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1 Introduction

Missing data is a common problem in cross-sectional asset pricing studies. While the

problem of missing return observations has received some attention and is typically handled

by the use of so-called delisting returns (Shumway (1997), Beaver et al. (2007)), the problem

of missing covariates, such as firm characteristics, is typically only addressed implicitly. A

large and growing literature uses these covariates to predict future returns cross-sectionally

or to build factor portfolios. Most studies in this literature do not explicitly discuss how they

handle the case of missing data. For the ones that do, by far the most common procedure to

deal with missing covariates is to exclude an observation altogether if any covariate is missing

and perform the subsequent analysis only on observations for which no covariates or returns

are missing (complete cases analysis). Alternatively, researchers impute the unconditional

mean for a missing characteristic from the firms with no missing data (unconditional mean

imputation). As we argue below, both procedures have undesirable properties.

To harness the additional power from studying all firms with valid return observations,

we propose a simple approach to impute the missing covariate observations. At an intuitive

level, our approach works by replacing the missing covariates with suitable estimates and

accounting for the estimation error (from generating these estimates) in the subsequent

analysis. In addition, we also “down-weigh” the observations for which we imputed data,

thereby adjusting for the fact that these data points are not truly observed and thus contain

less information. In general, the more covariates are imputed, the larger the additional

error terms due to imputations, and the less weight an observation receives. Our approach

therefore allows us to use all firms with valid return observations, while enabling feasible

and correct inference. We can obtain suitable replacements of the missing values from the

(observed) cross-section and/or from the time-series of past observations. The method can

be used if the main model of interest is parametric or nonparametric and does not require

us to specify the entire distribution of the missing covariates. We show that our proposed

method can be cast into a generalized method of moments (Hansen (1982)) setting, which

allows us to study its statistical properties.

In recent years, many asset pricing papers aim to respond to Cochrane (2011)’s mul-
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tidimensional challenge, that is, identifying which characteristics and factors help predict

returns conditional on other predictors. The large number of possible predictors aggravates

the missing data problem (Harvey et al., 2016). The complete case analysis typically neglects

a substantial subset of the data. For example, in our paper, we use the data set of Chen

and Zimmermann (2021) with 82 covariates, which contains around 2.4 million observations

between 1978 and 2021. Whereas the complete case only consists of around 10% of the over-

all sample, for almost half of the observations, at most 5 of the 82 covariates are missing.

These observations with few missing covariates would then be excluded from the analysis,

even though they contain useful information. This exclusion is in contrast to what Zhang

et al. (2005) call “one of statistics’ first principles” – “thou shall not throw data away”.

Moreover, the complete case approach has an additional drawback that may be overlooked

at first sight. By conditioning on firms for which all covariates are available, we might inad-

vertently ignore an interesting part of the return distribution, which might preclude us from

forming portfolios with high out of sample Sharpe ratios.

In an attempt not to delete too many observations, some researchers replace missing

values of the covariates with their cross-sectional mean (unconditional mean imputation) of

that period. We wholeheartedly agree with the aim of using as many return observations

as possible. However, we also show that unconditional mean imputation is rarely desirable.

First, unconditional mean imputation leads to inconsistent estimators, except in the special

cases when the covariates are independent or when covariates with imputed characteristics

are no true return predictors. Second, even in these special cases, unconditional mean

imputation typically produces incorrect standard errors. Intuitively, unconditional mean

imputation leads to an underestimation of (co)variances and therefore standard errors that

are too small.

The mapping of our proposed estimator into a GMM framework allows us to account for

the imputation step in conducting inference and also to understand the efficiency gains of

the proposed approach. Contrary to many Bayesian and likelihood-based approaches that

address the issue of missing data, such as multiple imputation or the EM algorithm, our

method is computationally inexpensive and places fewer assumptions on the data generating

process. However, we do need to impose certain assumptions on why observations are miss-
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ing. Specifically, similar to the complete case and many other approaches, we cannot allow

the probability that a particular observation is missing to depend on the missing charac-

teristics, once we condition on observed characteristics but it can arbitrarily depend on the

always observed characteristics. For example, our approach allows for small firms having a

higher likelihood of missing characteristics. We characterize the conditions under which we

obtain consistent estimators and correct inference, and we argue that these conditions are

plausible in many empirical asset pricing studies.

We then illustrate the finite sample properties of our approach in an extensive simulation

study and find that it performs well in sample of realistic size. The simulations also help

illustrate when the ad-hoc approaches, such as unconditional mean imputation and complete

case analysis are (and are not) problematic.

Finally, we apply our method to the CRSP/Compustat sample. We document that it

is desirable to use all firms with valid returns, because conditioning on the complete cases

ignores an interesting part of the return distribution. Portfolios going long stocks with high

predicted returns and shorting stocks with low predicted returns achieve much higher out-of-

sample returns and Sharpe ratios when using the full sample and imputing missing predictors

using our method. In addition, we illustrate how our approach can be used for inference by

carrying out a model selection analysis over the full sample to determine the most important

predictors. Contrary to our method, the inefficient complete case analysis discards many,

even well-established predictors, such as size or value, because of a lack of statistical power.

We also document that unconditional mean imputation can lead to incorrect inference due

to the generically biased estimators and artificially small standard errors.

1.1 Related Literature

The problem of missing data is ubiquitous in empirical analyses. For example, clinical

trials routinely have to confront the problem that some patients do not show up for follow-up

examinations. A related problem occurs in surveys, where respondents often leave questions

blank, sometimes by accident and at other times because they feel uncomfortable answering

them. Regardless of the reason, the result is missing data. Either explicitly or implicitly,

researchers have to make assumptions about how to proceed with the empirical analysis in
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such situations. The problem of missing data and related issues have long been recognized

in the applied and methodological literature. Consequently, researchers have proposed many

different procedures to deal with missing data in a variety of settings.

The general literature on missing data is too vast to summarize here and we refer to

Molenberghs et al. (2015) and Little and Rubin (2020) for textbook introductions to the

most common approaches to deal with missing data in different situations. We will therefore

only review the most common methods that are closely related to our proposed method

and place special emphasis on the treatment of missing data in asset pricing. In general,

no single procedure can be successfully applied to all missing data problems. Dealing with

missing data successfully requires taking a stance on why the data is missing – the so called

missing mechanism.1 If the probability that a particular observation is missing depends

on the outcome variable (even after conditioning on observables), we call the mechanism

not missing at random. In this case, the missing mechanism has to be modeled explicitly,

for example through a selection model, such as the Heckman selection estimator (Heckman

(1979)). Since we do not pursue such an approach, we will not elaborate on this literature

further.2

In situations in which the probability of observing an observation does not depend on the

outcome variable itself, but may depend on observed covariates, the literature has proposed

several general approaches to deal with missing data. Some of these approaches rely on strong

distributional assumptions on unobservables (for example, likelihood-based approaches and

Bayesian methods) that we do not want to impose to computational reasons. Instead, we

use a method based on moment restrictions and imputation, that is, replacing the missing

variables with suitable estimates. Imputation has a long history and is studied, among

others, in Yates (1933), Dagenais (1973), Rubin (1978), Nijman and Palm (1988), Little

(1992), and Rao and Toutenburg (1999). Just like we do, some of these approaches also

down-weigh observations with missing values, but these studies typically only allow for one

missing pattern, which means that either all variables are observed or one particular subset

of the variables is missing. We extend these ideas (specifically the weighting approach of

1We review the most commonly used missing mechanisms in Section A.1.
2In finance, studies of fund performance are examples in which such a situation arises as noted by Brown

et al. (1992) and Carhart et al. (2002).
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Dagenais (1973)) and allow for general missing patterns.

One challenge that arises with imputation methods is how to account for the “imputation

uncertainty” in inference, because the imputations are estimates themselves. The idea we

follow goes back to Gourieroux and Monfort (1981) who also allow for only a single missing

pattern. One way to approach this issue is to cast the imputation model and main model

in a GMM setting (Hansen (1982)) and thereby obtain standard errors that are corrected

for the uncertainty from the imputation step. Following this route, Abrevaya and Donald

(2017) study the efficient estimator with one missing pattern. For a similar setup, Chen et al.

(2008) present a semi-parametrically efficient estimator that is based on moment restrictions

in the presence of missing data. One drawback of the optimal GMM estimator is that it can

be computationally very costly as it amounts to solving a nonlinear optimization problem.

These problems are also well-documented in macro finance applications, e.g. Hansen et al.

(1996). In our application with general missing patterns and many return predictors, the

efficient GMM estimator is computationally infeasible and it does not have the intuitive

interpretation of an imputation estimator. We show that our estimator can be interpreted

as a GMM estimator with a specific weight matrix.3 This estimator is available in closed

form, computationally much less costly than the efficient estimator, and simulations show

that the loss in efficiency is small. Importantly, we can use standard GMM results to compute

standard errors.

Another estimation approach that relies on moment restrictions is inverse probability

weighting (IPW), that is, re-weighting the complete case sample such that it more closely

mirrors the population (Robins et al. (1994), Wooldridge (2007)), in which case we typi-

cally need to model the probability that a particular case is observed. The IPW approach

relaxes important assumptions relative to the (unweighted) complete case, but does not use

all available data. A considerable generalization is the class of augmented IPW (AIPW)

estimators, which use the whole sample. Under certain assumptions, which differ slightly

from our setup, Robins et al. (1994) show that the AIPW estimator is semiparameteric ef-

ficient. However, similar to the optimal GMM estimator, the efficient AIPW estimator is

3Zhou (1994) uses an alternative weight matrix to derive analytical GMM tests in the context of linear
factor models. More recently, Liao and Liu (2020) also propose a two-step approach to test linear factor
models – notably, they obtain optimality results in this case.
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generally not available in closed form and computationally prohibitive in our application.

For comprehensive results on AIPW estimators see for example Tsiatis and Davidian (2015).

While most papers do not explicitly state how they treat missing data, using only the

complete case appears to be the most common approach in asset pricing studies. Recent

examples include Lewellen (2015), Freyberger et al. (2020), Kelly et al. (2019), and Kim

et al. (2021). Other papers, follow a special imputation approach and replace the missing

covariate values with the cross-sectional mean or median, see e.g. Light et al. (2017), Kozak

et al. (2020), Gu et al. (2020).

More recently, some contemporaneous papers also rigorously deal with the problem of

missing predictors in multivariate (cross sectional) asset pricing studies and propose alter-

native imputation methods. Compared to those paper, an important conceptual difference

of our paper is that we consider imputation and estimation of parameters of asset pricing

models as a joint problem. As a consequence, how we impute missing characteristics depends

on the model being estimated. In a nonlinear model, we directly impute nonlinear functions

instead of using nonlinear functions of imputations. Moreover, how the model is estimated

depends on the quality of the imputations because we down-weigh imputed observations.

This joint treatment then allows us to obtain the statistical properties and valid standard

errors of the parameters of interest.

Other recent papers mainly focus on the imputation step and consider estimation with

the imputed sample in a separate step. Bryzgalova et al. (2022) assume a latent factor model

for the firm characteristics to impute missing values. Similar to our setup, their approach al-

lows the imputation models to be flexibly estimated using information from the cross-section

and/or time series. Such an approach yields consistent imputed values when the number

of characteristics approaches infinity. Their method mainly focuses on imputation and does

not discuss potential adjustments for subsequent estimation and inference. Chen and Mc-

Coy (2022) use the EM-algorithm for imputation, which requires that the characteristics are

jointly normally distributed, and compare out-of-sample predictions to those with uncondi-

tional mean imputation. In Section A.4 we briefly describe an alternative EM-algorithm,

which would allow for valid inference after imputation, but still relies on assuming normality.

Beckmeyer and Wiedmann (2022) use a machine learning algorithm borrowed from natural
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language processing to impute values, but it is unclear what exactly the required assump-

tions and theoretical properties are. In an earlier contribution, Haugen and Baker (1996)

worry if a potential bias may arise from using only the fully observed cases.

Connor and Korajczyk (1987), Lynch and Wachter (2013), Kim and Skoulakis (2018),

and Liu et al. (2022) are concerned with different missing data problems relative to us, but

they deserve special mention as part of the few papers in finance that recognize the general

issue of missing data in empirical studies. Similar to our approach, Lynch and Wachter

(2013) cast the problem of missing data in an unbalanced panel in a GMM framework but

do not follow an imputation-based approach. Other recent papers that deal with missing

data in factor models include Bai and Ng (2021), Cahan et al. (2021), Jin et al. (2021), and

Xiong and Pelger (2022). Lastly, Harvey et al. (2016) recognize that unreported tests for

the significance of cross-sectional predictors can be interpreted as a missing data problem.

They estimate the number of unreported (and thus missing) tests and then suitably adjust

their proposed multiple testing thresholds.

2 Data

We use stock returns, volume and price data from the Center for Research in Security

prices (CRSP) monthly stock file. Following standard conventions in the literature, we

restrict the analysis to common stocks of firms incorporated in the US and trading on NYSE,

Nasdaq or Amex. Balance sheet data is obtained from Compustat.

In order to avoid potential lock-ahead biases, we lag all characteristics that build on Com-

pustat annual by at least six months and all that build on Compustat quarterly by at least

four months. Our main dataset is obtained from Chen and Zimmermann (2021) and consists

of 82 firm characteristics that are available from 1978 - 2021. The firm characteristics feature

a combination of accounting information as well as versions of momentum and functions of

trading volume. Appendix Table A.1 provides an overview of the characteristics we use in

our main empirical analysis. The 82 characteristics are a subset of the characteristics in the

original dataset. If we were to use all available characteristics, no complete case would exist.

We select the subset of the available characteristics based on three rationales. First, we keep
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all characteristics that are standard in the empirical asset pricing literature, for instance

beta, book-to-market, and size. Second, some characteristics exist multiple times with only

minor variation, in which case we only include one of them (e.g. idiosyncratic volatility can

be estimated against various factor models). Finally, we exclude characteristics that are

rarely observed. For example, long run seasonality requires 20 years of past observations.

Our dataset then includes all common characteristics while having a complete case of at

least 285 observations in every period. We use data from 1978 because several accounting

variables have only been recorded starting in the 1970s, such as net debt financing.

Appendix Table A.1 also shows the fraction of missing values per characteristic. Overall,

we have a total of 3,644,484 firm-month observations. Fama and French (1992) define the

benchmark for empirical analyses of the cross-section of expected returns. We follow them

and require that a minimum of information is available for each firm. As Fama and French,

we require the inputs (market beta, size, and book-to-market) of the Fama-French 3 factor

model to be available for all firms. When we condition on firms having Beta, BMdec and

Size available, we have a total 2,408,182 firm month observations. The complete case sample

instead consists of only 238,198 firm-month observations, that is, the complete case would

discard around 90% of all available return observations, making the complete case analysis

rather inefficient. As we will detail in Section 3, in our proposed method, we essentially

assume that the data is missing at random conditional on the observed characteristics. If

we drop an additional 2,140 observations from the 2,408,182 firm month observations, we

always observe the following characteristics: AssetGrowth, Beta, BMdec, BookLeverage,

ChInv, Coskewness, DelCOA, DelLTI, High52, IdioRisk, MaxRet, Size and STreversal.

Hence, by discarding very few additional observations, our assumptions are more palatable.

Our final data set then has a total of 2,406,042 firm-month observations. In the empirical

analysis we always apply the rank-transformation as in Freyberger et al. (2020) such that

the continuous characteristics are uniformly distributed on [0, 1], a standard transformation,

which is also applied in Kozak et al. (2020), Gu et al. (2020) and many other papers.
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2.1 Missing data in CRSP/Compustat

In this section, we provide descriptive statistics to document the prevalence of the missing

data problem in a standard dataset for empirical asset pricing but similar conclusions also

hold for many studies in empirical corporate finance or international finannce. Appendix

Table A.1 provides a first overview. From this table, we can see that some characteristics

are missing more frequently than others. To understand the broader effects and convey

more intuition, Figure 1 gives a first graphical overview. Panel A shows we observe all

predictors for only 10% of all observations. Moreover, while many observations are only

missing few predictors, a non-trivial fraction of observations are missing approximately 35

to 45 predictors. Hence, even discarding a handful of characteristics with particularly many

missing values will not solve the missing data problem. Panel B shows the fraction of

incomplete observations over time and separately by size quintiles. On average, larger firms

have fewer incomplete observations, however about one half to two-thirds of the firms in the

largest size quintile are also incomplete. Panel B also illustrates that the problem of missing

data does not vanish over time. It is present and severe even for the most recent years.
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Figure 1: Overview of Missing Characteristics

Panel A shows which fraction of the data are missing for a given number of characteristics, e.g. about 10% of the observations

have no missing characteristic and about 7.5% of observations have exactly one missing characteristic. Panel B shows the

fraction of incomplete observations separately for each size quintile and over time. Our main dataset is obtained from Chen

and Zimmermann (2021) and consists of 82 firm characteristics that are available from 1978 - 2021.
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Figure 2 shows the missing (and non-missing) observations for a random sample of ap-

proximately 5% of all observations with black indicating an observed observation and white

indicating missing data. The roughly 10% of black observations to the left of the red vertical

line represent the complete case. The Figure shows no simple pattern for missing charac-

teristics exists such as “white columns”, which would indicate that we could simply drop

an individual firm-month pair to deal with the missing data problem. Likewise, no “white

rows” exist, which would suggest that simply dropping an individual characteristic provides

an easy solution of the missing data problem. Instead, missing data are widespread across

characteristics, firms, and over time.

Figure 3 additionally illustrates the missing patterns for each of the characteristics over

time. In particular, it is perceivable that observations (for each firm) are missing particularly

often when the firm enters the sample - in this case it might suffice to simply require that
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Figure 2: Complete and Incomplete Observations for a Random Subset of Firm-Month Pairs

This figure shows a random sample of approximately 5% of the observations. If an item is observed, it is filled in black, whereas

it is white if it is not observed. The observations left to the red line depict the complete case, that is, the observation for which

no single firm characteristic is missing. We do not include the characteristics which we require to be always observed. Our main

dataset is obtained from Chen and Zimmermann (2021) and consists of 82 firm characteristics that are available from 1978 -

2021.

12



firms have been listed for a while to solve the missing data problem. However, Figure 3

illustrates that this is not the case. In particular, for almost all characteristics we see that

they may be missing at the start, that is, when a firm first enters the sample, in the middle,

that is, the characteristics was observed when the firm entered the sample and then was no

longer observed, but it was observed again later.

It is also possible that a firm characteristic has good availability for most of the sample,

but is missing towards the end of the sample. Finally, a characteristic might be always

be missing for some firms. Figure 3 shows that most characteristics tend to be missing

more frequently at the beginning, likely due to data requirements, e.g. a certain number

of previous observations is required to calculate the characteristics, such as past returns for

momentum variables. However, we also see that all patterns are present for all characteristics

to some degree. More generally, one could ask why the data are missing in the first place.

Typically, this occurs if some item needed for its computation is missing. For accounting

items, this might be due to a choice on behalf of the firm to not report a certain item, or

simply because Compustat did not record it.
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Figure 3: Structure of Missing Characteristics

This figure depicts the prevalence of different missingness types. Given a time series of a single firm, a characteristic may be

missing at the beginning of the time series but is observed after some point (Start), a characteristic may be observed at the

beginning of the time series, then it is missing for a few time periods but is observed again (Middle), a characteristic may be

missing at the end of the time series (End), or a characteristic may never be observed (Always). For a given characteristic, this

figure shows which fraction of the missing observations for this characteristic can be assigned to these missingness types. The

statistics are pooled across firms and over time.
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In the context of asset pricing, an important additional reason exists why it is undesirable

to use the complete case. Firms with missing characteristics may have different properties

than firms with no missing characteristics. We illustrate this point in Figure 4. The left part

of the figure shows a boxplot of important and always observed characteristics contrasting

firms with no missing characteristics (green) and those for which at least one other firm

characteristics is missing (red). While the distribution of characteristics appears similar for

some characteristics, such as STreversal, it can be quite different for others, e.g. Size or

IdioRisk. The right panel of Figure 4 shows density plots of the returns for firms with no

and with missing characteristics. While the mean does not appear drastically different, the

incomplete firms have more dispersed return realizations. If a researcher were to focus only

on the complete observations, she would ignore an important part of the return distribution.

Using these observations may allow to form portfolios with better risk-reward properties, as

we show below.

14



Figure 4: Complete vs. Incomplete Observations

The left panel shows a boxplot for a subset of characteristics, which we require to be always observed, for the complete (green)

vs. incomplete observations (red). The right panel shows a density of the returns for the complete (light green) vs. incomplete

(light red) observations. Our main dataset is obtained from Chen and Zimmermann (2021) and consists of 82 firm characteristics

that are available from 1978 - 2021.
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3 Model

In summary, many characteristics are missing in the standard CRSP/Compustat panel

such that simply ignoring the problem is possibly inefficient. In the following, we outline

our proposed procedure to deal with missing values. The method is flexible enough to

use information from both the cross-sectional correlation between characteristics and the

temporal relation of a characteristics within a firm to obtain suitable imputations for the

missing values.

3.1 Simple example

We start by illustrating the main idea of our approach using a simple example with cross-

sectional data. In the next subsection, we introduce the general panel data model, but this

simple example contains almost all of the intuition with much simpler notation. Let Yi be

the return of firm i. Let Xi ∈ R2 be a vector of two characteristics. In this example, we use

the linear regression model

Yi = β0 +Xi,1β1 +Xi,2β2 + εi, E[εi | Xi] = 0.

The parameters of interest are β0, β1, and β2.
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Suppose that for a subset of the data Xi,2 is not observed, but Xi,1 and Yi are always

observed. Define Di = 0 if observation i is complete and let Di = 1 if Xi,2 is missing. We

allow data to be missing systematically, but we essentially assume that the data is missing

at random once we condition on the observed characteristics. This assumption consists of

two parts. First, we assume that

E [εi | Xi,1, Xi,2, Di = 0] = 0.

Since we also assume that E[εi | Xi] = 0, a sufficient condition for this assumption is that

εi is independent of Di conditional on Xi. This assumption is also implicitly imposed when

using the complete subset of observations only and we can write it as

E [Yi | Xi,1, Xi,2, Di = 0] = β0 +Xi,1β1 +Xi,2β2,

which implies that we could estimate the parameters using the complete observations only.

This approach is inefficient because it neglects a part of the data that contains both Yi

and Xi,1. To use that part of the sample, we use the second part of the assumption, namely

E [Xi,2 | Xi,1, Di = 0] = E [Xi,2 | Xi,1, Di = 1] .

That is, the conditional mean of Xi,2 | Xi,1 is the same for the complete and the incomplete

subset of the observations. Hence, while Di may depend on Xi,1, it cannot depend on Xi,2.

In the full model, we allow Di to depend on all variables that are always observed. In

particular, in our sample we always observe 13 firm characteristics, including size, book-to-

market, beta, idiosyncratic risk, and the return of the previous month, and the probability

that an observation is incomplete can be a function these characteristics (see Section 2 for a

detailed description of the data and a full list of characteristics). For example, smaller firms

may be more likely to have missing values. However, conditional on all of these characteris-

tics, we essentially assume that the data is missing at random. While these assumptions are

not directly testable, as explained below, we can test the implications of the assumptions

that we use to construct our estimator.
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For the incomplete part of the sample, the best predictor of Yi given Xi,1 is

E [Yi | Xi,1, Di = 1] = β0 +Xi,1β1 + E [Xi,2 | Xi,1, Di = 1] β2 + E [εi | Xi,1, Di = 1] ,

= β0 +Xi,1β1 + E [Xi,2 | Xi,1, Di = 0] β2.

In the second line, we used the fact that E [εi | Xi,1, Xi,2] = E [εi | Xi,1, Xi,2, Di = 0] = 0

implies E [εi | Xi,1, Di = 1] = 0. Notice that we can estimate E [Xi,2 | Xi,1, Di = 0] using the

complete subset of the sample. In this example, we assume that

E [Xi,2 | Xi,1, Di = 0] = γ0 +Xi,1γ1,

in which case

E [Yi | Xi,1, Di = 1] = β0 +Xi,1β1 + (γ0 +Xi,1γ1) β2.

To summarize, we now have the three conditional moment restrictions

E [Yi − β0 −Xi,1β1 −Xi,2β2 | Xi,1, Xi,2, Di = 0] = 0,

E [Yi − β0 −Xi,1β1 − (γ0 +Xi,1γ1) β2 | Xi,1, Di = 1] = 0,

E [Xi,2 − γ0 −Xi,1γ1 | Xi,1, Di = 0] = 0.

and the corresponding unconditional moments

E [1(Di = 0) (Yi − β0 −Xi,1β1 −Xi,2β2)] = 0

E [1(Di = 0) (Yi − β0 −Xi,1β1 −Xi,2β2)Xi,1] = 0

E [1(Di = 0) (Yi − β0 −Xi,1β1 −Xi,2β2)Xi,2] = 0


1st set

β from complete case

E [1(Di = 1) (Yi − β0 −Xi,1β1 − (γ0 +Xi,1γ1) β2)] = 0

E [1(Di = 1) (Yi − β0 −Xi,1β1 − (γ0 +Xi,1γ1) β2)Xi,1] = 0

 2nd set

overidentifying restrictions

E [1(Di = 0) (Xi,2 − γ0 −Xi,1γ1)] = 0

E [1(Di = 0) (Xi,2 − γ0 −Xi,1γ1)Xi,1] = 0

 3rd set

γ for imputation model
.
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The first and third set of moments point identify β and γ, respectively and they are based

on the complete subset of the data only. The second set of moments uses the incomplete

part of the data, is derived from our additional assumptions, and leads to overidentifying

restrictions. These overidentifying restrictions are testable, and we do so using a modified

version of the J-test (see Section A.8 in the Online Appendix for a derivation of the test

statistic in the general model and Section 3.2 for the test results).

We want to stress that the assumption that E [Xi,2 | Xi,1, Di = 0] is a linear function is

not required to derive our unconditional moment conditions. To avoid it, we can use an

alternative derivation based on projections, which is less intuitive and discussed in Section

A.5 in the Online Appendix.

Based on the moments, different ways exist to estimate the parameters (β0, β1, β2):

1. Use the complete subset of the data and thus the first set of moments only.

2. Use the optimal GMM estimator that pools all moments and estimates the parameters

jointly.

3. Use the third set of moments to estimate γ0 and γ1. Then, using the estimated values

and the first two sets of moments, estimate β0, β1, and β2. The estimator will depend

on the GMMweighting matrix in the second step due to the overidentifying restrictions.

Clearly, option 1 does not use all information contained in the data, whereas the second

option yields the most efficient estimator. However, the moments are nonlinear in the param-

eters and the optimal GMM estimator does not have a closed form solution. It can therefore

be computationally very demanding in large samples and with a large number of predictors,

especially when the parameters are estimated for many different time periods. We will now

explain that the third option is an appealing alternative, which is easy to implement and

has very good finite sample properties in our simulations.

To gain some intuition, first suppose γ is known. It then turns out that the optimal

GMM estimator based on the first two sets of moments minimizes

n∑
i=1

(
(1−Di)

(Yi − β0 −Xi,1β1 −Xi,2β2)
2

var(εi)
+Di

(Yi − β0 −Xi,1β1 − (γ0 +Xi,1γ1))
2

var(εi) + var(Xi,2 − γ0 −Xi,1γ1)β2
2

)
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and the denominators of the two fractions can be replaced with consistent estimators. We

prove this equivalence in a more general setting in Online Appendix A.6. Hence, an alter-

native way to obtain the estimator is to impute missing values of Xi,2 with the conditional

mean γ0 + Xi,1γ1 and then estimate (β0, β1, β2) using the generalized least squares (GLS)

estimator. This estimator then places less weight on observations for which Xi,2 has been

imputed. To better understand the reason for down-weighting observations with a missing

regressor, define Zi = Xi,2 if Di = 0 and Zi = E[Xi,2 | Xi,1] if Di = 1. We can then write

our outcome equation as

Yi = β0 +Xi,1β1 + Ziβ2 + ui,

where

ui =


εi if Di = 0

εi + (Xi,2 − γ0 −Xi,1γ1)︸ ︷︷ ︸
imputation error

β2 if Di = 1.

Hence, observations with a missing regressor have an unobservable with a larger variance

due to the imputation error. The GMM estimator with the estimated optimal weighting

matrix is simply the feasible GLS estimator.

When γ0 and γ1 have to be estimated as well, the GLS estimator with imputed values

is no longer equivalent to the optimal GMM estimator, but it is much easier to implement.

We study the loss in efficiency in simulations and find that it is generally small.

The usual GLS standard errors for (β0, β1, β2) are not valid with estimated γ0 and γ1.

Instead, we can interpret the GLS estimator as a GMM estimator with a specific weighting

matrix and derive the corresponding standard errors.

Yet another alternative is to impute the conditional mean and use the OLS instead of

the GLS estimator. This estimator simply ignores the additional variance due to imputation

and is also a GMM estimator with a specific weighting matrix. Our simulations suggest

that this approach may lead worse statistical properties than the complete case estimator,

even when a substantial subset of the data contains missing values. These results are in line

with Gourieroux and Monfort (1981) and Nijman and Palm (1988) who find that the GLS
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estimator is more efficient than the OLS estimator in the presence of one missing pattern.

Finally, a popular approach is to impute the unconditional mean instead of the conditional

mean and then estimate (β0, β1, β2) by OLS. Such an approach generally uses invalid moment

conditions and yields a biased estimator, even in this simple example. To see why, write

Yi = β0 +Xi,1β1 +Xi,2β2 + εi,

= β0 +Xi,1β1 + E[Xi,2]β2 + (Xi,2 − E[Xi,2])β2 + εi.

When Di = 1 and E[Xi,2] is imputed, the unobservable becomes (Xi,2−E[Xi,2])β2+ εi. But

E[(Xi,2 − E[Xi,2])β2 + εi | Xi,1, Di = 1] = E[(Xi,2 − E[Xi,2]) | Xi,1]β2,

which is not 0 unless in the special cases when β2 = 0 or when Xi,2 is mean independent of

Xi,1. But, even when one of these conditions is close to being satisfied, unconditional mean

imputation is still unreliable for inference even if it may yield good out-of-sample predictions.

3.2 General Model

We now consider the general panel data model. Let Yit be the return of firm i at time t

and let Xit ∈ RK be a vector of characteristics, which only contains information known at

time t− 1. We assume that

Yit =
K∑
k=1

Xit,kβt,k + εit, E[εit | Xit] = 0.

That is,

E[Yit | Xit] =
K∑
k=1

Xit,kβt,k.

While the conditional mean function is linear in the parameters, the regressors may include

nonlinear functions of the characteristics. Also note the vector Xit contains a constant. In

this model all parameters may depend on t and can be estimated period by period. When

the parameters are time invariant, an alternative is to pool data from different time periods.
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We allow the subset of observed regressors to vary by observation. Specifically, we assume

L different missing patterns exist, where for each missing pattern we observe a different subset

of regressors. Let Dit = l if observation i at time t has missing pattern l. In this case, we

denote by X
(l)
it ⊆ Xit the subvector of observed characteristics and by I

(l)
t ⊆ {1, . . . , K} the

corresponding indices. As before, for complete observations we use Dit = 0, and in this case

X
(0)
it = Xit.

As in the simple example, we can allow data to be missing systematically, but similar to

the simple example, we impose two conditions. First, we assume

E
[
εit | X(l)

it , Dit = l
]
= 0

for all l = 0, 1, . . . , L, which implies the complete case moment conditions

E [Yit | Xit, Dit = 0] =
K∑
k=1

Xit,kβt,k.

While these moment condition could be used to estimate βt, we also want to use the incom-

plete part of the sample. Therefore, for all l = 1, . . . , L, write

E
[
Yit | X(l)

it , Dit = l
]
=

K∑
k=1

E[Xit,k | X(l)
it , Dit = l]βt,k,

=
∑
k∈I(l)t

Xit,kβt,k +
K∑

k/∈I(l)t

E[Xit,k | X(l)
it , Dit = l]βt,k.

Recall, when Dit = l, Xit,k is observed for all k ∈ I
(l)
t . Again, we want to replace E[Xit,k |

X
(l)
it , Dit = l] for k /∈ I

(l)
t by its complete case counterpart that can be estimated. To so, we

impose the second part of our assumption, namely

E
[
Xit,k | X(l)

it , Dit = l
]
= E

[
Xit,k | X(l)

it , Dit = 0
]
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for all l = 1, . . . , L in which case

E
[
Yit | X(l)

it , Dit = l
]
=
∑
k∈I(l)t

Xit,kβt,k +
K∑

k/∈I(l)t

E
[
Xit,k | X(l)

it , Dit = 0
]
βt,k.

As discussed above, these assumptions allow Dit to depend on regressors that are always

observed, and since we always observe 13 important firm characteristics, these assumptions

seems to be reasonable in our empirical application (see Section 2 for further discussions).4

To estimate E[Xit,k | X(l)
it , Dit = 0], we again use a linear model. That is, for all l =

1, . . . , L and k /∈ I
(l)
t , let

E
[
Xit,k | X(l)

it , Dit = 0
]
= X

(l)
it

′
γ
(l,k)
t .

Alternatively, we could interpret X
(l)
it

′
γ
(l,k)
t as a linear projection in which case we do not

require a parametric conditional mean assumption. Similar to the simple example, we can

then write

E
[
Yit | X(l)

it , Dit = l
]
=
∑
k∈I(l)t

Xit,kβt,k +
K∑

k/∈I(l)t

X
(l)
it

′
γ
(l,k)
t βt,k

and we can interpret X
(l)
it

′
γ
(l,k)
t as a replacement for the unobserved covariate Xit,k, which

is based on the observed characteristics and needs to be estimated using the complete cases

at time t. Under certain assumptions, we can also use observed covariates from other time

periods for imputation, as we discuss in Section 3.3.2.

We can now collect our conditional moments and transform them to unconditional mo-

4We can relax these assumptions by conditioning on additional characteristics that Dit may depend on,
such as industry dummies (see Sections 3.3.2 for more details).
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ments to obtain:

E

[
1(Dit = 0)

(
Yit −

K∑
k=1

Xit,kβt,k

)
Xit

]
= 0 (1)

E

1(Dit = l)

Yit −
∑
k∈I(l)t

Xit,kβt,k −
K∑

k/∈I(l)t

X
(l)
it

′
γ
(l,k)
t βt,k

X
(l)
it

 = 0 l ≥ 1 (2)

E
[
1(Dit = 0)

(
Xit,k −X

(l)
it

′
γ
(l,k)
t

)
X

(l)
it

]
= 0 l ≥ 1, k /∈ I

(l)
t .(3)

These three sets of moment conditions are analogous to the ones in the simple example.

The moment conditions in (1) and (3) point identify βt and γ
(l,k)
t , respectively, and are

based on the complete subset of the data only. The moment conditions in (2) are additional

restrictions that yield efficiency gains. These moment conditions are testable using the test

statistic described in Online Appendix A.8. In particular, we implement this test pooling

data for each quarter and discard missing patterns for which E[XitX
′
it] does not have full

rank. These are mostly missing patterns for which we observe less observations than always-

observed characteristics. We find the test rejects the null hypothesis that the over-identifying

restrictions hold in around 1.7% of the time periods with a 5% significance level, providing

evidence in favor of the null hypothesis that the moment conditions hold.

Just as in the simple example, different ways to estimate the parameters exists. One

option that we pursue in the application is to estimate γ
(l,k)
t using the third set of moments

and then use the first two sets of moments, along with the estimates of γ
(l,k)
t , to estimate βt.

In the second step, we use the weight matrix that is optimal with known γ
(l,k)
t . As before,

this estimator is equivalent to the GLS estimator in which missing values are replaced with

the estimated means, conditional on the set of observed regressors. The estimator accounts

for the additional variance due to imputation. In general, the more regressors are imputed,

the less weight is placed on an observation. Specifically, we implement our estimator using

the following steps:

1. Use moment conditions (1) and (3) to estimate βt and γ
(l,k)
t , respectively, using linear

regressions based on the complete case.5

5Incorporating lagged characteristics in the model to estimate γ
(l,k)
t is straightforward and we will discuss

this point in Section 3.3.2. We omit it here to keep notation simple.
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2. Estimate V ar(Yit −
∑

k∈I(l)t
Xit,kβt,k −

∑K

k/∈I(l)t
X

(l)
it

′
γ
(l,k)
t βt,k | Dit = l) for l = 1, . . . , L

and V ar(Yit −
∑K

k=1Xit,kβt,k | Dit = 0) using the estimated parameters from step 1.

Depending on the value of Dit, let σ̂
2
it be the estimated variances for observation i.

3. For all i with Dit = l and all l = 0, . . . , L define

Ẑit,k =

Xit,k if k ∈ I
(l)
t

X
(l)
it

′
γ̂
(l,k)
t if k /∈ I

(l)
t ,

where γ̂
(l,k)
t is the estimator from part 1. Now define

β̂t = argmin
b∈RK

n∑
i=1

(Yit −
∑K

k=1 Ẑit,kbt,k)
2

σ̂2
it

.

We derive the large sample distribution of the estimator in Online Appendix A.7 and

provide plug-in estimators for the standard errors. A potential alternative is the optimal

GMM estimator, which can be hard to compute in practice because the objective function

is not quadratic in the parameters. In fact, in our empirical application with large numbers

of observations and regressors, this estimator is computationally infeasible.

3.3 Extensions

We now discuss a set of extensions of our baseline models.

3.3.1 High-Dimensional and Nonlinear Models

We can apply our two-step estimator also in high-dimensional and nonlinear models.

Recall we estimate conditional mean functions in the first step. Instead of using a linear

regression model, we could also employ machine learning methods, such as a neural networks

or random forests. Within the linear framework, but with a number large of regressors, we

could also use a penalized estimator such as the LASSO estimator or the Ridge estimator.

Constructing a consistent estimator in the second step is more complicated. To illustrate
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potential problems, let’s return to the simple cross-sectional example, and suppose that

Yi = β0 +Xi,1β1 +X2
i,1β2 +Xi,2β3 +X2

i,2β4 + εi, E[εi | Xi] = 0.

As before, Xi,1 is always observed, but Xi,2 is not, and Di = 1 denotes the case in which Xi,2

is missing. We then have

E[Yi | Xi,1, Di = 1] = β0+Xi,1β1+X2
i,1β2+E[Xi,2 | Xi,1, Di = 1]β3+E[X2

i,2 | Xi,1, Di = 1]β4.

Hence, we could impute estimates of E[Xi,2 | Xi,1, Di = 1] and E[X2
i,2 | Xi,1, Di = 1] for Xi,2

and X2
i,2, respectively, and estimate the parameters by GLS.

A potential alternative could be to replace missing values of Xit,2 and X2
it,2 by estimates

of E[Xi,2 | Xi,1, Di = 1] and E[Xi,2 | Xi,1, Di = 1]2, respectively. However, since E[Xi,2 |

Xi,1, Di = 1]2 ̸= E[X2
i,2 | Xi,1, Di = 1], the resulting estimator is inconsistent. These issues

carry over to other nonlinear models, which implies that imputations should depend on the

model being estimated, which is what we propose here compared to contemporaneous papers

that largely focus on imputing characteristics without conditioning on the ultimate model

being estimated.

One possibility to allow for nonlinearities and models selection simultaneously, which we

use in our application, is the group LASSO estimator of Freyberger et al. (2020). Similar

to the simple example above, in the first step we need to impute conditional expectations

of nonlinear transformations of the regressors (such as polynomials or splines). The second

step is then simply the estimator of Freyberger et al. (2020), with the possibility of down-

weighting observations with imputed values. This approach not only allows for nonlinearities

but also pre-specified interactions.

3.3.2 Additional covariates

We could use additional covariates to relax our missing at random assumptions or to

obtain better imputations. In our application, these variables might include additional firm

characteristics or lagged values of missing characteristics. We now briefly describe different
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approaches using our simple example and discuss the details in Online Appendix A.3.

Consider again the simple model

Yi = β0 +Xi,1β1 +Xi,2β2 + εi, E[εi | Xi] = 0,

where Xi,1 is a always observed, but Xi,2 might be missing. Let Di = 0 if observation i is

complete and letDi = 1 ifXi,2 is missing. To derive the estimator, our two main assumptions

on the missing patterns are:

E [εi | Xi,1, Xi,2, Di = 0] = 0

and

E [Xi,2 | Xi,1, Di = 0] = E [Xi,2 | Xi,1, Di = 1] ,

and a sufficient condition for these assumptions is

Di ⊥⊥ Yi, Xi,2 | Xi,1.

Let Vi be an additional vector of covariates that is always observed, such as industry dum-

mies, which do not have a direct effect on the outcomes, that is, returns. We can then change

the conditional independence assumption to

Di ⊥⊥ Yi, Xi,2 | Xi,1, Vi.

One can then show that

E

[
(Yi − β0 −Xi,1β1 −Xi,2β2)

P (Di = 0 | Xi,1, Vi)
| Xi,1, Xi,2, Di = 0

]
= 0

and

E

[
(Yi − β0 −Xi,1β1 − E[Xi,2 | Xi,1, Vi, Di = 0]β2)

P (Di = 1 | Xi,1, Vi)
| Xi,1, Di = 1

]
= 0.
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Hence, we impute Xi,2 using both Xi,1 and Vi and then use moments as before, but weighted

by the inverse of the conditional probability of Di (inverse propensity score weighting).

This previous approach does not require an assumption on how Vi relates to εi. Now

suppose we also assume that E[εi | Xi, Vi] = 0, which is reasonable for industry dummies

and lagged characteristics. It can then be shown that

E [Yi − β0 −Xi,1β1 −Xi,2β2 | Xi,1, Xi,2, Vi, Di = 0] = 0

and

E [Yi − β0 −Xi,1β1 − E[Xi,2 | Xi,1, Vi, Di = 0]β2 | Xi,1, Vi, Di = 1] = 0.

We can then simply impute Xi,2 using both Xi,1 and Vi. All other steps of the estimation

procedure are identical to those in Section 3.2 (that is, we do not need inverse propensity

score weighting).

4 Simulations

We now illustrate the statistical properties of our estimator and alternative approaches

in various Monte Carlo simulations. We start with a low-dimensional setting and mainly

focus on efficiency and inference. We then consider a high-dimensional setting and discuss

model selection and out-of-sample predictions.

4.1 Low-dimensional setting

We start with the model

Yi =
K∑
k=1

Xi,kβk + εi, E[εi | Xi] = 0,

where K = 5 and Xi,1 = 1. We let Xi,2, . . . , Xi,K be jointly normally distributed with means

of 0 and cov(Xi,k, Xi,j) = 0.9|k−j| and εi ∼ N(0, 1). The true values of the coefficients are

β = (1, 0.5, 1,−1, 3)′.
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As a first low dimensional example, we consider the missing patterns shown in Figure 5.

Next to the the subset of complete observations (l = 0), a subset of the data have missing

values for Xi,3 (l = 1), another subset for the Xi,3 (l = 2), and another subset for both Xi,4

and Xi,5 (l = 3).

Table 1 shows coverage rates and average lengths of 90% confidence intervals for different

percentages of complete observations. All other missing patters are equally likely. The sam-

ple size is n = 1, 000 and we ran 1, 000 Monte Carlo simulations. We report results for the

estimator that only uses the complete subset of the data, the optimal GMM estimator, the

imputation GLS estimator, the imputation OLS estimator, and the estimator that imputes

the unconditional mean. Comparing the complete case and the optimal GMM estimator,

for all coefficients the average length of the confidence intervals decreases substantially for

the optimal GMM estimator. The GLS estimator with conditional mean imputation per-

forms almost as well as the optimal GMM estimator and oftentimes considerably better

than the imputation estimator based on OLS (i.e. the unweighted estimator). In fact, the

average length of the confidence intervals of the OLS estimator can be larger than those

of the complete case estimator. While the OLS estimator uses more moment conditions, it

combines them in an inefficient way. All of these four estimators are valid and therefore

have coverage probabilities close to 90%. When the fraction of complete observations is low,

Figure 5: Missing Pattern

This figure shows the missing patterns. l = 0 denotes the complete case, that is, the fraction of that data for which all covariates

(and the outcome) are observed. In addition, some parts of the data have missing values for the third covariate (Xi,3), another

part of the data for the fifth covariate (Xi,3) and another part of the data for the fourth and the fifth covariate (Xi,4, Xi,5).

Xi,5

Xi,4

Xi,3

Xi,2

Xi,1

Complete
Case
(l = 0)

l = 1 l = 2 l = 3
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Table 1: Simulation - Coverage and Length of Confidence Intervals for Varying Missing
Percentage

This table shows the coverage probabilities of 90% confidence intervals and the length of the confidence intervals when 25%,

50%, and 75% of the data are missing at random.

Complete Case Optimal GMM Imputation GLS Imputation OLS Uncond. Mean
Cover Length Cover Length Cover Length Cover Length Cover Length

25% complete

β1 0.904 0.208 0.881 0.141 0.876 0.149 0.902 0.204 0.758 0.173
β2 0.892 0.475 0.872 0.366 0.881 0.397 0.894 0.536 0.000 0.316
β3 0.891 0.642 0.879 0.563 0.884 0.605 0.895 0.792 0.004 0.332
β4 0.883 0.642 0.893 0.501 0.896 0.519 0.915 0.610 0.000 0.365
β5 0.906 0.478 0.887 0.348 0.892 0.353 0.907 0.362 0.000 0.373

50% complete

β1 0.905 0.147 0.907 0.121 0.901 0.122 0.912 0.150 0.862 0.164
β2 0.895 0.337 0.893 0.293 0.891 0.297 0.903 0.369 0.001 0.311
β3 0.901 0.453 0.903 0.424 0.903 0.428 0.914 0.516 0.481 0.331
β4 0.902 0.454 0.896 0.402 0.892 0.404 0.900 0.439 0.000 0.378
β5 0.905 0.337 0.901 0.294 0.900 0.295 0.906 0.299 0.000 0.341

75% complete

β1 0.889 0.120 0.890 0.110 0.887 0.111 0.888 0.123 0.887 0.145
β2 0.889 0.275 0.893 0.258 0.890 0.259 0.910 0.290 0.062 0.294
β3 0.918 0.370 0.905 0.359 0.905 0.360 0.891 0.394 0.792 0.338
β4 0.898 0.370 0.888 0.352 0.891 0.352 0.890 0.366 0.000 0.375
β5 0.907 0.275 0.901 0.261 0.899 0.261 0.907 0.263 0.000 0.310

the relative gains from imputation are generally larger and the differences between OLS and

GLS are much more striking. The estimator based on unconditional mean imputation has

low coverage rates, which is due to the bias of the estimator (more below). Interestingly, the

confidence intervals can be much narrower than those of the optimal GMM estimator, see

for example those for β3. The reason is that the regressors appear less correlated once the

unconditional mean is imputed.6

To illustrate these points further, Figure 6 shows histograms of the estimates of β2 (Panel

(a)) and the corresponding standard errors (Panel (b)) when 50% of the sample is complete.

6This result can be seen from the following elementary consideration for estimating the covariance between
X and Y when the unconditional mean is imputed whenever yi is missing. σ̂X,Y = 1

N

∑
i

(xi − x̄)(yi − ȳ) =

1
N

[ ∑
i:Di=0

(xi − x̄)(yi − ȳ) +
∑

i:Di=1

(xi − x̄)(ȳ − ȳ)

]
< 1

Nobs

∑
i:obs

(xi − x̄)(yi − ȳ).
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Figure 6: Simulation - Histograms for Setup 3

This figure shows histograms of the repeated sample distribution for estimates of β2 (panel a) and standard errors of β̂2 (panel

b) when 50% of the observations are complete. The vertical bar indicates the correct value for the parameter, β2 = 0.5.
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The imputation GLS estimator and the optimal GMM estimator perform very similarly and

are both more efficient than the estimator based on the complete case. In addition, uncon-

ditional mean imputation results both in a biased estimates and artificially small standard

errors.

The poor coverage probability obtained from imputing unconditional means is due to the

large bias of the estimator. We show the biases, again with a different percentage of complete

observations, in Table 2. Even when 75% of the sample is complete, the bias is substantial

for the unconditional mean imputation. The biases of all other estimators are negligible. In

the table, we also report the root mean squared errors (RMSE) of the different estimators.

The optimal GMM estimator can be much more precise than the estimator based on the

complete sample. The imputation GLS estimator is almost as precise as the optimal GMM

estimator and generally much more precise than the imputation OLS estimator.

Table 3 shows results with independent regressors when the complete sample contains

Table 2: Simulation - Bias and Model Fit for a General Missing Pattern

This tables shows the bias in the estimated coefficients and the root mean-squared error when different percentages of the data

are missing.

Complete Case Optimal GMM Imputation GLS Imputation OLS Uncond. Mean
RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias

25% complete

β1 0.064 0.003 0.045 0.001 0.047 0.000 0.063 0.000 0.072 0.000
β2 0.146 0.006 0.121 -0.009 0.131 -0.003 0.170 -0.007 0.516 0.507
β3 0.195 -0.005 0.179 0.018 0.190 0.008 0.240 0.015 0.428 0.417
β4 0.201 -0.004 0.158 -0.015 0.157 -0.001 0.175 -0.002 1.355 1.350
β5 0.144 0.000 0.108 0.005 0.107 -0.003 0.106 -0.006 1.357 -1.353

50% complete

β1 0.045 0.001 0.037 0.000 0.037 0.000 0.045 0.000 0.056 0.002
β2 0.101 0.004 0.090 0.001 0.091 0.001 0.111 -0.001 0.476 0.466
β3 0.135 -0.005 0.126 -0.003 0.128 -0.003 0.150 -0.002 0.204 0.175
β4 0.137 -0.001 0.126 0.000 0.126 0.002 0.135 0.003 1.125 1.115
β5 0.102 0.001 0.090 0.001 0.091 0.000 0.090 -0.001 1.255 -1.250

75% complete

β1 0.037 0.000 0.035 0.000 0.035 0.000 0.038 0.000 0.046 0.002
β2 0.084 0.000 0.080 0.000 0.080 0.000 0.087 0.001 0.309 0.294
β3 0.110 -0.001 0.110 0.000 0.110 0.000 0.120 0.000 0.130 0.053
β4 0.115 0.000 0.111 0.001 0.111 0.001 0.114 0.001 0.717 0.701
β5 0.083 -0.001 0.081 -0.002 0.081 -0.002 0.080 -0.002 0.815 -0.806
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50% of the observations. In this case, the conditional expectations of the regressors are equal

to the unconditional ones and thus, imputing unconditional means leads to valid moment

conditions. However, the moment conditions are combined in an inefficient way because

observations with missing regressors have the same weight as complete observations. Using

the imputation GLS estimator or the optimal GMM estimator leads to a much better per-

formance. Moreover, the standard errors with unconditional mean imputation are incorrect

because they do not account for the fact that the imputed means are estimated.

One setting in which unconditional mean imputation outperforms the other methods

is when all regression coefficients in front of regressors that have missing values are equal

to 0. In this case, unconditional mean imputation leads to correct moment conditions, as

discussed in Section 3.1. Moreover, imputing the conditional or the unconditional mean

does not increase the variance of the error term and hence, no benefits from using GLS

exist. We show simulation results in Table 4 when β = (1, 0.5, 0, 0, 0)′ and the complete

sample contains 50% of the observations. In this case, imputing the unconditional means

decreases the correlation between the regressors, which reduces the variance of the estimated

coefficients and the length of the confidence intervals. Since the moment conditions are valid,

the estimator is also asymptotically unbiased. Consequently, it also has a lower mean squared

error compared the estimators that impute conditional means. Clearly, in applications we do

not know a priori if coefficients are equal to 0, that is, whether a firm characteristic is a true

return predictor and we should therefore not rely on the unconditional mean imputation to

deliver satisfactory results. As we discuss below, to determine which regressors are irrelevant,

Table 3: Simulation - Coverage and Length of Confidence Intervals with Independent Re-
gresssors

This table shows the coverage probabilities of 90% confidence intervals and the length of the confidence intervals when all

regressors are independent.

Complete Case Optimal GMM Imputation GLS Imputation OLS Uncond. Mean
Cover Length Cover Length Cover Length Cover Length Cover Length

β1 0.905 0.147 0.899 0.135 0.895 0.136 0.877 0.266 0.805 0.217
β2 0.910 0.147 0.891 0.134 0.894 0.136 0.920 0.265 0.907 0.216
β3 0.889 0.147 0.882 0.143 0.889 0.145 0.913 0.309 0.906 0.250
β4 0.897 0.147 0.902 0.135 0.902 0.136 0.905 0.220 0.910 0.197
β5 0.906 0.147 0.897 0.136 0.895 0.138 0.898 0.149 0.898 0.143
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Table 4: Simulation - Coverage and Length of Confidence Intervals when β = (1, 0.5, 0, 0, 0)′

This table shows the coverage probabilities of 90% confidence intervals and the length of the confidence intervals when all

regressors that may be missing do not affect the outcome.

Complete Case Optimal GMM Imputation GLS Imputation OLS Uncond. Mean
Cover Length Cover Length Cover Length Cover Length Cover Length

β1 0.905 0.147 0.881 0.103 0.880 0.103 0.897 0.104 0.898 0.104
β2 0.895 0.337 0.889 0.246 0.894 0.246 0.897 0.249 0.883 0.197
β3 0.901 0.453 0.902 0.366 0.904 0.366 0.914 0.370 0.888 0.210
β4 0.902 0.454 0.894 0.377 0.897 0.377 0.895 0.381 0.887 0.239
β5 0.905 0.337 0.892 0.290 0.893 0.290 0.902 0.293 0.900 0.216

we can carry out model selection to obtain a smaller model.

4.2 High-dimensional setting

We now again simulate data from the linear model

Yi =
K∑
k=1

Xi,kβk + εi, E[εi | Xi] = 0

but we use K = 40 regressors. As before, Xi,1 = 1, Xi,2, . . . , Xi,K are jointly normally

distributed with means of 0 and cov(Xi,k, Xi,j) = 0.9|k−j|, and εi ∼ N(0, 1).

We also again choose the first five elements of β to be (1, 0.5, 1,−1, 3)′ and the remaining

35 elements are all equal to 0. For the first five regressors, we use the same missing patterns

as above with L = 3. When l = 0 or l = 3, all other regressors are observed as well. When

l = 1, Xi,36, Xi,37, . . . , Xi,40 are not observed and when l = 2, Xi,6 and Xi,7 are not observed.

The probability that an observation is missing now varies withXi,2, which is always observed.

In particular, observations with high values of Xi,2 are more likely to be complete.

We now consider four different estimators, namely the estimator that only uses the com-

plete subset, the imputation GLS estimator, the imputation OLS estimator, and the esti-

mator that imputes the unconditional mean. For all estimators, we estimate the parameters

β1, β2, . . . , β40 using the adaptive LASSO method and choose the penalty parameter based

on the BIC following Freyberger et al. (2020). We use the same LASSO procedure for the

imputation step. All estimators are easy to implement using standard software.
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Figure 7: Model Selection - Sparse Model

This figure shows the model selection results for the sparse example (Section 4). The darker the color, the more frequent a

particular model estimates a non-zero βk. In the true model, the first five betas are non-zeros (above the red line), whereas the

rest is equal to zero.
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Figure 7 illustrates the frequency with which the different methods select regressors. The

darker the color, the more frequent a particular model estimates a non-zero βk. In the true

model, the first five betas are non-zeros (above the red line), whereas the remaining ones

are equal to zero. The complete case estimator and both conditional mean imputation es-

timators select the variables with nonzero coefficients with high probability and typically

set coefficients of irrelevant predictors to 0. Unconditional mean imputation tends to set

the estimated value of β4 to 0 and instead frequently includes three of the irrelevant regres-

sors. The mean squared prediction errors (MSPEs) of the four methods are 1.0187, 1.0105,

1.0141, and 1.7059, respectively, showing the imputation GLS estimator performs best and

unconditional mean imputation performs worst.

The previous case was sparse, in the sense that only 5 coefficients were not equal to 0.

We now assume that βk = 0.8k, but leave all other features of the data generating process

unchanged. The selection results are illustrated in Figure 8. For the complete case estimator
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Figure 8: Model Selection - Dense Model

This figure shows the model selection results for the non-sparse example (Section 4). The darker the color, the more frequent a

particular model estimates a non-zero βk. The true model is dense with βk decreasing in the index k, specifically βk = 0.8k.
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and both conditional mean imputation estimators, the larger a coefficient, the more likely

it is not set to 0. This monotonicity does not hold for unconditional mean imputation.

Here, the estimated value of β5 is often set to 0, but regressors with smaller coefficients are

included much more frequently. The MSPEs of the four methods are 1.0552, 1.0345, 1.0343,

and 1.0887, respectively.

Another case in which imputation works particularly well is when regressors with missing

values to do not have an impact on the outcome. To illustrate this case, again consider the

sparse setting, but let β1 = 1, β2 = β3 = · · · = β21 = 0, (β22, . . . , β25) = (0.5, 1,−1, 3), and

set the remaining 15 elements all to 0. The results are reported in Figure 9. In this case,

the imputation methods mostly ignore regressors with missing values, but can make use of

the full data set. The MSPEs of the four methods are 1.0206, 1.0076, 1.0075, and 1.0072

respectively. Therefore, all imputation methods perform similarly well and outperform the

complete case.
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Figure 9: Model Selection - Missing Regressor Irrelevant

This figure shows the model selection results for a sparse example (Section 4) when none of the potentially missing regressors

affect the outcome. The darker the color, the more frequent a particular model estimates a non-zero βk. The non-zero coefficients

of the true model are separated with red lines.
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One advantage of imputations is that the whole sample can be used for predictions. The

MSPE for the subset of non-complete observations is typically higher than for the complete

observations, but the complete case might miss particularly interesting parts of the condi-

tional distribution of outcomes, in our case returns. To illustrate this point, Figure 10 plots

the out-of-sample realized returns against the predicted returns obtained with the different

methods.7 Recall the probability that an observation is completely observed depends on

Xi,2. When using imputations, we make predictions for all outcomes, even when some re-

gressors are missing. Comparing panels (a) and (b) we can see the observations with missing

regressors tend to have lower returns.

Two important implications for out-of-sample portfolio sorts arise that we will discuss in

more detail in our application. First, when using imputations, we have a larger number of

7For the out-of-sample predictions, we generate a new sample of complete observations with a sample size
of 5, 000.
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Figure 10: Outcomes versus predictions

This figure shows out-of-sample outcomes against the predictions when the probability of an observation being complete depends

on the regressors.
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observations to form portfolios. Therefore, the number of observations corresponding to the

10% highest and lowest predictions is much higher when using imputations, and portfolio

variances will be lower. When we instead fix the number of observations in each portfolio

(instead of the %), we will observe a large difference in portfolio returns. Second, when the

probability that an observation is missing depends on the observed covariates, the complete

case misses a systematically different part of the distribution of returns and not just a random

sample. In this case, differences in portfolio returns will be even more pronounced. Finally,

panel (d) shows that imputing unconditional means yields biased predictions. However,

since predictions and outcomes are still positively related, portfolio formed based on these

predictions will be very similar to those obtained with conditional mean imputation.

5 Empirical Application

In this section we illustrate the empirical relevance of different choices for treating missing

data in several applications: out of sample return prediction and determining which charac-

teristics provide incremental information. We begin by comparing the different imputation

methods with respect to their imputation accuracy in a “masking” exercise.

5.1 Masking the complete case

In general, we can never know how accurate any imputation method is because it requires

knowledge of the missing data. We can however aim to get an estimate of the accuracy by

assuming that some characteristics that actually were observed are not, that is, we mask

them randomly and then compare the imputed value to the actually observed ones. This

exercise allows us to compare the quality of the imputations generated by different imputation

methods. Note high imputation accuracy will not necessarily lead to better predictions as

the imputations could be particularly accurate for irrelevant characteristics.

To be more precise, we focus on the 238,198 complete firm month observations in the

data set and randomly delete 1% of the entries in the data matrix of these complete case

observations. Having introduced the missing values, we delete all firm month observations

for which we do not observe the characteristics that we also require to be observed in the
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entire data set. These characteristics are AssetGrowth, Beta, BMdec, BookLeverage, ChInv,

Coskewness, DelCOA, DelLTI, High52, IdioRisk, MaxRet, Size and STreversal. We arrive

at a data set of 209,006 observations of which 104,475 observations are complete. In a next

step, we impute the now missing characteristic values in this data set using unconditional

mean imputation and conditional mean imputation with and without lags, both using a

linear model and an additive nonlinear model. To estimate the nonlinear model, we use

orthonormal Legendre polynomials up to degree 3. To prevent the number of missing patterns

from exploding, the imputation model with lags only includes the lagged value of the missing

characteristic we aim to impute if this lagged value is observed. In each period, we estimate

the conditional mean imputation models on the complete case of the current and the 59

previous periods. The first 60 periods are jointly imputed. In a final step, we compare the

imputed values to the originally observed values that we deleted in the first step. For the

nonlinear model, we only consider the RMSPE of the first-degree polynomial values.

Table 5 presents the RMSPE for all characteristics with missing values the masked data

set and the average RMSPE across all characteristics. First, independent from the condi-

tional mean imputation scheme, the RMSPE error is smaller for conditional mean imputation

compared to unconditional mean imputation for almost all characteristics.8 Hence, if uncon-

ditional mean imputation yields consistent estimators in a setup that uses this data set, it

is most likely because the coefficients of the missing characteristics are zero.

Second, including lagged values in the imputation scheme improves the quality of the

imputations more than using a nonlinear imputation model, which is why our discussion

below focuses primarily on the linear model with and without lags. Especially for character-

istics that are correlated over time using lagged values can improve imputations drastically.

For instance, for MeanRankRevGrowth going from a linear conditional imputation model to

a linear conditional mean imputation model with lags reduces the RMSPE from 0.2213 to

0.11908, similar improvements are achieved for VolumeTrend and CompEquIss. For other

characteristics, e.g. OperProf or TotalAccruals little improvement occurs from using the

time series information relative to the purely cross-sectional model.

8The RMSPE for unconditional mean imputation is around 1/
√
12 for each characteristic, which is ex-

pected since we rank transform the characteristics to be uniform on [0, 1]. The standard deviation of a
random variable X ∼ Unif[0, 1] is 1/

√
12.
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Table 5: Masking the complete case: Out-of-sample prediction error (RMSPE)

This table shows the RMSPE for different imputation methods in the masking exercise across all characteristics. We do
not include the characteristics that we require to be always observed. The final row contains the root of the weighted
average MSPE across all characteristics, where the weight for a characteristic equals the number of missing values for this
characteristic divided by the number of all missing characteristic values. For simplicity we denote the row with “Average
RMSPE”. We first randomly delete 1% of the entries in the data set of the complete case. Then, we impute the missing
characteristic values using unconditional mean imputation and conditional mean imputation with and without lags. In
the conditional mean imputation setup we consider a linear and an additive nonlinear model, where we use orthonormal
Legendre polynomials of up to degree 3 when estimating the model. In a final step, we calculate the RMSPE by comparing
the imputed characteristic values with the initially deleted values.

Uncond. Mean Cond. Mean
Cond. Mean

(w.lags)
Cond. Mean
(nonlinear)

Cond. Mean
(nonlinear / w.lags)

Accruals 0.28803 0.16130 0.15335 0.15447 0.14596
BetaFP 0.29233 0.19930 0.12656 0.19302 0.12660
BetaTailRisk 0.28832 0.22725 0.12012 0.22133 0.11998
BidAskSpread 0.29054 0.22923 0.21562 0.22436 0.21391
Cash 0.29499 0.23189 0.17492 0.20917 0.17200

CashProd 0.29004 0.16806 0.13283 0.15945 0.13197
CBOperProf 0.28711 0.16921 0.15899 0.16458 0.15455
CF 0.28776 0.14105 0.12489 0.13806 0.12323
cfp 0.29212 0.18823 0.13639 0.18338 0.13573
ChEQ 0.28591 0.17598 0.16921 0.16770 0.16151

ChInvIA 0.28433 0.22813 0.15243 0.22461 0.15153
CompEquIss 0.28513 0.21346 0.14777 0.20599 0.14720
CompositeDebtIssuance 0.28400 0.23291 0.21544 0.22640 0.21185
DelCOL 0.28301 0.18202 0.17691 0.17306 0.16913
DelFINL 0.29226 0.15227 0.15085 0.15034 0.14888

DelNetFin 0.29453 0.16472 0.15960 0.15899 0.15416
EarningsSurprise 0.28514 0.24758 0.20321 0.24218 0.20231
EBM 0.29058 0.20264 0.15735 0.20295 0.15737
EntMult 0.28848 0.15405 0.13559 0.14813 0.13410
EP 0.28528 0.16161 0.13388 0.15560 0.13193

EquityDuration 0.28425 0.16650 0.16549 0.16282 0.16230
GP 0.28540 0.20899 0.14791 0.20031 0.14444
grcapx 0.28822 0.17389 0.17065 0.17265 0.16978
GrLTNOA 0.29293 0.20990 0.20675 0.19784 0.19466
GrSaleToGrInv 0.28237 0.20898 0.20462 0.20304 0.19873

Herf 0.29012 0.27299 0.11431 0.26945 0.11521
hire 0.29036 0.22333 0.22089 0.22220 0.21975
Illiquidity 0.28407 0.11318 0.11068 0.10962 0.11046
IndMom 0.28709 0.27511 0.21835 0.27509 0.21940
IntMom 0.28780 0.21050 0.18632 0.20704 0.18434

Investment 0.29057 0.18117 0.14507 0.17624 0.14352
InvestPPEInv 0.29180 0.18157 0.17369 0.17706 0.16901
InvGrowth 0.28632 0.15011 0.12675 0.14664 0.12467
Leverage 0.29126 0.12722 0.11577 0.12499 0.11483
LRreversal 0.29098 0.20900 0.15263 0.20845 0.15382

MeanRankRevGrowth 0.28559 0.22130 0.11908 0.21632 0.11953
Mom12m 0.29444 0.14598 0.13707 0.14549 0.13616
Mom12mOffSeason 0.28892 0.16075 0.15537 0.16023 0.15551
Mom6m 0.28711 0.18147 0.17921 0.17715 0.17502
MomOffSeason 0.28607 0.18924 0.14549 0.18375 0.14531

MomOffSeason06YrPlus 0.28912 0.25723 0.16048 0.25334 0.15938
MomSeason 0.28727 0.26858 0.26705 0.26482 0.26280
MomSeason06YrPlus 0.28898 0.28893 0.28866 0.29002 0.29024
MomSeasonShort 0.28705 0.23879 0.23982 0.23941 0.24059
MRreversal 0.28912 0.26095 0.21018 0.26019 0.21123

NetDebtFinance 0.28281 0.18372 0.18295 0.17782 0.17784
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Table 5: Masking the complete case: Out-of-sample prediction error (RMSPE) (continued)

NetEquityFinance 0.28759 0.19888 0.19186 0.19685 0.18893
NOA 0.28768 0.20516 0.18016 0.19255 0.17255
OperProf 0.28955 0.14945 0.14168 0.14149 0.13558
OPLeverage 0.29031 0.15045 0.13106 0.13776 0.12532

PriceDelayRsq 0.29042 0.24420 0.24107 0.21820 0.21549
PriceDelaySlope 0.29261 0.27055 0.27074 0.25555 0.25670
PriceDelayTstat 0.29069 0.28035 0.27744 0.23355 0.23227
RDS 0.29069 0.25025 0.24998 0.24651 0.24749
ResidualMomentum 0.28768 0.19404 0.15714 0.19353 0.15681

ReturnSkew 0.28496 0.21956 0.21812 0.21425 0.21352
roaq 0.28705 0.19720 0.19202 0.19354 0.18946
RoE 0.28562 0.15294 0.14837 0.14815 0.14146
ShareIss1Y 0.28509 0.21810 0.15263 0.21701 0.15338
SP 0.28578 0.12624 0.10651 0.12300 0.10568

Tax 0.28728 0.26373 0.25074 0.25757 0.24573
TotalAccruals 0.29088 0.18600 0.18123 0.18040 0.17394
TrendFactor 0.28447 0.27591 0.26268 0.27831 0.26545
VarCF 0.28942 0.19981 0.12161 0.19454 0.12135
VolMkt 0.28908 0.13890 0.11819 0.13536 0.11719

VolSD 0.28925 0.16072 0.10884 0.15482 0.10859
VolumeTrend 0.28863 0.24126 0.12852 0.23579 0.12837
XFIN 0.29061 0.16954 0.16631 0.16314 0.15916
zerotrade 0.28564 0.14008 0.11625 0.13777 0.11593

Average RMSPE 0.28828 0.20415 0.17708 0.19838 0.17315

5.2 Out-of sample predictions

We first illustrate the different ways of treating missing regressors in a classic empirical

asset pricing application - cross-sectional out-of-sample return predictions. We report results

for four different methods, namely (1) estimate the prediction model only on the completely

observed data, (2) estimate the model with OLS on the data for which we imputed the

unconditional mean, (3) estimate the model with the GLS weighting scheme on the data

for which we imputed the conditional mean using cross-sectional characteristics, and (4)

estimate the model with the GLS weighting scheme on the data for which we imputed

the conditional mean using cross-sectional and lagged characteristics, where the imputation

model only includes the lagged value of the missing characteristic we aim to impute if this

lagged value is observed. We consider both linear models and nonlinear models, as presented

in Section 3.3.1, using orthonormal Legendre polynomials up to degree 3. In addition, we

estimate regularized models based on the adaptive LASSO for the linear models and the

adaptive group LASSO, similar to Huang et al. (2010) and Freyberger et al. (2020), for the

nonlinear models. In each period the conditional mean imputation models are estimated on
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the complete case of the current and the 59 previous periods. The first 60 periods are jointly

imputed.

Throughout, we make rolling out-of-sample predictions for the next month using an

estimation window of 60 months. We then sort stocks into portfolios based on the predicted

return. We consider two portfolio implementations. Our first approach follows the standard

“10-1” portfolio, in which we go long the stocks with highest 10% predicted returns and

short the stocks with the 10% lowest predicted returns. While this portfolio construction is

standard in the literature, we need to be careful in our context as the total number of stocks

differs in the complete case vs. the cases in which we impute data. To address this concern,

we also form a long-short portfolio with a fixed number of stocks, that is, we buy (sell)

the 100 stocks with highest (lowest) predicted returns. We record the return for the out-

of-sample month, move forward the estimation window and repeat the portfolio formation

exercise until the end of the sample period. Our out-of-sample period is 1990 through 2021.

We summarize the results in Table 6. In the linear setups, both the imputation model and

the main model are linear, while in the nonlinear setup both models are additive nonlinear.

In Appendix A.2.1, we include a third portfolio implementation going long the stocks with

highest 50% predicted returns and shorting the stocks with lowest 50% predicted return.
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Table 6: Performance Statistics For Out-of-Sample Predictions

This table shows annualized average returns, standard deviations, Sharpe ratios for portfolios sorted on the out-of-sample

return prediction. We differentiate between the complete case method, unconditional mean imputation, and conditional mean

imputation with GLS weighting without and with lags. To prevent the number of missing patterns to explode, the imputation

model with lags only includes the lagged value of the missing characteristic we aim to impute if the lagged value is observed.

Long Pf. and Short Pf. denote the annualized average return of the long and short leg respectively. Skewness and kurtosis are

the sample statistics of the monthly returns. The implementation of the linear and polynomial model is detailed in Section 5.2.

The sample period is 1990-2021.

Mean (%)
Standard

Deviation (%)
Sharpe
Ratio

Long
Pf. (%)

Short
Pf. (%)

Skewness Kurtosis

Panel A: Linear Model

Long (short) 100 highest (lowest) predicted returns
Complete Case 11.37 9.57 1.19 19.12 7.75 0.22 3.39
Uncond. Mean 48.91 29.46 1.66 39.87 -9.05 -0.12 10.38
Cond. Mean (GLS) 52.07 29.15 1.79 41.14 -10.93 -0.41 5.04
Cond. Mean (GLS / w.lags) 51.89 28.92 1.79 40.67 -11.22 -0.46 5.36

Long (short) 10% highest (lowest) predicted returns
Complete Case 15.74 13.12 1.20 20.70 4.96 0.35 6.07
Uncond. Mean 32.11 19.44 1.65 30.94 -1.17 0.54 11.63
Cond. Mean (GLS) 33.13 19.77 1.68 31.20 -1.93 -0.13 6.04
Cond. Mean (GLS / w.lags) 33.55 19.71 1.70 31.31 -2.24 -0.19 6.16

Panel B: Regularized Linear Model

Long (short) 100 highest (lowest) predicted returns
Complete Case (LASSO) 12.47 10.63 1.17 18.96 6.49 -0.45 3.96
Uncond. Mean (LASSO) 47.49 28.22 1.68 39.29 -8.20 -0.01 7.04
Cond. Mean (GLS / LASSO) 54.30 28.33 1.92 41.18 -13.12 -0.73 6.47
Cond. Mean (GLS / LASSO / w.lags) 55.62 28.15 1.98 41.67 -13.95 -0.44 5.00

Long (short) 10% highest (lowest) predicted returns
Complete Case (LASSO) 17.21 14.74 1.17 21.39 4.18 0.32 4.99
Uncond. Mean (LASSO) 31.12 20.25 1.54 30.47 -0.66 0.24 11.33
Cond. Mean (GLS / LASSO) 32.20 20.25 1.59 30.61 -1.59 -0.61 6.27
Cond. Mean (GLS / LASSO / w.lags) 32.85 20.05 1.64 30.78 -2.07 -0.47 5.68

Panel C: Nonlinear Model

Long (short) 100 highest (lowest) predicted returns
Complete Case 11.06 8.57 1.29 18.45 7.39 0.10 1.71
Uncond. Mean 85.53 35.05 2.44 65.46 -20.07 1.14 9.07
Cond. Mean (GLS) 92.35 32.71 2.82 67.30 -25.05 0.23 1.91
Cond. Mean (GLS / w.lags) 92.20 32.33 2.85 66.90 -25.31 0.22 1.68

Long (short) 10% highest (lowest) predicted returns
Complete Case 17.47 13.15 1.33 22.41 4.94 0.94 6.19
Uncond. Mean 42.44 18.73 2.27 37.67 -4.77 0.60 7.86
Cond. Mean (GLS) 46.17 19.94 2.32 39.84 -6.34 -0.01 5.02
Cond. Mean (GLS / w.lags) 46.22 19.93 2.32 39.72 -6.50 0.20 5.48

Panel D: Regularized Nonlinear Model

Long (short) 100 highest (lowest) predicted returns
Complete Case (LASSO) 9.31 10.86 0.86 17.50 8.19 0.19 3.51
Uncond. Mean (LASSO) 74.29 34.27 2.17 61.97 -12.32 0.99 7.43
Cond. Mean (GLS / LASSO) 84.48 36.55 2.31 63.82 -20.66 -0.38 3.38
Cond. Mean (GLS / LASSO / w.lags) 84.28 38.15 2.21 64.92 -19.36 0.09 5.85

Long (short) 10% highest (lowest) predicted returns
Complete Case (LASSO) 14.16 16.14 0.88 19.33 5.18 0.25 4.63
Uncond. Mean (LASSO) 38.98 19.29 2.02 36.12 -2.86 0.46 6.65
Cond. Mean (GLS / LASSO) 41.34 21.35 1.94 36.98 -4.36 -0.64 4.70
Cond. Mean (GLS / LASSO / w.lags) 41.42 21.83 1.90 37.74 -3.69 -0.41 5.44
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Panel A of Table 6 shows the results for the linear model using all characteristics. Each

month, we estimate a linear model over 60 months and then make one month ahead predic-

tions and sort portfolio on the predicted returns. For the portfolio with 100 stocks on the

long and short side, the complete case results in much lower average returns than either of

the imputation methods. However, the complete case portfolio also has much lower standard

deviation (9.57% annualized vs. approximately 29% for the other methods). Both findings

are consistent with the intuition that we presented in Figure 4 in Section 2.1. However, when

we look at the Sharpe ratios, we can see that the additional risk is more than compensated by

the higher average returns. All the imputation portfolios have higher Sharpe ratios than the

complete case portfolio. When we compare the risk-return properties among the portfolios

with imputations, the conditional mean method leads to slightly higher returns at about the

same level of risk relative to the unconditional mean imputation. Note also that at least for

the purpose of making out-of-sample predictions, adding lags in the imputation step does

not seem to make a material difference.

In the case of the classic “10-1” portfolio, we also find that the complete case method

produces portfolios with lower average returns and lower standard deviations, but again the

Sharpe ratios for the portfolios with imputation are higher. The returns are highest for the

conditional mean GLS methods, but the difference relative to the unconditional mean is

relatively low. Note that for the portfolio formation, the ranking of the predicted returns is

all that matters not the actually predicted value. Therefore, even if the unconditional mean

might lead to biased estimates, we might still get rather similar portfolios as long as the two

methods produce a similar ranking of their predicted values.

In Panel B, we conduct the analogous exercise, but instead of using all characteristics,

we use a regularized linear model, that is, we first carry out a model selection step over the

period from 1978 through 1989. We apply a (weighted version of) the adaptive LASSO to

select the most important characteristics over the first part of the sample. Specifically, for

conditional mean imputation with and without lags, we weight each observation with the

square root of the estimated error variance σ̂2
it presented in Section 3.2 to then perform an

adaptive LASSO procedure. For the other methods, we directly use the standard adaptive

LASSO procedure. In all setups, the initial estimator for βt is the complete case estimator
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and the model is selected using the BIC. After model selection, we proceed exactly as in

the linear model presented in Panel A and make rolling one-month predictions using an

estimation window of 60 months. Figure 11 shows the selected characteristics for each case.

Similar to the standard linear model in Panel A, we find in Panel B of Table 6 the complete

case method leads to the lowest average returns compared to all imputation methods. The

conditional mean imputation again leads to slightly better predictions than the unconditional

mean, with a larger difference for the “100 long / 100 short” portfolio. The average returns

of the regularized linear model are relatively similar to results in Panel A. This finding is

not too surprising, because all the predictors we consider were successful return predictors

during at least parts of our sample period.

The Panel C and Panel D illustrate the results for a nonlinear model, that is, an additive

model as outlined in Section 3.3.1. Specifically, we use orthonormal Legendre polynomials up

to degree 3. In Panel C we present results for the additive model using all 82 characteristics.

As in the case of the linear model, using only the complete cases results in very low returns

relative to the conditional and unconditional mean imputation. Both Panel C and Panel

D show that modeling returns as a nonlinear function of characteristics yields much higher

out-of-sample returns compared to the linear models. Notably, the difference between the

linear model and nonlinear models is more pronounced for the portfolio that is long (short) in

100 stocks as most of the nonlinearities in the predictive relationship occurs in the extremes

of the characteristic distributions. Interestingly, the difference in average returns between

the portfolios formed using the conditional mean vs. the unconditional mean widens in the

case of the nonlinear model.

For the results in Panel D, we first carry out a model selection step over the period from

1978 through 1989. We apply a weighted version of the adaptive group LASSO discussed

in Freyberger et al. (2020) to select the most important characteristics over the first part of

the sample and then, exactly as for the other methods, make rolling one-month predictions

using an estimation window of 60 months. Overall, the results are very similar to those in

Panel C. Again note that the characteristics we use are known return predictors and it is

therefore not surprising that including all of them in the model may yield favorable results.

Model selection will play a more important role in other data sets with a large number of
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characteristics, in which some are irrelevant or have only very small predictive power for

returns. While the imputation methods perform similarly with and without regularization,

Figure 11: Selected Characteristics with the adaptive LASSO Procedure (linear model).

This figure shows the selected characteristics using an adaptive LASSO procedure. We perform model selection on the first part

of the sample from 1978 to 1989. For unconditional mean imputation with and without lags we first weight the observations

using the estimated standard deviation of the error terms σ̂it as presented in section 3.2. In a next step, we use an adaptive

LASSO procedure where the model is selected using the BIC. The initial estimator for βt we use is the complete case estimator.

For the complete case analysis and unconditional mean imputation, we skip the weighting step and directly perform model

selection via the same adaptive LASSO procedure.
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in the complete case, the regularized model leads to considerably worse performance. The

reason is that the complete case contains much fewer observations and hence, is less likely

to detect significant return predictors.

5.3 Incremental Information

We now re-visit the the classic question if a characteristic contains incremental informa-

tion relative to previously discovered characteristics. Cochrane (2011) raises this question

in his presidential address. The prior literature mostly proceeded in a “univariate fashion”,

that is, by analyzing one characteristic at a time. However, recent papers such as Green

et al. (2017), Freyberger et al. (2020), Kozak et al. (2020) and Gu et al. (2020) make it clear

that we need to consider characteristics jointly and to determine if a characteristics provides

incremental information, we need to condition on previously-discovered characteristics.

The more characteristics we want to consider within the same model, the more our

choices about missing data may affect the results. We illustrate this issue by studying

the characteristics listed in Table A.1 in the Online Appendix. For each characteristic, we

consider if it should have been recognized as containing incremental information at the time of

discovery (based on the publication dates in Table A.1) when we take previous characteristics

into account. Throughout, we compare the following three approaches of treating missing

data: the complete case approach, the conditional mean imputation with GLS weighting,

and the unconditional mean imputation. We then estimate the following linear model

Yit = β0 + β1Xit,1 + β2Xit,2 + . . .+ βk−1Xit,k−1︸ ︷︷ ︸
previously published characteristics

+ βkXit,k︸ ︷︷ ︸
new candidate

+εit. (4)

The regression in (4) is not how the literature has progressed, which instead imposed

a lower bar by either using no controls or just computing alphas relative to the CAPM or

possibly later the Fama and French (1993) three-factor model.
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Table 7: Incremental Information in Newly Discovered Characteristics

This table shows the estimates, p-values and adjusted p-values for each new characteristic. The estimation model is the
regression model in equation (4). We test whether a newly discovered characteristic has a significant non-zero effect on
returns given all previously discovered characteristics. Estimates are reported in ×100 %. p-values smaller than 5% are
printed in bold. The final two rows of the table display the number of characteristics that are significant at a 5%, 1%
significance level respectively. The characteristics are ordered according to their year of discovery.

Complete Case Cond. Mean (GLS) Uncond. Mean

Characteristic Est. p-val Adj. p-val Est. p-val Adj. p-val Est. p-val Adj. p-val

beta -0.5409 0.5006 0.7509 -0.5409 0.5006 0.7509 -0.5409 0.5006 0.7509
ep 0.8178 0.0089 0.0492 0.8178 0.0089 0.0492 0.8166 0.0091 0.0503
size -1.4669 0.0009 0.0036 -1.4008 0.0024 0.0098 -1.4057 0.0023 0.0098
earningssurprise 1.5031 0.0000 0.0000 1.3100 0.0000 0.0000 1.3344 0.0000 0.0000
lrreversal -0.1417 0.6547 1 0.1706 0.5484 1 0.1197 0.6709 1

mrreversal -0.2512 0.2785 1 -0.3190 0.2157 0.6664 -0.3343 0.2018 0.7325
bidaskspread -0.0024 0.9929 1 -0.3698 0.2209 0.6862 -0.5272 0.0377 0.1639
leverage 0.3287 0.0749 0.6353 0.4485 0.0162 0.0823 0.5716 0.0017 0.0087
streversal -2.2822 0.0000 0.0000 -2.4956 0.0000 0.0000 -2.4484 0.0000 0.0000
bmdec 1.0577 0.0000 0.0002 0.7079 0.0034 0.0223 0.8630 0.0003 0.0022

bookleverage 0.0055 0.9863 1 -1.0086 0.0004 0.0032 -1.0810 0.0000 0.0000
mom12m 1.7553 0.0000 0.0000 1.7208 0.0000 0.0000 1.7452 0.0000 0.0000
mom6m -0.6392 0.0077 0.0504 -1.1884 0.0000 0.0000 -1.0632 0.0000 0.0001
cf 1.2370 0.1102 0.6855 0.5691 0.0658 0.3274 0.8669 0.0001 0.0010
meanrankrevgrowth 0.1385 0.3351 1 0.1855 0.1679 0.8255 -0.0303 0.8062 1

accruals -0.5112 0.0077 0.1126 -0.4800 0.0000 0.0000 -0.3949 0.0000 0.0000
roe 0.2555 0.5615 1 0.4645 0.1262 0.7219 0.6325 0.0000 0.0001
sp 0.4635 0.0395 0.3804 0.6160 0.0035 0.0234 0.6183 0.0033 0.0186
varcf -0.0656 0.858 1 0.0550 0.7961 1 0.0228 0.9047 1
volmkt -0.1371 0.498 1 -0.4880 0.0315 0.2009 -0.3346 0.1256 0.6411

volumetrend -0.3953 0.0114 0.1847 -0.3133 0.0268 0.1813 -0.2793 0.0354 0.2053
chinvia -0.3913 0.0001 0.0014 -0.4132 0.0000 0.0000 -0.4115 0.0000 0.0000
grsaletogrinv 0.4093 0.0000 0.0001 0.5180 0.0000 0.0000 0.5116 0.0000 0.0000
indmom 0.2513 0.1738 1 0.9742 0.0000 0.0000 0.9582 0.0000 0.0000
coskewness -0.3456 0.1322 1 -0.2424 0.1401 1 -0.2403 0.142 0.8372

volsd -0.7776 0.1371 1 -0.6515 0.2345 1 0.1971 0.4525 1
chinv -0.0323 0.8515 1 -0.1918 0.0988 0.7239 -0.3279 0.0019 0.0186
illiquidity 3.3185 0.0412 0.4735 2.4264 0.0265 0.2346 -0.0736 0.8915 1
grltnoa 0.0256 0.8475 1 0.0450 0.6164 1 0.0220 0.8004 1
equityduration -0.7767 0.1492 1 -0.3981 0.0976 0.8121 -0.2999 0.0291 0.1915

high52 1.1194 0.0008 0.0170 2.0976 0.0000 0.0009 2.0124 0.0000 0.0003
investment -0.0117 0.9433 1 0.0821 0.5727 1 -0.0038 0.9706 1
noa -0.3652 0.0223 0.2952 -0.9717 0.0000 0.0000 -1.0206 0.0000 0.0000
tax 0.2128 0.0784 0.7583 0.0622 0.5662 1 0.0959 0.3705 1
cfp 0.1788 0.5833 1 0.2275 0.2851 1 0.2631 0.2012 1

delcoa -0.0287 0.8923 1 -0.0327 0.823 1 -0.0336 0.8246 1
delcol 0.1078 0.4731 1 0.0829 0.5294 1 0.0768 0.4956 1
delfinl -0.2278 0.0342 0.4363 -0.3815 0.0000 0.0003 -0.3830 0.0000 0.0000
dellti -0.1617 0.0772 0.8803 -0.1338 0.0300 0.321 -0.1451 0.0207 0.1688
delnetfin -0.2082 0.2387 1 -0.2773 0.0714 0.6912 -0.2764 0.0605 0.5085

pricedelayrsq -0.2775 0.1388 1 -0.1770 0.3257 1 0.1337 0.3705 1
pricedelayslope -0.0668 0.5609 1 -0.0398 0.6125 1 -0.0954 0.2263 1
pricedelaytstat -0.0398 0.6163 1 -0.0087 0.9239 1 -0.0611 0.462 1
totalaccruals -0.2365 0.2183 1 -0.0192 0.8425 1 -0.0590 0.5201 1
compequiss -0.3944 0.0676 0.9811 -0.8547 0.0000 0.0004 -0.7833 0.0000 0.0007

grcapx -0.3199 0.1783 1 -0.2343 0.1823 1 -0.0483 0.687 1
herf -0.1525 0.2572 1 -0.5115 0.0000 0.0004 -0.5103 0.0000 0.0003
idiorisk -0.1309 0.5963 1 -0.1260 0.5727 1 0.1845 0.359 1
netdebtfinance -0.0753 0.5007 1 -0.2036 0.0076 0.1071 -0.1758 0.0163 0.167
operprof 0.4086 0.3288 1 0.3386 0.2162 1 1.0198 0.0000 0.0000
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Table 7: Incremental Information in Newly Discovered Characteristics (continued)

netequityfinance -0.1300 0.3034 1 -0.1192 0.368 1 -0.1033 0.4239 1
xfin 0.0078 0.9719 1 -0.0609 0.6449 1 -0.0581 0.6241 1
zerotrade -0.5976 0.12 1 0.2139 0.489 1 0.5222 0.0765 0.8222
ebm 0.1187 0.4793 1 0.1720 0.1345 1 0.2323 0.0326 0.3746
assetgrowth -0.1697 0.7005 1 -0.6540 0.0002 0.0064 -0.6237 0.0002 0.0042

compositedebtissuance 0.1441 0.2167 1 -0.1625 0.0716 0.8214 -0.0389 0.6016 1
investppeinv -0.0924 0.6894 1 0.0868 0.5774 1 -0.0961 0.4596 1
mom12moffseason -0.0938 0.8435 1 -0.9911 0.0166 0.2172 -0.9027 0.0268 0.3491
momoffseason -0.6142 0.2068 1 -1.0601 0.0000 0.0001 -0.8506 0.0000 0.0001
momoffseason06yrplus -0.5856 0.0099 0.6449 -0.8756 0.0000 0.0000 -0.7982 0.0000 0.0000

momseason 0.6720 0.0123 0.7205 0.8469 0.0000 0.0000 0.9538 0.0000 0.0000
momseason06yrplus 0.8888 0.0000 0.0002 0.6639 0.0000 0.0000 0.6662 0.0000 0.0000
momseasonshort 0.0311 0.8942 1 0.6371 0.0015 0.0298 0.6154 0.0022 0.0345
shareiss1y 0.1736 0.2221 1 0.0220 0.8407 1 -0.0777 0.4831 1
cashprod -0.1062 0.6973 1 0.5978 0.0002 0.0057 0.5671 0.0004 0.0076

cheq -0.4673 0.0847 1 0.0389 0.7818 1 -0.0717 0.5468 1
maxret 0.0507 0.8945 1 0.4454 0.1541 1 0.4258 0.1682 1
opleverage -0.2063 0.7517 1 -0.4462 0.1145 1 -0.2699 0.2352 1
roaq 1.1175 0.0000 0.0065 1.6705 0.0000 0.0000 1.3882 0.0000 0.0000
entmult -0.2862 0.5951 1 -0.5653 0.0176 0.2169 -0.5635 0.0000 0.0006

rds -0.2272 0.0433 1 0.0582 0.4903 1 0.0882 0.3542 1
residualmomentum 0.1587 0.6766 1 0.2274 0.4927 1 -0.0297 0.9116 1
cash 0.8235 0.0000 0.0015 1.2623 0.0000 0.0000 1.1832 0.0000 0.0000
invgrowth 1.0660 0.1303 1 0.4342 0.2895 1 0.2339 0.1189 1
intmom 0.3672 0.3145 1 -0.1285 0.5913 1 -0.0946 0.6968 1

gp 0.3529 0.3405 1 0.4540 0.0037 0.0615 0.3423 0.0086 0.1311
betafp -0.3429 0.3316 1 0.0892 0.7209 1 0.3175 0.1561 1
betatailrisk 0.3229 0.3404 1 0.3692 0.1228 1 0.3505 0.1225 1
hire 0.0629 0.7172 1 0.0642 0.4316 1 0.0652 0.3689 1
cboperprof 0.2999 0.4162 1 0.8783 0.0000 0.0004 0.4308 0.0027 0.0452

returnskew 0.0628 0.8133 1 0.1748 0.1835 1 0.1350 0.3053 1
trendfactor 1.3712 0.0000 0.0000 1.4088 0.0000 0.0000 1.1465 0.0000 0.0003

# sign. at 5% 23 13 38 29 43 34
# sign. at 1% 16 11 31 25 36 30

We estimate this model using only the data until the publication date of the new candidate

predictor, not the full sample. To determine if a characteristic is significant, we test H0 :

βk = 0 using a two-sided t-test. We allow for cross-sectional dependence of the error terms

by using clustered standard errors. We report two sets of p-values. The first set is not

adjusted for multiple testing, but in the case of the conditional mean imputation does take

the additional error from the estimation step into account. The second set of p-values is

adjusted for multiple testing. In particular, for each of the 82 models we estimate, we use

p-values adjusted for the false discovery rate (see Benjamini and Yekutieli (2001) and Green

et al. (2017)).9 These p-values might be larger than 1 in which case we set them to 1 when

9Specifically, let pi denote the standard p-value of the ith test and assume that the p-values have been
ordered, such that p1 ≤ p2 ≤ · · · ≤ pK where K is the number covariates in the current model. The adjusted
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Figure 12: Empirical cdfs of standard errors of new characteristics

This figure shows the empirical distribution function of the standard errors of the estimated coefficients for the three different

methods. Panel (a) shows the standard errors for all new characteristics. Panel (b) shows the standard errors for all estimated

coefficients in equation (4) across all 82 regression models we estimate.
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presenting our results. Table 7 shows the estimates and p-values. In order to interpret the

results in Table 7 it is easiest to recall how many predictors would be found in a univariate

model. We show the results for the univariate model in Figure A.1 in the Online Appendix.

In a univariate model, we declare the vast majority of the predictors statistically significant.10

This result resonates with the findings in Jensen et al. (2021), who document a high degree

of replicability in empirical asset pricing studies.

Now, in a multivariate setup, 11 to 23 characteristics are significant in the complete

case. This relatively small number is due to a lack of statistical power in the complete case.

Even very strong predictors, such as six months momentum or book leverage (mom6m and

bookleverage) would not be significant in the complete case after adjusting for multiple

testing. Conditional mean imputation using the GLS adjustment selects more character-

istics, but still fewer than unconditional mean imputation. Most notably the selection of

characteristics between the conditional mean and unconditional mean imputation is differ-

false discovery rate p-values are p̃K =
(∑K

i=1(1/i)
)
pK and p̃i = min

{
p̃i+1,

(∑K
j=1(1/j)

)
(K/i)pi

}
for all

i < K.
10In the univariate model, we only consider the complete case because the estimators for the parameter

of interest β1, the slope coefficient, are numerically equivalent for the complete case estimator and the
imputation based estimators that do not use weights. Moreover, the weighted estimator yields almost
identical results.
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ent. This difference is due to the interaction of two effects highlighted in Section 4. First,

unconditional mean imputation yields biased estimators and estimated coefficients may be

either too large or too close to 0. As a specific example, consider operating profitability

(operprof) in Table 7. The coefficients in the complete case and with conditional mean

imputation are quite similar (0.4086% and 0.3386%, respectively), while unconditional mean

imputation yields a much larger estimated coefficient (1.0198%) that is significantly differ-

ent from 0. Second, with unconditional mean imputation, we underestimate the covariance

between the characteristics and therefore get artificially small standard errors.

To illustrate this difference, Figure 12 shows empirical cumulative distribution functions

(cdf) of the standard errors obtained using the different methods.11 In Panel (a), we plot the

cdf for all new characteristics (i.e. for the standard errors in Table 7). Panel (b) shows the

cdf of the standard errors for all estimated coefficients in equation (4) across all 82 models

we estimate. The complete case yields the largest standard errors because it only makes use

of a subset of the data and the standard errors with unconditional mean imputation tend to

be the smallest.

6 Conclusion

Missing data occur in virtually all cross-sectional empirical asset pricing studies, but is

also a prevalent problem in empirical corporate finance research, innovation research, in-

ternational finance, and many other fields of economics. The primary goal of this paper is

to provide empirical researchers with an easy approach to address this problem systemati-

cally. Our proposed approach can be implemented with standard statistical packages and is

computationally tractable even in high dimensions and for very large panels.

Our results show the complete case method, despite its intuitive appeal, neglects an

important part of the return distribution. We therefore advocate the use of imputation.

Moreover, since unconditional mean imputation leads to biases in the estimation and in-

correct inference, we cannot advocate using it. Instead, researchers should use conditional

11We do not compare the p-values because due to the bias of unconditional mean imputation it is not clear
how the p-values of unconditional mean imputation should compare to the p-values of the other methods.

51



mean imputation and adjust for the estimation error in subsequent inference.

Our proposed two-step approach can be applied in other common areas of research such

as estimating the stochastic discount factors, illustrated in A.3, characteristic based factor

models, and international studies. These items are left for future research.
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Appendix:
Missing Data in Asset Pricing Panels

This Table gives an overview of the characteristic used in the empirical analysis. They are obtained from Chen and

Zimmermann (2021). We refer to their paper and the companion website for the precise construction.

Table A.1: Overview of the Characteristics

Acronym Description
Publication

Year Reference % missing

Accruals Accruals 1996 Sloan (1996) 0.50
AssetGrowth Asset growth 2008 Cooper et al. (2008) 0.00
Beta CAPM beta 1973 Fama and MacBeth (1973) 0.00
BetaFP Frazzini-Pedersen Beta 2014 Frazzini and Pedersen (2014) 6.82
BetaTailRisk Tail risk beta 2014 Kelly and Jiang (2014) 34.65

BidAskSpread Bid-ask spread 1986 Amihud and Mendelson (1986) 7.33
BMdec Book to market using December ME 1992 Fama and French (1992) 0.00
BookLeverage Book leverage (annual) 1992 Fama and French (1992) 0.00
Cash Cash to assets 2012 Palazzo (2012) 28.91
CashProd Cash Productivity 2009 Chandrashekar and Rao (2009) 9.73

CBOperProf Cash-based operating profitability 2016 Ball et al. (2016) 29.60
CF Cash flow to market 1994 Lakonishok et al. (1994) 9.10
cfp Operating Cash flows to price 2004 Desai et al. (2004) 14.34
ChEQ Growth in book equity 2010 Lockwood and Prombutr (2010) 3.64
ChInv Inventory Growth 2002 Thomas and Zhang (2002) 0.00

ChInvIA Change in capital inv (ind adj) 1998 Abarbanell and Bushee (1998) 11.45
CompEquIss Composite equity issuance 2006 Daniel and Titman (2006) 37.48
CompositeDebtIssuance Composite debt issuance 2008 Lyandres et al. (2008) 40.26
Coskewness Coskewness 2000 Harvey and Siddique (2000) 0.00
DelCOA Change in current operating assets 2005 Richardson et al. (2005) 0.00

DelCOL Change in current operating liabilities 2005 Richardson et al. (2005) 0.50
DelFINL Change in financial liabilities 2005 Richardson et al. (2005) 0.79
DelLTI Change in long-term investment 2005 Richardson et al. (2005) 0.00
DelNetFin Change in net financial assets 2005 Richardson et al. (2005) 0.79
EarningsSurprise Earnings Surprise 1984 Foster et al. (1984) 19.17

EBM Enterprise component of BM 2007 Penman et al. (2007) 9.67
EntMult Enterprise Multiple 2011 Loughran and Wellman (2011) 27.24
EP Earnings-to-Price Ratio 1977 Basu (1977) 35.05
EquityDuration Equity Duration 2004 Dechow et al. (2004) 1.83
GP gross profits / total assets 2013 Novy-Marx (2013) 19.42

grcapx Change in capex (two years) 2006 Anderson and Garcia-Feijoo (2006) 18.78
GrLTNOA Growth in long term operating assets 2003 Fairfield et al. (2003) 2.64
GrSaleToGrInv Sales growth over inventory growth 1998 Abarbanell and Bushee (1998) 23.15
Herf Industry concentration (sales) 2006 Hou and Robinson (2006) 16.75
High52 52 week high 2004 George and Hwang (2004) 0.00

hire Employment growth 2014 Belo et al. (2014) 1.53
IdioRisk Idiosyncratic risk 2006 Ang et al. (2006) 0.00
Illiquidity Amihud’s illiquidity 2002 Amihud (2002) 4.72
IndMom Industry Momentum 1999 Moskowitz and Grinblatt (1999) 9.10
IntMom Intermediate Momentum 2012 Novy-Marx (2012) 9.25

Investment Investment to revenue 2004 Titman et al. (2004) 25.73
InvestPPEInv change in ppe and inv/assets 2008 Lyandres et al. (2008) 12.02
InvGrowth Inventory Growth 2012 Belo and Lin (2012) 40.76
Leverage Market leverage 1988 Bhandari (1988) 9.33
LRreversal Long-run reversal 1985 De Bondt and Thaler (1985) 16.00

MaxRet Maximum return over month 2010 Bali et al. (2011) 0.00
MeanRankRevGrowth Revenue Growth Rank 1994 Lakonishok et al. (1994) 35.49
Mom12m Momentum (12 month) 1993 Jegadeesh and Titman (1993) 9.28
Mom12mOffSeason Momentum without the seasonal part 2008 Heston and Sadka (2008) 9.15
Mom6m Momentum (6 month) 1993 Jegadeesh and Titman (1993) 9.18

MomOffSeason Off season long-term reversal 2008 Heston and Sadka (2008) 9.69
MomOffSeason06YrPlus Off season reversal years 6 to 10 2008 Heston and Sadka (2008) 31.66
MomSeason Return seasonality years 2 to 5 2008 Heston and Sadka (2008) 9.68
MomSeason06YrPlus Return seasonality years 6 to 10 2008 Heston and Sadka (2008) 31.53
MomSeasonShort Return seasonality last year 2008 Heston and Sadka (2008) 9.18

MRreversal Medium-run reversal 1985 De Bondt and Thaler (1985) 9.32
NetDebtFinance Net debt financing 2006 Bradshaw et al. (2006) 10.75
NetEquityFinance Net equity financing 2006 Bradshaw et al. (2006) 0.92
NOA Net Operating Assets 2004 Hirshleifer et al. (2004) 0.42
OperProf operating profits / book equity 2006 Fama and French (2006) 56.49
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Table A.1: Overview of the Characteristics (continued)

OPLeverage Operating leverage 2010 Novy-Marx (2011) 0.20
PriceDelayRsq Price delay r square 2005 Hou and Moskowitz (2005) 2.43
PriceDelaySlope Price delay coeff 2005 Hou and Moskowitz (2005) 2.43
PriceDelayTstat Price delay SE adjusted 2005 Hou and Moskowitz (2005) 2.71
RDS Real dirty surplus 2011 Landsman et al. (2011) 6.63

ResidualMomentum Momentum based on FF3 residuals 2011 Blitz et al. (2011) 13.33
ReturnSkew Return skewness 2016 Bali et al. (2016) 0.59
roaq Return on assets (qtrly) 2010 Balakrishnan et al. (2010) 13.83
RoE net income / book equity 1996 Haugen and Baker (1996) 0.01
ShareIss1Y Share issuance (1 year) 2008 Pontiff and Woodgate (2008) 9.31

Size Size 1981 Banz (1981) 0.00
SP Sales-to-price 1996 Barbee Jr et al. (1996) 9.30
STreversal Short term reversal 1989 Jegadeesh (1990) 0.00
Tax Taxable income to income 2004 Lev and Nissim (2004) 11.58
TotalAccruals Total accruals 2005 Richardson et al. (2005) 4.97

TrendFactor Trend Factor 2016 Han et al. (2016) 52.96
VarCF Cash-flow to price variance 1996 Haugen and Baker (1996) 15.51
VolMkt Volume to market equity 1996 Haugen and Baker (1996) 4.07
VolSD Volume Variance 2001 Chordia et al. (2001) 5.93
VolumeTrend Volume Trend 1996 Haugen and Baker (1996) 10.48

XFIN Net external financing 2006 Bradshaw et al. (2006) 11.43
zerotrade Days with zero trades 2006 Liu (2006) 4.00
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A.1 Additional Definitions

We briefly recall some basic notions relevant to missing data treatment. Introductory treatments

can be found for example in Little and Rubin (2020), Fitzmaurice et al. (2015).

A.1.1 Missing patterns

A missing pattern describes which data are missing. Figure 5 shows examples of missing pat-

terns. In our application, we cannot assume that we are confronted with a particular missing

pattern, and instead deal with general missing patterns. Our theoretical results require a non-

negligible part of the data to be complete. Generalizing these results would require much stronger

assumptions and does not occur in our empirical application.

A.1.2 Missing mechanisms

The missing mechanism describes why data are missing, i.e. it describes the relationship be-

tween the missingness and the values of the observed (and possibly unobserved) variables. Rubin

(1976) introduces three formal definitions for missing mechanisms that have become standard in the

literature. He differentiates between missing completely at random (MCAR), missing at random

(MAR) and not missing at random (NMAR). We recall these basic definitions, using our notation

from Section 3 below.

In Section 3 (and with only cross-sectional data) the missing pattern of observation i is denoted

by Di. The outcome is Yi and the regressors are Xi. Let X
(o)
i be the subset of Xi that is observed

under all missing patterns. Let Vi be a vector of observed additional characteristics (as in section

3.3.2). We refer to the analysis based on the cases that are completely observed as the complete case

analysis. This is in contrast to the “complete data analysis” which is based on the hypothetically

observed data in the absence of any missing data.

The data is MCAR if Di ⊥⊥ Yi, Xi, Vi, i.e. whether an observation is missing does not depend

on the other variables. When the data is MCAR, the complete case analysis yields valid inference,

but there is a loss of efficiency relative to the complete data analysis due to the decreased sample

size (Fitzmaurice et al. (2015)). The data is MAR1 if Di ⊥⊥ Xi | Yi, X(o)
i , Vi. That is, missing

1MCAR is a special case of MAR.
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is only random once we condition on observed covariates. We rely on this type of assumption

(but based solely on conditional moments) in our analysis. When the data is MAR, the complete

case analysis generally yields valid inference, but might require an estimator based on inverse

propensity weighting (as in section 3.3.2). Again, neglecting a part of the sample results in an

inefficient estimator.

Data is NMAR, sometimes also referred to as missing not at random, if Di depends on unob-

served regressors. In this case, the missing data mechanism cannot be ignored. One approach could

then be to model it explicitly as in selection models (Heckman (1979)) or pattern-mixture models

(Little (1994)). Alternatively, one could use a partial identification approach (Manski (2005)).
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A.2 Further empirical results

A.2.1 Prediction exercise

Table A.2: Performance Statistics For Out-of-Sample Predictions

This table shows annualized average returns, standard deviations, Sharpe ratios for portfolios sorted on the out-of-sample

return prediction. We differentiate between the complete case method, unconditional mean imputation, and conditional

mean imputation with GLS weighting without and with lags. Long Pf. and Short Pf. denote the annualized aver-

age return of the long and short leg respectively. Skewness and kurtosis are the sample statistics of the monthly re-

turns. The implementation of the linear and nonlinear model is detailed in Section 5.2. The sample period is 1990-2021.

Mean (%)
Standard

Deviation (%)
Sharpe
Ratio

Long
Pf. (%)

Short
Pf. (%)

Skewness Kurtosis

Panel A: Linear Model

Long (short) 50% highest (lowest) predicted returns
Complete Case 6.49 5.84 1.11 16.38 9.89 0.27 3.15
Uncond. Mean 12.56 8.52 1.47 21.08 8.51 0.62 13.22
Cond. Mean (GLS) 13.41 8.61 1.56 21.50 8.09 -0.13 5.79
Cond. Mean (GLS / w.lags) 13.40 8.63 1.55 21.50 8.09 -0.14 5.86

Panel B: Regularized Linear Model

Long (short) 50% highest (lowest) predicted returns
Complete Case (LASSO) 6.64 6.23 1.06 16.46 9.82 -0.29 4.55
Uncond. Mean (LASSO) 12.36 8.95 1.38 20.97 8.62 0.15 11.81
Cond. Mean (GLS / LASSO) 12.50 9.32 1.34 21.05 8.54 -0.64 6.01
Cond. Mean (GLS / LASSO / w.lags) 12.81 9.26 1.38 21.20 8.39 -0.60 6.01

Panel C: Nonlinear Model

Long (short) 50% highest (lowest) predicted returns
Complete Case 6.71 5.10 1.32 16.49 9.78 0.32 3.96
Uncond. Mean 14.96 7.59 1.97 22.27 7.32 0.85 12.54
Cond. Mean (GLS) 16.07 8.12 1.98 22.83 6.76 0.32 6.82
Cond. Mean (GLS / w.lags) 16.16 8.01 2.02 22.88 6.71 0.33 6.55

Panel D: Regularized Nonlinear Model

Long (short) 50% highest (lowest) predicted returns
Complete Case (LASSO) 5.31 6.55 0.81 15.79 10.48 0.52 4.82
Uncond. Mean (LASSO) 13.48 7.90 1.71 21.53 8.06 0.19 9.35
Cond. Mean (GLS / LASSO) 13.63 8.43 1.62 21.61 7.98 -0.49 4.56
Cond. Mean (GLS / LASSO / w.lags) 14.00 8.65 1.62 21.80 7.79 -0.20 6.12
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A.2.2 Incremental information – Univariate model

Figure A.1: Incremental Information - Comparison to univariate model

This figure illustrates which characteristics are significant in the growing model described in equation (4) and in a univariate

model. The p-values are not adjusted for the false discovery rate because we assume that a researcher is only interested in testing

the effect of the newly introduced characteristics at the point in time the new characteristics was discovered so that a multiple

testing problem does not arise. As in the main text, the growing model is estimated using the complete case, unconditional

mean imputation and conditional mean imputation with weights. The univariate model is estimated on the complete case. In

the univariate model, we only consider the complete case because the estimators for the parameter of interest β1, the slope

coefficient, are numerically equivalent for the complete case estimator and the imputation based estimators that do not use

weights, and the weighted estimator yields almost identical results. The characteristics are ordered according to their year of

discovery.
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A.3 Extensions

A.3.1 Stochastic Discount Factor Estimation

In this section we briefly explain how our proposed method can be used to estimate the stochastic

discount factor when covariates might be missing. We start with the standard moment condition

E
[
Mt+1R

e
t+1 | Xt

]
= 0

for all t = 1, . . . , T , whereMt+1 is the stochastic discount factor, R
e
t+1 is a vector of n excess returns,

and Xt = (X ′
1t, . . . , X

′
nt)

′ where Xit are variables known at time t for asset i with i = 1, 2, . . . , n.

The discount factor is a linear combination of the excess returns and we assume that the weights

are a parametric function of Xit ∈ RK . That is

Mt+1 = 1−
n∑

j=1

ω (Xjt, β)R
e
jt+1

where

ω (Xjt, β) =

K∑
k=1

βkXjt,k.

Combining the previous three equations we get

E

1−
n∑

j=1

(
K∑
k=1

βkXjt,k

)
Re

jt+1

Re
t+1 | Xt

 = 0

As before, assume we have L missing patterns. Let Dt = l for missing pattern l, and let X
(l)
t be

the corresponding subset of observed elements of Xt. Then, under an analogous MAR assumption

as before,

0 = E

1−
n∑

j=1

(
K∑
k=1

βkXjt,k

)
Re

jt+1

Re
t+1 | X

(l)
t


= E

1−
n∑

j=1

(
K∑
k=1

βkXjt,k

)
Re

jt+1

Re
t+1 | X

(l)
t , Dt = l


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= E

Re
t+1 −

n∑
j=1

(
K∑
k=1

βkXjt,kR
e
jt+1R

e
t+1

)
| X(l)

t , Dt = l


Let

Z
(l)
t,jk =


Xjt,kR

e
jt+1R

e
t+1 if k ∈ I

(l)
t

E[Xjt,kR
e
jt+1R

e
t+1 | X

(l)
t , Dt = 0] if k /∈ I

(l)
t

Assuming that

E[Xjt,kR
e
jt+1R

e
t+1 | X

(l)
t , Dt = l] = E[Xjt,kR

e
jt+1R

e
t+1 | X

(l)
t , Dt = 0]

we obtain the conditional moment restrictions

E

Re
t+1 −

n∑
j=1

(
K∑
k=1

βkZ
(l)
t,jk

)
| X(l)

t , Dt = l

 = 0

To impute missing values, let

E[Xjt,kR
e
jt+1R

e
t+1 | X

(l)
t , Dt = 0] = h

(
X

(l)
t , γ(l,k)

)

where h is a flexible parametric function of X
(l)
t with parameter vector γ(l,k). Finally, let g(X

(l)
t ) be

a vector of transformations of X
(l)
t . We can then estimate the parameters based on the following

unconditional moments:

E

1(Dt = 0)

Re
t+1 −

n∑
j=1

(
K∑
k=1

βkXjt,kR
e
jt+1R

e
t+1

) g(X
(0)
t )

 = 0 (A.1)

E

1(Dt = l)

Re
t+1 −

n∑
j=1

(
K∑
k=1

βkZ
(l)
t,jk

) g(X
(l)
t )

 = 0 l = 1, . . . , L (A.2)

E
[
1(Dt = 0)

(
Xjt,kR

e
jt+1R

e
t+1 − h

(
X

(l)
t , γ(l,k)

))
g(X

(l)
t )
]
= 0 l = 1, . . . , L (A.3)

k /∈ I
(l)
t
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A.3.2 Derivation with additional covariates

Consider the simple model

Yi = β0 +Xi,1β1 +Xi,2β2 + εi,

whereXi,1 is always observed, butXi,2 might be missing. LetDi = 0 if observation i is complete and

let Di = 1 if Xi,2 is missing. We now derive moment conditions under the conditional independence

assumption

Di ⊥⊥ Yi, Xi,2 | Xi,1, Vi

where Vi is an observed covariate. In this case, we get

0 = E [εi | Xi,1, Xi,2]

= E [E [εi | Xi,1, Xi,2, Vi] | Xi,1, Xi,2]

= E [E [εi | Xi,1, Xi,2, Vi, Di = 0] | Xi,1, Xi,2]

= E

[
E [1(Di = 0)εi | Xi,1, Xi,2, Vi]

1

P (Di = 0 | Xi,1, Xi,2, Vi)
| Xi,1, Xi,2

]
= E

[
E [1(Di = 0)εi | Xi,1, Xi,2, Vi]

1

P (Di = 0 | Xi,1, Vi)
| Xi,1, Xi,2

]
= E

[
1

P (Di = 0 | Xi,1, Vi)
1(Di = 0)εi | Xi,1, Xi,2

]
= E

[
1

P (Di = 0 | Xi,1, Vi)
1(Di = 0)(Yi − β0 −Xi,1β1 −Xi,2β2) | Xi,1, Xi,2

]

Similarly, it can shown that

E

[
1

P (Di = 1 | Xi,1, Vi)
1(Di = 1) (Yi − β0 −Xi,1β1 − E[Xi,2 | Xi,1, Vi, Di = 0]β2) | Xi,1

]
= 0

We then have a similar structure as before because we can impute Xi,2 with an estimate of E[Xi,2 |

Xi,1, Vi, Di = 0] and use an inverse probability weighted estimator with an estimate of the nuisance

functions are P (Di = 0 | Xi,1, Vi).

This previous approach does not require an assumption on how Vi relates to εi. Now suppose
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we also assume that

E[εi | Xi, Vi] = 0

Using the previous arguments, it is easy to derive the unconditional moments

E [(Yi − β0 −Xi,1β1 −Xi,2β2) | Xi,1, Xi,2, Vi, Di = 0] = 0

and

E [(Yi − β0 −Xi,1β1 − E[Xi,2 | Xi,1, Vi, Di = 0]β2) | Xi,1, Vi, Di = 1] = 0

A.4 Comparison to the EM-algorithm

We briefly compare the proposed method to the Expectation-Maximization (EM) algorithm.

Recall the setup of our simple example:

Yi = β0 +Xi,1β1 +Xi,2β2 + ϵi, E[ϵi|Xi] = 0

where Xi,2 is not observed for some subset of the data, while Xi,1 and Yi are always observed.

For notational convenience, we assume that Xi,2 is observed for i = 1, . . . , r and missing for i =

r + 1, . . . , n with r < n. Define Di = 0 for i = 1, . . . , r and Di = 1 for i = r + 1, . . . , n. To employ

the EM algorithm, we have to make some distributional assumptions:

ϵi ∼ N(0, σ2
ϵ )

Xi ∼ N

µ1

µ2

 ,

 σ2
1 σ12

σ12 σ2
2

 = N(µ,Σ)

By joint normality we know that

Xi,2|Xi,1 ∼ N(γ0 +Xi,1γ1, σ
2
X)

where γ0 = µ2 − σ12

σ2
1
µ1 and γ1 =

σ12

σ2
1
, γ is the least squares estimator, and σ2

X = σ2
2 −

σ2
12

σ2
1
.
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We will now discuss the EM algorithm. It maximizes the expectation of the complete data

likelihood (ln(β;Y,X)), the likelihood we would observe if Xi,2 was fully observed, conditional on

the observed variables and some estimate of parameters of interest θ. θ contains β and other

parameters that are required during the estimation process. We denote the observed variables for

observation i with X
(obs)
i , i.e. X

(obs)
i = (Yi, Xi,1, Xi,2) for i ≤ r and X

(obs)
i = (Yi, Xi,1) for i > r.

Starting with some θ(0), the EM-algorithm iterates through the following procedure updating θ in

each iteration. In the k-th iteration we derive (expectation step)

E
[
ln(β;Y,X)|X(obs), θ = θ(k)

]

to then maximize it with respect to θ (maximization step). By the distributional assumptions we

know that above is maximized if we maximize

− n

2
log(2πσ2)−

n∑
i=1

E

[
1

2σ2
(Yi − β0 −Xi,1β1 −Xi,2β2)

2
∣∣∣X(obs)

i , θ = θ(k)
]

= − n

2
log(2πσ2)−

n∑
i=1

E

[
1

2σ2

(
Yi −X ′

iβ
)2 ∣∣∣X(obs)

i , θ = θ(k)
]

= − n

2
log(2πσ2)−

r∑
i=1

1

2σ2

(
Yi −X ′

iβ
)2 − n∑

i=r+1

E

[
1

2σ2

(
Yi −X ′

iβ
)2 ∣∣∣Xi,1, Yi, θ = θ(k)

]

Under standard regularity conditions, the interchangeability of integral and differentiation operator,

and following standard arguments, we get

β̂(k+1) =

(
r∑

i=1

XiX
′
i +

n∑
i=r+1

E
[
XiX

′
i

∣∣∣Xi,1, Yi, θ = θ(k)
])−1

×

(
r∑

i=1

XiYi +
n∑

i=r+1

E
[
XiYi

∣∣∣Xi,1, Yi, θ = θ(k)
])

i.e. in each iteration the EM algorithm imputes Xi,2 with E[Xi,2|Xi,1, Yi, θ = θ(k)] and X2
i,2 with

E[X2
i,2|Xi,1, Yi, θ = θ(k)]. It is now also clear that apart from β θ contains the parameters that

characterize these conditional means.

For the EM algorithm to lead to valid inference, we must make the MAR assumption Di ⊥⊥
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Xi,2|Xi,1, Yi. Then

E[Xi,2|Xi,1, Yi, Di, θ = θ(k)] = E[Xi,2|Xi,1, Yi, θ = θ(k)]

E[X2
i,2|Xi,1, Yi, Di, θ = θ(k)] = E[X2

i,2|Xi,1, Yi, θ = θ(k)]

If we do not make this assumption, the missing mechanism needs to be modelled explicitly to

incorporate that Xi,2 is missing not at random.

Our estimator is similar to the EM algorithm in that we impute Xi,2 with a conditional mean,

but we only condition on observed covariates and not on the outcome. Moreover, we do not

explicitly model the conditional mean of X2
i,2. Both is reflected in the asymptotic variance of our

estimator, which is larger than the estimator estimated using the EM algorithm. However, for an

arbitrarily chosen distribution doing asymptotics with the EM algorithm is not straightforward,

whilst the asymptotic distribution of our estimator is readily available and does not require any

distributional assumptions.

Chen and McCoy (2022) use an EM-algorithm that only assumes that the covariates are jointly

normally distributed. They then impute missing values of covariates with the estimated conditional

mean, which only conditions on observed covariates for that observation, and estimate the regression

parameters by OLS. An advantage of a joint treatment of the outcome variable Yi and the covariates

(as in the EM algorithm above or as in our estimation method) allows obtaining the statistical

properties and valid standard errors of the parameters of interest.

A.5 Projection

We now briefly discuss how to allow for E
[
Xit,k|X

(l)
it , Dit = l

]
̸= X

(l)′
it γ

(l,k)
t by using arguments

based on projections. In this case Z
(l)
it,k = X

(l)′
it γ

(l,k)
t can be interpreted as the linear projection of

Xit,k onto X
(l)
it under missing pattern l, based on the complete subset of the data. By definition of

a linear projection, it then holds that

E
[
1(Dit = 0)u

(l)
it,kX

(l)
it

]
= 0
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for all l = 0, 1, . . . , L and k ̸∈ I
(l)
t and with u

(l)
it,k = Xit,k − Z

(l)
it,k. These are exactly the moment

condition in equation (3). The moment conditions in equation (1) hold as long as E[εit | X(0)
it , Dit =

0] = 0, which follows from our previously imposed MAR assumption. Finally, for the moment

conditions in equation (2), we can use our assumption E[εit | X(l)
it , Dit = 0] = 0 to write

E

[
1(Dit = l)(Yit −

K∑
k=1

βt,kZ
(l)
it,k)X

(l)
it

]
= E

[
1(Dit = l)

(
εit +

K∑
k=1

βt,ku
(l)
it,k

)
X

(l)
it

]

=
K∑
k=1

βt,kE
[
1(Dit = l)u

(l)
it,kX

(l)
it

]

Hence, the moment conditions hold as longs as

E
[
1(Dit = l)u

(l)
it,kX

(l)
it

]
= 0

for all l = 0, 1, . . . , L, which we can also write as

E
[
1(Dit = l)u

(l)
it,kX

(l)
it

]
= E

[
1(Dit = 0)u

(l)
it,kX

(l)
it

]

This equation holds as long the linear projection of Xit,k on X
(l)
it does not depend on Dit, which is

analogous to the second part of the previous MAR assumption, namely

E
[
Xit,k | X(l)

it , Dit = l
]
= E

[
Xit,k | X(l)

it , Dit = 0
]
.

A.6 Equivalence GLS and Optimal GMM

Consider the moment conditions

E

[
1(Dit = 0)

(
Yit −

K∑
k=1

βt,kX
(0)
it,k

)
X

(0)
it

]
= 0 (A.4)

E

[
1(Dit = l)

(
Yit −

K∑
k=1

βt,kZ
(l)
it,k

)
X

(l)
it

]
= 0 l = 1, . . . , L (A.5)

E
[
1(Dit = 0)

(
Xit,k −X

(l)
it

′
γ
(l,k)
t

)
X

(l)
it

]
= 0 l = 1, . . . , L and k /∈ I

(l)
t (A.6)
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where

Z
(l)
it,k = E

[
Xit,k|X

(l)
it , Dit = 0

]
=


Xit,k if k ∈ I

(l)
t

X
(l)′
it γ

(l,k)
t if k /∈ I

(l)
t

To show equivalence of the GLS and the optimal GMM estimator, we impose the following addi-

tional assumptions:

� γt =
{
{γ(l,k)t }

k/∈I(l)t

}
l=1,...,L

is known.

� E [εit | Xit, Dit = l] = 0 for all l = 0, 1, . . . , L

� E
[
ε2it | X

(0)
it , Di = l

]
= σ2

ε,t for all l = 0, 1, . . . , L

� E
[
u
(l)
it u

(l)
it

′
| X(l)

it , Dit = l
]
= Σ

(l)
t for all l = 1, . . . L, where u

(l)
it,k = Xit,k − X

(l)
it

′
γ
(l,k)
t for all

k /∈ I
(l)
t .

The last two conditions assume that the unobservables are homoskedastic.

We start by analyzing the GMM estimator. Since γt is known, we can ignore the moment

conditions in (A.6). Now define

git(βt) =



1(Dit = 0)
(
Yit −

∑K
k=1 βt,kX

(0)
it,k

)
X

(0)
it

1(Dit = 1)
(
Yit −

∑K
k=1 βt,kZ

(1)
it,k

)
X

(1)
it

...

1(Dit = L)
(
Yit −

∑K
k=1 βt,kZ

(L)
it,k

)
X

(L)
it


The GMM estimator minimizes the sample analog of E[git(βt)]

′WE[git(βt)]. The efficient weighting

matrix is the block-diagonal matrix

W = E[git(βt)git(βt)
′]−1

= diag
(
w(l)

)−1
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where w(l) is the dim(X
(l)
it )× dim(X

(l)
it ) matrix

w(l) = E

1(Dit = l)X
(l)
it X

(l)
it

′
(
Yit −

K∑
k=1

βt,kZ
(l)
it,k

)2


The remaining elements are zero because 1(Dit = k)1(Dit = l) = 0 for k ̸= l. The first diagonal

block, w(0), can be expressed as

w(0) = E
[
1(Dit = 0)X

(0)
it X

(0)
it

′
ε2it

]

Using E
[
ε2it | X

(0)
it , Di = 0

]
= σ2

ε,t we can write it as

E
[
1(Dit = 0)X

(0)
it X

(0)
it

′
ε2it

]
= σ2

ε,tE
[
1(Dit = 0)X

(0)
it X

(0)
it

′]

For the other blocks, we can write

w(l) = E

1(Dit = l)X
(l)
it X

(l)
it

′
(
Yit −

K∑
k=1

βt,kZ
(l)
it,k

)2


= E

1(Dit = l)X
(l)
it X

(l)
it

′
(
εit +

K∑
k=1

βt,ku
(l)
it,k

)2


Let β
(l)
t be the subvector of βt with entries βt,k with k ̸∈ I

(l)
t . Our assumptions above then imply

that

E

(εit + K∑
k=1

βt,ku
(l)
it,k

)2

| X(l)
it , Dit = l

 = E
[
ε2it | X

(l)
it , Dit = l

]

+ 2E

[
εit

(
K∑
k=1

βt,ku
(l)
it,k

)
| X(l)

it , Dit = l

]

+ E

( K∑
k=1

βt,ku
(l)
it,k

)2

| X(l)
it , Dit = l


= σ2

ε,t + β
(l)
t

′
Σ
(l)
t β

(l)
t

15



The cross terms are 0 because

E

[
εit

(
K∑
k=1

βt,ku
(l)
it,k

)
| X(l)

it , Dit = l

]
=

K∑
k=1

βt,kE
[
u
(l)
it,kE (εit | Xit, Dit = l) | X(l)

it , Dit = l
]
= 0

It then follows that

w(l) =
(
σ2
ε,t + β

(l)
t

′
Σ
(l)
t β

(l)
t

)
E
[
1(Dit = l)X

(l)
it X

(l)
it

′]

for l = 1, . . . , L.

The feasible optimal GMM estimator minimizes ḡ(βt)
′Ŵ ḡ(βt) where ḡ(β) = 1

n

∑n
i=1 git(β) and

Ŵ = diag
(
ŵ(l)

)−1
with

ŵ(0) = σ̂2
ε,t

1

n

n∑
i=1

1(Dit = 0)X
(0)
it X

(0)
it

′

ŵ(l) =

(
σ̂2
ε,t +

(
β̂
(l)
t

)′
Σ̂
(l)
t β̂

(l)
t

)
1

n

n∑
i=1

1(Dit = l)X
(l)
it X

(l)
it

′

We require that σ̂2
ε,t

p−→ σ2
ε,t, β̂

(l)
t

p−→ β
(l)
t and Σ̂

(l)
t

p−→ Σ
(l)
t , which can be achieved by estimating the

parameters using the complete case. We then get Ŵ
p−→ W .

The first-order conditions are

∂

∂βt
ḡ(βt)

′Ŵ ḡ(βt) = 0

with

∂

∂βt
ḡ(βt) =



− 1
n

∑n
i=1 1(Dit = 0)X

(0)
it X

(0)
it

′

− 1
n

∑n
i=1 1(Dit = 1)X

(1)
it Z

(1)
it

′

...

− 1
n

∑n
i=1 1(Dit = L)X

(L)
it Z

(L)
it

′



Solving the first order conditions yields the following closed-form expression for the optimal GMM

16



estimator:

β̂t,GMM =

(
∂

∂βt
ḡ(Vit, β̂t)

′Ŵ
∂

∂βt
ḡ(βt)

)−1 ∂

∂βt
ḡ(Vit, β̂t)

′Ŵ
1

n

n∑
i=1



1(Dit = 0)X
(0)
it Yit

1(Dit = 1)X
(1)
it Yit

...

1(Dit = L)X
(L)
it Yit


We will now rewrite this estimator to relate it to the GLS estimator. Consider

(
∂

∂βt
ḡ(Vit, β̂t)

′Ŵ

)′
=



− 1
n

∑n
i=1 1(Dit = 0)X

(0)
it X

(0)
it

′ (
ŵ(0)

)−1

− 1
n

∑n
i=1 1(Dit = 1)Z

(1)
it X

(1)
it

′ (
ŵ(1)

)−1

...

− 1
n

∑n
i=1 1(Dit = L)Z

(L)
it X

(L)
it

′ (
ŵ(L)

)−1


The first element is simply

− 1

n

n∑
i=1

1(Dit = 0)X
(0)
it X

(0)
it

′ (
ŵ(0)

)−1
= −

(
σ̂2
ε,t

)−1
IK×K

Next, we assume without loss of generality that the elements in Z
(l)
it are ordered such that Z

(l)
it =(

X
(l)
it

′
, X

(l)
it

′
γ
(l)
t

′)′
. Define J

(l)
t =

∣∣(I(l)t )c
∣∣ and

γ
(l)
t =

(
γ
(l,1)
t , . . . , γ

(l,J
(l)
t )

t

)′

Then for the l-th element

− 1

n

n∑
i=1

1(Dit = l)Z
(l)
it X

(l)
it

′ (
ŵ(l)

)−1
= − 1

n

n∑
i=1

1(Dit = l)

 X
(l)
it

γ
(l)
t X

(l)
it

X
(l)
it

′ (
ŵ(l)

)−1

= −

I
(K−J

(l)
t )×(K−J

(l)
t )

γ
(l)
t

 1

n

n∑
i=1

1(Dit = l)X
(l)
it X

(l)
it

′ (
ŵ(l)

)−1

= −
(
σ̂2
ε,t +

(
β̂
(l)
t

)′
Σ̂
(l)
t β̂

(l)
t

)−1

I
(K−J

(l)
t )×(K−J

(l)
t )

γ
(l)
t


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It follows that

∂

∂βt
ḡ(Vit, β̂t)

′Ŵ
∂

∂βt
ḡ(βt) = − 1

n

n∑
i=1

1(Dit = 0)Z
(0)
it Z

(0)
it

′

σ̂2
ε,t

+
L∑
l=1

1(Dit = l)Z
(l)
it Z

(l)
it

′

σ̂2
ε,t +

(
β̂
(l)
t

)′
Σ̂
(l)
t β̂

(l)
t


where X

(0)
it = Z

(0)
it . Define

(σ̂
(l)
t )2 :=


σ̂2
ε,t if l = 0

σ̂2
ε,t +

(
β̂
(l)
t

)′
Σ̂
(l)
t β̂

(l)
t otherwise

Then

∂

∂βt
ḡ(Vit, β̂t)

′Ŵ
∂

∂βt
ḡ(βt) = − 1

n

n∑
i=1

L∑
l=0

1(Dit = l)
Z

(l)
it Z

(l)
it

′

(σ̂
(l)
t )2

Using the same arguments we can also write

Ŵ
1

n

n∑
i=1



1(Dit = 0)X
(0)
it Yit

1(Dit = 1)X
(1)
it Yit

...

1(Dit = L)X
(L)
it Yit


= − 1

n

n∑
i=1

L∑
l=0

1(Dit = l)
Z

(l)
it Yit

(σ̂
(l)
t )2

Hence

β̂t,GMM =

(
n∑

i=1

L∑
l=0

1(Dit = l)
Z

(l)
it Z

(l)
it

′

(σ̂
(l)
t )2

)−1 n∑
i=1

L∑
l=0

1(Dit = l)
Z

(l)
it Yit

(σ̂
(l)
t )2

Next, consider the GLS estimator, which minimizes

1

n

n∑
i=1

L∑
l=0

1(Dit = l)
(Yit − Z

(l)
it

′
βt)

2

(σ̂
(l)
t )2

The first-order conditions are

0 =
n∑

i=1

L∑
l=0

1(Dit = l)
Z

(l)
it Yit − Z

(l)
it Z

(l)
it

′
β̂t,GLS

(σ̂
(l)
t )2

⇔ β̂t,GLS =

(
n∑

i=1

L∑
l=0

1(Dit = l)
Z

(l)
it Z

(l)
it

′

(σ̂
(l)
t )2

)−1 n∑
i=1

L∑
l=0

1(Dit = l)
Z

(l)
it Yit

(σ̂
(l)
t )2

18



Therefore

β̂t,GMM = β̂t,GLS .

A.7 Large Sample Distribution

Let γt = {γ(l,k)t }
l=1,...,L,k/∈I(l)t

and define

git,1 (βt, γt) =



1(Dit = 0)
(
Yit −

∑K
k=1 βt,kX

(0)
it

)
X

(0)
it

1(Dit = 1)
(
Yit −

∑K
k=1 βt,kZ

(1)
it,k

)
X

(1)
it

...

1(Dit = L)
(
Yit −

∑K
k=1 βt,kZ

(L)
it,k

)
X

(L)
it


and

git,2 (γt) =


{
1(Dit = 0)

(
Xit,k −X

(1)
it

′
γ
(1,k)
t

)
X

(1)
it

}
k/∈I(1)t

...{
1(Dit = 0)

(
Xit,k −X

(L)
it

′
γ
(L,k)
t

)
X

(L)
it

}
k/∈I(L)

t


We will derive the large sample distribution of any GMM estimator which minimizes a sample

analog estimator of

(
E[git,1 (βt, γt)] E[git,2 (γt)]

)W1 0

0 W2

E[git,1 (βt, γt)]

E[git,2 (γt)]


We then show that both the two-step OLS and GLS estimators are special cases for particular

choices of W1 and W2. In particular, we will take W2 = 1
w2

Idim(git,2)×dim(git,2), w2 → 0, and

Idim(git,2)×dim(git,2) is an identity matrix. Intuitively, we put infinite weight on the second set of

moment conditions, which implies that we solve the sample analog exactly. We show that the limit

is well defined and derive an expression for the corresponding standard errors.

Define

ḡ1 (βt, γt) =
1

n

n∑
i=1

git,1 (βt, γt)
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and

ḡ2 (γt) =
1

n

n∑
i=1

git,2 (γt)

The objective function is then

ḡ1 (βt, γt)
′W1ḡ1 (βt, γt) + ḡ2 (γt)

′W2ḡ2 (γt)

and the first order conditions are

(
∂

∂βt
ḡ1

(
β̂t, γ̂t

))′
W1ḡ1

(
β̂t, γ̂t

)
= 0

and (
∂

∂γt
ḡ1

(
β̂t, γ̂t

))′
W1ḡ1

(
β̂t, γ̂t

)
+

(
∂

∂γt
ḡ2 (γ̂t)

)′
W2ḡ2 (γ̂t) = 0

Using W2 =
1
w2

Idim(git,2)×dim(git,2), we can then write the first order condition as


(

∂
∂βt

ḡ1

(
β̂t, γ̂t

))′
W1 0

w2

(
∂
∂γt

ḡ1

(
β̂t, γ̂t

))′
W1

(
∂
∂γt

ḡ2 (γ̂t)
)′

ḡ1

(
β̂t, γ̂t

)
ḡ2 (γ̂t)

 = 0

Notice that when w2 = 0, these are the first order conditions corresponding to the two-step GLS

estimator, which we derived in Section A.6 where W1 = diag
(
ŵ(l)

)−1
and expressions for ŵ(l) are

provided in Section A.6. We obtain the two-step OLS estimator when W1 is an identity matrix.

Using a first-order Taylor expansion, we get

0 =


(

∂
∂βt

ḡ1

(
β̂t, γ̂t

))′
W1 0

w2

(
∂
∂γt

ḡ1

(
β̂t, γ̂t

))′
W1

(
∂
∂γt

ḡ2 (γ̂t)
)′

ḡ1 (βt, γt)

ḡ2 (γt)



+


(

∂
∂βt

ḡ1

(
β̂t, γ̂t

))′
W1 0

w2

(
∂
∂γt

ḡ1

(
β̂t, γ̂t

))′
W1

(
∂
∂γt

ḡ2 (γ̂t)
)′

 ∂

∂βt
ḡ1

(
β̂t, γ̂t

)
∂
∂γt

ḡ1

(
β̂t, γ̂t

)
0 ∂

∂γt
ḡ2 (γ̂t)


β̂ − β

γ̂ − γ


+ op(1/

√
n)

20



or

√
n

β̂t − βt

γ̂t − γt

 =

−


(

∂
∂βt

ḡ1

(
β̂t, γ̂t

))′
W1 0

w2

(
∂
∂γt

ḡ1

(
β̂t, γ̂t

))′
W1

(
∂
∂γt

ḡ2 (γ̂t)
)′

 ∂

∂βt
ḡ1

(
β̂t, γ̂t

)
∂
∂γt

ḡ1

(
β̂t, γ̂t

)
0 ∂

∂γt
ḡ2 (γ̂t)




−1

×


(

∂
∂βt

ḡ1

(
β̂t, γ̂t

))′
W1 0

w2

(
∂
∂γt

ḡ1

(
β̂t, γ̂t

))′
W1

(
∂
∂γt

ḡ2 (γ̂t)
)′
√

n

ḡ1 (βt, γt)

ḡ2 (γt)

+ op(1)

We know that

√
n

ḡ1 (βt, γt)

ḡ2 (γt)

 d→ N(0,Ωt)

where

Ωt = E

git,1 (βt, γt)

git,2 (γt)

(git,1 (βt, γt) git,2 (γt)

)
and thus

√
n

β̂t − βt

γ̂t − γt

 d→ N(0,Σt)

where

Σt =
(
D′

tQt

)−1
D′

tΩtDt

(
Q′

tDt

)−1

where

D′
t =


(

∂
∂βt

E[g1 (Vit, βt, γt)]
)′

W1 0

w2

(
∂
∂γt

E[g1 (Vit, βt, γt)]
)′

W1

(
∂
∂γt

E[g2 (Vit, γt)]
)′


and

Qt =

 ∂
∂βt

E[g1 (Vit, βt, γt)]
∂
∂γt

E[g1 (Vit, βt, γt)]

0 ∂
∂γt

E[g2 (Vit, γt)]


All these matrix can be estimated using sample analogs. As already mentioned, for the two-step

GLS estimator, we simply set w2 = 0 and use W1 as defined above.
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A.8 J-test

Let γt =
{
{γ(l,k)t }

k/∈I(l)t

}
l=1,...,L

and define

git,11 (βt) =

(
1(Dit = 0)

(
Yit −

∑K
k=1 βt,kX

(0)
it

)
X

(0)
it

)

git,12 (βt, γt) =


1(Dit = 1)

(
Yit −

∑K
k=1 βt,kZ

(1)
it,k

)
X

(1)
it

...

1(Dit = L)
(
Yit −

∑K
k=1 βt,kZ

(L)
it,k

)
X

(L)
it


and

git,2 (γt) =


{
1(Dit = 0)

(
Xit,k −X

(1)
it

′
γ
(1,k)
t

)
X

(1)
it

}
k/∈I(1)t

...{
1(Dit = 0)

(
Xit,k −X

(L)
it

′
γ
(L,k)
t

)
X

(L)
it

}
k/∈I(L)

t


Let β̂t be the estimator that solves

n∑
i=1

git,11

(
β̂t

)
= 0

which is our estimator based on the complete case. Let γ̂t be the estimator that solves

n∑
i=1

git,2 (γ̂t) = 0

which is our standard, period-by-period imputation estimator.

To test our overidentifying restrictions, we test

H0 : E[git,12 (βt, γt)] = 0

for the values of βt and γt that are identified through the first and third set of moments, respectively.

The test statistic will be a quadratic version of the sample analog of these moment conditions.

To derive the test statistic, let δt = (βt, γt) and write

1

n

n∑
i=1

git,12

(
δ̂t

)
=

1

n

n∑
i=1

git,12 (δt) +
1

n

n∑
i=1

(
git,12

(
δ̂t

)
− git,12 (δt)

)
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=
1

n

n∑
i=1

git,12 (δt) +

(
1

n

n∑
i=1

∂

∂δ
git,21 (δt)

)(
δ̂t − δt

)
+ op(1/

√
n).

Hence,

1√
n

n∑
i=1

git,12

(
δ̂t

)
=

1√
n

n∑
i=1

git,12 (δt) +

(
1

n

n∑
i=1

∂

∂δ
git,12 (δt)

)
√
n
(
δ̂t − δt

)
+ op(1)

Under the null hypothesis it holds that

1√
n

n∑
i=1

git,12 (δt)
d→ N(0, E[git,12 (δt) git,12 (δt)

′])

For the second term, it is easy to show that we can write

√
n
(
δ̂t − δt

)
=


(

1
n

∑n
i=1

∂
∂β git,11 (βt)

)−1
1√
n

∑n
i=1 git,11 (βt)(

1
n

∑n
i=1

∂
∂γ git,2 (γt)

)−1
1√
n

∑n
i=1 git,2 (γt)


= G−1

t

1√
n

n∑
i=1

git,11 (βt)

git,2 (γt)

+ op(1)

where

Gt =

E
[

∂
∂β git,11 (βt)

]
0

0 E
[

∂
∂γ git,2 (γt)

]


Hence
√
n
(
δ̂t − δt

)
d→ N(0,Σt)

where

Σt = G−1
t E


git,11 (βt)

git,2 (γt)

git,11 (βt)

git,2 (γt)

′ (G′
t)
−1

It follows that

(
1

n

n∑
i=1

∂

∂δ
git,12 (δt)

)
√
n
(
δ̂t − δt

)
d→ N

(
0, E

[
∂

∂δ
git,12 (δt)

]
ΣtE

[
∂

∂δ
git,12 (δt)

′
])

The two normals are independent because they are based on different subsets of the data.
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Hence,

1√
n

n∑
i=1

git,12

(
δ̂t

)
d→ N

(
0, E[git,12 (δt) git,12 (δt)

′] + E

[
∂

∂δ
git,12 (δt)

]
ΣtE

[
∂

∂δ
git,12 (δt)

′
])

Let Ω̂t be a consistent estimator of E[git,12 (δt) git,12 (δt)
′]+E

[
∂
∂δgit,12 (δt)

]
ΣtE

[
∂
∂δgit,12 (δt)

′]. Then
(

1√
n

n∑
i=1

git,12

(
δ̂t

))′

Ω̂−1
t

(
1√
n

n∑
i=1

git,12

(
δ̂t

))
d→ χ2

d12

where d12 is the dimension of git,12 (δt). We therefore reject the null hypothesis if

(
1√
n

n∑
i=1

git,12

(
δ̂t

))′

Ω̂−1
t

(
1√
n

n∑
i=1

git,12

(
δ̂t

))

is larger than the 1− α quantile of the χ2
d12

distribution.
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