, we can now include grade 8 
students with the grade 6 and 7 students used earlier.  Indeed, we can estimate the synthetic 
control model twice, once with grade 6 through 8 records, and once with grade 6 and 7 
records.  Comparing these results can provide insights into whether our main analyses 
described above are likely to have differed substantially if we had been able to include 
grade 8 records in the years when the CST test was used.  Against these two major 
advantages, the obvious disadvantage is that we cannot estimate value-added models 
because there is no pre-treatment change in test scores available that uses only Smarter 
Balanced scores.   
 
One may ask whether the synthetic control matching, which matched based on 2015 test 
scores, matched well based on other characteristics.  Appendix Table 3 compares the 
synthetic control schools to the four treatment schools.  It does this by performing the 
synthetic control model for each CTO school, looking at the weights the algorithm chooses 
for each of the potential comparison schools, and then using these weights to compare 
average of various characteristics for the CTO schools with an average of the same 
characteristics for the synthetic control.  In the models of test scores in grades 6-7, the 
algorithm gave positive weight to each potential comparison school, with weights ranging 
from 0.005 to 0.643 (weights are chosen to sum to one for the weights for a given CTO 
school).  The corresponding range for the grade 6-8 models was 0.003 to 0.738.   
 
Appendix Table 3 shows the results for the analysis of grade 6 and 7 math scores in the first 
pair of columns, and grade 6, 7 and 8 math scores in the second pair of columns.  As 
expected, the match for 2015 (baseline) math test scores is extremely close, as before the 
project started we had matched primarily based on 2013 test scores.  The synthetic control 
schools have virtually identical baseline math scores, slightly lower ELA scores, by about 
0.6 and 0.8 standard deviation for the grade 6-7 and grade 6-8 models respectively, and 
slightly less experienced teachers.  For the grade 6/7 models, average teacher experience in 
the district is 11.1 years in the synthetic control schools versus 13.5 in the CTO schools.  
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Differences are slightly larger in the grade 6-8 models.  Although we cannot expect all of 
these comparisons to show identical characteristics, the balance is reasonable.    
 
Figures 9 and 10 show the results of the synthetic control models for the average Z-score 
levels in the four CTO schools relative to a synthetic control group.  Figure 9 uses the 
average of grade 6 and 7 Z-scores to conform with the preceding diff-in-diff and event 
study models.  Figure 10 instead averages over all students, that is, all in grades 6 through 
8.  Table 4 shows the estimated effects by year and the p-values based on comparing the 
estimated effect sizes to those in the placebos.   
 
To obtain a synthetic control group that matched the CTO schools well in the single pre-
treatment period, shown in the figures as period 0, we used one predictor, which was the 
actual mean Z-scores in that period.  We restricted potential comparison schools to those 
whose pre-treatment RMSPE was no more than twice that for the actual CTO schools.  
When we increased these limits to 5 or 10, p-values changed by small amounts.  No 
estimates crossed the 1% or 5% significance level thresholds relative to those shown in 
Table 4. 
 
The results are roughly similar between the samples with and without the grade 8 students, 
but larger in one sense when the grade 8 students are included.  Both models suggest no 
significant differences in year 1 (2016) or year 3, but a highly statistically significant 
difference by 2019 of 0.141 standard deviations in the grade 6 and 7 model and 0.145 
standard deviations in the grade 6 through 8 model.  The major difference is year 2, where 
the effect is twice as high when grade 8 students are included.  Moreover, the year 2 effect 
is highly significant in the grade 6 to 8 model but not significant in the grade 6 to 7 model.  
The figures indicate that the difference in the size of the year 2 effect is due both to a 
slightly increased outcome for the CTO schools, and a much larger drop in achievement in 
the synthetic comparison schools in the grade 6 to 8 model.   
 
The value-added event study effects by year of the CTO program can be compared to the 
synthetic control estimates that model levels of achievement.  Figure 11 re-plots the 
synthetic control results in Figure 9 by showing the estimated effect size, rather than the 
outcomes for the treatment and control group.  This facilitates comparison with the event 
study in Figure 8.  Both show similar patterns, with an effect near zero initially but with the 
exception of year 3, effects that become more positive over time.  The corresponding effect 
sizes appear in Tables 3 and 4.  While the two figures are not directly comparable, because 
the event study results in Figure 8 model changes in test scores, and the synthetic control 
results in Figure 11 model levels of test scores, the patterns showing growth both indicate 
that the CTO program had little effect in year 1 but that the estimated effectgs were large  
in later years. 
 
We draw two principal conclusions from this analysis.  First, the pattern of estimated 
effects on test-score levels is actually quite close to the event study in which we modeled 
changes in test scores over many years.   
 
Second, the CTO effects emerged sooner when we include grade 8 students, but by year 4 
the effects are similar in magnitude and significance between the grade 6 to 8 and grade 6 
to 7 samples.  This provides some assurance that the diff-in-diff and event study models 
earlier in this section, which had to focus on grades 6 and 7 students to allow comparability 
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across CST tests, are probably not influencing the effects to a large degree by dropping 
grade 8 students.   
 
Estimating Costs of the Program 
 
Although the project did not include a formal cost-benefit analysis, we can estimate costs 
quite closely by considering the additional labor devoted to the four project schools, plus 
some expenditures on other elements such as the contract with the consultant hired to help 
the resource teacher, and spending on items including supplies.  The resource teacher 
worked with roughly 40 math teachers at the four schools, and had a level of experience 
and a pay grade slightly above the middle of the pay range for teachers with average 
experience in the district.  The researcher-practitioner team devoted considerable resources 
to facilitating and observing the reform, but many of these were one-time development 
costs and costs that arose from the research component of the work.  Additional annual 
costs included payments to teachers for the annual two- to three-day Summer Math 
Summits, and for substitute teachers when teachers in each grade participated with the 
resource teacher in a unit planning day.  Another cost arose on days when the resource 
teacher and the regular math teachers in a single school would co-plan and co-teach 
lessons, and then revise the lesson before teaching it to the next class.  On these days, the 
project hired a substitute teacher at the school hosting the resource teacher. 
 
The top panel in Table 5 shows the costs in terms of the number of average teacher days 
devoted to each of these resources.  We use actual teacher days for participating teachers 
but inflate the days for the full-time resource teacher by 20% to account for this teacher’s 
higher than average qualifications.  The first row shows the estimated cost for the resource 
teacher, in teacher days, while the next four rows show costs in terms of teacher time paid 
for related to the annual Summer Math Summit, unit planning days, co-teaching, and for 
the time of teachers participating in professional development related to using the Desmos 
online learning platform.  On top of this, annual expenditures to hire an expert in 
professional development who coached and supported the resource teacher translates into 
19.4 teacher-days a year.  The bottom row in the top panel also lists the costs of hiring a 
consultant to provide the aforementioned professional development one day in year 4 on 
how to use the Desmos online platform, and for various books and other supplies that the 
project provided to teachers.   
 
The second panel in Table 5 shows the total cost in various ways.  Combining all four CTO 
schools, total annual average expenditures totaled just over 329 Teacher Days per year, 
which equals 1.8 teachers on a full time basis.  Because four schools participated in the 
program, the cost per school per year was about 0.45 teacher Full Time Equivalents per 
year.   
 
In dollar terms the annual cost was just over $200,000 per year or just over $50,000 per 
school per year.  To provide a sense of how much this expenditure was in relative terms, 
the bottom row of the table expresses this annual expenditure per school as the percentage 
of the estimated wage and benefit bill for math teachers at the given school.  In a typical 
year, schools employed ten math teachers on average.  The CTO expenditures per school 
represent a 4.5% increase in expenditures beyond our estimate of the average school 
spending on math teachers.  Because math teachers are a subset of all the teachers teaching 
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in middle schools, this expenditure is likely to be far below 1% of the total personnel costs 
for the CTO schools across all subject areas. 
 
Due to housing segregation, high-need students tend to be concentrated in certain schools.  
Thus, a district that aimed to improve math achievement in a subset of its highest need 
schools could implement a program similar to CTO without needing to increase personnel 
cost for math teaching by 4.5% districtwide.  For example, if a district chose the schools 
comprising the third of schools with the greatest student needs for such a program, 
districtwide the costs would amount to an overall districtwide increase in personnel costs 
related to math teaching of about 4.5%/3 or 1.5%.  This is a modest amount, and 
compensatory funds that many states provide through their education finance systems could 
in theory be tapped to fund similar programs. 
 
This additional cost is modest but not inconsequential.  Another way to see this cost is in 
the light of compensatory education finance reforms.  California, like many other states, 
provides additional funding to districts in proportion to the share of students in the districts 
who face additional educational challenges, for instance due to students living in poverty, 
English Learners, students with special education needs, and foster children.   
 
In California the Local Control Funding Formula (LCFF) allots additional funds for 
districts to spend on these students. 1  The LCFF consists of three components, a base grant 
based on Average Daily Attendance (ADA), a supplemental grant of about 20% over the 
base grant which is limited to the proportion of ADA that consists of students who are 
English learners (EL), students meeting income requirements to receive a free or reduced-
price meal (FRPM), foster youth, or any combination of these factors, with an unduplicated 
count for students meeting more than one criterion.  The third tier of funding, known as 
Concentration Grants, is limited to those districts where the targeted students represent 
more than 55% of enrollment.  The grant is 50 percent of the adjusted base grant per pupil 
multiplied by ADA and the percentage of targeted pupils exceeding 55 percent of a school 
district’s or charter school’s enrollment, divided by 100.  In SDUSD, in 2018-19 the 
Supplemental and Concentration grants divided by total district enrollment equaled $1,023 
per pupil and $271 per pupil respectively.  The CTO schools had a higher percentage of 
target students than the district as a whole, but even using the conservative assumption that 
these funds would be distributed on a per student basis districtwide, without regard to 
which schools had more higher-need students, the Supplemental and Concentration Grants 
amount to increases in funding beyond the Base funding of roughly $1 million per CTO 
school.  Seen in this light, the estimated CTO program cost, of $51,974 per participating 
school per year, seems like it would be quite sustainable in urban districts in California 
similar to SDUSD, as these are only about 5% of the Supplemental and Concentration grant 
values. 2 

                                                 
1 For more information on the LCFF see information provided by the California Department of Education at 
https://www.cde.ca.gov/fg/aa/lc/. 
2 In SDUSD, as in other California districts, some of the Supplemental and Concentration funding goes 
towards central administration needs.  But countering that, SDUSD recognizes that students who meet 
multiple criteria, such as English Learners who are eligible for meal assistance, have greater educational 
needs than those who are English Learners who are not eligible for meal assistance..  Therefore the district 
uses duplicated counts of student needs in allocating funds to schools, which effectively increases funding to 
schools such as the CTO schools where many students meet two or more of the high-need criteria listed 
earlier.   
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Conclusion 
 
The Changing the Odds project was designed to help math teachers at high-need middle 
schools both diagnose students’ learning needs and design lesson plans aimed at meeting 
those needs.  This paper examines trends in math learning at these schools compared to a 
demographically similar set of four comparison schools pre-selected a year before the 
project activities began.   
 
The paper primarily employs a value-added approach, in which individual students’ 
changes in Z-scores were modelled as a function of student demographics and an indicator 
for whether the student was attending a CTO school during one of the program years.  The 
difference-in-difference model suggests a positive and significant effect.  A version of this 
model that estimated separate effects by the year of the program was not sufficiently 
precise to reveal significant differences by the year of the program.  But the smallest 
estimated impact was in the first year of the program, which fits with what we know about 
the many improvements in the CTO program implemented in years 2 through 4.  As 
mentioned earlier, some major reforms were implemented over time, in particular having 
the four schools begin to host the resource teacher on site, and implementing across-school 
unit planning days, both of which were implemented in year 2.  Similarly, the practice of 
multiple teachers at a school co-designing lesson plans with the resource teacher and co-
teaching the lesson multiple times began in year 3 and expanded in year 4.  But any 
conclusion that year 1 was less effective because it lacked these program elements added in 
later years is rather speculative, given the lack of precision.     
 
An issue with the above analyses is that they exclude grade 8 test scores due to the lack of 
comparability of grade 8 test scores between students taking different math courses in most 
of the pre-treatment years.  We supplemented these analyses with a synthetic control model 
of the level of test scores.  This approach is less convincing because it is not a value-added 
approach that takes into account students’ past achievement.  But it does bring advantages, 
including a much broader search for comparison schools, and a method to look at 
achievement in grades 6 through 8 rather than just grades 6 and 7.  These analyses found 
similar results to the value-added approach. (Like the event study, this analysis showed a 
very small estimated effect in the first year relative to later years.)  The year 4 effect was 
statistically significant in this approach.  
 
How big were the estimated effects?  The difference-in-difference approach found a gap in 
annual changes in Z-scores in favor of the CTO schools.  The gains corresponded on 
average to about 0.11 standard deviation per school year.  Given that in 2013 the average Z-
score in math in the CTO and comparison schools was -0.32, we can approximate what 
these estimated gains translate into in terms of percentile rank.  Assuming that the student 
test scores were distributed normally, a gain of 0.11 standard deviation per year, starting 
from a Z-score of -0.32, would translate into students beginning at percentile 37.4 and 
rising to percentile 41.6 the next year.  These are meaningful gains.   
 
In sum, the difference-in-difference analysis finds a positive average annual influence of 
the Changing the Odds program on math achievement.  A small sample of schools lowers 
precision of attempts to say much more about year-by-year effects.   
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Our cost analysis suggests that the program costs were equivalent to roughly 4.5% of 
business-as-usual expenditures on math teachers’ wages and benefits.  This is a modest 
expenditure compared to the estimated gains in achievement.  It represents about 5% of 
state supplemental funding given to the district to help meet the needs of underserved 
students, conservatively assuming these funds were split across district schools on a per 
student basis.  
 
Replication of this reform in other settings could prove worthwhile.  A much larger sample 
of schools would provide improved insights about which aspects of the program are more 
and less effective, and whether and how local district context moderates the effects.  
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Figures and Tables 
 
Figure 1 Percentage of Students “Below Basic” or “At or Above Proficient”, 2019 
NAEP Mathematics Test, by Grade and Location 
    

Source: National Assessment of Educational Progress (2020). 
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Figure 2 Theory of Change: Details on Chain of Events Ultimately Leading to Improvement in Mathematics Achievement 
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Figure 3 Timeline for Typical Year of the CTO Program 
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Figure 4 Timeline of Continuous Improvement Process 
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Figure 5 Scatterplot of Smarter Balanced Grade 6 and 7 Math Scores in 2015 versus 
2013 CST Math Scores 

 
Note: The red line is the 45 degree line.  On average students should fall on this line, 
meaning that on average students’ relative positions in the distribution of Z scores should 
be constant. 
 
Figure 6 Scatterplot of CST Grade 6 and 7 Math Scores in 2013 versus 2011 CST 
Math Scores 
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Figure 7 Histogram of 2013 Grade 6 and 7 Math CST Scores in CTO and Comparison 
Schools 
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Figure 8 Event Study of Grade 6 and 7 Changes in Students’ Math Scores at CTO 
Schools Relative to Comparison Schools 

 
Notes: The dependent variable is changes in individual students’ math scores, expressed as changes 
in Z-scores.  Thus the vertical scale shows changes in test scores in terms of the district standard 
deviation for the given year and grade.  The intervention took place in years 1-4, corresponding to 
2015-16 through 2018-19.  No test score gains are available in years 0 or -1 due to a pause in the 
state testing system.  Changes in test scores in 2012-13 (t=-2) are the baseline against which other 
years are compared.  Hi/lo bars show the 95% confidence interval based on wild bootstrap.  Model 
includes year, grade, gender and race dummies, as well as dummy for CTO schools (any year).   
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Figure 9 Synthetic Control Model of Impact on the Level of Math Z-Scores in Grades 
6 and 7 
 

Note: Year 0 corresponds to 2015, while years 1 through 4 refer to the years of the CTO program, 
2016 through 2019.   
 
Figure 10 Synthetic Control Model of Impact on the Level of Math Z-Scores in Grades 6, 7 
and 8 
 

 
Note: See note to Figure 9. 
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Figure 11 Effect Size by Year from Synthetic Control Model of Impact on the Level of Math 
Z-Scores in Grades 6 and 7 
 

Note: This figure shows the difference between the outcomes in Figure 9. 
 
 
 
 
 
 
 
 
 
   

0
.0

5
.1

.1
5

Ef
fe

ct
 - 

D
is

tri
ct

 n
or

m
ed

 Z
 s

co
re

 fo
r m

at
h 

C
ST

/S
BA

C

0 1 2 3 4
Lead



 33 

Table 1 Timeline of the Intervention and State Testing 
 

School Year 
(Spring) 

CTO Program California Standards 
Test Grades 2-7 (Grade 

Specific) and 8-11 
(Specific to Math 

Course) 

Smarter Balanced Test 
Grades 3-8 

2009  Yes  
2010  Yes  
2011  Yes  
2012  Yes  
2013  Yes  
2014    
2015   Yes 
2016 Yes  Yes 
2017 Yes  Yes 
2018 Yes  Yes 
2019 Yes  Yes 
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Table 2 Difference-in-Difference Estimates of Changes in Test-Score Growth of 
Students at CTO Schools 
 

  (1) (2) (3) (4) (5) (6) 
Coefficient       
CTO*POST 0.126* 0.127* 0.126* 0.105* 0.109* 0.110* 

 
[ 

0.0376] [ 0.0181] [0.0210] [0.0350] [0.0146] [0.0135] 

 
[.005, 
0.274] 

[.013, 
.269] 

[.012, 
.269] 

[.005, 
.241] 

[.013, 
.244] 

[.014, 
.244] 

CTO School -0.156 -0.146 -0.147    
  [0.0628] [0.0830] [0.0799]       

 
[-.334, 
.009] 

[-.315, 
.019] 

[-.312, 
.017]    

Observations 26,710 26,710 26,710 26,710 26,710 26,710 
R-squared 0.015 0.019 0.019 0.029 0.032 0.032 

Controls for:       
Year Yes Yes Yes Yes Yes Yes 

Grade Yes Yes Yes Yes Yes Yes 
Female, Race/Ethnicity No Yes Yes No Yes Yes 

Parental Education, Ever 
EL No No Yes No No Yes 

School Fixed Effects No No No Yes Yes Yes 
CTO School Fixed Effect Yes Yes Yes No No No 

 
Notes: In each column, the first [ ] entries indicate wild bootstrap p-value.  The second set of [] 
entries indicate the wild bootstrap 95% confidence interval.  ** p<0.01, * p<0.05 
 
 
Table 3 Event Study of Changes in Test-Score Growth of Students at CTO Schools 

Year (Spring) Year Effect 
Confidence 

Interval Effect Confidence Interval 
2009 -6 -0.145 [-.5434, .2621] -0.133 [-.5273, .2728] 
2010 -5 -0.0144 [-.2796, .3065] -0.00444 [-.2761, .3192] 
2011 -4 -0.0587 [-.2967, .215] -0.0437 [-.2837, .2216] 
2012 -3 0.0884 [-.08412, .3176] 0.102 [-.07877, .3349] 
2013 -2 0  0  
2014 -1       
2015 0       
2016 1 0.0448 [-.226, .2857] 0.0364 [-.2293, .275] 
2017 2 0.128 [-.07466, .3609] 0.121 [-.07812, .3539] 
2018 3 0.0903 [-.0857, .3052] 0.0834 [-.08509, .2935] 
2019 4 0.152 [-.03412, .3671] 0.144 [-.03534, .3549] 

CTO Dummy  Yes  No  
School Fixed 

Effects   No    Yes   
 
Note: Other regressors include year dummies, race and gender dummies, and either a CTO dummy 
or school fixed effects as indicated.  ** p<0.01, * p<0.05 
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Table 4 Results of Synthetic Control Models of the Level of Smarter Balanced Math 
Scores in 2015-2019, by the Grade Ranges Included 
 

Year (Spring) Sample: Grades 
6 and 7 

 Sample: Grades 
6, 7 and 8 

 

 Effect p-value Effect p-value 
2016 -0.0113 0.9830 0.0018 0.9431 
2017 0.0431 0.1638 0.0898 ** 0.0027 
2018 0.0033 0.9773 0.0633 0.1813 
2019 0.1406 ** 0.0000 0.1448 ** 0.0087 

Notes: To guard against placebo effects with relatively poor matches, we limit placebos to those for 
which the Root Mean Squared Prediction Error is no more than twice that for the given treated 
school.  For the grade 6 and 7 model, inference is based on 4950 placebo averages.  For the grade 6 
to 8 models, inference is based on 28672 placebo averages.  
** p<0.01, * p<0.05 
  



 36 

Table 5 Estimated Costs per Year of the CTO Program Overall and Relative to 
Estimated Costs of the Pre-Existing Teacher Pool 
 

Type of Expenditure 

Total Annual Teacher 
Days Averaged over 4 

Years 

Resource Teacher at 20% above Cost 
of Average Teacher 220.8 
Summer Math Summit 48.8 
Unit Planning 32.3 
Co-Teaching 4.3 

Desmos Professional Development 1.8 

Coach for Resource Teacher 19.4 
Books, Teacher Supplies, 1 Day 
Desmos Workshop 2.2 
Average Annual Costs in Teacher 
Days 329.4 

Average Annual Costs in Teacher FTE 1.8 

Average Annual Costs in Dollars $203,897 
Average Annual Costs in Teacher FTE 
per School 0.45 
Average Annual Costs in Dollars per 
School $50,974 

Average Annual Cost as % of 
Estimated Salaries and Benefits for 
Pre-Existing Math Teachers 4.5 
Notes: The upper panel estimates various elements of the program, averaged over the four years, in 
teacher FTE equivalents.  Many costs were in teacher days, but some costs involved expenditures 
on other items.  We translated back and forth between teacher full time days and dollar costs using 
the district 184 day teacher contract and the average salary plus benefits (the latter estimated at 
60.89%) for a teacher with 10 years of experience with education level Bachelor’s+60 or Bachelor’s 
+ 54 + Master’s.  Salary source: San Diego Education Association (2017), p. 116.  Benefits rate 
calculated from district total expenditures on salaries and on benefits for 2018-19, from San Diego 
Unified School District (2019), p. 18.  
 
It is possible that some district expenditures on benefits accrue to former district employees, which 
would mean that the benefits rate is overstated. But this would only serve to overstate our estimated 
dollar costs of the teacher time allocated to the CTO program, making the program look less cost 
effective than it was. 
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Appendix Table 1 Comparison of 2012-13 Characteristics of the Four Treated Schools 
and the Four Comparison Schools, Along with p-Values for Test of Differences 
 

Variable Treatment Control 
P-Value for Test 

Treatment=Control 
API Achievement Measure, Spring 2013 730 735 0.97 

% Basic or Better on State Math Test 
Spring 2013 65 70 0.81 

School Characteristics Index Spring 2013 165 165 0.66 
% EL and Recently Reclassified 65 60 0.64 

% Hispanic 80 65 0.13 
% African American 10 10 0.58 

% White 5 10 0.56 
% Asian 5 10 0.48 

% Eligible for Meal Assistance 100.0 90 0.36 
 
Notes:  Treatment and control means are rounded to the nearest multiple of 5 to reduce the chances 
of inadvertently revealing the identity of the schools.  For accountability purposes, California 
combines current English Learners and Reclassified students who have not yet tested proficient or 
better on the ELA test for three years running.  
 
API refers to the Academic Performance Index, which is a function of test scores in math and 
English Language Arts tests that were given in grades 2-11 in California schools between 2002 and 
2013.  
 
Appendix Table 2 Minimum Detectable Effect Size for a Difference-in-Difference 
Model, Expressed as the Proportion of a Standard Deviation Change in Test Score 
Required in Cumulative Impact by the Given Year, and the Implied Required 
Average Gain per Year 
 

Year of Intervention 
MDES (Cumulative Effect 
on Level of Test Scores) 

Implied Required 
Average Gain per 

Year 
1 0.24 0.24 
2 0.28 0.14 
3 0.32 0.11 
4 0.36 0.09 

 
Notes: Column is the MDES for the cumulative impact on test scores that would be detectable 80% 
of the time at the 5% level.  Because our main models use changes in Z-scores as the dependent 
variable, rather than Z-scores, the rightmost column shows the average gain in Z-scores per year in 
treatment schools that would be needed to produce the given MDES by the given year.  For 
example, the year 4 MDES of 0.36 implies a gain per year averaging 0.36/4=0.09 of a standard 
deviation in test scores.  Calculations set number of baseline years to 5, average number of students 
per school per year to 371 (in grades 6 and 7), 8 schools, half of which are in the treatment group, 
with an ICC between cohorts of 0.01, the percent of variance explained by characteristics of a 
cohort at 0.02.  
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Appendix Table 3 Average Characteristics: Comparing the CTO Schools to Synthetic 
Controls Using Baseline Data from 2014-15 
 

 Grade 6-7  
Models 

 Grade 6-8  
Models 

 

Characteristic CTO Schools Average of  
Synthetic 
Controls 

CTO Schools Average of  
Synthetic 
Controls 

Math Z Scores -0.497 -0.498 -0.504 -0.504 
ELA Z Scores -0.411 -0.468 -0.423 -0.505 
Teachers’ 
Average Years of  
Experience in the  
District 

13.5 11.1 13.5 10.9 

 
 
 
  
 
 




