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ABSTRACT

Literature has shown that air pollution can have short- and long-term adverse effects on 
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study, we estimate the effect of increased nitrogen dioxide (NO₂), one of the primary air 
pollutants, on the likelihood of accidents in construction sites, a significant factor related to 
productivity losses in the labor market. Using data from all construction sites and pollution 
monitoring stations in Israel, we find a strong and significant connection between air pollution 
and construction site accidents. We find that a 10-ppb increase in NO₂ levels increases the 
likelihood of an accident by as much as 25 percent. We observe strong nonlinear treatment 
effects, mainly driven by very high levels of NO₂. The probability of an accident is almost 
quadrupled when NO₂ levels cross into levels considered by the EPA as “unhealthy” (above the 
99th percentile in our sample) compared to levels considered “clean” (below the 95th percentile 
in our sample). We also implement a set of instrumental variable analyses to support the causal 
interpretation of the results and present evidence suggestive of a mechanism where the effect of 
pollution is exacerbated in conditions with high cognitive strain or worker fatigue. Finally, we 
perform a cost-benefit analysis, supported by a nonparametric estimation and institutional 
information, which examines the viability of a potential welfare-improving policy to subsidize the 
closure of construction sites on highly polluted days.
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1. Introduction 

With 9 out of 10 people worldwide breathing polluted air and an estimated death toll of seven 

million premature deaths each year caused by air pollution, according to the World Health Organization, 

research identifying and highlighting the potential effects of air pollution is in high demand. Given this, 

the effects of air pollution on society are a focus of a growing literature in many disciplines, including 

economics, that attempts to broaden the scope beyond direct health outcomes (see Aguilar-Gomez, Dwyer, 

Graff Zivin, and Neidell, 2022, for a recent survey).  

We contribute to this literature by investigating the effects of air pollution on work accidents, 

which are significant and less-studied factors for productivity in the labor market. Work-related accidents, 

with construction workers at particular risk, cause an estimated 360,000 deaths worldwide each year and 

an estimated 26.5 million disability-adjusted life years (World Health Organization and International Labor 

Organization Report, 2021). These outcomes also translate to significant productivity losses; according to 

a National Safety Council (NSC) report, in the US alone, the estimated productivity and wage losses from 

work-related accidents totaled 44.8 billion dollars in 2020. In the EU, in 2017, the costs of work related 

accidents and illnesses accounted for around 3.3 percent of GDP (Elsler, Takala, and Remes, 2017).1 

This paper presents novel and compelling evidence of the economically and statistically significant 

effects of air pollution exposure on workplace accidents, even at subclinical levels. We identify the effect 

of a primary, although less studied air pollutant, nitrogen dioxide (NO2), on construction-related injuries 

and fatalities in Israel.2 We find that a 10-ppb increase in NO2 levels increases the likelihood of an accident 

by 25 percent.3 We also observe strong nonlinear effects, with measurable effects occurring mostly at levels 

associated with moderate and unhealthy pollution levels, according to EPA standards, the lower bound of 

which corresponds roughly to the 95th and 99th percentiles in our sample. At these levels, the likelihood of 

                                                 
1 Construction accidents also increase the cost of labor, due to risk compensation, and create delays that contribute to 

increasing costs in the housing market, a major policy issue in Israel and in many countries throughout the world 

(Crawford, 2021).  
2 Throughout the paper, when we discuss accidents, we refer to accidents involving an injury. 
3 We will be presenting most results in terms of a 10-unit increase, as is common in this literature. A one standard 

deviation in NO2 levels in our main specification is equal to 18 ppb. 
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an accident is increased by 138 and 377 percent, respectively, compared to levels of clean air (below 55 

ppb, the 95th percentile). 

We support the causal identification by including construction site and time-fixed effects in the 

regressions while also controlling for other factors potentially associated with work accidents, such as 

wind, humidity, and temperature levels. The construction site fixed effects help us focus on within-

construction site variations to control for potential permanent differences between construction sites that 

might affect work accidents. We also control for time factors such as day of the week, month, and year to 

mitigate concerns related to worker sorting and selection issues that might bias our results.  

A potential challenge to our identification strategy is the possibility that pollution may be generated 

at the construction site itself, such that days of high/particular activity at the construction site may result 

in higher pollution and more accidents. We use instrumental variables to address these potential concerns 

of the cogeneration of pollution and accidents.4   

We take advantage of the high density and spatial distribution of air pollution monitoring stations 

and instrument pollution at the nearest monitoring station and up to 1 km from the construction site, with 

the average pollution level measured in stations within a 5–10 km radius of the construction site. For our 

exclusion restriction, we rely on the assumption that even if construction sites are a source of pollution, 

these small levels of pollution generated by the construction site are not likely to carry to the monitoring 

stations located more than 5 km away. We also assume that pollution levels measured at distant monitoring 

stations can only affect the probability of a construction accident through pollution levels measured at the 

closest monitoring station to the construction site. For our second instrument, we also take advantage of 

the high frequency of measurements of pollution in our data (8-hour intervals of the average of 5-minute 

readings, each day, between midnight and 8 a.m., 8 a.m. and 4 p.m., and 4 p.m. and midnight). We use as 

an instrument for pollution the lagged pollution levels measured at the monitoring station in the intervals 

                                                 
4 We also use data on wind direction to limit our sample to days on which the wind was blowing from the monitor to 

the construction site. By limiting the potential threat of pollution from the construction site being picked up by the 

monitor, we provide supportive evidence for the robustness of our results to the possible codetermination of other 

factors generating pollution at the site and increasing the probability of an accident at the same time.     
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of the evening and the night before, when activity at the construction site itself is minimal. For our 

exclusion restriction to hold, we assume that any pollution generated by the site itself cannot alter pollution 

levels measured the night before when the site is, by and large inactive. Further, these pollution levels, 

measured during the night before, should only affect the probability of a construction accident occurring 

in each site through pollution levels measured during working hours on the day itself. 

Our instrumental variable results are consistent with our main findings, as a 10-unit increase in 

NO2 levels increases the likelihood of an accident by 28 percent and 31 percent for the geographical 

proximity and lagged IVs, respectively. We further show that the findings are robust to using the general 

air quality index (AQI), which includes an index of the six major pollutants (NO2, PM2.5, PM10, O3, CO, 

and SO2) instead of NO2 as the instrumented variable. This analysis relieves concerns regarding the 

possibility of under-identification due to the multiplicity of pollutants that might be both highly correlated 

with the instrumented pollutant and potentially directly affect the outcome variable. 

As a next step, we focus on the potential mechanisms of the effect. By examining the interaction 

of NO2 levels with worker fatigue (proxied by day of the week) and with cognitive stress (proxied by high 

levels of wind speed, temperature, and humidity), we provide suggestive evidence that the detrimental 

effect of NO2 on accidents is exacerbated in conditions of strenuous physiological states of the workers. 

Our setting and the finding linking the effects of pollution with cognitive strain may provide suggestive 

evidence of the importance of pollution exposure in mentally and physically strenuous settings beyond 

construction site work, such as those of first responders, physicians, and other high-stakes professions.  

To demonstrate the significance of our econometric strategy for proper identification, we show the 

importance of focusing on a detailed geographical level of analysis, such as the construction site level, to 

avoid issues of endogeneity. We demonstrate that the effects of particulate matter and high temperature, 

which have been linked to increased levels of accidents in previous studies that looked at larger 

geographical units, do not persist when we control for construction site fixed effects, while the effect of 
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NO2 remains robust.5 We also illustrate the importance of monitoring pollution in proximity to the unit of 

analysis to avoid measurement error attenuation bias. We demonstrate this by showing how the effect size 

and significance decrease when we gradually relax the restriction on the construction site sample to include 

sites for which the maximum distance from a construction site to the closest monitoring station is increased 

from 1 km to 1.5, 2, 5, and any distance, respectively.  

We conduct a cost–benefit analysis to determine the viability of subsidizing a shutdown of 

construction sites at times of extreme pollution. Using a nonparametric estimation strategy, we find the 

maximum level of subsidy, conditional on local pollution levels, that the government can offer to each 

contractor to shut down their daily operations. We find that the policy might become relevant only for very 

high pollution levels when the probability of an accident is high enough that the expected benefits from 

avoiding worker’s insurance payouts are large enough to offset losses from construction site shutdown 

costs for the day. 

The rest of the paper is organized as follows. In Section II, we present a review of the relevant 

literature and the contribution of our study. Section III presents institutional information in the Israel 

context and our data. Section IV presents our empirical strategy. In Section V, we present our empirical 

results. Section VI presents our robustness checks. Section VII discusses potential mechanisms and present 

results related to other potential determinants of construction accidents. Section VIII presents our cost-

benefit analysis, and Section IX concludes. 

2. Related Literature 

Physicians and epidemiologists have mainly examined the direct health effects of air pollution on 

health outcomes. They find that even short-term exposure to low levels of pollution might affect the 

cardiovascular and respiratory systems (Brook and Rajagopalan, 2007; Viehmann et al., 2015) as well as 

brain functioning (Forman and Finch, 2018), which in turn may cause fatigue, impaired motor function, 

                                                 
5 We also show suggestive evidence that the effect of NO2 is not driven by its potential codetermination with other 

pollutants.  
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lack of concentration, and impatience (Siegel and Crockett, 2013; Delgado-Saborit et al., 2021). These 

physiological outcomes provide potential mechanisms compatible with our findings, as fatigue and 

lowered cognition caused by pollution might increase the likelihood of a construction accident.  

More recent literature has focused on the economic effects of air pollution. Researchers have found 

that short-term exposure to air pollution decreases work productivity (Graff Zivin and Neidell, 2012; 

Chang et al., 2016), reduces labor supply (Aragón et al., 2017; Hanna and Oliva, 2015; Holub et al., 2021), 

and has adverse effects on human capital formation (Ebenstein, Lavy, and Roth, 2016). 

Our paper adds to this literature by examining the effects of air pollution on a less studied but 

significant factor affecting labor outcomes, workplace accidents. We also focus on a less studied, although 

ubiquitous, air pollutant, nitrogen dioxide. The paper most closely related to ours is that of Vega-Calderón 

et al. (2021), who found a connection between increased levels of PM10 and NO2 and workplace accidents 

in Madrid, Spain. Our study goes further by including controls for humidity levels, site fixed effects, and 

an instrumental variable analysis, which allow for a causal interpretation of the findings. Furthermore, we 

find significantly stronger effects of air pollution, perhaps due to the higher accuracy of pollution level 

measurements at construction sites facilitated by the large number and high density of monitoring stations 

and construction sites in our data. The increased accuracy decreases the likelihood of measurement error 

bias in our results.  

3. Institutional Information and Data 

Our dataset is a combination of data from three primary sources: the Israeli Ministry of Economy 

and Industry, which provided us with construction sites’ locations, activity dates, and construction 

accidents that occurred between 2017–2019; the Israeli Ministry of Environmental Protection, which 

provided us with measures of air pollution and weather for those years; and Kav LaOved, a nonprofit 

organization focused on workers’ rights, which provided us with complementary construction site accident 

data. 
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a. Construction Sites and Accidents Data 

The initial construction site sample provided by the Ministry of Economy and Industry included 

25,571 construction sites active in Israel between 2017 and 2019.6 Using geo-coding techniques, we 

matched the sites’ addresses to coordinates. Knowing each site’s opening and closing days, we assigned 

an observation to each active day for each site, which resulted in our final sample of 24,614 sites and 

10,016,000 observations.7 

The accident sample provided by the Ministry of Economy and Industry included 1,316 accidents 

during the sample period. The accidents provided by Kav LaOved did not include site IDs matching the 

ministry’s data. So we matched the accidents to the sites by their address instead, which resulted in an 

additional 31 accidents. Merging the dataset of the site’s active days sample and the accidents sample, we 

were left with 1,164 accidents per 10,016,000 working days in construction sites.8 

Figure 1 shows the distribution of construction sites across Israel. Dividing Israel’s inhabited areas 

by construction sites active in our sample yields approximately one construction site per 0.28 km2. The 

lifespan of each construction site in our data varies between a day and six years; the average is 

approximately a year and a half. 

As for the accidents, as shown in Figure 2, we can see that construction accidents occur across all 

days of the week, with a substantial drop on Fridays and Saturdays.9 As the yearly average of workers in 

Israel’s construction sector was around 272,500 during the sample period, the yearly accident rate resulted 

in 161 accidents per 100k workers.10                     

                                                 
6 A construction site is defined as a location where construction or engineering work is being done that requires the 

consent of a registered engineer. Painting, flooring, and other renovations are not included. 
7 For our main specification we use the interval from 8 a.m. to 4 p.m., which corresponds to the working hours of each site. 

The decline in the number of sites is due to lack of exact matching of 957 sites’ addresses in the geo-coding process.  
8 Accidents reported by the Ministry of Economy and Industry are those reported under Israel’s Occupational 

Accidents and Diseases Ordinance. The law requires employers to promptly notify the regional labor inspector of any 

workplace accident that causes an employee to be incapacitated for at least three days. 
9 The work week in Israel starts on Sunday, while Friday and Saturday are weekend days, equivalent to Saturday and 

Sunday in most of the western world. 
10 There appears to be some underreporting of nonfatal construction accidents in Israel, as the average yearly accident 

rate in in the US and the EU for the same time period was 1,040 and 3,270 per 100k workers respectively (Center for 

Construction Research and Training, 2022; Eurostat, 2022). There is no indication that this underreporting is related 

to pollution levels and could only potentially reduce the statistical power in our analysis. 
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b. Environmental Data 

Air pollution and weather data were provided by the Israeli Ministry of Environmental Protection, 

which reported an 8-hour average of 5-minute interval readings of NO2 (ppb), wind strength and direction 

(m/sec and degrees, respectively), temperature (c), humidity (%), as well as other pollutants at 173 

monitoring stations throughout Israel for the sample period. The locations of monitoring stations are spread 

out across the country, as seen in Figure 1. Monitoring stations in urban areas account for 37 percent of all 

monitoring stations, rural for 30 percent, and suburban for 11 percent. Monitoring stations near trains/roads 

account for 18 percent and industrial areas for 4 percent.  

Each active day in a construction site is assigned the nearest reading for each variable, where 

21,861, 15,440, 12,677, and 7,199 construction sites have at least one monitoring station at a 5, 2, 1.5, and 

1 km distance, respectively. Unfortunately, the other major pollutants were not as consistently measured 

as NO2, possibly due to the relatively simple and cost-effective nature of NO2 monitors, which limited our 

ability to reliably examine their effects due to the small sample size.11 

The primary source of NO2 pollution is fuel combustion from transportation and industrial work, 

with transportation alone accounting for nearly 94 percent of NO2 emissions in population centers in Israel, 

according to the Israeli Ministry of Health. NO2 levels vary significantly over space and time, with high 

concentrations measured near major roads, intersections, and highways during rush hours dissipating with 

distance and time. Figure 3 illustrates the variation of NO2 in our sample from several monitoring stations 

in the Central District in Israel. The figure, composed of a matrix of maps, depicts NO2 levels at each 

monitoring station over all three 8-hour intervals each day, vertically and horizontally across all days of 

the week for a randomly chosen week in January 2018. As shown, NO2 concentrations are significantly 

higher near major roads and decrease with distance. Furthermore, as expected, a significant drop can be 

observed during the night and on weekends when traffic volume is reduced.  

                                                 
11 See the robustness section for an analysis including other pollutants. 
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Table 1 shows summary statistics for pollution and weather variables in our dataset. In 2017, the 

European Environmental Agency reported an annual mean average of 22.0 µg/m3 for NO2 across the 

European Union states,12 while the yearly average in the US was 15.5 µg/m3, according to data from the 

EPA. Converting our data from ppb units to µg/m3 at 25 degrees Celsius and 1 atm (standard atmospheric 

pressure) results in a mean of 20.9 µg/m3 across that exact timespan. According to the Israeli Clean Air 

Act passed in 2008, Israeli standards and recommended levels of air pollution are precisely those set by 

the European Union and very similar to levels in the US and those recommended by the WHO.13  

4. Econometric Strategy - Identification 

a. Baseline Linear Probability Model 

In our primary specification, we examine the partial correlation between NO2 levels and 

construction accidents using a linear probability fixed effects model:                                                                                           

(1)             2 ( , , )st st st st st s t stY NO f Temp Wind Hum S DMY        , 

where s indexes the construction site and t the day. stY  denotes the probability of an accident, 2NO  is the 

level of nitrogen dioxide measured in ppb units at the monitoring station closest to the construction site 

(up to 1 km). The equation includes construction site fixed effects sS  and time fixed effects tDMY  (day 

of the week, month, and year). ( , , )st st stf Temp Wind Hum  are weather variables (temperature, wind 

speed, and humidity levels, respectively), and weather squared measured at the closest monitoring station. 

st is the idiosyncratic error term. Standard errors are clustered at the construction site level.  

 There are several potential threats to inferring a causal relationship between pollution and 

construction accidents estimated by equation (1), , mainly concerning endogeneity, measurement, and 

selection (see Graff Zivin and Neidell, 2013, for a review). First, the endogeneity of pollution levels is 

                                                 
12 Data is from a 2019 report by the European Environmental Agency: https://www.eea.europa.eu/data-and-

maps/daviz/annual-mean-no2-concentration-observed-7#tab-googlechartid_chart_21 (accessed July 17, 2022). 
13 The threshold level in excess of which is considered a violation is 200 (40) for Israel, the EU, and the WHO and 

188 (98) for the US, for hourly (yearly) µg/m3 averages (Negev, 2022).  
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potentially a major concern. Endogeneity may arise due to pollution levels potentially being confounded 

with other environmental factors, such as temperature, wind, or humidity levels, which could affect the 

probability of an accident. We attempt to deal with this issue by flexibly controlling for the weather 

variables in our regression function. 

Another potential source of endogeneity is that the probability of accidents might be permanently 

higher in specific construction sites compared to others, which might be correlated with pollution levels. 

This could be the case if pollution levels are higher in regions where the construction contractors have 

lower safety standards or if lower-level, less experienced, or, more generally, prone-to-accident workers 

choose or are selected to work in regions with higher pollution levels. We attempt to mitigate these 

selection issues by adding construction site fixed effects to our estimation equation, which allows us to 

focus on within-construction site variation in pollution levels and probabilities of an accident. We also add 

a day of the week, month, and year fixed effects, mitigating concerns related to temporal patterns in 

accident probability that might be correlated with pollution levels (e.g., selection of workers or activities 

in the construction site by day of the week, the season of the year, or specific ethnic holidays or rest days, 

all of which might have persistent differences in pollution levels as well). 

 Another potential issue in the literature evaluating air pollution impacts is of measurement error. 

When either the density of monitoring stations or the frequency of measurements is low, the potential for 

measurement error biasing our results is high. To address this, we take advantage of a large number of 

monitoring stations and their geographic spread across the country and restrict the observations of 

construction sites to those with a monitoring station up to 1 km away. We also use the fact that we have an 

average reading of pollution levels in three different intervals per day and choose the pollution levels in 

the time interval corresponding to work hours, between 8 a.m. and 4 p.m. These measures allow us to 

reduce the random noise, which can lead to attenuation bias, and increase the likelihood of estimating the 

true magnitude of the effects of pollution on construction accidents.  

 Finally, the issue of avoidance behavior has been emphasized in the literature examining the effects 

of pollution (Aguilar-Gomez, Dwyer, Graff Zivin, and Neidell, 2022). Ex-ante avoidance, in our case, can 
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occur if workers decide not to show up to work on days of high pollution; this can also bias our results in 

the potential case where the more careful workers, those less prone to accidents, exhibit such avoidance 

behavior more frequently than less cautious workers. This possibility is implausible as the number of 

workers is inelastic to pollution levels, and our institutional information indicates that workers and 

contractors are not likely to be aware of the specific impacts of air pollution on accidents or act upon 

them.14 The avoidance behavior is even less likely to occur in any asymmetric way related to proneness to 

accidents.15  

b. Instrumental Variables 

Although our primary specification strategy in the previous section captures a significant part of the 

potential threats to the causal interpretation put forward in the literature, there might still be several concerns 

that can potentially bias our results. One such concern might be that high levels of pollution from the 

construction site itself if happening on busy or specific days when the likelihood of an accident increases, 

might also drive our results. We implement an instrumental variable approach to deal with this potential 

concern and mitigate similar scenarios of endogeneity.  

First, we instrument pollution levels at the closest monitoring station (i.e., within a radius of at most 1 

km from the construction site) with the average pollution levels measured in stations within a 5–10 km 

radius. We assume that any potential pollution generated at the construction site itself would be too small 

to meaningfully affect measurements at monitoring stations more than 5 km away (Dragomir et al., 2015; 

Fuller, Carslaw, and Lodge, 2002). To further support this claim, we make use of a construction company’s 

limited liability status, a proxy for construction site size, and find no evidence that large-sized construction 

sites affect pollution in this range.16 We also assume that pollution levels measured at more distant 

                                                 
14 Checking the correlation between monthly workers in Israel against the mean nitrogen dioxide levels, we find no 

evidence of such avoidance behavior, as the correlation is -0.055. 
15 See also Salehi Sichani, Lee, and Robinson Fayek (2011), who find no correlation between tenure at work and 

absenteeism in the industrial construction workforce. 
16 In Appendix Table A1, we present results when regressing the nitrogen dioxide level in the closest monitoring 

station (within 1 km) on the average level of this pollutant in a 5–10 km radius, first for the sample of smaller 
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monitoring stations cannot directly affect the probability of a construction accident beyond their effect 

through pollution levels measured at the monitoring station closest to the construction site. 

The second instrument we use is lagged pollution levels measured at the closest monitoring station to 

the construction site from the interval of the night before. As in the case of the previous instrument, we 

assume that pollution levels measured the night before can only affect the probability of a construction 

accident occurring at each site during working hours on the day itself solely through the pollution measured 

during those working hours. We also work under the more straightforward assumption that any pollution 

generated by the site itself cannot affect pollution levels measured the night before when the site is 

predominantly inactive. 

Formally, our instrumental variable analysis is represented by 

First stage: 

(2)        2 2 , 0.5 ( , , )st s t st st st s t stNO NO f Temp Wind Hum S DMY        ,                  

(3)        
5 102 2 ( ), ( , , )

kmst g s t st st st s t stNO NO f Temp Wind Hum S DMY  


      , 

Second stage: 

(4)              2Pr ( ) ( , , )st st st st st s t stY ed NO f Temp Wind Hum S DMY        , 

where we instrument pollution levels at the monitoring station closest to the construction site s first in 

equation (2) with lagged NO2 levels measured at the same monitoring station from the interval of the night 

before ( 2 , 0.5s tNO  ) and second in equation (3) with the NO2 levels measured by the average of stations in a 

5–10 km radius of the construction site (
5 102 ( ),kmg s tNO


).  2Pr ( )sted NO are the values of NO2 predicted in the 

first-stage equations (2) and (3).  

 

                                                 
construction sites and then for the sample of bigger construction sites. We find that these estimates are not statistically 

significantly different from each other. 
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c. Nonlinear Effects 

International organizations and governments have generally set standards and guidelines focused on 

exposure to high levels of air pollution. This is partly because the literature on the physiological effects of 

pollution has highlighted the detrimental health effects of exposure to high pollution levels, while not 

focusing on the potential effects of lower-level exposure. This may either be due to the lack of ability to 

measure subclinical health effects of exposure to lower pollution levels or due to the potential nonlinear 

impact of pollution. The economic literature has focused less on nonlinear effects when examining the 

effects of air pollution.17 In this section, we investigate whether there are nonlinearities in the effect of 

pollution levels on the probability of construction accidents.   

We start by focusing on high levels of air pollution. To examine the effect of high pollution levels, in 

equation (5), we substitute the continuous measure of air pollution in equation (1) with dummy variables 

for clean, moderately polluted, and highly polluted days. We define moderately polluted days as days when 

NO2 levels are higher than 53 ppb, corresponding roughly to the 95th percentile in our sample, which the 

EPA defines as moderate pollution. We define highly polluted as days when NO2 levels are higher than 

100 ppb by EPA standards, corresponding roughly to the 99th percentile in our sample.18 Formally, 

(5)  2 2 ( , , )st st st st st st s t stY ModerateNO HighNO f Temp Wind Hum S DMY          , 

where 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒𝑁𝑂2 𝑠𝑡 is a dummy variable equal to 1 when NO2 levels are between 53 and 100 ppb, and 

𝐻𝑖𝑔ℎ𝑁𝑂2 𝑠𝑡 is a dummy variable equal to 1 when pollution levels exceed 100 ppb. 

Next, we aim to expand our focus beyond extreme pollution levels and have a more general outlook 

on the progression of the effect of air pollution on construction work accidents. For this purpose, we take 

advantage of the large number of observations and monitoring stations and their geographical spread, 

which generates sufficient variation to allow us to employ nonparametric estimation strategies to examine 

                                                 
17 See Arceo, Hanna, and Oliva (2016) and Hanlon (2018) for some notable exceptions. 
18 The United States Environmental Protection Agency’s (EPA) air quality guide for nitrogen dioxide classifies NO2 

levels into 6 groups (in ppb units). Good: 0–53, Moderate: 54–100, Unhealthy for Sensitive Groups: 101–360, 

Unhealthy: 361–649, Very Unhealthy: 650–1249, and Hazardous: 1250+. 

https://www.airnow.gov/sites/default/files/2020-05/aqi-technical-assistance-document-sept2018.pdf 
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the effects of air pollution on accidents in the entire distribution. We implement a kernel semi-parametric 

regression model (Robinson, 1988; Gau, Liu, and Racine, 2015), i.e.,  

 

(6)            2( ) ( , , )st st st st st s t stY H NO f Temp Wind Hum S DMY       , 

where ( 2 )stH NO  is a local linear 2nd-order Gaussian kernel function with least squares cross-validated 

bandwidth selection and bootstrap confidence intervals (Li and Racine, 2004; Hayfield and Racine, 2008( 

5. Results 

We begin by presenting the results for our baseline linear probability model presented in equation 

(1). In Table 2, columns (1) and (2), we report the correlation between a continuous measure of NO2 using 

OLS without controls and with controls for weather and time and site fixed effects, respectively.  We 

estimate that a 10 unit increase in NO2 levels is associated with an increase in the probability of an accident 

by 0.000033 percentage points (SE=0.000012) and 0.000039 percentage points (SE=0.000011) with and 

without controls, respectively, which translates to a 25 percent and 30 percent increase in the probability 

of an accident compared to mean levels or to an increase of 0.031 in the number of accidents per 100,000 

workers each year. Both estimates are significant at the 1 percent level. We can observe that adding controls 

substantially reduces the magnitude of our estimate. This indicates that endogeneity arising from 

confounding with other environmental factors and selection issues associated with site location and timing 

of work is a valid concern when attempting to estimate the effects of pollution. 

In columns (3) and (4) of Table 2, we add the results of our instrumental variable estimation presented 

in equations (2)–(4). We estimate that a 10 unit increase in NO2 levels is associated with an increase in the 

probability of an accident by 28 percent (SE=13 percent) and 31 percent (SE=12 percent) when 

instrumenting for NO2 pollution levels at the closest monitoring station with pollution levels from the 

average of the pollution level measured from stations at a radius of 5–10 km from the construction site and 

when instrumenting with lagged NO2 levels at the monitoring station from the night before, respectively. 
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The estimated effect of pollution when using the IV of lagged pollution levels remains significant at the 1 

percent level, while the estimate when using the IV of the pollution level measured from stations at a radius 

of 5–10 km is significant at the 5 percent level.19 The first stage for both instruments is strong, with an F 

statistic of 1435 and 1855, respectively.20 We observe that our 2SLS estimates are similar to our OLS 

coefficients, indicating that the threat of endogeneity, after flexibly controlling for weather variables and 

adding site and time-fixed effects, might not be a major concern. 

Next, we present the results where we examine whether NO2 pollution has a nonlinear effect on the 

probability of construction accidents. In column (5) of Table 2, we focus on high pollution levels and 

present the results where we use specifications including the dummy variables of moderate and high 

pollution levels (between the 95th and 99th percentile and above the 99th percentile of NO2 levels, 

respectively), as specified in equation (5). The results suggest that we have a nonlinear relationship, where 

very high levels of NO2 pollution increase the probability of an accident to a higher degree compared to 

moderately high levels, relative to days with clean air. A shift from clean air to moderately high pollution 

levels is associated with an increase of 0.000159 percentage points (SE=0.0001076) in the probability of 

an accident, which translates to an increase of 138 percent, but it is not statistically significant at 

conventional levels, while a shift from clean air to high levels of pollution is associated with an increase 

of 0.000433 percentage points (SE=0.000172), which can also be translated to an increase of 377 percent 

or to 4.06 more accidents per 100,000 workers each year, and is statistically significant at the 5 percent 

level. 

In Figure 4, we present the results of our semiparametric specification described in equation (6). We 

observe a convex nonlinear relationship where the increase in the probability of an accident is relatively 

small when pollution levels increase for lower levels of NO2. The increase in probability gradually becomes 

                                                 
19 The results are robust to using different cutoffs of the radius. 
20 The results are very similar (27% and 28%) and are significant at the 1% level when we add the instrument of lagged 

pollution levels from the evening before (4 p.m. to midnight) to the equation with the instrument of lagged pollution 

levels from the night before (midnight to 8 a.m.) that we use in equation (2), and when we combine the lagged 

instruments with the IV of the pollution levels measured from stations at a radius of 5–10 km. 
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larger for increasingly higher levels of NO2. As seen in Figure 4, the marginal effect of an increase in 

pollution levels becomes larger than our OLS estimate around the 95th percentile and steeper with the 

increase in NO2 levels. The predicted probability of an accident surpasses that of our linear model, starting 

at very high levels of NO2 (larger than the 97th percentile), which is consistent with our high pollution 

dummy variable results presented above. These findings indicate that our results are primarily driven by 

the increased likelihood of accidents on highly polluted days, suggesting that the impact of pollution on 

construction accidents is mostly relevant on days with very poor air quality.21 

6. Robustness 

In this section, we report a set of robustness tests to further validate the findings on the effects of NO2 

pollution on the probability of accidents. First, in columns (1)–(4) of Table 3, we present evidence that the 

effect size and significance are reduced when we allow for measurements of pollution from monitoring 

stations that are further away from the construction site. In our main analysis, we restrict our observations 

to construction sites for which the closest monitoring station for pollution levels is up to 1 km away, in 

columns (1)–(4), we increase this range to 1.5, 2, 5, and any distance, respectively. We can see a continuous 

decrease in both the effect size and significance levels, suggesting both that the effect is indeed related to 

pollution levels present in the close vicinity of the construction site instead of a general regional effect and 

that measurement error generated due to the distance between the measurement sensor and the area where 

the effect occurs is indeed a concern to be mindful of when attempting to estimate the effects of pollution. 

A major concern when instrumenting for a specific pollutant is the possibility of under-identification 

due to the multiplicity of pollutants that might be both highly correlated with the instrumented pollutant 

and potentially have a direct effect on the outcome variable (Benmarhnia, Bharadwaj, and Romero, 2022; 

Aguilar-Gomez, Dwyer, Graff Zivin, and Neidell, 2022). We believe this issue is less of a concern in our 

                                                 
21 The results are consistent and remain significant when we use NO instead of NO2 as our measure of pollution and 

are presented in Table A2 of the online appendix. We chose to focus on NO2 because it is the component of greatest 

concern for adverse effects and is used as the indicator for the larger group of NOx (U.S. Environmental Protection 

Agency, 2011). 
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specification, as both our instrumented variable and our instruments rely on levels of NO2, either lagged or 

at proximate measurement stations, increasing the likelihood that the effect of the instrument on accidents 

is mostly through the same pollutant. This would decrease the possibility of under-identification, compared 

to a general instrument which might more likely affect accidents through different pollutants. To further 

support the case against this under-identification, compute a general air quality index (AQI), a commonly 

used overall index measure that includes NO2 and the otherfive5 major pollutants (PM2.5, PM10, O3, CO, 

and SO2). As mentioned, our sample size for the other pollutants is small compared to NO2. Nevertheless, 

suppose we find similar results when we instrument for the general AQI compared to instrumenting for 

NO2. In that case, we can consider this as suggestive evidence that under-identification is less of a concern 

in our context. This is due to the ability of the AQI to capture the independent effect of each pollutant. As 

can be seen in columns (6) and (7) of Table 3, our results are consistent with our primary IV outcomes 

when we use both the lagged and the geographical proximity instruments, albeit noisier likely due to the 

smaller sample size. 

Next, we attempt to mitigate concerns regarding the codetermination of pollution levels and accidents 

potentially resulting from pollution from construction sites to the closest monitoring station. As the wind’s 

direction can be a determining factor in the spatial distribution of pollutants, we run our baseline model in 

equation (1) after restricting our sample to days where the general wind direction is blowing from the 

monitor to the construction site. By excluding days where the wind direction is in the range of a 90-degree 

angle to each side from the construction site to the monitor, we rule out the possible codetermination of 

other factors generating pollution at the site and increasing the probability of an accident at the same time. 

We report in column (5) of Table 3 the results of this specific exercise and compare them to our main 

specification. The results remain robust in size and significance.22 

In column (8) of Table 3, we present a multiple treatment analysis where we regress the probability of 

an accident on both the NO2 levels and a general AQI measure excluding NO2. We find that the coefficient 

22 The results remain unchanged when we use specifications with different ranges of wind direction angles. The results 

are not presented and are available from the authors upon request. 
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for NO2 remains strong and significant while the coefficient for the general AQI is close to zero. This result 

further supports our hypothesis that exposure to NO2 rather than other potential covariates, such as other 

pollutants, is driving our results.23  

By nature, pollution is correlated over time and space, which might lead to spatial autocorrelation of 

the pollution at hand. In Appendix Table A3, we show that our results remain robust while accommodating 

for this issue in two different ways. First, we report Conley-adjusted standard errors for our main Table 2 

specification. By applying this method, we address both the autocorrelation of pollution levels based on a 

construction site’s location and pollution that might remain in the air over certain time intervals (Conley, 

1999). Second, as construction sites are assigned to their closest monitor’s reading within 1 km, as a 

robustness check, we report for our main specifications the clustered standard errors also at the monitoring 

station level. This allows us to take into account the actual location where the pollution was estimated. All 

our results remain statistically significant in both cases.  

7. Mechanism and Other Determinants 

As a next step, we aim to identify whether pollution has different effects depending on the 

physiological state of the worker. By doing so, we may better understand the potential mechanisms that 

underlie the effects. To infer the potential effects of these changes, we use indirect evidence since workers’ 

individual information is not available in our data. Polish, Sin, and Stillman (2020) found that more 

occupational accidents occur at the start of the work week and provide suggestive evidence that weekend 

fatigue might be a responsible factor. 

 According to Figure 2 Panel A, our data displays a similar pattern. Sunday, the start of the working 

week in Israel, has a significantly higher accident rate. Thus, by adding the day-of-the-week dummy 

variables with NO2-level interaction terms to our primary specification presented in equation (1), we can 

examine whether there is a differential effect of pollution on the probability of an accident depending on 

                                                 
23 We caution that this analysis is only suggestive as NO2 and the other pollutants might be endogenous, and the 

number of observations with information on other pollutants is smaller than in our main specification. 
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the level of fatigue. As we can see in column (8) of Table 4, pollution has a significantly greater effect on 

Sundays than on other working days. These results suggest that a potential channel for pollution’s 

detrimental effect on accidents may be related to worker fatigue or lack of cognitive awareness and that 

this effect might be exacerbated when these factors are present even before the worker is exposed to 

pollution.  

Likewise, extreme weather conditions such as strong winds, high temperatures, and humidity can be 

other causes for a high cognitive load or physical strain that puts workers at greater risk.24 The effect of 

these already difficult conditions might be exacerbated by high levels of pollution. 

As seen in columns (2)–(7) of Table 4, pollution does play an increased role when wind strength, 

temperature level, and/or humidity level are above the 75th percentile in contrast to the more mild 

conditions where levels are below the 75th percentile.25 These findings also highlight the transitory, short-

term nature of the effect of exposure to NO2. 

In this paper, we choose to focus mainly on the effects of nitrogen dioxide for several reasons. First, 

NO2 is more accurately measured in our sample than other pollutants, due to the larger number of 

monitoring stations that have data on this pollutant in our period. This allows us to estimate our results 

more accurately at a larger number of locations across Israel. The second advantage of NO2, compared to 

other pollutants, is that it introduces significant spatial variability, which allows us to capture the effect 

more precisely (Hewitt, 1991). Nevertheless, the effect of ambient air and weather variables on short-term 

outcomes has been studied using several other determinant factors (e.g., Sager, 2019; Burkhardt et al., 

2019). In particular, fine particulate matter (PM2.5) and temperature have been specifically linked to 

workplace accidents (Chambers, 2021; Jisunge et al., 2021). Taking this into account, we present suggestive 

                                                 
24 As the wind becomes stronger, accidents such as falling from a height, being hit by objects carried by the wind, 

small particles flying into one’s eyes, etc., become more frequent. Hot and humid weather conditions can raise the 

body’s core temperature and cause a multitude of adverse effects such as muscle cramps and heat exhaustion. 
25 The specification includes all the controls from our main analysis and we do not find consistent differences in 

median pollution levels between observations above and below the 75th percentile. This similarity limits the possibility 

that other factors such as correlated weather conditions or the nonlinearity of our main effect may account for our 

findings. 
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evidence on the effects of these determinants in our sample while also taking advantage of the high density 

and spatial distribution of air pollution monitoring stations in our sample to examine the importance of 

potential endogeneity threats biasing results when attempting to estimate the effects of environmental 

variables.   

Many of these studies mentioned above analyze data in large geographical units, such as the county or 

ZIP code level, while also sometimes neglecting relevant variables such as time, weather, and the work 

site’s unique characteristics and determinants. In Appendix Tables A4 and A5, we show that when 

controlling for only limited specifications, as done in previous research, our results are also significant for 

the effect of temperature and PM2.5 on workplace accidents. For PM2.5, our results are similar in size to 

those found in our main NO2 analysis, even after we control for city-fixed effects. These effects do not 

persist when measured precisely. When we incorporate construction site fixed effects, the effects of both 

determinants are drastically reduced both in size and significance and are no longer present. 

In light of these results, caution should be exercised when conducting similar analyses. Omitting 

relevant time and weather variables and, perhaps more importantly, not controlling for fixed effects at a 

more detailed geographical level of analysis, such as the construction site level, might lead to an 

endogeneity issue that can bias the results.26  

The fact that our results for the effect of NO2 on construction site accidents remain robust to different 

specifications, whereas we do not find a similar effect of PM2.5 exposure in our main specification raises 

an important question about the potential reasons and mechanisms behind these differential effects of the 

two pollutants. Although evidence is generally sparse, some prior research on the effects of NO2 and PM2.5 

identified potentially differentiated effects of each pollutant on components of performance domains such 

as executive function, visuospatial ability, semantic fluency, and more (Wang et al., 2021; Sakhvidi et al., 

2022). As the differences in the mechanisms of the effect of each pollutant on human activity remain a 

                                                 
26 While examining these other determinants is not the main focus of our paper, for the sake of robustness, in Appendix 

Table A3, we present the results of our main specification examining the effects of NO2 when applying the sharpened 

false discovery rate (FDR) method to adjust for potential multiple hypothesis testing issues. Our results 

remain statistically significant following this adjustment. 
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puzzle, new findings, such as the findings of our research, can contribute to our understanding of the 

differentiated impact of each pollutant. 

8. Cost–Benefit Analysis 

Policymakers can mitigate the detrimental effects of pollution in several ways. Reducing pollution 

levels through the limitation of the allowed levels of emission, raising public awareness, facilitating 

mitigation of pollution through avoidance behavior, and improvements in treating its negative effects are 

some of the potential focus areas of relevant interventions. In this section, we focus on policy related to 

facilitating the mitigation of pollution through avoidance behavior. We incorporate our findings on the 

effects of pollution on the probability of accidents with reports from the Ministry of Finance, the National 

Insurance Institute (NII), and the Central Bureau of Statistics on the costs to the government due to 

construction accidents and the costs of construction site closures. Then we run a back-of-the-envelope 

calculation on whether it might be beneficial for the government to subsidize construction site closures on 

days with high pollution levels, and estimate the amount of subsidy and the associated threshold levels of 

pollution for which this potential policy should apply. 

The National Insurance Institute of Israel (NII) insures all legal workers in Israel and is the sole 

payer of compensation costs for lost wages or income due to a workplace accident. The one-time 

compensation paid by the NII while workers are absent is calculated as 75 percent of the insured worker’s 

income in the previous three months, with payments continuing for up to 13 weeks. Also compensated by 

the NII are any additional immediate or long-term expenditures such as disability payments, dependent 

pensions, and physiotherapy and rehabilitation fees, which are all determined based on the severity of the 

accident. 

The expected costs saved for the government from a shutdown of a construction site on a certain 

day conditional on the local NO2 level can be calculated using the following formula:  

(7) 2 2 _(cos | ) ( | ) Cos Accident InsuranceE ts NO P Accident NO ts  , 
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 where AccidentP  is the average probability of an accident for the day given local NO2 levels, and 

_Cos Accident Insurancets  is the costs of insurance paid out per injury by the government. This is a 

conservative assessment as it does not include the productivity losses generated by the injury or any 

potential negative externalities caused by the injury. According to data from the NII, the estimated lifetime 

costs of insurance payment per injury by the government sum up to an average of approximately 3.681 

million NIS27 per injury. This estimation was calculated by summing up one-time payments (𝑃1 =

715 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑁𝐼𝑆) and yearly payments of all life-long payments (𝑃2 = 5,372 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑁𝐼𝑆)28 multiplied 

by the difference between the average life expectancy (𝐴𝑔𝑒𝑒 = 83) and the average age of the injury29  

(𝐴𝑔𝑒̅̅ ̅̅ ̅ = 39). This sum is then multiplied by the percentage of accidents that are a direct cause of 

construction site accidents30 (𝑝_𝑐𝑜𝑛 = 10.7 percent). Eventually, this sum is divided by the number of 

construction injuries the agency pays for in a year (6,892). This calculation yields a total cost of 

approximately 3,681,000 NIS per injury. Formally this calculation is given by: 

(8) Costs of accident insurance = 

_____

1 2( ( ( )) _ )eP P Age Age p con

Injuries

   
. 

Plugging the total costs per injury into equation (7), we can estimate that the expected cost savings 

to the government from closing the construction site for the day is AccidentP   3.681 million NIS. Given 

this potential expected savings from injury avoidance, we can calculate the threshold amount of subsidy 

the government can offer a construction site to shut down for the day, given the expected local pollution 

                                                 
27 The conversion rate between the Israeli currency, namely the New Israel Shekel (NIS), and the US dollar is 3.46 to 

1 as of July 17, 2022. 
28 From a report by the National Insurance Institute: 

https://www.btl.gov.il/Publications/Skira_shnatit/2020/Documents/chap-3-08-avoda.pdf (accessed September 29, 

2022). 
29 From a report by the Israeli Parliament Research and Information Center analyzing data from the NII and the 

Ministry of Economy and Industry: http://fs.knesset.gov.il/%5C20%5CCommittees%5C20_cs_bg_341116.pdf 

(accessed July 17, 2022). 
30 From a report by the Israeli Parliament Research and Information Center analyzing data from the NII: 

https://fs.knesset.gov.il/globaldocs/MMM/2d596b58-e9f7-e411-80c8-00155d010977/2_2d596b58-e9f7-e411-80c8-

00155d010977_11_7328.pdf (accessed July 17, 2022). 
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level in its vicinity. Each contractor can then decide whether it is beneficial to accept the offer given its 

incurred costs from closing down the site for the day.31 Finally, we can use the results of this study to 

estimate the average probability of an accident in a construction site given the level of NO2 in its vicinity. 

Given the observed nonlinearities in the connection between pollution levels and the probability of 

an accident, Figure 5 presents a nonparametric estimation similar in its approach to equation (6). By 

implementing such a strategy, we predict the probability of an accident more accurately across the different 

levels of pollution to further suggest a more precise monetary subsidy based on pollution levels. In Table 

5, we present a range of NO2 levels, their corresponding average probability of an accident, and the 

associated maximum subsidy amount beneficial for the government to offer contractors to shut down the 

construction site for the day.32 For example, at 53 ppb (approximately the 95th percentile in our sample), a 

cutoff level between clean and moderately polluted air according to the EPA, the probability of an accident 

is 0.000291. The corresponding expected average loss to the government from an accident is 1,073 NIS; 

thus, the maximum amount of subsidy would be the same value. By contrast, for a level of 100 ppb 

(approximately the 99th percentile in our sample), a cutoff level between moderate and unhealthy pollution 

levels according to the EPA, the probability of an accident is 0.000507, and the maximum amount of 

subsidy is 1,868 NIS.  

These findings suggest that for most pollution levels, given the costs, this policy is not cost-

efficient for dealing with construction site accidents associated with increased air pollution. However, for 

very high pollution levels, especially considering that the welfare costs of an accident calculated in this 

paper are an underestimation, this policy might be relevant for construction sites on the low end of potential 

losses from temporary closures. This suggests that perhaps more focus should be given to other potential 

mitigation channels such as targeted interventions based on data-driven predictions on construction sites 

                                                 
31A report by an appraiser office finds an estimated average loss of 9,000 NIS for a relatively large construction site 

being closed for a period of 24 hours. https://www.ynet.co.il/articles/0,7340,L-5428318,00.html accessed July 19th, 

2022. 
32 We also add the 95 percent lower and upper bounds, calculated using bootstrap confidence intervals, for the 

probability of an accident and subsidy levels associated which each NO2 level. 
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prone to accidents, raising awareness of contractors and workers, investments in safety measures, training, 

safety standards, scaffolding, individual pollution sensors, and other relevant equipment. 

9. Conclusion 

 In this study, we focused on the detrimental effects of one of the major air pollutants, nitrogen 

dioxide, on construction site accidents, an important factor in productivity related to the labor market. We 

found a strong connection between a rise in levels of NO2 in the vicinity of the construction site and an 

increased probability of an accident, especially at high levels of pollution. We supported our causal 

estimation with a set of instrumental variable analyses and robustness checks. We do not find similar 

effects for particulate matter or for high temperature levels after properly controlling for omitted variables. 

 We also presented evidence suggestive of a mechanism where the effects of pollution are 

exacerbated in conditions when the worker’s physiological state is challenged, such as high cognitive strain 

or fatigue. Our findings that strenuous work conditions aggravate the effects of pollution may have 

implications beyond construction site accidents. Further research should explore the importance of 

exposure to pollution in other high-stakes settings, such as those of first responders, physicians, and other 

demanding professions. Finally, we provide an example of potential policy implementation of our findings 

by demonstrating a cost–benefit analysis that calculates, using our estimates, the thresholds of air pollution 

for which it can be beneficial for the government to subsidize the closure of construction sites when 

pollution levels in their vicinity go above them.
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Figure 1: Monitors and Active Construction Sites in Israel 
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Figure 2: Distribution of Construction Accidents 
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Table 1: Descriptive Pollutant Statistics 

Variable Units 
Hours 

Measured 
Monitors Obs. 

Average 

Rate 

Standard 

Deviation 

       

NO Ppb 00-08 172 131,852 11.4 41.5 

  08-16 172 130,714 16.9 83.5 

  16-24 170 131,571 14.1 68.0 

NO2 Ppb 00-08 172 136,492 10.9 9.9 

  08-16 172 134,707 10.1 18.0 

  16-24 170 136,697 12.4 14.9 

Temperature Celsius 00-08 125 111,176 18.9 6.0 

  08-16 125 111,156 24.7 6.4 

  16-24 125 111,649 21.5 6.2 

Wind m/sec 00-08 114 101,905 1.8 1.3 

  08-16 114 101,981 3.3 1.4 

  16-24 114 102,253 2.3 1.2 

Humidity % 00-08 111 88,684 72.4 18.5 

  08-16 111 91,280 52.6 15.8 

  16-24 111 91,362 66.2 17.4 

PM2.5 µg/m3 00-08 102 65,170 20.8 12.5 

  08-16 102 64,317 21.3 14.8 

  16-24 100 65,343 20.6 16.0 

SO2 Ppb 00-08 100 86,180 0.8 0.9 

  08-16 100 85,921 1.2 1.7 

  16-24 100 86,641 0.9 1.1 

O3 Ppb 00-08 75 64,352 27.1 13.2 

  08-16 75 63,993 45.9 10.7 

  16-24 75 64,583 36.0 11.9 

PM10 µg/m3 00-08 31 23,285 44.3 53.6 

  08-16 31 23,021 55.6 70.6 

  16-24 31 23,379 48.1 54.6 

CO Ppm 00-08 21 16,709 0.4 0.5 

  08-16 20 16,590 0.4 0.6 

    16-24 21 16,786 0.4 0.6 

 

Notes: This table presents sample statistics by variables. Retrieved from Israel's Ministry of Environmental Protection between 

1 January 2017 and 19 November 2019. Each observation is an 8-hour mean of 5 minutes interval measurement. 
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Table 2: Effect of Nitrogen Dioxide (NO2) on the Probability of a Construction Work Accident 

 OLS Instrument: 

Average NO2 

Levels in 5-10 

km Radius 

Instrument:         

NO2 Levels 

Between 

Midnight-8 AM 

  Nonlinear 

 (1) (2) (3) (4)   (5) 

       

NO2 0.039*** 0.033*** 0.037** 0.040*** 99th 

Percentile 

4.33** 

 (0.011) (0.012) (0.017) (0.015)    (1.715) 

       
     95th 

Percentile 

1.586 

     
   

(1.076) 

Kliebergen-Paap 

Wald  F-statistic 

     1,435.3 1,855.4    
 

       

Reduced Form       0.026** 0.031***       

       (0.012) (0.012)       

       
Weather Controls  Yes Yes Yes  Yes 

Time FE  Yes Yes Yes  Yes 

Site FE  Yes Yes Yes  Yes 

       

10 ppb Increase 

on Prob. of 

Accident 

30% 25% 28% 31% 99th  

Percentile 

377% 

     95th  

Percentile 

138% 

       

Clusters 5,583 5,583 5,083 5,378    5,583 

Observations 2,189,124 2,189,124 2,075,089 2,169,647    2,189,124 

 

Notes: The dependent variable is the probability of an accident occurring at the construction site. The coefficient stated belongs 

to the independent variable, which is the rate of the pollutant between 8 a.m. and 4 p.m. and multiplied by 1,000 for ease of 

reading. Time-fixed effects contain the year, month, and day of the week dummy variables. Weather variables include wind, 

humidity percentage, temperature rate, and equivalent squared variables. For the nonlinear regression, the levels are the NO2 

AQI moderate and unhealthy for sensitive group rates, which correspond roughly to the thresholds of the 99th and 95th percentile 

(53 and 100 ppb, respectively). The first instrument is a simple average of the NO2 rates in the 5-10 km radius from each 

construction site between 8 a.m. and 4 p.m. The second instrument is the rate between midnight and 8 AM in the closest monitor 

with a NO2 reading within a 1 km from the site. Standard errors are robust, adjusted for clusters by sites, and appear in 

parentheses. The effect of 10 ppb is calculated compared to the average accident rate in each regression.  

* p<0.1 ** p<0.05 *** p<0.01 
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Figure 4: Semi-Parametric Estimation of the Effect of NO2 on the Probability of an Accident, 

Distance Limited to 1 km 

 

 

  

Notes: The continuous line represents the semi-parametric estimation of the connection between NO2 levels at the closest 

measuring station and the probability of an accident at a construction site.  The dashed line represents the liner connection.  
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Table 3: Robustness of the Effect of Nitrogen Dioxide (NO2) on the Probability of a Construction 

Accident. Varying Monitor’s Distance from Site, Limiting Wind Direction and Applying the Air 

Quality Index 

  Monitor's Distance Robustness Wind Direction General AQI 

  1 km 1.5 km 2 km 5 km 180 degrees 

from monitor 

to site 

Instrument:  

Average 

NO2 Rate 

in 5-10 km 

Radius 

Instrument: 

NO2 Rate 

Between 

Midnight-

8AM 

Multiple 

Treatments 

  (1) (2) (3) (4) (5) (6) (7) (8) 

NO2 
0.0033*** 0.0018** 0.0008 0.0004 0.0039** 0.0042** 0.0041** 0.0039*** 

  
(0.0013) (0.0008) (0.0006) (0.0005) (0.0018) (0.0019) (0.0020) (0.0015) 

          

AQI 

(excluding 

NO2) 

       -0.0008 

 
       (0.0004) 

Kliebergen-

Paap Wald  

F-statistic 

     1,322.8 2,398.1  

          

Reduced 

Form 
     0.0038** 0.0034**  

 

     (0.0017) (0.0016)  
 

        

         

10 ppb 

Increase on 

Prob. of 

Accident 

25% 15% 8% 4% 30% 27% 27% 30% 

 

        

Clusters 5,583 10,119 12,765 18,896 5,433 4,855 5,087 5,082 

Observations 2,189,124 4,119,202 5,211,326 7,803,472 1,185,624 1,210,481 1,249,192 1,243,497 

 

Notes: The dependent variable is the probability of an accident occurring at the construction site. The coefficient stated belongs 

to the independent variable, which is the rate of the pollutant between 8 a.m. and 4 p.m. and multiplied by 1,000 for ease of 

reading. All regressions include time, weather, and site-fixed effects. Time-fixed effects contain the year, month, and day of the 

week dummy variables. Weather variables contain the wind, humidity, and temperature rate from relevant hours and equivalent 

squared variables. Column (5) restricts the sample to observations in which the wind direction is within 90 degrees to each side 

of the site’s angle from the pollution monitor. For columns (6)-(7) the AQI index is computed with respect to the EPA standards, 

converting each pollutant's 8 a.m. to 4 p.m. rate to its corresponding AQI level and then taking the maximum level within all 

pollutants. The distance attributed to the index is the distance of the pollutant with the highest index level, and observations are 

restricted to 1 km for both NO2 and the AQI. Column (8) regresses an AQI index excluding NO2 as another treatment, where 

observations are restricted to a 1 km distance with respect to both treatments’ distances. Standard errors are robust, adjusted for 

clusters by sites, and appear in parentheses. The effect of 10 ppb is calculated compared to the average accident rate in each 

regression. 

* p<0.1 ** p<0.05 *** p<0.001 
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Figure 5: Nonparametric Estimation of the Effect of NO2 on the Probability of an Accident, 

Excluding Weekends and Distance Limited to 1 km 

 

 

  

Notes: The continuous line represents the non-parametric estimation of the connection between NO2 levels at the closest 

measuring station and the probability of an accident at a construction site.  The dashed line represents the liner connection. The 

gray dots represent the average probability of an accident for the group of observations within the same percentile of Nitrogen 

Dioxide levels, above the 85th Percentile. The dark shaded area represents the 95 percent confidence intervals based on the 

robust and clustered standard errors which relate to the linear model, while the light gray area represents the 95 percent bootstrap 

confidence intervals related to the non-parametric estimation.   
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Table 4: Supporting Evidence on the Possible Mechanism for the Effect of Nitrogen Dioxide (NO2) 

On Construction Accidents 

 

 Baseline Wind Temperature Humidity 
 

Day of the Week 

 

Above 75th 
Percentile 

(3.7 m/s) 

 

Below 75th 
Percentile 

(3.7 m/s) 

 

Above 75th 
Percentile 

(29.9 Celsius) 

 

Below 75th 
Percentile 

(29.9 Celsius) 

 

Above 75th 
Percentile 

(62.2%) 

 

Below 75th 
Percentile 

(62.2%) 

 

Interaction With 

Nitrogen Dioxide 

Levels  
(Sunday x NO2 is 

the Omitted Level) 

 (1) (2) (3) (4) (5) (6) (7)  (8) 

          

NO2 0.0033*** 0.0069*** 0.0023* 0.0047** 0.0025** 0.0052 0.0031** NO2 0.0083** 

 (0.0013) (0.0012) (0.0012) (0.0022) (0.0011) (0.0035) (0.0012)  (0.0035) 

          

        
Mon. 

 × NO2 
-0.0056 

         (0.0039) 

        
Tue. 

 × NO2 
-0.0067* 

         (0.0034) 

        
Wed. 

 × NO2 
-0.0060** 

         (0.0027) 

        
Thu. 

 × NO2 
-0.0068* 

         (0.0036) 

          

          

          

10 ppb 

Increase on 

Prob. of 

Accident 

25% 56.9% 19.1% 34.0% 18.0% 53.8% 32.0% 

  

          

Clusters 5,583 5,317 5,317 5,054 5,055 5,226 5,227  5,583 

Observations 2,189,124 574,489 1,555,964 514,341 1,651,522 531,262 1,653,066  2,189,124 

 

Notes: The dependent variable is the probability of an accident occurring at the construction site. The coefficient stated belongs to 

the independent variable, which is the rate of the pollutant between 8 a.m. and 4 p.m. multiplied by 1,000 for ease of reading. All 

regressions include time, weather, and site-fixed effects. Time-fixed effects contain the year, month, and day of the week dummy 

variables. Weather variables contain the wind, humidity, and temperature rate from relevant hours and equivalent squared variables. 

Column (8) includes the interaction terms between the day of the week and Nitrogen Dioxide levels to the baseline linear model 

with controls presented in equation (1). The omitted level is the interaction between Nitrogen Dioxide levels and a dummy variable 

for observations occurring on Sunday. Standard errors are robust, adjusted for clusters by sites, and appear in parentheses. The 

effect of 10 ppb is calculated compared to the average accident rate in each regression.  

* p<0.1 ** p<0.05 *** p<0.001 
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Table 5: Cost Benefit Analysis of Pollution Levels and Subsidy Amount 

Nitrogen Dioxide 

Level 
Percentile 

Probability of an 

Accident 

Subsidy 

(NIS) 
95% Confidence Intervals 

5.4 25% 0.000140 515 431 599 

9.4 50% 0.000144 530 453 608 

17.2 75% 0.000159 586 511 660 

30.2 91% 0.000193 709 595 823 

32.1 92% 0.000201 739 613 864 

34.8 93% 0.000209 770 632 907 

39.0 94% 0.000218 803 652 953 

45.6 95% 0.000247 910 718 1,102 

57.6 96% 0.000291 1,073 817 1,329 

77.9 97% 0.000394 1,449 1,040 1,858 

93.1 98% 0.000464 1,707 1,188 2,227 

102.2 99% 0.000507 1,868 1,276 2,459 

115.2 100% 0.000582 2,141 1,417 2,864 
      

Notes: This table presents a calculation of the maximum subsidy amount the government can pay a contractor for the closure of 

the construction site for the day, to offset expected injury insurance payments, conditional on local levels of Nitrogen dioxide. 

The expected lifetime accident payout by the government is 3.681 million NIS, and the subsidy amount is calculated by 

multiplying this amount by the probability of an accident corresponding to every Nitrogen dioxide level according to our 

nonparametric estimate; see paper for details. The 95% confidence intervals are calculated using a Bootstrap estimation method. 
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Online Appendix 

 

 
Table A1: Effect of Sites' Closest Rate of Nitrogen Dioxide Rate, within 1 km 

on the Average in the 5-10 km Radius, by Company Size 

  Big Company Small Company Interaction 

  
(1) (2) (3) 

    

NO2 0.190*** 0.246*** 0.237*** 

 
(0.011) (0.008) (0.007) 

 
    

 

NO2 x 

Big Company 

    -0.016 

      (0.012) 

      
 

Weather Controls Yes Yes Yes 

Time FE  Yes Yes Yes 

Site FE Yes Yes Yes 

 
    

 

Clusters 990 4,284 5,274 

Observations 417,941 1,657,339 2,075,280 

 

Notes: The dependent variable is the closest reading of Nitrogen Dioxide in ppb between 8 a.m. and 4 

p.m. within a 1 km radius from the given construction site. The coefficient stated belongs to the 

independent variable which is the average of Nitrogen Dioxide between 8 a.m. and 4 p.m. within the 

5-10 km radius of the site. In order to define a company's size, we used company names that were 

included in the data. All those that their names included the "Ltd." term were considered big and those 

without a name we assumed to be small.  All regressions include time, weather, and site fixed effects. 

Time-fixed effects contain the year, month, and day of the week dummy variables. Weather variables 

contain the wind, humidity, and temperature rate from relevant hours and equivalent squared variables. 

Standard errors are robust, adjusted for clusters by sites, and appear in parentheses. 

* p<0.1 ** p<0.05 *** p<0.001 
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Table A2: The Effect of Nitric Oxide (NO) on the Probability of a Construction Accident 

      

Instrument:  

Average Rate 

in 5-10 km 

Radius 

Instrument: 

Rate Between 

Midnight-8AM 

  Nonlinear 

  (1) (2) (3) (4)   (5) 

       

NO 0.00050*** 0.00039** 0.00056* 0.00032* 99th Percentile 0.347** 

 (0.0002) (0.0002) (0.0003) (0.0002)  (0.143) 

 
 

  
 95th Percentile 0.0524 

      (0.058) 

     
 

 

Reduced Form 
  

0.00045* 0.00049*  

 

   
(0.0003) (0.0003) 

  

   
  

  
Weather Controls   Yes Yes Yes  Yes 

Time FE   Yes Yes Yes  Yes 

Site FE  Yes Yes Yes  Yes 

       

10 ppb Increase 

on Prob. of 

Accident 

4% 3% 4% 2% 99th Percentile 302% 

  

 

 95th Percentile 46% 

   
 

   

Clusters 5,577 5,577 5,268 5,577  5,577 

Observations 2,175,535 2,175,535 2,062,225 2,149,505   2,175,535 

 

Notes: The dependent variable is the probability of an accident occurring at the construction site. The coefficient stated belongs 

to the independent variable, which is the rate of the pollutant between 8 AM and 4 PM and multiplied by 1,000 for ease of 

reading. Time-fixed effects contain the year, month, and day of the week dummy variables. Weather variables include the wind, 

humidity percentage, temperature rate and the equivalent squared variables. For the nonlinear regression, the levels are the NO 

AQI moderate and unhealthy for sensitive group rates, which correspond roughly to the 99th and 95th percentile thresholds. The 

first instrument is a simple average of the NO rates in the 5-10 km radius from each construction site between 8 AM and 4 PM. 

The second instrument is the rate between midnight and 8 AM in the closest monitor with a NO reading within 1 km from the 

site. Standard errors are robust, adjusted for clusters by sites, and appear in parentheses. The effect of 10 ppb is calculated 

compared to the average accident rate in each regression.  

* p<0.1 ** p<0.05 *** p<0.01 
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Table A3: Testing Robustness due to Possible Spatial Auto-Correlation 

and Correcting for Multiple Hypothesis Testing  

      

Instrument:  

Average Rate 

in 5-10 km 

Radius 

Instrument: 

Rate Between 

Midnight - 

8 AM 

    Nonlinear 

  (1) (2) (3) (4)     (5) 

                

NO2 0.0039 0.0033 0.0037 0.0040   99th Percentile 0.433 

Clustered 

 by Site 
(0.0011)*** (0.0013)*** (0.0017)** (0.0015)***     (0.172)** 

Clustered 

by Monitor 
[0.0004]*** [0.0010]*** [0.0016]** [0.0013]***     [0.045]*** 

Conley 

(0.69 km) 
{0.0014}*** {0.0017}** {0.0017}** {0.0015}***     {0.208}** 

               

           95th Percentile 0.159 

             (0.108) 

            
  [0.051]*** 

      
  {0.089}* 

        

        

      
99th Percentile 

 

p-value 0.00 0.00 0.03 0.00   p-value 0.01 

Sharpened 

q-value 
0.00 0.01 0.06 0.01   

Sharpened 

q-value 
0.02 

               

            95th Percentile   

            p-value 0.14 

   
      

Sharpened 

q-value 
0.21 

            
Weather Controls   Yes Yes Yes     Yes 

Time FE    Yes Yes Yes     Yes 

Site FE   Yes Yes Yes     Yes 

                

Clusters 5,583 5,583 5,274 5,583     5,583 

Observations 2,189,124 2,189,124 2,189,124 2,189,124     2,189,124 

 

Notes: The dependent variable is the probability of an accident occurring at the construction site. The coefficient stated belongs 

to the independent variable, which is the rate of the pollutant between 8 a.m. and 4 p.m. and multiplied by 1,000 for ease of 

reading. Time-fixed effects contain the year, month, and day of the week dummy variables. Weather variables include wind, 

humidity percentage, temperature rate, and equivalent squared variables. For the nonlinear regression, the levels are the NO2 

AQI moderate and unhealthy for sensitive group rates, which correspond roughly to the thresholds of the 99th and 95th percentile 

(53 and 100 ppb, respectively). The first instrument is a simple average of the NO2 rates in the 5-10 km radius from each 

construction site between 8 a.m. and 4 p.m. The second instrument is the rate between midnight and 8 AM in the closest monitor 

with a NO2 reading within a 1 km from the site. Standard errors are robust, adjusted for clusters by sites and appear in round 

parentheses, adjusted for clusters by monitors appear in squared parentheses, and Conley (1999, 2008) standard errors which 

account for spatial correlation appear in curly parentheses. The q-value is the sharpened False Discovery Rate (FDR) corrected 

for multiple hypotheses testing the effect of Fine Particulate Matter (PM2.5). 

* p<0.1 ** p<0.05 *** p<0.01 
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Table A4: Effect of Fine Particulate Matter (PM2.5) and Nitrogen Dioxide (NO2) 

 on the Probability of a Construction Accident 

 (1) (2) (3) (4) (5) (6) (7) (8) 

PM2.5 0.0037*** 0.0037*** 0.0032** 0.0029* 0.0028* 0.0028* 0.0033* 0.0007 

 
(0.0014) (0.0014) (0.0014) (0.0015) (0.0015) (0.0015) (0.0015) (0.0011) 

         

NO2 0.0039*** 0.0040*** 0.0035*** 0.0033** 0.0032** 0.0033** 0.0042*** 0.0035*** 

 
(0.0012) (0.0012) (0.0013) (0.0013) (0.0013) (0.0013) (0.0014) (0.0013) 

         
Year FE 

 Yes Yes Yes Yes Yes Yes Yes 

Month FE 
 Yes Yes Yes Yes Yes Yes Yes 

Day of the 

Week   Yes Yes Yes Yes Yes Yes 

Temperature 
   Yes Yes Yes Yes Yes 

Humidity 
    Yes Yes Yes Yes 

Wind 
     Yes Yes Yes 

City FE 
      Yes  

Site FE        Yes 

         

Clusters 3,656 3,656 3,656 3,656 3,656 3,656 3,656 3,656 

Observations 1,301,276 1,301,276 1,301,276 1,301,276 1,301,276 1,301,276 1,301,276 1,301,276 

 

Notes: The dependent variable is the probability of an accident occurring at the construction site. The coefficient stated belongs 

to the independent variable, which is in the first row the rate of Fine Particulate Matter in µg/m3 units between 8 a.m. and 4 

p.m., in the second row, it is the rate of Nitrogen Dioxide between the same hours in ppb units. Each row is a separate regression. 

All coefficients are multiplied by 1,000 for ease of reading. Weather fixed effects, such as temperature, humidity, and wind, 

include a squared variable with their equivalent rate and a linear variable. Standard errors are robust, adjusted for clusters by 

sites, and appear in parentheses. 

* p<0.1 ** p<0.05 *** p<0.001 
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Table A5: Effect of Temperature on the Probability of a Construction Accident 

        

  
(1) (2) (3) (4) (5) (6) 

       

Temp (35-40) 0.183* 0.160 0.163 0.163 0.085 0.037 

 
(0.101) (0.110) (0.110) (0.110) (0.104) (0.102) 

 
  

  
     

Temp (30-35) 0.136*** 0.113** 0.111** 0.094* 0.041 0.011 

 
(0.050) (0.055) (0.055) (0.055) (0.055) (0.055) 

     
  

Temp (25-30) 0.061 0.041 0.039 0.031 -0.006 -0.020 

 
(0.040) (0.042) (0.043) (0.043) (0.042) (0.043) 

             

Year FE Yes Yes Yes Yes Yes Yes 

Month FE Yes Yes Yes Yes Yes Yes 

Humidity    Yes Yes Yes Yes Yes 

Wind 
  

Yes Yes Yes Yes 

Day of the Week FE       Yes Yes Yes 

City FE         Yes  

Site FE      Yes 

 
           

Clusters 4,890 4,890 4,890 4,890 4,890 4,890 

Observations 1,838,439 1,838,439 1,838,439 1,838,439 1,838,439 1,838,439 

 

Notes: The dependent variable is the probability of an accident occurring at the construction site. The coefficient stated belongs to 

the independent variable, which is the temperature between 8 a.m. and 4 p.m. in degrees Celsius and is multiplied by 1,000 for ease 

of reading. Weather variables contain the wind, humidity, and temperature rate from relevant hours and equivalent squared variables. 

The omitted level is the bin between 20-25 degrees Celsius. Lower bins in 5 degrees Celsius intervals and a bin for 40 degrees and 

over are included in all regressions but are not shown. Standard errors are robust, adjusted for clusters by sites, and appear in 

parentheses. 

* p<0.1 ** p<0.05 *** p<0.001 

 




