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I’m trying to buy the dip, but this dip is so big that now my stablecoins are
dipping too.

Trifusi0n, Reddit, May 10, 2022

1 Introduction

Money is debt that satisfies Holmström (2015)’s no questions asked principle. New forms of
private money have recently emerged which do not satisfy this property, like stablecoins. We
resolve a simple puzzle: how can stablecoins with nontrivial run risk ostensibly succeed in
keeping their price nearly constant at $1? We show stablecoin holders demand compensation
from levered traders by lending their coins for a fee. When speculative motives wane,
stablecoin issuers must adjust their reserves to keep a fixed $1 price.

Cryptocurrency trading volume has exploded in recent years. Despite aspirations to be a
store of value and an alternative to fiat money, cryptocurrencies like Bitcoin have exhibited
extreme price volatility measured in dollars. Stablecoins emerged to solve the volatility
problem. Stablecoins promise to maintain a constant dollar price of $1 and to be redeemable
at par on demand. Unlike unbacked digital assets, like Bitcoin, stablecoins are usually backed
by reserves and denominated in fiat currency. Stablecoins were also envisaged to act as a
widely used medium of exchange and bring innovations in payment systems globally (e.g.,
Libra and Diem). Thus far, they mainly facilitate crypto trading by decreasing the risk of
getting in and out of trading positions. The advantage of stablecoins over fiat currencies is
that stablecoins live on the blockchain and face lower transaction costs of using them as a
store of value between trades and allow for faster trading.

Stablecoins are notable for two reasons. First, they do not satisfy Holmström (2015)’s
no questions asked criteria for money despite aspiring to be used as circulating money, even
narrowly in the crypto-assets world (Gorton and Zhang, 2021; Gorton et al., 2022). Second,
a main use of stablecoins is as margin for leveraged trading in other more volatile—and
higher expected return—digital assets. Traders borrow stablecoins for levered bets on other
cryptocurrencies.

Unlike fiat currency, stablecoins are economically equivalent to deposits and subject to
runs. The same strategic complementarities for fragile banks and money market funds apply
to stablecoin issuers. Stablecoin holders should demand compensation for run risk if they
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anticipate stablecoin reserves may prove too illiquid to maintain a $1 peg in bad states. But
stablecoins do not pay interest, unlike bank deposits and money-market funds. Thus, it is
unclear how stablecoins issuers can compensate their borrowers for run risk enough to keep
the price fixed at $1.

We show that priced run risk can compel stablecoins to have a constant $1 price. Demand
for stablecoins comes from their role as margin for leveraged positions. Stablecoin owners
are indirectly compensated for the run risk because they can lend it to traders who want to
take on leverage. Several exchanges and decentralized lending platforms allow agents to lend
stablecoins to others who want to speculate on more volatile cryptocurrencies.

Such an equilibrium leads to an unruly nexus between run risk and leverage. The gain
from lending the debt depends on the appetite for leveraged trading and the volatility of the
speculative asset, affecting margin requirements. A few examples make the intuition clear:

1. Suppose that suddenly there is no demand for the speculative asset. Then, there would
be no premium from lending the stablecoin to post margin, and its price would collapse
below $1—quickly precipitating a run as stablecoin holders rush to redeem to fiat
currency.

2. Suppose that demand for the speculative asset is strong, but volatility increases and
trades become riskier. Intermediaries may increase the margin requirement for leveraged
trades, which reduces the benefit from taking leverage and, hence, the compensation
from lending out the stablecoin. As a result, the stablecoin issuer would need to shift
to a safer portfolio of reserves to reduce run risk and support a $1 peg. At some level
of run risk, the stablecoin is no longer viewed as good collateral.

3. Suppose, instead, there is a higher demand for the speculative asset without an increase
in the underlying volatility and margin requirements. Taking leverage is more profitable,
which pushes the lending rate for stablecoins up and allows the issuer to maintain the
$1 peg with a riskier reserve portfolio composition.

We model the leverage-money nexus by combining a bank-run model akin to Goldstein
and Pauzner (2005), Kashyap et al. (2020), and Infante and Vardoulakis (2020) with a model
of leveraged collateralized trading akin to Gromb and Vayanos (2002) and Brunnermeier and
Pedersen (2009). We use global game techniques to pin down a unique probability of a run
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that depends on the balance sheet of the stablecoin. Using this probability, we can compute
the premium that stablecoin holders require to maintain a traded price of $1 and connect
this to the rate that speculators are willing to offer to borrow the stablecoin and post it as
margin against leveraged positions.

Our model reconciles two important facts: first, the current generation of stablecoins are
not useful as money despite their relative success in maintaining their peg, at least for the
most salient coins. Second, stablecoin lending rates are high—often above 20% per year—and
are closely correlated with measures of speculative demand.

We show that stablecoins directly link speculation and the real economy. Stablecoin issuers
invest their reserves to earn profits but must adjust their reserves—possibly quickly—to keep
their debt trading at par. When speculative demand falls, they can keep their debt trading
at par only by moving to a safer portfolio or allowing redemptions of the stablecoin. Such
reallocations can cause disruptions in the real economy.

Suppose expected returns for cryptocurrencies fall and demand for stablecoins to take
on leverage falls. Then stablecoin issuers will quickly try to increase their portfolio’s safe
asset share. In that case, this adjustment can cause disruptions in the markets they invest in,
like the commercial paper market that provides financing to the real economy. JP Morgan
estimates that Tether, the largest stablecoin, was one of the largest investors in the U.S.
commercial paper market in June 2021.

Alternatively, the stablecoin issuer can allow lower leverage demand to manifest in more
redemptions. Stablecoin redemptions and issuance, in turn, are directly linked to the real
economy. For example, Kim (2022) shows that a one standard deviation increase in the daily
issuance of major stablecoins results in a 10.7% increase in the commercial paper issuance
quantity. The reverse link from traditional to crypto markets is also incorporated in the
model: a bad shock for the traditional risky financial asset held in the stablecoin’s reserves
leads to an increase in the stablecoin’s run risk.

We have three sets of empirical results. First, we empirically confirm the model’s setup: we
show that stablecoins are the preferred asset to take leverage in cryptocurrencies by comparing
their haircuts with other digital assets. Second, we test the model’s main prediction, which
shows how stablecoins can maintain their peg by linking cryptocurrency demand and risk to
the stablecoin issuer’s safe asset share. Third, and finally, we apply the model to the May
2022 turmoil in crypto markets following the collapse of TerraUSD and the following near
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run on Tether.
The leverage-money nexus is likely broader than just stablecoins and cryptocurrency

trading; such a nexus has important implications for the future of private money, which
requires a constant value no questions asked to be a medium of exchange. Yet, historically
private money has often proved to be fragile in nature (Gorton, 2017). Our contribution is to
show that even fragile money, like stablecoins, may also maintain a constant exchange value
if it generates secondary benefits for its holders. Yet, if this secondary use receives a large
enough negative shock, then fragile money can quickly collapse.

Related Literature Our paper is related to papers that study the stability of stablecoins
and the effects of different proposed regulations on their stability (Lyons and Viswanath-
Natraj 2021, Hoang and Baur 2021, Li and Mayer 2021, Kozhan and Viswanath-Natraj 2021,
d’Avernas et al. 2022). Mizrach (2022) documents the market microstructure of stablecoins
and stablecoins’ survival rates. Kim (2022) studies the effects of stablecoin issuance on
commercial paper issuance, rates, and Treasury yields.

2 Model

This section presents the model to study the leverage-money nexus, which Figure 1 summarizes.
There are three time periods (t = 0, 1, 2), four assets, and three agents. Two of the four assets
are traditional financial assets, a safe asset and a risky asset, and the other two are digital
assets, a stablecoin and a cryptocurrency. All assets are perfectly divisible. The first type
of agent is the stablecoin issuer and manager. The second type consists of a continuum of
investors, which are identical ex ante but heterogeneous ex post in a way described below.
The third type consists of a continuum of traders that want to take a leveraged long position
in the cryptocurrency.

The stablecoin raises funds in fiat currency from investors at t = 0 in exchange for tokens,
which are the liabilities of the stablecoin issuer and the first digital asset in the model. Denote
by s the number of tokens in circulation. Given that the issuer will offer tokens at unitary
price, s also captures the total funds invested in the stablecoin. In turn, the stablecoin invests
the funds in a portfolio of traditional financial assets. Both assets are in perfectly elastic
supply, their returns are denominated in fiat currency, and they can be bought for one unit
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Figure 1: Model Sketch. Figure plots the relationship of the agents in the model and the
flow of transactions.

of fiat currency at t = 0. Denote by ` the portion of the portfolio invested in the safe asset.
The safe asset yields a gross return of one at t = 2 and can be sold at t = 1 for the price of
one. The risky asset yields an expected gross return X at t = 2. The asset can be sold in the
market at t = 1, before it matures, yielding a random payoff ξ ∼ U [ξ, ξ], with 1 < ξ ≤ X and,
without loss of generality, ξ = 0. The value of ξ is realized at t = 1, but it is not publicly
revealed.

Investors are identical ex ante with mass s. At t = 0, each investor can hold one token
issued by the stablecoin in exchange for fiat currency. Tokens are initially issued in exchange
for fiat currency and redeemable on demand for fiat currency at a fixed exchange rate of one.
Following Diamond and Dybvig (1983), an individual investor receives with probability δ
an idiosyncratic preference shock urging them to redeem their tokens to use their funds for
purposes outside the digital assets ecosystem. We will call these investors “impatient.” By
the law of large numbers, the total expected redemption at t = 1 from impatient investors is
equal to δs. The remaining (1 − δ)s investors do not have a pressing need to redeem but
can decide to do so based on private noisy signals xi = ξ + εi, with εi iid∼ U [−ε, ε], about the
realization of payoff ξ at t = 1. We will call these investors “patient.”

The benefit for patient investors from not redeeming the tokens is that they can lend the
tokens to traders that want to take exposure to the cryptocurrency, expecting a gross return
y. For simplicity and without loss of generality, we make three assumptions, which can be
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relaxed. First, we assume that patient investors do not want to hold the cryptocurrency
directly.1 Second, we assume the lending of stablecoin tokens takes place at t = 1 after
patient investors have decided whether to redeem their stablecoin tokens. Denote by R the
expected return per unit from lending the token, which will be endogenously determined.
Third, we assume traders have access to an outside option with gross return ρ. Traders
borrow the stablecoin from patient investors, and, combining it with their funds, they buy a
cryptocurrency on margin, as described in detail below.

The funding structure of stablecoin issuers is fragile because the liquidation value of its
reserves may not be enough to fully cover potential redemptions by all token holders. As
such, the stablecoin issuer is exposed to run risk from self-fulfilling beliefs giving rise to
multiple equilibria described in the bank run literature. To resolve this indeterminacy, we
model a global game where each individual token holder receives a private noisy signal xi
and decides to redeem or not based on their posterior about ξ and their beliefs about the
actions of others. In particular, we will solve for a threshold equilibrium such that token
holders decide to redeem if their signal xi is below a threshold. Using this threshold, we can
compute the ex ante probability at t = 0 that the stablecoin may experience a run at t = 1
and, thus, compute the price at which stablecoins will trade. A higher run probability pushes
the price of tokens down, while a higher lending rate pushes their price up, other things equal.
To stabilize the price and maintain the peg, the stablecoin issuers will adjust their portion of
safe assets `.

Two features of the model are important to map it to cryptocurrency trading in practice.
First, the model assumes that agents receive a private noisy signal xi about the liquidation
value of the risky traditional asset, ξ, which acts as a coordination device in an incomplete
information game with strategic complementarities (global game). Such a feature is realistic,
and several papers empirically study strategic complementarities in money market mutual
funds during the Global Financial Crisis and Covid-19 crisis. Chen et al. (2010) and Schmidt
et al. (2016) show that outflow behavior and strategic complementarities in open-ended
mutual funds and money market funds are consistent with incomplete information games
where agents receive private noise signals. Cipriani and La Spada (2020) show how investors

1This assumption could be justified by having investors that are less optimistic than traders about
cryptocurrency returns, so they would rather lend to traders who would like to take leverage as in Geanakoplos
(2010).
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produce private information about the money funds’ run risks stemming from the illiquidity
of the reserve assets, and they bifurcate investors into sophisticated and unsophisticated
types.

The second feature is that investors observe ` and that it can be adjusted to maintain
the stablecoin price peg, as discussed in section 2.4. In practice, ` may be observable only
infrequently. For stablecoins collateralized by off-chain assets, investors learn ` only from
issuers’ disclosures which may be weekly or quarterly—if at all. There are two issues related
to this assumption when we empirically study the model’s related predictions.

The first practical issue is whether investors trust the issuer to truthfully disclose its
reserves and not change them dramatically toward riskier holdings between disclosure dates.
These are important considerations, which we abstract from to keep the model simple. Yet,
investors could use the logic in Gorton (1996) that investors monitor ` using redemptions:
when an investor redeems their stablecoins to fiat currency, they learn a lower bound of `.

Another practical issue is that ` is not observed in real-time, so it cannot be used as
a continuous instrument to stabilize the peg between disclosure dates. We address the
problem by assuming ` holds period by period and incorporate an additional stabilization
mechanism that relies on supply and demand to stabilize the peg between disclosures; Lyons
and Viswanath-Natraj (2021) document the importance of this mechanism to keep stablecoins
stable. In particular, in our model the equilibrium lending rate on the stablecoin will be
a decreasing function of its aggregate supply. For small deviations from the peg, investors
can redeem their tokens or request new ones, moving the lending rate in a direction that
stabilizes the peg given a fixed `. We empirically test the supply and demand mechanism
effects on lending rates.2

The stabilization mechanism relying on the lending rate is an additional tool on top of
the liquid reserves assets required for peg stability. For example, an unbacked stablecoin
may be able to maintain its peg for small deviations through supply and demand, but the
unbacked stablecoin can collapse if investors run in mass to redeem their token, as was the
case for TerraUSD (Chaudhary and Viswanath-Natraj, 2022).

The stabilization mechanism through continuous and observable changes in ` is possible for
2This feature is realistic and can be automatically embedded in smart contracts such as the Dai Savings

Rate (DSR) in the MakerDao protocol. The purpose of DSR is to affect the demand for stablecoin Dai and
stabilize its peg given a level of collateralization or ` in our model.
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stablecoins backed by on-chain assets, which can be cryptocurrencies or tokenized traditional
financial assets minted and traded on the same blockchain as the stablecoin. The MakerDao
protocol is one example. The collateral backing Dai stablecoins tokens is locked in smart
contracts (vaults) on the same blockchain that Dai circulates on and is verifiable in real-time.

We first derive the expected return from lending the stablecoin token. Second, given this
return, we compute the probability of a run on the stablecoin issuer. Finally, we show how
the stablecoin can maintain its peg to the dollar despite its exposure to run risk.

2.1 Expected return from lending the stablecoin

In this section, we study how the expected return from lending stablecoin tokens is determined
in equilibrium. We proceed backward and assume that the stablecoin has not suffered a run
at t = 1. Thus, patient token holders can lend their tokens to traders that want to take a
leveraged position in the cryptocurrency. For each dollar of cryptocurrency they buy, traders
need to post m percent of margin. Assume the cryptocurrency exchange exogenously sets m.

The advantage of buying the cryptocurrency with a stablecoin token is that there are
small or no haircuts on the pledgeable dollar value. Thus, the dollar value of stablecoins that
traders must post to meet margin m is equal to m under a zero haircut, and they just need
to borrow 1−m stablecoin tokens per dollar of exposure to the cryptocurrency. For other
cryptocurrencies posted as margin, the haircuts are higher, and traders must post a higher
dollar value than m to meet the margin requirement (see Table 2).

The gross expected payoff from taking a leveraged position in one dollar of the cryptocur-
rency is equal to y − (1−m)R. We assume that traders compete with each other and, in
equilibrium, are willing to offer an expected return on borrowing stablecoins that makes them
break even with their exogenous outside option ρ. As we derive below, ρ depends on the
aggregate funds invested in the alternative technology, but traders take ρ as given. As long
as they break even, traders will not invest in the outside option. The equilibrium R is then
given by equating levered profits per unit of investment, (y − (1−m)R)/m, to the unlevered
outside option profit per unit of investment, ρ, or

R = y −mρ
1−m . (1)

We assume that the outside option consists of a technology, F , common to all traders,
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with decreasing marginal returns depending on the aggregate amount of funds invested
(F ′ > 0, F ′′ < 0). Denote by e the total funds of traders and by m(1− λ)s/(1−m) the total
funds invested in leveraged cryptocurrency trades, where λ is the number of tokens redeemed
at t = 1 and not available for lending. Then, ρ in equilibrium is given by

ρ = F ′
(
e− m

1−m(1− λ)s
)
. (2)

We will assume that ρ > y, so traders have an incentive to use leverage, implying R < y.3

Moreover, given that ρ is increasing in s, there might be a s̄ such that y −mρ < 0 for s > s̄.
In other words, the number of tokens in circulation may be so high that there is no benefit to
lending them. Thus, we will also assume that s� s̄, such that there is room for the number
of tokens to adjust while still paying positive interest when lent out.

Combining 1 and 2, we get that the lending rate as a function of outstanding tokens
(1− λ)s at t = 2, where λ is the percentage of early redemptions:

R(λ, s) =
y −mF ′

(
e− m

1−m(1− λ)s
)

1−m . (3)

Before determining how runs on the stablecoin issuer occur, we derive some important
comparative statics for what will follow in Section 2.4.

An increase in the cryptocurrency expected return, y, while keeping the required margin,
m, and the number of tokens, s, constant is

dR(λ, s)
dy

= 1
1−m > 0. (4)

An increase in the margin, m, while keeping y and s constant is

dR(λ, s)
dm

= y

(1−m)2 −
F ′
(
e− m

1−m(1− λ)s
)

(1−m)2 +
m(1− λ)sF ′′(e− m

1−m(1− λ)s)
(1−m)3 < 0, (5)

since ρ > y.
3Otherwise, the relevant outside option is ρ = y since traders would prefer to invest directly in the

cryptocurrency. In this case, R = y, which is independent of the stablecoin supply s, and thus, the
stabilization mechanism using the lending rate, described above, would be absent.
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An increase in the number of tokens, s, while keeping y and m constant is

dR(λ, s)
ds

=
m2(1− λ)F ′′(e− m

1−m(1− λ)s)
(1−m)2 < 0, (6)

since ρ is increasing in s.
A change in y could be interpreted as higher demand for cryptocurrencies, while a change

in m could be interpreted as higher cryptocurrency volatility or risk. Both changes would
affect the lending rate R, destabilizing the stablecoin peg. Changing the number of tokens, s,
is one way to undo the change in the lending rate and re-stabilize the peg; for example, a
decrease in the number of tokens following a decrease in the demand for the cryptocurrency
could bring the lending rate back to its original value. We elaborate on this stabilization
mechanism in detail in section 2.4 after we show how the liquidity of the stablecoin’s reserves
matters for run risk and, thus, for its peg stability.

2.2 Probability of a stablecoin run

The stablecoin issuer collects total funds at t = 0 equal to s and invests ` percentage of them
in the safe asset and invests the rest in the risky asset. The long-term expected payoff at
t = 2 on this portfolio is equal to [`+ (1− `)X]s > s. Recall that there is a continuum of ex
ante identical investors with mass s, each of whom holds one stablecoin token at t = 0. The
stablecoin issuer may be illiquid at t = 1, depending on the realization of ξ and how many
investors decide to redeem their tokens; total redemptions are λ with λ ∈ [δ, 1], depending on
how many patient investors decide to withdraw. Define by L(ξ, λ) the liquidity position of
the stablecoin at t = 1 given by

L(ξ, λ) = [`+ (1− `)ξ − λ] s. (7)

For high enough realizations of ξ, the stablecoin issuer has enough liquidity to withstand
redemption by all token holders. This is true for ξ ≥ ξud, where ξud = 1 is the solution to
L(ξud, 1) = 0 and is known in the literature as the upper dominance threshold. For a low
enough realization of ξ, the stablecoin issuer does not have enough liquidity to withstand the
redemptions from just impatient investors. This is true for ξ < ξld, where ξld = (δ− `)/(1− `)
is the solution to L(ξld, δ) = 0 and is known in the literature as the lower dominance threshold.
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We assume that δ > `, such that ξld > ξ = 0.
For intermediate values of ξ ∈ [ξld, ξud), the liquidity position of the stablecoin issuer

depends on how many patient investors decide to redeem. In particular, for λ ≤ λ(ξ) =
`+ (1− `)ξ the stablecoin issuer is liquid, where λ(ξ) is the solution to L(ξ, λ(ξ)) = 0.

An individual patient investor needs to decide at t = 1 whether to redeem their token. The
payoff differential between the two actions depends on the liquidity position of the stablecoin
issuer and, thus, the individual investor’s beliefs about the aggregate withdrawals by the
patient investor. The payoff differential between not redeeming and redeeming a token, as a
function of ξ and λ, is given by:

ν(ξ, λ) =


R(λ, s)− 1 if δ ≤ λ ≤ λ(ξ)

− `+(1−`)ξ
λ

if λ(ξ) < λ ≤ 1
. (8)

Given a value for ξ, if the belief about λ is below λ(ξ), not redeeming yields the expected
payoff from lending out the tokens, while redeeming yields one dollar; the payoff differential is
R(λ, s)−1 > 0. Otherwise, if the belief about λ is above λ(ξ), the benefit from not redeeming
is zero, as the stablecoin issuer will be fully liquidated; the benefit from redeeming is joining
the line in the run and being able to redeem at par with probability (`+(1−`)ξ)/λ, according
to sequential servicing.

Given the private signal, an individual patient investor will update their posterior about
ξ, which will be uniform in [xi − ε, xi + ε] and compute the expected payoff differential

∆(xi) =
∫ xi+ε

xi−ε
ν(ξ, λ)dξ2ε . (9)

If xi ≥ ξud + ε, the individual patient investor can conclude that ξ ≥ ξud and, thus,
the stablecoin issuer is always liquid. As a result, the individual investor will not redeem,
independent of their belief about λ (∆(xi) > 0). Similarly, if xi < ξld − ε, then the individual
patient investor can conclude that ξ < ξld and, thus, the stablecoin issuer is always illiquid. As
a result, the individual investor will redeem, independent of their belief about λ (∆(xi) < 0).
These are the upper and lower dominance regions defined by the upper and lower dominance
thresholds, where the individual action is independent of the beliefs about the actions of
others.
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But for the intermediate region xi ∈ [ξld − ε, ξud + ε), the sign of ∆(xi) depends on the
beliefs about λ. To pin down these beliefs, we focus on a threshold strategy that all patient
investors follow. We will show that there exists a unique signal threshold x∗, such that
every investor redeems if their private signal xi < x∗ and does not redeem if xi > x∗. Given
this threshold, an individual investor can form well-defined beliefs about the total number
of redemptions by patient investors, denoted by λb(ξ, x∗)s, and given by the probability
that other investors receive a private signal below x∗. If ξ > x∗ + ε, all patient investors
get signals xi > x∗, none redeem, and λb(ξ, x∗) = δ. If ξ < x∗ − ε, all patient investors
get signals xi < x∗, all redeem, and λb(ξ, x∗) = 1. If x∗ − ε ≤ ξ ≤ x∗ + ε, some patient
investors get signals xi > x∗, while others get signals xi < x∗; thus, under the threshold
strategy, λb(ξ, x∗) = (1− δ)Pr(xi < x∗) = δ+ (1− δ)(x∗− ξ+ ε)/(2ε). The following equation
summarizes these beliefs:

λb(ξ, x∗) =


1 if ξ < x∗ − ε

δ + (1− δ)(x∗ − ξ + ε)/(2ε) if x∗ − ε ≤ ξ ≤ x∗ + ε

δ if ξ > x∗ + ε

. (10)

Using (10), an investor can compute the expected payoff differential using their posterior
about ξ, given her signal xi and an assumed value for x∗:

∆(xi, x∗) =
∫ xi+ε

xi−ε
ν(ξ, λb(ξ, x∗))dξ2ε . (11)

Unlike in (9), beliefs in (11) are uniquely determined and pin down the expected payoff
differential.

A patient investor does not redeem (∆(xi, x∗) > 0) if xi > x∗ and redeems (∆(xi, x∗) < 0)
if xi < x∗. By continuity, the investor that receives the threshold signal x∗ is indifferent
between not redeeming and redeeming, i.e.,

∆(x∗, x∗) =
∫ x∗+ε

x∗−ε
ν(ξ, λb(ξ, x∗))dξ2ε = 0. (12)

A threshold signal x∗ also implies a signal for fundamental ξ∗ such that a run from patient
investors occurs only for ξ < ξ∗. The threshold ξ∗ can be derived from L(ξ∗, λb(ξ∗, x∗)) = 0
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using (7), yielding

ξ∗ = 2ε(δ − `) + ε(1− δ) + (1− δ)x∗
1− δ + 2ε(1− `) (13)

As is typical in the global game literature, we focus on the limiting case where noise ε→ 0,
which also implies that ξ∗ → x∗. Expressing (12) in terms of ξ∗ and changing variables from
ξ to λ, such that as ξ decreases from x∗ + ε to x∗ − ε, λ uniformly increases from 0 to 1− δ,
we get

∆̄∗ =
∫ 1

δ
ν(ξ∗, λ) dλ

1− δ = 0

⇒
∫ `+(1−`)ξ∗

δ
(R(λ, s)− 1)dλ−

∫ 1

`+(1−`)ξ∗

`+ (1− `)ξ∗
λ

dλ = 0. (14)

A threshold ξ∗ that satisfied (14) exists and is unique. We provide a proof in the appendix,
from where is follows that d∆̄∗/dξ|ξ=ξ∗ > 0.

Equation (14) gives the run threshold ξ∗, implying a run probability ξ∗/ξ, as a function
of the lending rate R given in (1) and the ratio of safe assets in total assets, `. Before we
proceed to show how ` can be chosen to maintain the peg for the stablecoin tokens, we show
how ξ∗ changes with y, m, s, and `. Total differentiating (14) yields the following derivatives:

dξ∗

dx
= −d∆̄∗

dx

[
d∆̄∗
dξ
|ξ=ξ∗

]−1

for x ∈ {y,m, s, `}

Note d∆̄∗/dx =
∫ `+(1−`)ξ∗

δ (dR(λ, s)/dx)dλ > 0 for x ∈ {y,m, s}, thus they affect ξ∗ only
through R. Using (4)–(6), we have

dξ∗

dy
< 0 & dξ∗

dm
< 0 & dξ∗

ds
< 0. (15)

Moreover,

∂ξ∗

∂`
= −1− ξ∗

1− ` < 0, (16)

for ` < 1, because ξ∗ < ξud = 1.
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2.3 Stablecoin Price

In this section, we compute the price for one stablecoin token given the lending rate R derived
in Section 2.1 and the run threshold ξ∗ derived in Section 2.2.

Given that stablecoins tokens are continuously traded in secondary markets, we compute
the price at which investors are willing to trade their stablecoin token rather than the cost of
getting a token from the issuer, which is equal to one. Moreover, we derive the stablecoin
price before the realization of ξ and the resolution of uncertainty about the possibility of a
run. Denote by P the market price of traded stablecoin tokens, which is given by

P =
∫ ξ

ξ∗
R(δ, s)dξ/ξ +

∫ ξ∗

0
(`+ (1− `)ξ)dξ/ξ. (17)

The market capitalization of the stablecoin is equal to P · s.
The first term in (17) is the expected payoff conditional on that the stablecoin issuer does

not suffer a run, which is equal to the expected value of being able to lend out the token. Note
that the lending rate is equal to R(δ, s) because δ impatient investors have redeemed their
tokens at t = 1. The second term in (17) is the expected payoff conditional on a run, which
is equal to the expected liquidation value of the asset portfolio of the stablecoin issuers for a
dollar of tokens held. Before discussing the peg stabilization mechanisms, we show how the
price of the stablecoin changes with changes in the demand and riskiness of cryptocurrencies
and the size and liquidity of the stablecoin.

We first examine the effect stemming from the cryptocurrency demand, y, and riskiness,
m, as well as the size of the stablecoins s. For x ∈ {y,m, s} we have

dP

dx
= dR(δ, s)

dx
(1− ξ∗/ξ)− dξ∗

∂x
(R(δ, s)− (`+ (1− `)ξ∗))/ξ > 0. (18)

Using (4)–(6) and (15), and R(δ, s)− (`+ (1− `)ξ∗) since ξ∗ < ξud = 1, we have that

dP

dy
> 0 & dP

dm
< 0 & dP

ds
< 0. (19)

In other words, the higher the cryptocurrency demand, the lower the risk, or the smaller the
stablecoin circulation, the higher the price they are willing to trade stablecoin tokens for two
reasons. First, a higher y, and lower m or s, increases the payoff from the stablecoin token
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conditional on a run not occurring (first term in (18)). Second, the probability that a run
does not occur increases with y, and decreases with m or s, as the incentives to run are lower,
all other things, such as `, being equal (second term in (18)).

Finally, a change in ` changes P according to

dP

d`
=
∫ ξ∗

0
(1− ξ)dξ/ξ − ∂ξ∗

∂`
(R(δ, s)− (`+ (1− `)ξ∗))/ξ > 0, (20)

given (16). In other words, the higher the percentage of liquid assets in stablecoin reserves,
the higher the price they are willing to trade their tokens for two reasons. First, a higher `
increases the probability of being paid conditional on a run occurring (first term in (20)).
Second, the probability that a run does not occur increases with `, all else equal (second
term in (20)).

In sum, the stablecoin price in secondary markets fluctuates not only in response to shocks
in the expected return and riskiness of the cryptocurrency, but also due to adjustments in the
size and liquidity of the stablecoin. In the next section, we discuss the mechanisms through
which the size and liquidity of the stablecoin can stabilize the peg in response to shocks in
the expected return and riskiness of the cryptocurrency.

2.4 Peg stability

In this section, we show how the stablecoin tokens can have a value of one dollar and maintain
their peg in response to shocks. Note that the stablecoin issuer issues new tokens in exchange
for one dollar and returns one dollar for each redeemed token, at least until the available
funds run out. Yet, investors value these tokens at P given by (17).

There are two mechanisms to maintain the peg. The first mechanism relates to how `

should vary to maintain the peg in response to changes in y and m given s and proxies for
how close to money stablecoin tokens are.4 The second mechanism relates to how s should
adjust to maintain the peg in response to changes in y and m keeping ` constant. It is driven
by the usefulness of stablecoins as margin in leveraged crypto trades, captured by the lending
rate R that traders are willing to pay to borrow a token from investors. We will discuss these

4This mechanism applies when a change in ` is observable and, thus, can change the price at which
investors value the stablecoin tokens. We have elaborated on the intuition earlier, so we now focus on the
details of the mechanism.
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mechanisms in turn.
We now turn to our main results: how can the liquidity of stablecoin reserves, `, or the

number of tokens, s, be adjusted to maintain the peg when the cryptocurrency conditions
change? In particular, we will examine how changes in the expected return y and the margin
requirement m matter for ` and s. A change in y, while keeping m constant, could be
interpreted as higher demand for cryptocurrencies. A change in m, while keeping y constant,
could be interpreted as higher volatility or risk for cryptocurrencies. Our objective is to
examine how such developments in the crypto world can affect real financial markets through
the demand of the stablecoin issuer for safer versus riskier assets, captured by `, keeping
s constant, or through up-sizing or down-sizing the stablecoin, captured by s, keeping `
constant.

Proposition 1. A decrease in demand for the cryptocurrency or an increase in its riskiness
pushes the stablecoin price below its peg. To stabilize the peg, the stablecoin issuer can either
increase ` keeping the s the same, or the issuer can keep the same ` and allow lower demand
for tokens to manifest in more redemptions and lower s. The opposite is true for higher
cryptocurrency demand or lower riskiness.

The proof of 1 is straightforward. A decrease in demand for the cryptocurrency and
an increase in its riskiness are captured in our framework by a decrease in y and increase
in m. From equation (19), we know that either of these results in a lower price of the
tokens P . Therefore, ` needs to increase to maintain the peg for a certain s (equation (20)).
Alternatively, the issuer may keep the same `. This results in lower demand for the stablecoin
tokens, and more investors will want to remove their funds from the stablecoin, which redeems
more tokens. A lower number of tokens, s, results in a higher P (equation (19)), and the
stablecoin price can return to its peg.

Proposition 1 tells us that the stablecoin issuer can choose a level of liquidity, `, and
stablecoin size, s, such that the price of the stablecoin tokens is pegged to the dollar. In
principle, it is feasible for stablecoin arrangements to be backed by on-chain assets—either
other cryptocurrencies or tokenized traditional financial assets—such that ` is verifiable in
real-time along with s. In practice, the current biggest stablecoins are backed by off-chain
traditional financial assets and disclose their reserves only infrequently, at best.5 As a result,

5Nevertheless, there might be pressure from the industry to start disclosing the composition of reserve

17



the stabilization mechanism through ` would work when it becomes observable at disclosure
dates. Between these dates, peg stability after a shock could be achieved by the stabilization
mechanism through s. While theoretically sound, this situation raises challenges when we try
to take the model’s prediction to the data. We discuss in detail how we tackle those issues in
section 4, but before that, we show how a stablecoin issuer could optimally choose ` and s.

Given that stablecoin tokens pay no interest, the proceeds from the reserve holdings
accrue to the stablecoin issuer. The issuer would like to maximize these profits by choosing `
and s, taking into account the demand for the stablecoin and the peg of the stablecoin price
to one dollar. The expected profits to the stablecoin issuer are given by

Π =
∫ ξ

ξ∗
(X − 1)(1− `)

(
1− δ − `

ξ

)
sdξ/ξ, (21)

i.e., the issuer receives the net payoff from the risky asset holdings that have not been
liquidated to repay impatient depositors, conditional that a run does not occur.6

The issuer chooses ` and s at t = 0 to maximize (21) subject to (3) and (14). In particular,
we are interested in conditions under which the issuer chooses ` < 1, exposing the stablecoin
to runs. A change in ` results in a change in profits given by

dΠ
d`

= (X − 1)s/ξ
[
(1− ξ)− (1− ξ∗)δ − `

ξ∗
+ (1 + δ − 2`) log ξ

ξ∗

]
. (22)

Proposition 2. For X > 1 and ξ > 1, the optimal choice of reserves is ` < 1, exposing the
stablecoin issuer to runs.

Consider ` = 1 such that ξ∗ → 0, i.e., there is no run. Then, (22) is negative, which
means that the issuer would want to choose ` < 1 since ξ∗ < ξ; if not, profits are zero, and
the issuer would be indifferent.
assets more frequently. In the aftermath of the collapse of UST and the mini-run on USDT in May 2022,
USDC has started reporting their reserves weekly, potentially putting pressure on other stablecoin issuers to
follow suit in the future.

6Given that X ≥ ξ, the issuer will first use the liquid assets to serve the redemptions by impatient investors
(recall that δ > `).
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3 Institutional Details and Data

3.1 Leverage

Leverage is a critical feature of cryptocurrency markets. Cryptocurrency traders often
speculate with leverage, and exchanges provide leverage as a key service. Crypto traders
can get leverage in several ways. We focus on two products offered by centralized exchanges:
margin trading and futures derivatives. There are several other mechanisms to get leverage
at centralized exchanges and on the blockchain: levered tokens and options, to name a few.
We focus on futures and margin trading as they are two long-standing and large sources
of leverage. While data on the levered trading volumes are scarce, open interest across all
crypto derivatives was $250 billion in June 2022, the vast majority of which likely comes from
perpetual futures derivatives.7 Data on margin lending are even more incomplete but likely
exceed tens of billions of dollars.

Margin in crypto is like margin trading in traditional finance: levered traders borrow the
coin for a specified time at a given interest rate and use it along with their own funds to take
a position on a cryptocurrency. Margin trading can be used to take long or short positions.
The main difference with traditional margin is that off-shore crypto exchanges generally do
not comply with Regulation T or other similar requirements

Traders can also get leverage using futures, not unlike traditional finance futures. One key
difference is that many of the largest crypto futures are perpetual futures. The derivatives do
not have an explicit expiration date, as indicated by their name. Perpetual futures are likely
the largest and most liquid type of off-shore cryptocurrency derivatives and, at times, can
offer more than 100 times leverage.

For a traditional vanilla future, the future and spot prices converge as the expiration
date approaches. Such phenomena do not happen with perpetual futures. Instead, perpetual
futures use a funding premium to keep the spot and future price linked. If the future trades
at a premium to the spot price, the investors long the future must pay a funding premium
to investors short the future. On the rare occasion the future price trades at a discount to
the spot price, the investors short the future must pay a funding premium to investors long
the future. For simplicity, we will say the funding premium is positive when investors long
the future pay a fee to short investors. The details vary across exchanges, but the funding

7https://coinmarketcap.com/rankings/exchanges/derivatives/
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payments are paid daily or in more frequent increments. Perpetual futures are typically
stablecoin-settled, meaning that the perpetual future is quoted and settled in a stablecoin,
and funding payments must be paid in the stablecoin. A BTC/USDT perpetual future, for
example, is settled in USDT.

Investors may prefer getting leverage from either futures or margin trading. Margin
trading has two advantages. First, the borrowed coins are fungible and can be used to settle
spot transactions. Second, margin trading allows investors to take leverage trading positions
at spot market prices.

Alternatively, futures allow investors to take a levered position in a coin, but they do not
obtain the underlying coin until the future’s expiration unless it is a perpetual future. Limits
to arbitrage cause persistent dislocations, often preventing the future price from being equal
to the spot price. Futures, however, are generally larger markets and allow levered exposure
for extended periods.

3.2 Data

We collect aggregate prices, volume, and market capitalizations of cryptocurrencies from
CoinGecko.8 We collect margin lending rates from FTX. We focus on two stablecoins, Tether
(USDT) and Dai (DAI), because they are large collateralized stablecoins and have long time
series of lending data available from FTX. We collect perpetual future funding premia from
Binance, which is likely the largest market for perpetual futures. We collapse higher-frequency
data on lending rates, funding premia, and prices to a daily frequency using daily averages.9

We use implied volatility for BTC and ETH calculated by T3 using option prices. Our sample
runs from December 1, 2020, to November 5, 2022. Importantly, the sample does not include
the period of FTX’s collapse, which began on November 6, 2022.10

Table 1 presents the summary statistics for the main variables, including the stablecoin
prices and lending rates and the funding premium for BTC/USDT and ETH/USDT. The
average price of both stablecoins is close to $1, as expected. The average lending rate is

8For details on how Coingecko aggregates information across several exchanges to calculate prices, see
https://www.coingecko.com/en/methodology.

9We remove one hour of outlier data from USDT’s lending rate on August 10, 2021, at 6 am because
it is implausibly high and likely a data entry error. Lending rates are available in hourly snapshots until
September 2022, when it becomes daily.

10The run began after a tweet by the CEO of Binance that Binance would sell its FTT tokens: https:
//twitter.com/cz_binance/status/1589283421704290306.
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8% for USDT and 7% for DAI. Relative to prices, the lending rates are more volatile. The
average funding premium is 19% for BTC/USDT and 21% for ETH/USDT, indicating that
the future price typically exceeds the spot price for both contracts.

4 Empirical Results

We have three sets of results. First, we empirically confirm the model’s setup: we show that
stablecoins are the preferred asset for leveraged trades by comparing their haircuts with other
digital assets. We also show that stablecoin lending rates are tightly linked to speculative
demand for cryptocurrencies. Second, we test proposition 1, which shows how stablecoins
maintain their peg by linking cryptocurrency demand and risk to the stablecoin issuer’s
safe asset share. Third, and finally, we apply the model to the May 2022 turmoil in crypto
markets following the collapse of TerraUSD.

4.1 Model Priors

Haircuts Table 2 gives haircuts across FTX, Binance, Bitfinex, and Kraken. A lower
haircut implies that a larger share of the asset’s nominal price can be used to back a levered
position. While there is heterogeneity across exchanges, stablecoins have lower haircuts.11

Suppose a trader wants to use ten times leverage to buy $100 of BTC. The margin
requirement depends on the trader’s collateral. Using Binance haircuts, if the trader posts
AVAX as collateral, they must provide $10/(1 − 20%) = $12.5 of AVAX. If, however, the
trader posts USDT as collateral, they need to post only $10/(1−0%) = $10 of USDT. Posting
a stablecoin as collateral requires 20% less equity capital from the trader.

Lending Rates and Expected Speculative Returns We show that when the expected
return for the speculative asset—y in the model—increases, the stablecoin lending rate grows,
as predicted in equation (4). Speculators’ expected returns play a central role in the model
but are challenging to measure. Because cryptocurrency expected returns are not directly
observable, we use perpetual futures funding rates to infer the demand for taking a speculative
position. Futures funding rates reflect the cost investors face to take leverage. We argue that

11Exchange deposits are economically equivalent to a non-tradeable stablecoin issued by the exchange and
have similarly low haircuts.
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the magnitude of the annualized funding rates is directly related to speculative cryptocurrency
demand because no other liquid products provide similar levels of leverage as the perpetual
futures.

We proxy for expected returns using the BTC/USDT perpetual future on Binance, which
is likely the largest perpetual future contract in the world. Figure 2 shows the time series
of the annualized funding rate of Binance’s BTC and ETH USDT-settled perpetual futures.
The funding rate is typically small but positive, indicating that investors who want to take
levered long positions must pay a fee.

We confirm equation (4) by showing that the funding rate—a proxy for speculative
demand y—is strongly positively related to lending rates R. Figure 3 shows a binscatter
of the perpetual future funding rate and the USDT stablecoin lending rate. The two are
strongly correlated. The coefficient from regressing the funding rate on the lending rate is a
statistically significant 0.24, and the R2 is 0.56.

In the online appendix, we check that using Binance’s BTC/USDT perpetual futures
funding rate is a robust proxy for expected returns. One concern is that using the BTC/USDT
perpetual futures as a proxy of y overweights idiosyncrasies specific to Bitcoin. However,
the BTC/USDT and ETH/USDT perpetual futures funding rates are tightly linked with a
correlation coefficient of 0.84. Binance also has perpetual futures that settle into Binance USD,
another stablecoin. We show that funding rates across perpetual futures are highly correlated
regardless of which stablecoin is used for settlement. Another concern is that Binance’s
futures funding rates reflect idiosyncrasies specific to Binance, rather than aggregate expected
returns for cryptocurrency beyond just Binance. We compare Binance’s perpetual future
funding rates with analogous rates from FTX and find that funding rates are similar and
highly correlated across the exchanges, confirming that the funding rates are not principally
capturing exchange-specific factors. Finally, we show that perpetual futures funding rates are
closely linked to expected returns embedded in crypto futures traded on the CME.

We test the model’s prediction that lending rates are increasing in y by regressing Tether’s
lending rate on FTX on the perpetual futures funding rates using

USDT Lending Rate = α + β Futures Funding Ratet + γXt + εt

where Xt is a vector of controls.
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Table 3 shows the regression results. The first row shows that a one percentage point
increase in the futures funding rate is associated with an increase in the stablecoin lending
rates between 0.24 and 0.11 percentage points, depending on the control variables. A one-
standard-deviation increase in the future funding rate (33pp) corresponds to lending rates
increasing roughly 4pp, using the estimates in column 3. Across all specifications, there is a
positive and significant relationship between lending rates and our proxy for expected returns.

4.2 Peg Stability

Proposition 1 predicts that stablecoin issuers can maintain their peg following shocks to
speculative demand with two tools: either increasing their safe asset share ` or redeeming
tokens s. We empirically verify both mechanisms.

Safe Asset Portfolio Share Channel The model shows that stablecoin issuers can offset
negative shocks to cryptocurrency demand by increasing their portfolio share of safe assets,
all else equal. The model assumes that the stablecoin issuer’s safe asset holdings, `, are public
knowledge. In practice, it is rarely the case that a stablecoin issuer gives disclosures with
enough granularity to calculate its safe asset share. Disclosures are infrequently published,
and there are some doubts about their accuracy.

Despite these limitations, we confirm the model’s prediction of a negative relationship
between y (and R) and ` using public disclosure data from the largest stablecoin, Tether,
which has given seven quarterly disclosures with enough granularity to estimate Tether’s `.
Figure 4 is a scatterplot comparing the safe asset share against the perpetual futures funding
rate (y) and the USDT lending rates (R). We define Tether’s safe asset portfolio share ` as its
share of reserves held in cash, bank deposits (including fiduciary deposits), reverse repurchase
agreements, and Treasury bills. While the data are limited to seven quarterly data points,
there is a clear negative relationship that ` is higher when expected returns and Tether’s
lending rate are lower. In other words, when crypto demand or the stablecoin lending rates
are low, stablecoin issuers hold more safe assets to maintain the stablecoin’s peg.

Redemption Channel Stablecoin issuers do not provide continuous information on their
safe asset holdings, and quick adjustments in their safe asset share would be difficult over
short periods. Proposition 1 shows that stablecoin issuers can maintain their peg by adjusting
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the supply of the tokens while still holding ` fixed. Information on the token’s supply is
public, and the supply often fluctuates in the short term. We calculate a stablecoin i’s net
issuance on date t as

∆si,t =
(
Market Capi,t

Pi,t
−

Market Capi,t−1

Pi,t−1

)
.

Net redemptions equal −1×∆si,t. We divide the market capitalization by the stablecoin’s
price because we are interested in the face value of the stablecoin’s liabilities, which the issuer
can directly affect. If we did not divide by prices, it would appear that the stablecoin had
issued more coins when its price increased, even if the stablecoin issuer took no action.

Table 4 shows summary statistics for redemptions for the largest stablecoins and orders
the stablecoins in descending order based on their average 2021 market capitalization. The
largest three stablecoins have net redemptions between 25% and 39% of days, even though
stablecoins have grown rapidly over the period. The average redemption for the three ranges
between 0.3% (USDT) and 1.4% (BUSD). TerraUSD (USTC) had the largest one-day net
redemption of $4.7 billion, about 27% of its market cap, during its collapse in May 2022.
In the post-2019 period, each stablecoin has faced large single-day redemptions: 4.1% for
Tether, 8.2% for USDC, and 11.9% for BUSD, amounting to $3.4, $3.8, and $460 million.

The magnitudes of stablecoins’ redemptions are economically large compared to the
traditional banking system. Gorton and Zhang (2021) and Gorton et al. (2022) argue that
Free Banking era-banks and stablecoin issuers are similar because they both created private
money—private bank notes and stablecoins—and both did so without a lender of last resort
or deposit insurance. The average safe asset share of New York banks during the period from
1818 to 1861 was 5.7%, using data from Weber (2018), defined as specie, checks, cash items,
and U.S government bonds. Single-day redemptions on the scale of those faced by stablecoins
would have plausibly exhausted the Free Banking system’s safe and liquid assets.

We test the redemption channel of Proposition 1 in two stages. In the first stage, we
regress the changes of the token’s change in log face value supply on variables linked by the
proposition: speculative cryptocurrency expected returns and speculative cryptocurrency
risk:

∆ ln(si,t) = α + β1yt−1 + β2σt−1 + γ′X + ai + bt + εi,t,
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where y is the perpetual futures funding premium, σ is the risk of Bitcoin measured by
Bitcoin futures’ implied volatility, si,t is the face value of stablecoin i, X is a vector of controls
including lags of the stablecoin’s face value and issuance, ai is a stablecoin fixed effect, and bt
is a time fixed effect.

In the first stage, the proposition predicts the stablecoin’s supply will increase in y, β1 > 0,
and decrease in σ, β2 < 0. We lag the independent variables by a day to ensure they are in
the stablecoin issuer’s information set. We include monthly fixed effects to capture possibly
slower moving changes in `, as the proposition’s redemption channel holds ` fixed.

Table 5 shows the results from the first stage regression. The first three columns focus
on USDT, and the last three include USDT and DAI. Implied volatility has a negative
coefficient, and the funding rate coefficient is consistently positive, so stablecoin redemptions
are larger when implied volatility is higher and when funding premia, our proxy for demand
of cryptocurrency speculation, is lower. The results are similar across all specifications
including month and coin fixed effects and including lags of redemptions and the token’s face
value. ∆ ln(si,t) is in basis points, so a 10pp increase in the funding premium, all else equal,
corresponds to subsequent stablecoin issuance between 5.5 and 11 basis points.

The model predicts that lending rates increase after the token’s supply falls. Thus, the
second stage regresses stablecoin lending rates on predicted changes in the token’s supply
̂∆ ln(si,t) estimated from the first stage:

∆Ri,t = α + γ
(

̂∆ ln(si,t)
)

+ ai + bt + εi,t,

The model predicts that γ < 0. We run this regression as 2SLS so the standard errors reflect
that fact that the independent variable in the second stage regression is estimated.

Table 6 shows the second stage regression of the change in lending rates (in basis points)
on the expected change in supply. Like the previous table, the first three columns limit the
sample USDT, and the last three include both USDT and DAI. The table shows the results
after estimating ̂∆ ln(si,t) using the first stage regression described above. The table shows
that an expected one basis point increase in token supply decreases the lending rate by 1.8
to 5.3 basis points.
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4.3 May 2022 Stablecoin Turmoil

In May 2022, the algorithmic stablecoin TerraUSD depegged. Sentiment in crypto markets
had been slagging but turned extremely bearish after the depeg. Several prominent crypto
firms failed shortly after that: 3 Arrows Capital, Voyager Digital, and Celsius. Pressure on
TerraUSD spilled to other stablecoins, and Tether’s market capitalization fell from $83 to
$73 billion in May following a stream of redemptions. Several other algorithmic stablecoins
failed or teetered on the brink of viability. USDC, viewed as the highest quality stablecoin,
traded at a premium to its peg and saw net inflows. Such turmoil is a natural experiment to
study the model’s predictions.

Figure 5 shows the market dynamics for Tether during TerraUSD’s price collapse. The
vertical line on May 10 denotes the date that TerraUSD lost its peg. The model posits that a
stablecoin will lose its peg when speculative cryptocurrency risk increases or when demand
for the speculative cryptocurrency falls. The top half of the figure shows that Tether lost its
peg for at least two days, coinciding with spikes in BTC implied volatility and a collapse in
perpetual futures funding premia, a proxy for speculative demand.

The model predicts that Tether could maintain its peg by decreasing s, equivalent to
redeeming and burning tokens to reduce its market capitalization, while holding ` fixed.
Tether redeemed roughly $10 billion of tokens over three weeks, consistent with the prediction,
as shown in the bottom-left panel of Figure 5. The bottom-right panel shows that Tether’s
lending rates spiked and remained elevated, helping stabilize the peg.

Proposition 1 also shows that the stablecoin issuer could maintain its peg by increasing `.
It is unlikely this was the primary tool used to stabilize the peg in the immediate aftermath
of the TerraUSD failure. Tether’s most recent disclosure for the quarter ending March 2022
showed safe asset holdings of $43 billion (52% of its total assets), defined as the sum of its
cash, reverse repos, and Treasury bills. Its safe asset holdings would have fallen to $33 billion
(46% of total assets), assuming it paid for redemptions entirely out of safe asset sales. To
increase `, Tether would have needed to sell $4.4 billion of its non-safe assets to safe assets.
Such a large shift out of risky assets over a short period seems unlikely without material
losses, so we believe the main channel of adjustment was not through ` but through s during
this episode.

The ` adjustment mechanism to maintain a stablecoin’s peg is likely more useful over
longer periods. In June 2022, rumors circulated that Tether’s commercial paper portfolio
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had suffered 30% losses. In response, Tether explicitly said that would increase ` in the long
run:12

Tether can report that its current portfolio of commercial paper has since been
further reduced to 11 billion (from 20 billion at the end of Q1 2022), and will be
8.4 billion by end June 2022. This will gradually decrease to zero without any
incurrences of losses. All commercial papers are expiring and will be rolled into
US Treasuries with a short maturity.

Such dynamics are not limited to Tether. Dai, a decentralized and collateralized stablecoin,
uses the USDC stablecoin as collateral for more than half its outstanding coins. In the summer
of 2022, USDC’s issuer—Circle—began blocking wallets holding USDC that were associated
with Tornado Cash.13 Market participants grew concerned that DAI would be compelled to
comply with the sanctions given their large USDC holdings. Rune Christianson, DAI’s co-
founder, suggested that DAI should move its USDC holdings to ETH, functionally increasing
the risk of its reserves (decreasing `). In response, users redeemed roughly four percent of
DAI’s outstanding tokens the next day, amounting to $320 million.

4.4 Robustness

The model shows a causal relationship between expected returns (y) and stablecoin lending
rates, and we show the two are highly correlated in Table 3. A concern is that some other
unobserved variable is driving the behavior in both variables, driving their high correlation.
We approach this concern using an instrumental variables approach using Major League
Baseball (MLB) data.

In June 2021, MLB and FTX announced a sponsorship deal naming FTX the “Official
Cryptocurrency Exchange” of the MLB. In particular, the deal placed a prominent FTX
logo on all umpire uniforms beginning July 13, 2021—previously, umpires had never worn
advertising patches. Umpires wore the patch for all regular season, postseason, and spring
training games. The sponsorship agreement also included promotions on nationally televised

12https://web.archive.org/web/20220721170350/https://tether.to/en/tether-condemns-false-
rumours-about-its-commercial-paper-holdings/

13Tornado Cash is a virtual currency mixer designed to obfuscate transaction details on the Ethereum
blockchain. The U.S. Treasury sanctioned it in August 2022 for its role in money laundering.
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MLB games, MLB.com, MLB Network (a television channel), and social media.14 While
the monetary value of the sponsorship deal is unknown, it is likely substantial: FTX signed
sponsorship deals with other sports leagues worth at least $345 million. The deals included a
19-year, $135 million agreement for naming rights to the NBA’s Miami Heat stadium and a
10-year, $210 million agreement for naming rights to the esports team TSM.

We collect television viewership data on nationally televised MLB games from showbuz-
zdaily.com. The data include a household rating, which measures the percentage of households
watching the game. The television viewership data run from July 13, 2021, to November 5,
2022, corresponding to the period when umpires started wearing the logo (beginning during
the 2021 All-Star game) through the end of the 2022 World Series. On many days there is
only one game with a household rating. We use daily averages of the household rating as
our instrument for the funding premium. Notably, the sample does not include the period of
FTX’s collapse, which began on November 6, 2022.

Our identification relies on two assumptions: first, we assume that the advertising is
effective, and some MLB audience members began trading cryptocurrency after viewing the
advertising. FTX’s agreement to the costly sponsorship deals indicates that they believed
it would lead to more customers and more trading on their platform. There is considerable
evidence that advertising is effective (Guadagni and Little (1983), Ippolito and Mathios
(1991), Ackerberg (2003), Sethuraman et al. (2011)). Bagwell (2007)’s survey of the literature
on advertising’s effect on consumer behavior indicates that advertising is most effective for
those without previous experience with the brand.

Second, the timing of the baseball schedule is set well in advance of the season15, and it is
highly improbable cryptocurrency events affect the timing or viewership of MLB games.

Table 7 shows the regression results using the instrumental variable. In the first stage,
we regress the daily funding premium on the average household rating; in the second stage,
we regress the lending rate on the predicted funding premium. Panel A shows the second
stage result. For every one percentage point larger in the futures funding premium estimated
using the household rating instrument, Tether’s margin lending rate is about 13bp higher on
an annualized basis (column 2). Using DAI’s lending rate or different controls gives similar

14https://www.mlb.com/press-release/press-release-mlb-ftx-cryptocurrency-partnership
15The 2022 season schedule was modified shortly before the season began due to protracted negotiations

with the players’ union.
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estimates ranging from 11bps to 22bps.
Panel B reports the first stage regression. The instrument satisfies the relevance condition,

and the F -statistic indicates the instrument is statistically strong. Panel C shows that the
instrumented regression gives similar coefficients to the OLS regression.

Panel D shows a placebo test. We use the week-ahead household rating as the instrument.
Baseball viewership one week in the future should not affect today’s lending rate through the
funding premium, because it is unknown at date t. Using the week-ahead household rating
as the instrument leads to an insignificant relationship between the funding premium and
the lending rate. The F -statistic indicates the instrument is weak.

5 Conclusion

Privately-produced money can maintain a $1 peg even if it is not no questions asked, but
agents will not hold private money unless they are compensated for their risks. Speculative
investors will provide that compensation if their expectations are bullish enough. Our model
reconciles two important facts: first, stablecoins are not useful as money under their current
regulatory regime despite their relative success in maintaining their peg, at least for the most
salient coins. Second, stablecoin lending rates are high and tightly correlated with measures
of speculative demand.

Stablecoins can provide a direct link between speculation and the real economy. Stablecoin
issuers invest their reserves to earn profits but must adjust their reserves—possibly quickly—to
keep their debt trading at par. When speculative demand falls, they can keep their debt
trading at par only by moving to a safer portfolio or allowing redemptions. Such reallocation
or change in stablecoin supply can cause disruptions in the real economy. Stablecoin issuers
will need to adjust quickly if expected returns for cryptocurrencies fall; otherwise, they face
the risk of collapse. These adjustments can cause disruptions in the markets they invest in,
like the commercial paper market that provides financing to the real economy.
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6 Figures
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Figure 2: Perpetual Futures Funding Rate. Figure plots the annualized funding rate of USDT-settled Bitcoin perpetual
futures for Bitcoin and Ether on Binance. A positive funding rate indicates that long-future investors make payments to
short-future investors. Series are seven-day trailing averages.
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Figure 3: Stablecoin Lending Rates and Cost of Leverage. Figure plots a binscatter of daily observations of the
annualized funding rate of BTC/USDT perpetual futures on Binance relative to the annualized USDT lending rate on FTX.
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Figure 4: Tether Safe Asset Share vs. Perpetual Futures Funding Rate and USDT Lending Rate. Left panel
plots the perpetual futures funding rate against USDT’s safe asset portfolio share in the same quarter. Right panel plots the
average annualized lending rate for Tether on FTX by quarter against USDT’s safe asset portfolio share in the same quarter.
Safe asset portfolio share is calculated using public disclosures and is the share of reserves held in cash, bank deposits (including
fiduciary deposits), reverse repurchase agreements, and Treasury bills.
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Figure 5: Tether during May 2022. Top-left figure plots BTC implied volatility and perpetual futures funding rate. Top
right plots the price of Tether. Bottom left panel plots Tether’s market capitalization in billions. Bottom right panel plots
Tether’s margin lending rates on two exchanges.
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7 Tables

Days (N) Mean Std. Dev. Min Max
Stablecoin Prices ($)

USDT (Tether) 705 1.0010 0.0022 0.9919 1.0114
DAI (Dai) 705 1.0013 0.0024 0.9912 1.0109

Margin Lending Rates (annualized percent)
USDT 705 7.96 10.00 1.00 66.65
DAI 650 7.26 10.40 0.88 93.41

Perpetual Futures Funding Rate (annualized percent)
BTC/USDT 705 19.07 31.86 −57.93 229.96
ETH/USDT 705 20.84 44.24 −237.60 410.63

Table 1: Summary Statistics. Table gives summary statistics for stablecoin prices from Coingecko, stablecoin margin lending
rates from FTX, and perpetual futures funding rates from Binance. Sample runs from December 1, 2020 to November 5, 2022.
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Haircut (%) Coin Ticker FTX Binance Bitfinex Kraken
Major Coins Bitcoin BTC 5 5 0 0

Ether ETH 10 5 0 0
Cardano ADA n.a. 10 70 10
Ripple XRP 10 15 50 n.a.
Solana SOL 15 10 30 10
Dogecoin DOGE 10 5 80 n.a.
Litecoin LTC 10 10 0 30
Avalanche AVAX 15 20 80 50
Tron TRX 15 50 70 50

Stablecoins Tether USDT 5 0 0 10
USD Coin USDC 0 0 0 10
Binance USD BUSD 0 0 n.a. n.a.
Dai DAI 15 n.a. 25 10

Average Major Coins 11 14 42 21
Stablecoins 5 0 8 10

Table 2: Collateral Haircuts. FTX haircut is 1 minus the initial weight; Binance haircut
is 1 minus the collateral rate. Average is an unweighted average of the haircuts in the
corresponding rows above. Collateral haircuts updated as of November 2022, except Binance
numbers are October 2022.
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USDT USDT and DAI
(1) (2) (3) (4) (5) (6)

Futures Funding Ratet 0.24∗∗∗ 0.16∗∗∗ 0.12∗∗∗ 0.22∗∗∗ 0.14∗∗∗ 0.11∗∗∗
(19.59) (7.64) (6.19) (13.65) (7.81) (5.27)

Margin Lending Ratet−1 0.32∗∗∗ 0.26∗∗∗
(7.28) (4.00)

BTC Implied Volatilityt −0.00 0.04
(−0.02) (0.91)

RBTC
t 0.11 0.09

(1.47) (1.23)
N 705 705 480 1,355 1,355 922
R2 0.56 0.70 0.74 0.41 0.58 0.63
Month FE No Yes Yes No Yes Yes
Coin FE No No No No Yes Yes

Table 3: Stablecoin Interest Rates and Expected Returns. Table presents the regression of the USDT stablecoin’s
margin lending rate from the FTX exchange on Binance’s BTC/USDT perpetual future funding rate. Observations are daily.
t-statistics are reported in parentheses using robust standard errors and clustered by month, where ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗
p < 0.01.
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Days Average Redemption 95%ile Redemption Largest After 2019
Coin Total % with Redemptions $ mln % of Face $ mln % of Face $ mln % of Face
USDT 2,788 25 65.0 0.3 237.7 1.2 3,432.4 4.1
USDC 1,493 39 79.9 0.8 360.9 2.3 3,809.4 8.2
BUSD 1,142 34 65.5 1.4 229.4 5.4 460.4 11.9
DAI 1,083 37 34.4 1.1 145.5 4.0 718.2 13.6
USTC 765 27 99.8 0.9 323.5 3.1 4,748.3 27.1
MIM 493 38 28.8 1.5 53.0 3.0 1,473.6 78.8
TUSD 1,689 43 7.1 1.3 38.0 5.1 235.1 19.0
PAX 1,502 45 7.6 1.5 34.8 5.6 178.7 15.3
LUSD 580 42 11.9 1.9 44.4 6.3 585.0 40.4
HUSD 1,143 38 9.0 2.5 42.2 8.9 171.8 35.7
USDN 1,009 40 4.2 0.8 9.8 2.0 547.2 80.5
FRAX 685 40 10.3 1.1 43.7 4.6 594.8 22.9
ALUSD 586 50 2.2 0.8 7.1 2.8 93.7 27.3
GUSD 1,508 42 4.9 3.4 23.3 17.8 169.3 41.4
USDP 589 48 1.8 3.0 9.5 18.9 64.9 52.4
MUSD 851 54 1.2 2.4 4.8 10.2 16.0 27.7
USDK 1,227 49 0.1 0.3 0.3 0.9 1.6 6.8
RSV 941 51 0.0 0.5 0.2 1.8 3.5 16.6

Table 4: Redemption Summary Statistics. Table presents summary statistics about daily net redemptions for several
stablecoins. Rows ordered by average market capitalization in 2021, beginning with the largest (USDT). Sample runs from the
date Coingecko has data for the coin until November 5, 2022.
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USDT USDT and DAI
(1) (2) (3) (4) (5) (6)

Funding Premiumt−1 0.99∗∗∗ 0.68∗∗∗ 0.62∗∗∗ 1.07∗∗∗ 0.65∗∗∗ 0.55∗∗∗
(11.17) (5.26) (4.37) (10.72) (4.73) (4.42)

Bitcoin Implied Volatilityt−1 −0.87∗ −1.42∗∗∗
(−1.82) (−3.37)

∆(si,t−1) −0.02 0.07
(−0.55) (0.87)

si,t−1 −123.65∗∗ −90.51∗∗∗
(−2.16) (−2.88)

N 704 704 704 1,408 1,408 1,408
R2 0.26 0.34 0.36 0.10 0.15 0.18
Month FE Yes Yes Yes Yes Yes Yes
Coin FE n/a n/a n/a No Yes Yes

Table 5: Peg Stability, First Stage. Table presents regression ∆ ln(si,t) = α+ β1yt−1 + β2σt−1 + γ′X + ai + bt + εi,t where y
is the perpetual futures funding premium, σ is the risk of Bitcoin measured by Bitcoin futures’ implied volatility, si,t is the face
value of stablecoin i, X is a vector of controls including lags of the stablecoin’s face value and issuance, ai is a stablecoin fixed
effect, and bt is a time fixed effect. ∆ ln(si,t) is in basis points. Observation at the daily level by coin. Sample in first three
columns is only USDT and in last three columns is both USDT and DAI. Standard errors clustered by month. t-statistics are
reported in parentheses using robust standard errors where ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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USDT USDT and DAI
(1) (2) (3) (4) (5) (6)

̂∆ ln(si,t) −3.23∗∗ −2.54∗ −5.26∗∗ −2.75∗∗ −1.78∗ −2.67∗
(−2.10) (−1.75) (−2.29) (−2.47) (−1.73) (−1.93)

N 704 704 704 1,353 1,353 1,353
Month FE No No Yes No No Yes
Coin FE n/a n/a n/a No Yes Yes
Controls No Yes Yes No Yes No

Table 6: Peg Stability, Second Stage. Table presents regression ∆Ri,t = α + γ( ̂∆ ln(si,t)) + ai + bt + εi,t where Ri,t is the
lending rate of stablecoin i on date t at FTX in basis points and ̂∆ ln(si,t) is the expected change in the face value of the stablecoin
in basis points. ̂∆ ln(si,t) is estimated using the first stage regression ∆ ln(si,t) = α+ β1yt−1 + β2σt−1 + γ′X + ai + bt + εi,t, where
y is the perpetual futures funding premium, σ is Bitcoin futures’ implied volatility, si,t is the face value of stablecoin i, ai is a
stablecoin fixed effect, bt is a time fixed effect, and X is a vector of controls including si,t−1 and ∆ ln(si,t−1). Observation at the
daily level by coin. Sample in first three columns is only USDT and in last three columns is both USDT and DAI. t-statistics are
reported in parentheses using robust standard errors where ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Panel A: Second Stage Lending Rate Ri,t

USDT DAI

(1) (2) (3) (4)

̂Funding Premiumt 0.224∗∗∗ 0.132∗∗∗ 0.157∗∗∗ 0.118∗∗∗

(4.355) (3.341) (3.682) (2.931)
Ri,t−1 0.575∗∗∗ 0.486∗∗∗

(4.881) (4.351)

N 258 258 258 258
Time FE Yes Yes Yes Yes

Panel B: First Stage Funding Premium
USDT DAI

(1) (2) (3) (4)

Rating 3.347∗∗∗ 2.714∗∗∗ 3.347∗∗∗ 3.216∗∗∗

(3.191) (2.898) (3.191) (3.249)
Ri,t−1 1.182∗∗∗ 0.487∗

(3.951) (1.802)

N 258 258 258 258
Time FE Yes Yes Yes Yes
F -stat 10.18 8.398 10.18 10.55

Panel C: OLS Lending Rate Ri,t

USDT DAI

(1) (2) (3) (4)

Funding Premiumt 0.187∗∗∗ 0.103∗∗∗ 0.143∗∗∗ 0.095∗∗∗

(12.544) (5.362) (8.379) (4.401)
Ri,t−1 0.518∗∗∗ 0.342∗∗∗

(6.845) (3.537)

N 705 704 650 649
Time FE Yes Yes Yes Yes

Panel D: Placebo Lending Rate Ri,t

USDT DAI

(1) (2) (3) (4)

̂Funding Premiumt 0.350 0.206 0.228 0.166
(1.521) (1.093) (1.623) (1.241)

Ri,t−1 0.545∗∗∗ 0.579∗∗∗

(2.899) (5.839)

N 258 258 258 258
Time FE Yes Yes Yes Yes
F -stat 1.41 1.00 1.41 1.44

Table 7: Instrument Variables Regression of Futures Funding Premia and Lend-
ing Rates. Instrumental variables regression using the mean household rating of MLB games
on a given day as an instrument to predict the perpetual futures funding premium. Panel
A shows the second stage regression of the instrumented variable on margin lending rates
separately for USDT and DAI. Panel B shows the first stage regression of the instrument on
the perpetual futures funding premium. Panel C shows the OLS regression of the lending
rate on the funding premium. Panel D is placebo test using viewership data 7 days in the
future as the instrumental variable. Time FE indicates day of week, month of year, and
year fixed effects. Kleibergen-Paap rk Wald F statistics reported. t-statistics are reported in
parentheses using robust standard errors where ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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A Online Appendix

A.1 Uniqueness

Proposition 3. A unique signal x∗ exists for small enough noise ε such that each patient
investor withdraws only if their private signal xi is below x∗.

Proof. Existence is easy by invoking continuity properties along with the upper and lower
dominance regions. Uniqueness is less straightforward because the model exhibits the perverse
state monotonicity property, but the techniques in Kashyap et al. (2020) can be employed to
show uniqueness. In particular, it suffices to show that the derivative of ∆̄∗ is positive only
at the point that it crosses zero, that is for ξ∗ that solves (14):

d∆̄∗
dξ

∣∣∣∣∣
ξ=ξ∗

= (1− `)(R(`+ (1− `)ξ∗, s)− 1)−
∫ 1

`+(1−`)ξ∗

(1− `)
λ

dλ

= (1− `)(R(`+ (1− `)ξ∗, s)− 1)− 1
ξ∗

∫ `+(1−`)ξ∗

δ
(R(λ, s)− 1)dλ

+ 1
ξ∗

∫ 1

`+(1−`)ξ∗

`

λ
dλ, (23)

where we substituted (14). Set F (x) = ρ̄xα, which α < 1. Consider, first, α → 0, which
means that R(λ, s)→ ρ̄ from (3). Then, (23) becomes

d∆̄∗
dξ

∣∣∣∣∣
ξ=ξ∗

= δ − λ
ξ∗

(ρ̄− 1) + 1
ξ∗

∫ 1

`+(1−`)ξ∗

`

λ
dλ > 0. (24)

By continuity, even if the sum of the first two terms in (23) is negative for some ᾱ > 0,
d∆̄∗/dξ|ξ=ξ∗ > 0 for 0 < α < ᾱ.

A.2 Robustness for Measuring Expected Returns

We check that using Binance’s BTC/USDT perpetual futures funding rate is a robust proxy for
expected returns. One concern is that using the BTC/USDT perpetual futures as a proxy of
y overweights idiosyncrasies specific to Bitcoin. In Table A.1, we show pairwise correlations of
the BTC/USDT time series with several other series. Binance also has perpetual futures that
settle into Binance USD, another stablecoin, and we show that funding rates across perpetual
futures are highly correlated regardless of which stablecoin they settle in. Another concern is
that all futures funding rates on Binance reflect idiosyncrasies specific to Binance, rather than
aggregate expected returns for cryptocurrency beyond just Binance. We compare Binance’s
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number with another large exchange, FTX, and find that funding rates are similar across the
exchanges, confirming that the funding rates are not principally capturing exchange-specific
factors. Finally, we show that perpetual futures funding rates are closely linked to expected
returns embedded in crypto futures traded on the CME.

To address concerns about idiosyncrasies specific to Bitcoin, USDT, or Binance, we
show correlations across several different contracts (BTC, ETH, and DOGE), settled in
different types of stablecoins (USDT, BUSD, and FTX’s USD), and across both Binance and
FTX. We include DOGE as it is known as a highly speculative currency and was arguably
started as a joke. The last two columns are the expected return measures we infer from
CME futures, which we describe below. Combined, all the series are very highly correlated,
indicating that variation in our main measure of y, BTC/USDT on Binance, is not principally
reflecting something specific to BTC, USDT, or Binance instead of speculative expected
returns. measures

We can also proxy for y using the expected return embedded in crypto futures traded
on the CME. Unlike the highly-levered offshore perpetual futures, these futures are vanilla
futures and similar to equity index futures. The CME sets the rules for the derivatives, and
they have standard monthly expirations. These crypto futures are widely used by U.S.-based
institutional investors who want to speculate on the price of Bitcoin or Ether but are unwilling
or unable to hold cryptocurrencies directly. While the futures have embedded leverage, they
are considerably less levered than the offshore perpetual futures.16

We calculate expected returns y for Bitcoin and Ether using the futures prices. Let
Ft,t+n denote the price of a future at time t with delivery at t+ n, and let zt,t+n denote the
n-period discount factor implied by the risk-free rate. We can infer expected returns using
a no-arbitrage argument comparing the present value of Ft,t+n and Ft,t+n+1. The expected
return is

Et,t+n→t+n+1[y] ≡
(
zt,t+n+1

zt,t+n

)
Ft,t+n+1

Ft,t+n
(25)

We use the overnight-indexed swap curve to estimate the n-period discount factors: zt,t+n =
1/(1 + yOIS

t,t+n/12)(1/12) where yOIS
t,t+n is the n-month OIS yield. We prefer to use consecutive

futures rather than the front-month future versus the spot because the futures include leverage
which may introduce a bias relative to the spot price.

In principle, we can use the ratio of contracts with any expiration to calculate expected
returns between the two contracts’ expirations. We focus on the first and second front-month
contracts for two reasons. First, using the shortest maturity contracts helps control for any

16As of June 2022, the CME requires 50% (60%) margin for BTC (ETH) futures, allowing roughly 1×
(0.67×) leverage. See https://www.cmegroup.com/markets/cryptocurrencies.html.
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distortions introduced by an upward-sloping term structure of risk premia. Second, the
liquidity of derivative contracts falls considerably at longer terms.

Figure A.1 plots our measure of expected returns for Bitcoin and Ether. Given the
tremendous bull market in cryptocurrencies over the past several years, expected returns are
almost always positive, although they dipped negative in late 2018 and briefly during the 2020
pandemic. The average expected return for Bitcoin using the measure is 5.0% from December
2017 to November 2022, ranging from −10.8% in December 2018 to 23.5% in February 2021.
The ETH expected return has a shorter history because the future was introduced later, but
from February 2021 to November 2022 it averaged 4.8% with a standard deviation of 7.3%
compared to BTC’s 3.9% average and 5.3% standard deviation over the same period.

We test the model’s prediction that lending rates are increasing in y by regressing Tether’s
lending rate on FTX on our measure of expected returns using

USDT Lending Ratet = α + βE[RBTC ] + γXt + εt

where Xt is a vector of controls. Table A.2 shows the regression results. Scanning across
the first row, a 1 percentage point increase in E[RBTC ] increases the stablecoin lending
rates by between 0.8 and 1.4 percentage points, depending on the control variables. Across
all specifications, there is a positive and significant relationship between lending rates and
expected returns. Figure A.2 is a scatter plot between expected returns on Bitcoin and Tether
lending rates showing an obvious positive relationship.

One concern is that we confound expected speculative returns with the term structure of
risk premium. We control for this problem by including an expected return for the SPX equity
index using the same logic: we compare the present value of the first and second front-month
for the SPX. Including this control in column (6) does not change the statistically strong
relationship between expected returns and lending rates.
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A.3 Appendix Figures
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Figure A.1: Futures-Implied Expected Returns Figure plots the one-month/one-month expected return on Bitcoin and
Ether estimated using the difference in present values for one-month futures prices relative to two-month futures prices. Present
values are calculated using OIS interest rates, and futures prices are CME future prices.
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Figure A.2: Stablecoin Lending Rates and Futures-Implied Expected Returns Figure plots a binscatter of the
one-month/one-month expected return on Bitcoin against USDT’s margin lending rate on the FTX exchange.

47



A.4 Appendix Tables

BTC/USDT ETH/USDT BTC/BUSD DOGE/BUSD BTC/USD ETH/USD E[RBTC] E[RETH]
Binance Binance Binance Binance FTX FTX CME CME

BTC/USDT, Binance 1.00
ETH/USDT, Binance 0.84∗∗∗ 1.00
BTC/BUSD, Binance 0.80∗∗∗ 0.68∗∗∗ 1.00
DOGE/BUSD, Binance 0.59∗∗∗ 0.59∗∗∗ 0.61∗∗∗ 1.00
BTC/USD, FTX 0.79∗∗∗ 0.72∗∗∗ 0.75∗∗∗ 0.50∗∗∗ 1.00
ETH/USD, FTX 0.73∗∗∗ 0.82∗∗∗ 0.64∗∗∗ 0.47∗∗∗ 0.81∗∗∗ 1.00
E[RBTC] 0.61∗∗∗ 0.55∗∗∗ 0.53∗∗∗ 0.48∗∗∗ 0.66∗∗∗ 0.62∗∗∗ 1.00
E[RETH] 0.61∗∗∗ 0.52∗∗∗ 0.55∗∗∗ 0.54∗∗∗ 0.64∗∗∗ 0.57∗∗∗ 0.83∗∗∗ 1.00

Table A.1: Correlation of Expected Return Proxies. Table presents the pairwise correlations of several perpetual futures
funding rates and the expected return inferred using CME crypto futures. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Bitcoin Ether Both
(1) (2) (3) (4) (5) (6)

E[RBTC] 1.07∗∗∗ 0.52∗∗ 0.54∗ 0.60∗
(5.51) (2.74) (1.99) (2.00)

RBTC 0.12 0.14
(1.21) (0.95)

E[RETH] 0.79∗∗∗ 0.17 0.46∗∗∗ −0.10
(5.90) (0.89) (3.34) (−0.37)

RETH 0.02 −0.08
(0.38) (−0.89)

E[RS&P] 0.08
(1.08)

N 924 924 868 868 868 868
R2 0.35 0.51 0.36 0.51 0.39 0.53
Month FE No Yes No Yes No Yes
Coin FE No Yes No Yes No Yes

Table A.2: Stablecoin Interest Rates and Expected Returns. Table presents the regression of the USDT stablecoin’s
margin lending rate from the FTX exchange on one-month/one-month expected returns for Bitcoin and Ether and contemporaneous
returns on Bitcoin and Ether. Observations are daily; the Bitcoin-only sample in columns (1) and (2) runs from December 2020
to November 5, 2022, and the remaining columns with Ether run from February 2021 to November 5, 2022. t-statistics are
reported in parentheses using robust standard errors and clustered by month, where ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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