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1 Introduction

The identification of discrete choice demand models since Berry, Levinsohn, and Pakes (1995)

(BLP) has relied on the assumption that the product characteristic unobserved to the re-

searcher but observed to producers and consumers is conditionally mean independent of all

observed product characteristics. Under this identification assumption any function of ob-

served characteristics of all products in the market is a valid instrument for any product’s

price. Given the abundance of instruments - many of them likely to be very weak - BLP use

the structure of their competitive setting to develop product-specific instruments for price

that are likely to be highly correlated with that product’s price. More recently Gandhi and

Houde (2015) show how to extend this logic to develop even more powerful instruments.

Since the inception of its use this assumption has been criticized as being inconsistent with

profit-maximizing behavior; it is not clear why firms would choose a level of the unobserved

quality for a product independently of the choice of the products’ observed characteristics.

Empirically we see a high positive correlation among the observed attributes of products,

suggesting unobserved product quality is likely to be positively correlated with observed char-

acteristics. If firms do choose to put more unobserved-by-the-researcher quality on products

that have more attractive observed characteristics, then instrumenting price with observed

product characteristics will not break the positive correlation between price and unobserved

quality that BLP are trying to address. Demand elasticities will then continue to be biased

in a positive direction because higher prices mean consumers are getting higher unobserved

quality, leading consumers to look less price sensitive than they actually are in reality.

In this paper we extend BLP to allow all product characteristics to be endogenous so the

unobserved characteristic can be correlated with the other observed characteristics. Spence

(1976) formalized the notion that firms’ decisions about characteristics’ choices are driven by

their beliefs about consumer preferences for them and the costs of providing them by show-

ing their first-order conditions for profit-maximization contain terms related to marginal

and infra-marginal consumers and costs.1 We use these first-order conditions for the optimal

choice of price and observed and unobserved product characteristics to try to infer firms’

beliefs about the distribution of consumers tastes and the structure of costs.

1See also the more recent generalization by Veiga and Weyl (2014).
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We estimate a model of BLP-type demand and supply under the assumption that firms

choose characteristics first given some information set. They do so knowing that once all

of the product characteristics and other demand and supply factors have been realized they

will compete in prices in a Bertrand–Nash manner. Using the insight from Hansen and Sin-

gleton (1982), our identification is based on the assumption that firms’ ex-post optimization

mistakes are conditionally mean independent of anything the firm knows at the time the

firm chooses its product characteristics. This will be true as long as firms do not condition

on something that we do not observe that affects their profitability and their characteristics’

choices (see Pakes et al. (2015)). An advantage of these setups is that we do not have to

completely specify the firm’s information set at the time it chooses characteristics; it may

include other firms’ product lagged or contemporaneous characteristics and demand/cost

shocks, signals on all of these, or no information on them at all.

Our approach is complementary to the many papers previous to ours that have exploited

Spence’s insight that optimization can help with identification of model parameters, includ-

ing Mazzeo (2002), Sweeting (2007), Crawford and Shum (2007), Lustig (2008), Gramlich

(2009), Fan (2013), Eizenberg (2014), and Blonigen et al. (2013).2 These papers are more

general than our approach in the sense that they consider (e.g.) the use of optimization to

help with identification of fixed costs, sunk costs, or identification in the face of restricted

sets of characteristics from which firms can choose for product characteristics. However,

all of these papers maintain some kind of independence between the level or change in the

demand or supply shock and the observed product characteristics. Our identification as-

sumption is straightforward to adopt to all of these settings and would allow researchers to

sidestep imposing mean independence of observed and unobserved characteristics while at

the same time estimating (e.g.) fixed or sunk costs.

The steps necessary to calculate the value of our objective function are identical to the

steps in BLP’s two-step GMM estimator except we replace the mean independence moments

with our optimization moments. The BLP inversion allows us to – for any given parameter

value – solve for the unobserved characteristics for every vehicle so we can treat them as

another observed characteristic that the firm is choosing optimally. Analogous to the BLP

estimation routine, we are able to concentrate out linear parameters leading to an estimator

2See the review in Crawford (2012) for a complete list of all papers that use optimization in characteristics
for identification.
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that is not substantially more computationally burdensome. Using characteristics of com-

petitors vehicles from prior years - which should be known to the firm at the time they made

characteristic choices in those prior years - we develop an approximation to the optimal

instruments implied by the model’s structure. The standard BLP instruments are also valid

instruments in our setting and we provide results using these instruments as well. The only

other difference with the BLP estimation routine is we include these characteristics in the

marginal cost function. Formulating our estimator in the GMM framework means our esti-

mator can easily be supplemented with moments that may further help with identification,

as in Petrin (2002) or Berry et al. (2004).

The most striking difference between the BLP estimates and the optimization estimates

is that the coefficient on price is much larger under optimization. The impact of this change

is that relative to BLP on average elasticities double and estimated markups fall by 50%. We

investigate whether a positive correlation between observed and unobserved characteristics

is a possible explanation by constructing a “BLP instrumented price”, that is, we regress

price on the BLP instruments and construct predicted values. We find our unobserved qual-

ities are significantly positively correlated with the instrumented prices with a correlation of

approximately 0.5.

A second related difference in model fit relates to the fact that only 10% of U.S. house-

holds buy new cars in any given year so both fitted demand models need a way to explain

why 90% of households choose the outside good. BLP fits 90% of households choosing the

outside good by having consumers view the average unobserved quality of new cars as much

worse than the outside good. In contrast, the optimization-fit has consumers strongly desir-

ing new cars relative to the outside good but the significantly higher price elasticity causes

90% not to buy a new car.

Our estimates are almost always much more precisely estimated relative to the BLP-fit

model. We also find some of the anomalies in the BLP point estimates are not present in

the optimization-fit point estimates. The BLP point estimates imply consumers dislike fuel

efficiency but in our setup they strongly and significantly prefer fuel efficiency. The BLP

point estimates also imply it cost less to build a bigger and more fuel efficient vehicle while

we find the opposite.
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The differences we report here between the optimization-fit model and the BLP-fit model

have also been found in European automobile data (see Miravete et al. (2015)). They adopt

our approach to estimating demand and supply to look at competition in the Spanish au-

tomobile market. They report that using the optimization moments on average estimated

price elasticities double and estimated markups fall by 50% relative to when they use the

BLP moments. Anomalous demand and supply point estimates under the BLP-fit are not

present under optimization-fit, the standard errors are much smaller, and their unobserved

quality term is positively correlated with observed characteristics.

In Section (2), we specify demand and supply system. In Section (3) we discuss our iden-

tifying restrictions and give conditions under which we are locally identified. Section (4)

discusses estimation and our choice of instruments. In Section (5), we provide Monte Carlo

simulation results for the proposed estimator which demonstrate its properties. Lastly, we

apply our approach to the same automobile data BLP used in (6).

2 Demand and Supply

In this section we provide the demand and supply framework for our estimator, which closely

follows the model of Berry et al. (1995). We specify a random coefficients system for demand

and oligopolistic competition with constant marginal costs for supply. The primary point of

departure is that firms compete each period in two stages - a first stage where they optimally

choose their product characteristics and a second stage where they compete on price.

2.1 Demand

Each product is defined as a vector of K observed characteristics and price (Xj, pj) ∈ RK+1

and an unobserved (to the econometrician) characteristic ξj which is observed by both con-

sumers and producers. Product j = 0 is the option of not buying a new vehicle and it is

standard to normalize its characteristics and price to zero (X0 = p0 = ξ0 = 0).

A consumer i is indexed by (Di, vi, εi), where Di is a vector of their demographic char-

acteristics, vi is vector of their K idiosyncratic taste draws (vik)
K
k=1 drawn from a known

distribution, one for each of the K characteristics, and εi is the vector of their product-

specific “tastes” (εij)
J
j=1 which are assumed to be independent and identically distributed
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extreme value across consumers and products. The demand model parameters are given as

θD = (θl, θnl). Utility that consumer i derives from good j is given as

uij
(
θD
)

= δ(Xj, pj, ξj; θ
D) + µ(Xj, pj, Di, vi; θ

D) + εij

The term δj = δ(Xj, pj, ξj; θ
D) is a product specific utility component and is common to

all consumers. The term µ(Xj, pj, Di, vi; θ
D) captures the individual specific taste for the

characteristics of good j.3

Consumer chooses the one and only one product j which yields the highest utility:

uij
(
θD
)
≥ uij′

(
θD
)
, ∀j′.

Define sij as individual i’s probability of purchasing good j prior to the realization of ε and

denote the vector of market prices as p = {pj}j (with X and ξ defined analogously). The

choice probabilities are given by

sij
(
p,X, ξ,Di, vi; θ

D
)

=
exp

(
δ(Xj, pj, ξj; θ

D) + µ(Xj, pj, Di, vi; θ
D)
)∑

j′∈J exp (δ(Xj′ , pj′ , ξj′ ; θD) + µ(Xj′ , pj′ , Di, vi; θD))
.

Letting F (Di, vi) denote the distribution of consumer characteristics the market share for

good j is given as the integral over these consumers:

sj
(
p,X, ξ; θD

)
=

∫
sij
(
p,X, ξ,Di, vi; θ

D
)
dF (Di, vi) .

We turn now to our model of supply.

2.2 Supply

Define the matrix of product characteristics Zj = (Xj,Wj) and Z = (Zj)j∈J , where Wj are

cost shifters, including Xj itself or the log of it and ωj is the unobserved cost shock for good

j. We follow the literature and specify firm profits as

3It is commonly assumed that these functions are linear in the characteristics so that δj = Xjβ−αpj+ξj ,
and consumer i’s taste for characteristic Xk is then given by βik = βk + ΠkDi + Σkvi. See Nevo (2004).
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Πf =
∑
j′∈Jf

(pj′ −mcj′ (Wj′ , ωj′ ; θ)) sj′ (p, Z, ξ; θ)

Here f indexes firms and Jf is the set of products produced by firm f . We assume firms

compete with each other every period in two stages. In the first-stage, firms choose their

product characteristics to maximize their expected profit. In the second stage, all uncer-

tainty is resolved and firms compete Nash-Bertrand in prices.

Specifically, in the second stage, firms have the following J pricing first-order conditions:

sj +
∑
j′∈Jf

(pj′ −mcj′ (Wj′ , ωj′ ; θ))
∂sj′

∂pj
= 0, ∀j ∈ Jf . (1)

In the first stage, firms know that they will compete in prices in a Bertrand-Nash manner

given the chosen characteristics of all products in the market and that prices are set accord-

ing to the first-order conditions (1). With this knowledge, firms choose characteristics to

maximize expected profits given their information set, denoted If for firm f . This informa-

tion set may differ across firms, and it may include other firms’ product characteristics, own-

and other-firm cost shifters, some signals on the variables, or no information at all on them.

Let θ =
(
θD, θS

)
be the vector of all parameters, including the cost-side parameters. In

the first step, firm f chooses vectors Xf = (Xj)j∈Jf and ξf = (ξj)j∈Jf to solve:

max
Xf , ξf

E
[
Πf

∣∣ If]
with prices determined after characteristics are set in a Bertrand-Nash manner. Given

(Zf , ξf )f , the realized value of the first-order condition for characteristic k of product j is

given by νjk(θ) and written as

∂Πf

∂Xjk

=
∑

j′∈Jf

[
(pj′ −mcj′ (Wj′ , ωj′ ; θ))

d sj′ (p,Z,ξ;θ)

d Xjk
+ (2)

sj′ (p, Z, ξ; θ)
∂(pj′−mcj′(Wj′ ,ωj′ ;θ))

∂Xjk

]
(3)

for k ≤ K, and
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∂Πf

∂ξjk
=

∑
j′∈Jf

[
(pj′ −mcj′ (Wj′ , ωj′ ; θ))

d sj′ (p,Z,ξ;θ)

d ξjk
+

sj′ (p, Z, ξ; θ)
∂(pj′−mcj′(Wj′ ,ωj′ ;θ))

∂ξjk

]
for k = K + 1. Firms anticipate the change in equilibrium prices that will occur in the

second step if they change their product characteristics and this shows up in the first-order

condition in the derivative of shares with respect to characteristics Xj (and ξj):

d sj′ (p, Z, ξ; θ)

d Xjk

=
∂sj′

∂Xjk

+
∑
j′′∈J

∂sj′

∂pj′′

∂pj′′

∂Xjk

.

The first-order condition illustrates that multi-product firms internalize the externality of

changing Xj on the profits of its other products j′ ∈ Jf . The term in (2) represents the

change in profits attributable to marginal consumers while the second term in (3) captures

those attributable to inframarginal consumers. Rational expectations requires that

E

[
∂Πf

∂Xjk

∣∣∣ If] = 0, ∀k, j ∈ Jf , ∀f (4)

In equilibrium, the optimal level of Xf chosen by the firm maximizes expected profits given

what the firm knows at the time the characteristics are chosen. We turn now to the identi-

fying restrictions of our model.

3 Identification

We turn now to the issue of identification. Readers interested in the empirical results can

skip this section and go directly to Section (5).

3.1 Moment Conditions

Our identification is based on the (K + 1)× J first-order conditions in (3) coupled with the

J first-order conditions with respect to p in (1) and the BLP inversion. Given θ and the

data, market shares are inverted to recover mean utility and the level of unobserved quality.
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Marginal costs can then be recovered from (1):

mc (s, p, Z; θ) = p−∆−1 (s, p, Z; θ) s

where

∆ij =

−
∂sj
∂p′j
, if j, j′ ∈ Jf

0 otherwise

The realized value of the firm f ’s first-order conditions for good j and characteristic k,

evaluated at θ, is defined as

νjk (θ) :=
∑
j′∈Jf

[
(pj′ −mcj′ (s, p, Z; θ))

d sj′ (p, Z; θ)

d Xjk

+

sj′ (s, p, Z; θ)
∂ (pj′ −mcj′ (s, p, Z; θ))

∂Xjk

]

We use the insight from Hansen and Singleton (1982) that the first-order conditions from

profit maximization, along with rational expectations, implies that if θ = θ0 then

E [νjk (θ) | If ] = 0 ∀k, j ∈ Jf , ∀f (5)

Sometimes firms will provide too little of a characteristic and sometimes it will provide too

much, but on average these “mistakes” average out. The residual νjk may include expec-

tational errors that arise due to asymmetric information across competing firms on each

others’ costs and product characteristics or it may be incomplete information on the out-

comes own-firm payoff-relevant variables (like realized cost shocks). νjk may also include

model approximation error or measurement error in the data.4

We have more than K + 1 unknown parameters but only K + 1 first-order condition con-

ditions. As such, we need instruments that are orthogonal to νjk in order to estimate the

model parameters. Hansen and Singleton (1982) implies that any function of the arguments

4As Pakes et al. (2015) note, if there is something known to the firm but not seen by the researcher and if
it affects the firm’s profits and thus its decisions, the mean of these selected observations will not generally
be zero.
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of If are possible instruments that can be used to identify the model parameters. Letting

H = {Hl}Ll=1 ⊂ If be a set of instruments, the moment restrictions become

E [Hkljνjk (θ) | If ] = 0 ∀k, l, j ∈ Jf , ∀f (6)

We propose such instruments in the subsequent section. Before doing so, we discuss the local

identification of the model.

3.2 Local Identification

Let νk (θ, s, p, Z) be the vector of J residuals νjk (θ, s, p, Z) and ν (θ, s, p, Z) be a vector of

the K + 1 residual vectors νk (θ, s, p, Z).5 Standard rank conditions require that the matrix

D = E

[
H
∂ν(θ0)

∂θ′

∣∣∣If]

be non-singular for the model to be locally identified. This requires that there are sufficient

excluded instruments that are correlated with ∂ν(θ0)
∂θ′

and that the elements of ∂ν
∂θ′

are not

collinear. We show in the appendix that it is possible to write νk(θ) as an affine function of

θl:

νk (θ) = νkc(θnl, X,W, p, s) + νkθ(θnl, X,W, p, s)θl = 0, (7)

for some new functions νkc and νkθ, neither of which have as arguments θl. The linearized

residuals help clarify when the model is locally identified. From equation (7), we have

∂νk
∂θ′l

= νkθ(θnl, X,W, p, s)

and

∂νk
∂θ′nl

=
∂νkc(θnl, X,W, p, s)

∂θ′nl
+
∂νkθ(θnl, X,W, p, s)

∂θ′nl
θl

5For notational simplicity we suppress the dependence of νk on the data when the meaning of νk(θ) is
clear.
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In general, the expectation of these terms will not be collinear at θ0. However, in the case

where νkc = 0 it is straightforward to see that local identification fails. When νkc = 0, then

the moment condition E[H ′νk(θ0)] = 0 implies

E[H ′νkθ(θnl,0, X,W, s)]θl,0 = 0

Assuming that the elements of θl are non-zero at truth, this implies that the columns of

E[H ′νkθ(θnl, X,W, p, s)] = E
[
H ′ ∂νk

∂θ′l

]
have rank less than the number of linear parameters,

so the rank-condition fails. We now turn to the estimation routine and our proposed instru-

mental variables.

4 Estimation

There are three sections to this estimation section. Section 4.1 describes how we implement

the GMM objective function. Section 4.2 then describes our approximation to the optimal

instruments. Section 4.3 show hows to concentrate out all of the “linear” parameters during

estimation to reduce the dimensionality of the nonlinear search. Readers only interested in

these last details can skip directly there.

4.1 The Estimator

Estimation follows two-stage GMM. For an initial guess at θ0 we calculate the approxima-

tion to the optimal instruments described in the following section. Given those instruments

we calculate the optimal weighting matrix and the first stage estimates.6 At the first stage

estimates we recalculate the optimal instruments and the efficient weighting matrix and the

re-estimate to get the two-step GMM estimates.

In each stage, estimation has the following steps. Let ν(θ̂) be a vector created by eval-

uating νjk (θ) at a guess θ̂. Given a set of instruments H and a weight matrix W , the

empirical moment conditions may be written as7

6As in BLP we use importance sampling to minimize simulation error. We draw importance samples at
an initial estimate θ1, and then evaluate instruments H and optimal weighting matrix Ω at θ1 for GMM
estimation. Once the first step estimates are converged at θ2, we re-draw importance samples, re-derive
instruments, and re-evaluate optimal weighting matrix at θ2. Then, we repeat the search over θ.

7We suppress the dependence of the moment conditions on the data for notational simplicity.
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g(θ) =
1

N
H ′ν(θ̂)

and the GMM objective function is given by

GMM(θ) = g(θ)′HWH ′g(θ)

Each stage of estimation then reduces to the following steps:

1. Fix θnl equal to initial guess θ1nl

2. Solve for δ(θ1nl) that matches shares

3. Use the first-order conditions for prices to recover marginal costs.

4. Evaluate the GMM objective function.

5. Repeat from Step 1 until the objective function is minimized.

There is a pathological case that needs to be dealt with, where α → ∞ and γ → 0 can

set the moment conditions exactly equal to zero. We view this case as un-economic as it

implies that costs are independent of the characteristics and consumers are infinitely price

sensitive. There are several potential solutions to eliminating this case. First, the researcher

may re-write the moments conditions to rule out this case. Given our model specification,

each term in νkc is multiplied by σk
α

. Pulling this common term out, we can write νkc as

νkc(θnl, X,W, s) = σk
α
ν̃kc(θnl, X,W, p, s), for some function ν̃kc(θnl, X,W, p, s). Importantly,

the function ν̃kc(θnl, X,W, p, s) is always non-zero and varies non-linearly with θnl. Also,

α

σk
νk =

α

σk

(
νkc(θnl, X,W, p, s) + νkθ(θnl, X,W, p, s)θ̃l

)
= ν̃kc(θnl, X,W, p, s) + νkθ(θnl, X,W, p, s)θ̃l

is zero whenever νk is zero, but not when α→∞. It is clear that we can recover the true θl

given estimates of θ̃l and θnl.
8

8We note the similarity between this problem and estimating Euler Equations with CES utility. The
Euler Equation is given by
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Alternatively, the researcher may “compactify” the parameter space, choosing an upper

bound on the absolute value of the parameters such that the true parameter values lie in the

compact set. In practice, the researcher would set an upper-bound on the α (say 300) and

search over local minima that satisfy the bound. This is a similar procedure as is proposed

in Newey and McFadden (1994) to deal with a likelihood function that becomes unbounded

as the variance parameter approaches 0 (see page 2,136). Assuming that only the true θ0

satisfies in the first-order conditions in the compact set would then lead to consistency of

our proposed estimator.

4.2 Instruments

Chamberlain (1987) shows that the efficient set of instruments are the expected value of the

derivatives of the error term with respect to the parameters evaluated at the true parameter

θ0.

In our context this optimal instrument H is a JK × |θ| matrix

H = E
[
ν (θ0) ν (θ0)

′ | I
]−1

E

[
∂ν (θ0)

′

∂θ

∣∣∣∣∣ I
]′
. (8)

Letting E
[
ν (θ0) ν (θ0)

′ | I
]

= IJK for now, Hjkl, the element (jk, l) of the derivative, is

given as

Hjkl = E

[
∂νjk (θ0)

∂θl

∣∣∣∣∣ If
]
∀k, l, j ∈ Jf , ∀f. (9)

E
[
Rt+1β0(1− α0)c−α0

t+1 |It
]

= (1− α0)c−α0
t

which can be set exactly to zero by taking α0 →∞ or setting α0 = 1. However, transforming the equation
to an equivalent form

E

[
Rt+1β0

(
ct+1

ct

)−α0

∣∣∣∣∣It
]
− 1 = 0

rules out these pathological cases during estimation.
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where the derivative of νjk with respect to θl is given as:

∂νjk (θ0)

∂θl
=

∑
j′∈Jf

[
∂ (pj′ −mcj′)

∂θl

d sj′

d Xjk

+ (pj′ −mcj′)
d2 sj′

d θl d Xjk

+
d sj′

d θl

∂ (pj′ −mcj′)
∂Xjk

+ sj′
∂2 (pj′ −mcj′)

∂θl ∂Xjk

]
where

d sj
d θl

=
∂sj
∂θl

+
∑
j′∈J

∂sj
∂Xj′

∂Xj′

∂θl
+
∑
j′∈J

∂sj
∂pj′

∂pj′

∂θl
+
∑
j′∈J

∑
j′′∈J

∂sj
∂pj′

∂pj′

∂Xj′′

∂Xj′′

∂θl

for k ≤ K. If k = K + 1, d X or ∂X is substituted to d ξ or ∂ξ. We follow Fan (2013) and

recover
∂pj′′

∂Xjk
using the Implicit Function Theorem. In principle we are exactly identified, i.e.

the total number of instruments is equal to the total number of model parameters. These

instruments place larger weights on the first-order conditions which are most responsive to

changes in the parameters contained in θ.

There are four significant challenges to calculating the optimal instruments. We do not

know the true value of parameters θ0 and we do not know the information set If of any firm.

Even if we knew If we would have to specify the distribution of the remaining unknown

random variables conditional on the information set to be able to integrate over it. Finally,
∂X
∂θ

and ∂p
∂θ

are complicated unknown equilibrium objects.

We follow Berry et al. (1999) and choose an informed guess θg and then approximate the opti-

mal instrument Hjkl by using the value of the derivative itself
∂νjk
∂θl

calculated under different

assumptions about what is known to the firm at time when the characteristics’ decisions are

made. We set the terms ∂X
∂θ

and ∂p
∂θ

to zero because of the difficulties of estimating them so
d sj
d θl

=
∂sj
∂θl

in our estimation routine.9

Let Xt = (Xjt)j∈Jt be a vector of characteristics of all products available in year t, and

define ξt, Wt, pt, and ωt similarly. Let Xf,t = (Xjt)j∈Jft be the set of firm f ’s products, and

X−f,t = (Xjt)j /∈Jft be the set of firm f ’s competitors’ products. A natural assumption is

that each firms’ information sets contain their own contemporaneous costs shocks and their

9Leaving out these terms as well as letting E
[
ν (θ0) ν (θ0)

′ | I
]

= IJK is not a consistency issue but
instead an efficiency issue.
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competitors’ characteristics from the previous year:

{X−f, t−1, ξ−f, t−1, W−f, t−1, ω−f, t−1, ωf, t} ⊂ I laggedf,t

When calculating the derivative for a product characteristic for firm f ones would use ob-

served and unobserved characteristics of products of the firms competing against f from

the previous year. At those characteristics and firm f ’s current observed and unobserved

characteristics the researcher would solve for the Bertrand-Nash equilibrium prices and then

evaluate the derivative at those prices for firm f .

Given the lagged information set, lagged version of BLP-instruments are valid instruments

for νjk – own product characteristics Xj,t, other product characteristics within own firm

Xj′ 6=j,f,t, and competitor’s product characteristics X−f, t−1 from the previous year. More-

over, BLP type instruments can be applied to price – own price, other prices within own

firm, and competitor’s prices from the previous year are valid instruments in our setup.

Another natural assumption is that

{X−f, t, ξ−f, t, p−f, t, W−f, t, ωt} ⊂ Icontemporaneous
f,t

so firm f knows its competitors’ contemporaneous choices of characteristics and costs at the

time of decision. This information set implies that the conditional expectation of the FOCs

are taken with respect to approximation or measurement error. In this case, the derivative is

evaluated at realized values of Xt, ξt, Wt, pt, and ωt. In addition, given the contemporaneous

information set, BLP-type instruments evaluated at the realized values are valid instruments

for νjk.

4.3 Concentrating Out Linear Parameters

BLP reduce the dimensionality of their parameter search by “concentrating out” parameters

θl = (β, γ), which enter their moment conditions linearly. An implication of (7) is that θl

enters the moment conditions linearly, conditional on θnl and the data. As such, we can

concentrate out θl, thereby allowing us to restrict our search to the space of the non-linear

parameters, denoted θnl = (α, σ). This reduces the dimensionality of the nonlinear search

by #β × #γ parameters and leads to a more robust estimation algorithm. For each guess
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of θnl, the value of θl that minimizes the GMM objective function for a given guess of θnl is

given by

θl(θnl, X,W, p, s) = −
(
ν ′θHW

−1H ′νθ
)−1

ν ′θHW
−1H ′νc

where νc comes from stacking the K νkc functions and νθ comes from stacking the νkθ

functions. In general, the terms νkc and νkθ will have complex functional forms. We provide

expressions for νkc and νkθ in Appendix Section (9) given our specification of marginal costs

and demand.

4.4 Dynamic Moments

To this point, the discussion has assumed that product characteristics are readily adjustable

so that firms update these characteristics each period. However, if firms face fixed adjust-

ment costs then there may be periods of inaction where firms do not find it profitable to

make adjustments. This implies that when a firm chooses to make an adjustment to its

portfolio, it maximizes the sum of a future stream of profits rather than per-period profit.

We follow the discussion and spirit of Pakes (1994) in proposing a method for the case when

periods of non-adjustment are possible.

Let Φ be the scrap value of exiting and let ζ represent a fixed cost incurred by each firm when

it adjusts its portfolio. Let χ(Xt) be 1 if the firm remains in the market given its optimal

policy and 0 otherwise. Given per-period profits of Πft =
∑

j∈Jf (pj −mcj(Xjt))Msj(pt, Xt)

for firm f , the firm’s expected profit from adjusting some subset of characteristics at time t

is given by

V (Xft) = max

{
Φ, E

[
max

{
Πft(Xft) + βV (Xft),max

X′ft

{
Πft(X

′
ft) + βV (X ′ft)− ζ

}} ∣∣∣Ift]}

Firms compare the value of adjusting their product attributes against holding their portfolio

fixed. The maximum value is then compared to the scrap value and the firm decides whether

or not to exit. Following Pakes (1994), define the random variable τ ∗ as the number of periods

or inaction, i.e. the number of periods until at least one of the characteristics changes, a

product is dropped or introduced, or the firm exits the market.
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τ ∗ = min
τ≥1
{χ(Xt+τ ) = 0 or Xft+τ 6= Xft}

If a product’s characteristics are changed, then the first-order conditions are satisfied for that

good. In the case where τ ∗ is known to be 1, then estimation reduces to using the moments

(5). Otherwise, one can construct the moment conditions10

E

[
τ∗−1∑
τ=0

βτ
∂Πf,t+τ

∂Xjt

+ βτ
∗
χ(Xt+τ∗)

∂Πf,t+τ∗

∂Xjt+τ∗

∣∣∣Ift] = 0

and use the sample analog during estimation for given realizations of τ ∗ and the appropriate

subset of observations. Given estimates of the cost and demand parameters, the researcher

can use a bounds estimator approach to recover an estimate of the sunk adjustment cost as

in Sweeting (2007).

One issue with this approach is that firm’s need to account for the “reaction” functions

of their competitors when solving these first-order conditions, which are in general com-

plex equilibrium objects that are not known a-priori. As discussed in Pakes (1994), either

additional work or additional assumptions are necessary to operationalize this approach.

For instance, the researcher can recover a nonparametric estimate of the reaction functions

and use this in the Euler Equation to arrive at a semi-parametric estimator. However, this

approach fails with many products as the nonparametric estimator depends on all state

variables, e.g. the entire vector of product characteristics in a given market. The problem

can also be ameliorated by specifying the firm’s beliefs during estimation. For instance, the

researcher could assume some form of bounded rationality where firms do not anticipate a

change in their competitors characteristics, meaning that they are held fixed at time t levels.

Or, the researcher could assume that firms forecast the response of their competitors based

on history of some aggregate market variables up to time t.

10This Euler Equation is analogous to Lemma 2 in Pakes (1994) without the continuous adjustment cost
and no depreciation.
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5 Monte Carlo Simulation

We investigate the properties of our estimator with a simple Monte Carlo that closely re-

sembles our empirical analysis. Readers not interested in these details can skip directly to

the BLP application. We consider single-product oligopolists who choose a single, observed

characteristic and an unobserved quality level to maximize expected profits. Production

is subject to a marginal cost shock, the distribution of which is known to all firms in the

industry when they choose their optimal bundle of characteristics. They also knows the

profit maximizing equilibrium price for any given demand-cost-characteristic tuple, so they

can calculate expected profits for any chosen level of product characteristic. The specifics

follow.

5.1 Demand

Demand takes a random coefficients, discrete-choice functional form. Let βi0 denote the

base-level of utility consumer i derives from purchasing the good. βi is the taste for the

single good characteristic X. Both εi and εi0 are distributed i.i.d. extreme value. Consumer

i purchases the good if ui is greater than or equal to ui0 = εi0 where

uij = Xjβi − αipj + ξj + εji

αi =
α

yi
ln(yi) ∼ N (µy, σy) ,

βi ∼ N (β, σX)

with β defined as the mean taste for X and σX characterizing the heterogeneity in taste, both

of which need to be estimates. Following the empirical set-up of BLP, the price elasticity

depends on the distribution of income, assumed to follow a known log-normal distribution

with mean µy and standard deviation σy. These parameters are known to the researcher.

The coefficient α, which governs the degree of price sensitivity, is unknown and needs to be

estimated.

We write the demand parameters together as θD = (α, β, σX). Individual choice proba-
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bilities have the standard logit form

sij
(
p,X, ξ; θD

)
=

exp (Xjβi − αipj + ξj)

1 +
∑

m exp (Xmβi − αipm + ξm)

and market shares come from integrating over the distribution of consumers G(i),

sj
(
p,X, ξ; θD

)
=

∫
i

sij
(
pj, Xj, ξj; θ

D
)
dG(i).

As is standard in the literature, the utility from the outside good is normalized to 0.

5.2 Supply

Firms play a two-stage game. In the first stage, they optimally choose their level of X and

ξ to maximize expected profits, where the expectation is taken over a known distribution of

cost shocks. In the second stage Marginal cost is given by the following quadratic in the log

characteristic and the unobserved quality

ln (mcj) = γ0 + γx ln (Xj) + γx2 ln (Xj)
2 + γξξj + γξ2ξ

2
j + γxξ ln (Xj) ξ + ωj

with cost shock ωj.
11 The cost shock ωj is split into two parts: ω1j which is known in stage

1 and ω2j which is realized in stage 2. All parameters together are denoted θ = (α, β, σX , γ).

Let Z = (X, ξ, ω). Profits for firm j are given as

Π (Z; θ) = (pj −mc (Xj, ωj; θ)) sj (p,X, ξ; θ) .

The timing is as follows. The vector of cost shocks ω1 is realized. The oligopolist knows the

demand parameters and the distribution of the stage 2 cost shocks F (ω2) but she does not

11When characteristics are optimally chosen, a linear index in demand with linear marginal costs will lead
to either a corner solution or a continuum of solutions. We use a quadratic form in X and ξ for log-marginal
cost to ensure a unique, interior solution.
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see the realized shock ω2 before the characteristic choice is made. She solves for X

max
Xj ,ξj

E
[
Π (Z; θ)

∣∣ω1, F (ω2)
]

=

∫
(pj −mc (Xj, ξj, ωj; θ)) sj (p,X, ξ; θ) dF (ω2) ,

knowing pj will be set to maximize profits once the characteristic is set.

Let Ẑ = (X∗, ξ∗, ω) with X∗j and ξ∗j are the optimal amounts of Xj and ξj chosen before

ω2 is realized. For ease of notation, let X̃j = (Xj, ξj) and ∆
(
X̃∗, ω; θ

)
= pj

(
X̃∗, ω; θ

)
−

mc
(
X̃∗j , ω; θ

)
. Then X∗j satisfies

E

∂Π
(
Ẑ; θ

)
∂Xj

∣∣∣∣∣ω1, F (ω2)

 =

∫ ∆
(
X̃∗, ω; θ

) d sj (pj (X̃∗, ω; θ
)
, X̃∗j ; θ

)
d Xj

 dF (ω2) +

∫ ∂∆
(
X̃∗, ω; θ

)
∂Xj

sj

(
pj

(
X̃∗, ω; θ

)
, X̃∗j ; θ

) dF (ω2)

= 0

where pj

(
X̃∗, ω; θ

)
is the optimal price given X̃∗ and ω, maximizing the expected profits

where expectation is taken over F (ω2). The firms also solve an analogous equation for the

unobserved characteristic ξj. Letting Z∗ = (X∗, ξ∗, ω∗), where ω∗ corresponds to the realized

cost shocks, the value of the derivative is given as

νj(Z
∗; θ) =

∂Π (Z∗; θ)

∂X

= ∆
(
X̃∗, ω; θ

) d sj (pj (X̃∗, ω∗; θ) , X̃∗; θ)
d Xj

+

∂∆
(
X̃∗, ω; θ

)
∂Xj

sj

(
pj

(
X̃∗, ω∗; θ

)
, X̃∗; θ

)
. (10)

This derivative will sometimes be positive and sometimes be negative depending upon

whether “too much” or “too little” of Xj and ξj was chosen prior to the realized demand
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shock. By the way the data are constructed on average these “mistakes” will average out:

E [νj(Z
∗; θ)|ω1, F (ω2)] = 0,

and this moment, along with the marginal cost equation, is our source of identification.

When evaluating νj(Z
∗; θ) in Equation (10), we mimic the standard empirical settings where

econometricians cannot observe ω2 and ξ. At each θ we invert demand to find the realized

demand shock ξ
(
X∗, p∗; θD

)
. Then, we apply the FOC with respect to price in (1) to find

mc
(
p∗, s

(
p∗, X∗, ξ

(
X∗, p∗; θD

))
; θD

)
. Then, νj(Z

∗; θ) in Equation (10) is evaluated at the

realized price, characteristic, recovered demand and cost shocks and marginal cost at each

θ.

The optimal instruments are given by

H = E

[
∂ν (Z∗; θ)

∂θ
,
∂ω2 (Z∗; θ)

∂θ

∣∣∣ω1, F (ω2)

]
T (Z∗)

where T (Z∗) serves to normalize the error matrix and is equal to the expected inverse second-

moment matrix of the residuals. As we are interested in the properties of our estimator in

standard empirical settings where the researcher could not compute the optimal instruments

we mimic our proposed empirical approach to approximating the optimal instruments by

evaluating the derivative at the realized values Z∗. The derivative is approximated at some

initial value θ̂, which we take to be a random draw centered at the true parameter value.

Note that the second stage objects are correlated with the random shocks to marginal

cost and therefore cannot be used when constructing the optimal instruments. This will

in general be true when violations of the first-order conditions are due to optimization error,

rather than approximation error. We follow suggestions in Berry et al. (1999) and Gandhi

and Houde (2015) and approximate these second stage objects using variation from the first-
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stage variables. Specifically, we non-parametrically regress prices on a flexible functional

form in Xj and X−j to approximate the pricing function. Let Px be a potentially high-order

polynomial in Xj and X−j. We estimate p̂ as

p̂ = exp(Px(P
′
xPx)

−1P ′x ln(p))

and approximate the market shares as

ŝj =
1

N

∑
i

exp(Xjβ̂i + ξ̂j − α̂ip̂j)
1 +

∑
k exp(Xkβ̂i + ξ̂k − α̂ip̂k)

where ξ̂j is a consistent estimate of ξj using the parameter estimates. The approximate

optimal instruments can then be constructed using p̂ and ŝ in place of their counterparts.

The derivative of the residual is then evaluated at the observed level of X and the approxi-

mate values of ξ̂, p̂, and ŝ.

The moment condition we use is given by

Gl (Z
∗; θ) ≡ E

[
Ĥl · [ν(Z∗; θ), ω2(Z

∗; θ)]
]
∀l

= 0

By applying two step GMM with moment condition Gl (θ), we estimated the parameters.12

12We provide a linearized version of these moment conditions in the appendix.
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Table 1: Data Generating Process Summary Statistics

X ξ Price Shares

Mean 1.41 1.82 4.98 0.01

Std Dev. 0.16 0.18 2.12 0.01

Max 2.62 2.42 45.88 0.08

Min 1.10 1.34 1.48 0.00

J 3000

We simulate M = 1, 500 markets with two firms for each of N = 100 times. Table 1 shows

summary statistics for our data generating process, which was calibrated to closely resemble

the automobile data used in in Berry et al. (1995), and that we use in our empirical exercise.

We chose a value of 80 for α, leading to price elasticities similar to our empirical estimates.

The parameters governing income were chosen to generate a dispersion in prices similar to

those in the BLP automobile data. Each market has only two firms so the market shares are

notably larger, however the share of consumers choosing the outside good is approximately

the same as the BLP data. Finally, by choosing 1, 500 markets, we have a similar number

of observations as the BLP automobile data.
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Table 2: Monte Carlo Simulation - Duopoly, J=3000

Parameter Truth IV at non-truth IV at truth

Mean RMSE Mean RMSE

α 80 79.39 1.50 79.82 0.37

β 2 1.84 0.33 1.92 0.11

γc 1.25 1.25 0.06 1.25 0.02

γX -0.15 -0.14 0.16 -0.15 0.04

γX2 1 0.94 0.10 0.97 0.04

γξ -0.25 -0.24 0.05 -0.25 0.02

γξ2 0.12 0.11 0.02 0.11 0.01

γXξ 0.10 0.10 0.08 0.10 0.03

σ 0.50 0.50 0.01 0.51 0.01

Table 2 shows the estimated results under two assumptions. First, we assume that we have

a consistent estimate of the model parameters, which we generate by taking the true values

and adding noise to them. Second, we consider the case where the optimal instruments are

constructed at the true parameter values. This allows us to compare the loss in efficiency from

using an approximation. In both cases, the parameter estimates are close to the population

values. The price coefficient is estimated accurately and precisely, which is encouraging as

price elasticities are a common object of interest. The mean parameters for X are estimated

with the most error and the largest RMSE, relative to the true population value. When

the true parameter values are used to construct the optimal instruments, we see the RMSE

decrease by a factor of 3 for most parameters. This shows that the approximation does

introduce noise into our estimates and this primarily impacts the mean cost and utility

coefficients. However, in most cases the additional noise has little impact on inference, and

the estimates are not statistically significantly different from the true parameters values. We

turn now to our empirical application
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6 Application to BLP Data

6.1 Empirical Framework

We use the exact same data used in BLP. There are twenty new U.S. automobile markets

- one for each year from 1971 to 1990 - for a total of 2217 observations on prices, quan-

tities, and characteristics of different vehicle models. We assume the firms set the same

K = 5 characteristics as those that enter into the BLP utility function, including the ratio

of horsepower to weight, interior space (length times width), miles per dollar, whether air

conditioning is standard (a proxy for luxury), and the unobserved quality. The five cost

shifters (W) are the unobserved quality, the log of ratio of horsepower to weight, the log

of interior space, air conditioning, and the log of miles per gallon.13 In a market with J

products there are J observations on the K realized first-order conditions. The outside good

quality ξ0 is normalized to zero and we do not separately estimate the mean utility for new

vehicles (i.e. constant term) instead letting it remain in the unobserved quality so in our

setup β ∈ RK−1. A ξj > 0 implies that new car on average is preferred to not purchasing

a new good. Parameter θ = (β, σ, α, γ) consists also of σ ∈ RK , α ∈ R, and γ ∈ RK for a

total of 3K=15 parameters to be identified.

Following the base specification in BLP, we assume that utility is given by

uij (θ) = α ln (yi − pj) + δj +
K∑
k=1

σkvikXjk + εij

where δj = X ′jβ + ξj. Income draws yi follow the same log-normal distribution estimated

in BLP and vik are normally distributed. Additionally, we assume that marginal costs are

independent of the output level and are comprised of two terms: one term that is log-linear

13Air conditioning is an indicator variable which raises the issue of differentiability. We estimate the model
both with and without the air conditioning first-order condition as we remain overidentified even when we
do not use this condition. At the cost of complicating the estimator by having to combine moment equalities
with moment inequalities we could add an inequality related to air conditioning or any other indicator-type
characteristic.
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in the product characteristics and a second term which is unobserved by the econometrician.

Specifically,

ln (mcj) = γξξj +W ′
jγ + ωj

The only difference between our marginal cost specification and that of BLP is that the level

of unobserved quality, ξj, impacts marginal costs.

BLP assume that all X are exogenous and so any function of them can serve as instru-

ments for any vehicle j. Using the firm pricing first-order conditions Pakes (1994) provides

motivation for using the following as instruments for good j (which we call the BLP instru-

ments): own product characteristic Xjk, ∀k, the sum of characteristic across own-firm prod-

ucts
∑

j′ 6=j,j′∈Jf Xj′ , and the sum of all characteristics across competing firms,
∑

j′ /∈Jf Xj′ .

These instruments approximate the equilibrium pricing function where markup of a product

depends on other products’ characteristics. These instruments remain valid in our approach

when {Xjk} ∈ If , and so can provide the basis for estimation.

To estimate the model parameters BLP impose that unobserved quality, ξj, is orthogonal to

observed product characteristics. Formally, let X = (Xj)j∈J denote all of the characteristics

observed to consumers, producers, and the researcher. Additionally, they assume that un-

observed cost shocks are orthogonal to observed characteristics. BLP then use the following

identifying restrictions,

E
[
HD
jl ξj

(
θD0
)
| X

]
= 0 ∀j, l. (11)

E
[
HS
jlωj

(
θD0 , γ0

)
| W

]
= 0 ∀j, l. (12)

where HD
jl and HS

jl are functions of X and W, respectively. These conditions rule out correla-

tion between observed and unobserved product characteristics. Ignoring this correlation can

result in demand estimates that too inelastic when price is positively correlated with unob-
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served product quality (see e.g. Trajtenberg (1989))). Therefore, we replace these moment

conditions with our moment conditions

E [Hjklνjk (θ) | If ] , ∀ k, l (13)

where Hjkl is the approximation to the optimal instruments. We estimate the model un-

der two different choices for If . The “lagged” information set, I lagged, includes only last

years observed and unobserved characteristics to construct νjk(θ). In this case when firm

f chooses her characteristics she does so using the configuration of competitors’ last years

products and characteristics to forecast her best guesses at profit maximizing characteristics’

choices. In doing so she calculates the Bertrand-Nash prices that would be realized given

her choices of observed and unobserved characteristics and the realized characteristics of her

competitors products in the previous year. On the other hand, “contemporaneous” infor-

mation set, Icont, uses contemporaneous characteristics to construct νjk(θ). We approximate

E
[
ν (θ) ν (θ)′ |I

]
= IJK .14 We transform the instrument Ĥjkl into a block diagonal matrix

so that we have K ∗ 15 = 75 instruments as a benchmark specification.

14This simplification does not affect consistency, only the efficiency. Another approximation of
E
[
ν (θ) ν (θ)

′ |I
]

can be done by a block diagonal matrix where a block is a K by K variance-covariance
matrix of νjk (θ) |k=1,...,K for each firm f and year t.

27



Table 3: Estimated Parameters of the Demand and Supply

Parameter Characteristic BLP FOC

Dynamic Full IV Part IV Contemp.

Term on price α ln(y − p) 43.501 162.919 144.131 155.661 137.032

(6.427) (48.834) (34.054) (81.672) (17.737)

Means (β’s) Constant -7.061

(0.941)

HP/weight 2.883 0.937 1.168 1.527 0.886

(2.019) (0.229) (0.192) (0.884) (0.158)

Size 3.460 0.133 0.108 0.316 0.618

(0.610) (0.034) (0.036) (0.422) (0.062)

Air 1.521 1.319 1.722 0.975 1.324

(0.891) (0.276) (0.331) (0.812) (0.140)

MP$ -0.122 1.678 2.442 2.401 2.644

(0.320) (0.345) (0.414) (1.633) (0.295)

Std. Dev. (σ’s) Constant 3.612 3.330 3.190 3.093 2.276

(1.485) (1.886) (1.093) (6.304) (0.471)

HP/weight 4.628 2.986 3.007 2.818 2.963

(1.885) (0.662) (0.587) (2.351) (0.389)

Size 2.056 0.641 0.934 0.919 0.371

(0.585) (0.128) (0.150) (0.747) (0.169)

Air 1.818 2.009 1.773 1.607 1.286

(1.695) (0.394) (0.257) (1.247) (0.150)

MP$ 1.050 0.846 0.859 1.612 0.771

(0.272) (0.356) (0.286) (0.984) (0.150)

Continued on next page
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Table 3: Estimated Parameters of the Demand and Supply

Parameter Characteristic BLP FOC

Dynamic Full IV Part IV Contemp.

Cost params. (γ’s) Constant 0.952

(0.194)

Mean charac. (ξ) 0.113 0.122 0.121 0.134

(0.033) (0.028) (0.056) (0.017)

HP/weight 0.477 0.049 0.059 0.067 0.053

(0.056) (0.016) (0.015) (0.041) (0.011)

Size -0.046 0.026 0.030 0.054 0.118

(0.081) (0.007) (0.006) (0.066) (0.013)

Air 0.619 0.170 0.226 0.135 0.188

(0.038) (0.042) (0.042) (0.078) (0.024)

MPG -0.415 0.423 0.551 0.538 0.636

(0.055) (0.086) (0.081) (0.386) (0.075)

J 2,217 902 2,125 2,125 2,217

Num. IVs 15 59 43 19 72

Median net util. uij − α ln(yi − pj) -0.915 4.856 5.432 7.289 3.520

29



6.2 Results

Table 3 shows the demand and supply estimates. The first column restates the original

BLP results and the second column reports the “dynamic” results, our base specification.

For these estimate, we use the optimization conditions given the information set I laggedf,t .

That is, we estimate the parameters under the assumption that firms only know last year’s

characteristics of their competitors’ cars when choosing their characteristics. The dataset

is restricted to observations of new models or existing car models where at least one char-

acteristic is changed more than 10%. Although this reduces the number of observations to

approximately half, the model is estimated on observations where the first-order conditions

are most likely to hold. Columns three and four are estimated using the full sample.15

Column three uses the full set of instruments (Full IV) of which there are 43, one for each

parameter-FOC pair after dropping one instrument due to high correlation. It is well known

that while additional instruments always improve standard errors, if many of them are weak

bias can be introduced into the estimates.16 For this reason we also use a subset of these

instruments that we think are likely to be the most informative (Partial IV). For each char-

acteristic Xk (except ξ) we use only the derivatives with respect to (α, βk, γk, σk). For ξ we

use the derivatives with respect to (α, γk, σk) giving us a total of 19 instruments. The last

column uses the “contemporaneous” information set where firms know the contemporaneous

product characteristics of competitors when choosing their characteristic levels.

The four FOC estimators produce similar results, despite the different dataset sizes and

assumptions on the information set of firms. The dynamic estimates tend to have higher

standard errors due to using half the relevant observations. However, the estimates are simi-

lar to the other specifications indicating that these observations convey a significant amount

of the relevant variation during estimation. The contemporaneous results are highly similar

15We drop the first year observations due to the lagged information set, resulting in the total number of
models 2,125.

16For example see Bekker (1994), Newey and Smith (2004), or Hansen et al. (2008).
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to the lagged results, indicating that the lagged state of the market is a good predictor of

the present state as well.

The most striking difference between the BLP estimates in column one and optimization

estimates in columns two through five is that the coefficient on price is much larger in the

latter cases; consumers are significantly more price sensitive when optimization conditions

are used for identification. Table 4 investigates the impact of this difference on estimated

elasticities and markups.17 On average elasticities increase by 31% in absolute value in re-

sponse to the increase in price sensitivity. This causes estimated markups to fall by on

average around 22%.

Table 4: Implied Elasticities and Markups

Elasticities Markups ($)

BLP FOC BLP FOC

Full IV Part IV Full IV Part IV

Lexus LS400 -3.027 -4.836 -5.008 9,214.54 5,754.35 5553.02

Lincoln Towncar -3.030 -5.708 -5.973 8,310.82 4,633.86 4435.15

Nissan Maxima -4.124 -7.867 -8.155 3,385.84 1,780.48 1716.92

Ford Taurus -3.952 -8.205 -8.966 2,679.14 1,363.66 1244.59

Chevy Cavalier -5.899 -10.284 -11.668 1,327.75 755.42 654.93

Nissan Sentra -6.304 -10.751 -12.420 909.79 533.02 459.87

Mean -4.087 -7.796 -8.482 4,051.87 2,393.99 2,280.53

Median -3.975 -8.219 -8.789 2,751.77 1,397.99 1,324.34

Std. Deviation 1.120 2.130 2.577 3,905.32 2,821.63 2,712.61

“Full IV” uses the full set of instruments while “Part IV” uses a subset of instruments.

One potential explanation for these changes across identification conditions is that observed

and unobserved characteristics are positively correlated because firms put more unobserved

17Here we use Full IV and Partial IV to ensure that limiting the dataset for the Dynamic model does not
skew the results.
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quality into cars with high observed quality to the researcher. In this case the instrumented

price in the BLP setup will be positively correlated with unobserved quality and this may

be leading to an upward bias in the price coefficient. Table 5 explores whether ξ is positively

correlated with X by regressing estimated ξ’s on all of the BLP demand instruments. Con-

sistent with the price coefficient changes, the BLP instruments explain 50% of the variation

in ξ across vehicles and except for miles per dollar – which is negatively correlated with ξ –

all other characteristics are positively correlated with ξ. The negative correlation between

miles per dollar and ξ might be the reason that the coefficient in the BLP setup of miles per

dollar is negative, that is, why people appear not to like fuel efficiency. In reality they like

fuel efficiency but it is negatively correlated with other unobserved features of the vehicle

that consumers’ value.

Table 5: E
[
ξj
∣∣ X] 6= 0

ξ Full IV Part IV

Constant 0.898 -3.102 1.700 -1.686

(0.594) (1.122) (0.673) (1.241)

HP/weight 6.693 6.123 7.506 5.919

(0.593) (0.613) (0.672) (0.678)

Size 5.463 4.239 5.607 3.888

(0.294) (0.335) (0.334) (0.371)

Air 1.397 0.863 2.503 1.693

(0.135) (0.136) (0.154) (0.150)

MP$ -2.808 -3.952 -3.122 -4.844

(0.0996) (0.143) (0.113) (0.158)

Other BLP instruments No Yes No Yes

R-squared 0.621 0.736 0.624 0.751

“Full IV” uses the full set of instruments while “Part IV” uses a subset of instruments.

The last step is to check whether the BLP instrumented price is positively correlated with

ξ. We construct the instrumented price by regressing price on the BLP instruments to get
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a predicted price for each vehicle. Table 6 reports the estimates of the regression of these

instrumented prices on an intercept and ξ. The coefficient is significant and positive and the

correlation between the instrumented price and ξ is approximately 0.15. Thus the hypothesis

that the price coefficient is biased up under the assumption of mean independence because

observed and unobserved product characteristics are positively correlated is consistent with

all of our findings from the model estimated with the optimization conditions. Similarly,

Table 7 reports the results of the regression of the cost shocks on the BLP instruments for

the cost function. Observed cost characteristics explain almost half of the movement in the

unobserved cost shock, implying that exogeneity between W and ω does not hold. This

would naturally further bias the estimated coefficients, although the direction is ambiguous.

Table 6: Correlation Between Instrumented price (p̂(IVX)) and ξ

p̂(IVX) Full IV Part IV

Constant 7.734 7.048

(0.206) (0.202)

ξ 0.778 0.773

(0.031) (0.026)

R-squared 0.220 0.281

p̂(IVX) is predicted price on BLP demand instruments.

“Full IV” uses the full set of instruments while “Part IV” uses a subset of instruments.
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Table 7: E
[
ωj
∣∣ W ] 6= 0

ω Full IV Part IV

Constant 0.090 0.993 -0.165 0.655

(0.136) (0.164) (0.148) (0.184)

ln(HP/weight) 0.326 0.048 0.294 0.031

(0.035) (0.033) (0.038) (0.036)

ln(Size) -0.800 -0.418 -0.871 -0.467

(0.064) (0.060) (0.069) (0.067)

Air 0.341 0.155 0.299 0.134

(0.017) (0.0160) (0.019) (0.018)

ln(MPG) 0.049 -0.136 0.123 0.025

(0.043) (0.0441) (0.047) (0.049)

Other BLP instruments No Yes No Yes

R-squared 0.314 0.578 0.283 0.533

“Full IV” uses the full set of instruments while “Part IV” uses a subset of instruments.

A second related difference is in how the two demand models fit the data. Both models

exactly match market shares of products using the BLP inversion. Only 10% of U.S. house-

holds buy new cars in any given year so both fitted demand models need a way to explain

why 90% of households choose the outside good. The way they do so is quite different and

the difference can be found in the final row of Table 3, which reports the average utility of

purchasing a new vehicle net of price, uij − α ln(yi − pj), from each model’s fit: BLP pre-

dicts it at -4 while our approach predicts it at 7.5. BLP fits 90% of households not buying

by having consumers derive strong negative utility from the act of buying a car relative to

the outside option of no new car (excluding negative utility from price). In contrast, the

optimization-fit has consumers strongly desiring new cars relative to the outside good but

the significantly higher price elasticity causes 90% not to buy a new car.

Another difference is that some of the anomalies in the BLP point estimates are not present
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in the optimization-fit point estimates. The BLP point estimates imply consumers dislike

fuel efficiency but in our setup they strongly and significantly like fuel efficiency. They also

find costs are decreasing as interior space and fuel efficiency increases. We find costs increas-

ing in all of the characteristics, including the unobserved characteristic ξ which enters our

cost function but does not enter the BLP cost function.

Table 3 also shows that our estimates are almost always much more precisely estimated

relative to the BLP-fit model whether we use the full or partial set of instruments. With the

full set of instruments our standard errors are on average a fourth of the standard errors from

BLP. The data is exactly the same data so the optimization moments appear to contain more

information on both the distribution of consumer preferences and on the cost parameters.

7 Conclusion

Traditional identification since BLP in discrete choice demand model has been to assume

no correlation between observed and unobserved characteristics. The major concern of this

identification assumption is that it may lead to biased price elasticities if observed and un-

observed characteristics are correlated with one other. We avoid this mean independence

assumption and infer the distribution of consumer tastes in demand and supply estimation

by exploiting optimal choices of product characteristics and prices by firms. We allow firms’

information sets at the time they choose characteristics to potentially include competitors’

product characteristics, demand, and cost shocks, signals on all of these, or no information

at all on them. Following Hansen and Singleton (1982), our identification is based on the

assumption that firms are correct in their choices on average even though firms may wish

they had made different decisions ex-post.

Using the same automobile data from BLP, we find elasticities double and markups fall

by 50%. We also find significantly more precise estimates given the same exact data and

some of the slightly puzzling parameter estimates of BLP go away as all of our parameter
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estimates are of the correct sign.
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Tables

8 Appendix

8.1 Proof of equation (7)

To show that (7) holds, we start by noting that the J residuals for any characteristic k can

be written in matrix notation as

νk =

(
∂(p−mc)

∂X ′k
◦ T
)
s+

(
ds

dX ′k
◦ T
)

(p−mc), k = 1, ..., K, (14)

where ◦ denotes element-wise multiplication and T , the ownership matrix, is a block diagonal

matrix that identifies products owned by the same firm, so if i ∈ Jf and j ∈ Jf for some

f , then tij = 1; otherwise, tij = 0. Conditional on a given value of θnl, several of the terms

in νk are held constant, including s(δ(θnl)) and (p −mc). ∂si
∂p′j

= α
yi
sij(1 − sij), and with sij

also not a function θl, conditional on θnl, implying the matrix ∂s
∂p′

is also constant. Since

ds
dXk

= ∂s
∂X′k

+ ∂s
∂p′

∂p
∂X′k

, (14) is comprised of three terms that vary with θl:
∂mc
∂X′k

, ∂s
∂X′k

and ∂p
∂X′jk

.

None of these terms multiply one another, so if each is established to be affine in θl then

the entire expression will be as well. Given our specification of utility and marginal cost, it

is clear that the first two terms are affine in θl, so νk will have the required form if ∂p
∂X′jk

is

affine as well, which Proposition 2 proves below.

We begin with Proposition 1, which establishes that equation (14) may be written as (7) if

the matrix ∂p
∂X′jk

can be written as an affine function of θl.

Proposition 1. Assume that mean utility is linear in β and the derivative of marginal costs
with respect to Xjk is affine in γk, conditional on observables. If ∂p

∂X′jk
can be written as an

affine function of θl, conditional on observed market shares and the nonlinear parameters,
then νk can be written as an additive function of two non-linear functions of (θnl, X, s, p),
one of which is linear in θl.

Proof We start by observing that linearity of β implies that the derivative of market

shares can be written as an affine function of β, conditional on θnl and data. The derivative

of market shares with respect to the product characteristics are given by
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dsj(δ,X, p, θnl)

dX ′k
=
∂sj(δ,X, p, θnl)

∂X ′k
+
∂sj
∂δ′

∂δ

∂X ′k

=
∂sj(δ,X, p, θnl)

∂X ′k
+
∂sj
∂δ′

(I ◦ βk)

= g1(δ,X, p, θnl) + g2(δ,X, p, θnl)βk

for functions g1 and g2 that do not depend on θl, conditional on δ. Additionally,

dsj(δ,X, p, θnl)

dp′
=
∂sj(δ,X, p, θnl)

∂p′
= gp(δ,X, p, θnl)

We use the total derivative to emphasize that Xk impacts shares both directly and through

its impact on δ. Similar expressions are straightforward to derive for
∂2sj
∂p∂p′

and
∂2sj
∂p∂X′k

.

We focus on each term νk in (14) in turn. Market shares, sj′ , are set equal to their observed

values during estimation and so can be treated as data. Markups are inferred from the data

and θnl by (p−mc) = ∆−1s, where

∆ij =

−
∂sj
∂p′j
, if j, j′ ∈ Jf

0 otherwise

Because the derivative of sj′ with respect to price does not directly depend on θl, ∆ and

markups are a function of θnl and observed data alone. By assumption, the derivative of

marginal cost with respective to Xk is affine in θl. We have assumed that ∂p
∂X′jk

is linear in

θl, so all that remains is are the terms
dsj′

dXjk
. Again, we can write these out as

dsj
dXjk

=
∂sj
∂Xjk

+
∑
j′∈J

∂sj
∂pj′

∂pj′

∂Xjk

so that the total derivative is given as
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dsj
dXjk

= g1(δ,X, p, θnl) + g2(δ,X, p, θnl)βk + gp(δ,X, p, θnl)
′ ∂p

∂X ′jk

By assumption, ∂p
∂X′jk

= h1(δ,X, p, θnl) + h2(δ,X, p, θnl)θl for some matrices h1 and h2. The

parameter βk is an element of θl, and so this reduces to

dsj
dXjk

= d̃1(δ,X, p, θnl) + d̃2(δ,X, p, θnl)θl

for some matrices d̃1 and d̃2. This establishes that all of the terms in νjk are nonlinear

functions of θnl and either do not depend on θl or are linear in θl. Plugging these terms back

into the residual equation yields

νjk =
∑
j′∈Jf

((
h1(δ,X, p, θnl) + h2(δ,X, p, θnl)θl −

∂mcj
∂Xjk

)
sj′ +

(
d̃1 + d̃2θl

)
(pj′ −mcj′)

)
(15)

Pulling out the components of θl, we end up with an expression of the form

νk = νkc(δ,X, p, θnl) + νkθ(δ,X, p, θnl)θl

which completes the proof. Turning to Proposition 2, we now establish that ∂p
∂X′jk

is affine in

θl. By the Implicit Function Theorem, the derivative of prices with respect to characteristics

has the following form

∂p

∂X ′jk
= −

(
∂R

∂p′

)−1
∂R

∂Xjk

(16)

where R is a vector of residual equations defined by the pricing FOCs. Proposition 2 shows

that ∂R
∂p

does not depend on θl and that ∂R
∂Xjk

is affine in θl, thereby establishing that ∂p
∂X′jk

is

affine in θl.
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Proposition 2. Assume that mean utility is linear in β and the derivative of marginal
costs with respect to Xjk is affine in γk, conditional on observables. Then the derivative of
price with respect to each product characteristic can be written as the sum of two nonlinear
functions of θnl, one of which does not depend on θl and the other that is a linear function
of θl.

Proof Let R be the residual equation for the first-order condition with respect to price.

That is,

R = s+

(
T ◦ ∂s

∂p′

)
(p−mc)

so that the derivative of price with respect to characteristic Xjk is given by (16). We show

∂R
∂p′

does not depend on θl and that ∂R
∂X′jk

is affine in θl. The derivative of the residual equation

with respect to price

∂R

∂p′
=
∂s

∂p′
+
∑
j

(
ej

(
Tj ◦

∂sj
∂p′

)
+ (pj −mcj)

(
Tj ◦

∂2sj
∂p∂p′

))
(17)

where ej is the jth column of the identity matrix. We previously noted that ∂s
∂p′

does not

depend on θl by equation (15) and that (pj−mcj) does not depend on θl as (p−mc) = ∆−1s,

where ∆ is defined as before. The second derivative
∂2sj
∂p∂p′

does not depend directly on θl, so

∂R
∂p′

is a nonlinear function of θnl and the data, and independent of θl. Taken together, this

means that θl does not appear in ∂R
∂p′

.

Turning to ∂R
∂X′k

, we can write this derivative as

∂R

∂X ′k
=

∂s

∂X ′k
+
∑
j

(
−∂mcj
∂X ′k

(
Tj ◦

∂sj
∂p′

)
+ (pj −mcj)

(
Tj ◦

∂2sj
∂pX ′k

))

By assumption,
∂mcj
∂X′k

is affine in θl. We have previously shown that the terms ∂s
∂X′k

and
∂2sj
∂pX′k

are affine in θl and that the values of
∂sj
∂p′

and (pj −mcj) do not depend on θl. All terms that

are affine in θl multiply terms that are fixed in θl. As such, the resulting expression will be

affine in θl and that establishes the result.
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9 Application to Mixed Logit Models

Assume the random coefficients are normally distributed and let si denote the vector of

choice probabilities. Then the derivative of market shares with respect to characteristic k is

given by

ds(δ,X, p, θnl)

dX ′k
=

1

ns

ns∑
i=1

σkηik (si ◦ I − sis′i) +
1

ns

ns∑
i=1

(si ◦ I − sis′i) βk

= g1(δ,X, p, θnl) + g2(δ,X, p, θnl)βk

with an analogous expression for ∂s
∂p′

.

We now provide the expressions for the residuals when demand has a mixed logit spec-

ification. Let P denote the matrix of choice probabilities, which is a J × ns matrix.

Next, define the following ns × 1 weight vectors wα =
{
− α
yi

1
ns

}ns
i=1

, wα,2 =

{(
α
yi

)2
1
ns

}ns
i=1

,

wσ =
{
σkηik

1
ns

}ns
i=1

, and wα,σ =
{
−
(
α
yi

)
σkηik

1
ns

}ns
i=1

. We denote the J×ns weighted matrix

of choice probabilities by Pwj = P ◦w′j, for each wj above. Finally, define the J × ns matrix

ζ = P ◦ [T (P ◦ (p−mc))]. Recall that the residuals are given by

νk =

(
∂(p−mc)

∂X ′k
◦ T
)
s+

(
ds

dX ′k
◦ T
)

(p−mc), k = 1, ..., K,

The first term is given by(
∂(p−mc)

∂X ′k
◦ T
)
s = −

(
T ◦G−1Hk,c

)
s︸ ︷︷ ︸

νk,c,1

−
(
T ◦G−1Hk,β

)
s︸ ︷︷ ︸

νk,β,1

βk −
(
T ◦

(
mc

Xk

◦ I
))

s︸ ︷︷ ︸
νk,γ,1

γk

and the second term is given by
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(
ds

dX ′k
◦ T
)

(p−mc) =

(
T ◦

(
Pwσ ◦ I − PP ′wσ −

∂s

∂p′
G−1Hk,c

))
(p−mc)︸ ︷︷ ︸

νk,c,2

+

(
T ◦

(
s ◦ I − 1

ns
PP ′ − ∂s

∂p′
G−1Hk,β

))
(p−mc)︸ ︷︷ ︸

νk,β,2

βk−

(
T ◦ ∂s

∂p′
G−1Hk,γ

)
(p−mc)︸ ︷︷ ︸

νk,γ,2

γk

where G = ∂R′

∂p
and Hk = ∂R

∂X′k
= Hk,c +Hk,ββk +Hk,γγk, with their terms are defined below.

We then the expressions for νk,θl = (νk,β, νk,γ) and νk,c are given by νk,β = νk,β,1 + νk,β,2,

νk,γ = νk,γ,1 + νk,γ,2, and νk,c = νk,c,1 + νk,c,2. Finally, after some tedious algebra, the

expressions for G and Hk can be shown to be given by

G =
(
(Pwα ◦ I)− PP ′wα

)
+
(

(Pwα,2 ◦ I)− PP ′wα,2
)
◦ (p−mc) + (ζwα,2) ◦ I+(

PP ′wα,2

)
◦ T ◦ (p−mc)′ − 2ζP ′wα,2 +

∂s

∂p′
◦ T,

and

Hkc =
(
(Pwσ ◦ I)− PP ′wσ

)
+
(

(Pwα,σ ◦ I)− PP ′wα,σ
)
◦ (p−mc) + (ζwα,σ) ◦ I+(

PP ′wα,σ

)
◦ T ◦ (p−mc)′ − 2ζP ′wα,σ

Hkβ =

(
(s ◦ I)− 1

ns
PP ′

)
+
(
(Pwα ◦ I)− PP ′wα

)
◦ (p−mc) + ζwα ◦ I+(

PP ′wα
)
◦ T ◦ (p−mc)′ − 2ζP ′wα

Hkγ =− ∂s

∂p′
◦ T ◦ mc

Xk

,
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