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1 Introduction

Over the past three decades, there has been a significant surge in product market concentra-

tion (e.g., Gutiérrez and Philippon, 2017; Autor et al., 2020; Loecker and Eeckhout, 2019).

Industries are increasingly characterized as “winner takes most,” with a small number of

firms controlling a large share of the market.1 Notably, the positions of market leaders are

often highly persistent (e.g., Sutton, 2007; Bronnenberg, Dhar and Dubé, 2009), affording

them the ability to engage in strategic competition and sustain elevated profit margins

through tacit collusion.2 The increasingly ubiquitous adoption of pricing algorithms pow-

ered by artificial intelligence has further facilitated such collusive behavior.3 Considering the

pivotal roles these dominant firms play in shaping aggregate earnings and output (Gabaix,

2011), coupled with the important impact of price markups on aggregate economic fluctua-

tions (Bils, Klenow and Malin, 2012), a deeper understanding of market leaders’ strategic

competition is vital not just for grasping industry dynamics but also for understanding

macroeconomic fluctuations.

In this paper, we study the dynamic strategic competition among firms facing threats

of financial distress. We demonstrate that the interplay between tactical competition and

the threat of financial distress engenders a distressed competition mechanism, leading to a

competition-distress feedback loop and a novel form of financial contagion. These feedback

and contagion effects will influence a firm’s credit risk and the overall financial stability of

the industry. Furthermore, by introducing strategic market competition into the tradeoff

theory of capital structure, our model helps resolve the longstanding “profitability-leverage

puzzle.”

Figure 1 illustrates the intuition behind the competition-distress feedback loop. Consider

a firm-specific shock that raises the distress risk for one of the major firms in an industry.

The increased probability of default effectively makes the firm more impatient, leading to a

greater focus on the short term gains. In the context of tacit collusion within a repeated game,

firms retaliate against any rival’s deviation from the collusive arrangement by reverting to

non-collusive competition. When a firm becomes more impatient, the value it places on

future cooperation profits diminishes, and its concern about future retaliation weakens. This

1According to the U.S. Census data, on average, the top four firms within each four-digit SIC industry
account for about 48% of each industry’s total revenue (see Dou, Ji and Wu, 2021a).

2See, e.g., Gutiérrez, Jones and Philippon (2019), Grullon, Larkin and Michaely (2019), and Corhay, Kung
and Schmid (2020b) for evidence of high markups and profit margins, and Anderson, Rebelo and Wong (2018)
and Dou, Ji and Wu (2021a,b) for evidence of strong fluctuations in aggregate profit margins. There is extensive
granular and direct evidence showing that tacit collusion, as a form of strategic competition, is prevalent (see
Online Appendix 2).

3See, e.g., Calvano et al. (2020), Asker, Fershtman and Pakes (2022), Brown and MacKay (2022), Sanchez-
Cartas and Katsamakas (2022), Clark et al. (2023), and Dou, Goldstein and Ji (2023).

1



!"#$#%"$&'(")*+,))

!"#$%&'()*+,$,-&-'.

-./$*",#%,

01./,*"*"1#

.

/*+#-'(0$*1-22

3+&&%4-+2(5$)$5-'.

!"#$%&'()*(#+,-.,/#+0*1)(+*0,

2&/#3&,*(45*&16

Figure 1. Interplay between financial distress and product-market competition.

tightening of the no-deviation incentive compatibility (IC) constraints reduces the firms’

capacity for collusion and intensifies competition in the product market, resulting in reduced

profit margins. Lower profit margins, in turn, push the firms further into financial distress,

bringing the feedback loop full circle.

Drawing parallels, our feedback mechanism resonates with Fudenberg and Maskin

(1986)’s folk theorem; yet, our model adds a unique dimension by endogenizing firms’

discount rates through the impact of product market competition on default probabilities.

Importantly, the firms do not actively choose to compete more aggressively; rather, it is

the tightening of the no-deviation IC constraints that obliges them to reduce their profit

margins. This feedback loop constitutes a key aspect of our analysis and highlights the

intricate relationship between market competition and financial distress.

The competition-distress feedback loop yields two important implications about capital

structure. First, it diminishes firms’ incentives to increase leverage, as higher leverage

curtails their ability to collude and reduces profitability. This effect introduces a novel

source of financial distress costs. Second, the feedback loop provides an explanation for the

profitability-leverage puzzle at the industry level. Profitability is negatively associated with

leverage across both firms and industries, a robust empirical pattern that is at odds with

the traditional tradeoff theory of capital structure (e.g., Myers, 1993; Rajan and Zingales,

1995; Fama and French, 2002). Our model can account for this negative relationship by

endogenously connecting profitability with financial leverage. Specifically, industries with

higher profitability tend to be those in which firms enjoy higher capacity for tacit collusion.

This capacity is particularly vulnerable to the financial distress risk. As a result, to preserve

their collusion capacity, firms in these more profitable industries opt for lower leverage.4

4The same idea can also offer a new perspective on the financial distress anomaly, differing from recent
studies (e.g., Garlappi and Yan, 2011; Boualam, Gomes and Ward, 2020; Chen, Hackbarth and Strebulaev, 2022).
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Strategic competition can also give rise to financial contagion within an industry. As

illustrated in Figure 1, if a firm experiences an adverse idiosyncratic shock and becomes

more financially distressed, competition intensifies within the industry, reducing the profits

of other firms in the industry. As a result, the financial conditions of the firm’s industry

peers will also deteriorate, especially in the short run, such as one or two years. Moreover, in

the case of multi-industry firms, financial contagion can spread across industries, amplifying

the propagation of distress risk.5

This contagion effect has several implications. First, it expands the channels through

which idiosyncratic shocks are transmitted across firms and industries. An adverse idiosyn-

cratic shock to one market leader has ripple effects, negatively impacting the profit margins

of its competitors due to endogenous competition responses. Such ripple effects imply that

firms’ cash flow risks and their financial distress levels become interdependent, justifying

a fundamental assumption supporting information-based theories of credit market freezes

(e.g., Bebchuk and Goldstein, 2011). Second, the strength of the contagion effect hinges

on the industry structure. It is more pronounced in industries characterized by higher

concentration, higher leverage, or a lower entry threat. This observation underscores the

importance of considering the industry structure and the financial conditions of major com-

petitors when analyzing firm-level credit risk, which differs from standard credit risk models

that typically explain firm-level credit risk solely based on firm-specific and systematic

(industry- or market-wide) economic conditions. Third, the contagion effect has implications

for firms’ optimal leverage ratios. Firms may choose leverage ratios that appear excessively

high from the industry’s perspective, compromising the industry’s financial stability. The

contagion effect delineated in our model sheds light on how common ownership can impact

the financial stability of industries.

We present two models that formally explore the interactions between financial distress

risk and strategic market competition. We start with a simple model in Section 2, which

embeds the Merton model of credit risk (Merton, 1974) into a repeated-game model of

Bertrand competition with potential tacit collusion (e.g., Fudenberg and Maskin, 1986;

Rotemberg and Saloner, 1986). This simple model, which can be solved in closed form,

provides a transparent and analytical demonstration of the feedback and contagion effects.

Specifically, in the simple model, we focus on the strategic interactions between two firms

that act as market leaders in a duopoly industry.

These firms derive their revenue from selling goods to consumers. They also need to

service their debt, which are in the form of a consol, and pay taxes. In the event that their

operating cash flows fall below a predetermined threshold, the firms default on their debt

5See Dou, Johnson and Wu (2023) for causal evidence of the cross-industry financial contagion effects.

3



and then exit the industry at the end of the period. To maintain stationarity and the duopoly

market structure, a new firm promptly enters the industry to replace any firm that defaults.

This turnover resets the game of market competition, which resumes with fresh interactions

between the surviving incumbent firm and the new entrant.

We now describe how product prices and demands are determined under product market

competition. Because goods are perishable and their prices are set above the costs, firms

produce goods to exactly meet the demand in equilibrium. Demand for a firm’s goods

depends on the expected demand, which is endogenously determined according to a demand

system, and an independent and identically distributed (i.i.d.) idiosyncratic demand shock.

Under the demand system, if the two firms set the same product price, each firm obtains

unity expected demand. However, if their prices differ, the firm with the higher price will

lose all demand, whereas the firm with the lower price will capture additional expected

demand that rises with its rival’s price. This demand system implies that, in the absence

of collusion, firms would undercut each other until they reach the unique non-collusive

equilibrium which features zero profits for both firms.

However, as firms interact in a repeated game, they have the incentives to tacitly collude

with each other to achieve positive profits. We focus on the collusive equilibrium sustained by

grim trigger strategies. Assuming that the rival firm will honor the collusive price, a firm may

be tempted to boost its current revenue by undercutting the price; however, this deviation

risks reducing future revenue due to retaliation by the rival firm in subsequent periods.

Following the literature,6 we adopt the non-collusive equilibrium as the incentive compatible

punishment for deviation. Using the closed-form solutions, we prove the existence of

the competition-distress feedback loop and the financial contagion effect arising from the

distressed competition mechanism.

To explore the model’s implications for firms’ capital structure decisions, we also allow

firms to strategically set their debt levels. The determination of the optimal capital structure

occurs at the inception, hinging on the fixed point of each firm’s best response function of

leverage choice. This function reflects the firm’s optimal reaction to the rival’s debt level

within the collusive equilibrium. As in traditional tradeoff theories of capital structure, firms

in our model weigh tax-shield benefits against financial distress costs when determining

their optimal leverage. A distinctive and original aspect of our theory is the introduction

of a new source of financial distress costs. This source is endogenous, stemming from

the feedback loop between market competition and financial distress. Specifically, higher

leverage levels within the industry tighten the no-deviation IC constraints in the collusive

equilibrium, escalate industry competition, and ultimately reduce profitability and cash

6See, e.g., Green and Porter (1984), Brock and Scheinkman (1985), and Rotemberg and Saloner (1986).
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flows. As a result, firms are incentivized to pursue lower financial leverage ex ante, even in

the absence of bankruptcy costs. By varying the magnitude of this new source of financial

distress costs across industries through heterogeneous levels of idiosyncratic left-tail risk,

we show that the model can reproduce the negative correlation between profitability and

leverage observed at the industry level.

After examining the simple model, we develop a full-fledged quantitative model to assess

the quantitative significance of the distressed competition mechanism and its implications

for capital structure. This quantitative model, presented in Section 3, extends the simple

model above by incorporating more realistic assumptions and functional form specifications

across four dimensions. First, the firm-specific demand dynamics are modeled to follow a

sequentially dependent process, akin to Leland (1994), deviating from the i.i.d. process in

the simple model. Consequently, the firm’s distance-to-default becomes a persistent state

variable, introducing another dynamic element to our analysis. Second, we consider a more

flexible and realistic demand system. Third, firms make optimal default decisions based on

endogenously determined default boundaries as opposed to the exogenously specified ones

used in the simple model. Fourth, the quantitative model accommodates both partial debt

recoveries and industry structure changes in the event of default. Specifically, by varying the

size of entrant firms, we analyze industries with diverse entry barriers to investigate how

entry threats influence rivals’ predatory pricing behaviors.

The main contributions of this paper are theoretical. In a companion paper, Dou, Johnson

and Wu (2023) provide extensive causal evidence of the contagion effects based on granular

data. In addition, we provide three sets of empirical results in Online Appendix 3 to support

the main theoretical implications in this paper. First, for evidence of the feedback effect, we

find that industry-level profit margins load negatively on the discount rate and more so

in industries where firms are closer to their default boundaries. This finding is consistent

with our model’s prediction that higher discount rates reduce firms’ collusion capacity, and

that the competition-distress feedback effect is stronger when firms’ distances to default

are lower. Second, we provide evidence of the financial contagion effect. By sorting the top

six firms (ranked by sales) within each industry into three groups based on their distances

to default, we find that adverse idiosyncratic shocks to the financially distressed group

diminish the profit margins of the financially healthy group. Furthermore, we find that

the within-industry spillover effect is more pronounced in the industries facing lower entry

threats (i.e., higher entry barriers) as predicted by our quantitative model. Third, we provide

evidence of the model’s implications for the profitability-leverage relationship. Specifically,

we show in the data that industries with lower profit margins or higher idiosyncratic left-tail

risk are associated with higher leverage ratios. Moreover, the negative profitability-leverage

relationship across industries becomes insignificant after controlling for idiosyncratic left-tail
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risk. Thus, consistent with our model’s prediction, varying degrees of idiosyncratic left-tail

risk across industries can explain a major part of the industry-level profitability-leverage

anomaly.

Related Literature. Our study adds to the literature on structural credit models, emphasizing

the complex interplay between imperfections in the primary credit market and assorted

other market frictions. Previous studies by Philippon (2009), Kuehn and Schmid (2014), and

Gomes, Jermann and Schmid (2016), among others, have delved into the interplay between a

firm’s long-term debt financing and corporate investment frictions. Additionally, He and

Xiong (2012), He and Milbradt (2014), Chen et al. (2018), and Chen, Xu and Yang (2021) have

investigated the interaction between a firm’s default decisions and the secondary market

liquidity for defaultable corporate bonds. Corhay (2017) examines credit risk in an oligopoly

model, focusing on non-collusive competition and short-term debts. In contrast, our model

centers on long-term debts and tacit collusion. Our paper highlights the dynamic interplay

between tactical competition in imperfect product markets and the threat of financial distress.

Our study also enriches the theoretical literature on financial contagion, both across firms

and between diverse assets. Previous studies have demonstrated that financial contagion

operates through various economic channels, involving common (levered) investors (e.g.,

Kyle and Xiong, 2001; Gromb and Vayanos, 2002; Kodres and Pritsker, 2002; Kaminsky,

Reinhart and Végh, 2003; Goldstein and Pauzner, 2004; Martin, 2013; Gârleanu, Panageas

and Yu, 2015), cross-holding relations of firms (e.g., Elliott, Golub and Jackson, 2014), and

information-based feedback effects (e.g., Cespa and Foucault, 2014). In contrast, our paper

introduces a novel channel of financial contagion that underscores the importance of market

competition.

A growing body of theoretical research delves into the complex interaction between

market competition and corporate financial decisions, with early contributions dating back

to Titman (1984), Brander and Lewis (1986), Maksimovic (1988), and Dumas (1989), among

others. Over the past decades, this critical topic has seen significant theoretical advancements

(e.g., Chevalier and Scharfstein, 1996; Allen, 2000; Grenadier, 2002; Aguerrevere, 2009; Back

and Paulsen, 2009; Hackbarth and Miao, 2012; Bustamante, 2015; He and Matvos, 2016;

Bova and Yang, 2017; Dou and Ji, 2021; Dou et al., 2021b; Dai, Jiang and Wang, 2022). Our

paper makes a unique contribution to this body of theoretical literature by establishing

the competition-distress feedback and financial contagion effects. We demonstrate the

importance of market competition in distress propagation and revive the trade-off theory’s

explanatory power concerning the joint pattern of profitability and financial leverage. While

Spiegel and Tookes (2013, 2020) also develop analytically tractable oligopoly dynamic models,

6



our paper proposes a different strategic competition mechanism. In contrast to the studies by

Spiegel and Tookes (2013, 2020), we determine firm-level profitability endogenously rather

than specifying it exogenously. As a result, the competition-distress feedback and financial

contagion effects arising from endogenous profitability are unique predictions of our theory.

The rest of the paper is organized as follows. Section 2 presents a simple model with

closed-form solutions. Section 3 presents a full-fledged quantitative model that extends

the simple model. Section 4 calibrates the full-fledged quantitative model and undertakes

quantitative analyses. Section 5 concludes. The appendix contains proofs of the theoretical

results of the simple model. The internet appendix provides empirical evidence supporting

the theoretical results, as well as additional analyses of the full-fledged quantitative model.

Moreover, a note on additional materials and literature discussions can be found in Chen

et al. (2023), which is available on the authors’ personal websites.

2 Simple Model

In this section, we present a simple model that combines the Merton model of credit risk

(Merton, 1974) with a repeated-game model that allows for tacit collusion (e.g., Fuden-

berg and Maskin, 1986; Rotemberg and Saloner, 1986). This model clearly illustrates the

interaction between financial leverage decisions and product market competition, which in

turn endogenously determines a firm’s profitability and its risk of financial distress. This

illustration sheds light on the key insights of both the competition-distress feedback loop

and the financial contagion effect.

This model also demonstrates that the competition-distress feedback effect can help recon-

cile the tradeoff theory of capital structure with the observed negative profitability-leverage

relation in the data. This negative relation, often referred to as the profitability–leverage puz-

zle in the literature, has been widely documented and is generally regarded as a challenge

to the tradeoff theory of capital structure (e.g., Myers, 1993; Rajan and Zingales, 1995; Fama

and French, 2002).7

2.1 Model Formulation

We consider an infinite-horizon economy in discrete time with t = 0, 1, 2, .... The risk-free

rate is constant and zero, that is, r f = 0. We consider a duopolistic industry with each firm

7A partial list of papers documenting an inverse relation between leverage and profitability include Titman
and Wessels (1988), Fischer, Heinkel and Zechner (1989), Booth et al. (2001), Graham and Tucker (2006), Frank
and Goyal (2014), Chen, Harford and Kamara (2019), and Eckbo and Kisser (2021).
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producing a differentiated good. These firms repeatedly engage in price competition each

period. We denote the generic firm by i and its competitor by j, that is, i = 1, 2 and j 6= i. At

t = 0, firm i is financed by external equity and long-term consol debt with coupon payment

of ebi each period. Due to the i.i.d. setting, we suppress the subscript t.

Cash Flows Driven by Market Competition. The total demand for firm i’s goods is ezi Ci,

where zi captures the i.i.d. idiosyncratic demand shock that satisfies E [ezi ] ≡ 1; Ci is

the expected demand, which is endogenously determined in the Nash equilibrium of the

competition games. The marginal cost of production is zero, and thus each firm i would

always choose its product price Pi ≥ 0.

We now explain the demand system that lies at the heart of the determination of (C1, C2).

These two firms simultaneously name prices P1, P2 ∈ [0, P], being aware that the expected

demand faced by firm i is governed by the following demand system:

Ci =





1 + ρP
η
j , if Pi < Pj

1, if Pi = Pj

0, if Pi > Pj

, with i 6= j ∈ {1, 2}, (1)

where η > 1, ρ > 0, and P > 1 satisfy ρP
η ≤ 1.

Several important points warrant further discussion. First, when firms do not undercut

each other (P1 = P2), the expected demand is normalized to unity (C1 = C2 = 1). Second,

following the literature (e.g., Rotemberg and Saloner, 1986; Asker, Fershtman and Pakes,

2022), if firm i sets a lower price than its rival (Pi < Pj), firm j loses all of its demand, while

firm i gains additional expected demand of ρP
η
j . The coefficients ρ and η together determine

the extent of consumers’ willingness to substitute between these two differentiated products.

Intuitively, when either ρ or η is larger, setting a higher price Pj by firm j gives its rival, firm

i, a stronger incentive to undercut firm j’s price. Third, as in Asker, Fershtman and Pakes

(2022), an upper bound P is imposed on the price. To ensure that the expected demand

gain from undercutting never exceeds the expected demand loss experienced by its rival, we

assume that ρP
η ≤ 1. In the remainder of this section, we consider sufficiently large values

of η and sufficiently small values of ρ to guarantee the existence of the collusive equilibrium.

By analyzing the demand system with these assumptions, we can gain valuable insights into

the important properties of the collusive equilibrium in the model.

Production Profits. Prices P1 and P2 are determined prior to the realization of the id-

iosyncratic demand shocks within the same period. Consequently, these prices remain

unresponsive to the transitory idiosyncratic demand shocks, reflecting a mild degree of

8



price rigidity in line with empirical observations (e.g., Bils and Klenow, 2004; Bils, Klenow

and Malin, 2012). Specifically, both firms simultaneously name their product prices (P1, P2)

before observing the idiosyncratic demand shocks, which determine the expected demand

for their goods (C1, C2) according to the demand system (1). Then, after observing its spe-

cific demand shock zi, firm i makes an optimal production decision. It chooses to produce

Yi = ezi Ci units of outputs to meet the realized demand for its products. This production

decision is well-founded from the firm’s perspective, considering the assumption that the

marginal cost of production is zero, and the outputs are perishable or nonstorable.8

Firm i generates a profit of Pie
zi Ci from selling its products. It first uses this profit to

cover interest expenses and taxes, and then distributes the remaining amount to shareholders

as dividends. Let θi ≡ ln(PiCi) denote the log profitability of firm i, which, as an intrinsic

firm characteristic, is not influenced by transient idiosyncratic shocks, such as zi. Firm i’s

earnings, after accounting for interest expenses and taxes, are (1 − τ)Ei, where τ ∈ (0, 1)

represents the corporate tax rate, and Ei is given by:

Ei = eθi+zi − ebi . (2)

Financial Distress and Borrowing Constraints. As in the standard Merton model, firm i

defaults on its debts and exits the market when its operating cash flow eθi+zi is lower than an

exogenous default boundary eϕ(bi).9 For tractability, we postulate a functional form for the

default boundary, ϕ(b) ≡ 1
2 ϕ̄b2, with ϕ̄ > 0. This assumption captures the idea that when a

firm is sufficiently underwater, it will not be able to raise external funding to meet its debt

obligation. Moreover, the higher the debt level the more likely default becomes.

In the meantime, financial distress can also stem from the possibility of covenant viola-

tions. To stay running, firm i ∈ {1, 2} needs to make sure that the following earnings-based

borrowing constraint is not violated in any period:

θi − bi ≥ ℓ, for a constant ℓ > 0.10 (3)

To ensure stationarity and maintain tractability, we assume that a new firm enters the

8The adoption of a demand-driven optimal production, which captures the notion of costly inventories, has
been widely embraced in the literature as a simplification assumption (e.g., Gourio and Rudanko, 2014; Corhay,
Kung and Schmid, 2020a; Dou et al., 2021b; Dou, Ji and Wu, 2021a,b).

9We consider endogenous default boundaries in the full-fledged quantitative model in Section 3. As shown
in the literature (e.g., Longstaff and Schwartz, 1995; Chen, Collin-Dufresne and Goldstein, 2008; Cremers,
Driessen and Maenhout, 2008; Huang and Huang, 2012; Leland, 2012), models with exogenous and endogenous
default boundaries can generate quantitatively similar predictions for default probabilities and credit spreads.

10Earnings-based borrowing constraints as specified in equation (3) are prevalent in practice (e.g., Roberts
and Sufi, 2009; Lian and Ma, 2020).
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industry when an incumbent firm defaults and exits.11 In particular, when incumbent firm

i exits, a new firm enters immediately, with coupon payment ebi . The game of industry

competition is then “reset” to a new one between the surviving incumbent firm j and the

new entrant. Upon default and exit, the firm is liquidated and its debt holders obtain a

fraction δ of the unlevered asset value. We assume that δ equals zero for simplicity.12

Left-Tail Risk. We assume that for firm i, the idiosyncratic demand shock zi follows a

logistic distribution, Logistic (µ(ν), ν), with ν ∈ (0, 1/2) and

µ(ν) ≡ ln(sin(νπ))− ln(νπ) < 0. (4)

It holds that E [zi] = µ(ν), var [zi] = ν2π2/3, and E [ezi ] ≡ 1 for i ∈ {1, 2}.

This distributional assumption helps us obtain closed-form solutions. Moreover, under

this assumption, the operating cash flow shock ezi follows the log-logistic distribution,

also known as the Fisk distribution, which is widely applied in economic research (e.g., in

modeling the distribution of wealth or income). This distribution has a heavy tail close to the

Pareto tail, which is more realistic compared to the log-normal distribution. The parameter

restriction ν ∈ (0, 1/2) ensures that the moments of zi are well defined.13 The probability of

a left-tail event occurring, defined as zi ≤ z for a given threshold z < 0, increases with ν.14

It is important to highlight that while the left-tail event is idiosyncratic, the left-tail

risk, captured by ν, applies to the entire industry. We consider ν as a critical fundamental

characteristic that differentiates industries. Intuitively, ν could represent the risk associated

with radical innovations that can potentially displace market leaders. In industries with

higher idiosyncratic left-tail risk, firms are more prone to radical and disruptive innovation

that could dramatically alter industry landscape within a relatively short span of time (e.g.,

Christensen, 1997). For instance, the mobile phone industry has witnessed the market lead-

ership shift from Nokia and Motorola to Apple and Samsung within a short span. In Section

2.5, we present theoretical evidence highlighting the substantial impact of heterogeneity

in the industry-level tail risk on determining the financial leverage and profitability across

industries. In Online Appendix 3.4, we further support these theoretical findings with

empirical evidence.

11This assumption is similar in spirit to the “return process” of Luttmer (2007) and the “exit and reinjection”
assumption in the industry dynamics models of Miao (2005) and Gabaix et al. (2016). The same assumption is
commonly adopted in the industrial organization (IO) literature on oligopolistic competition and predation
(e.g., Besanko, Doraszelski and Kryukov, 2014) and can be interpreted as the reorganization of the exiting firm.

12In the full-fledged quantitative model in Section 3, we calibrate the recovery rate of debt to match the data.
13Specifically, E [zi] /

√
var [zi] is a monotonically decreasing and strictly concave function of ν over (0, 1/2).

14The proof is in Appendix A.
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2.2 Nash Equilibrium

Firms play a supergame, in which the stage games of setting prices are infinitely repeated

over time. A non-collusive equilibrium, which is the repetition of the one-shot Nash

equilibrium, exists and is Markov perfect. Multiple subgame-perfect collusive equilibria can

also exist, in which competition strategies are sustained by grim trigger strategies.

Unique Non-Collusive Equilibrium. In the following proposition, we characterize the

non-collusive equilibrium. The proof is in Appendix B.

Proposition 2.1 (Non-Collusive Equilibrium). There exists a unique non-collusive equilibrium, in

which firms set PN
1 = PN

2 = 0 and obtain CN
1 = CN

2 = 1 in each period. Thus, both firms have zero

profits and zero equity values (EN
1 = EN

2 = 0).

This result is quite intuitive. If Pi > 0, firm j can always choose a price infinitesimally

lower than Pi to undercut firm i, given that the marginal cost is zero.

Competition Under Tacit Collusion. Let θC
i ≡ ln

(
PC

i CC
i

)
denote the log profitability of firm

i in the collusive equilibrium. As depicted in Figure 2, we consider the collusive equilibrium

sustained by grim trigger strategies in which deviations from the tacit collusion scheme

results in a punishment known as Bertrand reversion. Under this punishment, the firms shift

from tacit coordination to non-coordination, leading to zero profits and zero equity values.

The concept of retaliation through terminating coordination and reverting to the zero-profit

non-collusive equilibrium is commonly employed in many studies (e.g., Rotemberg and

Saloner, 1986; Hatfield et al., 2020) due to its simplicity.15 Here, the effectiveness of the

grim trigger strategy hinges on the ability of both firms to observe their competitor’s price

without incurring any cost, enabling swift detection and punishment of deviations.

The analytical expression for the default probability in a collusive equilibrium is presented

in the following lemma. The proof is in Appendix C.

Lemma 1 (Default Probability). In a collusive equilibrium, the default probability of firm i over one

period, denoted by λC
i , is equal to

λC
i = λC(θC

i , bi), with λC(θ, b) ≡ 1

1 + e[µ(ν)+θ−ϕ(b)]/ν
. (5)

We now explain the IC constraints that prevent the occurrence of deviation on the

equilibrium path. The price-setting scheme at (PC
i , PC

j ) can be sustained as an equilibrium

15In the full-fledged quantitative model in Section 3, profits are positive in the non-collusive equilibrium,
which increases the practical relevance of the same retaliation scheme.
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Figure 2. Graphic illustration of the classes of equilibria and the off-equilibrium-path threats. The two
circled nodes represent the two phases of different forms of competition, and the squared node represents the
transition based on the deviant behavior of the game players i or j with i 6= j ∈ {1, 2}. The two firms have

profits (eθC
i , e

θC
j ) under tacit coordination and (0, 0) under non-coordination Bertrand reversion.

outcome only if neither firm has incentive to deviate by setting a lower price, or equivalently,

a lower log profitability. Deviation of firm i by setting a slightly lower price would result

in an increase in expected demand of firm i by ∆Ci = ρe
ηθC

j according to (1). However,

such a deviation triggers retaliation from firm j in the next period, shifting the market to

the non-collusive equilibrium, where profits and equity values become zero for both firms.

Therefore, the gain from deviation, due to gaining additional market shares by undercutting

its rival in the current period, and the subsequent loss, due to losing the future profits from

collusion, which is firm i’s equity value in the collusive equilibrium conditional on survival,

can be characterized as follows:

Expected benefits of deviation for firm i = PC
i ∆Ci = ρe

θC
i +ηθC

j , (6a)

Expected costs of deviation for firm i =
[
1 − λC(θC

i , bi)
]

EC
i (bi, bj), (6b)

where EC
i (bi, bj) is the equity value of firm i in the collusive equilibrium.

To ensure that firm i has no incentive to deviate from tacit coordination, it must hold that

ρe
θC

i +ηθC
j

︸ ︷︷ ︸
Benefits of deviation

≤
[
1 − λC(θC

i , bi)
]

EC
i (bi, bj),

︸ ︷︷ ︸
Costs of deviation

with i 6= j ∈ {1, 2}. (7)

The IC constraints in (7) determine the maximal log profitabilities (θC
i , θC

j ) that the grim

trigger strategy can sustain. Additionally, within this equilibrium, both firms must set
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the same price, denoted as PC. Indeed, under the demand system as specified by (1), no

firm would willingly set a higher price than its rival, knowing that this would lead to zero

profits.16 This ensures equal expected demand for both firms, with CC
1 = CC

2 = 1, as well as

equal log profitability, denoted as θC. These derived profitabilities then dictate the values of

equity and debt in the collusive equilibrium. Having discussed the intuition, we formally

characterize the collusive equilibrium in Proposition 2.2. The proof is in Appendix D.

Proposition 2.2 (Collusive Equilibrium). The equity and debt values of firm i in the collusive

equilibrium are

EC
i (bi, bj) = (1 − τ)

(
eθC − ebi

)
λC(θC, bi)

−1, (8)

DC
i (bi, bj) = ebi λC(θC, bi)

−1, (9)

where θC is the log profitability for both firms in the collusive equilibrium, and (θC, θC) is the unique

Pareto efficient point of the following incentive compatible region (IC region) in the log-profitability

space:

C ≡
{
(θ1, θ2) : θi ≤ Ψ(θj, bj)/η and θi = θj, with i 6= j ∈ {1, 2}

}
, (10)

for b1 and b2 such that C is not empty. The function Ψ(θ, b) in (10) has the expression:

Ψ(θ, b) ≡ ln[(1 − τ)/ρ] + [µ(ν) + θ − ϕ(b)]/ν + ln
[
1 − e−(θ−b)

]
. (11)

Consequently, the log profitability in the collusive equilibrium is characterized by:

θC = Ψ(θC, b1 ∨ b2)/η, (12)

where b1 ∨ b2 denotes the maximum of b1 and b2, and θC is a function of b1 ∨ b2.

The characterizations of the equilibrium equity and debt values in (8) and (9) are intuitive.

The debt value in (9) is the discounted coupon until the time of default. The equity value in

(8) is the asset value minus the debt value, plus the value of tax shield:

EC
i (bi, bj) = (1 − τ)eθC

λC(θC, bi)
−1

︸ ︷︷ ︸
Asset value

− DC
i (bi, bj)︸ ︷︷ ︸

Debt value

+ τDC
i (bi, bj),︸ ︷︷ ︸

Value of tax shield

with i 6= j ∈ {1, 2}. (13)

The total value of firm i in the collusive equilibrium is VC
i (bi, bj) ≡ EC

i (bi, bj) + DC
i (bi, bj).

16In the full-fledged quantitative model in Section 3, firms can set different prices in the collusive equilibrium.
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Figure 3. Illustration of the characterization of collusive equilibria and IC constraints. In panel A, we
consider the symmetric case with b1 = b2 = ln(1.5). In panel B, we set b1 = ln(2) and b2 = ln(1.5). Other
parameter values are set at τ = 0.35, ϕ̄ = 0.2, ρ = exp(−20.5), η = 21, ν = 0.3, and P = 3.5.

The market leverage of firm i, denoted by levC
i (bi, bj) ≡ DC

i (bi, bj)/VC
i (bi, bj), is equal to

levC
i (bi, bj) =

1

(1 − τ)eθC−bi + τ
, with i 6= j ∈ {1, 2}. (14)

Figure 3 illustrates the central idea of Proposition 2.2. First, as discussed above, the

firms must agree on the collusive price and log profitability each period. As a result, the

equilibrium pair of log profitabilities must lie on the 45-degree dotted lines in panels A and

B, the feasible set for any collusive equilibrium. In panel A, we consider the symmetric

case with b1 = b2. Firm 1’s IC constraint is satisfied in the region below the solid line.

Intuitively, given firm 1’s log profitability θ1, to prevent it from deviating from an agreed

scheme, firm 2’s log profitability θ2 cannot be too high. Similarly, firm 2’s IC constraint is

satisfied in the region to the left of the dashed line. The segment of the 45-degree dotted line

within the overlapping area of the two firms’ IC regions represents all collusive equilibria

sustained by grim trigger strategies. However, we focus on the unique Pareto efficient

collusive equilibrium represented by the large dot at the intersection of the three lines, which

corresponds to (θC, θC) as stated in Proposition 2.2.

In panel B, we consider the case where firm 1’s leverage becomes higher (i.e., b1 > b2

while b2 is fixed). The dash-dotted lines represent the new IC constraints faced by the

two firms. Firm 1’s IC constraint shifts downward, while firm 2’s IC constraint remains

unchanged. The increase in b1 leads to a reduction in Ψ(θ, b) for all θ, as indicated by
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equation (11). Intuitively, the higher leverage of firm 1 increases its default probability

λC(θC, b1), strengthening its incentives to deviate from collusion since the cost of deviation

in (7) is now lower. Consequently, firm 2 cannot set its profitability level as high as before.

However, firm 2’s IC constraint remains unchanged as it depends solely on b2. As a result,

the segment of the 45-degree dotted line that lies within the overlapping area of the two

firms’ IC regions, representing all collusive equilibria sustained by grim trigger strategies,

shrinks compared to that in panel A. The large dot at the intersection of firm 1’s new IC

constraint and the 45-degree dotted line depicts the new unique Pareto efficient collusive

equilibrium with a lower log profitability. In this situation, firm 2’s IC constraint is not

binding. The example in Figure 3 demonstrates that higher leverage can intensify price

competition.

2.3 Financial Contagion Through Endogenous Competition

The following proposition shows how a firm’s financial leverage affects its own and its peer’s

profitability through endogenous changes in competition intensity. The proof can be found

in Appendix E.

Proposition 2.3 (Effects of Financial Leverage on Product Pricing Behaviors). For i 6= j ∈
{1, 2}, the partial derivative of θC with respect to bi is

∂θC

∂bi
=





0, if bi < bj

− ϕ̇(bi)/ν + di

η − (1/ν + di)
, if bi > bj,

where di ≡ 1/(eθC−bi − 1) and ϕ̇(b) is the derivative of ϕ(b). Therefore, the log profitability θC is

decreasing in both b1 and b2 in the collusive equilibrium.

Proposition 2.3 shows that if firm i increases its financial leverage by increasing bi, both

firm i and its rival firm j will have lower profitability (i.e., θC decreases) in the collusive

equilibrium. As summarized in the following corollary, this reduced profitability will raise

firm j’s default probability, leading to a spillover effect of financial distress. The proof is in

Appendix F.

Corollary 2.1 (Financial Distress Spillovers Through Endogenous Competition). An increase

in leverage for firm i, with bj kept unchanged, increases the default probability of rival firm j in the

collusive equilibrium. That is,

∂λC
j

∂bi
≥ 0, with i 6= j ∈ {1, 2}, (15)
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Figure 4. Illustration of contagion effects and negative externality of financial leverage. Parameter values
are set at τ = 0.35, ϕ̄ = 0.2, ρ = exp(−20.5), η = 21, ν = 0.3, P = 3.5, and b2 = ln(1.5).

where “>” holds if and only if bi > bj.

The financial contagion effect refers to the phenomenon where an increase in one firm’s

leverage reduces the market value of its rivals in the same industry due to a combination

of lower profitabilities and higher default probabilities. Figure 4 provides a graphical

illustration of this negative externality. In panel A, we observe that as b1, capturing the

leverage of firm 1, increases, the market value of both firms declines. Notably, the market

value of firm 2, the rival firm in the same industry, may decrease at a rate comparable to

that of firm 1. In panel B, we observe that as b1 increases, the default probability of both

firms increases. Both panels of Figure 4 demonstrate that the increase in leverage by one

firm has spillover effects on its competitors, resulting in a decline in their market values and

a rise in their default probabilities.

The classical tradeoff theory assumes that a firm’s capital structure choice is independent

of the actions or financial conditions of its product market rivals. However, recent evidence

suggests that there is an important spillover effect of product market rivals’ actions on a

firm’s distress risk level, as documented in studies such as Leary and Roberts (2014) and Dou,

Johnson and Wu (2023). Proposition 2.3 and its Corollary 2.1 provide a theoretical foundation

for these observed contagion patterns. They indicate that, due to the contagion effect, in

a decentralized equilibrium, leverage is excessively high from an industry perspective,

compromising the industry’s financial stability.

In essence, our model shows that, under the collusive form of competition, firms do not

fully internalize the impact of their leverage choices on their rivals in the same industry,
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even though they tacitly collude on profitability. As a result, the optimal levels of leverages,

which are chosen separately by each firm to maximize their individual firm values in a

decentralized manner, do not collectively maximize the total market value of the whole

industry (i.e., the sum of the values of the firms in the industry).

The implications of the theoretical setting of industry-level optimal leverages are relevant

in practice. For example, in some industries, firms have common institutional investors as

owners. Such common ownership can influence the firms’ leverage decisions so that they

are jointly chosen to maximize the total market value of the firms. This coordination may

occur even though the common owners may not have control over the firms’ production

or price-setting decisions. The contagion effect identified in our model sheds light on the

impact of common ownership on financial stability in real-world industries.

2.4 Competition-Distress Feedback Loop

The following proposition demonstrates that an increase in financial leverage (bi) by firm i

results in a higher default probability, not only due to the direct effect of higher leverage

but also due to a positive feedback effect arising from the endogenously intensified product

market competition. This feedback mechanism between the financial and product markets is

intuitive. When firm i increases bi, its default probability rises directly. Consequently, both

firms experience a reduction in profitability due to the endogenous decrease in coordination

capacity, as discussed in Section 2.3. The decreased profitability, in turn, further amplifies

the increase in the default probability of firm i. The proof is in Appendix G.

Proposition 2.4 (Feedback Loop Between Financial and Product Markets). With firm j’s coupon

bj remaining unchanged, an increase in firm i’s financial leverage via an increase in bi triggers a

feedback loop between the financial and product markets, amplifying the impact of bi on the default

probability λC
i :

[
dλC

i

dθC

]
=

[
∂λC(θ, bi)/∂bi

∣∣
θ=θC

0

]

︸ ︷︷ ︸
Initial direct effect ≥ 0

dbi +

[
0 ∂λC(θ, bi)/∂θ

∣∣
θ=θC

∂θC/∂λC
i

∣∣
bj

0

]

︸ ︷︷ ︸
Higher-order feedback effect ≤ 0

[
dλC

i

dθC

]
,

where the term ∂θC/∂λC
i

∣∣
bj

denotes the sensitivity of log profitability θC to firm i’s default probability

λC
i , with bj kept unchanged, in the collusive equilibrium, and the expressions ∂λC(θ, bi)/∂bi and

∂λC(θ, bi)/∂θ are standard partial derivatives of λC(·, ·). Importantly, the system is stable because

the eigenvalues of the matrix that captures the higher-order feedback effect lie on (−1, 1).

As shown in Proposition 2.4, an increase in bi drives up the default probability λC
i not only
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Figure 5. Illustration of the competition-distress feedback loop. Consider the symmetric case with b1 = b2 = b.
The open circle represents the initial collusive equilibrium with b = ln(1.5). The dot represents the collusive
equilibrium with b = ln(2), which is reached after the shock to financial distress (i.e., after b1 and b2 both
increase from ln(1.5) to ln(2)). The arrows represent the process of the firms’ responses regarding θC and
λC. The horizontal solid line represents the initial direct effect of an increase in b from ln(1.5) to ln(2) on
the default probability, while holding firms’ log profitability θC unchanged. The vertical dash-dotted line
represents the decrease in firms’ log profitability caused by the increase in their default probability via the
endogenously decreased collusion capacity. Finally, the horizontal dashed line represents the further increase
in firms’ default probability due to the decrease in their profitability. Other parameters are set at τ = 0.35,
ϕ̄ = 0.2, ρ = exp(−20.5), ν = 0.3, η = 21, and P = 3.5.

through the initial direct effect, captured by the first term with ∂λC(θ, bi)/∂bi

∣∣
θ=θC > 0, but

also through the feedback effect, captured by the second term with ∂λC(θ, bi)/∂θ
∣∣
θ=θC < 0

and ∂θC/∂λC
i

∣∣
bj
< 0. Specifically, an increase in bi directly leads to an increase in the default

probability λC
i , which will in turn lead to a decline in the log profitability of both firms,

θC, because a higher default probability suppresses the coordination capacity of rivals (see

the IC constraints in (7) and Proposition 2.3). To close the feedback loop, the decline in log

profitability θC further increases the default probability λC
i (see equation (5)).

Figure 5 visually illustrates the competition-distress feedback loop. An increase in

both firms’ log coupon levels from ln(1.5) to ln(2) leads to two distinct effects on default

probability. While the direct effect is represented by the horizontal solid line, the indirect

effect, even slightly more pronounced, is illustrated by the horizontal dashed line.

Naturally, the competition-distress feedback loop amplifies the effect of changes in firms’

coupon on their default probability to a greater extent if firms are more financially distressed.

This is formalized in the following corollary. The proof is in Appendix H.

Corollary 2.2 (Amplification Due to Feedback Effects). Suppose firms are symmetric with
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b1 = b2 = b. The sensitivity ∂θC/∂b becomes more negative as b increases.

2.5 Profitability-Leverage Puzzle

We now demonstrate how the competition-distress feedback effect can reconcile the tradeoff

theory of capital structure and the observed negative profitability-leverage relation. Follow-

ing Leland (1994), we assume that firm i optimally chooses its log coupon bi to maximize

its initial firm value, and bi remains unchanged afterwards.17 Each firm maximizes its

own value by optimally choosing its leverage, taking the rival’s leverage choice as given.

The firms do not choose their capital structures to jointly maximize the total value of the

industry. The following proposition characterizes the optimal capital structure decisions in

the equilibrium. The proof can be found in Appendix I.

Proposition 2.5 (Optimal Leverage Decisions). The best response function b(b) is defined as

follows:

b(bj) ≡ argmax
bi

VC
i (bi, bj), with i 6= j ∈ {1, 2}. (16)

We focus on the Nash equilibrium in which (bC, bC) is the unique Pareto efficient point of the

following Nash equilibrium set in the log-coupon space:

B ≡
{
(b1, b2) : bi = b(bj) and bi = bj, with i 6= j ∈ {1, 2}

}
. (17)

Consequently, the log coupon in the equilibrium, bC, is characterized by:

bC = min {b : (b, b) ∈ B} . (18)

Similar to characterizing the collusive equilibrium of firms’ profitabilities (θ1, θ2) given

their coupon levels (b1, b2) in Proposition 2.2, there are also infinitely many Nash equilibria

that satisfy (17). We use Proposition K.1 in Appendix K to formally show that B contains

infinitely many points. To maintain consistency, we adopt the same intuitive equilibrium

selection procedure to focus on the unique Pareto efficient Nash equilibrium. A Pareto

efficient Nash equilibrium (b1, b2) ∈ B cannot be Pareto dominated by a different Nash

equilibrium (b̃1, b̃2) ∈ B in terms of firm values.

17Models with a dynamic capital structure (e.g., Goldstein, Ju and Leland, 2001; Hackbarth, Miao and
Morellec, 2006; Bhamra, Kuehn and Strebulaev, 2010; Chen, 2010) allow firms to optimally issue more debt
when current cash flows surpass a threshold, which helps generate stationary default rates under a general-
equilibrium setup. Adopting the static optimal capital structure makes the model more tractable but does not
change the main insights or results of this paper.
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Figure 6. Illustration of the impact of idiosyncratic left-tail risk on financial leverage and product pricing
decisions. We set τ = 0.35, ϕ̄ = 0.2, ρ = exp(−20.5), η = 21, and P = 3.5.

As a key contribution, we show that the competition-distress feedback effect rationalizes

the profitability-leverage puzzle. The following proposition formalizes this result and the

proof is in Appendix J.

Proposition 2.6 (Negative Profitability-Leverage Relation). As the idiosyncratic left-tail risk,

ν, increases, the equilibrium optimal log coupon bC increases, the equilibrium market leverage ratio

levC(bC, bC) increases, and the equilibrium log profitability θC(bC, bC) decreases.

Panel A of Figure 6 illustrates the result of Proposition 2.6 that an increase in the left-tail

risk ν scales up the optimal log coupon levels (bC, bC). Panel B shows that, as ν increases,

the leverage ratio levC(bC, bC) increases, whereas log profitability θC(bC, bC) decreases.

Not only does Proposition 2.6 show how the competition-distress feedback effect ratio-

nalizes the observed profitability-leverage puzzle, but it also offers a novel insight into the

tradeoff theory of optimal capital structure — the competition-distress feedback effect im-

poses an additional source of “financial distress costs,” which are incurred to raise leverage.

Under traditional tradeoff theory, when a firm raises its leverage, its default probability

increases immediately, and thus its financial distress costs also increase due to the ex-post

efficiency losses of bankruptcy. Our theory adds a new source of financial distress costs to

traditional tradeoff theory. Specifically, we show that an increase in the default probability

endogenously reduces the capacity for tacit collusion, thus suppressing the firms’ profitabil-

ity, which in turn leads to the competition-distress feedback loop as illustrated in Figure 5

and Proposition 2.4. Such feedback effects create an additional source of financial distress

costs.

Proposition 2.6 shows that industries with higher idiosyncratic left-tail risk (i.e., a higher
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ν) have a higher leverage ratio levC, but a lower log profitability θC; as a result, profitability

and financial leverage are negatively correlated across industries. The reason is that firms

in an industry with higher idiosyncratic left-tail risk face a higher likelihood of default

and thus find it harder to tacitly collude, which leads to lower profitability. Meanwhile,

these industries face a weaker competition-distress feedback effect and thus have lower

financial distress costs, which leads to higher optimal financial leverage. In Online Appendix

3.4, we provide direct empirical tests of the proposed economic mechanism, under which

the heterogeneous idiosyncratic left-tail risk of industries plays a vital role in generating

the negative association between profitability and financial leverage in the cross-section of

industries.

3 Full-Fledged Quantitative Model

In Section 2, we present a simple model built upon simplifying assumptions to ensure its

analytical tractability. Here, we develop a full-fledged quantitative model that generalizes the

simple model across several dimensions. This quantitative model is solved numerically with

the following objectives. First, we aim to validate that the primary economic mechanisms

and their implications from the simple model remain robust under more general and more

realistic specifications. Second, by aligning parameters with data moments, we aim to gauge

the quantitative strength of the mechanism and evaluate its empirical relevance within the

context of this quantitative model. Finally, this quantitative model enables us to study

important theoretical implications that are beyond the capacity of the simple model, like the

effect of entry barriers on predatory pricing behaviors. Predatory pricing is a strategy in

which a firm sells its products or services at a very low price with the intent of driving rivals

out of the market. Once the competition is eliminated or sufficiently reduced, the predatory

firm may raise its prices to recoup losses or even to monopolize the market, exploiting its

increased market power. The rationale behind this strategy is that the predatory firm bears

the short-term losses from the low prices because the long-term gains (once rivals are out

of the market) will more than compensate for these losses. In the simple model studied in

Section 2, predatory pricing is absent. This is because, upon the event of default and exit, a

new firm of comparable size to the incumbent enters the market.

3.1 Model Formulation

We consider an infinite-horizon, discrete-time model where the time periods are indexed

by t. Within this model, two firms operate in the same industry. The economy features a
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constant risk-free rate, denoted by r f , with r f ≥ 0. At the initial time t = 0, each firm i,

where i ∈ {1, 2}, is financed through external equity and long-term consol debt, bearing a

coupon payment of ebi .

Cash Flows Driven by Market Competition. Similar to the simple model, firm i’s earnings

after interest expenses in period t are

Ei,t = (Pi,t − ω)ezi,t Ci,t − ebi , (19)

where ω is the marginal cost of production, Pi,t is the price, ezi,t Ci,t is the demand for firm i’s

products, and zi,t is a firm-specific demand shock, for firm i ∈ {1, 2}. The timeline of a firm’s

decisions in each period is as follows. The firm first names its price and receives the demand

for its goods. Next, the firm uses its operating cash flows to make interest payments, and

then decides whether to default. Finally, if it chooses not to default, the firm pays taxes and

distributes the remaining cash flows to its shareholders as dividends. Specifically, firm i’s

earnings after interest expenses and taxes are (1 − τ)Ei,t, where the corporate tax rate is

τ ∈ (0, 1).

In each period t, the two firms simultaneously name their prices P1,t and P2,t, knowing

that they face downward-sloping within- and cross-industry demand functions. Once prices

are set, the demand ez1,t C1,t and ez2,t C2,t are determined according to the following demand

system. To characterize how industry demand depends on the industry-level price index

Pt, we follow the literature (e.g., Hopenhayn, 1992; Pindyck, 1993; Caballero and Pindyck,

1996) and postulate a downward-sloping isoelastic industry demand curve. Specifically, the

industry demand is eat Ct, where eat ≡ ∑
2
i=1 ezi,t is the industry-level demand shock and Ct is

governed by

Ct = P−ǫ
t , (20)

where the parameter ǫ > 1 captures the industry-level price elasticity of demand.18 The

industry-level ǫ typically represents the elasticity of substitution across goods produced in

different industries.

Next, we introduce the demand system for differentiated goods within an industry. Given

Ct and Pt, consumers decide on a basket of differentiated goods based on the prices P1,t and

P2,t charged by firms 1 and 2, respectively. Specifically, Ct equals a Dixit-Stiglitz constant

18To microfound such an isoelastic industry demand curve, consider a continuum of industries that exist in
the economy and produce differentiated industry-level composite goods. The elasticity of substitution across
industry-level composite goods is ǫ and the preference weight for an industry-level composite good is equal to
eat (Dou, Ji and Wu, 2021b). The CES utility function that embodies the aggregate preference for diversity over
differentiated products can be further microfounded by the characteristics (or address) model and discrete
choice theory (e.g., Anderson, Palma and Thisse, 1989).
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elasticity of substitution (CES) aggregator that combines C1,t and C2,t, specified as follows:

Ct =

[
2

∑
i=1

(
ezi,t−at

)
C

η−1
η

i,t

] η
η−1

, (21)

where the parameter η > 1 captures the elasticity of substitution among goods produced

by the two firms in the same industry. Intuitively, the weight ezi,t−at captures consumers’

relative preference for firm i’s goods. We assume that η ≥ ǫ > 1, meaning that goods within

the same industry are more substitutable than those across industries.19

From the CES aggregator, the firm-level demand curve immediately follows. Specifically,

given the prices Pi,t for i = 1, 2 and Ct, the demand for firm i’s goods ezi,t Ci,t can be obtained

by solving a standard expenditure minimization problem:

ezi,t Ci,t = ezi,t−at

(
Pi,t

Pt

)−η

eat Ct, with the price index Pt =

[
2

∑
i=1

ezi,t−at P
1−η
i,t

] 1
1−η

. (22)

All else equal, the demand for firm i’s goods, ezi,t Ci,t, increases with consumers’ relative

preference ezi,t−at for firm i’s goods in equilibrium. A larger ezi,t−at implies that firm i’s price

Pi,t has a greater influence on the price index Pt. The demand curves at the industry level

(20) and the firm level (22) yield:

Ci,t =

(
Pi,t

Pt

)−η

P−ǫ
t . (23)

The short-run price elasticity of demand for firm i’s goods is

−∂ ln(ezi,t Ci,t)

∂ ln Pi,t
= µi,t

[
−∂ ln(ezi,t Ci,t)

∂ ln Pt

]

︸ ︷︷ ︸
cross-industry

+ (1 − µi,t)

[
−∂ ln(ezi,t Ci,t/(e

at Ct))

∂ ln(Pi,t/Pt)

]

︸ ︷︷ ︸
within-industry

(24)

= µi,tǫ + (1 − µi,t)η, (25)

where µi,t is the (revenue) market share of firm i, which equals µi,t = ezi,t−at (Pi,t/Pt)
1−η.

Equation (24) shows that the short-run price elasticity of demand is given by the average

of η and ǫ, weighted by the firm’s market share µi,t. When its market share µi,t shrinks

(grows), within-industry (cross-industry) competition becomes more relevant for firm i, so

its price elasticity of demand depends more on η (ǫ). There are two extreme cases, µi,t = 0

19For example, the elasticity of substitution between the Apple iPhone and the Samsung Galaxy is likely to
be much higher than that between a cell phone and a cup of coffee. This assumption is consistent with those in
the literature (e.g., Atkeson and Burstein, 2008; Corhay, Kung and Schmid, 2020a; Dou, Ji and Wu, 2021a).
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and µi,t = 1. In the former case, firm i becomes atomistic and takes the industry price index

Pt as given; as a result, firm i’s price elasticity of demand is exactly η. In the latter case, firm

i monopolizes the industry, and its price elasticity of demand is exactly ǫ.

In every period t, each firm i faces the risk of an idiosyncratic left-tail shock, which occurs

with a probability of ν. Should this shock materialize, the affected firm will experience a

complete cessation in demand, with ezi,t = 0. Consequently, this firm will be compelled to

immediately exit the market.20 If the left-tail shock does not occur, the firm-specific demand

shock zi,t evolves according to:

zi,t = zi,t−1 + g + ut + ui,t, (26)

where the parameter g captures the firm’s expected growth rate, the random variables

ut ∼ N(0, ς2) and ui,t ∼ N(0, σ2) capture aggregate and idiosyncratic shocks, respectively.

The left-tail shocks, ut, and ui,t are mutually independent.

Several elements in our model merit emphasis. First, the aggregate shock ut in equation

(26) captures economy-wide or industry-wide shocks. It carries a market price of risk

γ > 0. In Section 4.2 and Online Appendix 1.3.2, we study the role of γ in determining

the endogenous distressed competition mechanism. Second, the idiosyncratic shocks, u1,t

and u2,t, are firm-specific shocks. They are needed for the model to quantitatively match

the default frequency and generate a nondegenerate cross-sectional distribution of market

shares in the stationary equilibrium. Third, the idiosyncratic left-tail shocks play a crucial

role in our theory and empirical results. Idiosyncratic left-tail risk has been proven useful in

explaining credit spreads and credit default swap index (CDX) spreads (e.g., Delianedis and

Geske, 2001; Collin-Dufresne, Goldstein and Yang, 2012; Kelly, Manzo and Palhares, 2018;

Seo and Wachter, 2018).

Endogenous Profitabilities and Externalities. Now, we characterize the profitability func-

tion. Firm i’s operating profits are

(Pi,t − ω) ezi,t Ci,t = Πi(θi,t, θj,t)e
zi,t , with Πi(θi,t, θj,t) ≡ ω1−ǫθi,t (1 − θi,t)

η−1 (1 − θt)
ǫ−η, (27)

where θi,t and θt represent the firm- and industry-level profit margins,

θi,t ≡
Pi,t − ω

Pi,t
and θt ≡

Pt − ω

Pt
, respectively, (28)

20Our specification is close to that of Seo and Wachter (2018), who calibrate a disastrous idiosyncratic jump
of almost −100%, under which a firm’s exit is certain.
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and it directly follows from equation (22) that the relation between θi,t and θt is

1 − θt =

[
2

∑
i=1

ezi,t−at(1 − θi,t)
η−1

] 1
η−1

. (29)

Equation (27) shows that firm i’s profits depend on its rival j’s profit margin θj,t through the

industry’s profit margin θt. This reflects the externality of firm j’s profit margin decisions.

For example, holding firm i’s profit margin fixed, if firm j cuts its profit margin θj,t, the

industry’s profit margin θt will drop, which will reduce the demand for firm i’s goods Ci,t

(see equation (23)), compromising firm i’s profits. Below, we explain the Nash equilibrium,

which determines the profit margin strategies (θ1,t, θ2,t).

Financial Distress. Firm i can optimally choose to file for bankruptcy and exit when its

equity value drops to zero because of negative demand shocks to zi,t. As in the simple

model, we maintain tractability by ensuring that industry entry of a new firm is contingent

upon the exit of an incumbent. This new entrant is characterized by an initial demand shock

eznew = κezj,0 > 0 and an optimally set coupon ebnew . Here, the parameter κ > 0 offers insight

into the relative size of the new firm when juxtaposed against the initial size of the surviving

incumbent, firm j. Intuitively, the magnitude of κ serves as a barometer for the entry threat

posed by potential new entrants to the incumbent firms. Upon the entry of new firm, the

dynamic game of industry competition, which we describe in Section 3.2 below, is “reset” to

a new one between the surviving incumbent firm and the new entrant.

3.2 Nash Equilibrium

Non-Collusive Equilibrium. In our model, the two firms within an industry engage in a

supergame (Friedman, 1971). This involves an infinite repetition of stage games where profit

margins are set, taking into account both exogenous and endogenous state variables that

change over time. The strategies employed by the firms depend on “payoff-relevant” states

zt ≡ {z1,t, z2,t} in the state space Z, as in Maskin and Tirole (1988a,b).

Specifically, the non-collusive equilibrium comprises a profit-margin-setting scheme,

ΘN(·) = (θN
1 (·), θN

2 (·)), alongside a default choice, DN(·) = (dN
1 (·), dN

2 (·)). Both pairs of

functions are defined on the state space Z. For each firm i, it strategically chooses its optimal

profit margin θN
i (zt) and the optimal binary default decision dN

i (zt) ∈ {0, 1} under the

assumption that the rival firm j remains committed to the non-collusive equilibrium profit

margin θN
j (zt) and binary default choice dN

j (zt) ∈ {0, 1}.
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We formulate the optimization problems as a pair of recursive equations:

EN
i (zt) = max

θi,t,di,t

(1 − τ)
[
Πi(θi,t, θN

j,t)e
zi,t − ebi

]

+ (1 − di,t)(1 − dN
j,t)(1 − ν)Et

[
Mt,t+1EN

i (zt+1)
]

+ (1 − di,t)d
N
j,t(1 − ν)Et

[
Mt,t+1ẼN

i (z̃t+1)
]

, with i 6= j ∈ {1, 2}, (30)

where θN
i,t ≡ θN

i (zt) and dN
i,t ≡ dN

i (zt) are strategies in the non-collusive Nash equilibrium,

the profitability function Πi(·, ·) is defined in (27), EN
i (·) is the equity value of firm i in the

non-collusive Nash equilibrium, Mt,t+1 is the exogneously-specified intertemporal marginal

rate of substitution, z̃t+1 = {zi,t+1, znew} captures the scenario where firm j chooses to default

in period t and a new firm enters with initial idiosyncratic demand shock znew in period

t + 1, and ẼN
i (·) represents the equity value of firm i, accounting for the situation in which

firm j chooses to default in period t and a new firm enters with an optimal log coupon level

of bnew.

The coupled recursive equations provide the solutions for profit margins θN
i (zt) and

default decisions dN
i (zt) for i = 1, 2 in the non-collusive equilibrium. Each firm i’s optimal

default decision dN
i (zt) implies an endogenous default boundary zN

i (zj,t) such that the firm

defaults if zi,t ≤ zN
i (zj,t) in the non-collusive equilibrium.21

Competition Under Tacit Collusion. Our main focus is the collusive equilibrium, which is

sustained using the non-collusive equilibrium as a punishment strategy. Firms tacitly collude

with each other in setting higher profit margins, with any deviation potentially triggering a

switch to the non-collusive equilibrium.

In the collusive equilibrium, strategies not only depend on “payoff-relevant” states zt, but

also on a pair of indicator functions that track whether either firm has previously deviated

from the collusive agreement, as in Fershtman and Pakes (2000, p. 212).22 Consider a generic

collusive equilibrium in which the two firms follow a collusive profit-margin-setting scheme.

If one firm deviates from the collusive profit-margin-setting scheme in period t, then with

probability ξ, the other firm will implement a punishment strategy in the next period t + 1,

under which it will forever set the non-collusive profit margin.23

21In a continuous-time model, multi-dimensional free boundary problems can be handled by generalized
value matching and smooth pasting conditions (e.g., Chen et al., 2022; Kakhbod et al., 2022).

22For notational simplicity, we omit the indicator states of historical deviations.
23One interpretation is that, with a probability of 1 − ξ, the deviator can persuade its rival not to enter

the non-collusive equilibrium. Ex-post renegotiations can occur because the non-collusive equilibrium is not
renegotiation-proof or “immune to collective rethinking” (Farrell and Maskin, 1989). The strategy we consider
is essentially a probabilistic punishment strategy.
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In our quantitative model, each period represents a month. With the span per period

fixed, the parameter ξ captures the time frame in which a deviating firm can reap additional

profits prior to any retaliatory actions by its rival. Consequently, a higher ξ leads to a more

immediate punishment, thereby diminishing the incentives for deviation and bolstering the

capacity for collusion. The relationship between ξ and the competition-distress feedback loop

is characterized by its non-monotonic nature. When ξ = 0, any punitive measures become

unenforceable, preventing any form of tacit collusion between firms. Consequently, firms

engage in non-collusive competition, effectively nullifying the competition-distress feedback

loop. Conversely, when ξ = 1, the perfect cartel can almost be maintained irrespective of the

financial health of the firms. This results in firms behaving akin to a single monopolistic

entity, again causing the competition-distress feedback loop to dissipate.

Similarly, with ξ held constant, the duration of each period in the model influences

collusion capacity. A shorter period hastens punitive actions, reducing deviation incentives

and enhancing the capacity for collusion. Crucially, to preserve a consistent collusion

capacity, adjustments to the value of parameter ξ are necessary when modifying the period

length in the model.

In Section 4.1, we calibrate the monthly quantitative model to match the key relevant

moments in the data. There, we adjust ξ to ensure the model-implied average gross profit

margin aligns with its empirical counterpart in the data. Importantly, around our calibrated

value of ξ, the intensity of the competition-distress feedback loop increases as ξ rises,

primarily due to a more pronounced decline in profit margin resulting from increased

financial distress.

Formally, the set of incentive compatible collusion agreements, denoted by C, consists of

all profit-margin-setting schemes ΘC(·) ≡ (θC
1 (·), θC

2 (·)) such that the following participation

constraint (PC) and IC constraint are satisfied:

EN
i (z) ≤ EC

i (z), for all z ∈ Z, and (PC) (31)

ED
i (z) ≤ EC

i (z), for all z ∈ Z, (IC) (32)

where i ∈ {1, 2}, ED
i (z) is firm i’s equity value if it chooses to deviate from collusion, and

EC
i (z) is firm i’s equity value in the collusive equilibrium.

Given a specified profit-margin-setting scheme, (θC
1 (·), θC

2 (·)), the value functions EC
i (zt)

and their corresponding optimal default decisions dC
i (zt) are determined by the following
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coupled recursive equations:

EC
i (zt) = max

di,t

(1 − τ)
[
Πi(θ

C
i,t, θC

j,t)e
zi,t − ebi

]

+ (1 − di,t)(1 − dC
j,t)(1 − ν)Et

[
Mt,t+1EC

i (zt+1)
]

+ (1 − di,t)d
C
j,t(1 − ν)Et

[
Mt,t+1ẼC

i (z̃t+1)
]

, with i 6= j ∈ {1, 2}, (33)

subject to the PC constraint (31) and the IC constraint (32),

where θC
i,t ≡ θC

i (zt) and dC
i,t ≡ dC

i (zt) are strategies in the collusive Nash equilibrium, the

profitability function Πi(·, ·) is defined in (27), EC
i (·) represents the equity value of firm i in

the collusive Nash equilibrium, Mt,t+1 is the exogneously-specified intertemporal marginal

rate of substitution, z̃t+1 = {zi,t+1, znew} is defined in (30), and ẼC
i (·) represents the equity

value of firm i, accounting for the situation in which firm j chooses to default in period t

and a new firm enters with an optimal log coupon level of bnew.

Equilibrium Deviation Values. When firm i tacitly deviates from collusion, its rival j would

continue to follow the collusive profit-margin-setting scheme, θC
j (·), and the optimal default

decision, dC
j (·). As a result, the optimal deviation value can be formulated recursively as

follows:

ED
i (zt) = max

θi,t,di,t

(1 − τ)
[
Πi(θi,t, θC

j,t)e
zi,t − ebi

]

+ (1 − di,t)(1 − ν)(1 − ξ)Et

{
Mt,t+1

[
(1 − dC

j,t)ED
i (zt+1) + dC

j,tẼ
D
i (z̃t+1)

]}

+ (1 − di,t)(1 − ν)ξEt

{
Mt,t+1

[
(1 − dC

j,t)EN
i (zt+1) + dC

j,tẼ
N
i (z̃t+1)

]}
, (34)

where i 6= j ∈ {1, 2}, θC
i,t ≡ θC

i (zt), dC
i,t ≡ dC

i (zt), and Πi(·, ·) is defined in (33), EN
i (·), ẼN

i (·),
and z̃t+1 = {zi,t+1, znew} are defined in (30), ED

i (·) denotes the equity value of firm i if it

chooses to deviate from the collusion, ẼD
i (·) denotes the equity value of firm i, accounting

for the situation in which firm j chooses to default and a new firm enters with an optimal

log coupon level of bnew, and Mt,t+1 is the exogneously-specified intertemporal marginal

rate of substitution.

Two aspects of this quantitative model warrant further discussion. First, the PC constraint

(31) can become binding in the collusive equilibrium, triggering the two firms to switch to

the non-collusive equilibrium. The endogenous switch captures the endogenous outbreak

of price wars. We assume that once the two firms switch to the non-collusive equilibrium,
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they will stay there forever.24 Endogenous switching from the collusive to the non-collusive

equilibrium because of increased financial distress (i.e., higher leverage ratios), coupled with

high entry barriers of the market, is one of our model’s key differences from that of Dou, Ji

and Wu (2021a), in which firms are financed wholly by equity, insulating them from financial

distress, and they never face the threat of new entrants. In their model, the PC constraint

is never binding because higher profit margins always lead to higher equity values in the

absence of financial distress costs owing to costly default.

Second, there exist infinitely many elements in the set of incentive compatible collusion

agreements, C, and hence infinitely many collusive equilibria. We focus on a subset of

C, denoted by C, consisting of all profit-margin-setting schemes ΘC(·) such that the IC

constraints (32) are binding state by state, that is, ED
i (zt) = EC

i (zt) for all zt ∈ Z and

i ∈ {1, 2}.25 The subset C is nonempty because it contains the profit-margin-setting scheme

in the non-collusive equilibrium. Consistent with the simple model presented in Section 2,

we further narrow our focus to the “Pareto efficient frontier” of C, denoted by Cp, consisting

of all pairs of ΘC(·) such that there does not exist another pair Θ̂C(·) = (θ̂C
1 (zt), θ̂C

2 (zt)) ∈ C

such that the implied firm values are higher for all zt ∈ Z and i ∈ {1, 2}, with strict

inequality held for some i and zt.
26 Our numerical algorithm is similar to that of Abreu,

Pearce and Stacchetti (1990).27 Deviation never occurs on the equilibrium path. The one-shot

deviation principle (Fudenberg and Tirole, 1991) makes it clear that the collusive equilibrium

characterized above is subgame perfect.

Debt Value. The debt value equals the sum of the present value of cash flows that accrue

to debtholders until the occurrence of an endogenous default or an idiosyncratic left-tail

jump shock (i.e., exogenous displacement), whichever occurs first, plus the recovery value.

We follow the literature on dynamic debt models (e.g., Mello and Parsons, 1992; Leland,

1994; Hackbarth, Miao and Morellec, 2006) and set the recovery value of endogenous default

to a fraction δ ∈ (0, 1) of the firm’s unlevered asset value, AC
i (zt), which is the value of an

all-equity firm. In the collusive equilibrium, the unlevered asset value AC
i (zt) is similarly

24As the firm that proposes switching to the non-collusive equilibrium is essentially deviating, we assume
that the two firms will not return to the collusive equilibrium. We make this assumption to be consistent with
our specification for the punishment strategy.

25This equilibrium refinement is similar in spirit to Abreu (1988), Alvarez and Jermann (2000, 2001), and
Opp, Parlour and Walden (2014).

26One can show that the “Pareto efficient frontier” is nonempty based on the fundamental theorem of the
existence of Pareto efficient allocations (e.g., Mas-Colell, Whinston and Green, 1995), as C is nonempty and
compact, and the order that we consider is complete, transitive, and continuous.

27Alternative methods include those of Pakes and McGuire (1994) and Judd, Yeltekin and Conklin (2003),
who use similar ingredients to this paper in their solution method. Proving the uniqueness of the equilibrium
under our selection criterion is beyond the scope of this paper. We use different initial points in our numerical
algorithm and find robust convergence to the same equilibrium. We provide proof for the uniqueness in the
simple model of Section 2.
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determined by equation (30) subject to the IC and PC constraints, except for setting ebi = 0

and di,t = 0.

The value of debt in the collusive equilibrium can be characterized by the following

recursive equation equations:

DC
i (zt) = ebi + dC

i,tδAC
i (zt) (35)

+ (1 − dC
i,t)(1 − ν)Et

{
Mt,t+1

[
(1 − dC

j,t)DC
i (zt+1) + dC

j,tD̃
C
i (z̃t+1)

]}
, (36)

where i 6= j ∈ {1, 2}, dC
i,t ≡ dC

i (zt) for i = 1, 2 are optimal default decisions that solve

(33), z̃t+1 = (zi,t+1, znew) is defined in (30), DC
i (·) represents the debt value of firm i in the

collusive Nash equilibrium, D̃C
i (·) represents the debt value of firm i, accounting for the

situation in which firm j chooses to default in period t and a new firm enters with an optimal

log coupon level of bnew, and Mt,t+1 is the exogneously-specified intertemporal marginal

rate of substitution.

Optimal Leverage Decisions. We now illustrate the optimal leverage decisions of firms at

t = 0. The log coupons b1 and b2 are optimally determined in the Nash equilibrium, as in

the simple model presented in Section 2. The best response function bi(bj) is defined as

follows:

bi(bj) ≡ argmax
bi

VC
i (z0; bi, bj), with i 6= j ∈ {1, 2}. (37)

The firm value at t = 0 is captured by VC
i (z0; bi, bj) ≡ EC

i (z0; bi, bj) + DC
i (z0; bi, bj). In this

representation, we slightly modify the notations of EC
i (·) and DC

i (·) to clearly denote their

dependence on the leverage terms (bi, bj). The equilibrium leverage, captured by (bC
1 , bC

2 ), is

then determined by the subsequent condition:

bC
i = bi(b

C
j ), for i 6= j ∈ {1, 2}. (38)

In alignment with the simple model, firms determine their optimal coupons strategically

at t = 0, and these decisions remain unchanged subsequently. Importantly, this choice for

a static capital structure ensures model simplicity while preserving the paper’s primary

insights. This model simplification is underpinned by subsequent theoretical developments.

When firms have the flexibility to adjust leverage freely, either by issuing or repurchasing

debt at any moment to optimize their present equity value without a credible, pre-committed

debt policy, the “leverage ratchet effect” emerges (Admati et al., 2018; DeMarzo and He,

2021). In such scenarios, equity holders are never willing to voluntarily reduce leverage

but always have an incentive to borrow more, regardless of whether the current leverage is
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excessive or new debt must be junior to existing claims. As highlighted by DeMarzo and He

(2021), the absence of a reliable commitment to a future debt policy makes it prohibitively

difficult for firms to raise extra equity to buy back debt. Consequently, firms only issue

debt smoothly and inadequately adjust debt levels in response to fluctuations in their cash

flows. Other pertinent research, such as those by Benzoni et al. (2022) and Malenko and Tsoy

(2020), explores non-Markov perfect equilibria (non-MPE). They theorize the possibility of

sustaining non-MPE using a “grim trigger” strategy against any deviations by equity holders,

utilizing the MPE characterized by DeMarzo and He (2021) as a viable, incentive-compatible

punitive measure. A central insight from this body of research underscores that the leverage

ratchet effect becomes especially acute during periods of financial distress for firms. Taken

together, the strong reluctance of firms to repurchase debt and the resulting excessively high

leverages due to the leverage ratchet effect, especially in financial distress phases, reinforce

both the competition-distress feedback and the financial contagion effects driven by market

competition proposed in this paper.

4 Quantitative Results

In this section, we calibrate the full-fledged quantitative model and undertake quantitative

analyses.

4.1 Calibration and Parameter Choices

We consider a monthly model where each period corresponds to one month. Panel A of

Table 1 presents the externally calibrated parameters. The risk-free rate is set at r f = 5%/12,

following Chen et al. (2018). The within-industry elasticity of substitution is set at η = 16,

and the cross-industry price elasticity of demand at ǫ = 2, which are broadly consistent with

the calibration and estimation in the IO and international trade literature (e.g., Harrigan,

1993; Head and Ries, 2001; Atkeson and Burstein, 2008). We set g = 1.8%/12, γ = 0.4/
√

12,

and ς = 10%/
√

12 as in He and Milbradt (2014). In our model, the tax rate captures the

net tax-shield benefit of debt from the perspective of equity holders. Consistent with the

literature, we thus set τ = 20%.28 We normalize the two firms in the same industry to have

unit demand shocks initially, that is, we set z1,0 = z2,0 = 0. The parameter κ is inversely

related to entry barrier because a smaller κ leads to a smaller new entrant relative to the size

28Following Graham (2000), Chen (2010) calibrates a corporate tax rate of 35%, a personal dividend income
tax rate of 12%, and a personal interest income tax rate of 29.6%. Using these values, the implied effective tax
rate for the net tax-shield benefit of debt is calculated as 1 − (1 − 35%)(1 − 12%)/(1 − 29.6%) = 18.75%, which
is close to our calibration.
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Table 1: Calibration and parameter choices.

Panel A: Externally determined parameters.

Parameter Symbol Value Parameter Symbol Value

Risk-free rate r f 0.42% Within-industry elasticity η 16

Industry price elasticity ǫ 2 Growth rate of cash flows g 0.15%

Market price of risk for ut γ 0.12 Volatility of aggregate shocks ς 2.89%

Tax rate τ 20% Relative size of new entrants κ 0.3

Initial demand shocks z1,0, z2,0 0 Idiosyncratic left-tail risk ν 0

Panel B: Internally calibrated parameters and targeted moments.

Parameter Symbol Value Moments Data Model

Recovery ratio of assets δ 0.5 leverage ratio (Baa rated) 34% 31%

Volatility of idiosyncratic shocks σ 7.22% 10-year default rate (Baa rated) 4.9% 4.9%

Marginal cost of production ω 3.2 net profitability 3.9% 4.0%

Punishment rate ξ 0.5% gross profit margin 31.4% 30.9%

of the surviving incumbent (i.e., a smaller κ leads to a weaker entry threat). As a benchmark,

we calibrate κ = 0.3, indicating that the new entrant’s size is 30% of the initial size of the

surviving incumbent. In Section 4.2, we show that the behavior of predatory pricing, as a

strong form of contagion effects, becomes particularly prevalent when κ is sufficiently low

(i.e., when the entry barrier is high). We set ν = 0 in our benchmark calibration, and in

Section 4.3 we analyze how the cross-industry dispersion in ν explains the observed negative

relation between profitability and leverage ratios across industries.

The remaining parameters are calibrated by matching the relevant moments summarized

in panel B of Table 1. When constructing the model moments, we simulate one industry

for 20 years.29 We then compute the model counterparts of the data. For each moment,

the table reports the average value of 100,000 independent simulations. To ensure the

model yields an optimal leverage ratio (i.e., the debt-to-asset ratio) of 31%, close to the

estimation in our sample, we calibrate δ = 0.5.30 We calibrate the volatility of idiosyncratic

shocks at σ = 25%/
√

12 to match the 10-year default rate of 4.9% estimated by Chen

(2010). The marginal cost of production ω is a scaling parameter, which does not affect the

model’s quantitative implications. We calibrate its value at ω = 3.2 to match the average

net profitability of 3.9% estimated in our sample. We set the punishment rate at ξ = 0.5%

29We focus on the initial 20 years of simulation because our model has a static capital structure. We emphasize
that although our model allows for a stationary distribution in the long run, it is achieved by the exit and entry
assumption rather than by the dynamic leverage adjustment that is adopted in models of dynamic capital
structure (e.g., Goldstein, Ju and Leland, 2001).

30The implied bond recovery rate (i.e., the defaulted bond price divided by its promised face value) is close
to the estimate in the literature (e.g., Chen, 2010; Dou et al., 2021a; Dou, Wang and Wang, 2022).
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so that the gross profit margin implied by the model is 30.9%, consistent with the average

value in our sample. In the data, net profitability and gross profit margins are measured as

in Dou, Ji and Wu (2021a).

4.2 Impact of Market Structure on Peer Interactions

Through the lens of the calibrated quantitative model, we quantify the competition-distress

feedback effect and the financial contagion effect through distressed competition in Online

Appendices 1.2 and 1.3. In this subsection, we examine how variations in industry market

structures impact these feedback and contagion effects.

Price Elasticity of Demand. The cross-industry price elasticity of demand, ǫ, reflects the

extent to which the products of an industry are substitutable with those of other industries.

Focusing on the collusive equilibrium, panel A of Figure 7 illustrates how the industry’s

price elasticity of demand influences the competition-distress feedback effect. One way to

measure the magnitude of the feedback effect is to examine the sensitivity of profit margins

to changes in the market price of risk γ. Intuitively, a rise in γ would effectively increase

leverage as it would suppress the equity value more than the debt value, and according

to Proposition 2.4, the magnitude of the resulting decrease in profit margins reflects the

strength of the competition-distress feedback effect.

The solid and dashed lines in panel A of Figure 7 plot the profit-margin beta to γ when

the industry’s price elasticity of demand is set at ǫ = 2 and 2.5, respectively. Relative

to the baseline case with ǫ = 2, the profit-margin beta is less negative in the case with

ǫ = 2.5, especially when the industry is close to the default boundary (i.e., the dashed

line is flatter than the solid line). Intuitively, firms find it harder to tacitly collude on high

profit margins when the industry’s price elasticity of demand is higher, because they would

suffer more when the rival firm deviates due to a larger loss of industry-level demand.

The weakened collusion capacity reduces the response of profit margins to changes in the

distance-to-default, and thus dampens the competition-distress feedback loop, which in turn

makes the profit-margin beta to γ less negative, especially when the industry is close to the

default boundary.

To examine the impact of the industry’s price elasticity of demand on the financial

contagion effect, we conduct impulse-response experiments. In particular, we measure the

within-industry contagion effect on profit margins by computing the percentage change in

firm j’s profit margin, relative to the counterfactual scenario without shocks, in response to

an unexpected idiosyncratic shock that increases the coupon of firm i at the beginning of
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Figure 7. Feedback and contagion effects in industries facing different price elasticities of demand. In
panel A, the industry’s profit-margin beta to γ at t = 0 is βθ(z0) ≡ θC(z0; γH)/θC(z0; γL)− 1, where γL = 0.12,
γH = 0.2, and z1,0 = z2,0 = z0. The two vertical dotted lines represent firms’ default boundaries corresponding

to each industry when γ = γH . The initial log coupons at t = 0 are set at bC, the optimal log coupon in the
collusive equilibrium of each industry when ez0 = 1 and γ = γL. Parameters are calibrated as in Table 1.

year 1, which corresponds to the beginning of period t = 12 in our model, as we consider

each period to represent one month.31 Panel B of Figure 7 shows that the contagion effect

on profit margins becomes less pronounced as the industry’s price elasticity of demand

ǫ increases. Intuitively, the financial contagion effect through the distressed competition

channel becomes weaker when ǫ is higher because the collusion capacity declines.

Entry Barriers and Predatory Pricing. Higher entry barriers lead to stronger competition-

distress feedback and financial contagion effects, because a firm has stronger predatory

incentives when its rival firm becomes more financially distressed in an industry with higher

entry barriers.32 Dou, Johnson and Wu (2023) provide causal evidence on the spillover of

distress risk through market competition, based on granular data, consistent with predatory

pricing behavior.

The central idea of the predatory pricing strategy is the attempt to gain increased market

power in the long run at the cost of heightened distress risk in the short run due to narrowed

profit margins. Specifically, the firm that engages in predatory pricing behavior forces lower

profit margins and higher distress risk on itself in the short run. However, in the long run,

once its major competitor is eliminated, the firm will dominate the market and raise its

31That is, firm i’s coupon ebi increases unexpectedly from ebC
to ebshock

i . The value of ebshock
i is chosen so that

firm i’s leverage ratio increases by 10% at the beginning of year 1, similar to the experiment described for
Figure 3 in Online Appendix 1.2.

32Our results are related to Wiseman (2017), who shows that in a market with exits but no entries, the
financially strong firm may wage a price war against the weak firms until only one firm survives the industry.
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Figure 8. Predatory pricing behavior and full-blown predatory price war. Consider the industry with κ = 0,
in which ezi,0 = 0.5 and ezj,0 = 1, so firm i is more distressed. By varying firm i’s coupon ebi , panels A and C
plot firm i’s profit margin and equity value as a function of its own leverage ratio, and panels B and D plot
those of firm j as a function of firm i’s leverage ratio. The solid and dashed lines represent the collusive and
non-collusive equilibrium, respectively. In panels A to C, the vertical arrows represent the endogenous jump in
the two firms’ profit margins and firm i’s equity value, respectively, as the equilibrium endogenously switches
from collusion to non-collusion. In panels C and D, the vertical dash-dotted lines represent the threshold
of the endogenous jump, which is determined by the leverage ratio lev∗i,0 of firm i above which firm j’ PC

constraint (31) is violated. The initial log coupons at t = 0 are set at bC, the optimal log coupon in the collusive
equilibrium when ezi,0 = ezj,0 = 1. Parameters are calibrated as in Table 1 except for κ = 0.

profit margin to recoup the profits it lost during the period of predatory pricing. Such

predatory pricing incentives are weak in industries with low entry barriers because major

new competitors can easily enter the market.33

33For example, Loualiche (2021) develops a model to emphasize that firm entries can increase competition
and reduce incumbents’ profit margins.
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In Figure 8, we show that our model can generate full-blown predatory price wars

when κ = 0, which represents an industry with sufficiently high entry barrier in the sense

that new entrants are negligible in size relative to incumbent firms. Panels A and B show

that as firm i’s leverage ratio levi,0 increases, both firms’ profit margins decrease in the

collusive equilibrium (the solid lines),34 whereas their profit margins remain unchanged in

the non-collusive equilibrium (the dashed lines). Notably, the firms’ profit margins in the

collusive equilibrium fall to the level of profit margins in the non-collusive equilibrium when

firm i’s leverage ratio levi,0 is greater than lev∗i,0 ≈ 0.8, which is the threshold of endogenous

price war.

We now delineate the mechanism through which a full-blown predatory price war

endogenously emerges within our model. In panel D of Figure 8, the equity value of firm

j in the collusive equilibrium (represented by the solid line) meets its equity value in the

non-collusive equilibrium (represented by the dashed line) at a leverage ratio of lev∗i,0 ≈ 0.8

for firm i, as marked by the vertical dash-dotted line. When firm i’s leverage ratio levi,0 is

lower than lev∗i,0, both firms’ PC constraints are satisfied for the Pareto efficient collusive

profit-margin schemes that make their IC constraints (32) binding state by state. Thus,

both firms choose to collude with each other. However, when levi,0 lies above lev∗i,0, the

PC constraint becomes violated for firm j, and thus the collusion cannot be sustained even

though the two firms’ IC constraints are still satisfied. Importantly, panel C of Figure 8

illustrates that in the collusive equilibrium, firm i’s equity value strictly surpasses its value

in the non-collusive equilibrium for levi,0 ≤ lev∗i,0. At the endogenous price-war boundary,

represented by the vertical dash-dotted line at lev∗i,0, firm i’s equity value experiences a stark

drop from its collusive level to the non-collusive level. Upon comparing panels C and D,

it becomes evident that the firm in a more robust financial position (specifically firm j in

our experiment) is more inclined to break away from collusion and initiate a price war. To

further elaborate, when the leverage ratio levi,0 exceeds lev∗i,0, firm i is dangerously close to

its default boundary. Recognizing this vulnerability, firm j deems it optimal to push firm i

out of the market, anticipating the long-term monopoly benefits. This strategy drives firm j

to forgo the implicit collusive agreement, launching a predatory price war against firm i and

transitioning to the non-collusive equilibrium. As a result, industries with higher barriers to

entry witness a more pronounced within-industry contagion effect in the short run due to

such predatory behavior from rivals.

We further study the central intertemporal tradeoff behind the predatory pricing strategy,

34The narrowed profit margin of firm j caused by the increased leverage of firm i reflects both its self-
defensive and predatory incentives. The self-defensive component captures firm j’s reduced profit margin as a
response to defend its market demand against firm i’s aggressive pricing. Through the lens of a structural
model, predatory incentives can be isolated from self-defensive incentives (Besanko, Doraszelski and Kryukov,
2014).
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Figure 9. Predatory pricing as an extreme case of financial contagion in the short run. In each period t, the
solid lines in panels A and B plot the average dynamics of one firm’s profit margin and 1-year default rate,
conditional on not defaulting (i.e., not exiting) at t, based on 200,000 independent simulations of the benchmark
scenario with no distress shock to firm i. The dashed and dash-dotted lines represent the average dynamics of
firms i and j, respectively, in the scenario where firm i’s log coupon increases unexpectedly from bC to bshock

i at

the beginning of year 1, whereas firm j’s log coupon is held at bC for t ≥ 0. The value of bshock
i is chosen so that

firm i’s leverage ratio increases by 10% at the beginning of year 1. We set ez1,0 = ez2,0 = 0.5, so both firms are
already distressed at t = 0. The two firms’ initial log coupons at t = 0 are set at bC, the optimal log coupon in
the collusive equilibrium when ez1,0 = ez2,0 = 1. Parameters are calibrated as in Table 1 except for κ = 0.

focusing on the balance between long-term monopolistic gains and short-term distress risk.

Our exploration of the dynamic effects of financial contagion within an industry is centered

on scenarios where κ = 0. As depicted in Figure 9, we model two firms in financial distress

at t = 0, both characterized by an identical initial demand shock of ez1,0 = ez2,0 = 0.5.35 At

the beginning of year 1, there is a “large” adverse distress shock to firm i, which increases

its leverage ratio by 10%. For each subsequent period t, we compute the average dynamics

of each firm’s profit margin and 1-year default rate, conditional on that the firm has not

defaulted by t.

In panel A of Figure 9, the solid line serves as a benchmark case, depicting the profit

margin when no large adverse distress shock is present. When the large adverse distress

shock hits firm i at the beginning of year 1, both firms significantly reduce their profit

margins. The dash-dotted line in the figure shows that firm j reduces its profit margin by

3.4 percentage points at the beginning of year 1. This reduction compels firm i to lower its

prices to retain demand, subsequently depressing its profit margin. Both the feedback and

contagion effects amplify the consequences of the initial distress shock on firm i, elevating

its default rate. This elevation in turn enhances the prospects of firm j consolidating market

35To generate predatory pricing behavior, it is not necessary for both firms to be distressed (for example, in
Figure 8, only firm i is distressed, not firm j). We consider initially distressed firms for illustrative purposes.
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power in the future. Such power would enable firm j to achieve elevated profit margins.

Supporting this, the dash-dotted line in panel A of Figure 9 reveals that, over time, firm j’s

profit margin consistently rises on average, surpassing the benchmark (represented by the

solid line) post year 4.

A key economic insight we have gleaned is that, following an idiosyncratic distress shock

to firm i, its rival, firm j, stands to benefit in the long-term. Yet, in the short-term, firm j

must strategically and aggressively reduce its profit margin to stifle firm i’s recovery from

financial distress. The intertemporal tradeoff of firm j’s predatory pricing can be clearly

illustrated by the evolution of its short-term default risk. Panel B of Figure 9 plots the 1-year

default rate, which is the conditional default probability over the next year. The solid line

serves as a benchmark case, depicting the 1-year default rate when no large adverse distress

shock is present at the beginning of year 1.

Upon comparing the solid and dash-dotted lines, it is evident that when firm j engages

in predatory pricing, its 1-year default rate right after the shock to firm i exceeds the rate

in the benchmark scenario, where no large distress shock is present at the outset of year 1.

The reason for this is that firm j opts for significantly reduced profit margins immediately

following the shock, as evidenced by the dash-dotted line in panel A. However, when firm

j engages in predatory pricing, it is evident that, on average, its 1-year default rate starts

to become lower than the rate in the benchmark scenario (the solid line) after year 3. This

reduction in the 1-year default rate of firm j in the long run is due to its predatory behavior,

which, in the short run, elevates the default probability for the shocked firm, firm i. As a

consequence, firm j positions itself to reap monopoly rents in the long run.

4.3 Capital Structure Under Strategic Competition

Profitability-Leverage Puzzle. In this section, we show that the profitability-leverage

puzzle can be rationalized by our full-fledged quantitative model, due to the same intuitions

discussed in the simple model in Section 2. As an illustration, consider two industries with

low (νL = 0) and high (νH = 0.1) levels of idiosyncratic left-tail risk. Panel A of Figure 10

shows that when ez1,0 = ez2,0 = 1, firm i’s profit margin in the industry with νL is higher

than that in the industry with νH by 14.1% (= 31% − 16.9%) at t = 0. In panel B of Figure

10, we compare the optimal leverage ratio in the two industries. The industry with νH

has an optimal leverage ratio of 39%, which is higher than the industry with νL by 8%

(= 39% − 31%). Taking the results in panels A and B of Figure 11 together, our model

implies that industries with higher profitability are associated with lower leverage ratios.
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Figure 10. Higher idiosyncratic left-tail risk leads to lower profitability but higher optimal leverage. In
both panels, the solid and dashed lines represent industries with low (νL = 0) and high (νH = 0.1) levels
of idiosyncratic left-tail risk, respectively. Panel A plots the profit margin θi,0 of firm i as a function of ezi,0 ,

holding ezj,0 = 1 unchanged. The two firms’ initial log coupons at t = 0 are set at bC, the optimal log coupon in
the collusive equilibrium when ez1,0 = ez2,0 = 1. The vertical dotted lines represent the default boundaries of
firm i in the corresponding industries. Panel B plots firm i’s value Vi,0 as a function of its leverage ratio levi,0,

by varying firm i’s log coupon bi while holding firm j’s log coupon at bC and ez1,0 = ez2,0 = 1 unchanged. The
vertical dotted lines represent the optimal leverage ratios of firm i in the corresponding industries. Parameters
are set according to Table 1.

Costly Leverage Due to the Feedback Effect. When determining its optimal amount of

debt issuance, a firm recognizes the implications of increasing its leverage ratio on its profit

margin, stemming from the competition-distress feedback effect. A higher leverage ratio can

result in decreased collusive profit margins and cash flows. As a result, the firm behaves

more cautiously, adopting a relatively low leverage ratio ex ante. To further understand this,

we conduct experiments to measure the quantitative significance of the competition-distress

feedback effect on the optimal capital structure. We consider two symmetric firms with

initial demand shocks ez1,0 = ez2,0 = 1. These firms have optimal log coupons of b1 = b2 = bC

in the collusive equilibrium. Panel A of Figure 11 helps illustrate our findings. The solid

and dashed lines plot firm i’s value Vi,0 in relation to its leverage ratio levi,0 at t = 0. The

solid line corresponds to our baseline model with collusive profit margins, while the dashed

line represents a model where firms’ profit margins do not adjust according to their coupon

levels. The peak values of firm i in both models are indicated at the optimal leverage ratios,

which are represented by two vertical dotted lines in the same panel.

In the baseline model, which has firm values represented by the solid line, the optimal

leverage ratio stands at 31%. In contrast, in the model depicted by the dashed line, firms’

profit margins remain unaffected by their coupon levels. In this case, where profit margins
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Figure 11. Implications of feedback and contagion on optimal capital structure. We consider two symmetric
firms with ez1,0 = ez2,0 = 1. Panel A plots firm i’s value Vi,0 as a function of its leverage ratio levi,0, by

varying firm i’s log coupon bi while holding firm j’s log coupon at bC, the optimal log coupon in the collusive
equilibrium when ez1,0 = ez2,0 = 1. The solid and dashed lines represent the baseline model with collusive profit
margins and the model in which each firm’s profit margin does not respond to its coupon level, respectively.
In panel B, the solid line plots the industry’s value (V1,0 + V2,0) as a function of firm i’s coupon ebi in the

collusive equilibrium, holding bj = bC unchanged. The right vertical dotted line represents ebC
. The dashed line

represents the industry’s value as a function of firm i’s (or firm j’s) coupon ebi in the collusion+ equilibrium,

holding bi = bj. The left vertical dotted line represents the coupon ebC+
that maximizes the industry’s value.

Parameters are set according to Table 1.

are fixed, the competition-distress feedback is absent. This is because, by design, firm i’s

profit margin and cash flows remain independent of its leverage ratio. It is evident that

firm i’s optimal leverage ratio increases from 31% to 43% in the absence of the competition-

distress feedback loop, indicating that the feedback effect reduces the optimal leverage

ratio by a sizable amount, approximately 12% (= 43% − 31%). Our quantitative exercise

suggests that the competition-distress feedback loop is an important mechanism that makes

leverage costly and thus reduces firms’ optimal leverage ratios. The large bankruptcy costs

emphasized in the traditional tradeoff theory of capital structure (e.g., Leland, 1994) are not

a precondition for generating large financial distress costs that result in costly leverage.

Excessive Leverage Relative to the Industry’s Optimal Leverage. As previously discussed

in the simple model from Section 2, the financial contagion effect suggests that an increase in

one firm’s debt level can adversely impact the value of its rival. This implies that excessive

debt might be present when viewed from an industry-wide perspective. To better understand

this, we quantitatively assess this potential inefficiency in firms’ capital structure decisions

from the standpoint of the entire industry. Consider two symmetric firms with initial demand

shocks ez1,0 = ez2,0 = 1. The solid line in panel B of Figure 11 plots the industry’s value
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V1,0 + V2,0 in the collusive equilibrium as a function of firm i’s coupon ebi , holding bj = bC,

where bC is the optimal log coupon in the collusive equilibrium when ez1,0 = ez2,0 = 1. It is

evident that the vertical dotted line on the right, which represents ebC
, does not maximize

the industry’s value even though it is the optimal coupon that maximizes each firm’s value

in the collusive equilibrium. The solid line is downward sloping in the local region around

ebC
, indicating that the industry’s value would be higher if firm i chooses a coupon level

below ebC
.

We now shift our focus to determining the leverage choice that maximizes the entire

industry’s value. Instead of allowing each firm to choose its own coupon non-cooperatively

in a Nash equilibrium (see equations (37) and (38)), we introduce a cooperative approach

for leverage decisions. Here, the industry jointly chooses the log coupons bi and bj for both

firms. This strategy is aimed at maximizing the combined value of the industry, represented

as V1,0 + V2,0, and in doing so, addresses the externality concerns associated with individual

debt choices. We introduce a distinct label for this equilibrium to differentiate it from the

traditional collusive equilibrium. We term it the “collusive+ equilibrium”. We focus on

the symmetric equilibrium, wherein both firms must adopt the same optimal coupon to

maximize the industry’s overall value. To visualize this, consider panel B of Figure 11. The

dashed line in this panel illustrates the industry’s value in relation to firm i’s coupon ebi ,

under the condition that bi = bj. The vertical dotted line on the left represents the optimal

coupon ebC+
that maximizes the industry’s value, which implies a leverage ratio of 21.5%

for the industry, much lower than the leverage ratio of 31% in the collusive equilibrium,

corresponding to the choice of the log coupon bC. Thus, from the perspective of the entire

industry, both firms in the collusive equilibrium adopt an excessively high debt level.36

5 Conclusion

This paper investigates the dynamic interactions between endogenous strategic competition

and financial distress. We develop the first elements of a tractable dynamic framework for

distressed competition by incorporating a supergame of strategic rivalry into a dynamic

model of long-term defaultable debt. In our model, firms tend to compete more aggressively

when they are in financial distress, and the intensified competition, in turn, diminishes the

profit margins of all firms in the industry, pushing some further into distress. Thus, the

36He and Matvos (2016) argue that firms may be under-leveraged from a social efficiency perspective since
debt generates positive externalities for peers by inducing early exit, especially for inefficient firms. Although
our model highlights negative externalities of debt, the key mechanism of our model shares similarities with
He and Matvos (2016) in that a higher level of debt increases the likelihood of default and exit, which, in turn,
alters firms’ strategic interactions by increasing the discount rate for equity holders.
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endogenous distressed competition mechanism implies novel competition-distress feedback

and financial contagion effects.

Our study raises interesting questions for future research. Equity issuance is costless in

our model but costly in reality. The costless issuance of equity is a simplification widely

adopted in standard credit risk models. Do firms compete more aggressively when they

become more liquidity constrained, but not yet more financially distressed? We focus on

frictions related to debt financing, but equity financing frictions should also be investigated.

Extending the model to incorporate external equity financing costs and allowing firms to

hoard cash, as in Bolton, Chen and Wang (2011, 2013), Dou et al. (2021b), and Dou and

Ji (2021), would be interesting for future research. In addition, our paper highlights an

important source of cash flow risk — endogenous competition risk — that depends on

industries’ market structures. Extending the model to study the joint determination of

optimal capital structure and risk management, as in Rampini and Viswanathan (2010, 2013),

is another potentially fruitful research area.
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Appendix

In the appendix section, we make the dependence of endogenous variables on ν explicit to ensure clarity.

We first introduce the following technical assumptions for the simple model.

Assumption 1. The coupon level bi > ϕ(b)− ℓ, for ℓ > 0 in the borrowing constraint (3).
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This technical assumption is quite intuitive. It is consistent with the fact that the covenants are typically

triggered before firms choose to default.

Assumption 2. The log coupon level bi > b, for some b > τν/ϕ̄.

This technical assumption is a sufficient condition for Proposition 2.6. The assumption is innocuous. We

can always adjust the cash flow to be represented as Mezi Ci. By selecting a sufficiently large value for M, the

firm’s leverage ratio can be brought close to zero, given a predefined lower bound for the coupon level, b. We

choose the lower bound b such that b > τν/ϕ̄ to fix the scale of the economy and ensure that increasing a

firm’s coupon payment has a non negligible effect on its default probability relative to the tax shield benefit.

A Proof of the Statement on Left-Tail Risk

According to the cumulative distribution function of a logistic distribution, it suffices to show that both e−z/ν

and [sin(νπ)/(νπ)]1/ν are decreasing in ν. Because z < 0, it is obvious that e−z/ν is decreasing in ν. Let

H(ν) ≡ ln [sin(νπ)/(νπ)]1/ν. We only need to show that the following function is decreasing in ν:

H(ν) ≡ 1

ν
µ(ν) =

1

ν
[ln(sin(νπ))− ln(νπ)] . (39)

Using the facts that sin x < x < tan x for x ∈ (0, π/2), limx→0 x/ sin x = 1, and limx→0 x/ tan x = 1, it is easy

to verify that H(ν) is a monotonically decreasing and strictly concave function over (0, 1/2).

B Proof of Proposition 2.1

We first show that PN
1 = PN

2 = 0 is a one-shot static Nash equilibrium. No firm would like to increase the price

because this deviation would lead to zero demand according to the demand system specification (equation

(1) of the main text). Meanwhile, no firm would like to lower the price to some negative value because this

deviation would lead to a negative profit (i.e., an operating loss). Next, we show that PN
1 = PN

2 = 0 is the

unique one-shot static Nash equilibrium. Suppose (P1, P2) is a pair of prices with at least one price being

positive. Without loss of generality, we assume that P1 ≤ P2 and P2 > 0. There are two cases. If P1 = P2 > 0,

either firm can reduce its price by an infinitesimal amount to obtain a positive gain. If P1 < P2 and P2 > 0,

firm 1 can increase its price to a level that is lower than P2 by an infinitesimal amount to obtain a positive gain.

Therefore, PN
1 = PN

2 = 0 is the unique non-collusive equilibrium, in which CN
1 = CN

2 = 1 according to the

demand system specification and EN
1 = EN

2 = 0.

C Proof of Lemma 1

In the collusive equilibrium, it holds that

λC
i = P{eθC

i +zi ≤ eϕ(bi)}, (40)
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where θC
i ≡ ln

(
PC

i

)
for i ∈ {1, 2}. The idiosyncratic demand shock zi is i.i.d., following a logistic distribution,

Logistic (µ(ν), ν). Thus, the default probability is equal to

λC
i = P{zi ≤ ϕ(bi)− θC

i } =
1

1 + e[µ(ν)+θC
i −ϕ(bi)]/ν

, for i ∈ {1, 2}. (41)

D Proof of Proposition 2.2

The two firms must set the same price PC and thus set the same log profitability θC in the collusive equilibrium.

The equity value of firm i is

EC
i (bi, bj) = E

{
(1 − τ)

(
eθC+zi − ebi

)
+ EC

i (bi, bj)1{θC+zi>ϕ(bi)}
}

, for j 6= i,

where 1{θC+zi>ϕ(bi)} is the indicator function for the event of θC + zi > ϕ(bi). Using the definition of the default

probability λC(θC, bi) in equation (5) of the main text and the distribution of zi (i.e., E[ezi ] ≡ 1), the above

equation can be rewritten as follows:

EC
i (bi, bj) = (1 − τ)

(
eθC − ebi

)
+

[
1 − λC(θC, bi)

]
EC

i (bi, bj), (42)

Rearranging terms further leads to

EC
i (bi, bj) = (1 − τ)

(
eθC − ebi

)
λ(θC, bi)

−1. (43)

Plugging (41) into (43), we obtain that

EC
i (bi, bj) = (1 − τ)

(
eθC − ebi

) {
1 + e[µ(ν)+θC−ϕ(bi)]/ν

}
. (44)

The debt value can be characterized by the following recursive equation:

DC
i (bi, bj) =E

{
ebi + DC

i (bi, bj)1{θC+zi>ϕ(bi)}
}

(45)

= ebi +
[
1 − λC(θC, bi)

]
DC

i (bi, bj). (46)

Rearranging terms in the equation above, we can solve the equilibrium debt value as follows:

DC
i (bi, bj) = ebi λC(θC, bi)

−1. (47)

The incentive compatibility (IC) constraint in equation (7) of the main text can be rewritten as follows:

ρeθC+ηθC ≤
[
1 − λ(θC, bi)

]
EC

i (bi, bj) (48)

= (1 − τ)
[
1 − λ(θC, bi)

] (
eθC − ebi

) {
1 + e[µ(ν)+θC−ϕ(bi)]/ν

}
. (49)

Plugging (41) into (49), we obtain the following inequality:

ρeθC+ηθC ≤ (1 − τ)
(

eθC − ebi

)
e[µ(ν)+θC−ϕ(bi)]/ν. (50)
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Taking logs on both sides, it follows that

ln(ρ) + ηθC ≤ ln(1 − τ) + [µ(ν) + θC − ϕ(bi)]/ν + ln
[
1 − e−(θC−bi)

]
. (51)

Therefore, the IC constraints can be written as follows:

θC ≤
{

ln[(1 − τ)/ρ] + [µ(ν) + θC − ϕ(bi)]/ν + ln
[
1 − e−(θC−bi)

]}
/η, with i ∈ {1, 2}. (52)

We define a function Ψ(θ, b) as follows:

Ψ(θ, b) ≡ ln[(1 − τ)/ρ] + [µ(ν) + θ − ϕ(b)]/ν + ln
[
1 − e−(θ−b)

]
. (53)

Thus, the two IC constraints in (52) for the pairs of log profitability (θC, θC) can be expressed in the following

way:

θC ≤ Ψ(θC, bi)/η, with i ∈ {1, 2}. (54)

Hence, the incentive compatible region (IC region) can be characterized as follows:

C ≡
{
(θ1, θ2) : θi ≤ Ψ(θj, bj)/η and θi = θj, for i 6= j

}
, (55)

for b1 and b2 such that C is not empty.

The firms try to maximize their log profitability and thus equity values. As a result, in the Pareto efficient

collusive equilibrium with grim trigger (punishment) strategies, at least one of the two IC constraints in (54)

must be binding. Knowing that the function Ψ(θ, b) is decreasing in b, we can obtain the following equality:

θC = Ψ(θC, b1 ∨ b2)/η, (56)

where b1 ∨ b2 denotes the maximum of b1 and b2.

Next, we show that the Pareto efficient collusive equilibrium exists if b1 and b2 satisfy certain conditions.

The function f (x) ≡ ln [1 − e−x] is a strictly increasing and concave function in x, it must hold that

1

eθ − 1
(θ − b1 ∨ b2 − ℓ) ≤ ln

[
1 − e−(θ−b1∨b2)

]
− ln

[
1 − e−ℓ

]
≤ 1

eℓ − 1
(θ − b1 ∨ b2 − ℓ) , (57)

for all θ ∈
[
b1 ∨ b2 + ℓ, ln(P)

]
, where ℓ is the constant defined in the borrowing constraint, specified in equation

(3) of the main text.

We now define a function G(·, ·, ·) as follows:

G(θ, b1, b2) ≡ Ψ(θ, b1 ∨ b2)− ηθ (58)

= C(b1 ∨ b2) + θ/ν − ηθ + ln
[
1 − e−(θ−b1∨b2)

]
− ln

[
1 − e−ℓ

]
, (59)

where

C(b) ≡ ln[(1 − τ)/ρ] + [µ(ν)− ϕ(b)]/ν + ln
[
1 − e−ℓ

]
. (60)

Based on the equilibrium characterization in (56), we know that the log profitability in the Pareto efficient

collusive equilibrium θC is the root of the function G(θ, b1, b2) if it exists. Because of the inequalities in (57), it
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holds that

G(θ, b1, b2) ≤ G(θ, b1, b2) ≤ G(θ, b1, b2), for all θ ∈
[
b1 ∨ b2 + ℓ, θ

]
, (61)

where

G(θ, b1, b2) ≡ C(b1 ∨ b2)− (b1 ∨ b2 + ℓ)/(eθ − 1)−
{

η −
[
1/ν + 1/(eθ − 1)

]}
θ, (62)

G(θ, b1, b2) ≡ C(b1 ∨ b2)− (b1 ∨ b2 + ℓ)/(eℓ − 1)−
{

η −
[
1/ν + 1/(eℓ − 1)

]}
θ, (63)

When η is sufficiently large and ρ is sufficiently small, both the lower-bound function G(θ, b1, b2) and the

upper-bound function G(θ, b1, b2) have the following positive roots:

θ∗(b1, b2) ≡
C(b1 ∨ b2)− (eθ − 1)−1(b1 ∨ b2 + ℓ)

η −
[
ν−1 + (eθ − 1)−1

] , and (64)

θ
∗
(b1, b2) ≡

C(b1 ∨ b2)− (eℓ − 1)−1(b1 ∨ b2 + ℓ)

η −
[
ν−1 + (eℓ − 1)−1

] , respectively. (65)

Because of the inequalities in (61), it must hold that θC ∈ [θ∗(b1, b2), θ
∗
(b1, b2)].

Therefore, the equilibrium exists (i.e., θC exists and lies between b1 ∨ b2 + ℓ and θ), as long as the parameters,

including b1 and b2, make the following conditions hold:

b1 ∨ b2 + ℓ ≤ θ∗(b1, b2) ≤ θ
∗
(b1, b2) ≤ θ. (66)

Lastly, we show that the Pareto efficient collusive equilibrium characterized by θC, the root of the function

G(θ, b1, b2), is unique if it exists. This is true because
∂G(θ, b1, b2)

∂θ
< 0 if η is sufficiently large. Indeed,

∂G(θ, b1, b2)
∂θ

has the following analytical expression:

∂G(θ, b1, b2)

∂θ
= −η + 1/ν +

1

eθ−b1∨b2 − 1
(67)

Because of the borrowing constraint, it follows that 0 < 1/(eθ−b1∨b2 − 1) ≤ 1/(eℓ − 1), which further implies

that
∂G(θ, b1, b2)

∂θ
< −η + 1/ν +

1

eℓ − 1
, (68)

where the right hand side is negative if η is sufficiently large.

E Proof of Proposition 2.3

We define a function G(·, ·, ·) as in (58). According to Proposition 2.2, the collusive equilibrium log profitability

θC is the solution to G(θ, b1, b2) = 0 for given b1 and b2. For i 6= j ∈ {1, 2}, if bi < bj, the function

G(θ, b1, b2) ≡ Ψ(θ, bj)− ηθ is independent of bi. As a result, θC is independent of bi, and thus ∂θC/∂bi = 0.

Alternatively, if bi ≥ bj, the function G(θ, b1, b2) ≡ Ψ(θ, bi)− ηθ depends on bi, and thus θC depends on bi. The

Implicit Function Theorem implies that

∂θC

∂bi
= −

[
∂G(θ, b1, b2)

∂θ

∣∣∣∣
θ=θC

]−1 ∂G(θ, b1, b2)

∂bi

∣∣∣∣
θ=θC

, (69)
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where the derivatives, evaluated at θ = θC, are

∂G(θ, b1, b2)

∂θ

∣∣∣∣
θ=θC

= −η + (1/ν + di) and
∂G(θ, b1, b2)

∂bi

∣∣∣∣
θ=θC

= −ϕ̇(bi)/ν − di, (70)

with di ≡ 1/[eθC−bi − 1]. Therefore,
∂θC

∂bi
= − ϕ̇(bi)/ν + di

η − (1/ν + di)
. (71)

Because of the borrowing constraint and the fact that θC = ln(PC) ≤ ln(P), it follows that 0 < 1/
(

P − 1
)
< di ≤

1/(eℓ − 1), which further implies that ϕ̇(bi)/ν+ di > ϕ̇(bi)/ν ≥ 0 and η − (1/ν+ di) > η −
[
1/ν + 1/(eℓ − 1)

]
,

with the latter being positive if η is sufficiently large. Therefore, if η is sufficiently large, it follows from

equation (71) that ∂θC

∂bi
< 0.

F Proof of Corollary 2.1

Note that λC
j = λC(θC, bj). It follows from the chain rule that

∂λC(θC, bj)

∂bi
=

∂λC(θ, bj)

∂θ

∣∣∣∣∣
θ=θC

× ∂θC

∂bi
. (72)

Based on equation (5) of the main text, it follows that ∂λC(θ, bj)/∂θ < 0. In addition, according to Proposition

2.3, it follows that ∂θC(b1, b2)/∂bi ≤ 0. Taken together, the default probability of the rival firm j is increasing in

firm i’s coupon level bi, that is, ∂λC(θC, bj)/∂bi ≥ 0.

G Proof of Proposition 2.4

According to equation (5) of the main text, the default probability is

λC
i = λC(θC, bi), where λC(θ, b) ≡ 1

1 + e[µ(ν)+θ−ϕ(b)]/ν
, (73)

where θC is a function of bi and bj in the collusive equilibrium for i 6= j. It holds that

dλC
i =

∂λC(θ, bi)

∂bi

∣∣∣∣
θ=θC

dbi +
∂λC(θ, bi)

∂θ

∣∣∣∣
θ=θC

dθC. (74)

The above total differential representation of λC(θ, b) is general in the sense that it does not depend on any

specific economic mechanism.

According to our proposed theory, a change in bi affects λC
i , which in turn affects the log profitability θC.

Holding bj unchanged, changes in either λC
i or θC can only be caused by variations in bi. As a result, it follows

that

dθC =
∂θC(b1, b2)

∂bi
dbi =

∂θC(b1, b2)

∂bi

[
∂λC(θC(b1, b2), bi)

∂bi

]−1

dλC
i =

∂θC

∂λC
i

∣∣∣∣∣
bj

dλC
i , (75)

where ∂θC/∂λC
i

∣∣
bj

is the sensitivity of log profitability θC to firm i’s default probability λC
i , holding bj
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unchanged, in the collusive equilibrium.

Combining (74) and (75), the feedback loop representation immediately follows:

[
dλC

i

dθC

]
=

[
∂λC(θ, bi)/∂bi

∣∣
θ=θC

0

]

︸ ︷︷ ︸
Initial direct effect ≥ 0

dbi +

[
0 ∂λC(θ, bi)/∂θ

∣∣
θ=θC

∂θC/∂λC
i

∣∣
bj

0

]

︸ ︷︷ ︸
Higher-order feedback effect ≤ 0

[
dλC

i

dθC

]
. (76)

Define A ≡
[

0 ∂λC(θ, bi)/∂θ
∣∣
θ=θC

∂θC/∂λC
i

∣∣
bj

0

]
, which captures the higher-order feedback effect of changes

in bi on λC
i and θC. The matrix A has two eigenvalues given by ±

√
∂λC(θ, bi)/∂θ|θ=θC × ∂θC/∂λC

i

∣∣
bj

. It is

straightforward to show that these two eigenvalues lie on (−1, 1) because ∂λC
i /∂θC

∣∣
bj
< ∂λC(θ, bi)/∂θ

∣∣
θ=θC < 0.

Intuitively, ∂λC(θ, bi)/∂θ
∣∣
θ=θC only captures the initial direct effect of varying log profitability θ on the default

probability λC(θ, bi), holding both b1 and b2 unchanged. In contrast, ∂λC
i /∂θC

∣∣
bj

captures the effect of varying

bi on λC through the change in the equilibrium log profitability θC, which reflects not only the initial direct

effect of varying θ on λC but also the feedback effect between the financial and product markets, holding only

bj unchanged. Mathematically, according to (75), it holds that

∂λC
i

∂θC

∣∣∣∣∣
bj

=

(
∂θC

∂bi

)−1
∂λC(θC, bi)

∂bi
(77)

=

(
∂θC

∂bi

)−1 [
∂λC(θ, bi)

∂bi

∣∣∣∣
θ=θC

+
∂λC(θ, bi)

∂θ

∣∣∣∣
θ=θC

∂θC

∂bi

]
(78)

=

(
∂θC

∂bi

)−1
∂λC(θ, bi)

∂bi

∣∣∣∣
θ=θC

+
∂λC(θ, bi)

∂θ

∣∣∣∣
θ=θC

. (79)

In general, we observe that ∂θC/∂bi ≤ 0. However, for the derivative
∂λC

i

∂θC

∣∣∣∣
bj

to be well-defined, the condi-

tion ∂θC/∂bi 6= 0 must be met. Consequently, we conclude that ∂θC/∂bi < 0. Because ∂θC/∂bi < 0 and

∂λC(θ, bi)/∂bi

∣∣
θ=θC > 0, it follows that

∂λC
i

∂θC

∣∣∣∣∣
bj

− ∂λC(θ, bi)

∂θ

∣∣∣∣
θ=θC

=

(
∂θC

∂bi

)−1
∂λC(θ, bi)

∂bi

∣∣∣∣
θ=θC

< 0. (80)

Thus, I − A is invertible and the inversion is equal to

(I − A)−1 = I + A + A2 + A3 + · · · . (81)

We have shown that the system is stable and invertible above. We now demonstrate the resulting amplification

effect that arises from the feedback loop. According to equations (76) and (81), it follows that

[
dλC

i

dθC

]
= [I + A + A2 + A3 + · · ·︸ ︷︷ ︸

Amplification due to
feedback loops

]

[
∂λC(θ, bi)/∂bi

∣∣
θ=θC

0

]

︸ ︷︷ ︸
Initial direct effect ≥ 0

dbi. (82)
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The powers of A, for k = 1, 2, · · · , are

A2k =




(∂λC(θ, bi)/∂θ
∣∣
θ=θC )

k(∂θC/∂λC
i

∣∣
bj
)k 0

0 (∂λC(θ, bi)/∂θ
∣∣
θ=θC )

k(∂θC/∂λC
i

∣∣
bj
)k


 , and (83)

A2k−1 =




0 (∂λC(θ, bi)/∂θ
∣∣
θ=θC )

k(∂θC/∂λC
i

∣∣
bj
)k−1

(∂λC(θ, bi)/∂θ
∣∣
θ=θC )

k−1(∂θC/∂λC
i

∣∣
bj
)k 0


 . (84)

H Proof of Corollary 2.2

We now define a function G(·, ·) as follows:

G(θ, b) ≡ Ψ(θ, b)− ηθ (85)

= C(b) + θ/ν − ηθ + ln
[
1 − e−(θ−b)

]
− ln

[
1 − e−ℓ

]
, (86)

where C(b) is defined in (60). The Implicit Function Theorem implies that

∂θC

∂b
= −

[
∂G(θ, b)

∂θ

∣∣∣∣
θ=θC

]−1 ∂G(θ, b)

∂b

∣∣∣∣
θ=θC

, (87)

where the derivatives, evaluated at θ = θC, are

∂G(θ, b)

∂θ

∣∣∣∣
θ=θC

= −η + (1/ν + d) and
∂G(θ, b)

∂b

∣∣∣∣
θ=θC

= −ϕ̇(b)/ν − d, (88)

with d ≡ 1/[eθC(b,b)−b − 1]. Therefore,

∂θC(b, b)

∂b
= − ϕ̄b/ν + 1/[eθC(b,b)−b − 1]

η − {1/ν + 1/[eθC(b,b)−b − 1]}
, (89)

which becomes more negative when b increases.

I Proof of Proposition 2.5

The characterization of the set B is straightforward from the definition of a Nash equilibrium. We focus on the

symmetric equilibrium in which b1 = b2 because firms are ex-ante symmetric in the simple model. In this case,

VC
1 (b, b) = V2(b, b) for any (b, b) ∈ B.

We prove this proposition by contradiction. Let bC denote the smallest value of B. Suppose (bC, bC) is not

a Pareto efficient point of the set B or it is a Pareto efficient point of the set B but not the unique one. As a

result, there exists b̄C such that b̄C > bC and (b̄C, b̄C) ∈ B, satisfying the following inequality:

VC
1 (bC, bC) ≤ VC

1 (b̄C, b̄C). (90)

53



The inequality above implies that

VC
1 (bC, bC) ≤ VC

1 (b̄C, b̄C) (91)

≤ VC
1 (b̄C, bC) (because VC

i (bi, bj) is decreasing in bj) (92)

< VC
1 (bC, bC) (because (bC, bC) is a Nash equilibrium and Proposition K.1 holds for bC) (93)

Taken together, the inequalities (91) to (93) lead to a contradiction, because VC
1 (bC

1 , bC
2 ) cannot be strictly smaller

than itself. Therefore, (bC, bC) must the unique Pareto efficient pair of log coupons in the set B.

We now elaborate how the inequalities (92) and (93) are derived. The inequality (93) arises because (bC, bC)

is a Nash equilibrium and according to Proposition K.1, bC is the unique best response of firm 1 to firm 2’s

leverage decision bC. The inequality (92) requires more explanations. According to Proposition 2.2, the firm

value in the collusive equilibrium is VC
i (bi, bj) ≡ EC

i (bi, bj) + DC
i (bi, bj), where the equity value EC

i (bi, bj) and

the debt value DC
i (bi, bj) are characterized in closed-form expressions. To be specific, the firm value can be

expressed as follows:

VC
i (bi, bj) ≡ Φ(θC(bi, bj), bi), (94)

where θC(bi, bj) is characterized in Proposition 2.2, and the function Φ(θ, b) is specified as follows:

Φ(θ, b) ≡ (1 − τ)eθλC(θ, b)−1

︸ ︷︷ ︸
Asset value

+ τebλC(θ, b)−1,︸ ︷︷ ︸
Value of tax shield

(95)

= (1 − τ)eθ + (1 − τ)eθ+[µ(ν)+θ−ϕ(b)]/ν + τe[µ(ν)+θ−ϕ(b)]/ν+b + τeb. (96)

Thus, it follows that
∂VC

i (bi, bj)

∂bj
= Φθ(θ

C(bi, bj), bi)
∂θC(bi, bj)

∂bj
. (97)

From (109), it follows that Φθ(θ, bi) > 0. Moreover, Proposition 2.3 shows that
∂θC(bi, bj)

∂bj
≤ 0. Thus,

∂VC
i (bi, bj)

∂bj
≤ 0, i.e., VC

i (bi, bj) is decreasing in bj. As a result, because bC < b̄C, then VC
1 (b̄C, b̄C) ≤ VC

1 (b̄C, bC).

J Proof of Proposition 2.6

We define a function G(θ, b1, b2) ≡ Ψ(θ, b1 ∨ b2)− ηθ as in (58). According to Proposition 2.2, the collusive

equilibrium log profitability θC is the solution to G(θ, b1, b2) = 0 for given b1 and b2. The Implicit Function

Theorem implies that

∂θC

∂ν
= −

[
∂G(θ, b1, b2)

∂θ

∣∣∣∣
θ=θC

]−1 ∂G(θ, b1, b2)

∂ν

∣∣∣∣
θ=θC

, (98)

where the derivatives, evaluated at θ = θC, are

∂G(θ, b1, b2)

∂θ

∣∣∣∣
θ=θC

= −η + (1/ν + di) and
∂G(θ, b1, b2)

∂ν

∣∣∣∣
θ=θC

= − θC − ϕ(b1 ∨ b2)

ν2
+ Ḣ(ν), (99)
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with di ≡ 1/[eθC−bi − 1] and H(ν) defined in the proof of Appendix A. Therefore,

∂θC

∂ν
= − [θC − ϕ(b1 ∨ b2)]/ν2 − Ḣ(ν)

η − (1/ν + di)
. (100)

Based on the borrowing constraint specified in equation (3) of the main text and Assumption 1, we can

obtain that θC > b1 ∨ b2 + ℓ > ϕ(b1 ∨ b2). According to the proof in Appendix A, we know that Ḣ(ν) < 0.

Furthermore, we have η − (1/ν + di) > η −
[
1/ν + 1/(eℓ − 1)

]
, which is positive if η is sufficiently large.

Therefore, if η is sufficiently large, it follows from equation (100) that ∂θC

∂ν
< 0. In other words, θC(b1, b2)

decreases as the left-tail risk ν increases for any given b1 and b2.

Next, we show that the optimal log coupon level bC increases when ν increases. Based on equations (94) –

(96), we define a new function, denoted by ΥC
i (b), as follows:

ΥC
i (b) ≡

∂VC
i (b, b)

∂b
= Φθ(θ

C(b, b), b)
∂θC(b, b)

∂b
+ Φb(θ

C(b, b), b), (101)

where the first-order partial derivatives of Φ(θ, b) are:

Φθ(θ, b) ≡ (1 − τ)eθ + (1 − τ)

(
1 +

1

ν

)
eθ+[µ(ν)+θ−ϕ(b)]/ν +

τ

ν
e[µ(ν)+θ−ϕ(b)]/ν+b, (102)

Φb(θ, b) ≡ −(1 − τ)
ϕ̇(b)

ν
eθ+[µ(ν)+θ−ϕ(b)]/ν + τ

[
1 − ϕ̇(b)

ν

]
e[µ(ν)+θ−ϕ(b)]/ν+b + τeb. (103)

According to Proposition 2.5, the optimal log coupon level bC maximizes VC
i (b, b). The first-order condition

and the Hessian condition to characterize bC are

ΥC
i (b

C) ≡ 0 and
∂ΥC

i (b)

∂b

∣∣∣∣∣
b=bC

< 0, respectively. (104)

It follows immediately from (102) that Φθ(θ, b) > 0. By the definition of ΥC
i (b) in (101) and the first-order

condition in (104), we obtain the following relation:

Φb(θ
C(bC, bC), bC) = − Φθ(θ

C(bC, bC), bC)× ∂θC(b, b)

∂b

∣∣∣∣
b=bC

. (105)

According to Proposition 2.3, it follows that
∂θC(b, b)

∂b
< 0. As a result, it must hold that

Φb(θ
C(bC, bC), bC) > 0. (106)

According to the Implicit Function Theorem, the derivative of bC with respect to ν can be written as

∂bC

∂ν
= −

∂ΥC
i (b)

∂ν

∣∣∣∣∣
b=bC

∂ΥC
i (b)

∂b

∣∣∣∣∣
b=bC

. (107)

To show that ∂bC

∂ν
> 0, it suffices to show that

∂ΥC
i (b)
∂ν

∣∣∣∣
b=bC

> 0 because the optimality condition (104) ensures
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that
∂ΥC

i (b)
∂b

∣∣∣∣
b=bC

< 0. The partial derivative
∂ΥC

i (b)
∂ν

has the following expression:

∂ΥC
i (b)

∂ν
= Φθθ(θ

C, b)
∂θC

∂b

∂θC

∂ν
+ Φθν(θ

C, b)
∂θC

∂b
+ Φθ(θ

C, b)
∂2θC

∂b∂ν

+ Φbθ(θ
C, b)

∂θC

∂ν
+ Φbν(θ

C, b), (108)

where θC = θC(b, b) and the partial derivatives of Φ(θ, b) are

Φθ(θ, b) ≡ (1 − τ)eθ + (1 − τ)

(
1 +

1

ν

)
eθ+[µ(ν)+θ−ϕ(b)]/ν +

τ

ν
e[µ(ν)+θ−ϕ(b)]/ν+b, (109)

Φθθ(θ, b) ≡ Φθ(θ, b) + Φ̃θθ(θ, b), with (110)

Φ̃θθ(θ, b) ≡ (1 − τ)
1

ν

(
1 +

1

ν

)
eθ+[µ(ν)+θ−ϕ(b)]/ν +

τ

ν

(
1

ν
− 1

)
e[µ(ν)+θ−ϕ(b)]/ν+b, (111)

Φθν(θ, b) ≡ −1 − τ

ν2

{
1 +

(
1 +

1

ν

)
[µ(ν) + θ − ϕ(b)− νµ̇(ν)]

}
eθ+[µ(ν)+θ−ϕ(b)]/ν,

− τ

ν2

{
1 +

1

ν
[µ(ν) + θ − ϕ(b)− νµ̇(ν)]

}
e[µ(ν)+θ−ϕ(b)]/ν+b, (112)

Φb(θ, b) ≡ −(1 − τ)
ϕ̇(b)

ν
eθ+[µ(ν)+θ−ϕ(b)]/ν + τ

[
1 − ϕ̇(b)

ν

]
e[µ(ν)+θ−ϕ(b)]/ν+b + τeb, (113)

Φbb(θ, b) ≡ (1 − τ)

{[
ϕ̇(b)

ν

]2

− ϕ̈(b)

ν

}
eθ+[µ(ν)+θ−ϕ(b)]/ν

+ τ

{[
ϕ̇(b)

ν
− 1

]2

− ϕ̈(b)

ν

}
e[µ(ν)+θ−ϕ(b)]/ν+b + τeb, (114)

Φbθ(θ, b) ≡ −(1 − τ)
ϕ̇(b)

ν

(
1 +

1

ν

)
eθ+[µ(ν)+θ−ϕ(b)]/ν +

τ

ν

[
1 − ϕ̇(b)

ν

]
e[µ(ν)+θ−ϕ(b)]/ν+b, (115)

Φbν(θ, b) ≡ ϕ̇(b)

ν2

[
(1 − τ)eθ−b + τ

]
e[µ(ν)+θ−ϕ(b)]/ν+b

−
[
Φb(θ, b)− τeb

] {
[θ − ϕ(b)]/ν2 − Ḣ(ν)

}
. (116)

Below, we show that Φbθ(θ
C, b) < Φb(θ

C, b). Using equations (113) and (115), we can obtain the following

inequality:

Φb(θ, b)− Φbθ(θ, b) =
1

ν
(1 − τ)

ϕ̇(b)

ν
eθ+[µ(ν)+θ−ϕ(b)]/ν + τeb

+ τ

(
1 − 1

ν

) [
1 − ϕ̇(b)

ν

]
e[µ(ν)+θ−ϕ(b)]/ν+b,

where ϕ̇(b) = ϕ̄b > τν according to Assumption 2. Moreover, because ν ∈ (0, 1/2), which implies 1 − 1/ν < 0,

we can obtain the following relation:

Φb(θ, b)− Φbθ(θ, b) >
1

ν
(1 − τ)τeθ+[µ(ν)+θ−ϕ(b)]/ν + τ

(
1 − 1

ν

)
(1 − τ)e[µ(ν)+θ−ϕ(b)]/ν+b,

>
1

ν
(1 − τ)τ

(
eθ − eb

)
e[µ(ν)+θ−ϕ(b)]/ν

> 0,
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where the last inequality is due to the borrowing constraints, which imply that θ > b.

Now, because Φbθ(θ
C, b) < Φb(θ

C, b) and ∂θC

∂ν
< 0, equation (108) implies that

∂ΥC
i (b)

∂ν
> Φθθ(θ

C, b)
∂θC

∂b

∂θC

∂ν
+ Φθν(θ

C, b)
∂θC

∂b
+ Φθ(θ

C, b)
∂2θC

∂b∂ν

+ Φb(θ
C, bC)

∂θC

∂ν
+ Φbν(θ

C, b), (117)

where θC = θC(b, b).

According to (105), it follows that the inequality below must hold:

∂ΥC
i (b)

∂ν

∣∣∣∣∣
b=bC

> Φθθ(θ
C, bC)

∂θC

∂b

∂θC

∂ν

∣∣∣∣
b=bC

+ Φθν(θ
C, bC)

∂θC

∂b

∣∣∣∣
b=bC

+ Φθ(θ
C, bC)

∂2θC

∂b∂ν

∣∣∣∣
b=bC

− Φθ(θ
C, bC)

∂θC

∂b

∂θC

∂ν

∣∣∣∣
b=bC

+ Φbν(θ
C, bC) (118)

= Φ̃θθ(θ
C, bC)

∂θC

∂b

∂θC

∂ν

∣∣∣∣
b=bC

+ Φθν(θ
C, bC)

∂θC

∂b

∣∣∣∣
b=bC

+ Φθ(θ
C, bC)

∂2θC

∂b∂ν

∣∣∣∣
b=bC

+ Φbν(θ
C, bC), where θC = θC(b, b). (119)

The summation Φ̃θθ(θ
C, bC)∂θC

∂b
∂θC

∂ν

∣∣∣∣
b=bC

+ Φθ(θ
C, bC) ∂2θC

∂b∂ν

∣∣∣∣
b=bC

is positive, because Φ̃θθ(θ
C, bC) > Φθ(θ

C, bC) >

0, ∂θC

∂b
< 0, ∂θC

∂ν
< 0, and ∂θC

∂b
∂θC

∂ν

∣∣∣∣
b=bC

+ ∂2θC

∂b∂ν

∣∣∣∣
b=bC

> 0 if η is sufficiently large. The term Φθν(θ
C, bC)∂θC

∂b

∣∣∣∣
b=bC

is positive, because Φθν(θ
C, bC) < 0 and ∂θC

∂b
< 0. The term Φbν(θ

C, bC) is positive, because of Assumption 2.

Therefore,
∂ΥC

i (b)
∂ν

∣∣∣∣
b=bC

> 0, and consequently, it holds that ∂bC

∂ν
> 0. In what follows, we will elaborate more

on why Φbν(θ
C, bC) > 0. In fact, we can obtain that

Φbν(θ, b) ≡ ϕ̇(b)

ν2

[
(1 − τ)eθ−b + τ

]
e[µ(ν)+θ−ϕ(b)]/ν+b −

[
Φb(θ, b)− τeb

] {
[θ − ϕ(b)]/ν2 − Ḣ(ν)

}

> −
[
Φb(θ, b)− τeb

] {
[θ − ϕ(b)]/ν2 − Ḣ(ν)

}
. (120)

In the above equation, we have

−
[
Φb(θ, b)− τeb

]
= (1 − τ)

ϕ̇(b)

ν
eθ+[µ(ν)+θ−ϕ(b)]/ν − τ

[
1 − ϕ̇(b)

ν

]
e[µ(ν)+θ−ϕ(b)]/ν+b

≥ (1 − τ)τeθ+[µ(ν)+θ−ϕ(b)]/ν − τ(1 − τ)e[µ(ν)+θ−ϕ(b)]/ν+b (121)

> (1 − τ)τe[µ(ν)+θ−ϕ(b)]/ν+b − τ(1 − τ)e[µ(ν)+θ−ϕ(b)]/ν+b

= 0,

where the first inequality is due to Assumption 2, which implies ϕ̇(b) = ϕ̄bi > ϕ̄b ≥ τν. The second inequality

is due to the borrowing constraint (3) in the main text. Moreover, the borrowing constraint (3) implies that

[θ − ϕ(b)]/ν2 > 0. According to the proof in Appendix A, we have Ḣ(ν) < 0. Therefore, it follows that

Φbν(θ, b) > 0.

Finally, we have shown that
∂θC(b, b)

∂b
< 0 for any given b,

∂θC(b1, b2)
∂ν

< 0 for any given b1 and b2, and
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∂bC

∂ν
> 0. Taking the three results together, we know that θC(bC, bC) decreases with ν. Additionally, as in

equation (14) of the main text, firm i’s market leverage can be rewritten as

levC(bC, bC) =
1

(1 − τ)eθC(bC ,bC)−bC
+ τ

. (122)

As ν increases, θC(bC, bC) decreases and bC increases. Therefore, as ν increases, levC(bC, bC) increases according

to equation (122).

K Proposition K.1 and Its Proof

Proposition K.1 (Best Response Function and Nash Equilibrium Set B). There exists h > 0 such that b(b) ≡ b on

the interval [bC, bC + h), and thus, every pair of (b, b) with b ∈ [bC, bC + h) belongs to B, the Nash equilibrium set in

the log-coupon space characterized in Proposition 2.5. In addition, when b < bC, b(b) ≡ bC, independent of b.

In what follows, we provide a proof for Proposition K.1. We first show that ΥC
i (b) < 0 for b > bC, where

ΥC
i (b) is defined in (101). According to (104), there exists h > 0 such that ΥC

i (b) < 0 for any b ∈ (bC, bC + h)

because of continuity. This means that, as log coupon level b increases, the marginal increase in tax shield

benefits of debt is strictly dominated by the marginal decrease in firm value due to lower profits and a higher

default probability, when b ∈ (bC, bC + h). The dominance of the marginal decrease in firm value due to lower

profits and a higher default probability is more pronounced with a higher log coupon level b (see Corollary

2.2). Thus, ΥC
i (b) < 0 for b > bC.

We next show that, for any b ∈ (bC, bC + h), it holds that b = b(b). On the one hand, we show that there

does not exist b̃ > b such that VC
i (b̃, b) > VC

i (b, b) for i = 1, 2. We prove it by contradiction. If such b̃ exists,

then it holds that VC
i (b̃, b̃) = VC

i (b̃, b) > VC
i (b, b). However, this contradicts our established fact that ΥC

i (b) < 0

for b > bC. Therefore, such a b̃ cannot exist. On the other hand, we show that, for any b ∈ (bC, bC + h), there

does not exist b̃ < b such that VC
i (b̃, b) > VC

i (b, b) for i = 1, 2. This is straightforward because reducing the log

coupon level from b to b̃ would lead to lower tax-shield benefits for firm i without increasing its profitability

θC (see Proposition 2.3) or decreasing its default probability λC (see Corollary 2.1). Therefore, (b, b) is a Nash

equilibrium for any b ∈ [bC, bC + h).

Lastly, we show that, when b < bC, b(b) ≡ bC, independent of b. For any b < bC, similar to the argument

above, we can show that any coupon level b̃ that is lower than b cannot be the best response to the rival’s

coupon level b. Further, it cannot be the case b = b(b). This is because such a scenario would contradict the

result of Proposition 2.5, which establishes that bC = min {b : (b, b) ∈ B}. As a result, if the best response

function is well defined, it must hold that

b(b) ≡ argmax
b̃>b

VC
i (b̃, b), for i ∈ {1, 2}. (123)

Importantly, it holds that VC
i (b̃, b̃) ≡ VC

i (b̃, b) for any log coupon levels b̃ and b such that b̃ > b. Thus, the

relation characterized by (123) above implies that

b(b) ≡ argmax
b̃>b

VC
i (b̃, b̃), for i ∈ {1, 2}, (124)

which is independent of b when b < bC. Therefore, based on the characterization of bC in Proposition 2.5 and
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equation (104), we can obtain that b(b) ≡ bC for all b < bC.
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