NBER WORKING PAPER SERIES

HETEROGENEOUS DOWNWARD NOMINAL WAGE RIGIDITY: FOUNDATIONS OF A STATIC WAGE PHILLIPS CURVE

Stephanie Schmitt-Grohé Martín Uribe

Working Paper 30774 http://www.nber.org/papers/w30774

NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 December 2022

We thank Giovanni Bonfanti for superb research assistance. The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications.

© 2022 by Stephanie Schmitt-Grohé and Martín Uribe. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.

Heterogeneous Downward Nominal Wage Rigidity: Foundations of a Static Wage Phillips Curve
Stephanie Schmitt-Grohé and Martín Uribe
NBER Working Paper No. 30774
December 2022
JEL No. E24,E31,E32

ABSTRACT

We introduce a form of downward nominal wage rigidity that can vary in intensity across a continuum of labor varieties. The model delivers a static wage Phillips curve linking current wage inflation to current unemployment. For standard parameterizations, the dynamics of the model are qualitatively and quantitatively similar to those of the new-Keynesian model with wage stickiness, which features a forward-looking wage Phillips curve, linking current wage inflation to future expected wage inflation and current unemployment. This result puts in perspective the role played by the forward-looking component of the new-Keynesian wage Phillips curve. A convenient property of the proposed model is that it is amenable to perturbation analysis because although it features occasionally binding constraints at the level of individual labor types it does not have such constraints at the aggregate level.

Stephanie Schmitt-Grohé
Department of Economics
Columbia University
420 West 118th Street, MC 3308
New York, NY 10027
and NBER
stephanie.schmittgrohe@columbia.edu

Martín Uribe
Department of Economics
Columbia University
International Affairs Building
New York, NY 10027
and NBER
martin.uribe@columbia.edu

1 Introduction

Since its conception in 1958, the Phillips curve has been the focus of intense research activity in Macroeconomics. In its original formulation, Phillips conceived it as a contemporaneous empirical relationship between wage inflation and unemployment. The new-Keynesian model, which has arguably been the predominant framework for economic analysis since the 1980s, introduces a forward-looking component into the Phillips curve. In this class of models, wage inflation is related not only to the rate of unemployment but also to future expected wage inflation. This paper addresses two related questions. First, is the forward-looking component in the wage Phillips curve a necessary feature of models with nominal rigidity and forward-looking rational agents? And second, if not, would a model featuring a static wage Phillips curve have different dynamic properties?

We propose a model in which downward nominal wage rigidity varies in intensity across a continuum of labor varieties. The nominal wage of each labor variety is bounded below by the average wage prevailing in the previous period times a variety-specific scalar. In all respects other than the heterogeneity of downward nominal wage rigidity, the model economy is standard; firms operate in competitive markets and households are rational and forward looking. We show that in equilibrium the model delivers a static wage Phillips curve. An increase in wage inflation raises the fraction of labor varieties that are not constrained by the wage lower bound. As a result, the fraction of the labor force suffering involuntary unemployment falls. Taken together, these effects imply a negative contemporaneous relationship between current wage inflation and current unemployment. The model thus provides a foundation to Phillips's celebrated static empirical relation.

A second important result of the paper is that for standard calibrations of the model, its implied equilibrium dynamics are qualitatively and quantitatively similar to those of the new-Keynesian model of wage stickiness. A corollary of this result is that the forward-looking component in the wage Phillips curve, which is a key characteristic of the new-Keynesian framework, does not appear to play a crucial role in shaping its dynamic properties.

A convenient characteristic of the proposed model with heterogeneous downward nominal wage rigidity is that it is amenable to perturbation analysis, which facilitates computation of the equilibrium dynamics. The standard model of downward nominal wage rigidity, in which the stringency of the wage lower bound is homogeneous across workers, features an occasionally binding constraint in equilibrium, which complicates the computation of the equilibrium dynamics. In the proposed model, although there are occasionally binding constraints at the level of individual labor varieties, in the aggregate the equilibrium conditions do not feature such restrictions.

This paper is related to a large literature on the role of nominal wage rigidity for macroeconomic adjustment. This body of work is too vast to allow for an exhaustive review, so we are necessarily, and most likely unfairly, selective. As mentioned, the starting point is the empirical estimate by Phillips (1958) of a negative relation between wage inflation and unemployment. In the context of the new-Keynesian framework, sticky wages à la Calvo was introduced by Erceg, Henderson, and Levin (2000). The derivation of a wage Phillips curve in the context of that model is presented in Galí (2011) and Casares (2010). These authors show that the implied wage Phillips curve is forward looking. The implications of downward nominal wage rigidity for macroeconomic adjustment in dynamic general equilibrium models is studied in Benigno and Ricci (2011) and Schmitt-Grohé and Uribe (2016, 2017). Unlike in the present formulation, in these studies the lower bound on nominal wages is invariant across labor varieties. The framework proposed here nests this class of model as a special case. There is also a literature combining labor search frictions and nominal rigidities including Faia (2008), Gertler, Sala, and Trigari (2008), and Dupraz, Nakamura, and Steinsson (2022). Relative to this literature the present paper does not consider search frictions. Instead the source of involuntary unemployment is a labor variety specific form of downward nominal wage rigidity. The empirical relevance of downward nominal wage rigidity has been extensively documented by, among others, Card and Hyslop (1996), Kahn (1997), Gottschalk (2005), Barattieri, Basu, and Gottschalk (2014), Daly and Hobijn (2014), Schmitt-Grohé and Uribe (2016), and Jo (2022). Finally, empirical estimates of the wage Phillips curve are presented in Galí (2011) and Galí and Gambetti (2019). We use the latter of these two papers to discipline our quantitative analysis.

The remainder of the paper is organized as follows. Section 2 presents the model with heterogeneous downward nominal wage rigidity. This section also shows that the equilibrium conditions do not include occasionally binding constraints, allowing for a characterization of the equilibrium using perturbation methods. Section 3 analyzes the short- and long-run Phillips curves implied by the proposed model. Section 4 shows that for standard calibrations the equilibrium dynamics implied by the model with heterogeneous downward nominal wage rigidity are similar to those of the new-Keynesian model of wage rigidity. Section 5 concludes.

2 The Model

To focus on the modeling of heterogeneous downward nominal wage rigidity, we first present an economy with inelastic labor supply, flexible product prices, and no capital accumulation.

2.1 Firms

Firms are price takers. They use labor as the sole input to produce a final good. Profits are given by

$$P_t z_t F(h_t) - W_t h_t$$

where P_t denotes the product price level, h_t denotes labor, W_t denotes the nominal wage rate, z_t is an exogenous productivity shock, and $F(\cdot)$ is an increasing and concave production function. The optimality condition determining the demand for labor is

$$z_t F'(h_t) = \frac{W_t}{P_t},\tag{1}$$

which equates the marginal product of labor to the real wage.

The labor input h_t is assumed to be a composite of a continuum of labor varieties h_{it} for $i \in [0, 1]$. The aggregation technology is of the form

$$h_t = \left[\int_0^1 h_{it}^{1 - \frac{1}{\eta}} di \right]^{\frac{1}{1 - \frac{1}{\eta}}}, \tag{2}$$

where $\eta > 0$ is the elasticity of substitution across labor varieties. The firm chooses the quantity of each labor variety h_{it} to minimize its total labor cost, $\int_0^1 W_{it} h_{it} di$, subject to the aggregation technology (2), given its desired amount of the labor composite h_t and taking as given the wage of each variety of labor, denoted W_{it} . This cost minimization problem yields the demand for labor of type i,

$$h_{it} = \left(\frac{W_{it}}{W_t}\right)^{-\eta} h_t,\tag{3}$$

where

$$W_{t} = \left[\int_{0}^{1} W_{it}^{1-\eta} di \right]^{\frac{1}{1-\eta}} \tag{4}$$

is the cost-minimizing price of one unit of aggregate labor, that is, when h_{it} is chosen optimally, W_t satisfies $W_t h_t = \int_0^1 W_{it} h_{it} di$. Firms are assumed to be always on their demand schedules for labor varieties.

2.2 Households

The representative household has preferences over streams of consumption, denoted c_t , described by the utility function

$$E_0 \sum_{t=0}^{\infty} \beta^t U(c_t),$$

where $\beta \in (0,1)$ is a subjective discount factor, and $U(\cdot)$ is an increasing and concave period utility function. The household supplies inelastically \bar{h} units of labor of each variety $i \in [0,1]$. The economy faces an exogenous natural rate of unemployment denoted u_t^n . The natural rate of unemployment reflects frictions in the labor market unrelated to nominal rigidity. The effective labor supply is then given by

$$h_{it} \le \bar{h}(1 - u_t^n). \tag{5}$$

Employment of each variety of labor is demand determined, so the household takes h_{it} as given. Sometimes the household will not be able to sell all the units of labor it supplies. In this case, it will suffer involuntary unemployment above the natural rate.

Each period $t \geq 0$, households can trade a nominally risk free discount bond denoted B_t that pays the interest rate i_t when held between periods t and t+1. In addition, each period the household pays real lump-sum taxes in the amount τ_t . Its sequential budget constraint is then given by

$$c_t + \frac{B_t/P_t}{1+i_t} + \tau_t = \int_0^1 \frac{W_{it}}{P_t} h_{it} di + \frac{B_{t-1}/P_{t-1}}{1+\pi_t},$$

where

$$\pi_t \equiv \frac{P_t}{P_{t-1}} - 1 \tag{6}$$

denotes the inflation rate. The household chooses contingent plans for bond holdings and consumption to maximize its lifetime utility function subject to its sequential budget constraint and some no-Ponzi game borrowing limit. The optimality conditions associated with consumption and bond holdings give rise to the Euler equation

$$U'(c_t) = \beta(1+i_t)E_t \frac{U'(c_{t+1})}{1+\pi_{t+1}}.$$
(7)

We now turn to a description of our proposed form of nominal rigidity, which is the novel element of the model.

2.3 Heterogeneous Downward Nominal Wage Rigidity

Each period $t \ge 0$, the nominal wage of every variety $i \in [0, 1]$ is assumed to be subject to a lower bound constraint of the form

$$W_{it} \ge \gamma(i)W_{t-1},\tag{8}$$

where $\gamma(i)$ is a positive and increasing function governing the degree of nominal wage rigidity of variety i. This formulation of downward wage rigidity nests the homogeneous case studied in Schmitt-Grohé and Uribe (2016), which obtains when the function $\gamma(i)$ is independent of i. Note that the wage lower bound depends on the past aggregate wage rate, W_{t-1} , and not on the nominal wage paid on labor of type i in the previous period, W_{it-1} . As will become clear shortly, this formulation facilitates aggregation. The function $\gamma(\cdot)$ need not be interpreted as representing a fixed ordering of labor varieties. For example, welders could be represented by i = 0.45 in period t and by i = 0.73 in t + 1. This could occur, for example, because welders unionized in t + 1 or because they completed wage-bargaining negotiations with employers' representatives in that period.

We close the labor market with a slackness condition imposed at the level of each labor variety,

$$[\bar{h}(1 - u_t^n) - h_{it}][W_{it} - \gamma(i)W_{t-1}] = 0.$$
(9)

According to this condition, when an occupation suffers unemployment above the natural rate, the wage rate must be at its lower bound. The slackness condition also says that if in a given occupation the wage rate is above its lower bound, then the occupation must display full employment, defined as an unemployment rate equal to the natural rate.

2.4 The Government

The central bank sets the nominal interest rate according to a Taylor rule of the form

$$1 + i_t = \frac{1 + \pi^*}{\beta} \left(\frac{1 + \pi_t}{1 + \pi^*} \right)^{\alpha_\pi} \left(\frac{y_t}{y} \right)^{\alpha_y} \mu_t, \tag{10}$$

where π^* denotes the central bank's inflation target, y_t denotes aggregate output, y denotes the steady-state value of y_t , α_{π} and α_y are parameters, and μ_t is an exogenous and stochastic monetary shock. We assume that fiscal policy is passive in the sense that government solvency is satisfied independently of the path of the price level.

2.5 Equilibrium

In equilibrium, aggregate output is given by

$$y_t = z_t F(h_t). (11)$$

Market clearing in the goods market requires that consumption equal output,

$$c_t = y_t. (12)$$

We are now ready to define a competitive equilibrium.

Definition 1 (Competitive Equilibrium) A competitive equilibrium is a set of processes c_t , y_t , h_t , h_{it} , W_t , W_{it} , P_t , π_t , and i_t satisfying (1) and (3)-(12) for all $i \in [0, 1]$ and $t \geq 0$, given the initial wage W_{-1} and the exogenous disturbances z_t , μ_t , and u_t^n .

Next, we show that the equilibrium conditions can be written in terms of a single labor variety. A by-product of this analysis is a demonstration that the model delivers a static wage Phillips curve.

2.6 Equilibrium in i^* Form

We consider an equilibrium in which for every $t \geq 0$ there exists a cut-off labor variety denoted $i_t^* \in (0,1)$ that operates at full employment, $h_{it} = \bar{h}(1-u_t^n)$ for $i=i_t^*$, and for which the wage lower bound holds with equality, $W_{i_t^*t} = \gamma(i_t^*)W_{t-1}$. Evaluating the labor demand (3) at $i=i_t^*$, yields the condition

$$\bar{h}(1 - u_t^n) = \left(\frac{\gamma(i_t^*)}{1 + \pi_t^W}\right)^{-\eta} h_t, \tag{13}$$

where

$$\pi_t^W \equiv \frac{W_t}{W_{t-1}} - 1 \tag{14}$$

denotes wage inflation in period t.

Because $\gamma(i)$ is strictly increasing, it follows that all varieties $i < i_t^*$ must also pay the wage $\gamma(i_t^*)W_{t-1}$, and thus operate at full employment. To see this, let $W_t^* \equiv \gamma(i_t^*)W_{t-1}$ and suppose first, contrary to the claim, that $W_{it} < \gamma(i_t^*)W_{t-1}$ for some $i < i_t^*$. Then, by (3) we have that $h_{it} = (W_{it}/W_t)^{-\eta}h_t > (W_t^*/W_t)^{-\eta}h_t = \bar{h}(1-u_t^n)$, which violates the time constraint (5). Suppose now that, contrary to the claim, $W_{it} > W_t^*$ for some $i < i_t^*$. Then by the same logic $h_{it} < \bar{h}(1-u_t^n)$. Further, $W_{it} > W_t^* = \gamma(i_t^*)W_{t-1} > \gamma(i)W_{t-1}$. So we have that in this case $\bar{h}(1-u_t^n) - h_{it} > 0$ and $W_{it} - \gamma(i)W_{t-1} > 0$, which violates the slackness condition (9).

 $^{^1\}mathrm{As}$ will become clear, this equilibrium requires that inflation be neither too high nor too low, so as to rule out the corner solutions $i_t^*=0$ and $i_t^*=1.$ In the vicinity of the steady state, this condition is satisfied if $1+\pi^*$ is less than $\gamma(1)$ and greater than $\left[\int_0^1 \gamma(i)^{1-\eta} di\right]^{1/(1-\eta)}$.

It also follows that all labor varieties $i > i_t^*$ are stuck at their wage lower bound and suffer involuntary unemployment. To see this, use (3) and (8) to write, for any $i > i_t^*$, $h_{it} = (W_{it}/W_t)^{-\eta}h_t \leq (\gamma(i)W_{t-1}/W_t)^{-\eta}h_t < (\gamma(i_t^*)W_{t-1}/W_t)^{-\eta}h_t = \bar{h}(1-u_t^n)$. This shows that all labor varieties $i > i_t^*$ suffer involuntary unemployment above the natural rate. It then follows immediately from the slackness condition (9) that $W_{it} = \gamma(i)W_{t-1}$, that is, wages of all labor varieties $i > i_t^*$ are stuck at their lower bounds.

Summing up, in the equilibrium we are considering, we have that

$$\begin{cases} h_{it} = \bar{h}(1 - u_t^n) \text{ and } W_{it} = \gamma(i_t^*) W_{t-1} & \text{for } i \leq i_t^* \\ h_{it} < \bar{h}(1 - u_t^n) \text{ and } W_{it} = \gamma(i) W_{t-1} & \text{for } i > i_t^* \end{cases}$$

The cut-off variety i_t^* is an important object in this model because it governs the extensive margin of unemployment, that is, how many occupations will operate below potential.

Next, we analyze the determination of i_t^* in general equilibrium. To this end, write the wage aggregation equation (4) as

$$W_t^{1-\eta} = \int_0^1 W_{it}^{1-\eta} di$$

$$= \int_0^{i_t^*} [\gamma(i_t^*) W_{t-1}]^{1-\eta} di + \int_{i_t^*}^1 [\gamma(i) W_{t-1}]^{1-\eta} di$$

$$= W_{t-1}^{1-\eta} \left[i_t^* \gamma(i_t^*)^{1-\eta} + \int_{i_t^*}^1 \gamma(i)^{1-\eta} di \right].$$

Using the definition of wage inflation given in (14) and rearranging gives

$$(1+\pi_t^W)^{1-\eta} = i_t^* \gamma(i_t^*)^{1-\eta} + \int_{i_t^*}^1 \gamma(i)^{1-\eta} di.$$
 (15)

According to this expression, wage inflation is increasing in the cut-off labor variety i_t^* . To understand why, suppose that the cut-off variety increases from $i_t^{*'}$ to $i_t^{*''} > i_t^{*'}$. Then, all varieties from 0 to $i_t^{*'}$ are unconstrained before and after the increase in i_t^* . As a result, their wages increase from $\gamma(i_t^{*'})W_{t-1}$ to $\gamma(i_t^{*''})W_{t-1}$. Varieties i between $i_t^{*'}$ and $i_t^{*''}$ were constrained before the change and become unconstrained after. For these workers, the wage rate increases from $\gamma(i)W_{t-1} < \gamma(i_t^{*''})W_{t-1}$ to $\gamma(i_t^{*''})W_{t-1}$. Finally labor varieties $i > i_t^{*''}$ are constrained before and after the change in i_t^* , so their wages remain unchanged. It follows that the average wage increases.

We are now ready to define the competitive equilibrium in i_t^* form.

Definition 2 (Competitive Equilibrium in i^* Form) A competitive equilibrium is a set

of processes i_t^* , y_t , h_t , $w_t \equiv W_t/P_t$, i_t , π_t , and π_t^W , satisfying

$$y_t = z_t F(h_t), (16)$$

$$U'(y_t) = \beta(1+i_t)E_t \frac{U'(y_{t+1})}{1+\pi_{t+1}},\tag{17}$$

$$z_t F'(h_t) = w_t, (18)$$

$$1 + i_t = \frac{1 + \pi^*}{\beta} \left(\frac{1 + \pi_t}{1 + \pi^*} \right)^{\alpha_{\pi}} \left(\frac{y_t}{y} \right)^{\alpha_y} \mu_t, \tag{19}$$

$$1 + \pi_t^W = \frac{w_t}{w_{t-1}} (1 + \pi_t), \tag{20}$$

$$\bar{h}(1 - u_t^n) = \left(\frac{\gamma(i_t^*)}{1 + \pi_t^W}\right)^{-\eta} h_t, \tag{21}$$

and

$$(1+\pi_t^W)^{1-\eta} = i_t^* \gamma(i_t^*)^{1-\eta} + \int_{i_t^*}^1 \gamma(i)^{1-\eta} di,$$
 (22)

given the initial condition w_{-1} and the stochastic processes z_t , μ_t , and u_t^n .

Equilibrium conditions (16)–(20) are standard components of optimizing monetary models, with or without nominal rigidity. The Keynesian features of the model appear in the last two equilibrium conditions. Equation (21) says that there is one labor variety, i_t^* , for which there is full employment and the wage constraint just binds. Equation (22) says that wage inflation is a weighted average of the wage increase across varieties relative to the average wage prevailing the previous period. Taken together, these conditions leave the door open for the adjustment of wage inflation to be insufficient to guarantee full employment across all labor varieties at all times. The flexible-wage equilibrium obtains when equations (21) and (22) are replaced by the condition $h_t = \bar{h}(1 - u_t^n)$.

3 The Wage Phillips Curve

The aggregate unemployment rate, denoted u_t , is given by the integral of the unemployment rates across all labor varieties. Formally,

$$u_{t} \equiv \bar{h}^{-1} \int_{0}^{1} (\bar{h} - h_{it}) di$$

$$= u_{t}^{n} i_{t}^{*} + \bar{h}^{-1} \int_{i_{t}^{*}}^{1} (\bar{h} - h_{it}) di$$

$$= u_{t}^{n} i_{t}^{*} + (1 - i_{t}^{*}) - \frac{h_{t}}{\bar{h}} \int_{i_{t}^{*}}^{1} \left(\frac{W_{it}}{W_{t}}\right)^{-\eta} di$$

$$= u_{t}^{n} i_{t}^{*} + (1 - i_{t}^{*}) - \left(\frac{W_{t-1}}{W_{t}}\right)^{-\eta} \frac{h_{t}}{\bar{h}} \int_{i_{t}^{*}}^{1} \gamma(i)^{-\eta} di.$$

Using the definition of wage inflation given in (14) and equilibrium condition (21) to eliminate $(W_{t-1}/W_t)^{-\eta} h_t$, we can write

$$u_t = u_t^n + (1 - u_t^n) \left[(1 - i_t^*) - \int_{i_t^*}^1 \left(\frac{\gamma(i)}{\gamma(i_t^*)} \right)^{-\eta} di \right].$$
 (23)

The right hand side of equation (23) is decreasing in i_t^* . It follows that as i_t^* increases, the unemployment rate falls. This is intuitive because all activities below the cut-off threshold i_t^* operate at full employment, so the higher the cut-off threshold is, the smaller the set of activities displaying involuntary unemployment above the natural rate will be.

Given the natural rate of unemployment, u_t^n , equations (22) and (23) implicitly represent a contemporaneous relationship involving only unemployment and wage inflation (u_t and π_t^W). Further, u_t and π_t^W are negatively related. To see this, recall that equation (22) implies that an increase in wage inflation allows for a larger set of labor varieties to be unconstrained by the wage lower bound (i.e., an increase in wage inflation raises the cut-off variety i_t^*). In turn, equation (23) says that the larger the set of unconstrained labor varieties is, the lower unemployment will be. Thus, the model's implied relationship between unemployment and wage inflation represents a downward sloping wage Phillips curve. This relationship captures the idea, often used in the early empirical literature on downward nominal wage rigidity, that inflation greases the wheels of the labor market (e.g., Card and Hyslop, 1997).²

We note that the wage Phillips curve implied by the model is static. In particular, it does not feature future expected inflation. In this sense, the present model departs from the

²The phrase "inflation greases the wheels of the labor market" is often attributed to Tobin (1972), although that paper does not explicitly use it.

New-Keynesian framework in which the wage Phillips curve is forward looking (Erceg, Henderson, and Levin, 2000; Galí, 2011) and can be interpreted as providing microfoundations to Phillips's original formulation of a static wage Phillips curve (Phillips, 1958).

3.1 The Short-Run Wage Phillips Curve

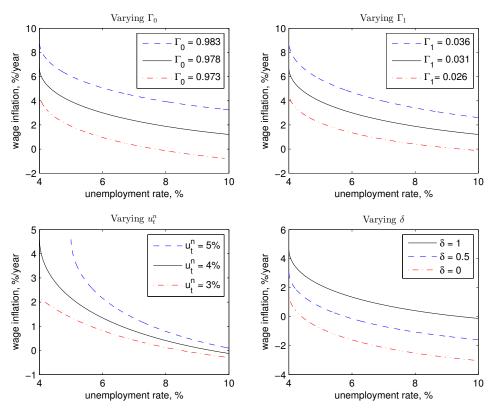
The short-run wage Phillips curve is the locus of points (u_t, π_t^W) satisfying equations (22) and (23) for a given value of the natural rate of unemployment u_t^n .

To illustrate the properties of the short-run wage Phillips curve implied by the model, we consider a linear functional form for $\gamma(i)$ and calibrate its parameters. Specifically, we assume that

$$\gamma(i) = (1 + \pi^*)^{\delta} (\Gamma_0 + \Gamma_1 i). \tag{24}$$

Here, the parameter δ captures the degree of wage indexation to long-run inflation, and the parameters Γ_0 and $\Gamma_1 > 0$ govern the degree of downward nominal wage rigidity. The time unit is a quarter. We set $\Gamma_0 = 0.978$ and $\Gamma_1 = 0.031$ to match the slope of the wage Phillips curve at a particular wage-inflation unemployment pair. Specifically, we target a slope of -0.74/4, which is consistent with the estimate presented in Galí and Gambetti (2019) for the United States over the period 1986 to 2007. Also, we target a steady-state rate of unemployment of 6 percent and a steady-state rate of inflation of 3 percent per year to match the average values observed in the United States over the period 1986 to 2007 (the sample period in Galí and Gambetti, 2019). That is, we assume that when π_t^W is equal to 3 percent per year, then u_t is equal to 6 percent and the slope of the wage Phillips curve is -0.74. (Here the slope is not divided by 4 because wage inflation is annualized.) We fix the natural rate of unemployment at 4 percent $(u_t^n = u^n = 0.04)$. We assume full indexation of wages ($\delta = 1$), as in much of the related literature. For example, Christiano, Eichenbaum, and Evans (2005) and Smets and Wouters (2007) assume that the weights on steady-state inflation and lagged inflation in the indexation scheme add up to one. Finally, we set the elasticity of substitution across labor varieties to 11 ($\eta = 11$). This number is an average of the values used in Erceg, Henderson, and Levin (2000), Christiano, Eichenbaum, and Evans (2005), and Galí (2015) (4, 21, and 4.5, respectively). The top panel of Table 1 summarizes the parameter values used in the computation of the Phillips curve. (The bottom panel of this table is discussed in section 4.)

Figure 1 displays the implied short-run wage Phillips curve in the space (u_t, π_t^W) for the baseline calibration of the model and several variations thereof. The Phillips curve associated with the baseline calibration is shown with a solid line. By construction, when the unemployment rate is 6 percent, the annual wage inflation rate is 3 percent. Also by



Notes. Solid lines correspond to the baseline calibration. The parameters Γ_0 , Γ_1 , and δ pertain to the wage lower bound function $\gamma(i) = (1 + \pi^*)^{\delta}(\Gamma_0 + \Gamma_1 i)$ (equation 24). The parameter u^n represents the natural rate of unemployment. The figure shows that the short-run wage Phillips curve shifts up and to the right when the degree of downward wage stickiness increases (Γ_0 or Γ_1 increase), when the natural rate of unemployment rises (u^n_t increases), or when the degree of wage indexation increases (δ increases).

Table 1: Parameter Values

Parameter	Value	Description
Γ_0	0.978	Parameter of the $\gamma(i)$ function
Γ_1	0.031	Parameter of the $\gamma(i)$ function
δ	1	Wage indexation parameter of the $\gamma(i)$ function
π^*	$1.03^{1/4} - 1$	Steady state inflation rate
u^n	0.04	Natural rate of unemployment
η	11	Elasticity of substitution across labor varieties
β	0.99	Subjective discount factor
σ	1	Inverse of intertemporal elasticity of substitution
heta	5	Inverse of Frisch elasticity of labor supply
α	0.75	Labor elasticity of output
$lpha_\pi$	1.5	Inflation coefficient of Taylor rule
$lpha_y$	0.125	Output coefficient of Taylor rule
$ ho_{\mu}$	0.5	Persistence of monetary shock
$ ho_z$	0.9	Persistence of technology shock
ρ_{un}	0.9	Persistence of natural shock

Note. The time unit is a quarter.

construction, at that point, the slope of the Phillips curve is equal to -0.74. A drop in the inflation rate from 3 to 2 percent per year is associated in the short run with an increase in the unemployment rate from 6 to 7.5 percent.

Figure 1 also shows that a given level of unemployment requires a higher wage inflation rate the more downwardly rigid wages are (the higher Γ_0 and Γ_1 are) and the higher the degree of wage indexation is (the higher δ is). The intuition behind these effects is as follows. Wage inflation acts as a lubricant of the labor market because the higher wage inflation is, the larger the number of activities that are not constrained by the wage lower bound will be. An increase in either Γ_0 or Γ_1 raises the wage lower bound. Thus, the economy needs more lubricant to maintain the same level of unemployment. Similarly, an increase in the degree of wage indexation raises the wage lower bound, and thus would lead to more unemployment unless the wage inflation rate is higher. An increase in the inflation target π^* (not shown in Figure 1) moves the Phillips curve up and to the right in the same way that an increase in δ does. Finally, an increase in the natural rate of unemployment shifts the short-run Phillips curve to the right, so that at every level of wage inflation the economy suffers more unemployment.

3.2 The Long-Run Wage Phillips Curve

The long-run wage Phillips curve is the locus of points $(u_t, \pi_t^W) = (u, \pi^W)$ satisfying equations (22) and (23), where u and π^W denote the steady-state values of unemployment and wage inflation, respectively.

Let variables without a time subscript denote steady state values. Because output is constant in the steady state, the Euler equation (17) implies the following long-run Fisher relationship

$$i = \frac{1+\pi}{\beta} - 1.$$

This expression and the Taylor rule (19) imply that in the steady state inflation must be at its target level,

$$\pi = \pi^*$$
.

Since in the steady state the real wage is constant, equilibrium condition (20) implies that wage inflation equals product-price inflation,

$$\pi^W = \pi^*$$
.

Equilibrium conditions (22) and (23) evaluated at $u_t = u$ and $\pi_t^W = \pi^*$ constitute a relationship between inflation and unemployment in the steady state, which we call the long-run wage Phillips curve. It follows immediately that in the absence of wage indexation, that is, when the function $\gamma(\cdot)$ is independent of π^* , the short- and long-run Phillips curves coincide. But this ceases to be the case when wages are indexed to steady-state inflation. To see this, consider again the linear functional form for $\gamma(\cdot)$ given in equation (24). In this case, equilibrium conditions (22) and (23) evaluated at $u_t = u$ and $\pi_t^W = \pi^*$ become

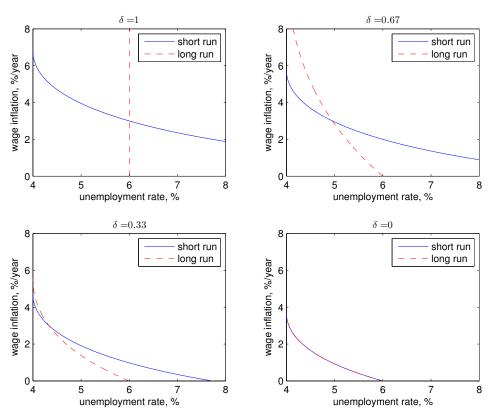
$$(1+\pi^W)^{(1-\eta)(1-\delta)} = i^* \widetilde{\gamma}(i^*)^{1-\eta} + \int_{i^*}^1 \widetilde{\gamma}(i)^{1-\eta} di, \tag{25}$$

$$u = u^{n} + (1 - u^{n}) \left[(1 - i^{*}) - \int_{i^{*}}^{1} \left(\frac{\widetilde{\gamma}(i)}{\widetilde{\gamma}(i^{*})} \right)^{-\eta} di \right], \tag{26}$$

where $\widetilde{\gamma}(i) \equiv \Gamma_0 + \Gamma_1 i$.

It is clear from (25) and (26) that under full wage indexation ($\delta = 1$) the long-run wage Phillips curve is perfectly vertical in the space (u, π^W) . This is intuitive. Under full indexation, an increase in inflation fails to inject grease in the labor market in the long run, as indexation soaks it up one for one. By contrast, under imperfect indexation ($\delta < 1$), only a fraction δ of an increase in inflation is absorbed by indexation and the rest is grease to the

Figure 2: The Long-Run Wage Phillips Curve



Notes. The parameter δ pertains to the wage lower bound function $\gamma(i) = (1 + \pi^*)^{\delta}(\Gamma_0 + \Gamma_1 i)$ (equation 24). The figure shows that the long-run wage Phillips curve is in general downward sloping and steeper than its short-run counterpart. The long-run wage Phillips curve is vertical when $\delta = 1$ and identical to the short-run wage Phillips curve when $\delta = 0$.

labor market.

To see more precisely what happens for intermediate degrees of wage indexation ($\delta \in (0,1)$), Figure 2 displays the long-run wage Phillips curve for four different degrees of wage indexation and compares it to its short-run counterpart. The figure illustrates that absent full indexation the long-run wage Phillips curve is downward sloping and that as the degree of wage indexation goes down the slope of the long-run wage Phillips curve falls. In fact, the long-run wage Phillips curve rotates around the point $(u, \pi^W) = (0.06, 0)$ counterclockwise as δ declines. To see why this is so, recall that the calibration targets an unemployment rate of 6 percent and assumes full indexation. Therefore, the left-hand side of (25) is equal to 1, regardless of the value of π^W . This uniquely pins down the steady value of π^W and by equation (26) also the steady state value of π^W . When π^W and inflation is zero ($\pi^W = 0$), then the left-hand side of equation (25) is also equal to 1, regardless of the value of π^W . Thus, the long-run wage Phillips curve must contain the point π^W (0.06,0) for any value of π^W .

Figure 2 further shows that the larger δ is, the steeper the long-run wage Phillips curve will be. (In the limit, when $\delta \to 1$, it is vertical.) It follows from here that the steady-state level of inflation needed to eliminate all Keynesian unemployment, that is, to ensure that in the steady state $u = u^n$, increases with the level of indexation. This can be seen from Figure 2. When $\delta = 0$, this minimum inflation is 3.6 percent per year, for $\delta = 0.33$ it is 5.4 percent, and for $\delta = 0.67$ it is 11.2 percent. And when there is full indexation, it becomes impossible to eliminate Keynesian unemployment in the steady state because, as discussed earlier, the long-run Phillips curve is vertical at an unemployment rate of 6 percent.

Comparing the long-run and the short-run Phillips curves, the figure shows that for positive degrees of wage indexation $\delta \in (0,1]$, the long-run Phillips curve is steeper than its short-run counterpart. The intuition why the wage Phillips curve is steeper in the long run is as follows. In the short run, movements in the inflation rate are not accompanied by movements in the long-run rate of inflation, so they grease the labor market one for one. By contrast, to the extent that δ is greater than zero, only a fraction $(1 - \delta)$ of an increase in inflation greases the labor market in the long run.

4 How Important Is the Forward-Looking Component of the Wage Phillips Curve?

This section characterizes the equilibrium dynamics of the proposed model and compares them to those implied by the new-Keynesian model of wage stickiness. Because an endogenous labor supply is a key feature of the latter model, to facilitate comparison, the section begins by endogenizing the labor choice in the heterogeneous downward nominal wage rigidity model.

4.1 Endogenous Labor Supply

Suppose now that the representative household derives disutility from supplying labor. Specifically, replace the lifetime utility function considered thus far with the function

$$E_0 \sum_{t=0}^{\infty} \beta^t \left[U(c_t) - \int_0^1 V(h_{it}^s) di \right], \tag{27}$$

where h_{it}^s denotes the amount of labor of type *i* supplied in period *t*, and $V(\cdot)$ is a convex labor disutility function. To facilitate aggregation, we use the functional form

$$V(h) = \frac{h^{1+\theta}}{1+\theta},\tag{28}$$

which is often used in business-cycle analysis (e.g., Galí, 2015). As before, there is rationing in the labor market: for each labor type i, at the going wage W_{it} households may not be able to sell all the units of labor they offer. The household sets its desired supply of labor of variety i to equate the marginal rate of substitution between labor and consumption to the variety-specific real wage. Formally, the supply of labor of type i is given by

$$\frac{V'(h_{it}^s)}{U'(c_t)} = w_{it},\tag{29}$$

where $w_{it} \equiv W_{it}/P_t$. We continue to assume that there is an exogenous amount of involuntary unemployment unrelated to wage stickiness, embodied in the variable u_t^n denoting the natural rate of unemployment. The restriction that employment is voluntary now takes the form

$$h_{it} \le h_{it}^s (1 - u_t^n). \tag{30}$$

This expression says that the household is not willing to have more members employed than the ones it voluntarily supplies to the market net of the ones that are naturally unemployed.

The household's budget constraint and the optimality conditions associated with consumption and bond holdings are unchanged. The firm's demand for labor of variety $i \in [0, 1]$, given by equation (3) is also unchanged.

As before, we consider an equilibrium in which each period $t \geq 0$ there is a cut-off labor

variety, i_t^* , that operates at full employment,

$$h_{i_t^*t} = h_{i_t^*t}^s (1 - u_t^n), (31)$$

and for which the wage constraint holds with equality,

$$W_{i_t^*t} = \gamma(i_t^*) W_{t-1}. \tag{32}$$

Combining these two conditions with the labor demand (3) and the labor supply (29) yields

$$\frac{V'\left(\frac{h_t}{1-u_t^n}\left(\frac{\gamma(i_t^*)}{1+\pi_t^W}\right)^{-\eta}\right)}{U'(c_t)} = \frac{\gamma(i_t^*)w_{t-1}}{1+\pi_t}.$$
(33)

It can be shown that, as in the case of an inelastic labor supply, all labor varieties $i < i_t^*$ operate at full employment and are paid the same wage as variety i_t^* . Also, all varieties $i > i_t^*$ are constrained by the wage lower bound and suffer unemployment above the natural rate.

The definition of a competitive equilibrium with an endogenous labor supply is then identical to that given in Definition 2, except that equation (21) is replaced by equation (33).

With an endogenous labor supply, the unemployment rate is the ratio of unemployed labor to the total labor supply. Formally,

$$u_t = \frac{\int_0^1 (h_{it}^s - h_{it}) di}{\int_0^1 h_{it}^s di}.$$

Using the functional form (28) for the disutility of labor and equations (3), (29), (31), and (32), we can rewrite the unemployment rate as

$$u_{t} = u_{t}^{n} + (1 - u_{t}^{n}) \frac{\int_{i_{t}^{*}}^{1} \left[\left(\frac{\gamma(i)}{\gamma(i_{t}^{*})} \right)^{\frac{1}{\theta}} - \left(\frac{\gamma(i)}{\gamma(i_{t}^{*})} \right)^{-\eta} \right] di}{i_{t}^{*} + \int_{i_{t}^{*}}^{1} \left(\frac{\gamma(i)}{\gamma(i_{t}^{*})} \right)^{\frac{1}{\theta}} di}.$$
 (34)

Note that as the elasticity of labor supply approaches zero $(\theta \to \infty)$, equations (33) and (34) converge to equations (21) and (23), and the model becomes the one with inelastic labor supply.

The following definition summarizes the equilibrium with endogenous labor supply.

Definition 3 (Competitive Equilibrium with Endogenous Labor Supply) A competitive equilibrium in the economy with endogenous labor supply is a set of processes i_t^* , y_t , h_t ,

 u_t , w_t , i_t , π_t , and π_t^W , satisfying (16)-(20), (22), (33), and (34), given the initial condition w_{-1} and the stochastic processes z_t , μ_t , and u_t^n .

As in the case of an inelastic labor supply, the model features a static wage Phillips curve implicitly given by equations (22) and (34).

In spite of the fact that the model features occasionally binding constraints at the level of individual varieties of labor, the complete set of equilibrium conditions given in Definition 3 does not. This means that the model is amenable to a characterization of the equilibrium dynamics using perturbation methods. Thus, to obtain the implied impulse responses of the model to exogenous shocks we can follow the customary approach of linearizing the equilibrium conditions around the nonstochastic steady state.

4.2 Response to a Monetary Shock

The calibration of the model is summarized in Table 1. The parameters appearing in the top panel of the table were already discussed in section 3. Because the model now features an endogenous labor supply, the parameters $\Gamma 0$ and Γ_1 were recalibrated using the same targets for the slope of the Phillips curve and steady-state unemployment. However, the resulting values are identical up to the third significant digit, so we do not report them. Following Galí (2015), we set $\beta = 0.99$, $\sigma = 1$ (unit elasticity of intertemporal consumption substitution), $\theta = 5$ (or a Frisch elasticity of labor supply of 0.2), $\alpha = 0.75$ (labor elasticity of output), $\alpha_{\pi} = 1.5$ (inflation coefficient in the Taylor rule), and $\alpha_y = 0.5/4$ (output coefficient in the Taylor rule).

We assume that the monetary shock follows an autoregressive process of order one

$$\ln \mu_t = \rho_\mu \ln \mu_{t-1} + \epsilon_t^\mu, \tag{35}$$

where ϵ_t^{μ} is a mean zero i.i.d. innovation, and $\rho_{\mu} \in [0, 1)$ is a parameter. Following Galí (2015) we set $\rho_{\mu} = 0.5$.

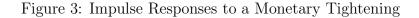
Figure 3 displays with solid lines the impulse response to a one percent annualized increase in μ_t . In equilibrium this monetary contraction results in a 0.33 percentage point increase in the policy interest rate due to the contemporaneous adjustment of the endogenous variables that enter the Taylor rule. The model predicts that the tightening in monetary conditions is deflationary. An efficient adjustment of the labor market would require a fall in nominal wages large enough to perfectly offset the fall in prices. However, due to the presence of downward nominal wage rigidity, the decline in nominal wages is insufficient. That is, a larger number of job varieties become constrained by the lower bound on nominal wages.

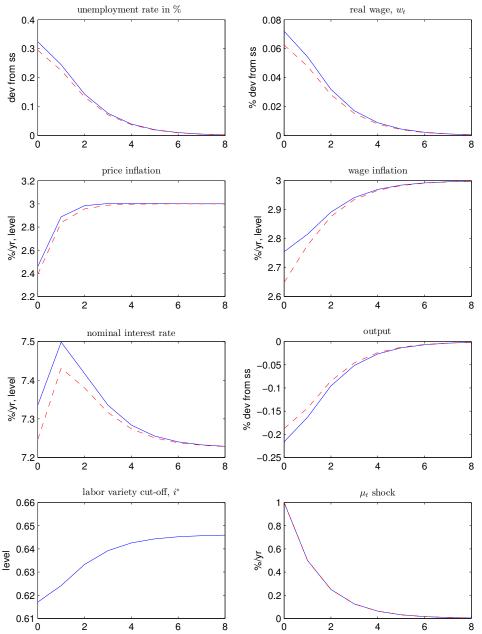
This frictional adjustment is reflected in a decline in the labor variety cutoff i_t^* . In turn, the fact that the real wage is inefficiently high for more labor varieties causes an increase in involuntary unemployment and hence a decline in output and consumption.

A key difference between the present model and the new-Keynesian sticky wage model is that the Phillips curve implied by the former is static whereas the one implied by the latter is forward-looking. Here, we wish to ascertain whether this difference is relevant for the predicted equilibrium dynamics. To this end, we consider a canonical new-Keynesian sticky-wage model that departs from the current model only in its wage setting module. Specifically, we assume that wages are set in a Calvo-Yun fashion as in Erceg, Henderson, and Levin (2000) and define the unemployment rate as in Galí (2011) and Casares (2010). A detailed derivation of the new-Keynesian model we use here can be found in Schmitt-Grohé and Uribe (2022). All parameters of the new-Keynesian model that are common to the present model are assigned the same values, namely, those given in Table 1. The common parameters are π^* , η , β , σ , θ , α , α_{π} , α_{y} , and ρ_{μ} . As in the proposed heterogeneous downward nominal wage rigidity model, we assume full indexation of wages to steady-state inflation.

It remains to explain how we calibrate the degree of nominal wage rigidity in the new-Keynesian model. We cannot directly adopt the strategy used to calibrate the slope of the Phillips curve in the proposed heterogeneous downward nominal wage rigidity model. The reason is that the empirical Phillips curve estimated by Galí and Gambetti (2019), which serves as the basis for that calibration, is not forward looking. Instead, we assume that the fraction of types of labor that cannot reoptimize wages in any given period in the new-Keynesian model is equal to the steady-state fraction of types of labor that are stuck at the wage lower bound in the model with heterogeneous downward nominal wage rigidity proposed in this paper. Formally, letting θ_w denote the fraction of wages that are not set optimally in any given period in the new-Keynesian model, we impose $\theta_w = 1 - i^*$, where i^* is the deterministic steady-state value of i_t^* . The resulting value of θ_w is 0.35. This value is low relative to those typically used in the related literature. For example, Galí (2015) sets θ_w to 0.75. Accordingly, later we also consider a calibration in which $\theta_w = 1 - i^* = 0.75$.

Figure 3 displays with dashed lines the response of the new-Keynesian model to a 1 percent per annum increase in the monetary shock μ_t . The figure shows that for most variables the response of the new-Keynesian and heterogeneous downward nominal wage rigidity models are quite close. This result is robust to using a more conventional higher degree of wage rigidity. To illustrate this point, following Galí (2015), we increase θ_w from 0.35 to 0.75. For comparison, we also target a value of 0.75 for $1 - i^*$ in the model with heterogeneous downward nominal wage rigidity. Figure 4 displays the predicted impulse responses. Understandably, both models predict a more subdued response of wage inflation





Note. Solid lines correspond to the model with heterogeneous downward nominal wage rigidity and dashed lines to the new-Keynesian model with Calvo wage stickiness. The size of the monetary shock is 1 percent per annum and its serial correlation is 0.5.

and a larger response of unemployment. The important point for the purpose of the present discussion, however, is that both models deliver quite similar dynamics.

The implication of this result is that the forward-looking nature of the wage Phillips curve in the new-Keynesian framework does not appear to play a crucial role for equilibrium dynamics, at least for the calibrations considered here.

4.3 Response to a Technology Shock

Figure 5 displays the response of the model with heterogeneous downward nominal wage rigidity to a 1-percent positive productivity shock (a 1 percent innovation in z_t). The shock is assumed to follow a first-order autoregressive process of the form

$$\ln z_t = \rho_z \ln z_{t-1} + \epsilon_t^z,$$

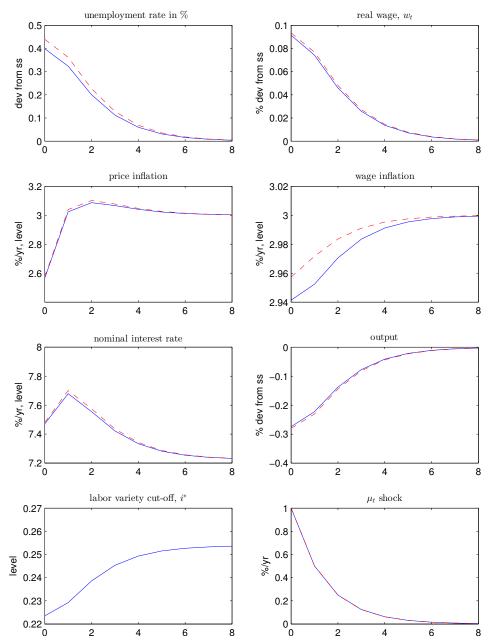
where ϵ_t^z is a mean-zero i.i.d. disturbance and ρ_z is a parameter. Following Galí (2015), we set ρ_z equal to 0.9.

The increase in output following the positive technology shock puts downward pressure on product-price inflation. The increase in labor productivity following the technological improvement pushes nominal wages up. This relaxes the wage constraint for some wage varieties (i_t^* goes up on impact), inducing a fall in unemployment in the initial period. As the technology shock begins to return to its stationary position, real wages fall. However, due to the presence of wage rigidity, they fall at a slower pace than the one consistent with full employment. As a result, unemployment rises and remains above steady state throughout the transition.

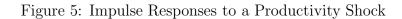
The response of the new-Keynesian model to the positive productivity shock, shown with dashed lines in Figure 5, is similar. The main difference is that under the present calibration in the new-Keynesian model unemployment experiences a larger decline on impact and a smaller subsequent increase. This difference in the response of unemployment is due to the relatively low value picked for the degree of wage rigidity ($\theta_w = 0.35$). When we set θ_w to the more conventional value of 0.75, then the response of unemployment to the technological improvement is almost the same in both models. This result is shown in Figure 6. For comparison, the figure also displays the response of the heterogeneous downward nominal wage rigidity model with a calibration that targets $1 - i^* = 0.75$. Under this calibration, the two models produce virtually the same responses to the positive productivity shock not only for unemployment but also for most of the other endogenous variables displayed in the figure.

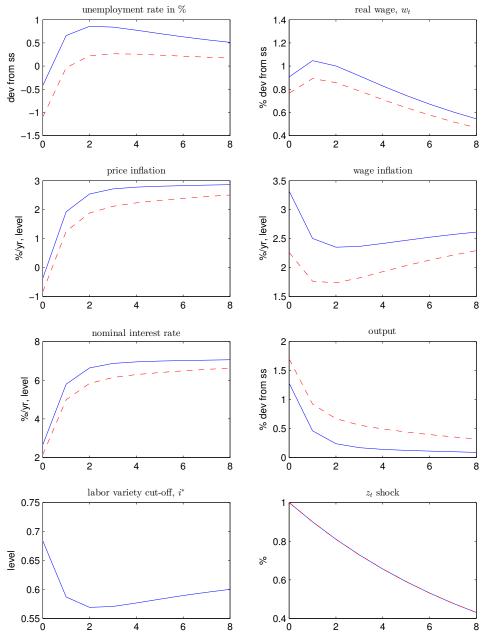
Overall, the results of the present section indicate that the forward looking component

Figure 4: Impulse Responses to a Monetary Tightening with a Higher Degree of Wage Rigidity ($\theta_w = 1 - i^* = 0.75$)



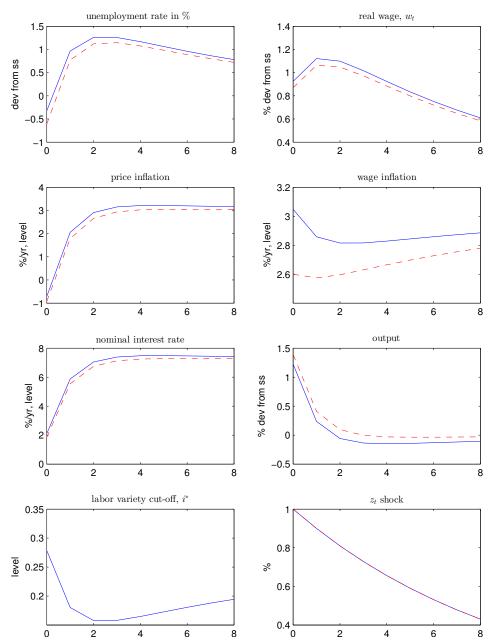
Note. Solid lines correspond to the model with heterogeneous downward nominal wage rigidity and dashed lines to the new-Keynesian model with Calvo wage stickiness. The size of the monetary shock is 1 percent per annum and its serial correlation is 0.5.





Note. Solid lines correspond to the model with heterogeneous downward nominal wage rigidity and dashed lines to the new-Keynesian model with Calvo wage stickiness. The size of the shock is 1 percent and its serial correlation is 0.9.

Figure 6: Impulse Responses to a Productivity Shock with a Higher Degree of Wage Rigidity $(\theta_w = 1 - i^* = 0.75)$



Note. Solid lines correspond to the model with heterogeneous downward nominal wage rigidity and dashed lines to the new-Keynesian model with Calvo wage stickiness. The size of the shock is 1 percent and its serial correlation is 0.9.

in the new-Keynesian wage Phillips curve does not play a central role in shaping the impulse responses to monetary and productivity shocks.

5 Conclusion

A distinctive feature of the new-Keynesian model is a forward-looking Phillips curve. Yet, it is not clear what role this feature plays in shaping macroeconomic dynamics. This paper makes a step toward putting the forward-looking nature of the new-Keynesian Phillips curve into perspective.

It first establishes that the forward-looking component of the Phillips curve is not a necessary characteristic of optimizing models with nominal rigidity. It does so by building a model with heterogeneous downward nominal wage rigidity that nests as a special case the standard (homogeneous) downward nominal wage rigidity framework. The model with heterogeneous downward nominal wage rigidity delivers a static wage Phillips curve and is amenable to analysis using perturbation methods.

Under standard calibrations, the proposed model delivers equilibrium dynamics in response to monetary and technology shocks that are qualitatively and quantitatively similar to those implied by the new-Keynesian model of wage stickiness. This result suggests that a forward-looking component in the wage Phillips curve does not necessarily play a critical role for the predicted dynamic behavior of key macroeconomic indicators.

References

- Barattieri, Alessandro, Susanto Basu, and Peter Gottschalk, "Some Evidence on the Importance of Sticky Wages," *American Economic Journal: Macroeconomics* 6, January 2014, 70-101.
- Benigno, Pierpaolo, and Luca Antonio Ricci, "The Inflation-Output Trade-Off with Downward Wage Rigidities," *American Economic Review 101*, June 2011, 1436-1466.
- Casares, Miguel, "Unemployment as Excess Supply of Labor: Implications for Wage and Price Inflation," *Journal of Monetary Economics* 57, 2010, 233-243.
- Christiano, Lawrence J., Martin Eichenbaum, and Charles L. Evans, "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy," *Journal of Political Economy* 113, February, 2005, 1–45.
- Card, David, and Dean Hyslop, "Does Inflation 'Grease the Wheels of the Labor Market'?," in Christina D. Romer and David H. Romer, Editors, *Reducing Inflation: Motivation and Strategy*, University of Chicago Press, January 1997, 71–122.
- Dupraz, Stéphane, Emi Nakamura, and Jón Steinsson, "A Plucking Model of Business Cycles," working paper, August 6, 2022.
- Erceg, Christopher J., Henderson, Dale W., and Levin, Andrew T., "Optimal Monetary Policy With Staggered Wage and Price Contracts," *Journal of Monetary Economics* 46, October 2000, 281–313.
- Faia, Ester, "Optimal Monetary Policy Rules with Labour Market Frictions," *Journal of Economic Dynamics and Control 32*, May 2008, 1357-1720.
- Galí, Jordi, "The Return of the Wage Phillips Curve," Journal of the European Economic Association 9, June 2011, 436–461.
- Galí, Jordi, Monetary Policy, Inflation, and the Business Cycle, Princeton University Press: Princeton, NJ, 2015.
- Galí, Jordi, and Luca Gambetti, "Has the U.S. Wage Phillips Curve Flattened? A Semi-Structural Exploration," NBER Working Paper No. 25476, January 2019.
- Gertler, Mark, Luca Sala, and Antonella Trigari, "An Estimated Monetary DSGE Model with Unemployment and Staggered Nominal Wage Bargaining," *Journal of Money, Credit and Banking 40*, December 2008, 1713-64.
- Gottschalk, Peter, "Downward Nominal-Wage Flexibility: Real or Measurement Error?," The Review of Economic and Statistics 87, August 2005, 556-568.
- Jo, Yoon Joo, "Establishing downward nominal wage rigidity through cyclical changes in the wage distribution," Texas A&M University, September 23, 2022.
- Kahn, Shulamit, "Evidence of Nominal Wage Stickiness from Microdata," American Eco-

- nomic Review 87, 1997, 993-1008.
- Phillips, A. William, "The Relation Between Unemployment and the Rate of Change of Money Wage Rates in the United Kingdom, 1861–1957," *Economica 25*, November 1958, 283–299.
- Schmitt-Grohé, Stephanie, and Martín Uribe, "Downward Nominal Wage Rigidity, Currency Pegs, And Involuntary Unemployment," *Journal of Political Economy 124*, October 2016, 1466–1514.
- Schmitt-Grohé, Stephanie, and Martín Uribe, "Liquidity Traps and Jobless Recoveries," American Economic Journal: Macroeconomics 9, January 2017, 165-204.
- Schmitt-Grohé, Stephanie, and Martín Uribe, "Technical Appendix to Heterogeneous Downward Nominal Wage Rigidity: Foundations of a Static Wage Phillips Curve," manuscript, Columbia University, December 2022.
- Smets, Frank and Raf Wouters, "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," *American Economic Review 97*, June 2007, 586–606.
- Tobin, James, "Inflation and Unemployment," American Economic Review 62, March 1972, 1–18.