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Re�ning Public Policies with Machine

Learning: The Case of Tax Auditing*
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We study the extent to which ML techniques can be used to improve tax

auditing e�ciency using administrative data, without the need of ran-

domized audits. Using Italy's population data on sole proprietorship tax

returns, audits and their outcome, we develop a new approach to address

the so called selective labels problem - the fact that a ML algorithm must

necessarily be trained on endogenously selected data. We document the

existence of substantial margins for raising revenue from audits by im-

proving the selection of taxpayers to audit with ML. Replacing the 10%

least productive audits with an equal number of taxpayers selected by

our trained algorithm raises detected tax evasion by as much as 38%, and

evasion that is actually payed back by 29%.

Keywords : tax enforcement, tax evasion, policy prediction problems.

JEL classi�cation: C55, H26.

1 Introduction

Tax authorities routinely collect deep datasets on tax �lers that can be used to identify

auditing targets. This makes the choice of auditing strategy a prime candidate as an
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application for machine learning techniques (henceforth, ML), that can be deployed

to exploit available information e�ciently, consistently and transparently. While

both tax authorities and researchers are aware of these opportunities, the opacity of

the auditing processes followed by most tax authorities makes it unclear the extent

to which they operate at the �production possibility frontier� or whether there are

margins for improvements by a more e�cient use of data.

In this paper, we exploit an exclusive dataset from the Italian Revenue Agency

(henceforth, IRA) to explore whether ML techniques can be used to improve au-

dit policies. The dataset includes the tax returns with relative audits and audits'

results for the universe of non-incorporated small businesses in Italy from 2007 to

2012. The dataset, moreover, also includes information on whether the taxpayer ap-

pealed against the audit as well as all the statistical information available to the IRA

concerning the tax �le and �ler.

The general idea behind ML techniques is to exploit data on policy outcomes

(in our case audits) to train a predictive algorithm designed to achieve speci�c goals

(maximizing the probability of �nding evasion, for example). Ideally, after validating

the analysis out of sample, the algorithm can be used to guide the policy (the choice

of which �les to audit, in our speci�c case). Even when detailed data is available,

however, two challenges make the design and evaluation of policies with ML a di�-

cult task. The �rst is what Kleinberg et al. (2018) have de�ned the selective labels

problem: only outcomes of �les that have been endogenously selected for treatment

are observed. In our case, this problem is particularly serious if the IRA selects audits

relying also on unobserved variables that may be relevant for audits' performance.

The second problem is the omitted payo� bias. This refers to the fact that the objec-

tives of the policymakers may be multidimensional and unobserved, so an auditing

policy that is unsuccessful with respect to a narrow measure of success, may instead

be justi�ed when all the goals of the tax authority are considered. Our data allows

to make progress in evaluating the bene�ts of improving the auditing process despite

these two problems. The approaches we propose exploit speci�c features of auditing

data common to several countries, namely the facts that the tax authority is severely

limited in the number of audits and that currently unaudited �les can occasionally be

audited at a later date. Both of these features can be found in other environments,

thus our strategies can be applied in other contexts as well.

We start our analysis by documenting the extent to which a ML algorithm can

be used to identify audits that perform particularly poorly within the set of observed

audits. Since we observe the universe of tax audits and relative outcomes, we can test
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our ability of identifying the audits that perform poorly under a variety of criteria.

Contrary to other types of policymaker, tax authorities have a narrow policy mandate

and do not have signi�cant latitude in deciding their policy goals. Still, their activity

is driven by at least two goals: maximizing detected tax evasion; and maximizing

the amount of evaded taxes recovered by the end of the auditing process.1 The

two goals may di�er because some audits may appear to be promising in terms of

detected evasion but much less so in terms of the amounts that can be recuperated

since taxpayers may appeal against the audit. Our dataset allows us to assess both

goals. We show that our ML algorithms can accurately rank audits in terms of

both expected tax evasion and expected recovered evasion. More importantly, we

show that the performance of the audits that are predicted as worst performing is

extremely poor. Eliminating the bottom 10% of the audits, would induce a reduction

in detected evasion of only 3%; even more importantly it would also induce a reduction

of recovered evasion of only 2.6% implying that the omitted payo� bias problem, while

important in principle, may not alter qualitative conclusions in practice.

Once we have identi�ed the poorly performing audits, the next question is whether

we can replace the worst performing audits with ex ante superior tax �les. Here is

where the selective labeling problem starts to bite. To address this question, we

propose two complementary strategies. The �rst strategy relies on the longitudinal

nature of our dataset to choose the replacing �les. In Italy (like in many other

countries), the IRA has �ve years to audit a tax �le. While most �les are never audited

at all, some are audited in later years. This fact gives us a plausible counterfactual for

which we can actually observe the true outcome of an audit: a �le that is auditable

but unaudited at t is identical in all following periods in which it is auditable since it

refers to a tax year preceding t. We can therefore replace an audited �le we predict

to be non-performing with a �le that is available for auditing today but audited in

following years. We �nd that replacing the worst predicted 10% of �les with an equal

number of the best unaudited �les audited later yields an improvement of 38% in

detected tax evasion. The set of unaudited �les that are audited at a later date may

of course be di�erent from the general population. It is however unlikely that the

IRA intentionally postpones the audit of good �les. By not auditing a �good� �le at

time t, an agent of the IRA exposes the agency to the risk of never auditing it in the

future (if overlooked by future agents) or to the risk of losing the ability to recuperate

1These statutory goals are well de�ned by directives from the Treasury and have been described
to us in interviews by many o�cials from the IRA. Auditors do not have authority to deviate from
these goals.
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any evaded income since some companies may dissolve or go bankrupt before the IRA

can document a claim on the �rm balance sheet. Indeed, we document that �les that

remain unaudited for a few years but then are audited are not fundamentally di�erent

from other audited �les, in terms of both detected and recovered tax evasion.

The second strategy attempts to bound from below the value of replacement with-

out using ML for selecting the replacement �les. The strategy relies on the fact that

the IRA is severely constrained in terms of resources, so much that only about 3% of

the sole proprietorships' �les are audited (for comparison, in 2017 the audit coverage

on personal income in France was 5%, and that of the EITC recipients in the U.S.

was 6%). If the authority were to eliminate from a list of proposed audits the bottom

10% of �les according to the predicted performance and replace them with an equal

(to ful�ll the resource constraint) number of �les with random performance, would

the replacement be worthwhile? It is reasonable to assume that for such a marginal

substitution, the replaced �les will not be very di�erent from the average audited �les.

How bad should be the quality of a replacement relative to the audited �les, to make

such substitution undesirable? We show that replacing the bottom 10% of the worst

expected �les with average audited �les would increase both detected tax evasion and

recovered tax evasion by 6.7% and 7.6%, respectively. Indeed, the replacement would

be advantageous even if the replacing �les were signi�cantly below average.

A common risk when using ML to guide policy decision is to inject unintended

bias in the decisions. We assess the extent to which the replacements may introduce

bias by comparing a large set of sensitive observable characteristics before and after

the replacement. We however do not observe signi�cant di�erences in terms of key

demographics characteristics of the tax �ler (gender, age and marital status) and of

the nature of their business (family business status, years of activity and employees).

2 Related Literature

A signi�cant and growing literature at the intersection between computer science and

economics applies ML techniques to policy problems. For example, several papers

present algorithms to detect tax evasion (Bonchi et al., 1999; Bots and Lohman 2003;

Cleary, 2011; Hsu et al., 2015; Ruan et al., 2019; Wu et al., 2020; among others),

insurance fraud (Bhowmik, 2011), and fraudulent �nancial statements (Kirkos et al.,

2007).2 These papers focus attention on the design of algorithms to predict a positive

2These works are constrained by much smaller datasets than ours, typically limited to a
few thousand taxpayers.
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outcome, limiting the evaluation of their performance to the quality of the out-of-

sample predictions, thus ignoring the selective labels problem and omitted payo�

bias. Therefore, they o�er little guidance to the policymaker who is interested in

deciding how to allocate a scarce resource (Athey, 2017). This question is as important

for policy purposes as di�cult to solve empirically because it requires information

on counterfactual conditions. While this problem is mitigated in cases of random

allocation of treatments (e.g. random audits),3 policy interventions are almost never

at random. This paper is the �rst to propose a solution to this question in the

context of tax auditing. The strategies that we propose, however, can be applied to

any allocation problem of a scarce resource where longitudinal data are available, a

fraction of untreated units are treated at a later date, and their outcomes remain

unchanged during the period. The importance of the selective labels problem for

public policy application is highlighted by Lakkaraju and Rudin (2017), Jung et al.

(2017), who rely on a �selection on observables� assumption to assess ML applied to

judicial decisions to release or detain defendants while they await trial. Lakkaraju

et al. (2017) and Kleinberg et al. (2018) rely on institutional features of these decisions.

In particular, Kleinberg et al. (2018) leverage the quasi-random assignment of cases to

judges of di�erential leniency: they use the algorithm's predictions for cases handled

by lenient judges to predict the outcomes for defendants released by more stringent

judges. The institutional features that enable the Kleinberg et al. (2018) solution to

the selective labels problem may not be available in all policy prediction applications.

A key contribution of our paper is to identify an alternative approach to the selective

labels problem. Instead of relying on random shocks to propensity to observe the

labels, we use the feature that some labels are only revealed later in time.

3 Institutional Setting and Data

The taxpayers in our dataset are individuals who own a sole proprietorship, where

no legal distinction is made between the enterprise and the sole owner. In most

countries, this �scal category is the subsample of taxpayers characterized by the

highest evasion rate and accounts for a relevant portion of the total tax gap. We

merge information from two di�erent administrative records that the IRA shared

uniquely with us: returns �les and audit �les. Records are at the individual level

3Recently, Ash et al. (2021) use randomized audits to evaluate the bene�ts of using a ML algo-
rithm to predict corruption in Brazilian municipalities. In the context of gun violence prevention
and energy consumption prediction, Bertrand et al. (2022) and Knittel and Stolper (2021) rely on
randomized control trials.
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and cover statements of incomes generated from 2007 to 2012, reported between

2008 and 2013, and audited between 2009 and 2014. Overall, our sample contains

19 million tax returns �led by almost 4.8 million taxpayers, and 405,115 audits.

This database (the Tax Registry) is the one used by the IRA to select audits. It

includes detailed information on all components of taxpayers' tax returns (including

reported taxable income, turnover, liabilities and deductions) and characteristics of

their business (sector, geographical location, years of activity, number of employees).

The audit data contain information on whether and when a �le was audited, as well

as the amount of evaded tax assessed (if any).4 Additionally, the IRA shared with

us the exclusive information on whether the taxpayer is insolvent, that is when the

audited taxpayer does not pay back the assessed evasion. These cases of insolvency

can originate from an appeal against the audit or simply a failure to respond to the

audit noti�cation. In Italy, an average of 5% of audited taxpayers appeal against an

audit, and another 37% of taxpayers neither pay nor appeal within due time after the

audit noti�cation. Both cases of insolvency trigger complicated processes, which last

for many years, entail complex schemes of sanctions, and may involve several layers

of judiciary. The probability of insolvency increases faster for higher levels of tax

evasion, thus hampering seriously the ability of the IRA to recover evasion. Further

details on our data and summary statistics are reported in the Online Appendix A.

4 The Machine Learning Algorithm

Predicted variables. We tailor our statistical model around the two goals of the

IRA: detecting evasion and recovering the detected amount of evaded tax. More

speci�cally, for each �le our two main variables of interest are i) tax evasion, de�ned

as the di�erence between the tax amount assessed during an audit and the tax paid

(labeled as TaxEva); and ii) a proxy for the actual tax evasion recovered by the IRA

(labeled as TaxGot). This is equal to tax evasion when the taxpayer pays back within

due time, and zero when the taxpayer is insolvent.5 Because the policy goals are in

levels of detected and recovered evasion, we predict levels of evasion (rather than e.g.

binary indicators for a certain level of evasion).6

4We identify and exclude audits initiated by authorities cooperating with IRA (3%) that might
use other information or selection criteria.

5Because of the lengthy and complicated process triggered by an appeal against an audit men-
tioned before, the actual amount of recovered evasion is not available for many observations in our
sample. In the observed time frame, 97% of the taxpayers who appeal never pay back their debt.

6We have also explored models using the inverse hyperbolic sine transformation of our predicted
variables. Working with these did not produce better predictions, and we focus on predicting
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Model. We use a random forest to separately predict tax evasion and recoverable

tax evasion (Breiman, 2001). This allows for rich interactions among explanatory

variables, and easily adapts to non-linearities. Furthermore, this algorithm is suitable

for handling very rich databases, which in addition to a large sample size feature

a large number of explanatory variables, since the predictive variables are not used

simultaneously. Our random forests contain 1,000 trees each.7 The tuning parameters

that we choose include a minimum leaf size of 28 observations to be eligible for a split,

and 2.5% of features eligible for consideration at each split.8 We train separate models

for TaxEva and TaxGot.

Predictors. We use a rich selection of variables to predict TaxEva and TaxGot.

We include business characteristics (years of activity, the number and logarithm of

the number of employees, dummy indicators for the presence of employees and for the

taxpayer being self-employed) and the full selection of �nancial variables included in

the Tax Registry. For example, the latter include the reported taxable income (both

the value and its logarithm), a dummy indicating a positive reported taxable income,

reported taxable income net of employees deductions, gross income, revenues, taxable

revenues, total assets, total liabilities, net value of production, VAT taxable turnover,

operating costs, amortized costs, and VAT transactions. Importantly, we were granted

access to the highest level of disaggregation of the sector of activity (ATECO 5-digit

code, i.e. 1,215 sectors) and geographical location (municipality level, i.e. 8,054

municipalities). However, capturing this information using �xed e�ects poses compu-

tational challenges, given the large number of sectors and municipalities. We use this

information as follows. First, we propose a speci�cation with 5-digit sector of activity

�xed e�ects and geographical �xed e�ects at the province level (110 provinces) (spec-

i�cation i). In an alternative speci�cation, we instead exploit the granularity of the

geographical information contained in the data by building Mundlak-type predictors

(Mundlak, 1978), de�ned as the average at the municipality for two key �nancial

accounts, namely taxable income and turnover. We add these variables to 5-digit

sector of activity �xed e�ects (speci�cation ii). Next, we exclude 5-digit sector of ac-

expected evasion in levels. We winsorize these variables at the top 1 percentile to prevent our model
�chasing� extreme and idiosyncratic observations. To implement this, we consider the top 5% of the
relevant variable, and estimate the parameters for a Pareto distribution to best match. We then use
the conditional mean from this distribution of being in the top 1 percentile as the imputed value.
Separately, the evaded tax can be negative if people pay a higher amount than the due tax. These
instances are typically due to minor errors. We replace negative values of TaxEva or TaxGot with
zeros.

7Increasing the number of trees further does not lead to a sizeable increase in the model �t.
8These were chosen based on a semi-structured grid search, using the random forest Out of Bag

goodness of �t to guide the choice of tuning parameters.
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tivity �xed e�ects and use Mundlak-type predictors at both municipality and 5-digit

sector level (speci�cation iii). We discuss the sensitivity of our predictions against

alternative sets of predictors in the Online Appendix B. Because the performance of

the di�erent models is roughly equivalent, we use as baseline the more parsimonious

version of the model, featuring more than 250 variables (speci�cation iii).

Samples. We use �les from years 2007, 2008 and 2009, for which we observe the

complete �scal cycle - that is the following 5 years in which they can receive an audit.

By doing so, we get a representative sample of the composition of the �les that are

audited over time. To get a clean partition of the data, our randomized classi�cation

into training and testing samples occurs at the taxpayer (pseudo-)ID level; so that

taxpayers in the training sample for one year are also in the training sample for all

other years. Our training sample for the random forest prediction model consists of

an 80% subset of the universe of audited taxpayers. To assess goodness of �t, we

compare predictions for our testing sample, which consists of the 20% of audits from

each of the �scal years 2007-2009 excluded from the training sample. In total, our

training sample contains 163,234 �les, and our testing sample 40,869 �les.

This �gure reports the actual tax evasion (blue dots) and the recovered tax evasion (red triangles)

of realized audits in the testing sample by percentiles of predicted values. The green and the orange

line display the predicted tax evasion and the predicted recovered tax evasion, respectively. The

sample includes �les of �scal years 2007-2012 that are audited by IRA.

Figure 1
Model Fit

Out-of-sample assessment of prediction model. To measure the model per-
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formance, we compare predicted outcomes with outcomes assessed during the audit.

In Figure 1, the curved green line reports the average predicted evasion at each per-

centile of predicted evasion and the blue dots report the average evasion detected

by audits that were actually implemented. The curved orange line shows the average

predicted TaxGot for each percentile of predicted TaxGot, and the red triangles report

the average actual TaxGot for that percentile.

The model has a remarkable out-of-sample performance. The Online Appendix

B provides a more rigorous analysis and explores additional tests of the validity of

the prediction model. We show that its performance persists well for di�erent testing

samples, and that the random forest model does better than a straightforward OLS

regression approach.

5 Policy Experiments

While the ML algorithm is very accurate in ranking the audited �les in terms of

their expected outcome, the gain of replacing the �les that are predicted as poorly

performing with �les of superior performance is unclear. This depends on the expected

outcome of unaudited �les, for which we only have a ML prediction. To bypass this

problem and quantify a lower bound on the bene�t of using ML to re�ne the auditing

process, we propose two types of exercises. First, we use the prediction model to

calculate gains from a �discarding� exercise, where the audits with the worst predicted

outcomes are simply discarded (Policy A). Audits have both administrative, human

and economic costs on the target taxpayer (e.g. due to psychological distress and/or

interference with the business). Performing audits with zero or minimal results is a

waste of resources even without replacing them by superior audits. Second, we use the

predictions for a �discard and replace� exercise, where these audits are discarded, and

then replaced with audits from an alternative donor pool (Policy B). We propose two

strategies to select the replacements: Policy B.1 chooses replacements by using our

ML algorithm; Policy B.2 substitutes with random �les. As for Policy B.1 we propose

two alternatives. The �rst, Policy B.1a relies on the longitudinal dimension of our

data, that include three complete �scal cycles, i.e. for incomes produced in 2007, 2008,

and 2009. Our data feature the universe of �les in those years that were audited over

the �ve-year cycle. In our exercise, the pool of audits eligible for discarding are thus

the 2007, 2008, and 2009 �les in the testing sample, whose audits occurred 1, 2, or 3

years after �ling. The donor pool for replacement audits is 2007, 2008, and 2009 �les

in the testing sample, whose audits occurred 4 or 5 years after �ling. These �les in the
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donor pool are a valid counterfactual because of three institutional features: they i)

were available to audit at the time of decision for the �les in our consideration sample,

ii) had their tax �le information locked in and so there is no risk of this information

changing, and iii) were ultimately actually audited, and so have been selected into

audit and have observable outcomes. In Policy B.1a we replace the discarded �les

with the best �les from this pool according to the algorithm. By revealed preference,

�les that are available for an audit and overlooked in a given year are considered less

promising by the IRA. Therefore, our suggested replacement procedure produces a

lower bound of the expected gains. As a benchmark, in Policy B.1b, we replace the

�les with the best �les (based on the predicted outcome) that were available for that

year, even if they were never audited, and we impute their expected return using the

ML prediction.

Policy B.2 instead does not require the use of a ML algorithm for the selection

of the replacements but substitutes the discarded audits with randomly selected �les

from the pool of all audited �les (Policy B2.b). The assumption here is that the

authority has locally constant returns to auditing: if a small fraction of the audits is

removed, the agency can replace them with a similar average marginal return. This

assumption is motivated by the fact that the authority is severely constrained in terms

of resources, thus able to audit only a tiny fraction of �les. This problem resembles

that of a top university selecting prospective students: the tiny fraction of accepted

applicants is not dissimilar to the next 5% of rejected candidates. We also repeat the

exercise by replacing with random �les from the pool of later audits used in Policy

B.1a (Policy B2.a).

5.1 Results

Policy A: Discarding audits with low ex ante promise. We consider how much

TaxEva and TaxGot would be lost if the worst X% of audited �les (sorted by the

predicted outcome) were not audited. Because we observe the actual outcomes for

these �les, this is a straightforward direct calculation, and results in the Lorenz-type

curves in Figure 2.9 We present Lorenz-type curves for both TaxEva (solid line) and

TaxGot (dashed line). For each percentage of discarded �les, the curves show the

percentage reduction in each outcome, respectively. The forty-�ve degree line depicts

the loss in the aggregate outcome resulting from a random discarding of audits. The

9A Lorenz curve shows the share lost by discarding the lowest X% of actual outcomes. The
Lorenz-type curves we present instead show the share lost by discarding the lowest X% of predicted
outcomes.
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�cost� of discarding audits with lowest-predicted outcomes is very small. Indeed,

discarding the worst 10% of audits is associated with less than a 3% loss of detected

tax evaded and 2.6% of recovered tax evasion.

This �gure reports in the y-axis the percentage of the total amount of tax evaded and recovered
tax evaded lost by not auditing in each o�ce a given percentage of audits with the lowest predicted
tax evaded and the lowest predicted recoverable tax evaded, respectively.

Figure 2
Losses from not auditing the �les with lowest predicted evasion

Conversations with IRA o�cials informed us that an internal assessment of the

cost per audit is around 1,700 euros.10 This amount is similar to that reported as the

cost to the United States' IRS at $2,278 per audit (Government Accountability O�ce,

2012). Our model predicts that each audit in the lowest 12% of audits recovers less

than this amount of TaxGot . We plot a dot on the �gure to indicate this break-even

point. Of this 12%, the 50% generates exactly zero TaxGot . Eliminating audits below

the break-even would reduce recovered tax evasion by 1,904,746 euros and costs by

2,789,700 euros (number of audits times 1,700 euros). Even ignoring the human and

economic costs of audits on the target taxpayers, this policy would increase the net

recovery by 884,954 euros.11

Policy B: Replacing discarded audits under the ML guidance vs. at

random. One natural way to assess the opportunity cost of an audit is to focus on

10The IRA conducts routine audits, with standard costs.
11The basic monetary cost to the IRA is a lower bound to the actual cost. Actual costs also

include the costs borne by the taxpayer in complying with the audit. Additionally, there may be
social costs. For example, our data reveals that audited taxpayers are more likely to close their
business during the three years following an audit than taxpayers who are not audited.
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the bene�t of alternative audits that could have been performed but were not. This

idea leads to the modeling exercise of dropping the �worst� audits and then replacing

them with an equal number of unaudited �les. For Policy B.1, we sort the unaudited

�les according to the outcome (i.e. TaxEva or TaxGot) predicted by our model. Then

we identify the best N �les from the set of unaudited �les, where N is the number of

discarded �les.

When considering potential replacements, we explore two variations. First, we

deal with the selective labels problem by choosing the replacements among �les from

the same �scal year as the discarded ones that were audited by the same o�ce 4 or

5 years after �ling (Policy B.1a). The solid-line in Figure 3, Panel A, shows very

substantial gains of Policy B1.a of this �discard and replace� exercise on TaxEva (left

panel) and TaxGot (right panel). The e�ects are expressed in percentage of the

aggregate amount of TaxEva and TaxGot that is obtained by the IRA in the actual

audits in our sample (status quo). At a 10% discard rate, this policy would increase

the status quo aggregate TaxEva by 38% and the status quo aggregate TaxGot by

29%.

Second, we consider a more speculative approach for replacing discarded �les

(Policy B.1b). Namely, we choose the best �les from the full set of unaudited �les from

the same �scal year and o�ce as those discarded, which in addition to �les audited

later includes the much larger set of �les never audited. We use the predictions

of our model to impute what the outcome would be. This strategy relies on the

accuracy of the out-of-sample predictions from our prediction model at the top of

the distribution. Di�erently from Policy B.1a we cannot verify this directly. Hence,

this exercise potentially provides an upper bound to the gains from replacement. In

Figure A2 we show that the large gain in replacement from this policy is mainly

driven by the broader pools, since these larger pools have greater scope to identify

promising �les. As shown by the dashed line in Figure 3, Panel A, the theoretical

gains of Policy B1.b are signi�cantly higher than the gains in Policy B.1a, which is

based on realistic counterfactuals. These gains amount to 83% of the status quo for

TaxEva and 65% for TaxGot. Because Policy B.1b is more speculative, the actual

gains are likely to be in between Policy B.1a and Policy B.1b.

Finally, to isolate the bene�ts of a ML-guided discarding from those of a ML-

guided selection of replacements, we compare the gains of Policy B1 with Policy B2,

where we consider replacing with an �average audit� taking as reference the o�ce

average. For ease of illustration, we replace the discarded �les with an average �le

from the pool of audits, rather than showing Montecarlo simulations using random
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Panel A: Policy B.1 - Replace with the highest ranked �les

Panel B: Policy B.2 - Replace with average �les

This �gure reports on the y-axis the percentage gains of discarding a given percentage of �les with
the lowest predicted value of the target variable and replacing them with the same number of �les (i)
with the highest predicted value (panel A) or (ii) randomly selected (panel B). The x -axis reports
the discarded percentage. The target variable is tax evaded in the left �gures and recoverable tax
evasion in the right �gures. All values are reported relatively to the status quo total revenue of
audits set at 100 and represented by a dot.

Figure 3
Gains from �discard and replace� exercise

drawings from this pool.12

In Figure 3, Panel B, the solid line represents Policy B.2a, that is when we consider

the average among the �later audits� pool. Limiting the replacement to the lowest

10% leads to more modest but still signi�cant gains: an overall 6.7% improvement

relative to the status quo in TaxEva and 7.6% in TaxGot. The dashed line denotes

12Montecarlo simulations in the Online Appendix C.3 yield similar results.
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Policy B.2b, that is when we allow for �les audit at any age. The improvements

are similar: 6.5% for TaxEva and 7.5% for TaxGot. This con�rms that the average

quality of �les audited later is similar to that of the �les that are audited at any time.

These exercises show that the range of possible gain may be wide, but even adopting

the most conservative measurements, any gain would be a meaningful improvement

with respect to the status quo.

As within the IRA the selection of audits typically occurs at the local o�ce level,

our baseline results consider only replacements within the same local o�ce.13 How-

ever, in principle there could be greater gains from being able to replace from a

broader pool. In the Online Appendix C.1, we consider replacement from �les drawn

within higher level IRA o�ces, i.e. the same province, the same region, or from

anywhere in the country. While most of the gains are captured by replacing simply

within the same o�ce, reallocation at the higher level increases the performance fur-

ther: with reference to the gains in TaxEva after a 10% replacement under Policy

B.1a, reallocating within o�ce implies a 38% gain, while reallocating at the province,

region and country level increases TaxEva by 42%, 48% and 50%, respectively. This

exercise suggests that some current organizational choices may be suboptimal under

the machine selection.

5.2 Discussion: Policy Goals

Tradeo�s between targeting TaxEva vs. TaxGot . A key challenge in any policy

prediction problem is that the speci�c goal of the policymaker is usually unknown.

This is the �omitted payo� bias� problem. In our context, we were given direct

information and thus designed algorithms tailored to best predict each of the two

policymaker goals: the TaxEva and TaxGot outcomes. The next question is whether

there are tradeo�s between these two measures. First, we note that a policy of

discarding audits based on predictions for one measure can result in dramatically

reduced improvements for the other measure. The Online Appendix D shows that

the dominant predictors in the random forest di�er by some extent among TaxEva and

TaxGot. Also, among our pooled testing sample, the correlation coe�cient between

predicted TaxEva and predicted TaxGot is only 0.55. This implies that targeting tax

�les to discard (and/or replace) on the �wrong measure� can reduce the value of the

exercise.

To gain insight into the tradeo�s across these outcomes, we model the auditors'

13There are 288 o�ces.
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utility from choosing a given �le into audit as a combination of the predicted TaxEva

and predicted TaxGot,

U
(

̂TaxEva, ̂TaxGot
)
= ̂TaxEva

α
· ̂TaxGot

1−α
. (1)

For each �le, we compute this utility for a range of values α ∈ [0, 1]. For each

value of α, we rank them according to their utility and implement our �discard and

replace� exercise, where we replace with the best available �les from the donor pool

of �les audited at later ages (Policy B.1a). Each line in Figure 4 shows the average

TaxEva and TaxGot per �le by discarding and replacing a given percentage of �les, as

indicated on the left end of each line. The dashed line corresponds to a 20% discard

rate. When the utility of a �le depends only on predicted TaxEva (α = 1), our model

results in point E ; when it depends only on predicted TaxGot (α = 0) our model

results in point G. The other points on the line represent intermediate degrees of

weighting the two policy goals.

This �gure reports the detected tax evasion per �le (x -axis) against the recoverable evasion per �le

(y-axis) after discarding the �les with the lowest predicted utility and replacing them with the same

number of �les with the highest predicted utility at the o�ce level (Policy B.1a). Each line reports

a di�erent percentage of discard-and-replace values and each point along aline represents di�erent

combinations of utility weights on the two policy goals, namely maximizing detected tax evasion

and recoverable tax evasion. The status quo levels are represented by a dot.

Figure 4
Tradeo�s between detected and recovered tax evasion

We highlight two features of these results. First, and in line with Figure 3, Fig-

ure 4 shows that there is great scope for improving the selection of �les. Second,
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Figure 4 shows that when the policy objective is a simple function as in (1), even

targeting either measure may dramatically improve both outcomes, compared to sta-

tus quo (represented by a dot). However, there is some tradeo� between targeting

only TaxGot versus targeting only TaxEva. Under a 20% replacement rate, targeting

TaxEva only (α = 1) produces a 56% increase over status quo in TaxEva, and a 18%

increase in TaxGot . On the other hand, targeting TaxGot only (α = 0) produces a

16% increase over status quo in TaxEva, and a 42% increase in TaxGot . In this sense,

the tradeo�s are roughly symmetric across the two measures, in terms of percentage

increase over status quo.

Additional policy goals. Pursuing the two main goals of reducing tax evasion

and insolvency rate could have the unintended consequence of concentrating the audits

among speci�c groups of taxpayers. For example, the policy may suggest to over-pick

replacement �les belonging to a speci�c sector or income class characterized by higher

evasion rates. However, this could unintentionally hinder the deterrence e�ects for

other groups of taxpayers. In the Online Appendix E, we repeat the discard and

replace exercise by choosing replacement �les only within deciles of taxable income

or within business sectors. We show that, when replacing the �les with the lowest

10% of predicted TaxEva, the gains of Policy B1.a and Policy B1.b (38% and 83%,

respectively) are reduced to 22% and 49% when replacements of discarded �les are

limited to �les in the same income decile as the discarded ones, and to 19% and 51%

when replacements are limited to �les in the same business sector. This evidence

indicates that there are considerable gains from replacement even when keeping the

composition of the audited �les by key characteristics broadly unchanged.

To further investigate whether the new selection of �les is undesirable along ad-

ditional margins, we compare the average observable characteristics of the discarded

and replaced �les under these di�erent replacement schemes. Table A3 in the Online

Appendix shows that the ML algorithms select replacement returns �led by taxpayers

with similar demographic characteristics to the ones who �led the discarded returns

and managing similar businesses.

6 Concluding Remarks

This paper exploits an exclusive data-set from the IRA to explore the extent to which

ML can be used to improve audit selection. We use the prediction model to calculate

gains from a �discarding� exercise, where the audits with the worst predicted outcomes

are discarded, and a �discard and replace� exercise, where these audits are discarded
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and then replaced with audits from an alternative donor pool. The discard-only

exercise shows that ML can be reliably used to identify poorly performing audits:

in an out-of-sample analysis, we �nd that the audits with the lowest 12% outcome

recover less than the material cost of performing the audit.

The �discard and replace� exercise is more delicate since it faces the key challenge

that the actual outcomes for most �les are typically not observed, because they did

not receive an audit. We propose novel solutions to this challenge. Because the IRA

has 5 years to audit a �le, we develop a methodology where unaudited �les audited at

a later stage are used as counterfactuals. This allows to use �les that were available at

the time of the audit selection, but were neglected for inferior choices. Since these �les

were later audited, we can use later audits to assess their �value� and the performance

of the replacement. We �nd that even if we restrict this replacement to �les from the

same o�ce, very sizable performance improvements are feasible: at a 10% discard

rate, selecting the replacements using ML from this pool yields an improvement of

38% of TaxEva, and of 29% of TaxGot. Allowing the replacements to be selected in

the larger pool of unaudited �les (and using the predicted value to evaluate them)

yields much larger improvements: at a 10% discard rate, selecting the replacements

using ML from the larger pool yields an improvement of 83% of TaxEva, and of 65%

of TaxGot.

As a lower-bound, we also evaluate the potential improvements if the replace-

ments are selected at random from the pool of audited �les, both limiting the pool of

replacements to �les that were later audited and to the larger pool of audited �les.

The idea is that if only a small fraction of audited �les is discarded and replaced, the

tax agency can at least replicate its �average� performance with the replacements.

In this case, the improvements are naturally smaller, but still signi�cant: at a 10%

discard rate, selecting the replacements at random yields an improvement of about

7% of TaxEva, and of 8% of TaxGot, independently of whether the pool is restricted

or not.

A natural concern is whether selecting replacements with ML algorithm injects

unintended bias in the selection. However, we do not observe signi�cant di�erences

in terms of key demographics characteristics of the tax �ler and of the nature of their

business.
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Online Appendix

Re�ning Public Policies with Machine

Learning: The Case of Tax Auditing

Marco Battaglini Luigi Guiso Chiara Lacava

Douglas L. Miller Eleonora Patacchini

A Data: Further Details

Our data includes the universe of �les and audits to sole-proprietorship taxpayers.

This is the category of tax �lers that contributes the most to aggregate tax evasion

in Italy, as well as in other countries. According to estimates of the Italian Treasury

Ministry, in 2018 in Italy, small business (mostly registered as sole-proprietorship

business) account for 60% of the total evasion detected from �rms' reporting, an

amount equal to 8.9 billion euros (Ministero dell'Economia e delle Finanze, 2019).

The U.S. Internal Revenue Service (IRS) estimates that the lost federal tax revenue

due to underreported individual income was 197 billion dollars in 2001 (18% of the

individual income tax liability; U.S. Department of the Treasury, 2006). Johns and

Slemrod (2010) report that in the U.S. 57% of self-employed income is misreported, in

contrast to only 1% of wages and salaries. Similarly, Artavanis et al. (2016) document

that in Greece, evasion by the self-employed accounts for large losses in the public

budget.

Table A1 shows summary statistics. The sample includes 18,923,474 tax �les

of income produced in years 2007-2012 by 4,731,693 sole-proprietorship taxpayers.

Among these tax returns, 403,691 returns �led by 304,726 di�erent taxpayers receive

an audit. The probability of receiving an audit over the �ve years after �ling is close

to 3% and similar across sectors, except for business operating in agriculture that

have a much lower audit rate (1.2%).
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Table A1
Summary Statistics - Audited Tax �les

mean median sd 10th pct 90th pct
Audit rate 0.029 0 0.169 0 0
Agriculture 0.012 0 0.107 0 0
Trade 0.032 0 0.175 0 0
Construction and Manufacturing 0.033 0 0.179 0 0
Private services 0.032 0 0.175 0 0
Health, education, recreational services 0.030 0 0.170 0 0

Insolvency rate 0.425 0 0.494 0 1
Agriculture 0.302 0 0.459 0 1
Trade 0.431 0 0.495 0 1
Construction and Manufacturing 0.570 1 0.495 0 1
Private services 0.379 0 0.485 0 1
Health, education, recreational services 0.213 0 0.410 0 1

Appeal rate 0.050 0 0.217 0 0
Agriculture 0.046 0 0.210 0 0
Trade 0.052 0 0.223 0 0
Construction and Manufacturing 0.045 0 0.208 0 0
Private services 0.051 0 0.221 0 0
Health, education, recreational services 0.040 0 0.196 0 0

Positive evasion 0.742 1 0.438 0 1
Taxable income 22,783 13,040 52,997 0 49,390
Detected tax evasion (TaxEva) 14,520 1,914 78,111 0 21,655
Recovered tax evasion (TaxGot) 3,436 0 12,556 0 7,952
Years of activity 13.276 11 10.412 0 29
N. employees 0.830 0 3.152 0 2
Turnover 85,047 33,985 2,571,116 3,014 168,474

Notes. The audit rate is calculated for complete �scal cycles (2007, 2008, 2009 �les). Financial accounts are

expressed in euros. Detected and reported tax evasion are reported after winsorization.

Among audited �les, the insolvency rate is 42.5%, and varies across sectors. About

57% of audited taxpayers operating in constructions and manufacturing (e.g. small

construction �rms, plumbers, artisans, bakers) do not pay back the detected evasion.

Business providing services in trade and private services (e.g. lawyers, hairstylists,

co�ee shop owners, architects) have an insolvency rate of 43% and 38%, respectively.

Finally, business in agriculture are insolvent 30% of the time and those providing

health, education and recreational services (e.g. physicians, dentists) are insolvent

21% of the times. The probability that the taxpayer appeals the audit is on average

5%, with low variation across sectors: the appeal rate ranges between 4% -for health,

education and recreational services- and 5.2% -for trade activities.

Audits detect evasion in 74% of the cases. The average detected tax evasion is

14,520 euros, with a quite dispersed distribution (min: 0, max: 21,884,085 before

winsorization). Evasion is a substantial share of the taxable income declared: on

average it amounts to 63% of the taxable income. The average recovered tax evasion

is 3,436 euros.
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The average audited taxpayer has been in operation for 13 years, only 24% of the

business have employees and those with employees on average employee 3.4 workers.

The average reported turnover is 85,047 euros with relevant heterogeneity (standard

deviation: 33,985 euros; 90th percentile 168,474 euros), partly re�ecting di�erences

across industries.

This �gure reports the insolvency rate for the percentiles of positive detected tax evasion.

Figure A1
Distribution of the insolvency rate by percentiles of detected tax evasion

Figure A1 shows the relationship between the detected tax evasion and the in-

solvency rate, as measured by the ratio between the number of audited tax �les for

which no payment is received in due time among those who are found with positive

evasion. The �gure shows a marked non linearity: the insolvency rate is much higher

for �les with high evasion.

B Model Performance: Further Details

In this section, we compare the performance of our model with a standard linear

(OLS) prediction model and investigate its robustness when using di�erent sets of

predictors. In Table A2, Panel A, we compare the predicting performance of our

random forest model and a linear probability prediction model estimated using the

baseline set of predictors. We measure the �t of the prediction model by comparing

the predicted evasion and recovered evasion of �les in the testing sample that were

actually audited, with the realized values. We report the out-of-sample R-squared

and the RMSE for both variables as a measure of �t. Overall, the R-squared values

are low. This is not surprising, given the nature of the outcome variables: they are
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highly right-skewed, and additionally have many 0 values. As Figure 1 shows, the

random forest model predicts the conditional average very well. For these data, there

is an inherently large degree of noise around the conditional average, which is re�ected

in the R-squared values. As we show in the paper, our prediction models can greatly

improve detected evasion, even given these modest R-squared values. The table shows

that the random forest model improves signi�cantly the prediction of both outcomes:

the R-squared of detected tax evasion doubles and the R-squared of the recovered

tax evasion using the random forest model is 1.5 times that of the OLS model. This

suggests that allowing for nonlinear functions of predictors is important to better

predict detected and recovered tax evasion.

Table A2
Comparison across models

A. OLS vs Random Forest

Model N. predictors N. obs. Out-of-sample R-squared Out-of-sample RMSE
TaxEva TaxGot TaxEva TaxGot

OLS 255 40,869 0.041 0.055 95,329 13,498
Random Forest (baseline) 255 40,869 0.131 0.083 90,746 13,297

B. Random Forest: Alternative Sets of Predictors

Predictors N. predictors N. obs. Out-of-sample R-squared Out-of-sample RMSE
TaxEva TaxGot TaxEva TaxGot

5 dgt sector FE 1,467 40,869 0.131 0.082 90,728 13,305
5 dgt sector FE + Mundlak's municipality 1,469 40,869 0.131 0.082 90,732 13,303
Mundlak's municipality & 5-dgt sector (baseline) 255 40,869 0.131 0.083 90,746 13,297
no Mundlak's controls 251 40,869 0.127 0.081 90,952 13,310
no detailed �nancial accounts 150 40,869 0.092 0.080 92,750 13,319
no province and 2-dgt sector FE 20 40,869 0.072 0.064 93,772 13,433

C. Random Forest: Alternative Testing Samples

Testing sample N. predictors N. obs. Out-of-sample R-squared Out-of-sample RMSE
TaxEva TaxGot TaxEva TaxGot

Estimation years, 2007�2009 (baseline) 255 40,869 0.131 0.083 90,746 13,297
Post-estimation years, 2010�2013 255 11,177 0.127 0.081 71,759 15,267

Another key decision that characterizes the prediction model is the preferred set of

predictors. We use as our baseline set of predictors the full set of variables reported in

the tax returns, combinations of those variables, and dummy variables at the province

and at the 2-digit sector level (100 and 21 variables, respectively). In addition, we

exploit the granularity of the geographical and sectoral information contained in the

data using Mundlak-type predictors (Mundlak, 1978), de�ned as the average at the

municipality and at 5-digit sector level of two key �nancial accounts, namely taxable

income and turnover. In Table A2, Panel B, we test the sensitivity of our algorithm

to alternative sets of predictors. First, as discussed above, we show that by substitut-
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ing the Mundlak's controls with the 5-digit sector �xed e�ects (with or without the

Mundlak's municipality variables) leads to a similar prediction accuracy. Second, we

evaluate the explanatory power of di�erent types of variables by eliminating di�erent

sets of controls in turn. When removing the Mundlak's controls the �t of the model

changes only slightly, for both outcomes. When removing detailed �nancial variables

there is instead an important reduction in the �t of the model for tax evasion, while

the improvement for recovered tax evasion proxy is minor, suggesting that the full set

of �nancial accounts does not help much predicting insolvency.14 On the other hand,

both tax evasion and insolvency shows a strong sectorial and geographical dimension:

when removing sector and province �xed e�ects (last row) the performance of the

model for both variables is dramatically reduced.15

C Discard and Replace Exercise: Further Evidence

C.1 Expanding the geography of the pool of available replace-

ments

In this section, we repeat our baseline discard-and-replace exercise (Policy B.1a),

allowing discarded and replacement �les to come from a broader pool of audits. In

other words, we envision a scenario in which higher-level organizational units of the

IRA can impose replacement of �les across tax o�ces. We consider replacement

within the province, the region, and the whole country. For example, when the

province is chosen as the organizational unit, we model dropping the 10% of audits

with the lowest predicted outcome (among those that were audited 1-3 years after

�ling) within the province, and replacing them with an equal number of audits on

the �les with the highest predicted outcome among later audits (i.e. among those

that were audited 4 or 5 years after �ling) within the province. Results from these

exercises are presented in Figure A2. We show two panels, one for each outcome,

and use di�erent line patterns for di�erent replacement pools. The solid lines show

the results from the baseline discard-and-replace Policy B.1a within an o�ce, and

14A basic set of �nancial variables is included in all models. This set includes the reported taxable
income (both the value and its logarithm), a dummy equal to one if the reported taxable income was
positive, reported taxable income net of employees deductions, gross income, revenues, total assets,
total liabilities, net value of production, VAT taxable turnover, total taxable revenues, operating
costs, amortized costs, VAT transactions.

15We also experimented with the use of lagged variables as additional controls. Results show
that the performance remains roughly unchanged. The lagged structure of the variables however
substantially reduces the sample sizes.
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gives the same results as in Figure 3, whereas dashed, dashed-dotted or dotted lines

show the results for using province, or region as the organizational units (with region

outperforming province), or the whole country. The picture shows that, for both

outcomes, expanding the organizational level for discard-and-replace can improve the

outcomes, but only modestly.

This �gure reports the percentage gains of discarding the �les with the lowest predicted tax evasion
(left panel) or with the lowest predicted recoverable tax evasion (right panel), and replacing them
with the same number of �les with the highest predicted value at the local o�ce (solid line) provincial
o�ce (dashed line), regional o�ce (dashed-dotted line), and centralized-country level (dotted line).
All values are reported relatively to the status quo total revenue of audits set at 100 and represented
by a dot.

Figure A2
Discard and Replace at di�erent organizational levels

C.2 Expanding the size of the pool of available replacements

The gain in replacement from the main exercise with the broader pool (Policy B.1b)

may be partly due to a higher probability of replacement with extreme values. To test

this conjecture, we repeat our B.1b replacement exercise allowing for a random sample

from a broader pool (which includes unaudited �les) but with the same sample size as

the pool of replacement �les audited four and �ve years after �ling. That is, we keep

the replacement pool the same size as Policy B.1a. Figure A3 reports on this exercise

when repeating the random draw 100 times. The 95% con�dence interval is presented

as a shaded blue region (however there is little variation across the 100 draws, so in
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the �gure this looks like a thick blue line). The �gure shows that when limiting

the size of the pool to the same size as Policy B1.a, Policy B1.b does worse than

Policy B.1a. This is perhaps unsurprising since the �les chosen to be audited (the 1a

pool) are positively selected compared to the overall pool of �les. The magnitude of

this selection e�ect is moderate. On the other hand, the magnitude of the di�erence

between the �full size� B.1b and the �small size� B.1b is very large. This indicates

that the success of the B.1b Policy is driven by having a large pool of �les from which

to choose the best.

This �gure reports on the y-axis the percentage gains of discarding a given percentage of �les
with the lowest predicted value of the target variable and replacing them with the same number
of �les with the highest predicted value using di�erent replacement pools: (i) the pool of later
audits (baseline Policy B1.a, green dashed lines); (ii) the pool of all unaudited �les (Policy B1.b,
black dashed lines); (iii) a random pool of all unaudited �les that has equal size of pool (i) (blue
solid lines). The orange solid line reports the gains of replacing the discarded percentage with �les
with outcome equal to the average value of those of pool (i) (Policy B2.a). The x -axis reports the
discarded percentage. The target variable is tax evaded in the left �gures and recoverable tax evasion
in the right �gures. All values are reported relatively to the status quo total revenue of audits set
at 100 and represented by a dot.

Figure A3
Changing the size of donor pool impacts the gains

C.3 Montecarlo experiment

In Section 5.1, we consider replacing with the average �le from either all those �les

audited (Policy B.2b) or the average of those audited 4-5 years after �ling (Policy

B.2a). Because the �average �le� is not a feasible direct choice, in this section we

consider replacement with a random subset of actual �les. We conduct 100 simula-

tions, and in each one we draw a random subset of �les as replacements. The 95%
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con�dence intervals for this exercise are reported in Figure A4. This �gure shows that

the results of these random draws are similar to �replacing with the average� shown

in Section 5. It also shows that there is not a lot of variability across the random

draws.

This �gure reports on the y-axis the percentage gains of discarding a given percentage of �les with
the lowest predicted value of the target variable and replacing them with the same number of �les
with the highest predicted value using 100 random samples of the pool of later audits (�rst row,
alternative implementation of Policy B.2a) and the pool of all unaudited �les (second row, alternative
implementation of Policy B.2b). The x -axis reports the discarded percentage. The target variable is
tax evaded in the left �gures and recoverable tax evasion in the right �gures. All values are reported
relatively to the status quo total revenue of audits set at 100 and represented by a dot.

Figure A4
Policy B.2 - Replacement with random draws

D Predictors of Di�erent Policy Objectives

In this section, we explore which variables are the main drivers of our prediction

model. More speci�cally, we report the mean decrease in impurity (Gini impor-

tance) as described in Breiman (2001). At each split in each tree, the classi�cation

is performed by selecting, out of all splits of the candidate variables, the split that

minimizes the Gini impurity. By doing so, we can measure how each predictor de-

creases the impurity of the split. The mean decrease in impurity is the sum over

the number of splits (across all trees) that include the predictor, proportionally to

the number of samples it splits. Figure A5 displays the predicting importance of the
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predictors in our baseline model with the highest mean decrease in impurity, sepa-

rately for each target variable. Notice that the main predictors for both variables

are the di�erent accounts reporting income (net, gross, business income excluding

salary income), turnover, net production and VAT credits. The most relevant cost

entries in predicting detectable and recoverable tax evasion are the purchases and

imports relevant to the determination of the VAT tax base. Moreover, the years of

activity and the business size (measured as the number of employees and its log) are

demographic characteristics useful in predicting evasion. Interestingly, there is high

variation in the predictive power of some predictors for the two target variables. This

underlines the tradeo� between multiple targets when building a prediction model

and complements our discussion in Section 5.2.

This �gure reports the importance of predictors using mean decrease in impurity. The �fteen
predictors with the highest maximum mean decrease in impurity in detected and recovered evasion
are displayed.

Figure A5
Dominant predictors of tax evasion

E Additional Policy Objectives

In this section, we consider a �constrained� discard and replace exercise. We focus

on Policy B.1a, replacing discarded audits from the pool of �les audited 4 or 5 years

after �le. The constraints we explore are either (1) income-decile constraints, or
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(2) business sector constraints. To implement these constraints, we treat each �le-

year-by-o�ce-by-income-decile as its own discard-and-replace pool. That is, if we

are targeting a 10% discard rate, we do so for each �le-year-o�ce-decile pool, among

those �les that were audited 1-3 years after �ling. And we replace within the same

�le-year-o�ce-decile pool, using �les audited 4-5 years after �ling.

This �gure reports on the y-axis the percentage gains of discarding a given percentage of �les with
the lowest predicted value of the target variable and replacing them with the same number of �les
selected with the highest predicted value (i) within the same o�ce (baseline Policy B1.a, solid line);
(ii) within the same o�ce and income decile (dashed-dotted line); and (ii) within the same o�ce and
sector of activity (dashed line). The x-axis reports the discarded percentage. The target variable is
tax evaded in the left �gure and recoverable tax evasion in the right �gure.

Figure A6
Discard and Replace within income deciles and sectors

Figure A6 shows the result of this exercise. The top green line is the unconstrained

exercise Policy B.1a reported in the main text. The blue dash-dot line shows results

when constraining replacements within the same income deciles, and the red dashed

line shows results constraining replacements to be within the same sector. These

lines show a similar pro�le of the gains of reallocation under the sector and income

decile constraint to one another. They are each about one half as e�ective as the

unconstrained exercise; but still represent a substantial improvement over status quo.

Table A3 shows that the proposed policies are not associated with a selection of

�les that di�er systematically along additional margins. The table reports the average

of a set of observable characteristics of the status quo selection of audits, and of the

replacement �les under the alternative versions of Policy B.1a replacement schemes

mentioned above (i.e. the baseline replacements within o�ce, replacements within

o�ce and sector, and within o�ce and income decile), and the status quo (actual)

selection of audits. Results for di�erent target variables are reported in di�erent
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Table A3
Characteristics of �les when discarding 20% and replacing with the best later audits

Panel A Panel B

Target: TaxEva Target: TaxGot
Status quo O�ce O�ce/Sector O�ce/Income O�ce O�ce/Sector O�ce/Income

Woman 0.226 0.199 0.217 0.212 0.202 0.213 0.227
Age 2.695 3.049 2.985 2.980 3.058 2.982 2.984
Married 0.681 0.679 0.678 0.677 0.717 0.710 0.698
Family business 0.102 0.102 0.102 0.104 0.133 0.130 0.127
Has employees 0.425 0.495 0.469 0.464 0.504 0.486 0.479
N. employees 1.907 2.861 2.409 2.392 2.712 2.427 2.406
Years of activity 13.000 12.842 12.906 12.853 13.865 13.470 13.471
Sectors:
Agriculture 0.036 0.035 0.036 0.037 0.041 0.036 0.041
Trade 0.334 0.314 0.334 0.325 0.315 0.334 0.338
Construction & Manufacturing 0.236 0.290 0.236 0.273 0.207 0.236 0.218
Private services 0.367 0.336 0.367 0.342 0.399 0.367 0.374
Health & Education services 0.027 0.025 0.027 0.024 0.038 0.027 0.029

Taxable income 26,370 36,199 31,438 28,847 47,256 35,660 30,127
Turnover 211,931 322,852 280,666 263,051 326,900 288,665 264,621

Notes. This table reports the mean characteristics of �les (as indicated in the �rst column) after discarding and replacing 20%
audits under Policy B.1a. Colums represent alternative sample selection, depending on the target variable and on the replacement
pool. Column 2 ("Status quo") reports mean for the actual selection. "O�ce" indicates replacement with a later �le in the same
IRA o�ce, "O�ce/Sector" and "O�ce/Income" allow replacement only with �les of the same sector of activity and income decile,
respectively. Financial accounts are expressed in euros.

panels (TaxEva in panel A, TaxGot in panel B). We �nd that the replacement tax

�les selected following the ML predictions are �led by taxpayers with similar demo-

graphic characteristics to the ones who �led the discarded returns irrespective of the

replacement scheme (e.g. gender, age and marital status). Business characteristics

are balanced too: the discarded and the replacement pools involve businesses that

are comparable in terms of family business status, presence of employees, and years

of activity. Perhaps interestingly, the sectorial composition of replacements and dis-

card is not strikingly di�erent even if balancing across sectors is not targeted (�rst

column in both panels), which guarantees that deterrence e�ects mediated through

the sectors are similar to those in the status quo. As expected, the striking di�erence

between the replacement sample and the actual status quo sample emerges with re-

spect to the �nancial accounts, since the level of evasion targeted by the algorithm is

increasing in the business turnover. However, these di�erences are largely attenuated

when replacing within the same income decile (third column in both panels), while

maintaining balance in all other characteristics.
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