
NBER WORKING PAPER SERIES

HEADS UP: DOES AIR POLLUTION CAUSE WORKPLACE ACCIDENTS?

Victor Lavy
Genia Rachkovski

Omry Yoresh

Working Paper 30715
http://www.nber.org/papers/w30715

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
December 2022, Revised July 2024

We thank the Ministry of the Environment and the Ministry of the Economy for providing the 
data for this study and for their guidance in interpreting the pollution measures. We also thank the 
geography lab at the Social Science Faculty at the Hebrew University for their assistance with 
data geo-coding and Ludovica Gazze, Walker Hanlon, Jonathan Guryan, Steve Pischke, Sefi 
Roth, and participants at various seminars for comments and useful suggestions. The views 
expressed herein are those of the authors and do not necessarily reflect the views of the National 
Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2022 by Victor Lavy, Genia Rachkovski, and Omry Yoresh. All rights reserved. Short sections 
of text, not to exceed two paragraphs, may be quoted without explicit permission provided that 
full credit, including © notice, is given to the source.



Heads Up: Does Air Pollution Cause Workplace Accidents?
Victor Lavy, Genia Rachkovski, and Omry Yoresh
NBER Working Paper No. 30715
December 2022, Revised July 2024
JEL No. J01,I10,I15,J24,Q51,Q52,Q53

ABSTRACT

Air pollution can adversely affect physiological and cognitive performance. This study estimates 
the causal effect of increased nitrogen dioxide (NO2), a primary air pollutant, on construction 
work accidents, a significant factor related to labor market productivity losses. Using data from 
all construction sites and pollution monitoring stations in Israel, we find a strong and significant 
effect on accidents, with a 377% (138%) increase on high (moderate) NO2 pollution days 
compared to clean air levels. Our mechanism analysis suggests the effect is exacerbated under 
cognitive strain or worker fatigue. A cost-benefit analysis, supported by a nonparametric 
estimation, examines subsidizing site closures on highly polluted days.

Victor Lavy
Department of Economics 
University of Warwick
Coventry, CV4 7AL
United Kingdom
and Hebrew University of Jerusalem 
and also NBER
v.lavy@warwick.ac.uk

Genia Rachkovski
Northwestern University
genia.rachkovski@u.northwestern.edu

Omry Yoresh
32 Lincoln's Inn Fields
London WC2A 3PH
United Kingdom
omry.yoresh@mail.huji.ac.il



1 Introduction

With 9 out of 10 people worldwide breathing polluted air and an estimated death toll

of seven million premature deaths each year caused by air pollution, according to the

World Health Organization, research identifying and highlighting the potential effects

of air pollution is in high demand. Given this, the effects of air pollution on society

are a focus of a growing literature in many disciplines, including economics, that

attempts to broaden the scope beyond direct health outcomes (see Aguilar-Gomez

et al. 2022 for a recent survey).

We contribute to this literature by investigating the effects of air pollution on work

accidents, which are significant yet understudied factors affecting productivity in the

labor market. Work-related accidents, with construction workers at particular risk,

cause an estimated 360,000 deaths worldwide each year and 26.5 million disability-

adjusted life years (World Health Organization, 2021). These outcomes also translate

to significant productivity losses; according to the National Safety Council, United

States (2021) report, in the US alone, the estimated productivity and wage losses

from work-related accidents totaled 44.8 billion dollars in 2020. In the EU 2017, the

costs of work-related accidents and illnesses accounted for around 3.3 percent of GDP

(Elsler et al., 2017).1

This paper presents novel and compelling evidence of the economically and sta-

tistically significant effects of air pollution exposure on workplace accidents, even

at subclinical levels. We identify the effect of a primary, although less studied, air

pollutant, nitrogen dioxide (NO2), on construction-related injuries and fatalities in

Israel.2 We find that a 10-ppb increase in NO2 levels increases the likelihood of an

accident by 25 percent.3 We also observe strong non-linear effects, with measurable

effects occurring mostly at levels associated with moderate and unhealthy pollution

levels, according to EPA standards, the lower bound of which corresponds roughly

to the 95th and 99th percentiles in our sample. At these levels, the likelihood of an

accident is increased by 138 and 377 percent, respectively, compared to levels of clean

air (below 55 ppb, the 95th percentile).

We support the causal identification by including construction site and time-fixed

1Construction accidents also increase the cost of labor due to risk compensation and create delays
that contribute to increasing costs in the housing market, a major policy issue in Israel and in many
countries throughout the world (Crawford, 2021).

2Throughout the paper, when we discuss accidents, we refer to accidents involving an injury.
3We will be presenting most results in terms of a 10-unit increase, as is common in this literature.

A one standard deviation in NO2 levels in our main specification is equal to 18-ppb.
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effects in the regressions while also controlling for other factors potentially associated

with work accidents, such as wind, humidity, and temperature. The construction

site fixed effects help us focus on within-construction site variations to control for

potential permanent differences between construction sites that might affect work

accidents. We also control for time factors such as day of the week, month, and year

to mitigate concerns related to worker sorting and selection issues that might bias

our results.

A potential challenge to our identification strategy is the possibility that pollution

may be generated at the construction site itself, such that days of high/particular

activity at the construction site may result in higher pollution and more accidents.

We use instrumental variables to address these potential concerns of the cogeneration

of pollution and accidents.4

We take advantage of the high density and spatial distribution of air pollution

monitoring stations and instrument pollution at the nearest monitoring station and

up to 1 km from the construction site, with the average pollution level measured in

stations within a 5-10 km radius of the construction site. For our exclusion restriction,

we rely on the assumption that even if construction sites are a source of pollution,

these small levels of pollution generated by the construction site are not likely to

carry to the monitoring stations located more than 5 km away. We also assume that

pollution levels measured at distant monitoring stations can only affect the probability

of a construction accident through pollution levels measured at the closest monitoring

station to the construction site.

For our second instrument, we also take advantage of the high frequency of pollu-

tion measurements in our data (8-hour intervals of the average of 5-minute readings,

each day, between midnight and 8 a.m., 8 a.m. and 4 p.m., and 4 p.m. and mid-

night). We use as an instrument for pollution the lagged pollution levels measured

at the monitoring station in the intervals of the evening and the night before when

activity at the construction site itself is minimal. For our exclusion restriction to

hold, we assume that any pollution generated by the site itself cannot alter pollution

levels measured the night before when the site is, by and large, inactive. Further,

these pollution levels, measured the night before, should only affect the probability

4We also use data on wind direction to limit our sample to days the wind was blowing from the
monitor to the construction site. By limiting the potential threat of pollution from the construction
site being picked up by the monitor, we provide supportive evidence for the robustness of our results
to the possible codetermination of other factors generating pollution at the site and increasing the
probability of an accident simultaneously.
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of a construction accident occurring in each site through pollution levels measured

during working hours on the day itself.

Our instrumental variable results are consistent with our main findings, as a 10-

unit increase in NO2 levels increases the likelihood of an accident by 28 percent and

31 percent for the geographical proximity and lagged IVs, respectively. We further

show that the findings are robust to using the general air quality index (AQI), which

includes an index of the six major pollutants (NO2, PM2.5, PM10, O3, CO, and SO2)

instead of NO2 as the instrumented variable. This analysis relieves concerns regarding

the possibility of under-identification due to the multiplicity of pollutants that might

be highly correlated with the instrumented pollutant and potentially directly affect

the outcome variable.

As a next step, we focus on the potential mechanisms of the effect. By examining

the interaction of NO2 levels with worker fatigue (proxied by day of the week) and with

cognitive stress (proxied by high levels of wind speed, temperature, and humidity),

we provide suggestive evidence that the detrimental effect of NO2 on accidents is

exacerbated in conditions of strenuous physiological states of the workers. Our setting

and the finding linking the effects of pollution with cognitive strain may provide

suggestive evidence of the importance of pollution exposure in mentally and physically

strenuous settings beyond construction site work, such as those of first responders,

physicians, and other high-stakes professions.

To demonstrate the significance of our econometric strategy for proper identifica-

tion, we show the importance of focusing on a detailed geographical level of analysis,

such as the construction site level, to avoid endogeneity issues. We demonstrate that

the effects of particulate matter and high temperature, which have been linked to in-

creased probability of accidents in previous studies that looked at larger geographical

units, do not persist when controlling for construction site fixed effects. In contrast,

the effect of NO2 remains robust.5 We also illustrate the importance of monitoring

pollution in proximity to the unit of analysis to avoid measurement error attenuation

bias. We demonstrate this by showing how the effect size and significance decrease

when we gradually relax the restriction on the construction site sample to include sites

for which the maximum distance from a construction site to the closest monitoring

station is increased from 1 km to 1.5, 2, 5, and any distance, respectively.

We conduct a cost-benefit analysis to determine the viability of subsidizing a

5We also show suggestive evidence that the effect of NO2 is not driven by its potential codetermi-
nation with other pollutants. And that the differential effect compared to PM2.5 and temperature
is not due to lack of residual variation.
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shutdown of construction sites at times of extreme pollution. Using a nonparametric

estimation strategy, we find the maximum level of subsidy, conditional on local pol-

lution levels, that the government can offer each contractor to shut down their daily

operations. The policy might become relevant only for very high pollution levels

when the probability of an accident is high enough that the expected benefits from

avoiding workers insurance payouts are large enough to offset losses from construction

site shutdown costs for the day.

The rest of the paper is organized as follows. In Section 2, we present a review

of the relevant literature and the contribution of our study. Section 3 presents in-

stitutional information in the context of Israel and our data. Section 4 presents our

empirical strategy. In Section 5, we present our empirical results. Section 6 presents

our robustness checks. Section 7 discusses potential mechanisms and present results

related to other potential determinants of construction accidents. Section 8 presents

our cost-benefit analysis, and Section 9 concludes.

2 Related Literature

Physicians and epidemiologists have mainly examined the direct health effects of air

pollution on health outcomes. They found that even short-term exposure to low

levels of pollution might affect the cardiovascular and respiratory systems (Brook

and Rajagopalan, 2007; Viehmann et al., 2015) as well as brain functioning (Forman

and Finch, 2018), which in turn may cause fatigue, impaired motor function, lack

of concentration, and impatience (Siegel and Crockett, 2013; Delgado-Saborit et al.,

2021). These physiological outcomes provide potential mechanisms compatible with

our findings, as fatigue and lowered cognition caused by pollution might increase the

likelihood of a construction accident.

More recent literature has focused on the economic effects of air pollution. Re-

searchers have found that short-term exposure to air pollution decreases work pro-

ductivity (Graff Zivin and Neidell, 2013; Chang et al., 2016), reduces labor supply

(Aragon et al., 2017; Hanna and Oliva, 2015; Holub et al., 2020), and has adverse

effects on human capital formation (Ebenstein et al., 2016).

Our paper contributes to the existing literature by examining the effects of air

pollution on a less studied but significant factor affecting labor outcomes: workplace

accidents. Specifically, we focus on a less explored, ubiquitous air pollutantnitrogen

dioxide. The paper most closely related to ours is Vega-Calderón et al. (2021), which
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found a connection between increased levels of PM10 and NO2 and workplace acci-

dents in Madrid, Spain. Our study takes a more detailed approach, leveraging highly

granular data, allowing for a more precise estimation. We also incorporate controls for

humidity levels, site-fixed effects, a nonparametric estimation, and an instrumental

variable analysis. As a result, these improvements allow us to interpret our findings

causally.

Furthermore, our paper examines potential mechanisms and conducts a cost-

benefit analysis of a potential welfare-improving policy. Notably, we find significantly

stronger effects of air pollution. This heightened impact may be attributed to the

accuracy of pollution level measurements at construction sites facilitated by the ex-

tensive network of monitoring stations near the construction sites in our data. The

improved accuracy minimizes the risk of measurement error bias in our results.

3 Institutional Information and Data

Our dataset is a combination of data from three primary sources: the Israeli Ministry

of Economy and Industry, which provided us with construction sites locations, activ-

ity dates, and construction accidents that occurred between 2017 and 2019; the Israeli

Ministry of Environmental Protection, which provided us with measures of air pollu-

tion and weather for those years; and Kav LaOved, a nonprofit organization focused

on workers rights, which provided us with additional construction site accidents.

3.1 Construction Sites and Accidents Data

The initial construction site sample the Ministry of Economy and Industry provided

included 25,571 construction sites active in Israel between 2017 and 2019.6 Using

geo-coding techniques, we matched the sites addresses to coordinates. Knowing each

sites opening and closing days, we assigned an observation to each active day for each

site, which resulted in our final sample of 24,614 sites and 10,016,000 observations.7

The accident sample that the Ministry of Economy and Industry provided included

1,316 accidents during the sample period. The accidents provided by Kav LaOved did

6A construction site is defined as a location where construction or engineering work is being done
that requires the consent of a registered engineer. Painting, flooring, and other renovations are not
included.

7For our main specification we use the interval from 8 a.m. to 4 p.m., which corresponds to the
working hours of each site. The decline in the number of sites is due to lack of exact matching of
957 sites addresses in the geo-coding process.
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not include site IDs matching the ministry’s data. We matched the accidents to the

sites by their address instead, which resulted in an additional 31 accidents. Merging

the dataset of the sites active days sample and the accidents sample, we were left

with 1,164 accidents per 10,016,000 working days in construction sites.8

Figure 1 shows the distribution of construction sites across Israel. Dividing Israels

inhabited areas by construction sites active in our sample yields approximately one

construction site per 0.28 km2. The lifespan of each construction site in our data

varies between a day and six years; the average is approximately a year and a half.

As for the accidents, as shown in Figure 2, we can see that construction accidents

occur across all days of the week, with a substantial drop on Fridays and Saturdays.9

As the yearly average of workers in Israels construction sector was around 272,500

during the sample period, the yearly accident rate resulted in 161 accidents per 100k

workers.10

3.2 Environmental Data

Air pollution and weather data were provided by the Israeli Ministry of Environ-

mental Protection, which reported an 8-hour average of 5-minute interval readings of

NO2 (ppb), wind strength and direction (m/sec and degrees, respectively), temper-

ature (celsius), humidity (%), as well as other pollutants at 173 monitoring stations

throughout Israel for the sample period. The monitoring station locations are spread

out across the country, as seen in Figure 1. Monitoring stations in urban areas ac-

count for 37 percent of all monitoring stations, rural for 30 percent, and suburban

for 11 percent. Monitoring stations near trains/roads account for 18 percent and

industrial areas for 4 percent.

Each active day in a construction site is assigned the nearest reading for each

variable, where 21,861, 15,440, 12,677, and 7,199 construction sites have at least one

monitoring station at a 5, 2, 1.5, and 1 km distance, respectively. Unfortunately, the

8Accidents reported by the Ministry of Economy and Industry are those reported under Israels
Occupational Accidents and Diseases Ordinance. The law requires employers to promptly notify the
regional labor inspector of any workplace accident that causes an employee to be incapacitated for
at least three days.

9The work week in Israel starts on Sunday, while Friday and Saturday are weekend days, equiv-
alent to Saturday and Sunday in most of the western world.

10There appears to be some underreporting of nonfatal construction accidents in Israel, as the
average yearly accident rate in the US and the EU for the same time period was 1,103 and 3,270
per 100k workers, respectively (Eurostat, 2022; Centers for Disease Control and Prevention, 2020).
There is no indication that this underreporting is related to pollution levels and could only potentially
reduce the statistical power of our analysis.
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other major pollutants were not as consistently measured as NO2, possibly due to the

relatively simple and cost-effective nature of NO2 monitors, which limited our ability

to reliably examine their effects due to the small sample size.11

The primary source of NO2 pollution is fuel combustion from transportation and

industrial work, with transportation alone accounting for nearly 94 percent of NO2

emissions in population centers in Israel, according to the Israeli Ministry of Health.

NO2 levels vary significantly over space and time, with high concentrations measured

near major roads, intersections, and highways during rush hours dissipating with

distance and time. Figure 3 illustrates the variation of NO2 in our sample from

several monitoring stations in the Central District in Israel. The figure, composed of

a matrix of maps, depicts NO2 levels at each monitoring station over all three 8-hour

intervals each day, vertically and horizontally across all days for a randomly chosen

week in January 2018. As shown, NO2 concentrations are significantly higher near

major roads and decrease with distance. Furthermore, as expected, a significant drop

can be observed during the night and on weekends when traffic volume is reduced.

Table 1 shows summary statistics for pollution and weather variables in our

dataset, while Online Appendix Table A1 presents the correlation matrix related

to those variables. In 2017, the European Environmental Agency reported an annual

mean average of 22.0 µg/m3 for NO2 across the European Union states,12 while the

yearly average in the US was 15.5 µg/m3, according to data from the EPA. Convert-

ing our data from ppb units to µg/m3 at 25 degrees Celsius and 1 atm (standard

atmospheric pressure) results in a mean of 20.9 µg/m3 across that exact timespan.

According to the Israeli Clean Air Act passed in 2008, Israeli standards and recom-

mended levels of air pollution are precisely those set by the European Union and very

similar to levels in the US and those recommended by the WHO.13

11See the section 6 for a supporting analysis including other pollutants.
12Data is from a 2019 report by the European Environmental Agency (accessed July 17, 2022).
13The threshold level in excess of which is considered a violation is 200 (40) for Israel, the EU,

and the WHO and 188 (98) for the US, for hourly (yearly) µg/m3 averages (Negev, 2020).
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4 Econometric Strategy - Identification

4.1 Baseline Linear Probability Model

In our primary specification, we examine the partial correlation between NO2 levels

and construction accidents using a linear probability fixed effects model14:

Yst = α + βNO2,st + f(Tempst,Windst, Humst) + Ss +DMYt + εst (1)

where s indexes the construction site and t the day. Yst denotes the probabil-

ity of an accident, NO2 is the level of nitrogen dioxide measured in ppb units at

the monitoring station closest to the construction site (up to 1 km). The equation

includes construction site fixed effects Ss and time fixed effects DMYt (day of the

week, month, and year). f(Tempst,Windst, Humst) are weather variables (tempera-

ture, wind speed, and humidity levels, respectively), and weather squared measured

at the closest monitoring station. εst is the idiosyncratic error term. Standard errors

are clustered at the construction site level.

There are several potential threats to inferring a causal relationship between pol-

lution and construction accidents estimated by equation 1, β, mainly concerning

endogeneity, measurement, and selection (see Graff Zivin and Neidell (2013), for a

review). First, the endogeneity of pollution levels is potentially a major concern. En-

dogeneity may arise due to pollution levels potentially being confounded with other

environmental factors, such as temperature, wind, or humidity levels, which could

affect the probability of an accident. We attempt to deal with this issue by flexibly

controlling for the weather variables in our regression function.

Another potential source of endogeneity is that the probability of accidents might

be permanently higher in specific construction sites compared to others, which might

be correlated with pollution levels. This could be the case if pollution levels are higher

in regions where the construction contractors have lower safety standards or if lower-

level, less experienced, or, more generally, prone-to-accident workers choose or are

selected to work in regions with higher pollution levels. We attempt to mitigate these

14We use a linear probability model instead of a nonlinear maximum likelihood model such as
Probit, Logit, or Poisson. We make this choice because construction site accidents are rare in our
sample, with many sites not having any accidents. A nonlinear maximum likelihood estimation
would exclude all construction sites where no accidents occurred during our study period, resulting
in an endogenous sample. When including site fixed effect into the nonlinear maximum likelihood
model, all variables within site variation are equal to zero. (for an in-depth discussion, see Autor
et al. (2014))
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selection issues by adding construction site fixed effects to our estimation equation.

This allows us to focus on variations within the construction site in pollution levels

and probabilities of an accident. We also add a day of the week, month, and year

fixed effects, mitigating concerns related to temporal patterns in accident probability

that might be correlated with pollution levels (e.g., selection of workers or activities

in the construction site by day of the week, the season of the year, or specific ethnic

holidays or rest days, all of which might have persistent differences in pollution levels

as well).15

Another potential issue in the literature evaluating air pollution impacts is mea-

surement error. When either the density of monitoring stations or the frequency of

measurements is low, the potential for measurement error biasing our results is high.

To address this, we take advantage of a large number of monitoring stations and their

geographic spread across the country and restrict the observations of construction

sites to those with a monitoring station up to 1 km away. We also use the fact that

we have an average reading of pollution levels in three different intervals per day and

choose the pollution levels in the time interval corresponding to work hours, between

8 a.m. and 4 p.m. These measures allow us to reduce the random noise, which can

lead to attenuation bias, and increase the likelihood of estimating the true magnitude

of the effects of pollution on construction accidents.

Finally, the issue of avoidance behavior has been emphasized in the literature

examining the effects of pollution (Aguilar-Gomez et al., 2022). Ex-ante avoidance, in

our case, can occur if workers decide not to show up to work on days of high pollution;

this can also bias our results in the potential case where the more careful workers,

those less prone to accidents, exhibit such avoidance behavior more frequently than

less cautious workers. This possibility is implausible as the number of workers is

inelastic to pollution levels, and our institutional information indicates that workers

and contractors are not likely to be aware of the specific impacts of air pollution on

accidents or act upon them.16 Avoidance behavior is even less likely to occur in any

asymmetric way related to proneness to accidents.17

15We also examine specifications where we add the week of the year or day of the year as temporal
fixed effects. Our results are robust to the addition of these additional controls.

16Checking the correlation between monthly workers in Israel against the mean nitrogen dioxide
levels, we find no evidence of such avoidance behavior, as the correlation is -0.055.

17See also Salehi Sichani et al. (2011), who find no correlation between tenure at work and absen-
teeism in the industrial construction workforce.
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4.2 Instrumental Variables

Although our primary specification strategy in the previous section captures a sig-

nificant part of the potential threats to the causal interpretation put forward in the

literature, there might still be several concerns that can potentially bias our results.

One such concern might be that high levels of pollution from the construction site it-

self, if happening on busy or specific days when the likelihood of an accident increases,

might also drive our results. We implement an instrumental variable approach to deal

with this potential concern and mitigate similar scenarios of endogeneity.

First, we instrument pollution levels at the closest monitoring station (i.e., within

a radius of at most 1 km from the construction site) with the average pollution levels

measured in stations within a 5-10 km radius. We assume that any potential pollution

generated at the construction site itself would be too small to meaningfully affect

measurements at monitoring stations more than 5 km away (Dragomir et al., 2015;

Fuller et al., 2002). To further support this claim, we use a construction companys

limited liability status, a proxy for construction site size, and find no evidence that

large-sized construction sites affect pollution in this range.18 We also assume that

pollution levels measured at more distant monitoring stations cannot directly affect

the probability of a construction accident beyond their effect through pollution levels

measured at the monitoring station closest to the construction site.

The second instrument we use is lagged pollution levels measured at the closest

monitoring station to the construction site from the interval of the night before. As

in the case of the previous instrument, we assume that pollution levels measured the

night before can only affect the probability of a construction accident occurring at

each site during working hours on the day itself solely through the pollution measured

during those working hours. We also work under the more straightforward assumption

that any pollution generated by the site itself cannot affect pollution levels measured

the night before when the site is predominantly inactive.

Formally, our instrumental variable analysis is represented by

First stage:

NO2st = α + λNO2,st−0.5 + f(Tempst,Windst, Humst) + Ss +DMYt + vst (2)

18In Online Appendix Table A2, we present results when regressing the nitrogen dioxide level in
the closest monitoring station (within 1 km) on the average level of this pollutant in a 5-10 km radius,
first for the sample of smaller construction sites and then for the sample of bigger construction sites.
We find that these estimates are not statistically significantly different from each other.
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NO2st = α + δNO2,g(5−10km)st + f(Tempst,Windst, Humst) + Ss +DMYt + vst (3)

Second stage:

NO2,st = α + βPred(NO2,st) + f(Tempst,Windst, Humst) + Ss +DMYt + εst (4)

where we instrument pollution levels at the monitoring station closest to the construc-

tion site s first in equation 2 with lagged NO2 levels measured at the same monitoring

station from the interval of the night before (NO2,st−0.5) and second in equation 3

with the NO2 levels measured by the average of stations in a 5-10 km radius of the

construction site (NO2,g(5−10km)st). Pred(NO2,st) are the values of NO2 predicted in

the first-stage equations 2 and 3.

4.3 Non-linear Effects

International organizations and governments have generally set standards and guide-

lines focused on exposure to high levels of air pollution. This is partly because the

literature on the physiological effects of pollution has highlighted the detrimental

health effects of exposure to high pollution levels while not focusing on the potential

effects of lower-level exposure. This may be due to the lack of ability to measure

subclinical health effects of exposure to lower pollution levels or due to the potential

non-linear impact of pollution. The economic literature has focused less on non-linear

effects when examining the effects of air pollution.19 In this section, we investigate

whether there are non-linearities in the effect of pollution levels on the probability of

construction accidents.

We start by focusing on high levels of air pollution. To examine the effect of high

pollution levels, in equation 5, we substitute the continuous measure of air pollution in

equation 1 with dummy variables for clean, moderately polluted, and highly polluted

days. We define moderately polluted days as days when NO2 levels are higher than

53 ppb, corresponding roughly to the 95th percentile in our sample, which the EPA

defines as moderate pollution. We define highly polluted as days when NO2 levels are

higher than 100 ppb by EPA standards, corresponding roughly to the 99th percentile

19See Arceo et al. (2016) and Hanlon (2018) for some notable exceptions.
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in our sample.20 Formally,

Yst = α + βModerateNO2,st + δHighNO2,st + f(Tempst,Windst, Humst)

+Ss +DMYt + ηst
(5)

where ModerateNO2,st is a dummy variable equal to 1 when NO2 levels are between

53 and 100 ppb, and HighNO2,st is a dummy variable equal to 1 when pollution levels

exceed 100 ppb.

Next, we aim to expand our focus beyond extreme pollution levels and have a more

general outlook on the progression of the effect of air pollution on construction work

accidents. For this purpose, we take advantage of the large number of observations

and monitoring stations and their geographical spread, which generates sufficient

variation to allow us to employ nonparametric estimation strategies to examine the

effects of air pollution on accidents in the entire distribution. We implement a kernel

semi-parametric regression model (Robinson, 1988; Gao et al., 2015), i.e.,

Yst = α +H(NO2,st) + f(Tempst,Windst, Humst) + Ss +DMYt + ηst (6)

where H(NO2,st) is a local linear 2nd order Gaussian kernel function with least

squares cross-validated bandwidth selection and bootstrap confidence intervals (Li

and Racine, 2004; Hayfield and Racine, 2008)

5 Results

We begin by presenting the results for our baseline linear probability model pre-

sented in equation 1. In Table 2, columns (1) and (2), we report the correlation

between a continuous measure of NO2 using OLS without controls and with con-

trols for weather and time and site fixed effects, respectively. We estimate that a

10-unit increase in NO2 levels is associated with an increase in the probability of

an accident by 0.000033 percentage points (SE=0.000012) and 0.000039 percentage

points (SE=0.000011) with and without controls, respectively, which translates to

a 25 percent and 30 percent increase in the probability of an accident compared to

mean levels or to an increase of 0.031 in the number of accidents per 100,000 workers

20The United States Environmental Protection Agencys (EPA) air quality guide for nitrogen
dioxide classifies NO2 levels into 6 groups (in ppb units). Good: 0-53, Moderate: 54-100, Unhealthy
for Sensitive Groups: 101-360, Unhealthy: 361-649, Very Unhealthy: 650-1249, and Hazardous:
1250+.
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each year. Both estimates are significant at the 1 percent level. We can observe that

adding controls substantially reduces the magnitude of our estimate. This indicates

that endogeneity arising from confounding with other environmental factors and se-

lection issues associated with site location and timing of work is a valid concern when

attempting to estimate the effects of pollution.

In columns (3) and (4) of Table 2, we add the results of our instrumental variable

estimation presented in equations (2-4). We estimate that a 10-unit increase in NO2

levels is associated with an increase in the probability of an accident by 28 percent

(SE=13 percent) and 31 percent (SE=12 percent) when instrumenting for NO2 pollu-

tion levels at the closest monitoring station with pollution levels from the average of

the pollution level measured from stations at a radius of 5-10 km from the construc-

tion site and when instrumenting with lagged NO2 levels at the monitoring station

from the night before, respectively. The estimated effect of pollution when using the

IV of lagged pollution levels remains significant at the 1 percent level, while the esti-

mate when using the IV of the pollution level measured from stations at a radius of

5-10 km is significant at the 5 percent level.21 The first stage for both instruments

is strong, with an F-statistic of 1,435 and 1,855, respectively.22 Our 2SLS estimates

are similar to our OLS coefficients, indicating that the threat of endogeneity, after

flexibly controlling for weather variables and adding site and time-fixed effects, might

not be a major concern.

Next, we present the results where we examine whether NO2 pollution has a non-

linear effect on the probability of construction accidents. In column (5) of Table 2,

we focus on high pollution levels and present the results where we use specifications

including the dummy variables of moderate and high pollution levels (between the

95th and 99th percentile and above the 99th percentile of NO2 levels, respectively), as

specified in equation 5. The results suggest that we have a non-linear relationship,

where very high levels of NO2 pollution increase the probability of an accident to a

higher degree compared to moderately high levels relative to days with clean air. A

shift from clean air to moderately high pollution levels is associated with an increase of

21The results are robust to using different cutoffs of the radius.
22The results are very similar (27% and 28%) and are significant at the 1% level when we add the

instrument of lagged pollution levels from the evening before (4 p.m. to midnight) to the equation
with the instrument of lagged pollution levels from the night before (midnight to 8 a.m.) that we
use in equation 2, and when we combine the lagged instruments with the IV of the pollution levels
measured from stations at a radius of 5-10 km. We further test for the exogeneity of our instruments
using the Sargen-Hansen overidentification tests. The tests do not reject the null hypothesis that
the overidentifying restrictions are valid, providing suggestive evidence that the instruments are
exogenous.
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0.000159 percentage points (SE=0.0001076) in the probability of an accident, which

translates to an increase of 138 percent. Still, it is not statistically significant at

conventional levels. In comparison, a shift from clean air to high pollution levels is

associated with an increase of 0.000433 percentage points (SE=0.000172), which can

also be translated to an increase of 377 percent or 4.06 more accidents per 100,000

workers yearly, statistically significant at a 5 percent level.

In Figure 4, we present the results of our semiparametric specification described

in equation 6. We observe a convex non-linear relationship where the increase in the

probability of an accident is relatively small when pollution levels increase for lower

levels of NO2. The increase in probability gradually becomes larger for increasingly

higher levels of NO2. As seen in Figure 4, the marginal effect of an increase in

pollution levels becomes larger than our OLS estimate around the 95th percentile

and steeper with the increase in NO2 levels. The predicted probability of an accident

surpasses that of our linear model, starting at very high levels of NO2 (larger than the

97th percentile), consistent with our high pollution dummy variable results presented

above. These findings indicate that our results are primarily driven by the increased

likelihood of accidents on highly polluted days, suggesting that the impact of pollution

on construction accidents is mostly relevant on days with very poor air quality.23

6 Robustness

In this section, we report a set of robustness tests to validate further the findings on

the effects of NO2 pollution on the probability of accidents. First, in columns (1-4)

of Table 3, we present evidence that the effect size and significance are reduced when

we allow for measurements of pollution from monitoring stations that are further

away from the construction site. In our main analysis, we restrict our observations

to construction sites where the closest monitoring station for pollution levels is up to

1 km away. In columns (1-4), we increase this range to 1.5, 2, and 5 km distance,

respectively. We can see a continuous decrease in both the effect size and significance

levels, suggesting both that the effect is indeed related to pollution levels present in

the close vicinity of the construction site instead of a general regional effect and that

measurement error generated due to the distance between the measurement sensor

23The results are consistent and remain significant when we use NO instead of NO2 as our measure
of pollution and are presented in Online Appendix Table A3. We chose to focus on NO2 because it
is the component of greatest concern for adverse effects and is used as the indicator for the larger
group of NOx (US-EPA, 2011).
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and the area where the effect occurs is indeed a concern to be mindful of when

attempting to estimate the effects of pollution.

A major concern when instrumenting for a specific pollutant is the possibility of

under-identification due to the multiplicity of pollutants that might be both highly

correlated with the instrumented pollutant and potentially have a direct effect on the

outcome variable (Benmarhnia et al., 2023; Aguilar-Gomez et al., 2022). We believe

this issue is less of a concern in our specification, as both our instrumented variable

and our instruments rely on levels of NO2, either lagged or at proximate measure-

ment stations, increasing the likelihood that the effect of the instrument on accidents

is mostly through the same pollutant. Compared to a general instrument, this would

decrease likelihood of under-identification, which could affect accidents through dif-

ferent pollutants. To further support the case against this under-identification, we

compute a general air quality index (AQI). This commonly used overall index mea-

sure includes NO2 and the other five major pollutants (PM2.5, PM10, O3, CO, and

SO2). As mentioned, our sample size for the other pollutants is small compared to

NO2.

Nevertheless, we find similar results when we instrument for the general AQI

compared to instrumenting for NO2. In that case, we consider this as suggestive

evidence that under-identification is less of a concern in our context. This is due to

the ability of the AQI to capture the independent effect of each pollutant. As seen

in columns (6) and (7) of Table 3, our results are consistent with our primary IV

outcomes when we use both the lagged and the geographical proximity instruments,

albeit noisier, likely due to the smaller sample size.

Next, we attempt to mitigate concerns regarding the codetermination of pollution

levels and accidents potentially resulting from pollution from construction sites to

the closest monitoring station. As the winds direction can determine the spatial

distribution of pollutants, we run our baseline model in equation 1 after restricting

our sample to days where the general wind direction is blowing from the monitor to

the construction site. By excluding days where the wind direction is in the range

of a 90-degree angle to each side from the construction site to the monitor, we rule

out the possible codetermination of other factors generating pollution at the site and

increasing the probability of an accident simultaneously. In column (5) of Table 3, we

report the results of this specific exercise and compare them to our main specification.

The results remain robust in size and significance.24

24The results remain unchanged when we use specifications with different ranges of wind direction
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In column (8) of Table 3, we present a multiple treatment analysis where we regress

the probability of an accident on both the NO2 levels and a general AQI measure

excluding NO2. We find that the coefficient for NO2 remains strong and significant,

while the coefficient for the general AQI is close to zero. In Online Appendix Table

A4, we further show that when combining NO2 and PM2.5 in a single “horse-race”

regression and when combining NO2, PM2.5, SO2 and O3 for the limited sample of

construction sites where the measurements are available for these pollutants, we find

that the coefficient for the effect of NO2 remains very similar to our main specification

and has by far the largest effect on the probability of an accident, although results are

noisy due to the smaller sample size.25 These results further support our hypothesis

that exposure to NO2 rather than other potential covariates, such as other pollutants,

is driving our results.

By nature, pollution is correlated over time and space, which might lead to spatial

autocorrelation of the pollution at hand. In Online Appendix Table A5, we show that

our results remain robust while accommodating this issue in two different ways. First,

we report Conley-adjusted standard errors for our main Table 2 specification. By

applying this method, we address both the autocorrelation of pollution levels based

on a construction sites location and pollution that might remain in the air over certain

time intervals (Conley, 1999). Second, as construction sites are assigned to their

closest monitors reading within 1 km, as a robustness check, we report the clustered

standard errors at the monitoring station level for our main specifications. This allows

us to take into account the actual location where the pollution was estimated. All our

results remain statistically significant in both cases. Finally, we ran a placebo test,

replacing our same-day pollution estimator with the pollution for the two subsequent

days. We observe that the coefficient diminishes and becomes insignificant (0.000014

and 0.0000084 percentage point increase for a 10 unit increase in NO2 when replacing

same-day levels with the day-after and two days-after levels, respectively). This

provides supportive evidence that there is sufficient temporal variation in pollution

levels to identify the effect of same-day pollution and highlights the importance of

using the high frequency of pollution measurements to capture the effects of pollution

accurately.

angles. The results are not presented and are available from the authors upon request.
25We caution that this analysis is only suggestive as NO2 and the other pollutants might be

endogenous. We support the claim that the statistical insignificance in the model, including PM2.5,
SO2, and O3, stems from the smaller sample size rather than endogeneity issues by running a
regression with NO2 as the sole pollutant on the same sample. Reassuringly, we find equivalent
results for the effect of NO2 but in terms of magnitude and statistical significance.
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7 Mechanism and Other Determinants

As a next step, we aim to identify whether pollution has different effects depending

on the physiological state of the worker. By doing so, we may better understand the

potential mechanisms that underlie the effects. We use indirect evidence to infer the

potential effects of these changes since workers individual information is not available

in our data. Poland et al. (2020) found that more occupational accidents occur at the

start of the work week and provide suggestive evidence that weekend fatigue might

be a responsible factor.

According to Figure 2 Panel A, our data displays a similar pattern. Sunday, the

start of the working week in Israel, has a significantly higher accident rate. Thus,

by adding the day-of-the-week dummy variables with NO2 level interaction terms to

our primary specification presented in equation 1, we can examine whether there is

a differential effect of pollution on the probability of an accident depending on the

level of fatigue. As we can see in column (8) of Table 4, pollution has a significantly

greater effect on Sundays than on other working days. These results suggest that

a potential channel for pollutions detrimental effect on accidents may be related to

worker fatigue or lack of cognitive awareness, and this effect might be exacerbated

when these factors are present even before the worker is exposed to pollution.

Likewise, extreme weather conditions such as strong winds, high temperatures,

and humidity can be other causes for a high cognitive load or physical strain that

puts workers at greater risk.26 High levels of pollution might exacerbate the effect of

these already difficult conditions.

As seen in columns (2-7) of Table 4, pollution plays an increased role when wind

strength, temperature level, and/or humidity level are above the 75th percentile, in

contrast to the mild conditions where levels are below the 75th percentile.27 These

findings also highlight the transitory, short-term nature of the effect of exposure to

NO2.

In this paper, we focus mainly on the effects of nitrogen dioxide for several reasons.

First, NO2 is more accurately measured in our sample than other pollutants due to

26As the wind becomes stronger, accidents such as falling from a height, being hit by objects
carried by the wind, small particles flying into ones eyes, etc., become more frequent. Hot and
humid weather conditions can raise the bodys core temperature and cause a multitude of adverse
effects such as muscle cramps and heat exhaustion.

27The specification includes all the controls from our main analysis and we do not find consistent
differences in median pollution levels between observations above and below the 75th percentile.
This similarity limits the possibility that other factors such as correlated weather conditions or the
nonlinearity of our main effect may account for our findings.
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the larger number of monitoring stations that have data on this pollutant in our

period. This allows us to estimate our results more accurately at a larger number of

locations across Israel. Compared to other pollutants, the second advantage of NO2

is that it introduces significant spatial variability, allowing us to capture the effect

more precisely (Hewitt, 1991).

Nevertheless, the effect of ambient air and weather variables on short-term out-

comes has been studied using several other determinant factors (e.g., Sager (2019),

Burkhardt et al. (2019)). Taking this into account, we examine the effects of these

determinants in our setting while also taking advantage of the high density and spa-

tial distribution of air pollution monitoring stations in our sample to examine both

the role of spatial variation of the different determinants and the importance of po-

tential endogeneity threats biasing results when attempting to estimate the effects of

environmental variables. Considering that NO2 is a precursor of PM2.5, an advantage

of our estimation is the high temporal frequency of our observations and our focus

on short term effects, which allow us to better decern the effects of NO2 from PM2.5

(Deryugina et al., 2019; Lin and Cheng, 2007).28

In Online Appendix Tables A6 and A7, we show that when controlling for only

limited specifications, our results are also significant for the effect of temperature and

PM2.5 on workplace accidents. For PM2.5, our results are similar in size to those

found in our main NO2 analysis, even after we control for city-fixed effects. These

effects do not persist when measured precisely. When we incorporate construction

site fixed effects, the effects for temperature and PM2.5 are drastically reduced in size

and significance and are no longer present.

In light of these results, caution should be exercised when conducting similar anal-

yses. Omitting relevant time and weather variables and, perhaps more importantly,

not controlling for fixed effects at a more detailed geographical level of analysis, such

as the construction site level, might lead to an endogeneity issue that can bias the

results.29

The difference in the effects we find for the different pollutants and temperature

28As a robustness for the potential issue of NO2 gradually converting to PM2.5, we also estimate
an alternative specification where we include daytime PM2.5 as a control in our main instrumental
variable estimates for 2, columns (3-4). The results yield comparable significant estimates for NO2

while no effect for PM2.5
29While examining these other determinants is not the main focus of our paper, for the sake of

robustness, in Online Appendix Table A5, we present the results of our main specification examining
the effects of NO2 when applying the sharpened false discovery rate (FDR) method to adjust for
potential multiple hypothesis testing issues. Our results remain statistically significant following
this adjustment.
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in Online Appendix Tables A4, A6, and A7 might be partially explained by a lack

of spatial variation of the residual levels for the different pollutants after controlling

for the various geographical fixed effects. We attempt to address this issue in several

ways. First, In Online Appendix Table A8, we present an analysis similar to Fisher

et al. (2012), where we regress each pollutant and temperature on the different control

variables in our main specifications and examine whether there remains sufficient

residual variation in the different determinants following the gradual addition of the

different controls and geographic fixed effects. We observe that for NO2 and PM2.5,

there is a decrease in the residual variation and an increase of the R2 when adding

the construction site fixed effect and a similar increase for temperature when adding

the month of the year fixed effect. There does not seem to be a differential in the

reduction of the residual variation between NO2, PM2.5, and temperature, and the

reduction appears to be even larger for NO2. This lack of difference and the finding

that there appears to be a sufficient share of observations with a reasonably large

residual, even after controlling for site-fixed effects, provides supportive evidence for

our findings linking NO2 with a comparably stronger effect on the probability of an

accident.

Our second analysis complements our check of sufficient residual variation by

examining the appropriate geographical unit of observation sufficient to capture the

potential effects of the different pollutants and temperatures. For determinants with

large spatial variation, a large geographical unit of observation, such as a state or

county commonly used in the literature to calculate the average level, might not

be granular enough to capture the local effects and overcome measurement error,

which we already showed can attenuate the effect size. In Online Appendix Table

A9, we show that when the unit is large, such as the country and city levels, the

effects of determinants with large spatial variation, such as nitrogen dioxide, and to

a smaller degree particulate matter 2.5, are weaker, and not significant and gradually

become more pronounced when the unit of observation is smaller. These findings are

important as they can provide guidance when considering the unit of observation for

different pollutants and highlight the importance of choosing the appropriate unit of

observation for each determinant studied in general.

The fact that our results for the effect of NO2 on construction site accidents re-

main robust to different specifications, whereas we do not find a similar effect of PM2.5

exposure in our main specification, raises an important question about the potential

reasons and mechanisms behind these differential effects of the two pollutants. Al-
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though evidence is generally sparse, some prior research on the effects of NO2 and

PM2.5 identified potentially differentiated effects of each pollutant on components of

performance domains such as executive function, visuospatial ability, semantic flu-

ency, and more (Wang et al., 2021; Sakhvidi et al., 2022). As the differences in the

mechanisms of the effect of each pollutant on human activity remain a puzzle, new

findings, such as the findings of our research, can contribute to our understanding of

the differentiated impact of each pollutant.

8 Cost-Benefit Analysis

Policymakers can mitigate the detrimental effects of pollution in several ways. Re-

ducing pollution levels through limiting the allowed emission levels, raising public

awareness, facilitating mitigation of pollution through avoidance behavior, and im-

proving the treatment of its negative effects are some of the potential focus areas of

relevant interventions. This section focuses on policies that facilitate pollution mit-

igation through avoidance behavior. We incorporate our findings on the effects of

pollution on the probability of accidents with reports from the Ministry of Finance,

the National Insurance Institute (NII), and the Central Bureau of Statistics on the

costs to the government due to construction accidents and construction site closures.

Then, we run a back-of-the-envelope calculation on whether it might benefit the gov-

ernment to subsidize construction site closures on days with high pollution levels and

estimate the amount of subsidy and the associated threshold levels of pollution for

which this potential policy should apply.

The National Insurance Institute of Israel (NII) insures all legal workers in Israel

and is the sole payer of compensation costs for lost wages or income due to a workplace

accident. The one-time compensation paid by the NII while workers are absent is

calculated as 75 percent of the insured workers income in the previous three months,

with payments continuing for up to 13 weeks. Also compensated by the NII are

any additional immediate or long-term expenditures such as disability payments,

dependent pensions, and physiotherapy and rehabilitation fees, all determined based

on the accident’s severity.

The expected costs saved for the government from a shutdown of a construction

site on a certain day, conditional on the local NO2 level, can be calculated using the
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following formula:

E[costs|NO2] = Pr(Accident|NO2)× CostsAccident Insurance (7)

where Pr(Accident|NO2) is the average probability of an accident for the day given

local NO2 levels, and CostsAccident Insurance is the costs of insurance paid out per in-

jury by the government. This is a conservative assessment as it does not include

the productivity losses generated by the injury or any potential negative externalities

caused by the injury. According to data from the NII, the estimated lifetime costs of

insurance payment per injury by the government sum up to an average of approxi-

mately 3.681 million NIS30 per injury. This estimation was calculated by summing up

one-time payments (P1 = 715 million NIS) and yearly payments of all life-long pay-

ments (P2 = 5,372 million NIS)31 multiplied by the difference between the average life

expectancy (Agee = 83) and the average age of the injury32 (Āge = 39). This sum is

then multiplied by the percentage of accidents that are a direct cause of construction

site accidents33 (pcon = 10.7 percent). Eventually, this sum is divided by the number

of construction injuries the agency pays for in a year (6,892). This calculation yields

a total cost of approximately 3,681,000 NIS per injury. Formally this calculation is

given by:

Cost of Accident Insurance =
(P1 + (P2 × (Agee − Āge))× pcon

Injuries
(8)

Plugging the total costs per injury into equation 7, we can estimate that the ex-

pected cost savings to the government from closing the construction site for the day

is PAccident× 3.681 million NIS. Given this potential expected savings from injury

avoidance, we can calculate the threshold amount of subsidy the government can of-

fer a construction site to shut down for the day, given the expected local pollution

level in its vicinity. Each contractor can then decide whether it is beneficial to accept

the offer given its incurred costs from closing down the site for the day.34 Finally, we

30The conversion rate between the Israeli currency, namely the New Israel Shekel (NIS), and the
US dollar is 3.46 to 1 as of July 17, 2022.

31From a report by the National Insurance Institute (accessed September 29, 2022).
32From a report by the Israeli Parliament Research and Information Center analyzing data from

the NII and the Ministry of Economy and Industry (accessed July 17, 2022).
33From a report by the Israeli Parliament Research and Information Center analyzing data from

the NII (accessed July 17, 2022).
34A report by an appraiser office finds an estimated average loss of 9,000 NIS for a relatively large

construction site being closed for a period of 24 hours (accessed July 19th, 2022).
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can use the results of this study to estimate the average probability of an accident in

a construction site, given the level of NO2 in its vicinity.

Given the non-linearities in the connection between pollution levels and the prob-

ability of an accident, Figure 5 presents a nonparametric estimation similar to its

approach to equation 6. By implementing such a strategy, we predict the probabil-

ity of an accident more accurately across the different pollution levels to suggest a

more precise monetary subsidy based on pollution levels. Table 5 presents a range of

NO2 levels, their corresponding average probability of an accident, and the associated

maximum subsidy amount beneficial for the government to offer contractors to shut

down the construction site for the day.35 For example, at 53-ppb (approximately the

95th percentile in our sample), a cutoff level between clean and moderately polluted

air according to the EPA, the probability of an accident is 0.000291. The correspond-

ing expected average loss to the government from an accident is 1,073 NIS; thus,

the maximum subsidy amount would be the same value. By contrast, for a level

of 100-ppb (approximately the 99th percentile in our sample), a cutoff level between

moderate and unhealthy pollution levels according to the EPA, the probability of an

accident is 0.000507, and the maximum amount of subsidy is 1,868 NIS.

These findings suggest that for most pollution levels, given the costs, this policy is

not cost-efficient for dealing with construction site accidents associated with increased

air pollution. However, for very high pollution levels, especially considering that the

welfare costs of an accident calculated in this paper are an underestimation, this

policy might be relevant for construction sites on the low end of potential losses from

temporary closures. This suggests that perhaps more focus should be given to other

potential mitigation channels such as targeted interventions based on data-driven

predictions on construction sites prone to accidents, raising awareness of contractors

and workers, investments in safety measures, training, safety standards, scaffolding,

individual pollution sensors, respirators, and other relevant equipment.

9 Conclusion

In this study, we focused on the detrimental effects of one of the major air pollutants,

nitrogen dioxide, on construction site accidents, an important factor in productivity

related to the labor market. We found a strong connection between a rise in levels

of NO2 in the vicinity of the construction site and an increased probability of an

35We also add the 95 percent lower and upper bounds, calculated using bootstrap confidence
intervals, for the probability of an accident and subsidy levels associated which each NO2 level.
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accident, especially at high levels of pollution. We supported our causal estimation

with instrumental variable analyses and robustness checks. We do not find similar

effects for particulate matter or high-temperature levels after properly controlling for

omitted variables.

We also presented evidence suggestive of a mechanism where the effects of pollu-

tion are exacerbated in conditions when the workers physiological state is challenged,

such as high cognitive strain or fatigue. Our findings that strenuous work conditions

aggravate the effects of pollution may have implications beyond construction site ac-

cidents. Further research should explore the importance of exposure to pollution in

other high-stakes settings, such as those of first responders, physicians, and other

demanding professions. Finally, we provide an example of potential policy implemen-

tation of our findings by demonstrating a costbenefit analysis that calculates, using

our estimates, the thresholds of air pollution for which it can be beneficial for the

government to subsidize the closure of construction sites when pollution levels in their

vicinity go above them.
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nemacher, H. Jakobs, R. Erbel, K.-H. Jockel, et al. (2015). Long-term residential

exposure to urban air pollution, and repeated measures of systemic blood markers

of inflammation and coagulation. Occupational and Environmental Medicine 72 (9),

656–663.

Wang, C., F. Zhang, J. Wang, J. K. Doyle, P. A. Hancock, C. M. Mak, and S. Liu

(2021). How indoor environmental quality affects occupants’ cognitive functions:

A systematic review. Building and Environment 193, 107647.

World Health Organization (2021). Who/ilo joint estimates of the work-related bur-

den of disease and injury, 2000–2016: global monitoring report. Report.

27



Tables and Figures

Figure 1: Monitors and Active Construction Sites in Israel
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Figure 2: Distribution of Construction Accidents
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Table 1: Summary Statistics of Pollution Data

Pollutant Hour Measured Units Monitors Obs Average Rate Standard Error

NO2 00-08 ppb 172 136,492 10.9 9.9
08-16 172 134,707 10.1 18.0
16-24 170 136,697 12.4 14.9

Temperature 00-08 Celsius 125 111,176 18.9 6.0
08-16 125 111,156 24.7 6.4
16-24 125 111,649 21.5 6.2

Wind 00-08 m/sec 114 101,905 1.8 1.3
08-16 114 101,981 3.3 1.4
16-24 114 102,253 2.3 1.2

Humidity 00-08 % 111 88,684 72.4 18.5
08-16 111 91,280 52.6 15.8
16-24 111 91,362 66.2 17.4

PM2.5 00-08 µg/m3 102 65,170 20.8 12.5
08-16 102 64,317 21.3 14.8
16-24 100 65,343 20.6 16.0

SO2 00-08 ppb 100 86,180 0.8 0.9
08-16 100 85,921 1.2 1.7
16-24 100 86,641 0.9 1.1

O3 00-08 ppb 75 64,352 27.1 13.2
08-16 75 63,993 45.9 10.7
16-24 75 64,583 36.0 11.9

PM10 00-08 µg/m3 31 23,285 44.3 53.6
08-16 31 23,021 55.6 70.6
16-24 31 23,379 48.1 54.6

CO 00-08 ppm 21 16,709 0.4 0.5
08-16 20 16,590 0.4 0.6
16-24 21 16,786 0.4 0.6

Notes : This table presents sample statistics by variables. Retrieved from Israel’s Ministry of En-
vironmental Protection between 1 January 2017 and 19 November 2019. Each observation is an
8-hour mean of 5-minute interval measurement.
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Table 2: Effect of NO2 on the Probability of a Construction Work Accident

OLS Instrument: Non-linear

Average NO2 NO2 Levels
Levels in 5-10 Between
km Radius Midnight-8 AM

(1) (2) (3) (4) (5)

NO2 0.0039*** 0.0033*** 0.0037** 0.0040*** 99th Perc. 4.33**
(0.011) (0.012) (0.017) (0.015) (1.715)

95th Perc. 1.586
(1.076)

Kliebergen-Paap 1,435.3 1,855.4
Wald F-statistic

Reduced Form 0.0026** 0.0031***
(0.0012) (0.0012)

Weather Controls Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes
Site FE Yes Yes Yes Yes Yes

10 ppb Increase 30% 25% 28% 31% 99th Perc. 377%
on Prob. of
Accident 95th Perc. 138%

Clusters 5,583 5,583 5,083 5,378 5,583
Observations 2,189,124 2,189,124 2,075,089 2,169,647 2,189,124

Notes : The dependent variable is the probability of an accident occurring at the construction site.
The coefficient stated belongs to the independent variable, which is the rate of the pollutant between
8 a.m. and 4 p.m. and multiplied by 1,000 for ease of reading. Time-fixed effects contain the dummy
variables of the year, month, and day of the week. Weather variables include wind, humidity
percentage, temperature rate, and equivalent squared variables. For the non-linear regression, the
levels are the NO2 AQI moderate and unhealthy for sensitive group rates, which correspond roughly
to the thresholds of the 99th and 95th percentile (53 and 100-ppb, respectively). The first instrument
is a simple average of the NO2 rates in the 5-10 km radius from each construction site between 8 a.m.
and 4 p.m. The second instrument is the rate between midnight and 8 a.m. in the closest monitor
with a NO2 reading within 1 km from the site. Standard errors are robust, adjusted for clusters by
sites, and appear in parentheses. The effect of 10-ppb is compared to the average accident rate in
each regression.
* p < 0.1 ** p < 0.05 *** p < 0.01
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Figure 4: Semi-Parametric Estimation of the Effect of NO2 on the
Probability of an Accident, Distance Limited to 1 km

Notes : The continuous line represents the semi-parametric estimation of the connection between
NO2 levels at the closest measuring station and the probability of an accident at a construction site.
The dashed line represents the liner connection.
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Table 3: Robustness of the Effect of Nitrogen Dioxide NO2 on the Probability of a
Construction Accident. Varying Monitor’s Distance from Site, Limiting Wind

Direction and Applying the Air Quality Index

Monitor’s Distance Robustness Wind Direction General AQI

1 km 1.5 km 2 km 5 km 180 degrees Instrument: Instrument: Multiple
from monitor Average NO2 Rate Treatments

to site NO2 Rate Between
in 5-10 km Midnight-8
Radius a.m.

(1) (2) (3) (4) (5) (6) (7) (8)

NO2 0.0033*** 0.0018** 0.0008 0.0004 0.0039** 0.0042** 0.0041** 0.0039***
(0.0013) (0.0008) (0.0006) (0.0005) (0.0018) (0.0019) (0.0020) (0.0015)

AQI -0.0008
(excluding (0.0004)
NO2)

Kliebergen- 1,322.8 2,398.1
Paap Wald
F-statistic

Reduced 0.0038** 0.0034**
Form (0.0017) (0.0016)

10 ppb 25% 15% 8% 4% 30% 27% 27% 30%
Increase on
Prob. of
Accident

Clusters 5,583 10,119 12,765 18,896 5,433 4,855 5,087 5,082
Observations 2,189,124 4,119,202 5,211,326 7,803,472 1,185,624 1,210,481 1,249,192 1,243,497

Notes : The dependent variable is the probability of an accident occurring at the construction site.
The coefficient stated belongs to the independent variable, which is the rate of the pollutant between
8 a.m. and 4 p.m. and multiplied by 1,000 for ease of reading. All regressions include time, weather,
and site-fixed effects. Time-fixed effects contain the dummy variables of the year, month, and day
of the week. Weather variables contain the wind, humidity, and temperature rate from relevant
hours and equivalent squared variables. Column (5) restricts the sample to observations in which
the wind direction is within 90 degrees to each side of the site’s angle from the pollution monitor.
For columns (6)-(7), the AQI index is computed with respect to the EPA standards, converting each
pollutant’s 8 a.m. to 4 p.m. rate to its corresponding AQI level and then taking the maximum level
within all pollutants. The distance attributed to the index is the distance of the pollutant with the
highest index level, and observations are restricted to 1 km for both NO2 and the AQI. Column (8)
regresses an AQI index excluding NO2 as another treatment, where observations are restricted to
a 1 km distance with respect to both treatments’ distances. Standard errors are robust, adjusted
for clusters by sites, and appear in parentheses. The effect of 10 ppb is compared to the average
accident rate in each regression.
* p < 0.1 ** p < 0.05 *** p < 0.001
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Figure 5: Nonparametric Estimation of the Effect of NO2 on the Probability of an
Accident, Excluding Weekends and Distance Limited to 1 km

Notes : The continuous line represents the non-parametric estimation of the connection between
NO2 levels at the closest measuring station and the probability of an accident at a construction site.
The dashed line represents the liner connection. The gray dots represent the average probability of
an accident for the group of observations within the same percentile of NO2 levels, above the 85th

percentile. The dark shaded area represents the 95 percent confidence intervals based on the robust
and clustered standard errors that relate to the linear model, while the light gray area represents
the 95 percent bootstrap confidence intervals related to the non-parametric estimation.
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Table 4: Supporting Evidence on the Possible Mechanism for the Effect of NO2 On
Construction Accidents

Baseline Wind Temperature Humidity Day of the Week

Above 75th Below 75th Above 75th Below 75th Above 75th Below 75th Interaction With
Percentile Percentile Percentile Percentile Percentile Percentile Nitrogen Dioxide
(3.7 m/s) (3.7 m/s) (29.9 Celsius) (29.9 Celsius) (62.2%) (62.2%) Levels

(Sunday × NO2 is
the Omitted Level)

(1) (2) (3) (4) (5) (6) (7) (8)

NO2 0.0033*** 0.0069*** 0.0023* 0.0047** 0.0025** 0.0052 0.0031** NO2 0.0083**
(0.0013) (0.0012) (0.0012) (0.0022) (0.0011) (0.0035) (0.0012) (0.0035)

Mon. × -0.0056
NO2 (0.0039)

Tue. × -0.0067*
NO2 (0.0034)

Wed. × -0.0060**
NO2 (0.0027)

Thu. × -0.0068*
NO2 (0.0036)

10 ppb 25% 56.9% 19.1% 34.0% 18.0% 53.8% 32.0%
Increase on
Prob. of
Accident

Clusters 5,583 5,317 5,317 5,054 5,055 5,226 5,227 5,583
Observations 2,189,124 574,489 1,555,964 514,341 1,651,522 531,262 1,653,066 2,189,124

Notes : The dependent variable is the probability of an accident occurring at the construction site.
The coefficient stated belongs to the independent variable, which is the rate of the pollutant between
8 a.m. and 4 p.m. multiplied by 1,000 for ease of reading. All regressions include time, weather, and
site-fixed effects. Time-fixed effects contain the dummy variables of the year, month, and day of the
week. Weather variables contain the wind, humidity, and temperature rate from relevant hours and
equivalent squared variables. Column (8) includes the interaction terms between the day of the week
and NO2 levels to the baseline linear model with controls presented in equation 1. The omitted level
is the interaction between NO2 levels and a dummy variable for observations occurring on Sunday.
Standard errors are robust, adjusted for clusters by sites, and appear in parentheses. The effect of
10 ppb is compared to the average accident rate in each regression.
* p < 0.1 ** p < 0.05 *** p < 0.001
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Table 5: Cost Benefit Analysis of Pollution Levels and Subsidy Amount

Nitrogen Dioxide Percentile Probability of an Subsidy 95% Confidence Intervals
Level Accident (NIS)

5.4 25% 0.000140 515 431 599

9.4 50% 0.000144 530 453 608

17.2 75% 0.000159 586 511 660

30.2 91% 0.000193 709 595 823

32.1 92% 0.000201 739 613 864

34.8 93% 0.000209 770 632 907

39.0 94% 0.000218 803 652 953

45.6 95% 0.000247 910 718 1,102

57.6 96% 0.000291 1,073 817 1,329

77.9 97% 0.000394 1,449 1,040 1,858

93.1 98% 0.000464 1,707 1,188 2,227

102.2 99% 0.000507 1,868 1,276 2,459

115.2 100% 0.000582 2,141 1,417 2,864

Notes : This table presents a calculation of the maximum subsidy amount the government can pay a
contractor for the closure of the construction site for the day, to offset expected injury insurance pay-
ments, conditional on local levels of NO2. The expected lifetime accident payout by the government
is 3.681 million NIS, and the subsidy amount is calculated by multiplying this amount by the proba-
bility of an accident corresponding to every NO2 level according to our nonparametric estimate; see
paper for details. The 95% confidence intervals are calculated using a bootstrap estimation method.
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A Online Appendix

Appendix Table A1: Correlations Between Air Pollutants and Weather Variables

Panel A: Linear

NO2 PM2.5 SO2 O3 Temperature Wind Humidity

NO2 1 - - - - - -
PM2.5 0.21 1 - - - - -
SO2 0.55 0.15 1 - - - -
O3 -0.49 -0.02 -0.17 1 - - -
Temperature -0.12 0.17 -0.1 0.41 1 - -
Wind -0.15 -0.04 -0.09 0.2 -0.03 1 -
Humidity -0.21 -0.16 -0.24 -0.17 -0.41 0.12 1

Panel B: 95th Percentile

NO2 PM2.5 SO2 O3 Temperature Wind Humidity

NO2 1 - - - - - -
PM2.5 0.03 1 - - - - -
SO2 0.19 0.01 1 - - - -
O3 -0.02 0.04 0 1 - - -
Temperature 0.02 0.05 0 0.16 1 - -
Wind -0.02 0.13 -0.01 0.01 -0.02 1 -
Humidity -0.02 0.02 -0.04 -0.03 -0.05 0.08 1

Note: The correlations presented are computed on the sample of all pollution monitors readings
for each day between 1 January 2017 and 19 November 2019, where each day corresponds to the
measurements between 8 a.m. and 4 p.m. For Panel A, the correlation is between the reading’s
linear values, and for Panel B, between binary variables that equal 1 if the level exceeds the 95th

percentile value for that variable and equals zero otherwise.
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Appendix Table A2: Effect of Sites’ Closest Rate of Nitrogen Dioxide Rate, within 1
km on the Average in the 5-10 km Radius, by Company Size

Big Company Small Company Interaction
(1) (2) (3)

NO2 0.190*** 0.246*** 0.237***
(0.011) (0.008) (0.007)

NO2 × -0.016
Big Company (0.012)

Weather Controls Yes Yes Yes
Time FE Yes Yes Yes
Site FE Yes Yes Yes

Clusters 990 4,284 5,274
Observations 417,941 1,657,339 2,075,280

Notes: The dependent variable is the closest reading of NO2 in ppb between 8 a.m. and 4 p.m. within
a 1 km radius from the given construction site. The coefficient stated belongs to the independent
variable, the average NO2 between 8 a.m. and 4 p.m. within the 5-10 km radius of the site. In
order to define a company’s size, we used company names that were included in the data. All those
whose names included the “ltd.” term were considered big, and those without a name we assumed
to be small. All regressions include time, weather, and site fixed effects. Time-fixed effects contain
the dummy variables of the year, month, and day of the week. Weather variables contain the wind,
humidity, and temperature rate from relevant hours and equivalent squared variables. Standard
errors are robust, adjusted for clusters by sites, and appear in parentheses.
* p < 0.1 ** p < 0.05 *** p < 0.001
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Appendix Table A3: The Effect of Nitric Oxide (NO) on the Probability of a
Construction Accident

(1) (2) (3) (4) (5)
Instrument: Instrument:
Average Rate Rate Between Non-linear
in 5-10 km Midnight-8
Radius a.m.

NO 0.0050*** 0.0039** 0.0056* 0.0032* 99th Perc. 0.347**
(0.0002) (0.0002) (0.0003) (0.0002) (0.143)

95th Perc. 0.0524
(0.058)

Reduced Form 0.0045* 0.0049*
(0.0003) (0.0003)

Weather Controls Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Site FE Yes Yes Yes Yes

10 ppb Increase 4% 3% 4% 2% 99th Perc. 302%
on Prob. of
Accident 95th Perc. 46%

Clusters 5,577 5,577 5,268 5,577 5,577
Observations 2,175,535 2,175,535 2,062,225 2,149,505 2,175,535

Notes: The dependent variable is the probability of an accident occurring at the construction site.
The coefficient stated belongs to the independent variable, which is the rate of the pollutant between
8 a.m. and 4 p.m. and multiplied by 1,000 for ease of reading. Time-fixed effects contain the dummy
variables of the year, month, and day of the week. Weather variables include the wind, humidity
percentage, temperature rate, and the equivalent squared variables. For the non-linear regression,
the levels are the NO AQI moderate and unhealthy for sensitive group rates, which correspond
roughly to the 99th and 95th percentile thresholds. The first instrument is a simple average of the
NO rates in the 5-10 km radius from each construction site between 8 a.m. and 4 p.m. The second
instrument is the rate between midnight and 8 a.m. in the closest monitor with a NO reading
within 1 km from the site. Standard errors are robust, adjusted for clusters by sites, and appear
in parentheses. The effect of 10 ppb is calculated compared to the average accident rate in each
regression.
* p < 0.1 ** p < 0.05 *** p < 0.01
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Appendix Table A4: Regressions Including NO2, PM2.5, O3, and SO2 Together

(1) (2)

NO2 0.0043*** 0.0046
(0.00015) (0.0039)

1 SD increase 66.8% 56.6%

PM2.5 -0.0011 -0.0015
(0.0011) (0.00025)

1 SD increase -13.2% -16.2 %

O3 0.0043
(0.0029)

1 SD increase 38.2%

SO2 0.0008
(0.0022)

1 SD increase 0.64%

Clusters 3,649 1,409
Observations 1,261,425 426,019

Notes: The dependent variable is the probability of an accident occurring at the construction site.
The coefficient stated belongs to the independent variable, which is the rate of the pollutant between
8 a.m. and 4 p.m. and multiplied by 1,000 for ease of reading. Time-fixed effects contain the dummy
variables of the year, month, and day of the week. Weather variables include wind, humidity
percentage, temperature rate, and equivalent squared variables. Standard errors are robust and
adjusted for clusters by construction sites.
* p < 0.1 ** p < 0.05 *** p < 0.01
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Appendix Table A5: Testing Robustness due to Possible Spatial Auto-Correlation
and Correcting for Multiple Hypothesis Testing

(1) (2) (3) (4) (5)
Instrument: Instrument:
Average Rate Rate
in 5-10 km Between Non-linear
Radius Midnight -

8 a.m.

NO2 0.0039 0.0033 0.0037 0.0040 99th Perc. 0.433

Clustered (0.0011)*** (0.0013)*** (0.0017)** (0.0015)*** (0.172)**
by Site
Clustered [0.0004]*** [0.0010]*** [0.0016]** [0.0013]*** [0.045]***
by monitor
Conley {0.0014}*** {0.0017}** {0.0017}** {0.0015}*** {0.208}**

95th Perc. 0.159
(0.108)

[0.051]***
{0.089}*

99th Perc.
p-value 0.00 0.00 0.03 0.00 p-value 0.01
q-value 0.00 0.01 0.06 0.01 q-value 0.02

95th Perc.
p-value 0.14
q-value 0.21

Weather Controls Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Site FE Yes Yes Yes Yes

Clusters 5,583 5,583 5,274 5,583 5,583
Observations 2,189,124 2,189,124 2,189,124 2,189,124 2,189,124

Notes: The dependent variable is the probability of an accident occurring at the construction site.
The coefficient stated belongs to the independent variable, which is the rate of the pollutant between
8 a.m. and 4 p.m. and multiplied by 1,000 for ease of reading. Time-fixed effects contain the dummy
variables of the year, month, and day of the week. Weather variables include wind, humidity
percentage, temperature rate, and equivalent squared variables. For the non-linear regression, the
levels are the NO2 AQI moderate and unhealthy for sensitive group rates, which correspond roughly
to the thresholds of the 99th and 95th percentile (53 and 100 ppb, respectively). The first instrument
is a simple average of the NO2 rates in the 5-10 km radius from each construction site between 8
a.m. and 4 p.m. The second instrument is the rate between midnight and 8 a.m. in the closest
monitor with a NO2 reading within a 1 km from the site. Standard errors are robust, adjusted
for clusters by sites and appear in round parentheses, adjusted for clusters by monitors appear in
squared parentheses, and Conley (1999) standard errors which account for spatial correlation appear
in curly parentheses, using a 0.69 km radius. The q-value is the sharpened False Discovery Rate
(FDR) corrected for multiple hypotheses testing the effect of PM2.5.
* p < 0.1 ** p < 0.05 *** p < 0.01
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Appendix Table A6: The Effect of PM2.5 and NO2 on the Probability of a
Construction Accident

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A:

PM2.5 0.0039*** 0.0039*** 0.0034** 0.0030* 0.0030* 0.0030* 0.0036** 0.0009
(0.0015) (0.0014) (0.0015) (0.0015) (0.0015) (0.0015) (0.0015) (0.0011)

Panel B:

NO2 0.0040*** 0.0041*** 0.0036*** 0.0034** 0.0032** 0.0034** 0.0043*** 0.0037***
(0.0012) (0.0013) (0.0013) (0.0013) (0.0013) (0.0013) (0.0014) (0.0014)

Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Month FE Yes Yes Yes Yes Yes Yes Yes Yes
Day of the Week Yes Yes Yes Yes Yes Yes
Temperature Yes Yes Yes Yes Yes
Humidity Yes Yes Yes Yes
Wind Yes Yes Yes
City FE Yes
Site FE Yes

Clusters 3,649 3,649 3,649 3,649 3,656 3,649 3,649 3,649
Observations 1,261,425 1,261,425 1,261,425 1,261,425 1,261,425 1,261,425 1,261,425 1,261,425

Notes: The dependent variable is the probability of an accident occurring at the construction site.
The coefficient stated belongs to the independent variable, which in Panel A is PM2.5 in µg/m3

units between 8 a.m. and 4 p.m., and in Panel B is the rate of NO2 between the same hours in
ppb units, both in a monitor closer than 1 km distance. All coefficients are multiplied by 1,000 for
ease of reading. Weather fixed effects, such as temperature, humidity, and wind, include a squared
variable with their equivalent rate and a linear variable. Standard errors are robust, adjusted for
clusters by sites, and appear in parentheses.
* p < 0.1 ** p < 0.05 *** p < 0.001
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Appendix Table A7: Effect of Temperature on the Probability of a Construction
Accident

(1) (2) (3) (4) (5) (6)

Temp (35-40) 0.183* 0.160 0.163 0.163 0.085 0.037
(0.101) (0.110) (0.110) (0.110) (0.104) (0.102)

Temp (30-35) 0.136*** 0.113** 0.111** 0.094* 0.041 0.011
(0.050) (0.055) (0.055) (0.055) (0.055) (0.055)

Temp (25-30) 0.061 0.041 0.039 0.031 -0.006 -0.020
(0.040) (0.042) (0.043) (0.043) (0.042) (0.043)

Year FE Yes Yes Yes Yes Yes Yes
Month FE Yes Yes Yes Yes Yes Yes
Humidity Yes Yes Yes Yes Yes
Wind Yes Yes Yes Yes
Day of the Week FE Yes Yes Yes
City FE Yes
Site FE Yes

Clusters 4,890 4,890 4,890 4,890 4,890 4,890
Observations 1,838,439 1,838,439 1,838,439 1,838,439 1,838,439 1,838,439

Notes: The dependent variable is the probability of an accident occurring at the construction site.
The coefficient stated belongs to the independent variable, which is the temperature between 8 a.m.
and 4 p.m. in degrees Celsius and is multiplied by 1,000 for ease of reading. Weather variables contain
the wind, humidity, and temperature rate from relevant hours and equivalent squared variables. The
omitted level is the bin between 20-25 degrees Celsius. Lower bins in 5 degrees Celsius intervals and
a bin for 40 degrees and over are included in all regressions but are not shown. Standard errors are
robust, adjusted for clusters by sites, and appear in parentheses.
* p < 0.1 ** p < 0.05 *** p < 0.001
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Appendix Table A8: Variation Under Various Sets of Fixed Effects

NO2 PM2.5 Temperature

(1) (2) (3)
Control variable R2 σe |e| > 1/7 R2 σe |e| > 1/7 R2 σe |e| > 1/7
added: SD SD SD

No FE - 36.466 0.865 - 17.978 0.998 - 6.105 0.999

Wind 0.021 36.088 0.840 0.001 17.965 0.852 0.059 5.923 0.924

Temperature 0.031 35.889 0.830 0.021 17.792 0.850 - - -

Humidity 0.032 35.871 0.830 0.033 17.678 0.854 0.203 5.450 0.907

Year 0.033 35.863 0.830 0.034 17.672 0.853 0.207 5.435 0.907

Month 0.070 35.159 0.808 0.106 17.002 0.826 0.818 2.604 0.688

Day of the Week 0.106 34.483 0.775 0.116 16.906 0.827 0.819 2.595 0.688

Region 0.187 32.877 0.741 0.156 16.518 0.813 0.860 2.285 0.647

City 0.300 30.509 0.687 0.246 15.610 0.789 0.877 2.138 0.623

Site 0.759 17.893 0.575 0.56 11.925 0.740 0.885 2.071 0.609

Observations 2,189,124 1,261,425 1,684,471

Notes: This table summarizes regressions of nitrogen dioxide, particulate matter, and temperature
on various fixed effects to show how much variation each one absorbs. Each row adds the fixed
effect written in the specific row on top of those that came before. Each group of three columns
shows (a) measures of R2 for the regression, (b) the standard deviation of the residuals (remaining
pollution residuals), and (c) the fraction of observations with a residual larger than one-seventh of the
standard deviation for each dependent variable. Each dependent variable’s analysis is conditioned
on the measurement being at most 1 km away from the construction site. All pollutants units are
in µg/m3, where NO2 units were converted at 25 degrees Celsius and one standard atmospheric
pressure. Temperature is given in Celsius.
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Appendix Table A9: Effect of NO2, PM2.5, and Temperature as the Unit of
Observation Changes

Independent Variable: NO2 PM2.5 Temperature
(1) (2) (3)

Panel A: Construction Site

0.00327*** 0.000858 0.000822
(0.00125) (0.00112) (0.00409)

1 SD increase 49.20% 9.40% -3.90%

Clusters (by sites) 5,583 3,649 4,752
Observations 2,189,124 1,261,425 1,684,471

Panel B: City

0.0423 0.00471 0.0345
(0.511) (0.00877) (0.059)

1 SD increase 26.80% -3.50% 10.80%

Clusters (by city) 290 290 290
Observations 146,178 146,178 146,178

Panel C: Country

3.604 -1.998 -5.618
(3.467) (1.594) (7.766)

1 SD increase 8.50% -6.60% -12.10%

Observations 1,053 1,053 1,053

Mean Dependent by Unit
Construction Site 0.000129 0.000154 0.000129
City 0.001936 0.001936 0.001936
Country 0.268756 0.268756 0.268756

Notes: This table summarizes regressions of NO2, PM2.5, and temperature in different sizes of unit
observation. The coefficients stated belong to the independent variables, which are the pollutants or
temperature measurements in the relevant between 8 a.m. and 4 p.m. in ppb, µg/m3, and Celsius
for NO2, PM2.5, and temperature, respectively, and are multiplied by 1,000 for ease of reading. For
Panel A, the dependent variable is whether a construction accident occurred on a given day at the
construction site, in Panel B it is the number of accidents that occurred on a given day in the city,
and in Panel C it is the number of accidents that occurred in the whole country in the given day.
Panel A uses the most granular level of observation, which is a day in a construction site, Panel
B aggregates the accidents and takes the mean level of the independent variable in each city per
day, Panel C aggregates all of the construction sites in the country per day. In Panel A, all the
dependent variable’s analysis is conditioned on the measurement being at most 1 km away from the
construction site. For the non-linear regressions we consider two cutoff levels for each dependent
variable. For the NO2 and PM2.5 in Panels A and B, the levels are the AQI moderate and unhealthy
for sensitive group rates, which correspond to 53 and 100 ppb, and 12 and 35 µg/m3, respectively.
For temperature and Panel C, it is the 95th and 99th percentiles, where the coefficients presented
correspond to the more critical of the two. 46


