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I think he be transform'd into a beast 

      Wm. Shakespeare, As You Like It [II,7] 

 

Introduction 

 A familiar and longstanding concern in empirical economics is the specification of 

regression models for nonnegative outcomes y.  The particular setting we consider is one where 

the outcomes are not only nonnegative but also where a nontrivial share of outcomes equal zero 

and where the zeros are true zeros, as opposed to missing, which is a different problem. For 

example, in health economics (the authors' field) prominent examples include healthcare use 

(e.g., Mullahy, 1998), spending on health services (e.g., Manning et al., 1987), and a variety of 

health outcome measures (e.g., Khan et al., 2008). Outcomes having similar measurement 

properties arise as well in labor economics, international trade, agricultural economics, and many 

others. 

 Much has been written about econometric strategies for such modeling (e.g., Deb and 

Norton, 2018) and much more has been written summarizing studies that have deployed such 

strategies in empirical analysis. The purpose of this paper is to assess the properties, merits, and 

shortcomings of some such methods that are used commonly in empirical work. While the 

methods we consider will be familiar to many readers, we speculate that some important 

properties of these methods may not be as familiar. Our ultimate goal is for empirical researchers 

considering applying such methods to be well acquainted with what particular methods can and 

cannot deliver with respect to answering the fundamental research questions they seek to answer. 

Our particular concern is with specifications that transform the outcome variable, often 

done to deal with right skewness in the positives outcomes. If scalar outcomes are denoted y and 
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an exogenous vector of covariates is denoted 𝒙, then a canonical specification is 𝑓(𝑦) = 𝒙′𝛽 +

𝜀, where 𝑓(∙) is a monotonic transformation. There is, of course, no reason why transformations 

must be used in such settings and indeed many (including the authors) have argued in favor of 

specifying models that rely on untransformed outcome measures and accommodating their non-

negative nature — and the strictly positive nature of their corresponding conditional means 

𝐸[𝑦|𝒙] — using estimation strategies like log-link generalized linear models (GLMs) (Mullahy, 

1998; Blough, Madden, and Hornbrook, 1999; Deb, Norton, and Manning, 2017) or Poisson 

regression (e.g., Wooldridge, 2010, chapter 18). 

 Although a transformed dependent variable need not be used to model interesting features 

of the conditional distributions 𝑔(𝑦|𝒙) like conditional means, the fact remains that they are 

used often in applied work. The natural logarithm transformation of dependent variables has a 

long history in empirical economics.  More recently, the inverse hyperbolic sine transformation 

has become popular. The inverse hyperbolic sine transformation has been used in labor 

economics (Autor et al., 2022; Gihleb et al., 2022), agricultural and environmental economics 

(Bellemare et al, 2013; Jayachandran et al., 2017; Yen and Jones, 1997), public economics (Kalil 

et al., 2022; Pence, 2006), charitable donations (Brown et al., 2015; Carroll et al., 2005), and 

economic history (Heblich et al., 2022). 

 We introduce two prominent transformation models often used in empirical research that 

can accommodate zero realizations of outcomes: 

 

 Natural logarithm:  𝑓!"(𝑦, 𝑐) 	= ln(𝑦 + 𝑐) 

 Inverse hyperbolic sine: 𝑓#$%&'"((𝑦, 𝑘) = arcsinh(𝑘𝑦) = ln<𝑘𝑦 + =(𝑘𝑦)) + 1? 	
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 Much of our focus will be on the roles played by the parameters c and k. In the case of 

the natural log transformation, the parameter 𝑐 > 0 guarantees that the left-hand side of 𝑓(𝑦) =

𝑥*𝛽 + 𝜀 is defined when 𝑦 = 0.  For the inverse hyperbolic sine transformation, although most 

researchers implicitly assume that 𝑘 = 1 , we explore the behavior of models that scale y 

multiplicatively, with 𝑘 > 0 , before applying inverse hyperbolic sine transformations 

(Aihounton and Henningsen, 2021; Norton, 2022).  

 Note that, as specified, these transformations accommodate outcomes 𝑦 ≥ 0 (the inverse 

hyperbolic sine also allows 𝑦 < 0 but that is not the focus of this paper). Beyond accommodation 

of 𝑦 = 0 outcomes — which our reading of the literature suggests is a key consideration when 

analysts use either the log or inverse hyperbolic sine transformations — such transformations 

will also tend to reduce the skewness of the distribution of the positive outcomes. And we 

emphasize that theory will typically be uninformative about which values of c and k would 

induce a linear specification of 𝐸[𝑓(𝑦)|𝒙] .  Moreover, note that for either transformation, 

different values of the parameter 𝑝 (i.e., 𝑐 or 𝑘) will induce different linear specifications, i.e., 

𝐸[𝑓(𝑦, 𝑝)|𝒙] = 𝒙*𝛽(𝑝). Indeed, for any particular specification 𝑓(𝑦, 𝑝) = 𝒙*𝛽(𝑝) + 𝑢 it may be 

more appropriate to consider 𝒙*𝛽(𝑝) as a linear predictor given a particular 𝑝  rather than a 

conditional mean, with corresponding estimates 𝒙*𝛽G(𝑝) viewed as best linear predictors. 

 With all this in mind, however, one of the main goals — often the main goal — of 

empirical analysis in this area is to obtain reliable estimates of policy parameters like the 

marginal effects or average marginal effects of x on some functional of the conditional 

distribution of 𝑦, typically 𝐸[𝑦|𝒙]. To accomplish this, estimates of the transformed models must 

be retransformed to the outcomes’ natural scales, a fact that came into widespread recognition in 

the literature on smearing estimators developed during the RAND Health Insurance Experiment 
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(Duan, 1983; Manning et al., 1987) but that was actually understood much earlier (Goldberger, 

1968; see also Halvorsen and Palmquist, 1980, and Thornton and Innes, 1989).  How such 

marginal effects can be derived from estimates of 𝑓(𝑦) = 𝒙′𝛽 + 𝜀, and the roles played by c 

and k in such retransformations, is another key focus in this paper. 

 Specifically, we demonstrate that as the extra parameters tend towards extreme values, 

the corresponding marginal effects approach those obtained from linear regression on 

untransformed outcomes (e.g., OLS) or approach a particular form of the linear probability 

model (LPM), which we describe below.  When y is strictly positive, it has been shown that the 

behaviors of ln(𝑦 + 𝑐)  and inverse hyperbolic sine range between the linear (y) and log-

transformed (ln(𝑦)) specifications (Aihounton and Henningsen, 2021; Norton, 2022). 

 We show that this is not true if y has a mass at zero. Including zeros greatly changes the 

marginal effects, compared to otherwise similar regressions wherein y is strictly positive. The 

intuition is that these continuous transformation functions (natural log and inverse hyperbolic 

sine) separate the zeros from the positives in a non-continuous way and that outcomes with 𝑦 =

0 can have enormous leverage on parameter estimates in ways that depend centrally on the extra 

parameters (i.e., c and k).  We believe this property has not previously been recognized. 

There are several important implications for applied researchers.  The estimated marginal 

effects in transformed models with zeros are biased.  The estimated marginal effects for these 

two transformed models lie between those from the untransformed model and those from a 

normed linear probability model.  Including zeros in the dependent variable may result in 

noteworthy changes in coefficients' point estimates, depending on the values of the parameters (c 

and k), in part because of the high leverage of those observations.  We will recommend that 
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instead of single index models researchers working with continuous positive outcomes with a 

mass at zero consider alternatives (e.g., two-part models (Belotti et al., 2015)). 

 We recognize that the care and handling of 𝑦 = 0 outcomes is likely of central concern 

and that, for whatever reasons, analysts may prefer to avoid model specifications wherein 

untransformed outcomes are modeled directly, as we noted above. Such care and handling is all 

the more challenging when analysts wish to avoid multiple-index specifications (e.g., two-part 

models). When 𝑦 = 0 outcomes are prominent in a sample we show that a linear-probability 

model interpretation — with 𝑦 = 0  and 𝑦 > 0  defining the binary outcomes — may be 

instructive.  

 In what follows we provide a detailed overview of the transformation models we explore, 

demonstrate the aforementioned connections to the linear probability model, suggest several 

implications for empirical research, and provide empirical illustrations of these issues using a 

sample from the Medical Expenditure Panel Survey (MEPS).  We also provide new insights into 

the recent influential paper by Bellemare and Wichman (2020). 

 
 
Overview of models with transformed Y 

 We start by describing and defining two transformations, paying particular attention to 

how the shape changes with changes in the extra parameter (see Table 1 for a summary of the 

transformations).  We will show graphs of the transformations as a function of the parameters 

and derive the derivatives as the parameters go to certain extreme values.  This will provide the 

background information needed to understand our main points about how regression results are 

sensitive to these parameters when the outcome has a substantial mass at zero. 
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 The natural logarithm transformation is widely used for outcomes that are positive, often 

when the goal is to compute marginal effects or elasticities.  However, the natural log of 0 is not 

defined, so when analyzing an outcome with some zeros, authors sometimes add an arbitrary 

positive constant c (in most cases 𝑐 = 1) to the outcome's natural measure so that the log 

transformation is defined for all sample observations.  Among other settings this approach has 

been used in healthcare policy.  For example, the Centers for Medicare and Medicaid Services 

used a log transformation of the ratio of the number of interns and residents to beds — plus a 

constant — to determine Medicare reimbursement for teaching hospitals (Rogowski and 

Newhouse, 1992; Dalton and Norton, 2000). 

Adding a constant c to y shifts the graph of 𝑓!"(𝑦, 𝑐) 	= ln(𝑦 + 𝑐) plotted against y to the 

left by c units (see Figure 1).  When 𝑐 = 1, ln(𝑦 + 1) passes through the origin at 𝑦 = 0.  As c 

approaches zero, the y intercept goes to −∞ .  There are further insights from taking the 

derivative of 𝑓!"(𝑦, 𝑐) with respect to y.  

𝑑ln(𝑦 + 𝑐)
𝑑𝑦 =

1
(𝑦 + 𝑐) 

 As c grows large, the derivative with respect to y at 𝑦 = 0 goes to zero, whereas when c 

goes to zero, the derivative at 𝑦 = 0 goes to infinity. 

lim
+,-,%→-

𝑑ln(𝑦 + 𝑐)
𝑑𝑦 = lim

+,-,%→-

1
(𝑦 + 𝑐) = ∞ 

 This means that as 𝑐 → 0 the function 𝑓!"(𝑦, 𝑐) will separate the zeros from all positive 

values of y so long as those positive values are bounded strictly away from zero. In this case, by 

“separate” we mean that as 𝑐 → 0 the difference ln(𝑦	 + 	𝑐) – ln(0	 + 	𝑐) grows arbitrarily large 

for any 𝑦 > 0.  This matters for estimating the marginal effect of a covariate 𝑥 on the outcome 𝑦 

because in a typical regression, the coefficient for 𝑥  reflects both the extensive margin for 
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changes in 𝑦 from 0 to non-zero and the intensive margin for changes in positive values of 𝑦. 

The coefficient is a weighted average of both the extensive and intensive margins.  As the 

difference between 𝑦 = 0 and 𝑦 > 0 changes, it changes the weights between these two marginal 

effects.  Our main point is that the estimated coefficient is much closer to describing effects on 

the extensive margin than previously thought (and is also normalized, which further changes the 

magnitude), and that interpreting this as an intensive margin is incorrect and biased.  

 The inverse hyperbolic sine transformation has some of those same features.  The inverse 

hyperbolic sine function, also known as the area hyperbolic sine function (denoted 

𝑎𝑟𝑐𝑠𝑖𝑛ℎ(𝑘𝑦)), is the natural logarithm of y plus an additional term equal to the square root of y-

squared plus one.  It is used by researchers who either have a nonnegative dependent variable or 

one that also is sometimes negative (Pence, 2006; Bellemare and Wichman, 2020; Aihounton 

and Henningsen, 2021; Norton, 2022).  For large values of y, the inverse hyperbolic sine function 

is similar to the log transformation, differing by only ln(2).  It also passes through the origin and 

is symmetric about the origin because it permits negative values of y.   

 Changing the parameter k is equivalent to changing the scale of y, for example, from 

dollars to pennies, or between euros and yen.  Graphically this means stretching or compressing 

the graph in an east-west direction (see Figure 2).  The derivative of the inverse hyperbolic sine 

function with respect to y declines with y, holding k constant. 

𝑑arcsinh(𝑘𝑦)
𝑑𝑦 =

𝑘
=(𝑘𝑦)) + 1

 

The derivative of the inverse hyperbolic sine function, at 𝑦 = 0 and as 𝑘 → ∞ goes to 

infinity, is equal to infinity. 

lim
+,-,0→∞

𝑑arcsinh(𝑘𝑦)
𝑑𝑦 = lim

+,-,0→∞

𝑘
=(𝑘𝑦)) + 1

= ∞ 
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 One implication of this is that the function 𝑓#$%&'"((𝑦, 𝑘) will, like the log transformation, 

separate the zeros from the positive values of y.  The issue about the regression coefficient 

reflecting both the extensive and intensive margins also applies to the inverse hyperbolic sine 

function when the dependent variable sometimes equals zero. 

 Finally, we briefly mention one other transformation function.  The power functions were 

proposed by Box and Cox (1964) to transform a continuous variable to be more symmetric.  We 

focus on a specification 𝑓1(𝑦, 𝑐) = 𝑦2  that is simpler than the original Box-Cox function 

𝑓34(𝑦, 𝜆) 	= (𝑦2 − 1)/l, which permitted the natural log transformation as a limiting case as  

l → 0.  The most common power transformation in empirical work is the square root function, 

with l = 0.5 (Ettner et al., 1998; Lindrooth, Norton, and Dickey, 2002; Veazie, Manning, and 

Kane, 2003).  Although other power transformations with l > 0	are possible in theory, only the 

square root transformation is easily retransformed back to the original scale. Therefore, we do 

not estimate power functions in our examples because it is not possible to transform marginal 

effects back to the original scale for arbitrary values of λ. 

 The power transformation also separates the zeros from the positives.  For small positive 

l the power function pulls all positive values towards 1.  It both pulls large positive values 

towards 1 and small positive values that are less than 1 up to one, leaving zeros unchanged (see 

Figure 3).  As l goes to zero from above this effectively creates a binary outcome. 

 In summary, these transformation functions treat zeros quite differently than small 

positives in the sense that, for extreme values of the parameters (c, k, and l), the transformed 

zeros become distant from transformations of any positive value.  This matters in a regression, as 

we will show in examples, because the zeros will then exert high leverage.  Changing the values 

of the parameters c, k, and l will consequently change the leverage of the zeros and therefore the 
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estimated parameters and marginal effects.  In fact, in the next section we will demonstrate that 

in the limit (as the parameters go to certain values), the marginal effects will converge to those of 

a normed linear probability model. 

 

Connection to the linear probability model 

 In this section we demonstrate that for a simple linear regression with a dependent 

variable transformed by either the log function or the inverse hyperbolic sine function, that the 

coefficients approach those of a linear probability model, suitable scaled.  Consider a simple 

linear model with one covariate, 

  𝑓(𝑦5 , 𝑝) = 𝛽-(𝑝) + 𝛽6(𝑝)𝑥5 + 𝑢5      where 𝑝 ∈ {𝑐, 𝑘} 

Let there be 𝑁  total observations with 𝑁-  observations in the 𝑦5 = 0  subsample and 𝑁7 

observations in the 𝑦5 > 0 subsample, these having corresponding index sets 𝐽- and 𝐽7 with 𝐽 =

𝐽- ∪ 𝐽7. Let 𝑠- = 𝑁- 𝑁⁄  denote the fraction of observations in the 𝑦 = 0 subsample. Note that 

𝑓(𝑦5 , 𝑝) = 𝑓(0, 𝑝) is constant for all 𝑗 in 𝐽-  and recall that 𝑓(0, 𝑝) = 0 always for the inverse 

hyperbolic sine and power transformations and when 𝑐 = 1 for the log transformation. Define 

𝑚8!(𝑝) =
6
9!
∑ 𝑓<𝑦5 , 𝑝?5∈;!   Subsample mean of 𝑓<𝑦5 , 𝑝? in 𝐽-, equals 𝑓(0, 𝑝) 

𝑚8"(𝑝) =
6
9"
∑ 𝑓<𝑦5 , 𝑝?5∈;"   Subsample mean of 𝑓<𝑦5 , 𝑝? in 𝐽7 

𝑚<!(𝑝) =
6
9!
∑ 𝑥55∈;!    Subsample mean of 𝑥5 in 𝐽- 

𝑚<"(𝑝) =
6
9"
∑ 𝑥55∈;"    Subsample mean of 𝑥5 in 𝐽7 

𝑚<(𝑝) =
6
9
∑ 𝑥55∈;    Sample mean of 𝑥5 

𝑚<#(𝑝) =
6
9
∑ 𝑥5)5∈;    Sample mean of 𝑥5) 
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𝑚<8"(𝑝) =
6
9"
∑ 𝑥5𝑓<𝑦5 , 𝑝?5∈;"  Subsample mean of 𝑥5𝑓<𝑦5 , 𝑝? in 𝐽7 

To streamline notation, assume henceforth and without loss of generality that 𝑚< = 0, 

i.e., that 𝑥 is centered on its sample mean. After a bit of algebra, the least squares estimate of 

𝛽6(𝑝) can be shown to be: 

𝛽G6(𝑝) =
6
=
c𝑠-𝑚<!𝑚8!(𝑝) + (1 − 𝑠-)𝑚<8"(𝑝)d	 	 	 (	1) 

where 

𝐷 = det i1 0
0 𝑚<#

j =𝑚<# > 0 

In those cases where 𝑓(0, 𝑝) = 0 equation (1) simplifies to: 

𝛽G6(𝑝) =
1
𝐷
(1 − 𝑠-)𝑚<8"(𝑝) 

 We can thus consider explicitly how 𝛽G6(𝑝)  varies with any of the parameters 𝑝 . 

Specifically, variation in 𝑝 changes two quantities in equation (1): (a) 𝑚8!(𝑝) = 𝑓(0, 𝑝) (with 

variation only for the log transformation); and (b) 𝑚<8"(𝑝), the average value of the product 

𝑥5𝑓<𝑦5 , 𝑝? in the  𝐽7 subsample. That is, 

𝑑𝛽G6(𝑝)
𝑑𝑝 =

1
𝐷 k𝑠-𝑚<!

𝑚8!(𝑝)
𝑑𝑝 + (1 − 𝑠-)

𝑚<8"(𝑝)
𝑑𝑝 l 

 Consider now a binary-outcome ("B") model where all outcomes in the 𝐽7 subsample are 

assigned the value 𝑚8"(𝑝), 

𝑓3<𝑦5 , 𝑝? = 𝛽-,3(𝑝) + 𝛽6,3(𝑝)𝑥5 + 𝑣5 

where 

𝑓3<𝑦5 , 𝑝? = n
𝑓(0, 𝑝),					𝑦5 = 0
𝑚8"(𝑝),					𝑦5 > 0 

The corresponding least-squares estimate of 𝛽G6,3(𝑝) is 
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𝛽G6,3(𝑝) =
6
=
c𝑠-𝑚<!𝑚8!(𝑝) + (1 − 𝑠-)𝑚<"𝑚8"(𝑝)d		 	 (	2)	

 In those cases where 𝑓(0, 𝑝) = 0 equation (2) simplifies to 

𝛽G6,3(𝑝) =
1
𝐷
(1 − 𝑠-)𝑚<"𝑚8"(𝑝) 

Note that 𝑚<! and 𝑚<" necessarily have opposite signs (unless both are zero). For the inverse 

hyperbolic sine and power transformations 𝑚8!(𝑝) = 0  and 𝑚8"(𝑝) > 0  for the log 

transformation these terms can be positive, zero, or negative. 

 The difference between 𝛽G6(𝑝) and 𝛽G6,3(𝑝) is 

𝛽G6(𝑝) − 𝛽G6,3(𝑝) =
(1 − 𝑠-)

𝐷 c𝑚<8"(𝑝) − 𝑚<"𝑚8"(𝑝)d 

=
(1 − 𝑠-)

𝐷 cov7<𝑥, 𝑓(𝑦, 𝑝)? 

where cov7<𝑥, 𝑓(𝑦, 𝑝)? is the empirical covariance in the  𝐽7 subsample between 𝑥 and 𝑓(𝑦, 𝑝). 

 The standard 0-1 linear probability ("LP") model arises from an affine transformation of 

𝑓3<𝑦5 , 𝑝?: 

𝑓>1<𝑦5 , 𝑝? =
𝑓3<𝑦5 , 𝑝? − 𝑓(0, 𝑝)
𝑚8"(𝑝) − 𝑓(0, 𝑝)

= 1<𝑦5 > 0? 

As such, 𝛽G6(𝑝) − 𝛽G6,3(𝑝) = ((1 − 𝑠-) 𝐷⁄ )cov7<𝑥, 𝑓(𝑦, 𝑝)? can be rewritten as 

𝑇𝛽G6(𝑝) − 𝛽G6,>1 =
(1 − 𝑠-)𝑇

𝐷 cov7<𝑥, 𝑓(𝑦, 𝑝)? 

where 𝛽G6,>1  is the estimate from the standard linear probability model with 𝑓!?<𝑦5 , 𝑝?

 

as the 

dependent variable and where 𝑇 = c𝑚8"(𝑝) − 𝑓(0, 𝑝)d
@6

.   For the log transformation, 𝑇 goes to 

zero as 𝑐 goes to zero because 𝑚8"(𝑐) is finite and 𝑓(0, 𝑐) goes to minus infinity. For the inverse 

hyperbolic sine transformation, 𝑇 goes to zero as 𝑘 goes to infinity because 𝑚8"(𝑘) goes to plus 
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infinity and 𝑓(0, 𝑐) = 0.  As such the rescaled 𝛽G6(𝑝) and linear probability model estimate, 

𝛽G6,>1 , differ only to the extent that the rescaled cov7<𝑥, 𝑓(𝑦, 𝑝)? is nonzero.  This rescaled 

difference will tend to zero as the transformation parameters go to their extreme values.   

In other words, estimated parameters from the natural log and inverse hyperbolic sine 

transformations are closely related to estimated parameters from the linear probability model, but 

normalized by a number that also grows as the transformation parameters go to their extreme 

values.  It may thus be worth contemplating whether estimates of standard linear probability 

models provide useful evidence that circumvents entirely reliance on the complex machinery of 

dependent-variable transformation and retransformation. 

 

Implications (when 𝒚	³	𝟎, including mass at 0) 

There are six main implications from the key result that when the continuous outcome 

has a mass at zero that the estimated marginal effects in a regression with a transformed 

dependent variable lie between the marginal effects from the untransformed model and the 

marginal effects of the normed linear probability model. 

First, when the dependent variable has a mass at zero it is not true that the estimated 

marginal effects for the inverse hyperbolic sine transformation lie between the untransformed 

model and ln(𝑦), as implied by (Aihounton and Henningsen, 2021).  The marginal effects for the 

log transformation ln(𝑦 + 𝑐) will also not approach those of ln(𝑦) when some observations have 

𝑦 = 0.  The intuition for what should happen when there is a mass at zero is misled by what 

happens in models without zeros. 

 Second, the presence of zeros changes the estimated coefficients. Of course, the amount 

of change depends on the data, the distribution of the outcome, and the model specification.  But 
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the presence of observations that, by definition, are at one extreme of the distribution of the 

dependent variable means that those observations will have more leverage than other 

observations in the middle of the distribution.  Furthermore, the amount of leverage depends a lot 

on the values of the three parameters (c, k, and l).  

 Third, the choice of those parameters has no basis in theory, at least none that we have 

seen.  The Box-Cox power transformations (1964) were introduced to reduce skewness and 

reshape the distribution of the outcome towards symmetry.  The inverse hyperbolic sine 

transformation has been hailed as a way to include zeros (and in some applications negative 

values) in a single transformed dependent variable that also reduces skewness.  Recently, it has 

been pointed out that marginal effects and elasticities will vary depending on whether the 

outcome is scaled or not (Aihounton and Henningsen, 2021; Norton, 2022).  For instance, there 

is no theoretical reason why financial outcomes should be expressed in one currency unit or 

another.  Or, put another way, there is no reason to expect a priori that results in dollars should 

be preferred to results in thousands of dollars or results in Euros.  In linear models with 

untransformed LHS variables such scaling does not change the final interpretation at all, but in 

the inverse hyperbolic sine transformation it does.  Aihounton and Henningsen (2021) suggest 

ways to choose the scaling factor for an inverse hyperbolic sine model based on statistical fit. 

Finally, there is no theoretical reason for choosing any particular positive constant to add to the 

log transform model.  Adding 1.0 is a common default, but has no theoretical justification.  

 Fourth, there is no data generating process (that we know of) that is appropriate for a 

single index function, has a continuous distribution on 𝑦 > 0, and has a mass at zero (other than 

the Tobit model, but that is restricted to distributions that are censored, which is rarely the case 

with real economic data).  This fact alone should be a warning that transformations of the 



 
 

14 

dependent variable are unlikely to represent a model that generates marginal effects across the 

entire range of 𝑦.  It is also hard to think of how to run simulations using data generated from a 

single-index transformation model, because such a model cannot generate the mass at zero.  

Instead, simulations need to be done using a two-part model to generate the model.  Only then 

can we see how the bias in the marginal effects, if any, depends on things like the percentage of 

observations that are zero, and the parameters (c and k).  

 Fifth, we recommend using a two-part model whenever there is a mass at zero for a 

continuous outcome (Belotti et al., 2015).  This would solve many of the problems described 

above and allow for estimation of marginal effects at both the intensive and extensive margins, at 

the cost of estimating twice as many parameters. Alternatively single-index specifications that do 

not rely on transformations (e.g., OLS, log-link GLM, Poisson regression) may also merit 

consideration. (Of course, with non-negative integer-valued outcomes (count data) there will 

often be natural parametric relationships between the zero and positive outcomes (e.g., Poisson 

and negative binomial distributions) in the sense that they do not "separate" in the manner 

discussed above, so-called zero-inflated count-data distributions perhaps notwithstanding.) 

 Sixth and specific to the inverse hyperbolic sine transformation, which also allows 

negative values:  With outcomes that can take on both positive and negative values but has no 

mass at zero, it is still the case that in the limit, as k goes to ¥, the results will approximate that 

of a linear probability model.  In this case, however, the dependent variable for that LPM is an 

indicator for whether the outcome is positive or negative. 

 

Data for empirical example 
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 To demonstrate our points, we need a data set with a dependent variable that is 

nonnegative, skewed, and has a mass at zero.  One such variable is healthcare expenditures.  The 

Medical Expenditure Panel Survey (MEPS) is a national survey on the use of medical care in the 

United States.  The MEPS is publically available at meps.ahrq.gov/mepsweb.  We use data on a 

sample of 133,659 non-elderly adults from 2008–2014 (Deb and Norton, 2018). 

 The dependent variable is total healthcare expenditures for a person in one year, 

including all of their inpatient, outpatient, and out-of-pocket spending.  Expenditures can never 

be negative but are highly right skewed (see Figure 4 for a histogram).  About 24% of the sample 

spends zero in a year.  Eight and a half percent spend more than $10,000.  The highest 

expenditure is over $2 million.  Among those who spend at least $1, the mean is $4,780 and the 

median is $1,234. 

 For illustrative purposes, we control for just a few key covariates (see Table 2).  The 

mean age is 40, with a range from 18 to 64.  A little more than half of the persons in the sample 

are female.  Family income has a mean of $64,000 and it is measured in thousands of dollars.  In 

terms of health status, 23% have at least one health limitation, and the average SF12 physical and 

mental health scales are each about 50, with a theoretical range of zero to 100.  A higher value of 

the physical and mental health scales indicates better health status.  In the empirical examples we 

will be interested in comparing the estimated marginal effects. 

 

Empirical examples  

 For the empirical examples, we start with results for two models that serve as 

benchmarks.  One is the linear regression of the untransformed dependent variable and the other 

is the linear probability model.  The dependent variable for both is based on total annual 
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healthcare expenditures, including the zeros.  For the linear probability model, the dependent 

variable is whether the person spent at least $1, as opposed to spending nothing.  The covariates 

are individual level variables for demographics, income, and health status, as described in the 

data section.  Later we will show how using a transformed dependent variable and adjusting the 

three extra parameters (c and k) to more extreme values can reproduce either of these benchmark 

results. 

 The covariates for the linear regression predict individual healthcare expenditures in the 

expected way (see the first column of Table 3).  Expenditures increase with age by about $37 per 

year.  Females spend more than $600 more per year than males on average.  Healthcare 

expenditures increase with family income (healthcare is a normal good).  People who have any 

health limitations spend nearly $4,000 more than those who have none, on average.  Spending 

decreases with improvements in both physical and mental health status, as measured by the 

SF12.  The coefficients for the linear probability model to predict the probability of any spending 

all have the same sign, but of course are smaller in magnitude because the marginal effects have 

the interpretation of a change in the probability of spending any amount compared to spending 

nothing.  For example,  the probability of positive spending is 14 percentage points greater for 

women than men (see the second column of Table 3). 

 Next, we show empirically that the log transformed and the inverse hyperbolic sine 

transformed outcomes yield retransformed marginal effects on the original scale that depend 

strongly on the values of c and k.  Later we will show that they converge in the limit to the 

marginal effects from either the untransformed y or the linear probability model, but for now we 

just want to show that the results vary.  It is necessary to convert the marginal effects back to the 

original scale (dollars) to be comparable across models.  The coefficients are not comparable.  
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The retransformation for the log function uses Duan’s smearing estimate (1983), specifically, the 

mean of the exponentiated residuals multiplied by the exponentiated linear index.  The 

retransformation for the inverse hyperbolic sine function uses a similar retransformation, based 

on Duan’s general function (Norton, 2022).  Because the retransformation for power functions 

does not have a formula that can be expressed simply in terms of the linear index and the 

residuals (except for the square root), we do not show how marginal effects for power functions 

vary with l.  While it is possible to derive retransformed models for positive integer values of 

l > 2 the conditional means of such models depend on higher order moments of the residuals. 

 The retransformed marginal effects for the log transform model depend strongly on the 

additive constant c.  As c increases from the tiny value of one millionth to the typical value of 

one to the enormous value of one million, the marginal effects decrease from implausibly large 

values (see the left column of Table 4) to values that are quite close to those from the 

untransformed y model (compare the right column of Table 5 to the left column of Table 3).  Of 

note, the estimated marginal effects when 𝑐 = 1, the default for most researchers who use the log 

transformation plus a constant, are many times as large as those from the basic linear model.  

Because the data are from a real data set and not simulated, we do not know the true value of the 

marginal effects.  But the enormous range of marginal effects raises a red flag that warrants 

further investigation. 

 The results for the inverse hyperbolic sine transformation show a similarly wide range of 

marginal effects, depending on the parameter k.  However, this time, the tiny value of k (left 

column of Table 6) yields marginal effects close to the untransformed model, and the enormous 

values of k (right column of Table 7) have implausibly large marginal effects.  Again, assuming 
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that 𝑘 = 1, which is typical for researchers who use the inverse hyperbolic sine transformation, 

yields marginal effects that are many times as large as the untransformed model. 

 Although the marginal effects for the log transformation with 𝑐 = .000001  and the 

inverse hyperbolic sine transformation with 𝑘 = 1,000,000 do not appear to have anything in 

common with the linear probability model, we next show that they do.  First, we show that the 

zeros become progressively more separate from the positive values when the parameters go to 

the extreme, using box and whisker plots (see Figures 5 and 7).  For all three transformations, the 

zeros become separated from the bell-curve of transformed positive values.  The distance 

between the zeros and the mean of the transformed positives becomes large relative to the spread 

of the positives as shown earlier.  This is seen most clearly with graphs of the power 

transformation.  When l = .01, the distribution is essentially a binary variable.  All the positive 

values are pulled towards one (and if there were any outcomes in fractions of pennies, those too 

would get transformed to be nearly one).  For the log and inverse hyperbolic sine 

transformations, one can imagine that as c gets even smaller and as k gets even larger that the 

distributions would also become essentially that of a binary variable (although not with values of 

0 and 1). 

 If the distributions are normed as described in the theory section, then the regression of 

the normed transformed outcome will have marginal effects (after retransforming back to the 

original scale) close to those of a linear probability model.  We show this in two ways.  First, we 

run the normed regressions (see results in Tables 8, 9, and 10).  We show the results for three 

different values of the parameters.  The first has 𝑐 = 𝑘 = 1, and the marginal effects are not too 

far off, but certainly not identical (see Table 8).  The second has 1/𝑐 = 𝑘 = 1,000,000.  The 

marginal effects are now much closer to the linear probability model, but still all larger in 
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absolute value by somewhere between 6% and 37% (see Table 9).  The third uses the extreme 

value of a googol, that is, 1/𝑐 = 𝑘 = 106--.  Now the marginal effects for the log and inverse 

hyperbolic sine transformations are quite close (see Table 10). 

 We also show this visually by plotting the normed data against age, one representative 

continuous explanatory variable, and fitting the best fit regression line.  This shows two things.  

First, that the transformed positive values (𝑓(𝑦|𝑦 > 0)) for both transformations collapse around 

1, when normed by [𝑓(𝑦t) − 𝑓(0)].  Second, the slopes of the regression lines get close to the 

slope of the linear probability model as the parameters go to extreme values (see Figures 6 and 

8). 

 

What to use instead of transformed models? 

 If the transformation models are problematic when the dependent variable is sometimes 

zero, what are the best alternatives?  To explore this, we wanted to know the correct answer by 

generating data through a data generating process that allows for a mass at zero.  We used the 

two-part model, which first models the probability that the dependent variable is zero or positive, 

and then, if positive, generates a continuous dependent variable.  We present six representative 

data sets, but have also generated many more data sets and found similar conclusions.  The data 

vary on two dimensions.  First, the fraction of zeros is 5%, 30%, or 80%.  Second, the 

distribution of the positive values is either normal or skewed (specifically, log normal).  

 We estimated marginal effects for five models.  The first two were the natural logarithm 

of 𝑦 + 1 and the inverse hyperbolic sine (with 𝑘 = 1).  We expect that these will produce biased 

results when the dependent variable can take on values of zero.  The other three models are the 

two-part model (with a logit first part), untransformed y, and Poisson.  The second part of the 
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two-part model is either simple regression, for when the data generating process is normal, or 

GLM with a log link and gamma family distribution, for when the data generating process is 

skewed.  During preliminary investigation we also estimated negative binomial count models, 

but unlike the Poisson count model those were almost never close to the two-part model.  

Because we know the data generating process is from a two-part model, those results are 

unbiased.  We will check whether untransformed y and Poisson return similar marginal effects.   

 The six covariates were created so that they had different effects in the two parts of the 

two-part model, sometimes positive and sometimes negative.  The four continuous variables 

(denoted x1, x2, x3, and x4 in the tables) had effects that were positive in both (x1), negative in 

both (x4), or alternating (x2 and x3).  The two binary variables (denoted b1 and b2 in the table) 

had effects on only the first or the second parts in the data generating model, respectively. 

 The results were striking.  Untransformed y and Poisson estimated similar marginal 

effects to the two-part model in all cases, as well as in all other cases that we ran (not shown) 

with other designs.  The results for the normal distribution are in Table 11 and the results for the 

skewed distribution are in Table 12.  There was no systematic difference in the magnitude of the 

standard errors across the two-part, untransformed y, and Poisson approaches.  As expected, the 

two transformed models performed poorly, with estimated marginal effects quite different than 

the true values, even when the fraction of the sample with the dependent variable equal to zero 

was only 5 percent. 

 

Bellemare and Wichman 

 Our findings provide some important context for the results in the well-cited paper by 

Bellemare and Wichman (2020; henceforth BW), which, among other things, shows how to 
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compute elasticities when either the dependent variable or an independent variable (or both) are 

transformed by the inverse hyperbolic sine transformation.  For example, consider the BW 

derivation of elasticities of the dependent variable y with respect to an independent variable x.  

They explain how those formulas approximate the formula for elasticities from an equivalent 

specification with logarithmic transformation for sufficiently large values of y and x.  To better 

understand how large is large enough, they used simulated data and adjusted the parameter k.  In 

their examples, multiplying y by k is equivalent to having a larger value of y.  BW show that the 

elasticities in their simulated data become “more stable,” and are virtually constant for 𝑘 > 10 

(page 54, Caveats section).  Furthermore, their results show that the elasticities approach those of 

the linear y linear x case as 𝑘 → 0 (see their Table 1). 

 One might be tempted to conclude from the BW simulation that the inverse hyperbolic 

sine transformation produces elasticities that range between those of the linear transformation 

and the log transformation, depending on the value of k.  But further investigation reveals a 

different conclusion.  Their simulated data has no zeros (code is available at 

http://marcfbellemare.com/wordpress/research under Replication Materials); indeed, as BW note, 

the elasticities are not defined for 𝑦 = 0.  For all values of 𝑘 ≥ 1 in their data, the dependent 

variable is always positive.  For values of 0.001 ≤ 𝑘 < 1 there are exactly three negative values 

and no zeros out of a total sample of 𝑁 = 10,000.  Our paper shows the importance of zeros in 

calculations of marginal effects, so we reproduced the BW simulated data and calculated 

marginal effects for the arcsinh(y)-linear(x) specification (see Table 13).  As with their results for 

elasticities, we find that the marginal effects approach the marginal effects for the linear(y)-

linear(x) specification as 𝑘 → 0  and approach the marginal effects for the ln(y)-linear(x) 

specification as 𝑘 →∞.   
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Our results offer additional context for the BW findings.  They find stable elasticities for 

large y (meaning large values of k) precisely because there are neither zeros nor negative values 

in their data.  Yet, one of the main motivations for using the inverse hyperbolic sine 

transformation is to apply to data with a large mass at zero.  Without zeros, researchers would 

instead typically use a log transformation without adding a positive constant c. 

 There are additional insights from revisiting BW’s analysis of real data taken from 

Dehejia and Wahba (1999), who evaluated LaLonde’s (1986) experiment for the National 

Supported Work (NSW) demonstration.  The basic design is to see whether disadvantaged 

workers who were randomly assigned to participate in the NSW program had higher future 

earnings than workers who were randomly assigned not to participate.  The data set and analysis 

code again are found at the website http://marcfbellemare.com/wordpress/research under 

Replication Materials. 

 We analyzed the same data to demonstrate how our insights about the interpretation of 

results with zeros in a transformation model matters in a real data set.  For simplicity, we run 

models in which the dependent variable, earnings in 1978, is transformed by either the inverse 

hyperbolic sine function or the natural log, but the independent variable of interest, earnings in 

1975, is not transformed.  The data set has 445 observations.  In 1978 137 (30.8%) of the 

observations had zero earnings. 

 First, we show that changing the parameter k has an enormous effect on both marginal 

effects and elasticities this data set with a large fraction of zeros.  For the inverse hyperbolic sine 

transformation, as k ranged from 0.000001 to 1,000,000, the marginal effect of earnings in 1975 

on earnings in 1978 changed from 0.1667 to 21.2 and the earnings elasticity changed from 

0.00023 to 0.357 (see Table 14).  Similarly, we varied the parameter c for the natural log 
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transformation and again both the marginal effects and elasticities changed by several orders of 

magnitude (see Table 15).  Note that the marginal effect when k is small (0.1667) is about the 

same as when c is large (0.1658).  We expected this result because in the limit both will approach 

the marginal effect for the linear untransformed dependent variable (0.1667).  In contrast, when 

those parameters go to the other extreme, the marginal effects get large because they equal the 

linear probability model parameter multiplied by the mean of the transformed value of y for the 

subset with positive values.  The parameters k and c greatly affect the estimated marginal effects 

and elasticities when the dependent variable is transformed and has some zero values.    

 Next we show how the linear probability model produces results that are closely related 

to those of the inverse hyperbolic sine transformation (with 𝑘 = 1 ) and the natural log 

transformation (with 𝑐 = 1).  At first, a comparison of those three models does not seem to show 

similar results (see Table 16).  But after norming the positive values of the transformed models 

by the expected value when 𝑦 > 0 (divide by 9.242 for 𝑎𝑟𝑐𝑠𝑖𝑛ℎ(𝑦) and divide by 8.54 for 

ln(𝑦 + 1), see last row of Table 16), the marginal effects are quite close, as we have shown 

above that they must be.  Visually, the normed models have slopes similar to the linear 

probability model, as shown in Figure 9. 

 Finally, we analyze the data using other models without transformations.  Specifically, 

we estimate the two-part model, OLS with untransformed y, and Poisson.  The two-part model 

that we estimated had a logit first part and then a generalized linear model with a log link and 

gamma family distribution.  The two-part model has the advantage of also showing marginal 

effects (and elasticities) on both the extensive and intensive margins, which we also show.  

Given our results above using simulated data, we expect that all three of those models should 

give similar overall marginal effects.  We find exactly that.  The estimated overall marginal 
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effect of the NSW policy variable is about $1,720 and the estimated overall marginal effect of 

earnings in 1975 was about $0.167 (see Table 17).  The estimated elasticities for earnings in 

1978 with respect to either NSW or earnings in 1975 were about 0.12 and 0.037, respectively.  

For comparison, Bellemare and Wichman (2020) estimated the elasticity of earnings in 1978 

with respect to earnings in 1975 to be 0.155 (see their column 3 of their Table 3).  The four-fold 

difference in the estimated elasticity is due, we argue, to the presence of zeros and the arbitrary 

choice of 𝑘 = 1 in their inverse hyperbolic sine transformed model.  

 

Conclusions 
 
 We studied two classes of models that transform the dependent variable y — the natural 

logarithm of y plus a constant and the inverse hyperbolic sine.  Both are widely used for 

dependent variables that are non-negative, skewed, and have a large mass at zero.  When these 

models are used to analyze data with a dependent variable that has a mass at zero, and as the 

models’ extra parameters go to extreme values (zero or infinity), the estimated retransformed 

marginal effects approach those of either the untransformed linear regression or the linear 

probability model.  The inverse hyperbolic sine was previously thought to approach the natural 

log model (as k gets large), but with a mass at zero we show that this is not true.  We show that 

two-part models, which correspond to a data generating process with a mass at zero and skewed 

positive values, yields similar marginal effects to both OLS on the untransformed y and Poisson.  

If researchers care about estimating marginal effects, then we recommend using these simpler 

models that do not use transformations.  

 While this paper has suggested several promising estimation strategies models of 

sometimes-zero nonnegative outcomes, others not considered here may be useful foci in future 
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research. For instance, one potentially promising line of inquiry would consider various semi-

parametric approaches that allow flexible specification of the contribution of right-hand side 

variables to conditional means and corresponding marginal effects. Such models might avail of 

GLM-type link functions to accommodate the non-negative nature of the dependent variables 

and then specify a flexible structure of the covariates (see also Gilleskie and Mroz, 2004, for 

related discussion). 
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Table 1:  Comparative information about the three transformation functions. 
 

 Transformation of y 
 Natural  

Logarithm 
Inverse  

Hyperbolic Sine 
Power or 
Box-Cox 

    
Formula ln(𝑦 + 𝑐) arcsinh(𝑘𝑦) 𝑦2 
  ln(𝑘𝑦 + =𝑘𝑦) + 1) <𝑦2 − 1? 𝜆⁄  
    
Extra parameter 𝑐 > 0 𝑘 > 0 𝜆 > 0 
    
Domain of y [0,¥) (–¥,¥) [0,¥) 
Range of 𝒇(𝒚) (–¥,¥) (–¥,¥) [0,¥) 
    
Marginal effects    
® Untransformed y c ® ¥ k ® 0 l ® 1 
® LPM c ® 0 k ® ¥ l ® 0 
    

 
 
 
 
Table 2:  Summary statistics for the MEPS data, 2008–2014. 
 
 Mean Std. Dev. Minimum Maximum 
Outcome     
    Healthcare Expenditures ($) 3,632.5 13,114.8 0 2,343,843 
     
Covariates     
    Age 40.2 13.2 18 64 
    Female .534 .499 0 1 
    Family Income  ($1,000) 60.9 55.0 -182.1 556.1 
    Any limitations .191 .393 0 1 
    Physical health score 50.7 9.6 4.6 74.1 
    Mental health score 50.8 10.1 .2 78.1 
 
N = 133,659. 
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Table 3:  Benchmark marginal effects for untransformed y and for linear probability 
models to predict healthcare expenditures. 

 
  

Untransformed  
y 

Linear  
Probability 

Model 
Covariates   
    Age 37.32 .00391 
 (2.79) (.00009) 
    Female 643.5 .14122 
 (69.4) (.00222) 
    Family Income ($1,000) 12.458 .00113 
 (.648) (.00002) 
    Any limitations 3888.3 .11248 
 (103.8) (.00333) 
    Physical health score –245.08 –.00392 
 (4.23) (.00014) 
    Mental health score –65.59 –.00314 
 (3.58) (.00011) 
N = 133,659.  Standard errors are in parentheses. 
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Table 4:  Retransformed marginal effects: regression of ln(y+c) for different small values of c. 
 
----------------------------------------------------------------------------------------- 
    Variable | ln(y+.000001)    ln(y+.001)      ln(y+.01)       ln(y+.1)        ln(y+1)    
-------------+--------------------------------------------------------------------------- 
         age |   3880567.09       21249.05        5329.82        1569.16         533.01   
             |    517232.27        1244.87         233.78          52.82          13.99   
      female | 129995982.53      689511.29      169916.33       48804.46       15981.43   
             |  17671053.86       41343.46        7547.94        1631.75         406.59   
      faminc |   1083879.72        5850.95        1456.14         424.09         141.76   
             |    159909.52         394.76          72.57          15.68           3.90         
      anylim | 122107540.36      692065.27      176771.65       53327.94       18748.31   
             |  16989489.50       44415.43        8639.03        2016.64         549.18   
         pcs |  -4672582.81      -27317.72       -7087.29       -2181.56        -788.15   
             |    666559.17        1844.78         366.67          87.02          23.94   
         mcs |  -3162728.77      -17429.72       -4386.98       -1297.73        -444.00   
             |    461569.13        1200.99         234.84          55.49          15.47   
-------------+--------------------------------------------------------------------------- 
           N |       133659         133659         133659         133659         133659   
----------------------------------------------------------------------------------------- 
                                                                             Legend: b/se 
 
 
Table 5:  Retransformed marginal effects: regression of ln(y+c) for different large values of c. 
 
----------------------------------------------------------------------------------------- 
    Variable |      ln(y+1)       ln(y+10)      ln(y+100)      ln(y+1000)   ln(y+1000000)  
-------------+--------------------------------------------------------------------------- 
         age |       533.01         204.66          85.40          41.34          38.13   
             |        13.99           4.28           1.54           0.81           2.36   
      female |     15981.43        5796.94        2231.16        1004.86         677.57   
             |       406.59         115.57          39.08          20.09          58.79   
      faminc |       141.76          53.02          21.24          10.12          12.22   
             |         3.90           1.11           0.37           0.19           0.55               
      anylim |     18748.31        7586.28        3478.27        2060.41        3810.17   
             |       549.18         170.82          60.99          30.88          87.95   
         pcs |      -788.15        -332.03        -162.55        -105.89        -236.20   
             |        23.94           7.47           2.64           1.30           3.58   
         mcs |      -444.00        -172.89         -75.08         -41.22         -63.47   
             |        15.47           5.01           1.90           1.03           3.03   
-------------+--------------------------------------------------------------------------- 
           N |       133659         133659         133659         133659         133659   
----------------------------------------------------------------------------------------- 
                                                                             Legend: b/se 
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Table 6: Retransformed marginal effects: regression of arcsinh(ky) for different small values of 
k. 
 
----------------------------------------------------------------------------------------- 
    Variable | IHS(.000001*y)  IHS(.001*y)     IHS(.01*y)      IHS(.1*y)       IHS(1*y)    
-------------+--------------------------------------------------------------------------- 
         age |        37.96          45.77         111.46         271.75         728.22   
             |         2.57           0.87           2.07           6.07          20.58   
      female |       659.54        1106.10        2950.79        7834.36       22108.71   
             |        63.96          21.72          53.18         167.32         610.01   
      faminc |        12.46          11.04          27.88          71.06         194.78   
             |         0.60           0.20           0.51           1.61           5.85   
      anylim |      3900.09        2192.72        4382.03        9888.21       25315.99   
             |        95.67          33.82          82.60         241.25         801.51   
         pcs |      -243.47        -111.30        -200.50        -426.45       -1054.35   
             |         3.90           1.44           3.61          10.55          34.85   
         mcs |       -64.92         -44.28         -96.00        -228.06        -604.95   
             |         3.30           1.11           2.52           6.97          22.38   
-------------+--------------------------------------------------------------------------- 
           N |       133659         133659         133659         133659         133659   
----------------------------------------------------------------------------------------- 
                                                                             Legend: b/se 
 
Table 7: Retransformed marginal effects: regression of arcsinh(ky) for different large values of 
k. 
 
----------------------------------------------------------------------------------------- 
    Variable |     IHS(1*y)      IHS(10*y)     IHS(100*y)    IHS(1000*y)  IHS(1000000*y)  
-------------+--------------------------------------------------------------------------- 
         age |       728.22        2232.20        7940.28       33339.23     7076802.30   
             |        20.58          81.21         378.94        2139.78     1002124.08   
      female |     22108.71       70011.07      254639.29     1086570.43   237583095.00   
             |       610.01        2546.50       12358.86       71474.33    34280041.07   
      faminc |       194.78         605.51        2175.00        9197.88     1978562.88   
             |         5.85          24.48         118.70         679.68      308788.80   
      anylim |     25315.99       75244.15      261775.27     1080851.33   222140042.63   
             |       801.51        3071.06       13858.23       75542.75    32747451.79   
         pcs |     -1054.35       -3057.65      -10442.00      -42492.64    -8481140.95   
             |        34.85         131.94         584.62        3115.79     1280123.54   
         mcs |      -604.95       -1843.07       -6528.14      -27323.12    -5765141.22   
             |        22.38          84.11         375.90        2041.33      890776.18   
-------------+--------------------------------------------------------------------------- 
           N |       133659         133659         133659         133659         133659   
----------------------------------------------------------------------------------------- 
                                                                             Legend: b/se 
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Table 8:  Marginal effects for normed regressions with c=k=1. 
------------------------------------------------------------- 
    Variable |       LPM           ln(y+1)    arcsinh(1*y)    
-------------+----------------------------------------------- 
         age |     0.003913       0.005580       0.005438     
             |     0.000089       0.000094       0.000093     
      female |     0.141217       0.167319       0.165101     
             |     0.002224       0.002343       0.002314     
      faminc |     0.001131       0.001484       0.001455     
             |     0.000021       0.000022       0.000022     
      anylim |     0.112480       0.196287       0.189053     
             |     0.003327       0.003505       0.003462     
         pcs |    -0.003925      -0.008252      -0.007874     
             |     0.000136       0.000143       0.000141     
         mcs |    -0.003138      -0.004649      -0.004518     
             |     0.000115       0.000121       0.000119     
-------------+----------------------------------------------- 
           N |       133659         133659         133659     
------------------------------------------------------------- 
                                                 Legend: b/se 
 
Table 9:  Marginal effects for normed regressions with (1/c)=k=1 million. 
--------------------------------------------------------------- 
    Variable |       LPM     ln(y+.000001)  arcsinh(1000000*y)  
-------------+------------------------------------------------- 
         age |     0.003913       0.004481       0.004463       
             |     0.000089       0.000089       0.000089       
      female |     0.141217       0.150114       0.149829       
             |     0.002224       0.002207       0.002207       
      faminc |     0.001131       0.001252       0.001248       
             |     0.000021       0.000021       0.000021       
      anylim |     0.112480       0.141005       0.140090       
             |     0.003327       0.003301       0.003301       
         pcs |    -0.003925      -0.005396      -0.005349       
             |     0.000136       0.000134       0.000134       
         mcs |    -0.003138      -0.003652      -0.003636       
             |     0.000115       0.000114       0.000114       
-------------+------------------------------------------------- 
           N |       133659         133659         133659       
--------------------------------------------------------------- 
                                                   Legend: b/se 
 
Table 10:  Marginal effects for normed regressions with (1/c)=k=1 googol. 
-------------------------------------------------------------- 
    Variable |       LPM   ln(y+(1/googol))  arcsinh(googol*y)   
-------------+------------------------------------------------ 
         age |     0.003913       0.003963       0.003963      
             |     0.000089       0.000089       0.000089      
      female |     0.141217       0.142001       0.141999      
             |     0.002224       0.002220       0.002220      
      faminc |     0.001131       0.001142       0.001142      
             |     0.000021       0.000021       0.000021      
      anylim |     0.112480       0.114993       0.114986      
             |     0.003327       0.003321       0.003321      
         pcs |    -0.003925      -0.004054      -0.004054      
             |     0.000136       0.000135       0.000135      
         mcs |    -0.003138      -0.003184      -0.003184      
             |     0.000115       0.000114       0.000114      
-------------+------------------------------------------------ 
           N |       133659         133659         133659      
-------------------------------------------------------------- 
                                                  Legend: b/se 
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Table 11 Comparison of marginal effects for ln(𝑦 + 1), arcsinh(y), two-part model, 
untransformed y, and Poisson. 
Simulated data with 5% zeros and normal errors. 

Variable lny_N05 arcsinh_N05 tpm_N05 y_N05 pois_N05 
x1 22794.98 26965.38 1508.43 1555.66 1554.79 

 1356.27 1699.02 36.74 52.23 53.90 
x2 10743.52 12763.15 413.94 396.95 396.24 

 930.36 1134.70 35.72 44.26 45.01 
x3 -11414.67 -13558.14 -414.67 -436.31 -436.13 

 947.46 1158.21 33.52 44.60 45.41 
x4 -17365.27 -20557.20 -1086.08 -1092.29 -1092.84 

 1129.47 1401.69 36.63 47.47 48.73 
b1 27426.57 32513.14 1601.47 1444.14 1446.03 

 1801.23 2231.24 84.22 78.37 80.00 
b2 -22.75 -80.74 390.96 332.42 332.66 

 1474.15 1747.47 62.55 78.62 80.14 
 
Simulated data with 30% zeros and normal errors. 

Variable lny_N30 arcsinh_N30 tpm_N30 y_N30 pois_N30 
x1 7341884.28 1.76e+07 4232.02 4214.54 4194.13 

 704612.47 1852269.07 51.90 64.14 88.11 
x2 3809680.60 9141674.87 1926.63 1923.06 1893.36 

 381791.00 995846.72 57.96 67.34 80.59 
x3 -3.79e+06 -9.09e+06 -1899.13 -1917.21 -1901.67 

 375451.59 979349.64 57.89 66.67 79.48 
x4 -5.80e+06 -1.39e+07 -3197.63 -3250.80 -3249.98 

 554232.44 1454941.87 54.14 66.05 83.49 
b1 9713447.38 2.33e+07 4976.94 5222.13 5290.84 

 900980.47 2364976.80 106.08 133.80 159.32 
b2 -261280.55 -634303.76 113.65 94.76 97.39 

 251509.57 604623.88 117.80 134.15 154.63 
 
Simulated data with 80% zeros and normal errors. 

Variable lny_N80 arcsinh_N80 tpm_N80 y_N80 pois_N80 
x1 18087.41 27172.74 3491.21 3423.92 3300.69 

 2130.18 3519.80 49.93 68.46 133.79 
x2 8479.43 12743.05 1556.93 1530.38 1433.02 

 1038.49 1703.63 51.97 62.82 86.15 
x3 -9053.16 -13605.04 -1695.59 -1637.84 -1568.73 

 1097.02 1801.04 52.06 64.25 87.36 
x4 -13101.94 -19684.10 -2544.21 -2462.50 -2437.30 

 1549.04 2554.56 53.47 65.42 106.67 
b1 22530.79 33853.54 4266.95 4171.33 4561.25 

 2644.61 4355.07 104.75 127.87 198.01 
b2 1341.55 2011.74 259.31 316.04 386.11 

 699.52 1055.15 107.36 127.32 155.77 
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Table 12 Comparison of marginal effects for ln(𝑦 + 1), arcsinh(y), two-part model, 
untransformed y, and Poisson. 
Simulated data with 5% zeros and skewed errors.  

Variable lny_S05 arcsinh_S05 tpmglm_S05 y_S05 pois_S05 
x1 120150.13 141347.29 19603.99 20747.17 20568.75 

 6729.81 8596.97 233.27 371.10 306.12 
x2 21511.36 27263.40 -7429.04 -8037.55 -7902.06 

 3343.97 4099.24 213.14 318.41 278.78 
x3 -24399.46 -30697.40 7204.99 7542.14 7468.07 

 3434.48 4223.61 211.11 300.23 263.93 
x4 -81813.08 -96788.09 -10375.75 -10747.63 -10761.42 

 5106.32 6474.81 206.61 300.88 259.95 
b1 99993.97 120119.47 3076.86 2803.69 2562.25 

 7358.55 9271.95 410.19 526.22 480.84 
b2 34478.04 38630.76 16531.46 16727.65 16964.43 

 5623.67 6751.60 408.60 526.16 492.82 
 
Simulated data with 30% zeros and skewed errors.  

Variable lny_S30 arcsinh_S30 tpmglm_S30 y_S30 pois_S30 
x1 8.11e+07 2.02e+08 23653.63 24548.67 24238.24 

 8803576.09 2.38e+07 251.01 402.39 431.75 
x2 3.46e+07 8.74e+07 -1687.74 -2176.61 -1981.72 

 3866675.47 1.05e+07 236.07 348.22 320.42 
x3 -3.45e+07 -8.72e+07 1452.35 1777.15 1718.85 

 3845608.89 1.05e+07 234.33 333.49 312.51 
x4 -6.18e+07 -1.55e+08 -14563.04 -14993.41 -14943.83 

 6667594.90 1.81e+07 225.47 333.02 343.90 
b1 9.73e+07 2.44e+08 12189.45 12910.89 12840.68 

 1.02e+07 2.79e+07 423.15 600.11 615.15 
b2 4009100.95 8974948.50 12305.20 12377.68 12664.17 

 2507230.87 6280977.34 465.47 599.96 617.27 
 
Simulated data with 80% zeros and skewed errors.  

Variable lny_S80 arcsinh_S80 tpmglm_S80 y_S80 pois_S80 
x1 109383.77 169802.81 15540.02 15661.79 15008.64 

 15188.42 25615.11 286.88 469.17 738.89 
x2 47552.36 74176.13 2624.62 2096.57 2191.74 

 6693.55 11295.78 192.04 297.07 305.75 
x3 -50968.93 -79485.02 -3080.90 -2586.01 -2482.16 

 7117.41 12015.84 187.38 301.62 337.58 
x4 -78342.62 -121701.33 -10311.90 -10026.02 -9751.79 

 10860.38 18311.01 231.30 343.59 490.17 
b1 131587.54 204719.20 13168.77 13044.92 13744.06 

 18002.34 30386.64 410.51 581.20 803.25 
b2 11152.68 17020.65 4629.75 5121.81 5660.42 

 4300.68 6733.36 420.18 577.99 703.09 
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Table 13 
Marginal effects corresponding to third column of Table 1, Bellemare and Wichman (2020). 
 
 Empirical specifications  
    
 Linear-linear   
 0.480715   
    
 
Values of k: 

 
arcsinh-linear 

N with  
𝑦 = 0 (%) 

N with  
𝑦 < 0 (%) 

.001 0.480714 0 (0%) 3 (.003%) 

.01 0.480622 0 (0%) 3 (.003%) 

.1 0.484385 0 (0%) 3 (.003%) 
1 0.505784 0 (0%) 0 (0%) 
5 0.506556 0 (0%) 0 (0%) 
10 0.506581 0 (0%) 0 (0%) 
50 0.506589 0 (0%) 0 (0%) 
100 0.506589 0 (0%) 0 (0%) 
1000 0.506589 0 (0%) 0 (0%) 
10,000 0.506589 0 (0%) 0 (0%) 
    
 ln(y)-linear   
 0.506589   
    
Notes:  This table presents marginal effects estimates from different empirical specifications 
based on a simulated data set where 𝑥 ∼ 𝑁(10, 2), 𝑒 ∼ 𝑁(0, 2), and 𝑘𝑦 = 5 + 0.5𝑘𝑥 + 𝑒 
for various values of k.  The simulation was done in Stata with  set seed 12345, following 
Bellemare and Wichman (2020). 
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Table 14 
Extension of results of column (3) in Table 3, Bellemare and Wichman (2020). 
 
 Dependent variable = arcsinh(𝑘 × 𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠AB) 
 𝑘 = .000001 𝑘 = .001 𝑘 = 1 𝑘 = 1000 𝑘 = 1,000,000 
      
Estimated parameters     
NSW 0.001750 0.307 1.056 1.801 2.55 
 (0.000632) (0.127) (0.416) (0.717) (1.02) 
𝐸AC 0.00000017 0.0000374 0.0001122 0.000186 0.000259 
 (0.00000010) (0.0000199) (0.0000651) (0.000112) (0.000160) 
Constant 0.004344 1.4779 5.803 10.173 14.544 
 (0.000426) (0.0857) (0.280) (0.483) (0.688) 
      
Obs. 445 445 445 445 445 
Adj. 𝑅) 0.0197 0.0171 0.0173 0.0164 0.0160 
      
Estimated marginal effects and elasticities    
ME(𝐸AC) 0.1667 0.208 0.824 3.19 21.2 
 (0.0990) (0.114) (0.645) (5.06) (69.6) 
      
x(𝐸AB, 𝐸AC) 0.000230 0.0514 0.1546 0.256 0.357 
 (0.000136) (0.0274) (0.0896) (0.155) (0.220) 
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Table 15 
Extension of results of column (5) in Table 3, Bellemare and Wichman (2020). 
 
 Dependent variable = ln	(𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠AB + 𝑐) 
 𝑐 = .000001 𝑐 = .001 𝑐 = 1 𝑐 = 1000 𝑐 = 1,000,000 
      
Estimated parameters     
NSW 2.471 1.726 0.982 0.253 0.001726 
 (0.990) (0.687) (0.386) (0.102) (0.000623) 
𝐸AC 0.000252 0.000178 0.000105 0.0000301 0.000000165 
 (0.000155) (0.000108) (0.0000604) (0.0000160) (0.000000098) 
Constant 0.290 2.827 5.365 8.0762 13.819831 
 (0.668) (0.463) (0.260) (0.0691) (0.000420) 
      
Obs. 445 445 445 445 445 
Adj. 𝑅) 0.0160 0.0165 0.0174 0.0178 0.0197 
      
Estimated marginal effects and elasticities    
ME(𝐸AC) 17.0 2.73 0.7300 0.190 0.1658 
 (52.7) (3.99) (0.542) (0.103) (0.0981) 
      
x(𝐸AB, 𝐸AC) 0.347 0.246 0.1444 0.0415 0.000227 
 (0.213) (0.148) (0.0831) (0.0221) (0.000134) 
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Table 16 
Comparison of a linear probability model (LPM) with inverse hyperbolic sine and natural 
logarithm, with original zeros set to zero, and normed by the mean of the positive values. 
 

 
 
 
 
  

 
 
 
  

 LPM arcsinh(1 × 𝑦) ln(𝑦 + 1) 
    
Estimated parameters   
NSW .1078 1.056 .982 
 (.0442) (.416) (.386) 
𝐸AC .0000106 .0001122 .0001049 
 (.00000691) (.0000651) (.0000604) 
Constant .633 5.803 5.3648 
 (.0298) (.280) (.260) 
    
Obs. 445 445 445 
Adj. 𝑅) 0.0148 0.0173 0.0174 
    
Estimated normed marginal effects   
𝐸[𝑎𝑠𝑖𝑛ℎ(𝑦)|𝑦 > 0]  9.242  
𝐸[𝑙𝑛(𝑦)|𝑦 > 0]   8.549 

    
Normed ME(𝐸AC) .0000106 .0000121 .0000123 
 (.00000691) (.00000704) (.00000706) 
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Table 17 
Marginal effects and elasticities from a two-part, untransformed y, and Poisson models. 
 

 
 
 
 
  

Notes:  The second part of the two-part model is estimated with generalized linear models 
(GLM) with a log link and a gamma distribution. 
 
 

 Two-Part Model   
 Logit GLM (log link) Untransformed y Poisson 
     
Estimated parameters    
NSW .520 .17090 1750 .325 
 (.216) (.0980) (669) (.117) 
𝐸AC .0000594 .0000137 .167 .0000266 
 (.0000392) (.0000148) (.107) (.0000149) 
Constant .533 8.8399 4344 8.3865 
 (.137) (.0694) (356) (.0776) 
     
Obs. 445 308 445 445 
     
Estimated marginal effects   
ME(NSW) .1087 1309.1   
 ( .0441) ( 759.1)   
     
Overall ME(NSW) 1720.8 1750 1721.5 
 (620.3) (669) (649.2) 
     
ME(𝐸AC) .0000124 .105   
 ( .00000812) (.114)   
     
Overall ME(𝐸AC) .1657 .167 .1409 
 (.0993) (.107) (.0795) 
     
Estimated elasticities    
x(𝐸AB, 𝑁𝑆𝑊) .0526 .0777   
 (.0169) (.0446)   
     
Overall x(𝐸AB, 𝑁𝑆𝑊) .1237 .1152 .1350 
 (.0441) (.0354) (.0488) 
     
x(𝐸AB, 𝐸AC) .01852 .0211   
 (.00891) (.0228)   
     
Overall x(𝐸AB, 𝐸AC) .0374 .0363 .0366 
 (.0222) (.0197) (.0205) 
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Figure 1:  Natural logarithm transformation as a function of c. 

 
 
 
Figure 2:  Inverse hyperbolic sine transformation as a function of k. 
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Figure 3:  Power transformation as a function of l. 

 
 
Figure 4:  Histogram of total health care expenditures, MEPS data. 
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Figure 5:  Horizontal box plot of distribution of ln(𝑦 + 𝑐) for different values of c. 

 
 
 
Figure 6:  Regressions of normed ln(𝑦 + 𝑐) on age, for different values of c. 
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Figure 7:  Horizontal box plot of distribution of arcsinh(𝑘𝑦) for different values of k. 

 
 
Figure 8:  Regressions of normed arcsinh(𝑘𝑦) for different values of k. 
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Figure 9 
Comparison of the normed natural logarithm and the normed inverse hyperbolic sine to the linear 
probability, with original zeros set to zero.  The slopes are all nearly the same (see Table 16). 

 
 
 
 
 
 
 
 
 
 
	




