We thank Delitza Hernandez, Michelle Gifford, Shanae Smith, and Mary Triguba for their excellent research assistance. We are thankful to all of the LENA Foundation team. Jill Gilkerson and Steve Hannon for all of the support and encouragement relating to the research aspects of this project. Traci Martin and Jess Simmons supported our implementation of the LENA Start Program at the Children’s Hospital of Philadelphia. Their dedication to this program, which we have heard from several other national sites, energized our team. We are grateful to Jeffrey Richards, who generously shared crucial knowledge on operationalizing the LENA system data and provided valuable comments about this research. We thank participants at the following conferences: Sociedade Brasileira de Econometria in Natal, Brazil; CONBATRI in Juiz de Fora, Brazil; the Austin-Bergen Conference at UT Austin; and the briq Belief Conference at the University of Bonn. Finally, we thank seminar participants at the Federal Reserve Bank in New York City, EESP at FGV in Sao Paulo, Boston University, the University of Minnesota, the CEPA Seminar at Stanford University, Vancouver School of Economics, and Rochester University. This research was supported by grant 1R01HD073221-01A1 by the National Institute of Health. All remaining errors are ours. The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications.

© 2023 by Flavio Cunha, Marsha Gerdes, Qinyou Hu, and Snejana Nihtianova. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.
Language Environment and Maternal Expectations: An Evaluation of the LENA Start Program
Flavio Cunha, Marsha Gerdes, Qinyou Hu, and Snejana Nihtianova
NBER Working Paper No. 30837
January 2023
JEL No. I21,I24

ABSTRACT

Research documents that parental beliefs influence early investments in children, which, in turn, determine early human capital and, eventually, other skills children acquire in later stages of the lifecycle, such as literacy. Our paper reports the results of an experimental evaluation of the LENA Start Program, a group- and center-based parenting program that teaches the science of early language development, models verbal interaction behaviors with children, and provides objective feedback to improve the early language environment. The intervention changes parental beliefs and impacts the quantity and quality of parental linguistic input.

Flavio Cunha
Department of Economics
Rice University
P.O. Box 1892
Houston, TX 77251-1892
and NBER
flaviocunha@rice.edu

Marsha Gerdes
Children's Hospital of Philadelphia
3615 Civic Center Blvd
Philadelphia, PA 19104
gerdes@chop.edu

Qinyou Hu
Department of Economics
Rice University
P.O. Box 1892
Houston, TX 77251-1892
qinyou.hu@rice.edu

Snejana Nihtianova
Rice University
P.O. Box 1892
Houston, Texa 77251-1892
snejana.nihtianova@rice.edu

A online appendix is available at http://www.nber.org/data-appendix/w30837
I. Introduction

The 2017 National Assessment of Educational Progress reports a sizeable socioeconomic gap in reading skills. In the United States, 46% of low-income\(^1\) children enrolled in fourth grade have reading skills below the basic level. In contrast, the same rate for children raised in middle- and high-income households is about 18%. Reading is not just critical for school success. Research shows that the capacity to read proficiently confers positive economic returns in the labor market (e.g., Hanushek et al., 2015; Murnane et al., 2000; Vignoles et al., 2011). Beyond financial returns, research also shows that the ability to comprehend written text is associated with better access to health services (e.g., Dexter et al., 1998; Sandiford et al., 1995), improvements in self-esteem (Bown, 1990; Canieso-Doronila, 1996), higher levels of empowerment (Burchfield et al., 2002; Kagitcibasi et al., 2005) and political participation (Egbo, 2000; Hannum & Buchmann, 2003; Ireland, 1994; Purcell-Gates & Waterman, 2000), promotion of cultural change, and cultural diversity preservation (Carr-Hill et al., 2001; Chebanne & Nyati-Ramahobo, 2003; Norwood, 2003; Robinson-Pant, 2000; Tarawa, 2003). Reading proficiency is so fundamental in modern life that it is considered a basic human right (UNESCO, 1975).

Theoretically, reading proficiency requires two distinct skills: decoding and language comprehension skills (Gough and Turner, 1986; Scarborough et al., 2009).\(^2\) Empirically, most children who cannot read proficiently fail to do so because they lack appropriate language skills (Foorman, Petscher, and Herrera, 2018, OECD, 2016). In addition, a large body of research has documented steep socioeconomic (SES) gradients in language development observed before the school years (Fernald et al., 2012; Hart & Risley, 1995; Hoff, 2006; Huttenlocher et al., 2010).

Developing these critical language skills requires greater exposure to language so that children can practice and hone their language processing skills and simultaneously increase their vocabulary (e.g., Weisleder and Fernald, 2013; Pan et al., 2005; Gilkerson et al., 2018; Romeo et al., 2018). This literature finds a sizeable socioeconomic gradient in the language environment. The relation between family SES and the child’s early language skills is partly due to the quantity and quality of parent speech directed towards the child during day-to-day interactions (e.g., Hart and Risley, 1995; Hoff, 2003, 2006; Rowe and Goldin-Meadow, 2009; Fernald et al., 2012).

\(^1\) Low-income children are children eligible for the National School Lunch Program.

\(^2\) We present a detailed literature review in Appendix A.
Recent literature shows that low-income mothers underestimate the returns on early investments (e.g., Cunha et al., 2013; Attanasio et al., 2019). In addition, heterogeneity in parental beliefs predicts early parental investments (e.g., Attanasio et al., 2019; Cunha et al., 2022; Biroli et al., 2022). Indeed, Bhalotra et al. (2020) show that once they control for perceived returns and costs of early investments (i.e., breastfeeding), there is little role for heterogeneity in preferences. In addition, this research also finds sizeable socioeconomic gradients in parental beliefs (Boneva and Rauh, 2018; List et al., 2021).

Low expectations about the returns to investments might rationalize the existence of parenting interventions in the developed (e.g., the Nurse-Family Partnership in the USA, see Olds et al., 2004; Heckman et al., 2017) and developing worlds (e.g., the Jamaica Home Visiting Program, Grantham-McGregor et al., 1991; and its replications in other countries such as the ones described in Attanasio et al., 2014; Carneiro et al., 2019; and Heckman et al., 2020). In parallel, developmental psychologists have created parent-directed interventions to improve early language environments (Leech et al., 2018, McGillion et al., 2017a; Suskind et al., 2015; Rowe and Leech, 2019; and Ramirez et al., 2020). These studies show that interventions that combine education (i.e., teaching parents about the science of brain and language development), coaching (i.e., modeling language interaction behaviors to parents), and objective feedback (i.e., providing objective statistics about the quality of the language environment) might produce impressive impacts on language outcomes. These interventions might work by elevating parental expectations about the returns to early investments.

This paper reports the results of evaluating a scalable intervention designed to improve disadvantaged children’s language environment, known as the LENA Start Program. The LENA Start Program occurred within the Philadelphia Human Development longitudinal study (henceforth, PHD Study). This study recruited 822 mothers during the second trimester of their first pregnancy and elicited mothers’ subjective beliefs about the importance of parent-child interaction for child development. When the children were nine to twelve months old, the study visited the families in their homes and measured family investments. In addition, the study assessed cognitive and language development when the children were two years old.

In the PHD Study data, the language environment’s heterogeneity – measured by conversational turn counts – has a fragile association with family income. Our research hypothesizes that heterogeneity in parental beliefs drives parental linguistic input gaps. Therefore, in this paper, we investigate if it is possible to change parental linguistic input and, if so, whether parental beliefs are one of the mechanisms of this change.
The LENA Start Program is ideal for testing our hypothesis because of its curriculum. It explains information about the importance of the language environment for language development, offers a menu of natural and practical actions that parents can take to improve their child’s language environment, and provides objective feedback about the quality of the child’s language environment for the duration of the intervention. These activities occur weekly for thirteen weeks. Unlike typical parenting programs, LENA Start is a low-cost group-centered model that may help parents build social capital and a solid social support network.3,4

For the LENA Start Program evaluation, we identified a group of 289 low-income families whose children’s ages were appropriate for the intervention. We randomly allocated half of the families and children to the control group. We assigned the other half to receive an invitation to participate in the LENA Start Program. We successfully located 94 (or 65%) of the 145 parents in the control group and 95 (or 66%) of the 144 parents in the invitation group. Once we found the parents, we tried to consent the parents to participate in the study activities. Nearly 75% (71 out of 94) of parents in the control group agreed to participate in the study. Approximately 68% (65 out of 95) of the treatment-group parents decided to participate in the study. Therefore, we finally enrolled 136 families in the LENA Start evaluation study. Due to the group format, our intervention suffers from an issue of non-random attrition. We admit that non-random attrition can compromise random assignment. However, Section II. A. and Appendix C show that our sample is balanced conditional on the random assignment and that the random assignment indicator strongly predicts the final attendance status. Appendix F shows that the treatment modality does not drive our sample attrition. The results are robust to attrition correction using inverse probability weighting Wooldridge (2010) or the Lee (2009) treatment effects bounds.

The evaluation study’s primary outcomes are objective measures of the language environment, which we obtained with the LENA System (Gilkerson and Richards, 2008). This system allows researchers to measure several dimensions of the language environment: adult-child conversational turns, the number of adult words spoken around the child, and the amount of exposure to TV or other electronics. To complement the LENA System, one of the innovations of our measures is that we also use the LENA Advanced-Data Extractor (ADEX) to break the audio file into segments that include conversations between the focus child and an adult (male or female). The LENA System estimate does not distinguish between words directed

3 Zhang et al. (2015) and Gilkerson et al. (2018) are interventions that use linguistic feedback to parents.
4 As of Spring 2019, the LENA Start Program is being implemented by hospital systems, school districts, public libraries, and NGOs that serve parents and their young children. For a list of current LENA Start program sites, see https://www.lena.org/about/#where-is-lena.
to the child and words overheard by the child. However, with LENA ADEX, we can identify who initiated the conversation (the child or a male or a female adult) and the number of conversational turns per segment as categorized by the segment initiator (the child, a female adult, or a male adult). In that way, we can investigate whether children or adults initiate more conversations (audio segments).

We also collected survey measures at both baseline and endline on four potential mechanisms that could explain any positive findings of the impact of the LENA Start Program on parent-child linguistic interaction. Specifically, we measured (1) parental beliefs and (2) parental knowledge about the importance of the language environment for a child’s language development. We also measured (3) parental self-efficacy, defined as the parent’s belief in their ability to perform the parenting role competently, and (4) their sense of social support perception. We followed the instrument design of Cunha et al. (2013) to measure parental beliefs. First, we presented mothers with two hypothetical scenarios of language environment (“investments”) and asked them to predict the child’s future language development. Next, we used the instrument Suskind et al. (2016) developed to measure parental knowledge. Then, we followed Bandura (1977) to measure parental self-efficacy. Finally, we used four items to measure their social support perception due to the group nature of this particular intervention.

We analyze the program’s Intent to Treat (ITT) and Local Average Treatment effects (LATE). We find strong evidence that the LENA Start Program significantly impacts conversational turns and adult words in conversations between the focus child and an adult. Controlling for conversational turns at baseline, we find the LENA Start Program significantly increases conversational turns between adults and the focus child by 31.4% of a standard deviation. With the measures from LENA ADEX, we find that the differences in conversational turns arise because the LENA Start Program children initiate a more significant number of conversations – ITT estimates indicate that the treatment group children begin nearly 40% of a standard deviation more conversational turns than their control counterparts. The Program also significantly increases adult words spoken to the child. The significant increase is the product of a higher number of conversational turns initiated by children and responded to by parents in ways that do not stop the conversation but encourage the children to continue to talk and interact. Finally, we find the Program does not impact exposure to TV or other electronics.

Exploring the mechanisms, we find that the change in parental beliefs about the language environment’s importance for language development explains the program’s impacts. Indeed, our mediation analysis shows that changing parental beliefs can explain 14 percent of
the total program impact. We do not find evidence supporting other mechanisms we test with our data.

Our paper relates to the literature on parenting programs for language development in developmental psychology. Leech et al. (2018), McGillion et al. (2017), Suskind et al. (2013), Suskind et al. (2015), and Rowe and Leech (2019) have designed and evaluated parenting education programs that target malleable aspects of the parental language input. These interventions translate scientific information about how parental language input (a critical component of a child’s early language environment) predicts early language development. Also, these interventions employ parental coaching based on objective measures of the child’s language environment. As discussed below, these ingredients are present in the LENA Start Program. Our innovation is that we evaluate not a prototypical program but a program that school districts, public libraries, and children’s hospitals have adopted nationally. In fact, according to the LENA Foundation, nearly 2,000 families participate in the LENA Start Program annually.

Our paper also contributes to the literature to the growing literature that investigates the malleability of parental beliefs. For example, Attanasio et al. (2019) found that a home-visiting program in Colombia did not shift parental beliefs, which is consistent with the result that the same intervention did not produce permanent changes in family investments. In contrast, Carneiro et al. (2019) evaluated a large-scale, low-cost parenting program and found that the intervention raised beliefs and improved children’s early environments. Finally, List et al. (2021) showed that an intervention combining education and feedback delivered through home visits increases beliefs and parent-child interactions. Our work contributes to this literature by showing that low-cost, center- and group-based interventions that combine education, coaching, and objective feedback improve children’s early environments through the malleability of parental beliefs.

We organize the rest of this paper in the following way. Section II describes our study procedures and details of the LENA Start Program, including participants, recruitment, intervention, and measurement. We also present the empirical methodology for evaluating the program’s effects. Section III presents results, including the estimates of the impact of the LENA Start Program on statistics of the language environment, and describes our findings of the potential mechanisms of the Program. Section IV concludes.
II. Study Procedures

This section describes the study procedures approved by the University of Pennsylvania and Children’s Hospital of Philadelphia Institutional Review Boards.

A. Participants

We used three criteria to determine LENA Start Program Evaluation Study eligibility. First, we restricted eligibility to PHD Study mothers who resided in the inner-city and whose children were at most 33 months by May/2017 because the LENA Start Program is designed for children up to that age. Additionally, we attempted to recruit mothers who authorized the research team to be contacted for participation in future PHD Studies. We identified a group of 289 mothers who satisfied all of the three inclusion criteria.

After we identified the eligible families and before we recruited them, we grouped PHD Study Participants according to the child’s date of birth. We created ten blocks with 26 to 28 mothers in each group. Next, we took a random draw from a uniform distribution for each mother in each group. We created an “ordered invitation list” by ordering the mothers in descending order of the draw from the uniform distribution within each block. Let $Z_i = 1$ if mother i is at the top half of the invitation list and $Z_i = 0$ if the mother is at the bottom half of the list. In what follows, we refer to the mothers at the top half of the list (i.e., those with $Z_i = 1$) as participants randomly assigned to the “treatment group” while mothers at the bottom half (those with $Z_i = 0$) as study participants randomly assigned to the “control group.” Figure 1 describes the results of the randomization procedure. We randomly assigned 145 of the 289 eligible mothers to the control group and the remaining 144 to the group invited to participate in the LENA Start Program.

The group format of the LENA Start Program creates specific challenges for the design of the evaluation protocol. For example, the low-income families participating in the PHD Study have unstable living arrangements or unforecastable work schedules. In such circumstances, recruitment strategies face a trade-off. On the one hand, the longer the recruitment period, the more likely we will locate an eligible family and consent the study’s participants. On the other hand, the longer the recruitment period, the more likely parents who were recruited early would report a change in the work schedule and could no longer attend group sessions when they had agreed to participate in recruitment (to the LENA Start Program). Therefore, our team decided to make an intense effort to recruit participants within three weeks and start the Program in the

5 Appendix B contains additional information about the PHD Study.
fourth week. In the three weeks of the recruitment effort, we managed to locate 94 (or 65%) of the 145 parents in the control group and 95 (or 66%) of the 144 parents in the LENA Start group’s invitation.

Next, we describe the protocol for the recruitment of participants. Consider a block with twenty-six mothers, ordered in descending order of the draw from the uniform random variable. Therefore, the mother ranked first is the one who drew the largest realization of the random draw, while the mother with the smallest draw is ranked last. We invited the top thirteen mothers to participate in the LENA Start Program. In addition, a few of the bottom thirteen may receive an invitation to join if we need additional participants to form a LENA Start group.6

We invited the mothers at the bottom half of the ordered invitation list to participate in the study’s control arm. First, we called the control mothers from bottom to top. Once invited, the mothers assigned to the control group could accept or decline our invitation. The parents who consented to participate in the evaluation study’s control arm agreed to participate in the study’s data collection procedures, which we will explain in the next section.

We invited the mothers to participate in the study’s treatment arm at the top of the ordered invitation list from top to bottom (i.e., the opposite for the control group). The mothers could accept or decline our invitation. If they accepted the invitation, the research assistants found a suitable schedule for the mothers to participate in the LENA Start sessions. If a mother assigned to the treatment group rejected our invitation to join the LENA Start Program, our research assistants invited that mother to participate as a control group member. We did so for two reasons. First, we had little time to recruit parents for the evaluation study. Because of our families’ unstable living arrangements, we knew it would not be feasible to contact a substantial fraction of our eligible study participants within three weeks. This recruitment protocol helped retain as many study participants as possible. Second, we expected a low demand for the LENA Start Program. We formed our expectations from the literature that reports the demand for parenting education programs (e.g., Kalil, 2014). Studies that follow the typical protocol do not usually collect data from parents who refuse to participate as treatment group members. As a result, we typically know very little about such parents. Because they join as members of the control group (although no longer in a randomized fashion), we can learn more about these

6 We invited six control mothers to participate in the LENA Start Program to ensure we reached a minimum number of mothers in some groups.
parents with our team’s protocol for this study. Also, we can still recover intent-to-treat treatment
effect parameters because the assignment variable \(z_i \) is random.

As shown in Figure 1, once we found the parents, we tried to consent the parents to participate in the study activities. As a result, nearly 75% (71 out of 94) of the parents in the control group agreed to participate in the study. On the other hand, approximately 68% (65 out of 95) of the treatment-group parents decided to participate in the study.

As we explained above, accepting the LENA Start Program was not random because some families randomly assigned to receive the invitation declined the offer. Therefore, our team invited a few control group members to have groups with ten families. As shown in Figure 1, the final acceptance list contained 61 families, 55 of which came from the study’s invitation arm, and six came from the study’s control arm. However, only 39 of the 61 parents attended at least one of the LENA Start Program sessions.

In Table 1, we show the results of the balance check. First, in Panel A, we compare the PHD Study participants eligible for participation in the LENA Start Evaluation Study with non-eligible ones. We find the differences between the control and invitation groups are small and not statistically significant at the 5% level. However, we find that the counts of adult words are lower for the children in the invitation group and that this difference has a p-value of 7.2%. We note that the LENA measures indicate a lower quality of language environment because the conversational turns are higher and exposure to TV is lower for the control group children (even though the differences are not statistically significant). Second, we look at the post-attrition sample in Panel B. There are no differences between the two groups except for the mother’s marital status and HOME scores. In the post-attrition sample, those in the treatment group are more likely to be single and unmarried. Appendix C provides more details about the balance and attrition of our study sample.

B. Intervention

The LENA Start Program aims to improve parental linguistic input by improving parental knowledge about the importance of the early language environment for language development and providing tips for enriching the early language environment. \(^7\) The Program lasts thirteen weeks, and during this period, groups of ten to twenty families meet for about one hour a week.

\(^7\) The website https://www.lena.org/lena-start/ provides an overview of the LENA Start Program.
to build family engagement and social capital. The program has five components: Education, Coaching, Feedback, Book Reading, and Language Development Reporting.

Education: The program provides information about the importance of the language environment for a child’s language development. Rowe and Goldin-Meadow (2009) show that parents misperceive linguistic interaction with their young children as unimportant because young children do not yet know how to verbalize. The program aims to affect these beliefs by presenting parents with research documenting infants’ capacity to engage in social interaction and that parents and infants routinely use nonverbal communication. For example, in one of the sessions, the program presents the “Still Face Experiment” by Tronick et al. (1978). The experiment involves an infant and a mother who remains expressionless for three minutes. The finding from this experiment is that infants attempt many different forms of nonverbal communication (facial or gesture expressions) to elicit reactions from their mothers. The infants become upset with the mother’s lack of response and cry or start self-soothing behaviors. The study remains one of the most replicated findings in developmental psychology, and it illustrates to economically diverse parents how infants use nonverbal communication in social settings.

Coaching: Each session leverages “Talking Tips” to improve the child’s language environment without requiring significant changes in the parents’ daily routines. Parents learn these talking tips by watching video vignettes that show other parents interacting with an infant or toddler. After observing other parents’ behavior, the parents reflect on how they could use (with or without changes) these talking tips. As the program advances, the videos become more complex, and parents assess and discuss, as a group, which strategies other parents employed and whether parents in the vignettes missed any opportunities. Parents are encouraged to share successful strategies when they return to a later session. They use their own experience to generate new talking tips that other parents in the group can also practice. Coaching models behavior and encourages parents to explore and identify new opportunities to improve the child’s language environment.

The talking tips illustrate, in practice, vital aspects of a high-quality language environment: joint (or shared) attention and speech recasting. The talking tips present easily accessible information for families about how children learn language from what they hear most, what interests them, conversations, and positive relationships. Joint attention is the shared focus of two individuals on an object. An individual uses eye-gazing, pointing, or other verbal or non-verbal communication to initiate a session of joint attention with another individual. Events of joint attention promote language development because they provide a context that enables
children to associate meaning to a particular utterance, thus promoting word comprehension and vocabulary expression (Bruner, 1983). For example, one of the tips is to “name things that the child is interested in.” This tip reflects research that shows infants are more likely to engage in joint attention when the parent refers to an object the child is playing with and far more difficult when the object is outside the child’s attention (Rollins, 2003).

An event of speech recasting occurs when the adult repeats the child’s speech with more detailed (or more correct) language. It allows the child to hear the accurate language, thus helping the child figure out language syntax. The critical aspect of speech recasting is not to force the child to repeat after the adult but rather for the adult to emphasize the linguistic feature the child needs to learn (Cleave et al., 2015). Indeed, one of the tips is for parents to “repeat and add to what they say and do.” In summary, the LENA Start Program builds its “Talking Tips” component on the science that uncovers the contribution of joint attention and speech recasting to language development.

Feedback: At the end of each Group Session, each parent receives a LENA recorder, and each family completes a daylong recording with their children. When the parents return to the next LENA Start session, they hand in the recorder to the LENA Start Coordinator, who uploads the data and produces a feedback report. Parents have the chance to review their information and notice the trends from one week to the next and the times of days of strength in communication. The LENA Start Coordinator then offers to discuss the report with each parent. The feedback follows a dialectical approach in which the Coordinators recognize that the parents are doing the best they can and, at the same time, point out areas where the parents can improve. Therefore, when discussing the report, the Coordinator first praises the parents for their accomplishments (marked with stars). Second, the Coordinator identifies segments of the day in which the language environment still has some growth potential.

To be able to produce this feedback, the report summarizes conversational turns between adults and the focus child, adult words spoken around the focus child, which includes speech other than the speech directed to the child (e.g., a parent talking on the telephone), and the amount of time of exposure to electronics/TV, and self-reported reading minutes. The feedback report presents this information aggregated to the entire day (for the last eight recording days) and broken down hourly (for the previous recording day).

Figure 2 displays a report template. The report contains three rows and two columns. The top row displays the percentiles (and counts) of adult words, the middle row shows the percentiles (and counts) of conversational turns, and the bottom row presents data about
minutes of sounds from TV or other electronics. The left columns offer these statistics aggregated by recording day for the last eight recording days. The right columns present the statistics broken down by the hour for the previous recording day. The green text on the top right corner of the feedback report contains a parent self-report number of reading minutes. In addition, the feedback report includes the number of stars parents have received to date. The parent gets a star when they meet pre-specified targets for adult words, conversational turns, and reading minutes. The Coordinator praises the parent for the stars to recognize that they are doing their best.

Next, the Coordinator uses the report to identify opportunities for improvement. For example, when reviewing the information, the Coordinator will remark that the parent and the child interacted a lot (as measured by conversational turns by the hour, as reported in the middle row and right column of Figure 2) between 4 PM and 5 PM, but not so much at 11 AM (or 1 PM). The fact that the information is objective, detailed, and actionable may provide parents with opportunities to improve their child’s language environment. It also changes the role of the Coordinator to be a support, not the one passing judgment on a parent’s skills. The primary focus is on providing feedback about conversational turns. If there is much exposure to TV/electronics, then the Coordinator will encourage parents to shift from TV to conversations with the child.

Book reading: At each session, the parents receive children’s books. Each session incorporates tips on reading books, talking about books to children, and encouraging parents to read to their children. This part of the intervention aims to replicate the goals of programs such as “Reach Out and Read” (Weitzman et al., 2004).

Reporting: Approximately once a month, the parents answer the Developmental Snapshot (Gilkerson et al., 2018). The Snapshot is an instrument designed to evaluate children’s language skills. It provides developmental age and percentile ranking information compared to age-matched peers. The goal is for parents to start paying attention to their children’s development and observing how their language skills have progressed. LENA Start Coordinators review the Developmental Snapshot data with the parent and screen for signals of severe language development delays that may require additional attention from an early intervention specialist.

The parents who consented to participate in the LENA Start Program agreed to attend the thirteen weekly sessions held at our Children’s Hospital of Philadelphia. A parent graduates from the LENA Start Program if the parent satisfies two requirements. First, the parent attends
all of the first four sessions. Second, the parent had to complete at least five of the remaining nine sessions.\(^8\)

C. Measurement

The parents who consented to participate in the study agreed to provide data on their children’s language environment and answer a brief survey questionnaire. The procedures and instruments were identical for control and treatment groups and the same before (baseline) and after the program (endline).

We describe the logistics of the recording activities carried out by families participating in the study. The logistics described in this section relate to the data collection to evaluate the LENA Start Program. As such, we describe a protocol applied to families in the study’s control and treatment arms. Each parent received a LENA recorder and a child’s vest that had a front pocket for the recorder. Parents recorded the child’s audio environment once at baseline and once at the endline. We asked the parent to let the device run for at least 12 hours to record the child’s audio environment. In addition, we asked parents to record the language environment on a typical day for the child (e.g., not to record if the child was sick or an unusual event such as a birthday party).

After the family had finished the recording session, we retrieved the recording device and uploaded the audio file to a secure cloud server. The server contains software that processes the audio data and automatically produces four different statistics: number of conversational turns, number of child vocalizations, number of adult words, and minutes of audio from the TV or other electronics.\(^9\) We focus our analysis on conversational turns and adult words in audio segments with at least one conversational turn between the focus child and an adult. We have standardized these variables to have mean zero and variance one in all of the estimates we report below.

The LENA System identifies and labels individual adult and child utterances (also called segments), among other sounds. One conversational turn is a speech-related vocal utterance initiated by the focus child (or adult) with a response within five seconds. Vocal utterances may include coos, squeals, babbles, and words. The number of conversational turns between the adults in the household and the child is the most critical measure of the language environment

\(^8\) If the parent could not attend a session, they could contact the LENA Start Coordinator to schedule a make-up session.

\(^9\) The estimates of the language environment variables LENA System produces are highly accurate (see Gilkerson and Richards, 2008).
we use in our paper because it correlates with adult-child joint attention and speech recasting.10 Golinkoff et al. (2019) argue that “back-and-forth conversations that are both temporally and topically contingent on the children’s contribution are the fuel that prime the learning of language.”

The LENA System estimates the number of adult words spoken by adults based on automated recognition of consonants and vowels and vocalization durations after filtering unclear speech. However, unlike adult word statistics commonly used in established research (e.g., Hart and Risley, 1995; Weisleder & Fernald, 2013), the LENA System estimate does not distinguish between words directed to the child and words overheard by the child. Research suggests that language learning from overheard speech does not occur until children are about four or five years old (Messenger et al., 2015; Rollins, 2003).11 As explained by Golinkoff et al. (2019), overheard speech does not support a rich early language environment because it demands a lot more attention from young children (they have to stop doing what they are doing and pay attention to what the other people are doing), it requires a level of social-cognitive skills that children may not have developed yet (because they need to understand the intentions of the adults involved in the conversation), and adult-directed speech is different from the child-directed speech in content, tone of voice, and grammatical complexity. For this reason, our analysis explores adult words in audio segments that have at least one conversational turn with the focus child.

Finally, the LENA System identifies audio from the TV or other electronics as a separate category of the child’s audio environment.

One of the innovations of this paper is that we have an indirect way of assessing whether the improvements in conversational turns are “just for show” or reflect fundamental changes in interactions between parents and children. This indirect way consists of using the LENA Advanced-Data Extractor (ADEX) to break the audio file into segments that include conversations between the focus child and an adult (male or female). In so doing, we can then identify who initiated the conversation (the child or a male or a female adult) and the number of conversational turns per segment as categorized by the segment initiator (the child, a female

10 See Goldin-Meadow et al. (2014); Harris et al. (2010); Malin et al. (2014); McGillion et al. (2017); McGillion et al. (2017b); Reed et al. (2017); Romeo et al. (2018), and Tamis-LeMonda et al. (2014) for additional insights on why conversational turns are so important for language development.

11 Studies of overheard speech may overestimate its impact on language development because they typically eliminate or at least significantly reduce other stimuli in the lab. Hence, they minimize attentional demands from children. See, for example, Yuan and Fisher (2009).
adult, or a male adult). Appendix D provides a detailed description of our procedures to clean and create the final dataset for analysis.

We interviewed the parents who agreed to participate in the study to understand the mechanisms of the intervention. The baseline and endline surveys occurred just before and after the LENA Start Program, respectively. All 136 parents who consented to participate in the study answered the survey questionnaire in the baseline, and 130 of the same parents did so in the endline. The baseline and endline survey questionnaire had only eleven questions and focused on measuring four potential mechanisms.

We measure four potential mechanisms. First, our survey questionnaire also measures parental self-efficacy (Bandura, 1977), defined as the parent’s belief in their ability to perform the parenting role competently. The scale has four statements, and we ask participants to choose one (out of five) alternative that ranges from “least sure” to “very sure.” For example, one item states, “I know what my child should be able to do at each age as they grow.” Coleman and Karraker (1998) and Jones and Prinz (2005) summarize the literature and report that the parental self-efficacy scores predict the child’s psychological functioning and adjustment. They also found that parents with higher self-efficacy scores had higher parenting competence and satisfaction levels (Leahy-Warren et al., 2012).

Second, we ask parents to report their social support perception because of the intervention’s group nature. The scale has four items, and we ask parents to choose one (out of five) alternative that describes the extent to which they agree with the statement. For example, one statement is, “It is easy for me to talk with other parents about being a parent.” Previous research has shown that positive social support from family and friends increases parenting competence by providing encouragement and resources, particularly for first-time mothers (Leahy-Warren et al., 2012).

We estimate an Item Response Theory Partial Credit Model (IRT-PCM) to produce self-efficacy scores and sense of support scales. IRT-PCM is useful when researchers have ordinal data. While allowing each item to have its discrimination parameter would be possible, we chose this more parsimonious model because each scale has just four items. We provide additional detail about these three measures in Appendix E.

Third, we measured parental knowledge of language development. We used the instrument Suskind et al. (2016) developed to evaluate a parenting program’s impact on parental linguistic input and knowledge. The questionnaire has 30 items divided into five
subscales. The first subscale covers parental perceptions about how children learn to talk.12 The second subscale measures parental attitudes about reading to children.13 The third subscale assesses parental perceptions about how children learn math.14 The fourth subscale evaluates parental perceptions about the relationship between language development and school readiness.15 The fifth and last subscale quantifies parental perceptions about TV and language development.16 For each item, parents choose one alternative (among five) that describes the extent to which they agree with the statement. The alternative ranges from “Strongly Disagree” to “Strongly Agree.” We estimate the global and topic-specific scores.

Fourth, we adapted the procedure in Cunha et al. (2013) to elicit parental beliefs about the importance of the language environment for language development. The elicitation instrument has two items reflecting low and high scenarios of investments and asking mothers to predict the child’s future language development. The first scenario describes a language environment with many conversational turns between adults and children and little exposure to TV. In contrast, the second scenario represents a low-quality language environment, with lots of exposure to TV and little verbal exchange between adults and children. Finally, we ask parents to predict the child’s language development at three years old. Parents choose one of the following five alternatives: “Low,” “Low Average,” “Average,” “High Average,” and “High,” and we assign these alternatives to percentiles 5, 25, 50, 75, and 95, respectively.

We follow Cunha et al. (2022) in constructing parental beliefs. First, we assume that language development at age three follows a normal distribution with mean zero and variance one. Then, we compute the scores of the standardized normal for each one of the percentiles. Let $s_{i,1}$ and $s_{i,2}$ denote mother i’s score in the first and second scenarios, respectively. The difference $\Delta_i = s_{i,1} - s_{i,2}$ represents our error-ridden measure of parental beliefs.

Cunha, Elo, and Culhane (2022) show that the estimated parental beliefs contain much measurement error. Therefore, we combine the error-ridden measure above with three items

12 The second item in this subscale states that: “Children learn fewer words when adults talk with a warm tone.”
13 The first item in this subscale states that “You cannot teach children anything new by reading them the same book over and over.”
14 The third item in this subscale states that “Talking about the difference between tall and short teaches toddlers about math.
15 The third item in this subscale states that “How many words a two-year-olds know can predict how well they might do in kindergarten.”
16 The last item in this subscale states that “The more television children under two watch by themselves the more words they learn.”
We factor analyze the four measures and predict the factor score using the Bartlett formula. This factor score is our error-adjusted estimate of parental beliefs.

D. Methods

In our impact analysis below, we estimate two different treatment effect parameters. The first parameter is the “Intent-to-Treat” parameter (ITT), in which we use the binary variable \(Z \) that captures random assignment to control \((Z_i = 0)\) or invitation arm \((Z_i = 1)\). Let \(D_i = 1 \) if the family attended the LENA Start Program, and \(D_i = 0 \) otherwise. The second treatment effect parameter is the “Local Average Treatment Effect (LATE),” which uses \(Z_i \) as an instrumental variable for \(D_i \).

Let \(Y_{i,t} \) denote child \(i \)'s conversational turns at period \(t \). The variable \(B_{i,j} \) is equal to one if mother \(i \) is in randomization block \(j \), and zero, otherwise. Let \(R_{i,t} \) denote the vector that contains information about child \(i \)'s LENA recording at period \(t \), where \(t = 0 \) is the baseline, and \(t = 1 \) is the endline. This vector includes the recording duration and dummies for a recording that occurred on Saturday or Sunday. Finally, the variable \(X_i \) captures demographic characteristics. We estimate the following regression model to obtain the ITT:

\[
Y_{i,1} = \beta_0 + \beta_1 Z_i + \beta_2 Y_{i,0} + X_i \beta_3 + \sum_{t=0}^{1} \beta_{4+t} R_{i,t} + \sum_{j=1}^{J} \gamma_j B_{i,j} + \epsilon_{i,1}.
\]

(1)

We now turn to the analysis of the impacts of the LENA Start Program on parents who attended at least one session. We estimate the LATE from the following two-stage least squares regression model:

\[
D_i = \alpha_0 + \alpha_1 Z_i + \alpha_2 Y_{i,0} + X_i \alpha_3 + \sum_{t=0}^{1} \alpha_{4+t} R_{i,t} + \sum_{j=1}^{J} \pi_j B_{i,j} + \omega_{i,1}.
\]

(2)

\[
Y_{i,1} = \beta_0 + \beta_1 D_i + \beta_2 Y_{i,0} + X_i \beta_3 + \sum_{t=0}^{1} \beta_{4+t} R_{i,t} + \sum_{j=1}^{J} \gamma_j B_{i,j} + \epsilon_{i,1}.
\]

(3)

\(^{17}\) We selected the three items with the strongest correlation with our error-ridden measure of parental beliefs. They are items #22 (“Talking to children cannot make them smarter”), #23 (“How many words three-year-olds know can predict how well they might do in kindergarten”), and #30 (“The more television children under two watch by themselves the more words they learn”).
For both ITT and LATE, we consider three variations of the models. The first model imposes $\beta_2 = \beta_3 = \beta_k = 0$. Thus, it does not include the lagged outcome, covariates for demographic characteristics, or baseline recording information (*Model 1*). The subsequent models have each one of these components, one at a time. In the second model, we include demographic characteristics (so we relax the restriction that $\beta_3 = 0$) (*Model 2*). Finally, we add baseline conversational turn counts and recording information and estimate all the coefficients in (1) (*Model 3*).

The error term $\epsilon_{i,1}$ is not necessarily independent across observations because of our study design. For this reason, we cluster observations by recruitment groups for all of our estimates of the standard errors. We believe that cluster is justified because programs will attempt to form groups of parents whose children are of similar ages to encourage parents to share experiences and exchange ideas about implementing the “Talking Tips.” However, due to the insufficient number of clustered groups (we only have ten groups), we also provide randomization inference p-values. We use the Young (2018) permutation test with 2,000 stratified clustered resamplings. We also report the conventional robust standard errors for all the regression results for comparison purposes. We show the robustness of our point estimates and the corresponding methods in Appendix F.

Let $M_{i,k,t}$ denote child i’s mediator k at period t. We analyze two regression equations in the mediation analysis. The first equation estimates the impact of the LENA Start Program on each one of the mediators separately:

$$M_{i,k,1} = \delta_{k,0} + \delta_{k,1}Z_i + \delta_{k,2}M_{i,k,0} + X_i\delta_{k,3} + \sum_{j=1}^{J} \theta_{k,j}G_{i,j} + \eta_{i,1}. \quad (4)$$

The parameter of interest is $\delta_{k,1}$ in equation (4). The second equation expands equation (1) by including mediator k:

$$Y_{i,1} = \tau_{k,0} + \tau_{k,1}Z_i + \rho_k M_{i,k,1} + \tau_{k,2}Y_{i,0} + X_i\tau_{k,3} + \sum_{t=0}^{1} \tau_{k,t+4}R_{i,t} + \sum_{j=1}^{J} \phi_{k,j}G_{i,j} + \zeta_{i,k,1}. \quad (5)$$

In this equation, we are interested in the parameters $\tau_{k,1}$ and ρ_k. In this mediation exercise, the parameter β_k in (1) captures the LENA Start Program’s total effect on conversational turns. We can decompose the total effect through the formula $\beta_k = \tau_{k,1} + \rho_k \delta_{k,1}$, where $\tau_{k,1}$ and $\rho_k \delta_{k,1}$ are the direct and indirect effects, respectively. As elsewhere in our analyses, we estimate and present robust and clustered standard errors.
III. Results
A. Conversational Turns

In this section, we present the program’s impacts on conversational turns because it is our primary variable of interest. Table 2 reports our findings regarding the impact of the LENA Start Program on conversational turn counts. Panel A presents the OLS estimators of β_1 and β_2 of variations of (1). According to the OLS estimator of Model 1, the LENA Start Program increases conversational turns between adults and the focus child by over 13% of a standard deviation, but it is not statistically significant. When we control for demographic characteristics, the point estimate of the program’s intent-to-treat effect (ITT) increases to 21.5% of a standard deviation, but it still is statistically insignificant. In model 3, when we control for baseline conversational turns and recording characteristics, the ITT’s point estimate is 31.4% of a standard deviation and statistically significant at a 5% confidence level.

Panel B in Table 2 presents the results for LATE. According to Model 1, the program’s impact on conversational turns, estimated by the LATE parameter, is 23% of a standard deviation. If we control for demographic characteristics, the LATE increases to 38.3% of a standard deviation and is statistically significant at the 10% level. If we hold the conversational turn counts at baseline constant, the LATE increases to 55.1% of a standard deviation and is statistically significant at the 1% level.

These large impacts may arise because parents in the treatment group converse much more with the children but only when the children wear a LENA recorder. It would be challenging to design and implement an ethical study that comprehensively addresses this concern as any such research would have to disclose all of the study procedures (including recording the child’s language environment). We thus use the ADEX audio segmentation tool to investigate whether children or adults initiate more conversations (audio segments). If the adults change their behavior because of the recorder, then the differences in conversational turns between the control and treatment groups will reflect the differences in conversations initiated by the adults. On the other hand, if the adults apply what they have learned from the LENA Start Program, they will let the child take the lead (which is one of the fourteen “Talking Tips”). In this case, the changes in conversational turns arise because the children in the treatment group initiate more conversations than their control counterparts, and the adults respond in ways that require a response from the child. Therefore, the number of conversations (the number of continuous audio segments with the focus child and an adult) and the number of conversational
turns increase because of the change in the parental responses to a conversation initiated by the focus child. This behavior change is consistent with the LENA Start curriculum.

For this analysis, we use the lagged variable model described in equation (1) to estimate the ITT parameter and the model described in equations (2) and (3) to compute the LATE parameter. Panel A in Table 3 presents the results of our analysis of the initiation of segments of conversation. The OLS and the 2SLS estimators show that the differences in conversational turns arise because the LENA Start Program children initiate more conversations. According to the ITT, the treatment group children begin nearly 40% of a standard deviation more conversations than their control counterparts. The LATE parameters suggest that the impact is 69% of a standard deviation. In contrast, the estimates are statistically significant for conversations initiated by female or male adults.

Panel B reports the number of conversational turns in segments initiated by the focus child, a female adult, and a male adult. The ITT and the LATE parameters show that the changes in conversations initiated by the focus child drive conversational turns. In addition, we find suggestive evidence (for the LATE) that male adults increase the number of conversational turns with children, even though there was only one male LENA Start Program participant. If ever replicated, this finding suggests spillover within families.

In summary, the LENA Start parents do not initiate more conversations than the control group’s parents. However, LENA Start children initiate more conversations, and when they do so, the LENA Start parents respond in ways that lead to more conversational turns. These findings reduce (but do not eliminate) the concern that the increase in conversational turns occurs when they wear the device.

These results are significant because of the existing research on the differences between high- and low-quality language environments. Hart and Risley (1995) document that the disparity in words addressed to children results from children in higher-income households initiating more conversations and adults responding in ways that lead to more conversational turns and, as a result, more words directed to the child. This finding suggests that the language environment is more affluent because parents talk about objects of interest to the child, and thus the conversations occur during joint attention events.

B. Robustness

Appendix F extends our analyses to include three critical robustness checks. First, we used lagged dependent variables in equations (1), (2), and (3) to account for the fact that the
families in the control group had higher counts of conversational turns at baseline (see Table D2). Appendix F shows that the point estimates are similar if we use a fixed-effect specification. For example, the ITT is .312 in the lagged dependent model but .323 in the fixed-effect specification. However, the standard errors are larger, and the impacts are no longer significant at the 5% level.

Second, we investigate how attrition impacted our findings (see Table F2). The ITT reduces to .295 (from .312, a 5% reduction) if we use Inverse Probability Weight to reweigh observations. However, it is .314 when we estimate a Heckman Selection model. The Lee (2009) bounds indicate that the ITT is between .056 (with a standard error of .160) and .366 (with a standard error of .158). The lower bound is not statistically significant at the 5% level, but the upper bound is.

Finally, recording duration enters linearly in equations (1) and (3). Therefore, we considered specifications with polynomials of degrees two to four (see Table F3). When we do so, we find that the ITT and LATE estimates are slightly larger than the linear specification we report in Table 2.

C. Other Measures of the Quality of the Language Environment

The LENA System produces two additional measures of the quality of the language environment: adult words and the amount of time of sounds from TV or other electronics. Unfortunately, the raw measures are very noisy. For example, adult words may capture words in a telephone conversation when the child is nearby. As we explain in Appendix A, this speech contributes little to early language development.

We use the ADEX to reduce the noise in these measures (see Table G1). First, we restrict adult words in audio segments where there is at least a conversational turn between the child and an adult. When we do so, we find that the ITT is .263 but not statistically significant, while the LATE is .468 and significant at the 5% level.

Second, we restrict adult words in audio segments initiated by the focus child. These segments drive the impact on conversational turns (see Table 3). When we do so, we find that the ITT and LATE are .495 and .886, respectively. Also, they are significant at the 5% and 1% levels, respectively. This evidence reinforces the findings on conversational turns.

In contrast, we do not find any impact of the program on TV or other electronics. The point estimates are small (see Table G2).
D. Mediation Analysis

Finally, we study the potential mechanisms of the impacts of the program. As described in Section II.C., we measured four possible mechanisms parental self-efficacy, parental sense of social support, parental knowledge, and parental beliefs. Appendix C contains detailed information about how we operationalize these constructs.

Table 4 presents our estimates for the parameter $\delta_{k,1}$ in equation (4). The ITTs for parental self-efficacy and parental sense of social support are close to zero and not statistically significant. In contrast, the ITT for parental knowledge is .293, and borderline statistically significant. The ITTs for parental beliefs are .306 and .451 for the error-ridden and factor score measures, respectively, and are statistically significant at the 10% and 5% levels, respectively. The LATE parameters also rule out any impacts of the LENA Start Program on parental self-efficacy or sense of social support. In addition, it confirms that the program impacted parental knowledge and parental beliefs.

Table 5 presents our estimates of the parameters ρ_k in equation (5). The ITT reduces by 20% when we use the error-ridden measure of parental beliefs, but it is still statistically significant, while the parameter ρ_k is 0.098 and not statistically significant. However, the ITT reduces by nearly half when we add the factor score for parental beliefs, which is no longer significant. In this case, ρ_k is 0.198 and significant at the 5% level.

We execute a Monte Carlo simulation to estimate the distribution of the indirect effect $\rho_k \delta_{k,1}$. For this analysis, we focus on the factor score as the relevant measure. Figure 3 presents our findings for the models in which we estimate clustered (top) or robust (bottom) standard errors. We estimate that the indirect effect is 13.7% of the total effect. The 95% confidence intervals are [0.026, 0.288] and [0.002, 0.321] for the models with clustered and robust standard errors. Thus, we conclude that parental beliefs partially mediate the effects of the intervention.

In contrast, table G3 presents the results for the other three mediators. We cannot reject the null that the coefficient ρ_k is zero, which suggests that the other three variables do not mediate the intervention’s impact on the quality of the language environment.

IV. Conclusion

The LENA Start Program improves children’s language environment. These findings matter because parental linguistic input correlates with early language processing skills, vocabulary growth, higher language development in early adolescence, and more robust
activation of Broca’s brain area, which, in turn, are linked to literacy development. In addition, differences in parental response to conversations initiated by the child drive the program’s impacts.

We tested four different mechanisms. First, we found no evidence in favor of parental self-efficacy, parental social support, or parental knowledge. Instead, we found evidence that the program’s impact is due to improvements in parental beliefs about the importance of a rich early language environment for a child’s language development. Our findings indicate that parental beliefs are malleable and that changes in parental beliefs can change investment behaviors. This result is consistent with the findings of the evaluation of the Nadia Es Perfecto – Intensive (NES-I, Carneiro et al., 2019) and the 3T Home Visitation Program (List et al., 2021). These interventions feature unstructured curricula that include education, coaching, and feedback.

In contrast, Attanasio et al. (2019) concluded that Colombia’s Reach Up Program did not change beliefs. There are at least three explanations for this difference: Curriculum, target population, and implementation fidelity. In common, the Reach Up and LENA Start interventions provide education and coaching. In contrast, Reach Up contains a highly structured curriculum with much less opportunity for feedback. Therefore, one possible explanation is that lack of structure or objective feedback is crucial for impacting parental beliefs.

Another possible explanation is the target population. For example, research shows that the original implementation of the Jamaica Home Visiting Program led to significant short-term effects on language and cognition (Grantham-McGregor et al., 1991) and long-term effects on relevant socio-economic outcomes (Gertler et al., 2014; Gertler et al., 2021). Attanasio et al. (2022) explain that the intervention in Jamaica targeted undernourished or severely undernourished children. Interestingly, in Colombia, the program targeted low-income families who participated in a Conditional Cash Transfer program, and there was no indication that the children in these families were undernourished. This explanation suggests that the Reach Up Program did not change parental beliefs because of targeting.18

Finally, we must emphasize that the implementation of the Jamaica Home-Visiting Program, the 3T Home Visiting Intervention, and the LENA Start Program occurred in research settings that are human-capital abundant. In contrast, the Reach Up implementation in Colombia occurred within a real-world setting and explored human resources available to local

18 See also Sylvia et al. (2021).
communities. For example, the home visitors were mothers who resided in the same community. However, we remark that the Reach Up implementation in Bangladesh (Hamadani et al., 2006) and China (Heckman et al., 2020) also used resources available in the community. While the latter two studies did not measure parental beliefs, they produced impacts on language and cognition much greater than Colombia’s and aligned with the Jamaica Home Visiting Program’s impacts. Carneiro et al. (2019) evaluated the NEP-I program implemented with community resources and found positive impacts on beliefs. Nonetheless, these authors document that the Chilean government spent resources recruiting and training the NEP-I workforce.

These contrasting findings suggest another explanation. The Reach Up Program did not change parental beliefs because it was implemented with low fidelity. Unfortunately, we cannot rule out this explanation because no data measures the quality of these programs when they occur in real-world settings. However, such data is crucial to advance the science of the determinants of early investments and the formulation of public policy that fosters human capital formation.

We conclude by suggesting two avenues of future research. First, this paper has established that the LENA Start Program impacted the language environment in the short run. Future research should investigate if this impact persists and, if so, whether it translates into improved language comprehension and literacy skills in the long run. Such research would inform the debate about the long-term impacts of early interventions (e.g., Bailey et al., 2020; García & Heckman, 2022).

Second, our LENA Start Program’s implementation did not occur in a real-world setting. Thus, future research should investigate the LENA Start Program’s implementation fidelity in a typical setting (e.g., as implemented by a school district or public library). If the execution is high quality, researchers should measure the impacts on parental beliefs and language outcomes in the short and long run. This research is vital to shedding light on vital scientific questions about the malleability of parental beliefs and the formulation of public policy to foster early human capital formation.
References

Carneiro, Pedro, Emanuela Gallaso, Italo L. García, Paula Bedregal, and Miguel Cordero. "Parental Beliefs, Investments, and Child Development: Evidence from a Large-Scale

Figure 1. — LEME Study: Eligibility, Random Assignment, Recruitment, Consent, Final Assignment, Graduation.
Figure 2. — LENA Start Objective Feedback Report.
Figure 3. — Distribution of the Indirect Effect of the factor score of parental beliefs, clustered (top) and robust (bottom) standard errors.
<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>N</th>
<th>Invitation to LENA Start</th>
<th>Control</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(1) Mean</td>
<td>(2) Mean</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1) Robust</td>
<td>(2) Clustered</td>
<td></td>
</tr>
<tr>
<td>Household income is less than or equal to twice the FPL^1</td>
<td>142</td>
<td>0.704 (0.458)</td>
<td>145 0.752 (0.434)</td>
<td>0.368 0.345</td>
</tr>
<tr>
<td>Mother has attended some higher education program</td>
<td>144</td>
<td>0.097 (0.297)</td>
<td>145 0.103 (0.306)</td>
<td>0.861 0.906</td>
</tr>
<tr>
<td>Mother is Hispanic</td>
<td>144</td>
<td>0.153 (0.361)</td>
<td>145 0.200 (0.401)</td>
<td>0.294 0.354</td>
</tr>
<tr>
<td>Mother is Non-Hispanic black</td>
<td>144</td>
<td>0.625 (0.486)</td>
<td>145 0.579 (0.495)</td>
<td>0.429 0.477</td>
</tr>
<tr>
<td>Mother is Non-Hispanic white</td>
<td>144</td>
<td>0.139 (0.347)</td>
<td>145 0.159 (0.367)</td>
<td>0.639 0.689</td>
</tr>
<tr>
<td>Mother is single</td>
<td>144</td>
<td>0.729 (0.446)</td>
<td>145 0.655 (0.477)</td>
<td>0.174 0.263</td>
</tr>
<tr>
<td>Mother is cohabiting</td>
<td>144</td>
<td>0.063 (0.243)</td>
<td>145 0.083 (0.276)</td>
<td>0.509 0.454</td>
</tr>
<tr>
<td>Mother is married</td>
<td>144</td>
<td>0.208 (0.408)</td>
<td>145 0.262 (0.441)</td>
<td>0.283 0.373</td>
</tr>
<tr>
<td>Standardized HOME Score</td>
<td>133</td>
<td>-0.204 (1.383)</td>
<td>132 -0.044 (0.887)</td>
<td>0.265 0.203</td>
</tr>
<tr>
<td>Conversational Turns at 9 months</td>
<td>47</td>
<td>283.279 (191.053)</td>
<td>54 317.517 (120.901)</td>
<td>0.292 0.095</td>
</tr>
<tr>
<td>Adult Word Counts at 9 months</td>
<td>47</td>
<td>13761.77 (6981.438)</td>
<td>54 16260.48 (6804.080)</td>
<td>0.072 0.037</td>
</tr>
<tr>
<td>Seconds of Exposure to TV</td>
<td>47</td>
<td>7308.39 (5007.889)</td>
<td>54 7052.62 (4813.342)</td>
<td>0.795 0.727</td>
</tr>
<tr>
<td>Standardized Language Score from BSID^2</td>
<td>137</td>
<td>-0.443 (0.708)</td>
<td>134 -0.502 (0.816)</td>
<td>0.521 0.469</td>
</tr>
<tr>
<td>Child currently being cared for by someone else regularly</td>
<td>131</td>
<td>0.718 (0.452)</td>
<td>132 0.659 (0.476)</td>
<td>0.308 0.398</td>
</tr>
<tr>
<td>Number of different regular childcare arrangements</td>
<td>131</td>
<td>1.092 (0.932)</td>
<td>132 0.985 (0.957)</td>
<td>0.360 0.401</td>
</tr>
</tbody>
</table>

Panel A: Baseline sample

TABLE 1
Balance Test Results of the LENA Start Program
Table 1

Balance Test Results of the LENA Start Program

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>Invitation to LENA Start</th>
<th>Control</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
<td>N</td>
</tr>
<tr>
<td>Household income is less than or equal to twice the FPL¹</td>
<td>63</td>
<td>0.825</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>(0.383)</td>
<td>(0.421)</td>
<td></td>
</tr>
<tr>
<td>Mother has attended some higher education program</td>
<td>65</td>
<td>0.031</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>(0.174)</td>
<td>(0.258)</td>
<td></td>
</tr>
<tr>
<td>Mother is Hispanic</td>
<td>65</td>
<td>0.138</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>(0.348)</td>
<td>(0.390)</td>
<td></td>
</tr>
<tr>
<td>Mother is Non-Hispanic black</td>
<td>65</td>
<td>0.631</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>(0.486)</td>
<td>(0.492)</td>
<td></td>
</tr>
<tr>
<td>Mother is Non-Hispanic white</td>
<td>65</td>
<td>0.123</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>(0.331)</td>
<td>(0.364)</td>
<td></td>
</tr>
<tr>
<td>Mother is single</td>
<td>65</td>
<td>0.831</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>(0.378)</td>
<td>(0.471)</td>
<td></td>
</tr>
<tr>
<td>Mother is cohabiting</td>
<td>65</td>
<td>0.062</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>(0.242)</td>
<td>(0.258)</td>
<td></td>
</tr>
<tr>
<td>Mother is married</td>
<td>65</td>
<td>0.108</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>(0.312)</td>
<td>(0.438)</td>
<td></td>
</tr>
<tr>
<td>Standardized HOME Score</td>
<td>61</td>
<td>-0.351</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>(1.429)</td>
<td>(0.686)</td>
<td></td>
</tr>
<tr>
<td>Conversational Turns at 9 months</td>
<td>25</td>
<td>278.407</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>(214.376)</td>
<td>(115.985)</td>
<td></td>
</tr>
<tr>
<td>Adult Word Counts at 9 months</td>
<td>25</td>
<td>14958.98</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>(7966.382)</td>
<td>(6942.454)</td>
<td></td>
</tr>
<tr>
<td>Seconds of Exposure to TV</td>
<td>25</td>
<td>8272.94</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>(5481.453)</td>
<td>(4631.373)</td>
<td></td>
</tr>
<tr>
<td>Standardized Language Score from BSID²</td>
<td>64</td>
<td>-0.484</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>(0.667)</td>
<td>(0.789)</td>
<td></td>
</tr>
<tr>
<td>Child currently being cared for by someone else regularly</td>
<td>60</td>
<td>0.700</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>(0.462)</td>
<td>(0.473)</td>
<td></td>
</tr>
<tr>
<td>Number of different regular childcare arrangements</td>
<td>60</td>
<td>1.100</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>(1.053)</td>
<td>(0.961)</td>
<td></td>
</tr>
</tbody>
</table>

NOTE. — Standard deviation in parenthesis. The p-values are obtained from item-wise regressions using the variables labeled in the first column as the dependent variables and the random assignment indicator as the only independent variable. We report the p-values for both robust and clustered uncertainty estimates clustered at the recruitment group level.

¹Federal Poverty Line.

²Bayley Scale of Infant Development.
<table>
<thead>
<tr>
<th>Variables</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random assignment to control or invitation arm</td>
<td>0.130</td>
<td>0.215</td>
<td>0.314**</td>
</tr>
<tr>
<td>Clustered SE</td>
<td>(0.187)</td>
<td>(0.160)</td>
<td>(0.113)</td>
</tr>
<tr>
<td>Robust SE</td>
<td>(0.160)</td>
<td>(0.163)</td>
<td>(0.152)</td>
</tr>
<tr>
<td>Randomization inference p-value</td>
<td>0.462</td>
<td>0.257</td>
<td>0.072</td>
</tr>
<tr>
<td>Observations</td>
<td>104</td>
<td>102</td>
<td>90</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.452</td>
<td>0.497</td>
<td>0.681</td>
</tr>
</tbody>
</table>

Panel A: OLS Estimator

Attendance to the LENA Start program	0.232	0.383*	0.551***
Clustered SE	(0.286)	(0.211)	(0.125)
Robust SE	(0.268)	(0.264)	(0.233)
Observations	104	102	90
R-squared	0.445	0.479	0.680

Panel B: 2SLS Estimator

Recording duration at endline	Y	Y	Y
Dummies for Saturday and Sunday at endline	Y	Y	Y
Demographic characteristics	N	Y	Y
Conversational Turn Counts at baseline	N	N	Y
Recording duration at baseline	N	N	Y
Dummies for Saturday and Sunday at baseline	N	N	Y

NOTE. — Standard errors in parentheses. We report clustered and robust standard errors, and we report the most conservative significance level. Clustered standard errors are clustered at the recruitment group level. We also report the randomization inference p-value after 2,000 stratified clustered resampling. Panel A reports the estimates obtained from ordinary least squares (OLS) regressions. Panel B reports the estimates obtained from two-stage least squares regression (2SLS) regressions using treatment assignment indicator as an instrument for attendance. We add the following variables to control for differences in recording sessions. First, we control for recording duration in endline, a dummy variable for a recording done on Saturday, and another dummy variable for a recording done on Sunday (Model 1). Second, we additionally add demographic characteristics (Model 2) including a dummy for maternal year of birth between 1978 and 1987; dummy for Hispanic ethnicity; dummy for non-Hispanic black; dummy for single mother; dummy for cohabiting mother; dummy for income below two times the federal poverty line; dummy for mothers with some postsecondary education; dummy for male child; age of the child at the date of the recording; and dummy for randomization group (block). Third, we additionally add conversational turn counts at baseline, recording duration at baseline, and dummies for Saturday and Sunday at baseline (Model 3).

* Significant at the 10% level.
** Significant at the 5% level.
*** Significant at the 1% level.
TABLE 3
Impact of the LENA Start Program on Initiation of Conversations in Audio Segments with Focus Child and an Adult

<table>
<thead>
<tr>
<th>Panel A: Number of Audio Segments</th>
<th>OLS Estimator</th>
<th>2SLS Estimator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of Segments</td>
<td>Number of Segments</td>
</tr>
<tr>
<td></td>
<td>Initiated by the Focus Child</td>
<td>Initiated by a Female Adult</td>
</tr>
<tr>
<td>Random assignment to control or invitation arm</td>
<td>0.394**</td>
<td>0.118</td>
</tr>
<tr>
<td>Clustered SE</td>
<td>(0.155)</td>
<td>(0.178)</td>
</tr>
<tr>
<td>Robust SE</td>
<td>(0.162)</td>
<td>(0.153)</td>
</tr>
<tr>
<td>Randomization inference p-value</td>
<td>0.012</td>
<td>0.479</td>
</tr>
<tr>
<td>Observations</td>
<td>87</td>
<td>87</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.749</td>
<td>0.692</td>
</tr>
<tr>
<td>Attendance to the LENA Start program</td>
<td>0.690***</td>
<td>0.203</td>
</tr>
<tr>
<td>Clustered SE</td>
<td>(0.172)</td>
<td>(0.228)</td>
</tr>
<tr>
<td>Robust SE</td>
<td>(0.230)</td>
<td>(0.215)</td>
</tr>
<tr>
<td>Observations</td>
<td>87</td>
<td>87</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.745</td>
<td>0.706</td>
</tr>
</tbody>
</table>
TABLE 3
Impact of the LENA Start Program on Initiation of Conversations in Audio Segments with Focus Child and an Adult

<table>
<thead>
<tr>
<th>Panel B: Number of Conversational Turns by Audio Segment Initiator</th>
<th>Conversational Turns in Segments Initiated by the Focus Child</th>
<th>Conversational Turns in Segments Initiated by a Female Adult</th>
<th>Conversational Turns in Segments Initiated by a Male Adult</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random assignment to control or invitation arm</td>
<td>0.488**</td>
<td>0.238</td>
<td>0.331</td>
</tr>
<tr>
<td>Clustered SE</td>
<td>(0.191)</td>
<td>(0.217)</td>
<td>(0.202)</td>
</tr>
<tr>
<td>Robust SE</td>
<td>(0.169)</td>
<td>(0.167)</td>
<td>(0.181)</td>
</tr>
<tr>
<td>Randomization inference p-value</td>
<td>0.002</td>
<td>0.214</td>
<td>0.111</td>
</tr>
<tr>
<td>Observations</td>
<td>87</td>
<td>87</td>
<td>87</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.728</td>
<td>0.563</td>
<td>0.624</td>
</tr>
</tbody>
</table>

2SLS Estimator

Attendance to the LENA Start program	0.862***	0.414	0.572**
Clustered SE	(0.209)	(0.256)	(0.223)
Robust SE	(0.245)	(0.238)	(0.256)
Observations	87	87	87
R-squared	0.726	0.592	0.637

NOTE. — Standard errors in parentheses. We report clustered and robust standard errors, and we report the most conservative significance level. Clustered standard errors are clustered at the recruitment group level. We also report the randomization inference p-value after 2,000 stratified clustered resampling. Panel A reports the effects on the number of audio segments. Panel B reports the effects on the number of conversational turns by audio segment initiator. For both outcome measures, we report estimates obtained from ordinary least squares (OLS) regressions and two-stage least squares regression (2SLS) regressions using the treatment assignment indicator as an instrument for attendance. In all the regressions, we add the following variables to control for differences in recording sessions. We add the lagged dependent variable and we control for recording duration in baseline and endline. We add a dummy variable for a recording done on Saturday and another dummy variable for a recording done on Sunday, both for baseline and endline. Additionally, we add a dummy for maternal year of birth between 1978 and 1987; dummy for Hispanic ethnicity; dummy for non-Hispanic black; dummy for single mother; dummy for cohabiting mother; dummy for income below two times the federal poverty line; dummy for mothers with some postsecondary education; dummy for male child; age of the child at the date of the recording; and dummy for randomization group (block).

* Significant at the 10% level.
** Significant at the 5% level.
*** Significant at the 1% level.
TABLE 4
Investigation of Potential Mechanisms of the LENA Start Program

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>Parental Self-Efficacy</th>
<th>Parental Sense of Social Support</th>
<th>Parental Knowledge</th>
<th>Error-Ridden</th>
<th>Factor Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Panel A: OLS Estimator</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Random assignment to control or invitation arm</td>
<td>-0.030</td>
<td>-0.077</td>
<td>0.293</td>
<td>0.306*</td>
<td>0.451**</td>
</tr>
<tr>
<td>Clustered SE</td>
<td>(0.158)</td>
<td>(0.153)</td>
<td>(0.185)</td>
<td>(0.151)</td>
<td>(0.176)</td>
</tr>
<tr>
<td>Robust SE</td>
<td>(0.131)</td>
<td>(0.176)</td>
<td>(0.139)</td>
<td>(0.154)</td>
<td>(0.143)</td>
</tr>
<tr>
<td>Randomization inference p-value</td>
<td>0.834</td>
<td>0.665</td>
<td>0.037</td>
<td>0.069</td>
<td>0.003</td>
</tr>
<tr>
<td>Observations</td>
<td>128</td>
<td>128</td>
<td>128</td>
<td>128</td>
<td>128</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.569</td>
<td>0.352</td>
<td>0.614</td>
<td>0.318</td>
<td>0.377</td>
</tr>
<tr>
<td>Attendance to the LENA Start program</td>
<td>-0.057</td>
<td>-0.146</td>
<td>0.564**</td>
<td>0.586**</td>
<td>0.859***</td>
</tr>
<tr>
<td>Clustered SE</td>
<td>(0.258)</td>
<td>(0.240)</td>
<td>(0.264)</td>
<td>(0.246)</td>
<td>(0.215)</td>
</tr>
<tr>
<td>Robust SE</td>
<td>(0.226)</td>
<td>(0.304)</td>
<td>(0.238)</td>
<td>(0.276)</td>
<td>(0.242)</td>
</tr>
<tr>
<td>Observations</td>
<td>128</td>
<td>128</td>
<td>128</td>
<td>128</td>
<td>128</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.569</td>
<td>0.357</td>
<td>0.645</td>
<td>0.312</td>
<td>0.410</td>
</tr>
</tbody>
</table>

NOTE. — Standard errors in parentheses. We report clustered and robust standard errors, and we report the most conservative significance level. Clustered standard errors are clustered at the recruitment group level. We also report the randomization inference p-value after 2,000 stratified clustered resampling. Panel A reports the estimates obtained from ordinary least squares (OLS) regressions. Panel B reports the estimates obtained from two-stage least squares regression (2SLS) regressions using treatment assignment indicator as an instrument for attendance. In all the regressions, we add the following variables to control for differences in survey responses. We add the lagged dependent variable. Additionally, we add a dummy for maternal year of birth between 1978 and 1987; dummy for Hispanic ethnicity; dummy for non-Hispanic black; dummy for single mother; dummy for cohabiting mother; dummy for income below two times the federal poverty line; dummy for mothers with some postsecondary education; dummy for male child; age of the child at the date of the recording; and dummy for randomization group (block).

* Significant at the 10% level.
** Significant at the 5% level.
*** Significant at the 1% level.
TABLE 5
Mediation Analysis Results

<table>
<thead>
<tr>
<th>Mediators</th>
<th>ITT</th>
<th>ITT + Parental Beliefs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Random assignment to control or invitation arm</td>
<td>0.314**</td>
<td>0.253*</td>
</tr>
<tr>
<td></td>
<td>(0.113)</td>
<td>(0.137)</td>
</tr>
<tr>
<td>Clustered SE</td>
<td>(0.152)</td>
<td>(0.148)</td>
</tr>
<tr>
<td>Maternal beliefs (error-riden)</td>
<td>0.098</td>
<td>0.198**</td>
</tr>
<tr>
<td>Clustered SE</td>
<td>(0.094)</td>
<td>(0.074)</td>
</tr>
<tr>
<td>Robust SE</td>
<td>(0.085)</td>
<td>(0.074)</td>
</tr>
<tr>
<td>Observations</td>
<td>90</td>
<td>90</td>
</tr>
</tbody>
</table>

p-value Joint Significance of mediators (clustered): 0.089

p-value Joint Significance of mediators (robust): 0.089

Monte Carlo 95% CIs for Indirect Effects (clustered): [-0.043; 0.168] [0.026; 0.288]

Monte Carlo 95% CIs for Indirect Effects (robust): [-0.035; 0.169] [0.002; 0.321]

NOTE. — Standard errors in parentheses. We report clustered and robust standard errors, and we report the most conservative significance level. Clustered standard errors are clustered at the recruitment group level. In all the regressions, we add the following variables to control for differences in survey responses. We add the lagged dependent variable. Additionally, we add a dummy for maternal year of birth between 1978 and 1987; dummy for Hispanic ethnicity; dummy for non-Hispanic black; dummy for single mother; dummy for cohabiting mother; dummy for income below two times the federal poverty line; dummy for mothers with some postsecondary education; dummy for male child; age of the child at the date of the recording; and dummy for randomization group (block). The numbers in square brackets show the upper limits and lower limits of the Monte Carlo 95% confidence intervals for the indirect effects of the LENA Start program on the conversational turns through the respective mediators.

* Significant at the 10% level.
** Significant at the 5% level.
*** Significant at the 1% level.