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ABSTRACT
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releases at over 3,500 sites across the US, which covers approximately 17.9 million of all
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change. We find that cleanups near residential properties yield significant, yet localized, increases
in home prices, and that impacts are concentrated in the lower deciles of the price distribution.
Importantly, we find fairly weak evidence of sorting along socio-demographic dimensions in
response to cleanup. Our findings suggest that cleanup benefits accrue to the residents who are the
original ‘hosts’ of pollution and could correct pre-existing disparities in exposure to land-based
contamination.
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1 Introduction

The Resource Conservation and Recovery Act (RCRA) aims to “protect human health and the
environment from the potential hazards of waste disposal” (U.S. EPA, 2014). The Corrective Action
Program, established under RCRA, investigates and cleans releases of hazardous waste at RCRA
facilities, which are in operation, unlike Superfund sites. The impacts of this particular program are
potentially widespread: As of fiscal year 2011, the RCRA Corrective Action Program tracked 3,747
sites, which spanned 17,946,593 acres (U.S. EPA, 2011). This program alone covers between 15.4 to
17.5% of all developed land in the US.! Beginning in 1999, the program began prioritizing facilities
across the nation for cleanup, with the goal to control human exposure and contain migration
of contaminated groundwater. Cleanups performed under this program include both continued
operation of RCRA-regulated hazardous waste facilities (approximately 76%), with the remaining
resulting in clean closure which may result in reuses such as residential developments, shopping
plazas, mixed-use commercial, and recreation (parks, wetlands).?

This paper evaluates the benefits of cleanups performed under the RCRA Corrective Action
Program (CAP) by estimating the impacts of cleanup on national housing prices and neighborhood
change. The cleanup effects we capture in this paper predominantly reflect continued operation,
but may also include sites that may have larger economic development implications due to reuse.
We define exposure to RCRA cleanups based on residential proximity. We quantify the program’s
housing market impacts using all cleanups conducted under the program across the continental
US, Alaska, and Hawaii and data from the 1990 and 2000 Decennial Censuses and the 2008-2012
and 2018-2022 5-year American Community Surveys. We use spatial variation in the distance
between facilities and Census tract boundaries and variation in the timing of cleanup to identify
housing market impacts. We are most concerned with the distributional impacts of cleanup, and
thus estimate impacts at each decile of the price distribution.

A concentration of RCRA sites in disadvantaged neighborhoods means that cleanup efforts
could reduce inequitable pollution gaps documented in environmental justice studies (Banzhaf, Ma
and Timmins, 2019). The positive distributional effects may not, however, materialize if cleanups
trigger re-sorting in response to price changes, altering the composition of those exposed to
cleaned sites. We follow our hedonic analysis with an investigation of the extent to which RCRA

cleanups altered neighborhood composition to evaluate to whom cleanup benefits accrue. We first

IThe share of the RCRA program depends on the estimate of the total developed lands in the US. The US EPA (2010)
estimates 102.5 million acres of developed land in the US as of 2011, whereas the USDA National Resource Inventory
estimates 116 million acres as of 2017 (USDA, 2017).

2By authors’ calculation, 76% of CAP cleanups that are large generators continue to generate, store, recycle, ship
and receive waste following cleanup. The EPA highlights economic development in 42 case studies, where some sites
continue RCRA operation, whereas others reflect reuse: business parks, schools, residential developments, restaurants,
shopping plazas, mixed-use commercial, recreation (parks, wetlands, bird habitats, golf courses). There may be other
potential redevelopment options that are not reflected in these case studies. There are no systematic data that we are
aware of that capture the nature of economic development following cleanup.


https://www.epa.gov/hw/redevelopment-economics-hazardous-waste-cleanup-facilities

estimate reduced-form regressions of cleanup on 17 different socio-demographic and housing-
related outcomes from the Census Summary Files. We then apply a structural sorting model to
test whether willingness to pay (WTP) for RCRA cleanup systematically differs by race and in-
come to evaluate the scope for heterogeneous preferences to drive environmental gentrification.
The additional structure of the empirical sorting model alleviates an identification challenge with
using aggregate population changes (i.e., without information on residential origin and destina-
tion) to infer preference to avoid pollution (Depro, Timmins and O’Neil, 2015). Moreover, this
model allows moving to be costly, an important source of bias in hedonic pricing analyses (Bayer,
Keohane and Timmins, 2009).

We find that cleanup increases home prices of properties in the same tract as the facility, but
does not have a price impact beyond the immediate tract. The housing impacts are higher in
percentage terms for properties in the lower deciles of the price distribution, with a 7.6% increase
in price for the 1% decile, and no evidence of increase for the 9th decile, though standard errors are
not small enough to rule out a similar percentage increase to the 10th percentile.® This suggests
that cleanups raised housing prices for the least advantaged residents living on tracts near facilities.
Localized impacts also suggest a limited scope for endogenous neighborhood changes, which we
test for using both reduced-form and structural approaches.*

Our findings are robust to a slew of alternative exposure definitions, controls, and data sources.
Notably among our various robustness checks, we find very similar effects when we employ Ro-
bust High-Dimensional Fixed Effects Poisson estimation (Correia, Guimaraes and Zylkin, 2021).
Second, though our primary results limit the sample to tracts near one RCRA site, impacts for the
lowest deciles are attenuated but still statistically significant at lower deciles of the price distri-
bution when we allow tracts near multiple RCRA sites. Third, impacts are very similar when we
employ a regression adjustment that accounts for the lack of balance in tract area between our
treatment group (tracts containing a RCRA site) and our comparison group (nearby tracts within
10 km). Fourth, our substantive conclusions (that price impacts are concentrated in the lowest
deciles, and mostly insignificant for the highest deciles) are corroborated when we estimate quan-
tile treatment effects using a supplemental dataset containing individual housing transaction data

from Ohio and Pennsylvania.

30ne important caveat to interpreting our results in terms of willingness-to-pay is that it is unclear how quan-
tile capitalization effects relate to capitalization effects estimated using individual house prices. The median houses in
different periods could have very different characteristics. The potential for within-tract sorting further muddies the
interpretation. Therefore, we cannot necessarily assume results from Rosen (1974) and Banzhaf (2020) will hold. Fur-
thermore, Banzhaf and Farooque (2013) show that median housing prices are only weakly correlated with variables of
interest, including prices from individual transactions, ozone, and income (with correlations of 0.543, -0.425, and 0.284,
respectively) using cross-sectional data. If results generalize to our panel setting, low correlations between median
housing values and variables of interest would imply downward attenuation of our estimates compared to the truth.

4The finding of extremely localized housing impacts alleviates the concern that demand for RCRA cleanup appears
in the wage gradient: with housing price impacts limited to within a tract, an individual may choose to alter their
exposure to RCRA sites without switching jobs.



We investigate sorting along socio-demographic dimensions using both a reduced-form and
a structural approach. Using reduced-form regressions, we find no statistically significant im-
pacts of cleanup on any of the 17 socio-economic and housing-related indicators from the Census.
Our structural sorting model also suggests that WTP for cleanup is not economically different
between different groups, defined either based on race or income. Furthermore, there is limited
evidence of race-based sorting even when we focus on a group of homeowners, who stand to
gain from both pollution improvements and asset price appreciation and are disproportionately
white.’> Taken together, our findings imply that the benefits of cleanup accrued to those living
closest to the facilities, who tended to be more disadvantaged compared to those living farther
from the facilities. This is particularly important given recent advances in the literature. Hausman
and Stolper (2020) show that, in a framework where people undervalue a clean environment and
have partial information, residential sorting on willingness-to-pay leads to an equilibrium where
deadweight loss due to pollution is higher for economically disadvantaged segments of the pop-
ulation.® Furthermore, Bakkensen and Ma (2020) demonstrate that well-intentioned policies in
the housing market can have significant distributive effects, leading the least well-off residents to
take on even more exposure to an environmental bad. If RCRA cleanups do not induce sorting
along socio-demographic dimensions, they could be corrective of the type of pre-existing dispari-
ties that Hausman and Stolper (2020) call attention to, and they are unlikely to exacerbate existing
inequities as Bakkensen and Ma (2020) find.

Our contribution is to provide nationally representative evidence of the distributional impacts
of RCRA cleanups. Cleanup of hazardous waste releases under RCRA affects a non-trivial share
of developed lands in the US. However, there has been little work to assess the impact of the envi-
ronmental benefits of RCRA on housing markets. While some studies have examined the housing
price impacts of wastes managed under RCRA for specific areas within the country (Smith and
Desvousges, 1986; Kinnaman, 2009), these studies cannot speak to whether the cleanup impacts
hold more generally. In contrast, our scope is national.

Others have estimated the housing market impacts of polluting facilities at varying geographic
scopes, but focus on other types of nuisances. Examples include river pollution by wastewater
treatment plants (Keiser and Shapiro, 2018), Toxic Release Inventories (Currie, Davis, Greenstone
and Walker, 2015; Mastromonaco, 2015), brownfield sites (Linn, 2013; Haninger, Ma and Timmins,
2017; Ma, 2019), Superfund sites (Currie, Greenstone and Moretti, 2011; Greenstone and Gallagher,
2008; Gamper-Rabindran, Mastromonaco and Timmins, 2011; Kohlhase, 1991; Gayer, Hamilton and
Viscusi, 2000), industrial chemical accidents (Guignet, Jenkins, Nolte and Belke, 2023), and Areas

5According to the Office of Economic Policy at the US Department of Treasury, the homeownership rate
for white households was 75% compared to 45% for Black households and 48% for Hispanic households. These
gaps in homeownership have been persistent over time. See https://home.treasury.gov/news/featured-stories/
racial-differences-in-economic-security-housing.

®Partial information could broadly include factors like inattention to the nuisance or misperception of risks
(Bakkensen and Barrage, 2021).


https://home.treasury.gov/news/featured-stories/racial-differences-in-economic-security-housing
https://home.treasury.gov/news/featured-stories/racial-differences-in-economic-security-housing

of Concern in the Great Lakes (Cassidy, Meeks and Moore, 2023).” Importantly, few studies have
tested for sorting in response to these types of remediation activities, which could alter the in-
dividuals who ultimately experience the benefits of environmental improvements.® Since RCRA
facilities are widespread in the US, the scope for cleanup activities to trigger endogenous neighbor-
hood change, or “environmental gentrification” (Banzhaf and McCormick, 2007), is a real concern
given its potential to affect both the overall and distribution of cleanup benefits.’

Our paper complements work by Guignet and Nolte (2024), who also study the RCRA program
with a national scope. Our study differs from theirs in three important ways. First, our research
questions are different: their study focuses on average welfare impacts of the cleanups, whereas we
characterize effects across the price distribution and thoroughly investigate post-cleanup neigh-
borhood change and sorting. Second, they focus only on housing price responses to cleanup of the
most hazardous sites (known as Transportation, Storage, and Disposal Facilities (TSDFs), whereas
we also study cleanups at non-TSDFs.!° Third, Guignet and Nolte (2024) employ Zillow ZTrax
data on individual transactions collected from county assessors, whereas we use publicly available
Census data to take advantage of abundant demographic information that is more suitable to our
research questions. Our effect sizes on housing prices are comparable, which is not surprising
given evidence from the literature that estimates produced using decile-level census data can de-
tect similar effects to individual-transaction data (Gamper-Rabindran and Timmins, 2013). While
demonstrating that findings obtain in different datasets is important in general, it is especially im-
portant in our context. With Zillow Ztrax no longer available to researchers, it is crucial to show
that results like those of Guignet and Nolte (2024) can also be detected using publicly-available
data.

The paper is organized as follows. Section 2 provides a background on the Resource Conser-

7 As Banzhaf (2021) illustrates, the capitalization effects found in these papers can be interpreted as a lower bound on
welfare effects under assumptions such as a time-invariant hedonic gradient. More work is needed to discern whether
the formal results by Banzhaf (2021) characterizing assumptions under which quasi-experiments can reveal a lower
bound on welfare extend to the case of quantiles derived from aggregate data.

80ne example of a study that undertakes a reduced-form investigation of sorting is Greenstone and Gallagher
(2008), who find no effect on price and also no sorting. In contrast, we find that there is an effect on price but no
sorting. The latter means that cleanup has benefits specifically to those living closest to the sites, whereas the former is
a finding of no benefits.

Furthermore, measurement of cleanup benefits from housing price gradients will omit associated compensating
wage differentials and understate the value of cleanup (Roback, 1982). Gentrification poses a host of threats to identifi-
cation, including invalidating the interpretation of hedonic gradients as representative of welfare (Banzhaf, 2021) and
willingness-to-pay (Kuminoff and Pope, 2014).

10 Guignet and Nolte (2024) study 2,389 TSDF facilities, 689 of which have a corrective action and 195 of which have
completed the corrective action. Our dataset, by contrast, starts with 3,873 sites in the cleanup program (there are a
total of 3,983 sites in the program; however, this list contains sites in Puerto Rico, Guam, and the Virgin Islands, as well
as sites with invalid or duplicate coordinates which were removed). After geocoding to the geographic areas covered
by the NHGIS shapefile of 2010 Census tracts, we have a total of 3,492 sites represented in our dataset. Of those, 2,770
are TSDFs. The TSDF sites in Guignet and Nolte (2024) may not be a strict subset of those we study, especially in our
main specification, where we restrict to tracts within 10 km of exactly one site to ensure that we have a clean definition
of cleanup timing to allow for diagnostics using an event study framework.



vation and Recovery Act and its cleanup program. Section 3 describes our data sources and the
data construction process. We describe our empirical hedonic and sorting models in Section 4 and
present the corresponding results in Section 5. Section 6 discusses the implications of the results,

and Section 7 concludes.
2 Background

The Resource Conservation and Recovery Act (RCRA) was enacted in 1976 by Congress. The
Act consists of ten subtitles, where the two major programs under RCRA are subtitles C and D,
which respectively regulate hazardous waste and non-hazardous solid waste. Subtitle C, under
which cleanups of hazardous waste are conducted, sets regulations for the handling (i.e., creation,
management, and disposal) of hazardous waste and is codified in Title 40 of the Code of Federal
Regulations (CFR). There are three main types of RCRA hazardous waste handlers: (1) generators,
(2) transporters, and (3) facilities that treat, store, or dispose of waste. As of 2009, there were 460
Treatment, Storage, and Disposal Facilities (TSDF’s), 18,000 transporters, and 14,700 generators

that handle large quantities of waste.!!

Subtitle C regulations, importantly, grant the EPA the
authority to require cleanup for any release of hazardous waste to all environmental media at
both RCRA-permitted and non-permitted facilities. The cleanup program, previously known as
the RCRA Corrective Action Hazardous Waste Cleanup Program but recently rebranded as the
Hazardous Waste Cleanup Program, is the focus of this paper.

The Corrective Action Program (CAP), established under the Hazardous and Solid Waste Amend-
ments to RCRA in 1984, investigates and cleans releases of hazardous waste at a subset of RCRA
facilities. Unlike the Superfund program, sites managed under this cleanup program are often in
operation.'? Beginning in 1999, efforts took place to reform the cleanup process and remove bu-
reaucratic hurdles to accelerate the pace of cleanups. The EPA identified RCRA facilities with the
potential for unacceptable exposure to pollutants and/or for ground water contamination. Facili-
ties were chosen based on the National Corrective Action Prioritization System (NCAPS), which
categorizes facilities as High, Medium, or Low priority.!* Theoretically, the ranking should have
been based on waste type, waste volume, release pathways (ground water, surface water, air, and

soil), and the potential for human and ecosystem exposure. However, the scoring of these sites

Generators are subdivided into three groups based on the amount and type of hazardous waste that is generated
— Very Small Quantity Generators (VSQG), Small Quantity Generators (SQG), and Large quantity generators (LQG).
VSQG’s generate 100 kilograms or less per month of hazardous waste or one kilogram or less per month of acutely
hazardous waste; SQG’s generate more than 100 kilograms, but less than 1,000 kilograms of hazardous waste per month;
LQG’s generate 1,000 kilograms per month or more of hazardous waste or more than one kilogram per month of acutely
hazardous waste.

12Using the Biennial Hazardous Waste Report, we found that of the 2,323 CAP sites that are required to report the
BR, 76% reported waste generation, storage, shipping, or receiving after the clean-up. 999 of our sites are exempt from
the BR due to being small and very small quantity generators.

3This is somewhat similar to the Hazard Ranking System (HRS) used by Superfund, except requires less detailed
input.


https://www.epa.gov/hwgenerators/biennial-hazardous-waste-report

were not systematically based on pollution intensity.* In some cases, the ranking can also depend
on compliance history or special conditions (e.g. regional initiatives). Most RCRA facilities were
ranked by 1993. Since the nature of site selection may not be random, evaluation of causal hous-
ing market impacts from changes in pollution at sites would require controlling for confounding
factors that prioritize cleanup at some sites but not others. Our empirical strategy (described sub-
sequently) will deal with this selection by ensuring that the variation we use is between tracts in
the vicinity the same site, rather than between sites cleaned up at different times.

Relevant to our study, the program set cleanup (or risk reduction) targets based on two en-
vironmental indicators (EI), which we use in our analysis to determine the timing of cleanup: (1)
Current Human Exposures Under Controls (or the Human Exposure EI), and (2) Migration of Con-
taminated Groundwater Under Control (or the Groundwater EI). A positive Human Exposure EI
determination indicates that there are no “unacceptable” human exposures to contamination that

can be reasonably expected under current land- and groundwater-use conditions.!

A positive
Groundwater EI determination indicates that the migration of contaminated groundwater has sta-
bilized, and that monitoring will be conducted to confirm that contaminated groundwater remains
within the original area of contamination.!®!” With two cleanup targets established, the EPA set
goals to control human exposure and migration of contaminated groundwater.

To the extent that housing market participants are aware of these facilities and the corrective
actions that have taken place, a portion of the cleanup benefits should be capitalized into housing
prices. If, however, households are unaware, then the benefits of corrective actions might not be
reflected in the housing market; this does not mean that cleanups have no value, since the public
may still value these cleanups had it known about them (Cassidy, 2023; Gayer et al., 2000; Ma,

2019). We next test for housing impacts with data.

14This is based on conversations with EPA officers suggest that the initial ranking of sites had a certain degree of
randomness. Unfortunately, the scores for the sites are no longer available to verify the nature of the selection by score.
5From the form wused to report the completion of the corrective action, found at
https://www3.epa.gov/regionl/cleanup/rcra/CA725.pdf:  “..‘Current Human Exposures Under Control’ ... indi-
cates that there are no ‘unacceptable’ human exposures to ‘contamination’ (i.e., contaminants in concentrations in
excess of appropriate risk-based levels) that can be reasonably expected under current land- and groundwater-use
conditions (for all ‘contamination’ subject to RCRA corrective action at or from the identified facility (i.e., site-wide)).”
16“Unacceptable” contamination levels refer to contaminant concentrations in excess of appropriate risk-based lev-
els.
From the form wused to report the completion of the corrective action, found at
https://www?3.epa.gov/regionl/cleanup/rcra/CA750.pdf: “.‘Migration of Contaminated Groundwater Under Control’
. indicates that migration of ‘contaminated’ groundwater has stabilized, and that monitoring will be conducted
to confirm that contaminated groundwater remains within the original ‘area of contaminated groundwater’ (for all

groundwater ‘contamination’ subject to RCRA corrective action at or from the identified facility (i.e., site-wide))”


https://www3.epa.gov/region1/cleanup/rcra/CA725.pdf
https://www3.epa.gov/region1/cleanup/rcra/CA750.pdf

3 Data
3.1 Data Sources

Data come from the following sources: (1) RCRAinfo Corrective Action Program cleanups, (2)
Demographic data from the US Census Bureau aggregate tabulations (Summary Files) for the fol-
lowing surveys: 1990 Decennial, 2000 Decennial, 2008-2012 5-year American Community Survey
(ACS), and 2018-2022 5-year ACS, and (3) IPUMS USA public-use microdata from the following
surveys: 2000 5% Sample, ACS 2008-2012 5-year Sample, and ACS 2018-2022 5-year Sample.

RCRA Corrective Action Program Cleanups Data on Corrective Action Program (CAP) cleanups
come from the RCRAinfo database, which is publicly available from the EPA. We begin with all
sites in the cleanup program.!® Each facility is identified by a unique waste handler identifier.
Several attributes of the handler are available, including the location of each facility, the primary
industry to which it belongs (3-digit NAICS code), whether the facility is a waste generator, trans-
porter, or treatment, storage, or disposal facility (commonly referred to as a TSDF), and the first
NCAPS ranking.

We focus on the two Environmental Indicators (EIs) to define our cleanup event. The data entry
system for the EIs worked as follows: the government official would review data associated with
the site, and enter the corrective action into the system with a status code of “NO” or “IN” if the
objectives had not yet been achieved. The government official would enter the status code of “YE”
if the objectives had been achieved. This means that for some facilities, there are multiple dates
associated with the corrective action. We take the date of cleanup to be the date on which the last
“YE” entry was made for either of the two EIs, whichever comes later. We take the date at which
cleanup began to be the date of the first entry associated with either of the two Els, whichever
comes earlier. The time between when cleanup began and when it was finalized is categorized as
“In Progress”; this way, we are not capturing what happens during cleanup in the measurement
of our post-cleanup effect.

In Figure 1, we visualize the spatial distribution of CAP sites in our dataset. We start with
3,873 sites in the program from the RCRAinfo database. Of those, 3,492 have non-duplicate valid

coordinates for US locations, excluding Guam, Puerto Rico and the U.S. Virgin, and are the nearest

18 These are the sites designated in the 2005, 2008, and 2020 CA baselines. “Cleanup program” is used interchangeably
with the Corrective Action Program throughout recent EPA materials; we follow this convention throughout our paper.
While the two earlier baseline years (2005 and 2008) were prioritized lists of sites needing corrective action, the baseline
sites should be seen as constituting all sites in the program. According to the EPA’s RCRA Orientation Manual, “The
RCRA cleanup baseline has expanded to include all 3,779 facilities expected to need corrective action. Because EPA has
set ambitious goals for 2020 that relate to these facilities, the group is called the 2020 Corrective Action Universe. The
goals for 2020 apply to the full corrective action universe and are to have human exposures controlled at 65% of facilities,
the migration of contaminated groundwater controlled at 55% of these facilities, and final remedies constructed at 32% of
these facilities. ” (Available at: https://www.epa.gov/sites/default/files/2015-07/documents/rom.pdf) We note, however,
that additional sites may have corrective actions take place, that are not part of the cleanup program. These are not part
of the scope of our paper.


https://www.epa.gov/sites/default/files/2015-07/documents/rom.pdf

site to at least one tract. Panel (a) shows all 3,492 sites that could be geolocated to Census tracts.
Panel (b) shows the 1,557 sites when we restrict to tracts within 10 km of a single site, as we do in

our main specification.

Census Summary Files Data From the Census, we collect census tract-level statistics from
publicly available Summary Files for the following surveys: 1990 Decennial, 2000 Decennial, 2008-
2012 5-year ACS, and 2018-2022 5-year ACS (see Data Appendix C for details).!”” Census tracts
typically contain between 1,200 and 8,000 people, and their borders are defined using permanent,
salient and natural geographic and manmade features that could delineate neighborhoods, such
as rivers and highways. This makes them an ideal geographic unit for studying demographic
changes that reflect neighborhood-scale dynamics, such as local housing markets, gentrification
and socioeconomic shifts.?’

We collect data on the value of owner-occupied housing (reported in various price bins), counts
of houses sold in each price bin, and neighborhood demographic characteristics related to, e.g.,
race, income, and education.?! Using the counts of the number of houses in each price bin, we
construct deciles of the price distribution for each census tract following Gamper-Rabindran et al.
(2011).22 We then inflation-adjust prices to 2023 dollars (see Appendix C.2 for details).

Tracts may expand or condense over time; this necessitates a method to compare tract-level
information over time (i.e., interpolation). We do this with National Historical Geographic In-
formation System (NHGIS) crosswalks with provides interpolation weights (Manson, Schroeder,
Riper, Knowles, Kugler, Roberts and Ruggles, 2024).?> Each interpolation weight indicates the pro-
portion of a source zone’s characteristics to allocate to a specific target zone. Using these NHGIS
crosswalks, we construct a panel data set of 2010 census tracts over four decennial census years:
1990, 2000, 2010, 2020 (See Appendix Section C.1 for full details).

Our main specification uses owner-occupied weights for interpolation (and renter-occupied
weights for rental prices), given our focus on housing values of owner-occupied housing; when
owner-occupied weights are missing, we use proportion-area weights as recommended by NHGIS

(Manson et al., 2024). We show robustness checks for alternative NHGIS interpolation weights and

19Connecticut changed their county-equivalents from 8 to 9 counties for the ACS 2022. There are no interpolation
crosswalks for this change, therefore, we use 2017-2021 ACS for CT.

20For more, see the Geographic Areas Reference Manual U.S. Dept. of Commerce, Economics and Statistics Admin-
istration, Bureau of the Census (1994).

2'The underlying questions for these variables of interest change over time; we describe changes in owner-occupied
housing in Appendix Section C.4, calculation of percentiles in Section C.3, and changes in race/ethnicity in Section C.5.

22In a study examining the housing impacts of Superfund cleanups, Gamper-Rabindran et al. (2011) show their
decile approach can detect similar magnitudes of benefits from cleanup as approaches using repeat-sales data. We use
the Decennial censuses when long form was available (1990, 2000) and the ACS 5-year estimates when long form is
not (2010, 2020) because they contain similar content. We use the 2008-2012 ACS because 2010 is the midpoint and
similarly, 2018-2022 ACS for 2020 as the midpoint. This approach is commonly used in place of the long form Census
(Logan, Xu and Stults, 2014).

ZBNHGIS produces geographically-standardized time-series tables, however, our housing variables of interest are
not contained in these files.



Figure 1: Spatial Visualization of Sites

(a) All RCRA Corrective Action Program (CAP) Sites
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tract-level shapefile, which removes entirely water-based tracts.
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interpolation using the Longitudinal Tract Data Base (LTDB) (Logan et al., 2014), which also inter-
polates census summary statistics from different decennial censuses into estimates based on 2000
or 2010 tract boundaries. The two primary differences between the NHGIS and LTDB harmoniza-
tion techniques are as follows. First, the NHGIS crosswalks allow building up from the block or
block part level (depending on the variables available) which increases accuracy. Second, whereas
LTDB only blocks out water bodies as uninhabited land, NHGIS incorporates road buffers and land
cover like forests into the uninhabited space. However, the techniques should only substantially
differ for a minority of tracts that had large changes in boundaries. We discuss differences in these
approaches, details about the interpolation weights, and summarize the interpolation steps in Ap-
pendix Section C.1. Table C.1 summarizes specifics about the weights used and source information
for each robustness check. We show trends for all harmonized Census variables used in the paper
in Appendix Section C.9.

Aside from interpolation, it is worth understanding how housing price data collected from
Census summary files might compare with individual transaction data. The first consideration
here is the use of survey data in this context. In collecting Census data, homeowners are asked,
“About how much do you think this house and lot, apartment, or mobile home (and lot, if owned)
would sell for if it were for sale?” The disadvantage of using survey data is that homeowners might
have an inaccurate view of how much their home is worth.?* While recent work has found that in-
dividual level survey-based estimates of home values are highly correlated with contemporaneous
transaction values (Bakkensen and Barrage, 2021; Banzhaf and Farooque, 2013),2> homeowners
might not correctly factor in information about local amenities (Banzhaf and Farooque, 2013) and
their valuation of local amenities might be disproportionate to the size of the associated environ-
mental benefits (Diamond and Hausman, 1994; Hausman, 2012).2° Taken together, it is possible
that our estimates are biased upward. We explore this possibility and discuss implications for our
study in detail in Appendix B.1, where we compare our Census data to individual-level transaction
data from Ohio and Pennsylvania. The general finding is that homeowners do appear to overvalue
their houses, in line with findings from Kiel and Zabel (1999); however, we do not find that the
overvaluation varies by price percentile. See Figure B.1 in Appendix B that plots the average deciles
for tract-level Zillow and Census prices. The degree of potential overvaluation does not system-

atically vary by price percentile (i.e., it is fairly parallel with the 45 degree line). The advantage of

%4The literature that investigates the differences between the two types of data and the determinants of that gap
generally finds that owners overestimate the market value of their homes (Banzhaf and Farooque, 2013; Diamond and
Hausman, 1994; Hausman, 2012; Goodman Jr and Ittner, 1992; Kiel and Zabel, 1999). In terms of correlated character-
istics, the consensus is less clear: While some find that overvaluation increases with income and housing tenure and
decreases college degree and home value (Dreesen and Damen, 2023; Tur-Sinai, Fleishman and Romanov, 2020), others
find no consistent correlation with market value and characteristics (Goodman Jr and Ittner, 1992; Kiel and Zabel, 1999).

Z5Bakkensen and Barrage (2021) find a correlation coefficient of 0.89 and Banzhaf and Farooque (2013) find the
correlation to be approximately 95-97%

26 A related concern is that households in less expensive homes overvalue the amenities, but recent literature seems
to indicate that the opposite is more likely (Hausman and Stolper, 2020).
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using survey data over individual transaction data is that not every house is sold every year, and
so frequently transacted houses tend to be over-represented in transaction data. Those also tend
to be more likely to be “flipped.”?’

The second consideration is geographic data coverage- twelve states in the United States are
non-disclosure states, where transaction data does not represent sale prices. Instead, the recorded
transaction values are an opaque combination of mortgage values and whatever the buyer and
seller want to portray the price as.?® These states are: Alaska, Idaho, Kansas, Missouri (some
counties), Mississippi, Louisiana, Wyoming, Utah, Texas, North Dakota, New Mexico, and Mon-
tana. These non-disclosure states account for approximately 18% of observations in our sample,
and 14% of sites in the cleanup program.?’

It is also worth discussing our use of deciles of the housing price distribution (see Appendix
Section C.3 for details on how these are calculated). These are the most appropriate dependent
variable because our research question is about distributional impacts. An additional advantage of
using percentiles (or any moment of the distribution) of the housing price instead of housing price
data itself is that percentiles have a less skewed distribution. Researchers often use the logarithm
of price as the dependent variable in regressions with transaction data to alleviate concerns with
outliers posing a threat to small-sample inference when the distribution of the dependent variable
is skewed (Bishop, Kuminoff, Banzhaf, Boyle, von Gravenitz, Pope and Timmins, 2020).3* We show
histograms of these price percentiles in Figures A.1 in the appendix.*!

Despite observing skew in our price variables, we do not follow the convention of using the

27 For comparison purposes, we present robustness checks using individual transaction-level data in Appendix
Section B.

28 Concrete examples are documented in Cassidy (2023).

29 An alternative source of data we that could be considered for non-disclosure states is assessed values. However,
the literature on assessed values suggests that they are inaccurate representations of actual values (Du Preez and Sale,
2015), as they tend to systematically over-estimate house values because of skewed incentives (Amornsiripanitch, 2020),
and thus suffer from their own distributional biases (Avenancio-Leén and Howard, 2019), making them particularly
unsuitable to a study of differential impacts at different percentiles of the price distribution. They also might not reflect
the change in transaction prices from before to after cleanup, as they are updated infrequently (Paglin and Fogarty,
1972) and capped in the magnitude of change that is possible over time (Dornfest, Rearich, Brydon III and Almy, 2019).
When it comes to non-disclosure states in particular, tax assessors work off of worse information in these states because
sale prices are not available (Berrens and McKee, 2004). Furthermore, tax assessment data is likely to be more biased
downward in non-disclosure states given homeowner incentives to appeal only if they exceed the sale price (Berrens
and McKee, 2004), leading to significant downward bias due to non-disclosure of sale prices (Bollum, 2021). Given that
information has been shown to play a vital role in how accurate assessments are (Weber and McMillen, 2010), any
systematic biases in assessments might be compounded in non-disclosure states. That said, like assessors, homeowners
probably also lack information to properly value their houses when they do not have access to sales information for
neighboring or comparable houses. However, to the extent that some of the above issues are driven by asymmetric
information and differential incentives (e.g. selective appealing), it is less likely that these issues would to extend to
homeowner reporting of valuations in the Census.

30 In the logarithmic setup, the coefficients have a semi-elasticity interpretation. We convert our coefficients in
levels into percentage terms to help readers interpret them.

3170 get a sense of the how the skewness compares between these percentile variables and raw transaction price
data, one can compare these histograms to appendix Figure B.5, which presents the distribution of raw transaction
prices from Ohio and Pennsylvania for the treatment and comparison groups.
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log of price as the dependent variable. Instead, to address small-sample bias that could arise due
to the fact that our dependent variable is skewed, we provide a robustness check using Poisson
regression. We prefer this because, as described by Gould (2011), robust Poisson regression should
be used in situations where researchers would be inclined to take the logarithm of the dependent
variable to report a semi-elasticity. When logarithms are used instead, the estimates can be biased
and inconsistent (Manning and Mullahy, 2001; Santos Silva and Tenreyo, 2006). Correia et al.
(2021) prove that the high-dimensional fixed effects Poisson estimator we employ yields unbiased

and consistent estimates.

Census Microdata We supplement the aggregate summary files from the Census with publicly
available census microdata from IPUMS USA to estimate our sorting model (Ruggles, Flood, Sobek,
Backman, Cooper, Drew, Richards, Rodgers, Schroeder and Williams, 2025). This is used to con-
struct the share of households that stay in their tract over time for individuals of different groups,
categorized based on race, income, or homeownership. Specifically, the survey asks in what year
each person (for 1960-1970) or the householder (for 1980 on) moved into the dwelling unit (apart-
ment, house, or mobile home). IPUMS then recodes the responses as the number of years ago that
the householder moved into the housing unit. Based on the year of the survey, we create a binary
variable for whether a person moved into the dwelling by the previous decade (e.g., for the year
2000, this is an indicator equal to 1 if the person moved in 11 to 20 years ago). We then calculate
group-specific averages of the probability that the individual stayed in that dwelling between 1990
and 2000. We weight the group-specific stay shares by the person weights provided by IPUMS. We
download data for each year using the following samples: 2000 5% sample, 5-year ACS 2008-2012
sample, and 5-year ACS 2018-2022 sample. Since the ACS 2008-2012 and 2018-2022 samples are
5-year averages, we use the midpoint of the 5-year period to calculate when a person moved into

the dwelling.
3.2 Data Construction & Summary Statistics

We construct a national dataset linking our outcomes of interest (housing and sociodemo-
graphic variables) to RCRA cleanups. For the housing data, we first identify all census tracts for
which any portion of the tract’s boundary is within a 10-kilometer (km) buffer of a RCRA Correc-
tive Action baseline facility. Using this spatial relationship, we then create a census tract-by-year
level data set that describes the deciles of the census tract’s housing price distribution, the deciles
of the Census tract’s rental price distribution, and sociodemographic characteristics of the tract in
that particular year, all matched to cleanup timing.

We limit the sample to tracts within 10 km (minimum distance) of RCRA sites in order to avoid
comparing neighborhoods that are very different (removing 24,378 tracts that are not within 10
km of any site). For example, Table 1 provides summary statistics of census tract characteristics

by whether a tract is within 10 km of any RCRA facility. Areas with facilities have lower housing
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Figure 2: Spatial Visualization of Tracts
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Notes: Panel (a) shows 2010 tracts (shaded blue) containing at least one RCRA site in the Continental USA in our dataset.
Panel (b) shows the number of sites in 10 km by tract in the Continental USA. Tracts are only included if they are in
the NHGIS 2010 tract-level shapefile, which removes entirely water-based tracts.
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prices in the higher deciles of the price distribution, have lower income, and are more diverse. They
are slightly less likely to be on public assistance, or below the poverty line. That these observable
characteristics are correlated with RCRA site location suggests that other correlated, unobserved
factors may exist. Our initial sample limitation thus removes some of these potential unobserved
confounders, assuming that the composition of tracts is relatively constant around 10 km away
from the RCRA sites. Figure 2 visualizes tracts near sites. Panel (a) shows whether a tract contains
at least one site. Panel (b) shows how many sites are within 10 km by tract.

We further limit the sample to areas within 10 km of a single RCRA facility so that cleanup
timing is well-defined (See Appendix Figure A.2a for a map of tracts within 10 km and Figure A.2b
for tracts within 10 km of one site). Based on these limitations, we are left with a final sample of
Census Tracts near 1,557 RCRA sites (13,604 tracts), out of a total of 3,492 sites that had Census
data within 10 km and within the continental US. Table A.1 examines whether these areas are
different than the tracts within 10 km of multiple RCRA facilities. Generally, tracts near a single
facility seem to be more well-off than those near multiple RCRA facilities.* A concern is that this
sample restriction reduces the external validity of the results, since doing so removes more than
50 percent of the tracts. Therefore, we include a second more generalizable sample, restricting to
tracts that have more than one site within 10 km, but all sites have to either a) be within the tract
or b) be within (0, 10] km. This approach incorporates 3,385 of the 3,492 potential sites (and 46,173
of the potential 48,387 tracts within 10 km), excluding only 1,869 tracts that have sites within the
tract AND are (0, 10] km away from RCRA sites, making them neither pure treatment nor control

cases. We show a map of this “generalized sample” in Figure A.2c.
4 Empirical Models
4.1 Housing Price Impacts

We begin with the following difference-in-differences (DID) strategy to estimate the impact of

RCRA cleanups on housing prices:

Yl]§ = ,BlNearid X Post; + ﬁzNearid X InProg;; + PsPosti; + fsInProg;; W
1

+ ﬁsNearf + Apt + Ost + ypr +0i + €1t

In (1), Ylli is the k' decile of the house price (inflation-adjusted to 2023 dollars) in tract i in
Census year t, where t =1990, 2000, 2010, or 2020. Post;; is an indicator variable that takes value
1 if the site nearest to the tract has been cleaned up by year t and 0 otherwise. InProg;; is an

indicator for cleanup in progress. It takes value one if the census year overlaps with the time

32Specifically, tracts near a single facility have higher housing values at higher deciles of the price distribution,
higher average household income, lower unemployment rates, are less likely to be college-educated, and have lower
shares of Hispanic and Black population than those excluded from our sample. In Appendix Figures C.2 through C.7 of
the appendix, we provide trends over time in variables of interest, separately for tracts 0 km from a RCRA site, tracts
(0,10] km from a RCRA site, and all tracts in the United States.

15



between the first EI entry and the last EI entry recorded for the nearest RCRA facility; see Section
3 for more details. Near? is an indicator variable that takes value one if tract i is within distance
d < D km of the RCRA site, where D is the cutoff distance from sites beyond which we do not use
observations.3? Since the data are at the Census tract-level, we calculate distance from each RCRA
site to the nearest border of the corresponding census tract. Our main results use D = 10, and we
only use sites within 10 km of at most one RCRA site. A, is a set of RCRA site by year effects, and
Js: is a set of state by year fixed effects. y;; is a set of distance bin by year fixed effects,> ; is a set
of tract fixed effects, and ¢;; is a (hopefully idiosyncratic) error term.

The coefficient on the interaction between N earlfi and Post;, B, estimates the change in price
Yl]§ after RCRA cleanup for units near the site relative to the same change for those far from the
site. This parameter represents the causal impact of cleanup on price under the assumption that
the changes in prices of tracts far from (but still within a vicinity of D km of) a RCRA site represent
a valid counterfactual for what would have happened to tracts near the site if the nearby RCRA
site was not cleaned.

The baseline regressions include tract, bin by year, state by year, and RCRA site by year fixed
effects. The tract fixed effects account for idiosyncratic time-invariant features of the tract and net
out unobservables that might be correlated with being near a RCRA site. The staggered treatment
timing in our context allows us to use bin-by-year fixed effects to net out time-varying unobserv-
ables affecting all homes in each distance bin. These fixed effects address the concern that homes
closer to and far away from RCRA sites might not be on parallel trajectories over time; for example,
awareness of the harms associated with living near a RCRA site could grow over time nation-wide
and could mean that price growth in the near bin lags price growth in the far bin. State-by-year
fixed effects allow for time-varying trends at the state-level that coincide with cleanup and affect
housing price.

RCRA site by year fixed effects ensure that our effects are estimated off of variation between
houses near and far from the same site, rather than relying on variation in when sites are cleaned
up. These fixed effects address concerns expressed by the recent staggered adoption DD liter-
ature (Gardner (2022); de Chaisemartin and D’Haultfceuille (2022); Wooldridge (2021); Callaway
and Sant’Anna (2021); Goodman-Bacon (2021)). This literature is focused on the problem of “bad
comparisons”— situations in which not-yet treated units are being used as controls for treated
units. Our fixed effects structure guarantees we do not make bad comparisons: within a given
site and year, the comparison is between the treated (near) units and the control (far) units, which

are never treated. Our setup differs from the setup inherent to the staggered adoption DD, in that

3In equation (1), we include the variables N earl.d, InProg;, and Post; for purposes of exposition. However, the
corresponding parameters fi3, f4, and f5 cannot be separately identified with the inclusion of site by year (1,;) and
tract fixed effects (6;).

34In this specification, there are two distance bins- Near and Far. The number of distance bins is expanded in equation

@).
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instead of having a single set of pure controls that are used for every cohort-specific treatment
effect estimate, we effectively have many control groups, each of which is a pure set of controls
specific to the treated unit since it is near the same site.*

We estimate cleanup impacts at 1 km distance bins to empirically determine the point at which
exposure to RCRA sites no longer matter. Because our measure of distance from a tract is the
minimum distance from the nearest facility to the boundary of the tract, we break up the [0, 1) km
bin into a 0 km bin (for tracts on which the facility resides) and a bin that contains tracts whose
boundary is € (0, 1] km. We specify seven distance bins, indexed by d = 0, ..., 6, the last of which
captures distances from 5-10 km. From (1), we substitute N earlfj with a 0 km bin (indicating the

facility is on the tract) and 1 km distance bin indicators up to 5 km (Distl.(d_l’d] ford=1,...,5):

5
Y,I; = a?Dist? - Post;y + Z O!f (Disti(d_l’d] . Postit) + ()((z)Distl9 - InProg;;
d=1

(2)
5

+ Z ocg (Disti(d_l’d] . InProgit) + asPostiy + agInProgi; + Ary + Sst + Yur + 0 + €3

d=1

Since we exclude the d = 6 distance bin indicator from the summation in (2), all effects of cleanup
af are relative to this distance bin, and a3 can be seen to capture effects of cleanup for this bin. In
other words, the coefficients af ford =0,...,5, would return the impact of cleaning up a RCRA
site located in bin d relative to the impact of cleanup between 5 and 10 kilometers away. Analogous
interpretations apply to InProg;; and its interactions.*

We define distance from tract to site as the minimum distance, calculated from the point rep-
resenting the RCRA site to the nearest border of the corresponding census tract. This distance
definition is employed since our unit of analysis is a tract. Tracts can be greater than 1 square
km in area, so our 0 km bin will naturally contain houses close but not next to the site, and anal-
ogously, each of our tract-based distance bins will be nominally smaller than the actual distance
from house to site. In standalone appendix section B, we provide summary statistics describing
how tract-based distance bins translate to actual distance to site for transaction data from Ohio
and Pennsylvania, as well as a thorough discussion of how distances compare. The average actual
distance is approximately 2.5 km for our 0 km bin. Distance from tract to site serves as a reason-
able proxy for distance from house to site, at least relatively speaking. In appendix D, we justify
our choice of distance.

After discussion of the results from the main housing price model, we additionally present

35Guignet and Nolte (2024) and Guignet et al. (2023) also note this. They argue that conceptually, a near-far design
with staggered roll-out resembles multiple 2x2 DD estimators and thus could be likened to a stacked DD setup.

36In equation (2), we include the variables InProg;, and Post; for purposes of exposition. However, the corresponding
parameters a3 and a4 cannot be separately identified with the inclusion of site by year (A,;) fixed effects.
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robustness checks and alternative price specifications, including an event study specification. The
methodology used for each is described alongside corresponding results in Section 5. As an addi-
tional robustness check, standalone appendix section B uses individual transaction data from Ohio
and Pennsylvania to estimate quantile treatment effects using a recentered influence function re-

gression.
4.2 Neighborhood Composition and Sorting

The preceding property value hedonic model investigates how RCRA cleanups have impacted
housing prices at different points in the price distribution. If the price effects vary across the dis-
tribution and since pollution is often located in the less desirable neighborhoods within a locality,
then remediation has the potential to reverse exposure to such nuisances and decrease gaps in
pollution exposure based on socioeconomic status. Of course, the positive distributional impacts
may be completely undone by re-sorting in response to cleanup. This would be made more likely
if cleanup effects are large enough to trigger endogenous neighborhood change, further altering
the composition of a neighborhood. Relatedly, the distributional impacts of cleanup could sig-
nificantly differ depending on a household’s status as an owner or a renter due to capital price
appreciation in response to cleanup.

We will undertake two tests for neighborhood change- a reduced-form approach described in

Section 4.2.1, and a structural approach described in Section 4.2.2.
4.2.1 Reduced-Form Investigation of Neighborhood Change

We assess the potential for re-sorting using the Census Summary Files data. We first check
whether cleanups yielded changes in the composition of residents by changing the dependent
variable in our main specification (equation 1) to be one of the following 17 outcomes from the

Census:

- Income/Education: average household income, percent below poverty, percent college edu-

cated, percent on public assistance, and percent of the population that is unemployed

- Demographic: percent of the population that is Black, percent of homes with a female head
of household, percent of the population that is Hispanic, population density, percent of the

population that is white, and percent of the population that is under 18 years old

- Housing: percent of homes with four or more bedrooms, percent of homes built in the last
5 years, percent that are mobile homes, percent of households that moved in the last five

years, percent of homes that are owner occupied, and percent of homes that are vacant

An advantage of checking for changes in neighborhood composition in this manner is that we

can estimate cleanup’s impacts at the exact same geographic scale and with the same power as
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our hedonic analysis, making the tests comparable.’’” Any significant changes in neighborhood
composition would suggest that differential sorting in response to cleanups took place, potentially

un-doing any positive distributional effects of cleanup.
4.2.2 Structural Sorting Model

A limitation of our reduced form checks on demographic changes is that without knowing
the characteristics of the origin and destination of a mover, it is difficult to determine whether
a person is actually moving away from or towards pollution. This identification concern was
raised by Depro et al. (2015) on using aggregate data to test for sorting behavior.*® Thus, sorting
behavior may be present even without aggregate changes in neighborhood composition. Depro et
al. (2015) show that the identification concern can be overcome if one is willing to make additional
assumptions on the structure on the problem using an equilibrium sorting model.

Equilibrium sorting models of the housing market infer behavioral parameters (e.g., prefer-
ences for amenities) from decisions about where to live (Kuminoff, Smith and Timmins, 2013),
taking prices and amenities as given. By explicitly modeling the sorting decisions underlying the
hedonic equilibrium, sorting models allow one to make theoretical predictions about aggregate
moving behavior that can be matched to data. In this case, the assumed structure of the problem
provides additional moment conditions that facilitate identification of sorting behavior. An added
benefit is that our sorting model can accommodate stickiness in the moving decision by allowing
for moving costs. We apply a structural sorting model to the data to overcome this identifica-
tion problem, as proposed in Depro et al. (2015). We modify their approach to accommodate our
strategy to control for unobserved heterogeneity correlated with pollution.

To test for gentrification, we allow preferences for amenities and the disutility of moving costs
to vary by group characteristics that reflect socioeconomic advantage. Any differences in prefer-
ences for cleanup would suggest that such an environmental improvement might trigger changes
in neighborhood composition, which could then reverse improvements in exposure to RCRA sites.
We consider groupings based on two dimensions: race/ethnicity and income. A comprehensive
literature on environmental justice, spanning multiple disciplines, investigates disproportionate
exposure to pollution based on race and class. We thus follow the extant literature to test whether

demand for cleanup varies along these characteristics.

37Note that studies using disaggregated price data typically only have access to data on socio-economics and other
housing-related outcomes at a more aggregated level. This often means the setup of the hypotheses they test are not
comparable. This could result in rejection of the null hypothesis of no effect on housing prices but failure to reject the
null hypothesis of no effect on socio-demographic outcomes, simply because more disaggregated housing data often
results in increased precision of estimates when studying localized treatment effects.

38Sorting behavior is characterized by the tendency to stay or move between locations, i.e. “transition probabilities”.
For example, if there are 2 locations, then there are 4 values that characterize movement (including the decision to stay
in a particular location). Aggregate data by location, however, only reveal how each location’s population changed.
The identification issue boils down to trying to identify more variables (i.e., the 4 transition probabilities governing
movement) with insufficient information (i.e., overall population changes at 2 locations). See Depro et al. (2015) for
specific examples of the identification problem.
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In addition, understanding the benefits of cleanup involves quantifying both changes in expo-
sure as well as price effects. The latter is complicated by differences in home ownership. Renters
may become worse off if the increase in rental prices is higher than what they are willing to pay for
the environmental improvement. Owners may additionally benefit from asset price appreciation
or potentially lose from higher taxes. Property taxes, in particular, are regressive, disproportion-
ately burdening occupants of lower-valued housing (Berry, 2021), which tend to be low-income
and minority (Derenoncourt, Kim, Kuhn and Schularick, 2024). Recent work also finds that Black
and Hispanic owners pay a higher effective housing tax for the same bundle of public services
(Avenancio-Leon and Howard, 2022). Taken together, this literature suggests that re-sorting in
response to RCRA cleanups, whose price effects are concentrated in the lower quantiles of the
price distribution, could potentially incentivize owners to leave, without reaping much of the ben-
efits from capital gains.>®> While our model follows the existing literature and effectively treats
everyone as renters (Kuminoff et al.,, 2013), the data include both owners and renters. To clarify
the welfare impact of cleanup, we thus separately estimate racial preferences for cleanup for the
sample of homeowners only, a group that does not have to contend with higher rental prices due
to cleanup. Next, we build a simple model of how people sort into neighborhoods. The baseline
model presented below focuses on preference heterogeneity by race. After presenting the baseline,
we discuss modifications for the alternative models as well as limitations.

Suppose that an individual (belonging to a racial/ethnic group R), at time period ¢, observes the
characteristics and prices of all locations in that period, and decides whether to move to a different
location by time period ¢ + 1. Specifically, she chooses whether to live in one of J neighborhoods
(characterized by census tracts) within a state, to move out of the state (J + 1), or to stay in her
current location. For the moment, we suppress individuals’ group index R to simplify notation.

Individual i’s preference for tract j follows:
U}’t =0+ e;.,t (3)

where §; ; represents the average utility that all residents receive from living in tract j at time t; e;’t
is the idiosyncratic utility that the individual receives from locating in j, which is assumed to be
distributed Type I Extreme Value. The mean utility, which captures the attractiveness of location
j at time t, can be thought of as a quality of life index (e.g., Blomquist, Berger and Hoehn (1988),
Kahn (1995), Albouy (2016)) that is determined by the location’s attributes (X, £; ;) and the costs
of living there (p; ;):

Ot = apje + Xjef+ & (4)

The location’s amenities include ones that are observed by the analyst (X;,), such as exposure

to cleaned RCRA sites, and those that are unobserved (¢;;). The coefficient § on a particular X,

39Berry (2021) finds that low-price homes are assessed at higher value compared to their actual sale price.
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e.g., RCRA cleanup, represents the preference for cleanup, where f > 0 (8 < 0) means that the
individual derives positive (negative) utility from cleanup and would sort towards (away from)
cleaned locations. Moreover, differences in by socioeconomic status would reveal differential
sorting behavior.*’

If the individual chooses to move to tract j during a period ¢ (from, e.g., tract k), then she in-
curs a financial moving cost MCj ;. We characterize the moving cost as 3 percent of the average
housing value of the origin location (tract k) plus 3 percent of the average house value of the des-

tination location (tract j) during time ¢.%!

Since realtor fees are typically applicable to homebuyers
rather than renters, we weigh moving cost by the share of the tract that is owner-occupied in the
baseline model. Individuals who do not move or stay in their tract are assumed to have no moving

costs, i.e., MCy k., = 0. The utility that an individual receives from moving from k to j is:
AU},k,t - )uMCj,k,t = (51',1» - 5](,;) + (6]1.',1’ - elic,t) - ,UMCj,k,t (5)

where the parameter on the moving cost p is the disutility of a dollar in moving costs and represents
the marginal utility of income. We use this parameter to monetize preference parameters later on
(e.g. B/u).*

The individual will choose the location that maximizes her utility. Assuming that the idiosyn-
cratic error term € follows a Type I Extreme Value distribution, the share of people that moves

from k to j in the population during time ¢ is characterized by the following logit probability:

5j,t —5k,t—llMcj,k,t

== ©)
Skt S S bt =6~ MC ot
Similarly, the share of people staying in tract k in time ¢ is given by:
1
Skt = (7)

Z[ e5e,t—5k,t —HMCy gt

By definition, the population in tract j in ¢ + 1 is the sum of all people who move to j from each of

the J + 1 neighborhoods during time t. We can therefore use the above shares to relate population

40The amenity vector X;; may include endogenous amenities for which individuals have preferences, such as con-
gestion (Timmins and Murdock, 2007) or peer effects (Bayer, McMillan and Rueben, 2004). In practice, rather than
estimating preferences for such amenities, we include a neighborhood (or tract) fixed effect in estimation (to be de-
scribed next). To the extent that groups (whether by race or income) have the same disutility of these attributes, then
the tract fixed effects in the mean utility decomposition should account for such effects while still allowing us to recover
differential preferences for RCRA cleanup. In addition, the magnitude of housing impacts that we find (and subsequently
present) suggests that there may be limited scope for cleanup to trigger these types of effects.

#1This assumption reflects the 6% realtor fee convention in the United States over the period we study, with
equal incidence between buyer and seller. For more, see: https://www.washingtonpost.com/opinions/2024/03/20/
settelement-realtors-commission-six-percent/.

4Following Depro et al. (2015) and Bayer, McMillan, Murphy and Timmins (2016), this also allows us to circumvent
finding an instrument to estimate the coefficient on price «, which is endogenous.
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counts across time periods t and ¢ + 1 in the following manner:

J+1
popt =" s;k.popy (8)

k=1
To estimate the preference parameters governing moving decisions, we then use equations 6
through 8 to predict two quantitative measures that are available in the aggregated Census Sum-
mary Files and the Census microdata: (1) the total and share of the population in each tract (for
each group), and (2) the share of the population that stayed in the current residence (for each
group). For consistency, we use the census years (¢,t + 1) = (1990, 2000), (¢,¢ + 1) = (2000, 2010),
and (t,t + 1) = (2010, 2020), similar to our hedonic model. The following describes the prediction

of these shares:

1. We obtain the total and share of a particular group R, e.g., non-Hispanic Black, for each
tract in different census years. We denote the population of group R in year ¢ for tract j as

popf’t. Dividing both sides of equation 8 by the total population in the region and using

R
J.kt

tract j at time ¢ + 1 using the time ¢ population shares:

group-specific movement shares (i.e., s%, ), we can predict the share of group R living in

J+1
t+1 _ R t
ORj = Z Skt ORk ©)
k=1
Here, crl,t3 . and 0{2*].1 are the share of group R, respectively, living in tract k at time ¢ and tract
jatt+1.

2. We also obtain the share of the population that stayed in the current residence from Cen-
sus microdata.*> Our model predicts the share of people who chose to stay in their time t

locations at time ¢ + 1 using aggregate population counts in each location:

J+1 t
Dy Skk,tPOPR ¢

%StayL =
IR totpop;

(10)

With the moving share predictions (equation 9), the stay share predictions (equation 10), and
the corresponding estimates from the data, we estimate our parameters of interest using the fol-

lowing two-step procedure:

Step 1 We first solve for the moving cost parameter y and the vector of mean utilities §;; using

a bisection method that nests a Berry (1994) contraction mapping. Specifically, given a guess of

#3The survey asks in what year the householder (for 1980 on) moved into the dwelling unit (apartment, house, or
mobile home). IPUMS then recodes the responses as the number of years ago that the householder moved into the
housing unit. Thus, we interpret a household staying in their unit as staying in their tract. In our model, people who
move within a tract will not experience a change in mean utility nor will they incur a moving cost MCy i ; = 0.
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1, we use equation 9 and a guess of the mean utilities at time ¢, 51(.(;“) , to predict the population
shares at ¢ + 1. We update the vector of mean utilities to be 5](.';“”) according to the following rule

until the vector of mean utilities has converged:
s = 59 +log 0! — log 51! (11)

Recall that o; is our prediction of population shares (based on a guess of the parameters); we add a
“"” to indicate the corresponding shares from the data. We next combine the converged vector §;
and the initial guess of the moving cost parameter p to predict the share of stayers using equation
10. We then update our guess of i using a bisection method, solving for the vector of mean utilities
(6j,¢) at each guess of ;1. We repeat this process separately for each group R and for each time period,
(t,t+1) = (1990, 2000), (t, t+1) = (2000,2010), and (£, t+1) = (2010, 2020) resulting in group- and
time- specific z and J;; estimates. Lastly, since we limit focus on within-state relocation decisions
(but allow individuals to leave the state as a catchall decision), we estimate the model separately

for each state.

Step 2 We next stack the mean utility estimates for each group R in each state and each time
period, and decompose the mean utility with respect to tract characteristics (interacted with race
indicators) to recover preferences. Before doing so, we make the mean utilities comparable across
groups, time, and location by dividing the mean utility estimates for a particular group/time/location
by the corresponding moving parameter estimate, (’53.2 = ijt / 1.4 In the final step, we estimate

the following specification, similar to our reduced-form model:

37; =po + B Dist} - InProgi; + f21[R = B] + f31[R = H] + ByDist] - Post (12)
+ BsDist) - Post;; - 1[R = B] + feDist] - Posti; - 1[R = H] + Art + 8ot + yor +0; + &1

where 1[R = -] is a group indicator and Dist?, Posty;, and InProg;, are as previously defined in
the reduced form model, and A,;, &s:,y5; and 0; are respectively site-by-year, state-by-year, bin-
by-year, and tract fixed effects. The groups we examine in the baseline model are non-Hispanic
white (R = W), non-Hispanic Black (R = B), and Hispanic (R = H). The coefficients 5 and f are,
respectively, the Black-white gap and Hispanic-white gap in willingness to pay to live in location
Jj» before and after RCRA cleanup. In this stacked regression, each observation is a particular race
in a particular tract, in either 2000, 2010, and 2020. The mean utility decomposition is set up to
be as similar as possible to our reduced form model. Still, important differences exist between our
structural and the reduced form models that may cause the WTP estimates to differ. Notably, the

reduced form model assumes free mobility and a national housing market, whereas the structural

44While the moving cost parameter is positive in most instances (i.e., people dislike higher moving costs), a small
fraction (< 1%) of the MC parameters is negative. In these cases, we use the absolute value of the ;1%z in order to preserve
the signs of the mean utilities.
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model builds in moving costs and focuses on within-state location decisions.

We repeat the above estimation procedure for the sample of owners. In the baseline model,
moving costs are weighted by the share of a tract that are owners. We do not apply these weights
when re-estimating the model for the sample of owners. In addition to preferences by race, we re-
estimate the model to allow for heterogeneity in preferences by income. We categorize individuals
as high versus low income (relative to the individual’s state median income) based on income as
observed in the year that individuals are surveyed in the public-use Census microdata.

The following limitations are important to keep in mind for interpretation. First, at least part of
the heterogeneity by race that we estimate stems from differences in income. Variation in prefer-
ences may also reflect housing market dynamics that differentially affect racial minorities. Recent
literature has found evidence that minorities are steered towards less desirable neighborhoods
and that ignoring these differential constraints will attenuate demand estimates for these group
(Christensen and Timmins, 2018; Christensen, Sarmiento-Barbieri and Timmins, 2020). In our
context, this may be accounted for to some extent by allowing differential switching costs and
group-specific indicators in the mean utility decomposition. But what may seem like ‘low pref-
erence’ for environmental quality for racial minorities may partially be driven by more choice
constraints. Second, for the models that examine preferences separately for owners, we abstract
from the rent/own decision since we do not observe individuals over time in the data and, thus, any
changes in homeownership status. Therefore, caution should be exercised in interpreting these re-
sults since we have to assume that those who own stay as owners. Similarly, for our results by
income, we must assume individual income types are fixed even though income is endogenous,
a limitation that is again due to our inability to track individuals over time. Finally, for all mod-
els, we focus on within-state location decisions and abstract from labor market considerations in
residential choice (Roback, 1982).%°

5 Results

We organize our results as follows. In Section 5.1, we discuss the results of our main specifi-
cation. In Section 5.2, we present event studies to check for pre-trends driving our main results.
In Section 5.3, we present and discuss results from our reduced-form and structural investigations

of sorting.
5.1 Impacts on Housing Prices

We test the specifications proposed in equations (1) and (2) on all nine deciles of the price
distribution and from within 10 km away from a RCRA facility. To start, we employ a flexible ex-

posure buffer specification (2) to see how far the treatment effects might extend. We are interested

45In the empirical model, we allow for a ‘catch-all’ location choice that is associated with moving outside of a state.
Practically, we do not infer preferences from this choice and use it to avoid dealing with an open migration system. For
details, see Depro et al. (2015).
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Figure 3: Housing Price - Distance Gradient
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Notes: This figure plots the set of Difference-in-Differences (DD) coefficients on the interaction Dist? - Postj; and

Distl.(d_l’d] - Postj; from 2 for each percentile from the 10th through the 90th. All specifications include fixed effects

for tract, bin by year, site by year, and state by year. The sample is the set of tracts containing exactly one RCRA site
within 10km in 1990, 2000, 2010 (ACS 2008-2012), and 2020 (ACS 2018-2022).

in the coefficients on the interaction effects between distance bins and the post-cleanup indicator.
We excluded the 5-10 km bin, so all of our estimates can be interpreted as the differential effect of
cleanup on homes in a particular distance bin and homes in the 5-10 km bin. Figure 3 presents the
point estimates for the interaction between various distance bins and the post-cleanup indicator.
We find that the 0 km bin stands out as having large and significant impacts for most price deciles.
After 0 km, the effect on housing prices dips below 0 and is insignificant for most of the price
percentiles, indicating that this is where our treatment effect ends. Therefore, we designate 0 km
as our definition of the ’near’ (treated) bin in equation (1). Summary statistics by whether the tract
was in the 0 km bin can be found in Table A.2 in the Appendix. Housing prices and income tend
to be higher in the 0 km bin, but those living in the 0 km bin are more likely to be Black, less likely
to be college graduates, and are more likely to be below the poverty line or on public assistance.

Results from a more parsimonious specification, following equation (1), are presented in Table
2, where we have grouped all homes (0-10] km away from the facility into one group so that
we have just two distance bins. We also plot the change from before to after cleanup in the 0
km distance bin in Figure 4. The impacts on the price percentiles range from $7,828 to $10,881
depending on the percentile, and are statistically significant at the 10% level, except for the impact
on the 90" percentile of the price distribution.

Although the magnitudes appear to be relatively similar in levels, in percentage terms, the im-

pacts are stronger for the lower percentiles of the price distribution. In the bottom panel of Table 2,
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Figure 4: Housing Price Impacts at 0 km bin by decile from Near-Far Comparison
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Notes: This figure plots the DD coeflicients by decile of housing price impact from Table 2, which correspond to the
coefficient on the interaction N earl‘.i - Postjy from (1), where N earl.d is the indicator for the 0 km bin. All specifications
include fixed effects for tract, bin by year, site by year, and state by year. The sample is the set of tracts containing
exactly one RCRA site within 10km in 1990, 2000, 2010 (ACS 2008-2012), and 2020 (ACS 2018-2022). Standard errors are
clustered at the tract level. Whiskers marked with horizontal lines and vertical protruding segments indicate 95% and
99% Cls respectively.

we present the percentage impacts by dividing the estimates by their sample mean. ¢ We see that
the effects are much larger for the lower deciles of the price distribution. For example, the relative

impact on the 10"

percentile price for the 0 km bin versus the (0-10] km bin is around 10.1%, but
for the 90" percentile price specification, the percentage difference is only approximately 3.0%.
For the most part, the percentage impacts are not different in a statistically significant sense. Table
A.3 presents p-values from the null hypothesis that each decile has the same impact as the oth-
ers in percentage terms. The p-values are produced using stacked regression. The 10th percentile

of price is lower than the 40th through 70th percentile impacts in percentage terms, but not the

46 Another way to present percentage effects would be to compute the average of ﬁk, where P is the predicted price
P!

percentile from each regression. Typically, this mean is estimated after the regression is run, and standard errors are
obtained using the Delta Method. We found this method to be slightly fragile for a handful of robustness checks where
we added linear controls interacted with the high dimensional fixed effects. In particular, when the terms including
linear controls interacted with fixed effects were collinear with fixed effects, some nuisance parameters were exactly
identified. These parameters are not important to us, and were partialled out when estimating our primary effects
of interest, but were required to calculate the Delta Method standard errors, resulting in no standard error reported.

Therefore, we elected to stick with a simple transformation of dividing the estimate by its sample mean (%). The

difference between the two methods was not apparent to the third decimal place.
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the 80th and 90th percentiles. This may be because the 80th and 90th deciles are so imprecisely
estimated that we cannot reject the null of similar effect sizes.

We do not take a stand a priori on which price deciles will experience effects of cleanup. How-
ever, we could see a hypothesis that price is impacted by cleanup as actually constituting a family
of 9 hypotheses. The probability of rejecting at least one true null hypothesis in a family of hy-
potheses is known as the familywise error rate (FWER), and grows with the number of hypotheses
in the family. To address this concern, we show p-values for a variety of correction methods in
Table E.1 of the appendix for our main estimates, with corresponding discussion in Appendix Sec-
tion E. The p-value for the 10th percentile is less than 0.1 for all multiple hypothesis testing (MHT)
correction methods, and is less than 0.05 for both of the resampling-based methods, which gives
us confidence that our results are not merely the product of testing nine hypotheses.

It is ideal to cluster at the level of treatment (Bertrand, Duflo and Mullainathan, 2004; Abadie,
Athey, Imbens and Wooldridge, 2022), but the level of treatment is ambiguous in our context—
census tracts are varying distances away from RCRA sites, and thus the impacts from before to
after could theoretically differ by these distances. Hence, in our main specifications, we cluster on
the tract level. However, because RCRA sites are cleaned up at different times, it could be argued
that site or site by year is the level of treatment. Furthermore, spatial correlation between tracts
in the same county could also be important. Given these considerations, we provide results with
alternative clustering levels in Appendix Figure A.3. The primary finding that the 10th percentile
of price is statistically significant is preserved across alternative clustering levels.

We present the high-dimensional fixed effects Poisson estimator (Correia et al., 2021) in Table
3 that directly recovers effects as semi-elasticities. The clustered standard errors are fully robust to
mis-specifications of functional form, and do not make any assumption that the mean equals the
variance, as with traditional Poisson regression. The top panel of the table presents the Poisson pa-
rameters, which are the semi-elasticities. The middle panel of the table presents the corresponding
marginal effects in levels. Comparing to our main estimates, we see that the estimated marginal
effects are similar.

The primary analysis requires both distinct treatment and control groups and well-defined
cleanup timing for the event study framework. This results in only about half of sites being used
in our analysis. As a check that our results are likely to generalize, we also present estimates from
a sample maintaining only the treatment-control distinction. That is, we define treatment tracts
as those containing at least one RCRA site with all sites within 10 km contained in the tract, and
control tracts as those with no contained sites but at least one site within 10 km (See Appendix
Figure A.2c).*’” The results are shown in Table 4. The magnitudes of the coefficients are smaller

than those found in Table 2, which is to be expected: effects should be attenuated since the timing

4TNot all sites will be used by the regression to produce our estimates because of singletons (Correia, 2016); however,
this is not the result of deliberate sample selection, as our regression is run on the entire sample.
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used to categorize tracts into “Post”, “In Prog” or “Pre” is only the timing for the nearest site, but
the tract might be in the vicinity of multiple sites that had different timing.

One concern with our approach is that we are using data that are surveyed in spatial units
that are changed each decennial year and require interpolation. In our main result, we use NHGIS
to interpolate to 2010 boundaries using owner-occupied weights. In Appendix C, we show that
our results are robust to three other interpolation weights and to interpolating to 2000 boundaries
(with distance to site calculated also using 2000 boundaries). See Figure C.1 for summary of these
results and Table C.1 for details.

One disadvantage of using minimum distance from any point in the tract to the nearest RCRA
site is that larger tracts are more likely to contain RCRA sites and hence are more likely to fall in
the “0 km” bin; see Appendix Section D for more. This motivates a robustness check employing a
regression adjustment using tract size. To construct our regression adjustment specification, we
center the log of tract area around the Near group mean, and then we add to the regression the
interaction between the centered log of tract area with fixed effects.*® The result is a fully saturated
model, as recommended by Wooldridge (2010). Table 5 presents the coefficients on 0 km X Post,
0 km X In Prog and each of those interacted with centered log of area. The coefficients on 0 km
X Post and 0 km X In Prog are very similar to our main effects (Table 2). The coefficients on the
interactions between centered log of tract area and the main variables of interest are all statistically
insignificant. We also show that our results are robust to using a population-weighted centroid
measure of distance in Appendix Section D.

We briefly discuss other checks on robustness. Results are presented in Appendix A.1. First,
standard hedonic model often include house and neighborhood characteristics (Bishop et al., 2020),
so we include various house and neighborhood characteristics as additional controls in Tables A.4
through A.7. Results are consistent with those from our main specification in magnitude and
significance. Next, our primary control group uses (0, 10] km include as many sites as possible.
To ensure that SUTVA violations do not bias our findings, we additionally provide a robustness
check where the control group is (5, 10] km in Table A.8. Results are robust.

It is worth addressing how these results compare to those in Guignet and Nolte (2024), and
explaining how our different data sources and identification strategies might affect precision of
our estimates. Guignet and Nolte (2024) state that a main advantage of their paper over ours is
the use of individual transaction data. However, their sample size drops from 28,312 identifying
transactions to just 829 in their house fixed effects sample, indicating that variation in their study
is not coming from repeated sales of individual houses, but rather from sales of different houses
in the same tract in different years. So, even if their lefthand-side variable differs at the individual
sale level, the identifying variation still is within tract over time- identical to ours.

Moreover, our main results are based off of aggregated data, which means we lack the fine

#8The exception is the tract FE, which already absorb tract-level area, and hence would be collinear.
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spatial and temporal resolution of individual sales data that Guignet and Nolte (2024) exploit in
their study. There are often two concerns with aggregated data: aggregation bias and loss of pre-
cision. Aggregation bias would attenuate our estimates towards zero, and we would expect large
confidence intervals due to loss of precision. However, we still detect economically and statisti-
cally significant effects comparable to those of Guignet and Nolte (2024). While the comparison
is hard to interpret since we study deciles of the price distribution and Guignet and Nolte (2024)
study average effects, we are doubtful that aggregation bias is a major problem in our context. For
a concrete comparison, we find housing price impacts at the median of about 3.2%, whereas their
cleanup effects are 6-7%; that our results are lower is unsurprising given their focus on TSDFs (a
subset of RCRA sites expected to experience larger impacts).

Considering that (a) their primary source of variation is at the tract level, and (b) we find
economically and statistically significant impacts similar to theirs, it does not appear that the use
of aggregated data is a major drawback of our study compared with theirs.

Furthermore, an even broader point applies- with Zillow no longer available to researchers, it is
useful to show that results like those of Guignet and Nolte (2024) replicate using publicly-available
data. That our study finds similar effects to Guignet and Nolte (2024) is further evidence that using
publicly available data from Census summary files can detect similar effects as individual-level
transaction data, a finding documented in Gamper-Rabindran and Timmins (2013). It has also been
shown that effects at the median may not capitalize the impact of neighborhood improvements if
the effects are local and sources of change are concentrated in certain types of areas within a tract
(e.g., the less desirable neighborhoods), a point shown by Gamper-Rabindran et al. (2011) in the
context of Superfund housing market impacts.

We additionally include a standalone supplementary appendix (Appendix B) which shows ro-
bustness of our conclusions to using individual-level transaction data from Ohio and Pennsylvania.
Section B.1 of that appendix, previously discussed with our data source descriptions, investigates
the extent to which people over-estimate the value of their house more at different portions of the
price distribution. Section B.2 puts our effects into context by describing how Census tract-based
treatment translates to distance from a given house to a RCRA site and compares effects using both
measures of exposure. We reproduce our main results for the sample of Ohio and Pennsylvania
Tracts in section B.3. Section B.4.1 describes our quantile treatment effects model applied to trans-
actions data and assumptions. Section B.4.2 then shows the quantile treatment effect results. The
broad conclusion is that our main results are robust for the lowest deciles of the price distribution,
but not the higher deciles. We find the strongest evidence of a positive cleanup effect for the first
decile, both in economic and statistical terms.

Overall, we document robust evidence of capitalization of RCRA cleanups into housing prices,
especially at the lower deciles of the price distribution. This could indicate either that citizens

are aware of and directly value the cleanups, or that they value the redevelopments and other
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aspects of area revitalization that are sometimes bundled with the cleanups. No matter which is
the case, the impacts we document here are noteworthy given the vast scope and expense of the
RCRA cleanup program- the program has provided $97.3 million in federal grant funding to state
governments (EPA, 2025).

5.2 Event Study of Impacts on Housing Prices

One potential threat to identification is differential pre-trends between the houses closest to
the RCRA sites and those further away. As suggestive evidence that differential pre-trends do not
drive our results, we produce an event-study graph that depicts treatment effects over time. That
is, we graph the coefficients for the 10?* percentile price from the following regression, for the 0

km bin, treating the (0, 10] km distance bin as a control group:

Yk = Z Br-Near? x 1 {t € [r,7+2)} + Zﬂzf]l {t€[n1+2)}+ A+ +yp +0i + € (13)

TE-2 T
We focus mainly on the 10th percentile since that was the decile for which we found the strongest
effect, in percentage terms. In the above, Yl]lf is the house price (kth percentile), 1 {t € [r,7+2)} is
a dummy variable that takes value 1 if the Census year ¢t is between 7 and 7+ 2 years relative to the
cleanup period of the nearest site and 0 otherwise, and Near! is a dummy variable that takes value
1 if the facility is on tract i. In a slight abuse of notation, we treat the in progress period from (1) as
an event time occurring between time -1 and time 0, which may not be 2 years in length, and we
omit it from the above equation for brevity. Excluding one event time in the second summation
scales the treatment effect in the two years just prior to cleanup to 0 for ease of interpretation.
Note that while equation 13 includes event time dummies, these will be absorbed by our set of
fixed effects in estimation.

The interpretations of parameters in our event study differ slightly from the standard event
study because the far bin is able to serve as a control group for the near bin in every event time due
to the inclusion of a full set of event time indicators 1 {¢ € [7,7 + 2)}. As such, S, is interpreted
as the housing price for homes in the far bin during event time [z, 7+ 2), net of bin-by-census year,
state-by-census year, and tract-level averages. S, is interpreted as the difference in the housing
price for homes in the near and far bins during event time [z, 7 + 2), net of bin-by-census year,
state-by-census year, and tract-level averages.

It is worth emphasizing that the setup of our event study takes advantage of variation in when
sites were cleaned up relative to census years. This is similar to the setup in Asker, Brunner and
Ross (2022). We could alternatively measure event time in decades, but that approach fails to
leverage the rich data we have on cleanup timing. Our setup can be seen as an unbalanced panel
in event time— we only have 4 observations for each site. In Figure A.9 of the appendix, we plot

the number of sites represented in each event time in our regressions.
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Figure 5: Event Study for the 10" Percentile of the Housing Price Distribution
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Notes: This figure shows the coefficient representing the difference in the near (0 km) and far ((0, 10] km) bins over time
from the event study specification in equation 13. We use the same fixed effects and sample as in the main regression.
The coefficient for the two years just prior to the cleanup (at position -2) is normalized to 0 by excluding the dummy
on Nearx Event time=-2 from the regression. Data from the during-cleanup phase is represented by “In Prog,” and
“0” represents the two-year immediately following cleanup completion. Whiskers marked with horizontal lines and
vertical protruding segments indicate 95% and 99% ClIs respectively, clustering at the tract level. Prices are denominated
in thousands of dollars.

Figure 5 is our event study graph and plots f;,; over time. The figure shows that home prices
for the first decile of the distribution increase immediately following cleanup, peaking between
2 and 4 years after cleanup, and subsequently decrease but do not reach their pre-cleanup levels
within 10 years. Confidence intervals exclude zero for all post-period event times, confirming
the statistically significant result in the first column of Table 2. We also plot f5;; over time for
other percentiles of the housing price distribution in Figures A.4 in the Appendix and observe a
similar pattern through the 40th percentile (although we note that confidence intervals include
zero in a minority of post-periods for the 20th-40th percentiles). Effects in the 50th through 90th
percentiles appear to be potentially driven by a pre-trend. We thus expect their coefficients to be

over-estimated.
5.3 Impacts on Neighborhood Composition, Rental Price, and Sorting

Next, we test whether RCRA cleanups impacted various socio-economic and housing-related
indicators from the Census in a reduced-form framework. Specifically, we examine 17 other out-

comes, and find only weakly statistically significant evidence for one of them (p < .10, for percent
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college educated; 3% increase). In Table 6a, we explore impacts on five income and education-
related outcomes: average household income, percent below poverty, percent college educated,
percent on public assistance, and percent of the population that is unemployed. The impacts are
neither statistically nor economically significant. In Table 6b, we explore impacts on six demo-
graphic outcomes: percent of the population that is Black, percent of homes with a female head
of household, percent of the population that is Hispanic, population density, percent of the pop-
ulation that is White, and percent of the population that is under 18 years old. No impacts are
statistically significant, with none reaching even 1% of baseline. In Table 6c, we explore impacts
on six housing-related outcomes: percent of homes with four or more bedrooms, percent of homes
built in the last 5 years, percent that are mobile homes, percent of households that moved in the
last five years, percent of homes that are owner occupied, and percent of homes that are vacant.
The impacts are not statistically or economically significant. In Appendix Tables C.2-C.5, we show
that these results are robust to four different interpolation approaches, including using to 2000
tract boundaries.*’

One might be concerned that socio-economic and housing-related indicators would not re-
spond immediately to RCRA cleanups. Households might sort on distance to RCRA facilities with
a lag because of moving frictions, even if prices adjust immediately, which would bias us towards
finding no sorting even when sorting was indeed happening. To visualize the timing of potential
impacts, we also produce event-study graphs similar to those we make for housing impacts in
Figures A.5 through A.7. We see no clear evidence of lagged effects. While we detect price effects
from cleanup, the data suggest that they do not seem large enough to trigger moving.>®

One trend of note is the upward trend in Average HH Income (and possibly % college educated),
which at first glance might seem to point to a gentrification story. On this point, we first note that
in column 1 of Table 6a, we cannot reject the null hypothesis of no effect, so we do not find any
evidence of gentrification. Even more importantly, the magnitude of the point estimate is only $92,
when the average income is $101,218 (2023$). This is an economically insignificant magnitude,
so we do not find evidence that gentrification is driving our results. And as described above,
the increase in % college educated is a small 3% increase that is not robust across interpolation
approaches.

Next, we investigate whether rental prices are affected by clean-ups. In Table A.9, we present
equation (1) with deciles of rental prices and find no statistically or economically meaningful im-
pacts on rental prices following RCRA clean-up. In Figure A.8, we show similar event studies for

each decile and again find no evidence that clean-up impacts rental prices.

49Table C.2 shows a marginally statistically significant increase in mobile homes; Table C.3 finds a similar result
for college education as Table 6 and a statistically significant reduction in % under 18 (3%); Tables C.4-C.5 show no
statistically significant changes. Table C.5 uses universe defined weights that are specific to each variable universe and
likely provides the most appropriate weights for this exercise.

50In the appendix, we also present the overall point estimates (Table A.9) and event studies (Figures A.8) from using
rental price as the dependent variable.
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Despite the reduced form exploration of neighborhood change showing no evidence of gentri-
fication or sorting, we are sympathetic to the view that a reduced form approach might not uncover
these effects. Thus, in light of the identification concerns raised in Depro et al. (2015), we also test
for differential sorting by race using a structural sorting model. Table 7 presents our differential
willingness to pay (WTP) estimates from the mean utility decomposition in equation 12, where
the outcome variable is the monetized value of the mean utility of a tract for each group (race
or income) for a given year (2000, 2010, 2020). We estimate the decomposition to recover race-
specific cleanup preferences for all individuals (column 1) and for owners (column 2), and also by
income group (column 3). We limit to tracts containing exactly one RCRA site within 10 km, like
the main analysis. Since the sorting model estimates preferences using changes across decades,
the specifications recover preferences for years 2000 (from 1990 to 2000 moves), 2010 (from moves
between 2000 and 2010), and 2020 (from moves between 2010 and 2020). All specifications in-
clude site-by-year, state-by-year, bin-by-year, and tract fixed effects, similar to our reduced form
specifications.

For the baseline model for all individuals regardless of home ownership status, the point esti-
mates suggest that the WTP for cleanup of Black and Hispanic households are, respectively, $115.9
and $120.4 lower than that of white households, but the differences are not statistically significant.
In this baseline model, while white households have positive WTP ($1,346), the estimate is also
imprecise. We next examine the WTP differential by race for homeowners. Column 2 of Table 7
finds stronger evidence that Black and Hispanic owners are willing to pay less than white owners,
with a WTP that is $302.1 lower for Black owners and $295.4 lower for Hispanic owners. That
race-based sorting is augmented for the owner group is consistent with large differences in US
housing values by race (Derenoncourt et al., 2024). Considering the reduced form evidence show-
ing small and statistically insignificant changes in race shares in response to cleanup (Table 6b),
this suggests that the magnitudes of the differences in preferences are not large enough to trigger
re-sorting.

The average WTP may be underscored by significant heterogeneity across geography. We
investigate the WTP differentials for owners by state and plot the estimates against the state’s
median income in year 2000. Figures 6a and 6b present these estimates for Black and Hispanic
groups, respectively. While in some states, minority WTP is significantly higher than their white
counterparts, in other cases the WTP is lower. In addition, it does not seem to be the case that
income is the underlying driver of heterogeneity in WTP across geography: The slope coefficient
of a fitted line for Black households is 0.0011 and for Hispanic households is -0.0147. To test for
income-based sorting directly, we allow preferences for cleanup to vary by income (Column 3 of
Table 7). While higher income individuals are willing to pay $37 more for cleanup than lower
income individuals, the WTP differential is not statistically significant.

Taken together, the model finds limited evidence of income-based sorting for cleanup. There
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Figure 6: Heterogeneity in WTP by State Median Income for Owners
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Notes: This figure presents state-level estimates of the (a) Black-white and (b) Hispanic-white differential in WTP from
our structural sorting model for a sample of homeowners living in tracts containing exactly 1 RCRA site within 10km.
We re-estimate equation 12 to include interactions between state indicators and the main interaction of interest Near X
Post x Black or Near X Post x Hispanic and plot the coefficients on the price differential for each state against the
respective state’s median income in the year 2000. The dashed, red line indicate a best-fit line from a linear regression
of the point estimate on state median income, with the corresponding slope shown in the bottom left corner.

is some evidence that minorities have lower demand for cleanup, when focusing on owners. In
light of the limited evidence of income-based sorting, this heterogeneity may reflect non-market,
race-specific constraints rather than preference. For all individuals, however, the model still finds
limited evidence of differential sorting by race. These results are broadly consistent with our pre-

vious tests that cleanup would not change the racial composition of a neighborhood.
6 Discussion

Our empirical findings yield two broad conclusions. First, we found housing price impacts
that were limited to the tracts nearest RCRA sites and strongest in relative terms for the lower
deciles of the price distribution. This finding that home prices increased after cleanup is most
prominent and robust for the 10th percentile. It is not driven by a pre-trend. It is also robust to
using transaction-level data to estimate quantile treatment effects.

Several mechanisms could underlie these price impacts, such as stigma (Messer, Schulze, Hack-
ett, Cameron and McClelland, 2006) and endogenous changes in non-targeted amenities (Banzhaf
and Walsh, 2013). The welfare effects also depend on whether individuals are owners or renters.
The price effects we document could cause renters to become worse off if such price increases are
larger than what renters are willingness to pay for cleanup. Unlike housing prices, however, we
find minimal impacts on rental prices.

Second, we found that RCRA cleanups were unlikely to cause residents to re-sort. Two ap-
proaches were used- we found no evidence of neighborhood change using a reduced-form model,

and we found no evidence of a differential tendency to sort by income and limited evidence of
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sorting by race using a structural sorting model. Evidence of race-based sorting is predominantly
from the group of homeowners. Given that we find limited evidence of income-based sorting,
sorting by race may possibly be driven by differential gains in homeownership between racial
groups (Derenoncourt et al., 2024; Avenancio-Leén and Howard, 2019) or due to differential mar-
ket frictions faced by minority households (Christensen and Timmins, 2018; Christensen et al.,
2020). Combined with the absence of neighborhood change from the reduced-form models, the
magnitude of the race-based sorting we find is unlikely to drive neighborhood turnover.

Taken together, our findings imply that the benefits of cleanup accrued to residents who al-
ready lived near the sites, and helped the poorer segment of the housing market more than the
richer segment. Our findings are inconsistent with a gentrification story in which more well-off
citizens move closer to the sites after cleanup, changing the composition of the population of the
tracts on which the sites are located. One possible explanation for the finding of no sorting along
these socio-demographic dimensions is that the RCRA cleanups were not a large enough shock,
relative to moving costs, to induce increased moving (Palmquist, 1992a). This is corroborated by
the finding of no effect on the percent of households who moved in the last 5 years in our reduced-
form investigation of neighborhood change.

The limited evidence on sorting is a hopeful one in light of recent work. Hausman and Stolper
(2020) show that when there is partial information in the housing market, people undervalue a
clean environment, and households sort according to their willingness to pay for a clean environ-
ment on this partial information, and deadweight loss due to pollution is higher for low-income
households. If people do not sort after RCRA cleanups, then these cleanups theoretically could
mitigate any pre-existing exposure disparities between the rich and poor that stem from the chan-
nels that Hausman and Stolper (2020) pinpoint (partial information and under-valuation of a clean
environment). Bakkensen and Ma (2020) present the case where well-meaning policies can cause
significant sorting that exacerbates pre-existing disparities in exposure to an environmental bad
between advantaged and disadvantaged groups. Our finding that there is no evidence of sorting
shows that this need not always be the case.

The fact that we find limited sorting also aids in interpretation of our estimates. Our find-
ings suggest that perhaps the shock to housing prices was geographically localized enough to not
substantively change the hedonic price schedule, because nearby comparable houses were com-
pletely unaffected (Palmquist, 1992b). In this special case, equilibrium prices move with marginal
willingness to pay and marginal willingness to pay is reflected by capitalization effects (Kuminoff
and Pope, 2014). The fact that we find little evidence of effects on the tracts in distance bins other
than the 0 km bin (on which the site is located) suggests that impacts were indeed geographically
localized. On the other hand, as mentioned by Kuminoft and Pope (2014), the plausibility of the as-
sumption that the shock to the housing market did not shift or alter the hedonic gradient depends
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on the magnitude of the change in the distribution of the public good in general.’!

7 Conclusion

This paper evaluates the housing market impacts of cleanups conducted under the Resource
Conservation and Recovery Act (RCRA), an expansive hazardous waste cleanup program. We
find that the positive environmental impacts from RCRA cleanups are reflected in the housing
market. The price increases that we find are driven by cleanups concentrated among the lowest
price deciles of the census tract in which the RCRA facility is located: prices increase by between
7.6-9.8% for the 15 decile of the price distribution, and we detect no evidence of a price increase for
the 9*" decile. This indicates cleanups raise housing values for those occupying the lowest-value
homes, that tend to be poorer and minority (Derenoncourt et al., 2024), which are likely to face
other disadvantageous circumstances in life and are typically more vulnerable to the deleterious
effects of pollution (see, e.g. Apelberg, Buckley and White, 2005).

Furthermore, we find that the benefits of cleanups accrued to those living closest to the sites
and, notably, do not find that cleanups induced re-sorting. This is consistent with the localized price
impacts that we find, but somewhat surprising given how expansive RCRA cleanups were and the
recent literature that has highlighted the potential for policies to worsen underlying inequities
(Hausman and Stolper, 2020; Bakkensen and Ma, 2020). Our results point to a hopeful conclusion-
cleanup can help those living nearest to nuisances.

A fruitful direction for future work would be to further explore the attributes of both environ-
mental policies and housing market conditions that explain such neighborhood dynamics. Further
research could also examine the relationships between policy scope, information provision, and
compositional changes in housing markets to determine the distribution of benefits across various

groups from different types of policies.

SIKuminoff and Pope (2014) also point out that macro boom and bust cycles could alter the hedonic gradient. We
must assume that, for example, shocks to wealth do not impact implicit valuation of water quality or other environ-
mental improvements due to RCRA cleanup.
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8 Tables

Table 1: Attributes by Whether There is a RCRA Site within 10 km

> 1 Site within 10 km

No Sites within 10 km

Attribute Mean St. Dev. Mean St. Dev. A Mean t-statistic
Housing Price, 10th Percentile 156.703 104.196 124.918 103.179 31.784 41.202
Housing Price, 20th Percentile 187.289 120.381 160.670 120.141 26.619 29.657
Housing Price, 30th Percentile 210.204 133.129 187.951 133.632 22.252 22.395
Housing Price, 40th Percentile 231.064 145.266 213.141 146.633 17.923 16.544
Housing Price, 50th Percentile 252.183 157.901 239.142 160.408 13.040 11.088
Housing Price, 60th Percentile 275.823 172.644 268.516 176.463 7.307 5.698
Housing Price, 70th Percentile 303.854 190.521 304.761 196.742 -0.907 -0.641
Housing Price, 80th Percentile 341.640 215.175 355.619 226.283 -13.979 -8.736
Housing Price, 90th Percentile 407.385 259.766 448.148 283.325 -40.764 -20.955
Rent, 10th Percentile 647.190 303.611 566.929 334.942 80.261 34.394
Rent, 20th Percentile 783.625 316.479 695.242 357.324 88.383 35.472
Rent, 30th Percentile 880.810 329.767 791.056 378.205 89.754 34.143
Rent, 40th Percentile 963.778 345.153 873.877 400.697 89.901 32.427
Rent, 50th Percentile 1,043.379 364.277 953.811 425.830 89.568 30.505
Rent, 60th Percentile 1,127.480 388.424 1,037.931 455.456 89.549 28.604
Rent, 70th Percentile 1,223.033 419.299 1,133.867 490.917 89.166 26.514
Rent, 80th Percentile 1,346.096 463.863 1,256.968 537.923 89.128 24.260
Rent, 90th Percentile 1,546.165 542.104 1,455.534 615.360 90.631 21.696
% Below Poverty 13.332 12.609 13.720 10.351 -0.388 -4.624
% on Public Assistance 5.960 7.430 3.892 4.526 2.068 56.901
% White 68.594 31.499 75.293 25.479 -6.699 -30.934
% Black 14.564 24.627 8.256 16.194 6.308 40.249
% Hispanic 11.546 19.222 11.144 18.443 0.402 2.740
Population Density 2,773.502 5,775.713 767.319 2,039.192 2,006.183 60.149
Avg HH Income 98.020 50.391 93.019 43.321 5.000 13.993
% College Educated 23.494 17.521 22.798 15.660 0.697 5.571
% Owner Occupied 62.336 24.968 71.538 18.664 -9.202 -55.022
% Female Head of Household 19.584 14.026 15.861 10.171 3.723 42.275
% Unemployment 5.605 5.018 6.081 4.707 -0.476 -16.790
% Vacant 7.788 7.417 13.627 12.963 -5.839 -69.102
% Moved in Last 5 Years 45.975 18.955 27.815 23.624 18.159 196.822
% Mobile Home 5.106 36.366 11.574 40.697 -6.469 -33.038
% Built in Last 5 Years 9.232 14.224 7.439 12.893 1.793 25.383
% Under 18 24.883 7.336 24.126 6.928 0.757 14.899
% 4+ Bedrooms 16.993 14.280 19.112 13.898 -2.118 -19.966

Notes: This table provides summary statistics on characteristics at the Census tract-level (interpolated to 2010 bound-
aries) for the years 1990 (Decennial), 2000, (Decennial), 2010 (2008-2012 ACS), and 2020 (2018-2022 ACS). It compares the
average and standard deviation for characteristics of tracts whose boundaries are < 10 km from a RCRA site (columns
1 and 2, the sample restriction we use) to tracts that are not within 10 km of any RCRA sites (columns 3 and 4). It also
provides the t-statistic associated with whether the mean difference between the samples are different from 0 (columns
5 and 6). Housing prices and average household (HH) income are in thousands of dollars, rental prices are in dollars,
population density is number of people per km?, and the remaining variables are in percentages.
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Table 2: Price Impacts of Cleanup by Decile, Near-Far Comparison

Dep. var: Pricekth

10th zol‘h 30[‘]1 40th SOth 60th 70[}1 Soth 90!}1

0 km x Post 11504  10.085**  9.403**  8.405**  8.539** 8918  11477** 13447  13.622
(4.411) (4.142)  (3.826)  (3.815)  (4.103)  (4.488)  (5.174)  (6.766)  (9.936)

0km x InProg  10.099"** 8484  7.070"*  5.894**  5483*  6.506°  7.878"  10.711**  13.341
(3.801) (3371)  (2.953)  (2.962)  (3.186)  (3.608)  (4.192)  (5.306)  (8.278)

% Impact:
0 km x Post 0.076™** 0.053**  0.043**  0.035"*  0.032""  0.030""  0.034** 0.035"" 0.029
(0.029) (0.022) (0.018)  (0.016)  (0.015)  (0.015) (0.015) (0.018) (0.021)
0 km X InProg  0.066™** 0.045**  0.032**  0.024™  0.020" 0.022* 0.024* 0.028** 0.028
(0.025) (0.018) (0.014)  (0.012)  (0.012)  (0.012) (0.013) (0.014) (0.018)
Avg Price 151.876 189.696  217.879  243.520  269.621 298.921  334.088  382.495  468.803
Adj R? 0.823 0.876 0.897 0.907 0.911 0.910 0.908 0.900 0.874
Clusters 12,770 12,770 12,770 12,770 12,770 12,770 12,770 12,770 12,770
Obs 48,585 48,585 48,585 48,585 48,585 48,585 48,585 48,585 48,585

Notes: This table presents the price impacts of cleanup by housing price decile from equation 1, using the 0 km bin as
the Near;; distance indicator. Post is the post-cleanup indicator, and InProg is an indicator for if cleanup is in progress
but not complete. The top panel reports the point estimates (in 2023 thousands of dollars), the middle panel reports the
price impacts as a percentage of the dependent variable mean. We use all tracts within 10 km of one RCRA facility in
this regression. All regressions include fixed effects for tract, bin by year, site by year, and state by year. The excluded
category is tracts (0, 10] km away from a facility. All standard errors are clustered on census tract.
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Table 3: Semi-elasticity Price Impacts by Decile with Poisson Regression

Dep. var: Pricekth
10th 20th 30th 40th 50th 60th 70th goth 9oth
0 km x Post 0.098"* 0.061** 0.045™* 0.031* 0.026 0.023 0.029 0.032 0.025
(0.040) (0.028) 0.021)  (0.019)  (0.018)  (0.018)  (0.019)  (0.021) (0.024)
0 km X In Prog 0.089** 0.048"* 0.029 0.017 0.012 0.013 0.015 0.022 0.020
(0.036)  (0.024)  (0.018)  (0.016)  (0.015)  (0.016)  (0.016)  (0.018)  (0.021)
0 km x Post 14.905**  11.528**  9.773** 7.646* 7.020 7.011 9.636 12.413 11.753
(6.101)  (5.261)  (4.666)  (4.569)  (4.911) (5.358)  (6.199)  (8.142)  (11.389)
0 km X In Prog 13.566"* 9.152™* 6.264 4.096 3.110 3.914 4918 8.245 9.607
(5.510)  (4.546)  (3.935)  (3.863)  (4.166) (4.742)  (5.510)  (6.878)  (9.760)
Avg Price 151.876 189.696  217.879  243.520  269.621  298.921 334.088 382.495  468.803
Pseudo R? 0.826 0.860 0.874 0.883 0.839 0.893 0.896 0.898 0.894
Clusters 12,770 12,770 12,770 12,770 12,770 12,770 12,770 12,770 12,770
Obs 48,585 48,585 48,585 48,585 48,585 48,585 48,585 48,585 48,585

Notes: This table presents the price impacts of cleanup by housing price decile using the high-dimensional fixed effects
Poisson estimator from Correia, Guimaraes and Zylkin (2020). The top panel presents the Poisson parameters, where
each is interpreted as a semi-elasticity. The middle panel presents the marginal effects in levels (thousands of 2023
dollars), with standard errors calculated using the Delta method. As before, 0km is an indicator for whether a tract
contains a RCRA site, Post is the post-cleanup indicator, and InProg is an indicator for if cleanup is in progress but not
complete. We use all tracts within 10 km of one RCRA facility in this regression. All regressions include fixed effects
for tract, bin by year, site by year, and state by year. The excluded category is tracts (0, 10] km away from a facility. All
standard errors are clustered on census tract.
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Table 4: Price Impacts of Cleanup by Decile, Near-Far Comparison, Allowing Multiple Sites

Dep. var: Pricekth
loth Zoth 30th 40th Sol‘h 60[‘]’! 70[’}1 80”1 goth
0 km X Post 9.327** 7.935%* 7.352%* 7.138** 7.707** 7.301% 8.833% 9.273 8.774
(4.021)  (3.767)  (3.497)  (3.468)  (3.714) (4125  (4758)  (6.251)  (9.062)
0 km X In Prog 8.069** 6.594"* 5.624"* 4.674 4.021 4.611 6.011 7.611 9.475
(3539)  (3.093)  (2.828)  (2.892)  (3.091)  (3.436)  (3.947)  (4.982)  (7.628)
% Impact:
0 km X Post 0.056™* 0.039** 0.031** 0.027** 0.027** 0.023* 0.025* 0.023 0.018
(0.024)  (0.018)  (0.015)  (0.013)  (0.013)  (0.013)  (0.014)  (0.016)  (0.019)
0 km X In Prog 0.049** 0.032** 0.024** 0.018 0.014 0.015 0.017 0.019 0.020
0.021)  (0.015)  (0.012)  (0.011)  (0.011)  (0.011)  (0.011)  (0.012)  (0.016)
Avg Price 166.204  205.525 234.621 260.932 287.493 316.864 351900  399.412 482.753
Adj R? 0.813 0.871 0.893 0.904 0.910 0.911 0.910 0.905 0.884
Clusters 43,234 43,234 43,234 43,234 43,234 43,234 43,234 43,234 43,234
Obs 164,566 164,566 164,566 164,566 164,566 164,566 164,566 164,566 164,566

Notes: This table presents the price impacts of cleanup by housing price decile using the same specification as that in
Table 2 but a different sample that includes tracts with at least one RCRA site within 10 km. Treatment tracts are those
containing at least one RCRA site with all sites within 10 km contained in the tract, and control tracts are those with
no contained sites but at least one site within 10 km. The variables Post and InProg are as previously defined, using the
timing of the nearest site to a tract. All regressions include fixed effects for tract, bin by year, nearest-site by year, and
state by year. The excluded category is tracts with at least one site (0, 10] km away from a facility. All standard errors
are clustered on census tract.
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Table 5: Price Impacts of Cleanup by Decile, Near-Far Comparison with Regression Adjustment

Dep. var: Pricekth
10tk 20th 30th 40th 50th 60t 70th 8oth 90th

0 km x Post 13.115"*%  12.207"** 12.373™* 9.351"" 8.562" 9.214* 11.684™* 9.774 2.364
(4.766)  (4.376)  (4.202) (4.219) (4.494) (4.909) (5.631) (7.561) (11.372)
X Ln(Tract Area (km?))  0.499 -0.315 -0.631  -2.609 -3.694 -4.079 -3.748 -6.140  -9.704
(3.181)  (2.930)  (2.398) (2.364) (2.504) (2.767) (3.203) (4.699)  (6.993)
0 km X In Prog 11.029"*  9.905**  9.213"** 7.772"" 7.279** 8.174"* 8.860"" 10.516"  13.149
(3.657)  (3.331)  (3.057) (3.039) (3.252) (3.603) (4.215) (5.701)  (9.559)
x Ln(Tract Area (kmz)) -0.250 -0.143 1.101 0.817 0.556  -0.322  -0.533 0.596 1.275
(3.406)  (3.466)  (3.105) (3.231) (3.464) (3.716) (3.976) (4.582) (6.222)
Avg Price 151.876  189.696  217.879 243.520 269.621 298.921 334.088 382.495 468.803
Adj R? 0.808 0.868 0.890 0.902 0.908 0.909 0.907 0.899 0.873
Clusters 12,770 12,770 12,770 12,770 12,770 12,770 12,770 12,770 12,770
Obs 48,585 48,585 48,585 48,585 48,585 48,585 48,585 48,585 48,585

Notes: This table presents the regression adjustment version of our main specification to address the fact that tracts in
the 0 km bin have different areas than those (0, 10] km from a RCRA site. The first and third row are the un-interacted
0km X Post and 0km X InProg, whereas the 2nd and 4th rows are each interacted with the log of tract area centered
about the treatment group mean. We use all tracts within 10 km of one RCRA facility in this regression. All regressions
include fixed effects for tract, bin by year, site by year, and state by year. The excluded category is tracts (0,10] km
away from a facility. All standard errors are clustered on census tract.
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Table 6: Impacts on Sociodemographic and Housing Variables, Near-Far Comparison

(a) Income and Education-related Variables

Dep. var:
Avg HH Income % Below Poverty % College Educated % on Public Assistance % Unemployment
0 km X Post 0.092 -0.421 0.893* 0.287 0.531
(1.318) (0.498) (0.479) (0.284) (0.360)
0 km X In Prog -0.874 -0.467 0.614* 0.152 0.190
(1.040) (0.440) (0.358) (0.221) (0.317)
Avg Outcome 101.218 12.701 26.467 3.660 6.021
Adj R? 0.871 0.787 0.896 0.586 0.512
Clusters 13,137 13,140 13,150 13,137 13,146
Obs 52,387 52,436 52,513 52,422 52,478

(b) Impacts on Demographic Variables, Near-Far Comparison

Dep. var:
% Black % Female Head of Household % Hispanic Population Density % White % Under 18
0 km x Post -0.046 0.262 -0.101 -2.097 -0.249 -0.285
(0.363) (0.565) (0.376) (10.974) (0.515) (0.308)
0 km X In Prog 0.277 0.453 -0.491 8.589 0.054 -0.143
(0.259) (0.423) (0.309) (8.314) (0.417) (0.256)
Avg Outcome 11.088 17.728 12.781 1,506.599 69.678 24.026
Adj R? 0.928 0.757 0.934 0.971 0.939 0.733
Clusters 13,147 13,129 13,147 13,155 13,147 13,147
Obs 52,482 52,370 52,482 52,607 52,482 52,482

(c) Impacts on Housing-Related Variables, Near-Far Comparison
Dep. var:
% Built % Built

% 4+ Bedrooms in Last 5 Years % Mobile Home in Last 5 Years % Owner Occupied % Vacant
0 km x Post -0.420 0.209 0.910 -0.017 0.336 0.285
(0.468) (0.576) (0.595) (0.613) (0.575) (0.478)
0 km X In Prog -0.238 0.195 1.418 -0.128 0.002 -0.060
(0.393) (0.502) (0.905) (0.553) (0.457) (0.358)
Avg Outcome 20.049 7.076 7.519 29.293 67.339 9.632
Adj R? 0.846 0.557 0.070 0.898 0.907 0.763
Clusters 13,138 13,138 13,137 13,137 13,130 13,134
Obs 52,431 52,431 52,422 52,422 52,382 52,400

Notes: This table tests the impacts of RCRA cleanups on 17 socioeconomic and housing variables, comparing changes
in outcomes for tracts containing a RCRA site (0km) over time. The regression model is the same as the main model
in Table 2 except with one of the 17 socioeconomic and housing variables as the dependent variable. We use all tracts
within 10 km of one RCRA facility in this regression. All regressions include fixed effects for tract, bin by year, site by
year, and state by year. The excluded category is tracts (0, 10] km away from a facility. All standard errors are clustered
on census tract. Avg. HH Income is in $1,000.
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Table 7: Mean Utility Decomposition (In Dollars)

By Race By Income
Variables All Owners All
Near X Post 1,346 443.0"** 469.2
(2,396) (113.1) (386.1)
Near x Post x Black -115.9 -302.1"**
(95.42) (67.11)
Near X Post X Hispanic -120.4 -295.4™**
(413.1) (76.73)
Near x Post x High Income 37.35
(23.83)
Near X In Progress -2,789 -1.361 441.7
(2,215) (91.85) (474.0)
Black -145.4*** -158.9***
(13.24) (12.18)
Hispanic -513.1 -89.89™*
(342.1) (16.21)
High Income -28.43
(23.29)
Observations 120,897 120,897 55,516

Notes: This table presents WTP estimates for each group and each time period (2000, 2010, 2020) from the second stage
of the sorting model, where mean utilities for each group and year are stacked and regressed on a full set of interactions
between group, Okm bin (or ‘near’), and post cleanup for the sample of tracts exposed to at most 1 facility within
10km. Groups are based on 1) race (non-Hispanic white, non-Hispanic Black, and Hispanic), 2) race for the sample
of homeowners, and 3) income (below versus above state median income). The base group for comparison is white
residents (by race) and low income (by income). All specifications include tract, distance bin-by-year, site-id-by-year,
and state-by-year fixed effects. All standard errors are clustered on census tract.
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https://www.census.gov/programs-surveys/acs/technical-documentation/user-notes/2021-11.html

A Appendix: Additional Tables and Figures
A.1 Appendix Tables
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Table A.1: Attributes by 1 RCRA Site vs. Multiple Sites, within 10 km

1 RCRA Site Multiple RCRA Sites
Attribute Mean St. Dev. Mean St. Dev. A Mean t-statistic
Housing Price, 10th Percentile 143.801 94.548 161.516 107.177 -17.715 -17.296
Housing Price, 20th Percentile 172.490 108.300 192.810 124.138 -20.320 -17.153
Housing Price, 30th Percentile 194.273 119.268 216.147 137.473 -21.873 -16.719
Housing Price, 40th Percentile 214.380 129.797 237.288 150.157 -22.908 -16.083
Housing Price, 50th Percentile 234.872 140.693 258.641 163.391 -23.768 -15.396
Housing Price, 60th Percentile 258.193 153.889 282.401 178.694 -24.208 -14.368
Housing Price, 70th Percentile 286.187 170.141 310.445 197.183 -24.258 -13.061
Housing Price, 80th Percentile 324.600 193.734 347.997 222.313 -23.397 -11.139
Housing Price, 90th Percentile 391.815 237.397 413.193 267.403 -21.379 -8.396
Rent, 10th Percentile 623.082 307.369 655.912 301.769 -32.830 -10.371
Rent, 20th Percentile 754.758 321.937 794.068 313.830 -39.310 -11.862
Rent, 30th Percentile 848.692 336.828 892.429 326.401 -43.737 -12.641
Rent, 40th Percentile 928.858 352.879 976.410 341.440 -47.552 -13.152
Rent, 50th Percentile 1,006.538 371.774 1,056.707 360.604 -50.169 -13.191
Rent, 60th Percentile 1,089.345 395.512 1,141.275 384.902 -51.930 -12.854
Rent, 70th Percentile 1,182.470 424.652 1,237.707 416.377 -55.237 -12.777
Rent, 80th Percentile 1,302.164 467.233 1,361.988 461.613 -59.824 -12.616
Rent, 90th Percentile 1,497.929 542.500 1,563.615 540.906 -65.686 -12.013
% Below Poverty 11.882 10.654 13.869 13.221 -1.987 -16.563
% on Public Assistance 4.844 5.298 6.374 8.039 -1.530 -27.225
% White 75.914 26.677 65.883 32.693 10.031 32.626
% Black 10.374 19.274 16.116 26.165 -5.741 -24.643
% Hispanic 9.318 16.874 12.370 19.959 -3.052 -15.787
Population Density 1,511.732 4,221.320 3,240.518 6,188.972 -1,728.785 -29.448
Avg HH Income 97.330 46.910 98.275 51.619 -0.945 -1.829
% College Educated 22.587 15.979 23.830 18.047 -1.243 -6.933
% Owner Occupied 68.145 22.178 60.185 25.593 7.960 31.623
% Female Head of Household 15.851 10.754 20.968 14.823 -5.117 -40.049
% Unemployment 4.810 3.926 5.899 5.336 -1.089 -27.595
% Vacant 8.909 8.871 7.373 6.752 1.536 18.309
% Moved in Last 5 Years 47.475 18.890 45.419 18.948 2.056 12.132
% Mobile Home 8.667 40.217 3.786 34.738 4.881 15.836
% Built in Last 5 Years 12.825 16.294 7.901 13.129 4.924 35.610
% Under 18 25.456 6.917 24.671 7.474 0.785 10.799
% 4+ Bedrooms 17.992 14.405 16.624 14.216 1.368 8.978
TSDF 0.804 0.397 0.802 0.399 0.002 0.392
Number of waste types 64.856 125.613 72.317 137.266 -7.460 -5.161
High NCAPS score 0.340 0.474 0.276 0.447 0.064 13.140
Medium NCAPS score 0.289 0.453 0.247 0.431 0.041 8.198
Low NCAPS score 0.220 0.414 0.303 0.459 -0.083 -17.185

Notes: This table provides summary statistics on characteristics at the Census tract-level (interpolated to 2010 bound-
aries) for the years 1990 (Decennial), 2000 (Decennial), 2010 (2008-2012 ACS), and 2020 (2018-2022 ACS). It compares
the average and standard deviation for characteristics of tracts whose boundaries are < 10 km from a single RCRA site
(columns 1 and 2, the sample restriction we use) to tracts within 10 km from multiple RCRA sites (columns 3 and 4).
It also provides the t-statistic associated with whether the mean difference between the samples are different from 0
(columns 5 and 6). Housing prices and average household (HH) income are in thousands of year dollars, rental prices are
in dollars, population density is number of people per km?, and the remaining variables are in percentages. Acronyms
are as follows: HH=household, TSDF=Transportation, Storage, and Disposal Facility, NCAPS=National Corrective Ac-
tion Prioritization System
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Table A.2: Attributes by Near vs. Far from 1 RCRA Site, within 10 km

0 km (0,10] km
Attribute Mean St. Dev. Mean St. Dev. A Mean t-statistic
Housing Price, 10th Percentile 94.071 63.751 146.323 95.157 -52.253 -19.665
Housing Price, 20th Percentile 117.413 72.010 175.284 109.084 -57.871 -19.161
Housing Price, 30th Percentile 135.119 78.544 197.274 120.197 -62.155 -18.848
Housing Price, 40th Percentile 151.320 84.934 217.579 130.860 -66.259 -18.621
Housing Price, 50th Percentile 167.997 92.126 238.265 141.881 -70.268 -18.275
Housing Price, 60th Percentile 187.360 103.161 261.786 155.166 -74.426 -17.448
Housing Price, 70th Percentile 210.741 114.355 290.014 171.611 -79.273 -16.899
Housing Price, 80th Percentile 243.011 130.824 328.739 195.485 -85.728 -16.107
Housing Price, 90th Percentile 301.612 166.062 396.390 239.552 -94.778 -14.219
Rent, 10th Percentile 462.683 226.518 631.086 308.682 -168.403 -18.157
Rent, 20th Percentile 585.736 240.222 763.192 323.175 -177.456 -17.852
Rent, 30th Percentile 673.294 249.293 857.445 338.238 -184.150 -17.860
Rent, 40th Percentile 746.693 260.748 937.948 354.415 -191.255 -17.726
Rent, 50th Percentile 814.480 275.029 1,016.121 373.377 -201.642 -17.780
Rent, 60th Percentile 884.566 289.852 1,099.563 397.304 -214.997 -18.012
Rent, 70th Percentile 963.934 310.867 1,193.375 426.625 -229.441 -17.855
Rent, 80th Percentile 1,066.988 344.025 1,313.900 469.471 -246.912 -17.430
Rent, 90th Percentile 1,230.191 405.349 1,511.289 545.020 -281.098 -16.944
% Below Poverty 14.328 9.735 11.750 10.685 2.578 6.410
% on Public Assistance 5.762 5.158 4.795 5.301 0.967 5.904
% White 81.304 21.455 75.626 26.898 5.679 6.176
% Black 9.256 16.572 10.434 19.406 -1.178 -1.650
% Hispanic 6.720 13.390 9.458 17.030 -2.738 -4.839
Population Density 263.328 479.974 1,578.643 4,321.378 -1,315.315 -25.876
Avg HH Income 77.875 27.527 98.374 47.504 -20.499 -16.748
% College Educated 15.439 10.727 22.971 16.123 -7.532 -16.556
% Owner Occupied 67.361 19.535 68.187 22.310 -0.826 -1.024
% Female Head of Household 15.139 9.106 15.889 10.834 -0.750 -1.956
% Unemployment 5.069 3.736 4.796 3.935 0.273 2.171
% Vacant 11.164 9.722 8.788 8.808 2.375 6.149
% Moved in Last 5 Years 45.736 17.976 47.568 18.934 -1.832 -2.834
% Mobile Home 13.297 13.172 8.419 41.154 4.878 8.252
% Built in Last 5 Years 10.308 10.342 12.960 16.542 -2.652 -7.229
% Under 18 26.094 5.759 25.422 6.972 0.673 2.923
% 4+ Bedrooms 14.816 8.900 18.162 14.622 -3.346 -8.950
TSDF 0.789 0.408 0.805 0.397 -0.016 -0.873
Number of waste types 65.644 140.262 64.814 124.769 0.830 0.137
High NCAPS score 0.399 0.490 0.337 0.473 0.062 3.082
Medium NCAPS score 0.296 0.457 0.288 0.453 0.008 0.416
Low NCAPS score 0.201 0.401 0.221 0.415 -0.020 -1.106

Notes: This table provides summary statistics on characteristics at the Census tract-level (interpolated to 2010 bound-
aries) for the years 1990 (Decennial), 2000 (Decennial), 2010 (2008-2012 ACS), and 2020 (2018-2022 ACS). It compares
the average and standard deviation for characteristics of tracts that contain a single (or is within 0km of a) RCRA site
(columns 1 and 2) to tracts that are (0, 10] km from a single RCRA site (columns 3 and 4). It also provides the t-statistic
associated with whether the mean difference between the samples are different from 0 (columns 5 and 6). Housing prices
and average household (HH) income are in thousands of year dollars, rental prices are in dollars, population density is
number of people per km?, and the remaining variables are in percentages. Acronyms are as follows: HH=household,
TSDF=Transportation, Storage, and Disposal Facility, NCAPS=National Corrective Action Prioritization System
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Table A.3: p-values from Tests that Percentile Impacts are Equal in Percentage Terms

lOth zoth 30th 40”1 50th 60th 70th Soth 90th
10th
20th 0.104
30th 0.090 0.295
40th 0.061 0.135 0.099
50th 0.060 0.131 0.124 0.424
60th 0.061 0.138 0.176 0.493 0.698
70th 0.103 0.273 0.457 0.986 0.736 0.419
80tk 0.158 0.401 0.631 0.964 0.786 0.642 0.928
90th 0.154 0.348 0.514 0.778 0.886 0.964 0.731 0.566

Notes: This table presents the p-values corresponding to the null hypothesis that each pair of housing price percentile
impacts from our main specification is statistically different from one another in percentage terms. We present p-
values from testing that percentage impacts are the same for each pair of housing price outcomes. These are estimated
via stacked regression.
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Table A.4: Robustness Check: House Characteristic Controls

Dep. var: Pricekth
10th 20th 30th 40th 50th 60th 70th 80t 90th

0 km X Post 11,932 10.616™  9.998***  9.039"*  9.245"*  9.710™  12.367""  14.460™* 14.817

(4.474) (4.145) (3.792) (3.739)  (3.994)  (4.347) (4.994) (6.610) (9.697)
0km X InProg  10.287"**  8.796™*  7.443*" 6315  5978"  7.059"  8.504™  11.503"  14.337"

(3.832) (3.368) (2.912) (2.887)  (3.089)  (3.491) (4.022) (5.138) (8.024)
Avg Price 151.873 189.693  217.877  243.518 269.620  298.920  334.087  382.495  468.804
Adj R? 0.827 0.881 0.902 0.912 0.916 0.916 0.913 0.905 0.879
Clusters 12,770 12,770 12,770 12,770 12,770 12,770 12,770 12,770 12,770
Obs 48,584 48,584 48,584 48,584 48,584 48,584 48,584 48,584 48,584

Notes: This table presents the results from re-estimating our main effects of interest on housing price from Table 2 but
adding house characteristic controls (% 1 bedrooms, % 2 bedrooms, ... % 4 bedrooms, %5+ bedrooms). All sample and
controls are the same as in Table 2.

Table A.5: Robustness Check: Neighborhood-level Controls

Dep. var: Pricekth
10th zoth 30[‘h 40th 50[‘h éoth 70["1 80th 90["1

0 km X Post 11.150™* 9.796™* 9.134** 8.097** 8.280** 8.681"* 11.233"*  13.303** 13.649

(4389)  (4.09)  (3765)  (3.746)  (4011) (4379  (5.080)  (6.731)  (9.977)
0km X In Prog ~ 9.913*** 8.331™* 6.883** 5.647* 5.258* 6.289* 7.644* 10.531** 13.251

(3.798)  (3350)  (2.929)  (2.944)  (3.164) (3.577)  (4164)  (5.299)  (8.324)
Avg Price 151.846 189.670  217.857  243.500  269.602  298.901 334.071 382.485 468.806
Adj R? 0.825 0.879 0.899 0.909 0.913 0.913 0.910 0.902 0.877
Clusters 12,768 12,768 12,768 12,768 12,768 12,768 12,768 12,768 12,768
Obs 48,569 48,569 48,569 48,569 48,569 48,569 48,569 48,569 48,569

Notes: This table presents the results from re-estimating our main effects of interest on housing price from Table 2 but
adding neighborhood controls (house count, pop density, % white, % black and % Hispanic). All sample and controls are

the same as in Table 2.
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Table A.6: Robustness Check: Land Use Controls

Dep. var: Pricek?/
1Oth zoth 30th 4Oth 50th 60th 70th SOth 90th

0 km X Post 11.150%*  9.796™  9.134™*  8.097**  8.280**  8.681**  11.233**  13.303"* 13.649

(4389)  (4.096) (3.765)  (3.746)  (4.011)  (4379)  (5.080)  (6.731)  (9.977)
0km X InProg  9.913***  8.331"*  6.883"" 5.647* 5.258* 6.289* 7.644* 10.531** 13.251

(3.798)  (3.350)  (2.929)  (2.944)  (3.164) (3.577)  (4.164)  (5.299)  (8.324)
Avg Price 151.846 189.670  217.857  243.500  269.602  298.901 334.071 382.485 468.806
Adj R? 0.825 0.879 0.899 0.909 0.913 0.913 0.910 0.902 0.877
Clusters 12,768 12,768 12,768 12,768 12,768 12,768 12,768 12,768 12,768
Obs 48,569 48,569 48,569 48,569 48,569 48,569 48,569 48,569 48,569

Notes: This table presents the results from re-estimating our main effects of interest on housing price from Table 2 but
adding land-use controls at the 1990 county level, each interacted with year, to the main specification. Information on
lot size is unavailable, but land use is available, however only at the county level for 1990, where it is tabulated in two
levels: “In housing units on properties of less than 1 acre” and “In housing units on properties of 1 acre or more” We
construct the variable on rural/urban land use from NHGIS and merged each into our final data set based on county.
We then convert each variable into a percent, by dividing by total people represented. See Appendix Section C.11 for
more details on variable construction. All sample and controls are the same as in Table 2.

Table A.7: Robustness Check: House Characteristic, Neighborhood-level, and Land Use Controls

Dep. var: Pricekth
10th 20”1 30th 40”1 Sol’h 60”1 70th 80”1 90”1

0 km X Post 10.262**  9.005**  8.385"* 7.328% 7.434% 7.848* 10.439™* 12.361% 11.866

(4344)  (4073) (3762)  (3.743)  (4.034)  (4423)  (5.097)  (6.686)  (9.846)
0 km X In Prog 9.594™* 7.991** 6.643** 5.434* 5.032* 5.962* 7.522% 10.517** 13.323

(3.729)  (3.243)  (2.844)  (2.852) (3.057) (3477)  (4.046)  (5.164)  (8.156)
Avg Price 151.575 189.358  217.526  243.150  269.236  298.520 333.670 382.060 468.348
Adj R? 0.829 0.883 0.902 0.912 0.915 0.915 0.911 0.903 0.877
Clusters 12,733 12,733 12,733 12,733 12,733 12,733 12,733 12,733 12,733
Obs 48,471 48,471 48,471 48,471 48,471 48,471 48,471 48,471 48,471

Notes: This table presents the results from re-estimating our main effects of interest on housing price from Table 2 but
adding the following controls to our primary specification: year by 1990 bedrooms, house count, population density,
racial, and rural/urban land use/acreage variables. See Appendix Section C.11 for more details on variable construction.

All sample and controls are the same as in Table 2.
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Table A.8: Robustness Check: Price Impacts of Cleanup by Decile, Near-Far Comparison, (5, 10]
km as Comparison Group

Dep. var: Pricekth
10th Zoth 30th 4Oth 50th 6Oth 70th 80th 90th
0 km x Post 17.676™**  14.287"** 13.470™* 11.631** 10.918"* 11.183"" 13.517** 16.290** 19.818"
(5.267)  (5.090)  (4.708)  (4.712) (5.069) (5.487) (6.287) (7.864) (11.455)
0 km X In Prog 10.601**  8.390** 6.826* 5.217 4.749 6.257 7.441 12,505 20.714**
(4331)  (4.129)  (3.638) (3.645) (3.863) (4.237) (4.896) (6.162)  (9.684)
% Impact:
0 km X Post 0.110™*  0.072***  0.059***  0.046™  0.039™  0.036™*  0.039** 0.041"* 0.040*
(0.033)  (0.025)  (0.021)  (0.018) (0.018) (0.018) (0.018)  (0.020)  (0.023)
0 km X In Prog 0.066™* 0.042** 0.030* 0.020 0.017 0.020 0.021 0.031"*  0.042**
(0.027)  (0.021)  (0.016)  (0.014) (0.014) (0.014) (0.014) (0.015)  (0.020)
Avg Price 160.490  199.722  228.930  255.413 282.537 312.995 349.569 399.935 489.504
Adj R? 0.812 0.870 0.892 0.903 0.907 0.907 0.905 0.897 0.872
Clusters 7,655 7,655 7,655 7,655 7,655 7,655 7,655 7,655 7,655
Obs 29,092 29,092 29,092 29,092 29,092 29,092 29,092 29,092 29,092

Notes: This table re-estimates the price impacts from Table 2, except compares tracts 0 km away from a RCRA site to
those (5, 10] km away from the site. The purpose of this exercise is to address SUTVA concerns. We use all tracts within
10 km of one RCRA facility in this regression. All regressions include fixed effects for tract, bin by year, site by year,
and state by year. The excluded category is tracts (5, 10] km away from a facility. All standard errors are clustered on
census tract.

Table A.9: Rent Impacts

Dep. var: Rentkth

10”1 zoth 30th 40[h 50[}1 60”1 70”’! Soth 90”’!
0 km X Post 2.630 4.748 6.930 5.075 -8.344 -14.918 -4.506 0.990 8.164
(15.488) (14.620) (14.304) (14.218) (14.866) (16.536) (20.248) (24.470)  (31.977)
0 km x In Prog -3.659  -6.203 -5.896 -9.938  -12.972 -15.561 -4.219 -4.588 -0.432
(13.325) (12.505) (12.230) (12.389) (12.782) (14.620) (16.123) (18.732)  (24.797)
Avg Rent 650.526 789.466 890.090 976.961 1,061.540 1,151.139 1,252.790 1,384.002 1,594.734
Adj R? 0.715 0.769 0.796 0.808 0.819 0.825 0.824 0.814 0.780
Clusters 12,458 12,458 12,458 12,458 12,458 12,458 12,458 12,458 12,458
Obs 44,7790 44,790 44,790 44,790 44,790 44,790 44,790 44,790 44,790

Notes: This table re-estimates the price impacts from Table 2 except uses deciles of the rental price as the dependent
variable, where we apply our decile calculation procedure to rental variables instead of home prices. Whereas housing
prices are in $1,000 units throughout, rent is in dollars. We use all tracts within 10 km of one RCRA facility in this
regression. All regressions include fixed effects for tract, bin by year, site by year, and state by year. The excluded
category is tracts (5, 10] km away from a facility. All standard errors are clustered on census tract.
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A.2 Appendix Figures
Figure A.1
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Notes: This figure shows histograms of prices from each percentile of prices from the 10" to the 90" in order to gauge
the skewness of prices across percentiles. The sample includes all tracts in the NHGIS shapefile.
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Figure A.2: Spatial Visualization of Tracts Near CAP Sites

(a) All Possible Tracts within 10 km of a Site

TS
= ‘ | Containg one site (Okm bin)
1 site within 10km ({0,10] bins)

(c) Tracts with Multiple Sites within 10 km (generalized sample)

ké Contains at least one site
Muitiple sites within 10km

Notes: Panel (a) shows tracts restricting to within 1 km of a RCRA cleanup. Panel (b) is our main sample of tracts
restricting to a single site within 10 km. Panel (c) is a generalized sample that restricts to tracts with at least one site
with all sites within 10 km contained in the tract and control tracts with no contained sites but at least one site within 10
km. Note that Alaska and Hawaii are not pictured, but do contain sites present in our dataset. Tracts are only included
if they are in the NHGIS 2010 tract-level shapefile, which removes entirely water-based tracts.
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Figure A.3: Main Results with Alternative Clustering Levels
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Notes: This figure plots the DD coeflicients by decile of housing price impact from varying the clustering levels in our
main results (Table 2). Each effect depicted is a coefficient on the interaction N earfl - Postj; from (1), where N earlfi is
the indicator for the 0 km bin. All specifications include fixed effects for tract, bin by year, site by year, and state by
year. The sample is the set of tracts containing exactly one RCRA site within 10km in 1990, 2000, 2010 (ACS 2008-2012),
and 2020 (ACS 2018-2022). Standard errors are clustered at the site level (Panel a), the county level (Panel b) and the

site by year level (Panel c). Whiskers marked with horizontal lines and vertical protruding segments indicate 95% and
99% Cls respectively.
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Figure A.4: 10"-90!" Percentiles of Housing Price Over Time
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Notes: This figure re-estimates the price impacts at each percentile of the price distribution (as denoted in the subcaption)
(similar to Figure 5 in the main text). It shows the coefficient representing the difference in the near (0 km) and far ((0, 10]
km) bins over time from the event study specification in equation 13. We use the same fixed effects and sample as in the
main regression. The coefficient for the two years just prior to the cleanup (at position -2) is normalized to 0 by excluding
the dummy on Nearx Event time=-2 from the regression. Data from the during-cleanup phase is represented by “In
Prog,” and “0” represents the two-year immediately following cleanup completion. Whiskers marked with horizontal
lines and vertical protruding segments indicate 95% and 99% Cls respectively, clustering at the tract level. Prices are
denominated in thousands of dollars.
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Figure A.5: Income and Education-related Variables Over Time
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Notes: This figure shows the coefficient representing the difference in the near (0 km) and far ((0, 10] km) bins over
event time for each outcome indicated in the sub-caption. We use the same fixed effects as in the main regression. The
coefficient for the two years just prior to the cleanup (at position -2) is normalized to 0 by excluding the dummy on
Nearx Event time=-2 from the regression. Data from the during-cleanup phase is represented by “In Prog,” and “0”
represents the two-year immediately following cleanup completion.
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Figure A.6: Demographic Variables Over Time
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Notes: This figure shows the coefficient representing the difference in the near (0 km) and far ((0, 10] km) bins over
event time for each outcome indicated in the sub-caption. We use the same fixed effects as in the main regression. The
coefficient for the two years just prior to the cleanup (at position -2) is normalized to 0 by excluding the dummy on
Nearx Event time=-2 from the regression. Data from the during-cleanup phase is represented by “In Prog,” and “0”
represents the two-year immediately following cleanup completion.
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Figure A.7: Housing-related Variables Over Time
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Notes: This figure shows the coefficient representing the difference in the near (0 km) and far ((0, 10] km) bins over
event time for each outcome indicated in the sub-caption. We use the same fixed effects as in the main regression. The
coefficient for the two years just prior to the cleanup (at position -2) is normalized to 0 by excluding the dummy on
Nearx Event time=-2 from the regression. Data from the during-cleanup phase is represented by “In Prog,” and “0”
represents the two-year immediately following cleanup completion.
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Figure A.8: 10t"-90'" Percentiles of Rental Price Over Event Time
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Notes: This figure re-estimates the rental price impacts at each percentile of the price distribution (as denoted in the
subcaption). It shows the coefficient representing the difference in the near (0 km) and far ((0, 10] km) bins over time
from the event study specification in equation 13. We use the same fixed effects and sample as in the main regression.
The coefficient for the two years just prior to the cleanup (at position -2) is normalized to 0 by excluding the dummy
on Nearx Event time=-2 from the regression. Data from the during-cleanup phase is represented by “In Prog,” and “0”
represents the two-year immediately following cleanup completion. Whiskers marked with horizontal lines and vertical
protruding segments indicate 95% and 99% Cls respectively, clustering at the tract level. Whereas housing prices are in
$1,000 units throughout, rent is in dollars.
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Figure A.9: Sites Represented Over Event Time
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Notes: This figure shows the number of RCRA sites represented in each event time, where event times are defined as
the difference in years between the survey year and the cleanup period, in two-year intervals. The blue line depicts the
count of sites for the entire dataset, whereas the red line depicts the same count, only for sites that appear in our main
regression.
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B Supplementary Appendix on Individual Transaction Data

We obtained Zillow Ztrax data from Ohio and Pennsylvania for comparison purposes. This data
contains individual housing transactions spanning the years 1994-2019,! collected from publicly

available sources such as county offices.

- Section B.1 evaluates the extent of bias between survey-based and revealed preferences

housing prices

- Section B.2 compares exposure to RCRA based on tract-based distance versus property-based

distance

- Section B.3 reproduces our main results using Census data with OH-PA tracts only (the
Zillow ZTRAX sample)

- Section B.4 estimates our main models with transactions level data

- Section B.5 provides a description of the Zillow dataset that we use (used in Harleman
(2024)).

IThere are only a negligible number of observations from before 1994 (about 0.04%).
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B.1 Survey Based House Values vs. Actual Sales Prices

In this appendix section, we investigate the extent to which people over-estimate the value of
their house more at different portions of the price distribution. We first compare our Census data
to Zillow data for PA and OH. Figure B.1 shows the average deciles of housing price for Zillow
and the Census at the tract level. Like previous work, we find that survey-based responses from
the Census are systematically higher than Zillow estimates. However, the figure also shows that
the degree of potential overvaluation does not systematically vary by price percentile (i.e., it is
fairly parallel with the 45 degree line). In addition, we plot within-percentile comparisons of price
in Figure B.2. Each subfigure depicts a binned scatterplot of house values comparing the Census
percentiles to tract-level deciles from Zillow. We find a similar story in terms of the magnitude of

the bias across the range of home values in each quantile.

Figure B.1: Average Price Percentiles from Zillow vs. Census Data
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Notes: This figure plots the average deciles for tract-level Zillow and Census prices.
The pink line depicts the line of best fit from the nine points, and the pink text
depicts the intercept and slope of said line. A slope of 1 would indicate that the
degree of overvaluation is constant across price percentiles.
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Figure B.2: Census vs. Zillow Price By Decile
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Notes: This figure compares Zillow to Census tract-level deciles of price, using a binned scatter plot with 20 bins. The 45
degree line is indicated, as well as the correlation coefficient between the variables on the axes. In the sample of Zillow
houses used to construct tract-level deciles, we did not use tracts where there were less than 9 observations.

Lastly, we proceed with another point of comparison using Redfin’s “All Residential Sales”
data, which is available starting in 2012. Figure B.3 shows state-level median prices from Zillow
Ztrax compared to Redfin for the states of PA and OH. We see that Redfin data has a much higher
median than Zillow Ztrax data for both states. We overlay the median from our Census tract-level
dataset. Our Census data is closer to Redfin’s median in both cases. The right-hand panel presents
the transaction volume for Zillow vs. Redfin. Zillow transaction volume is close to Redfin for
Ohio, but not for Pennsylvania. Our Zillow data ends in the first quarter of 2020, leading to a drop
for that year. Other than 2020, the graph shows that Zillow’s transaction volume is higher than
Redfin’s for each year, and closest in 2019. This reflects the possibility that some Zillow records
are re-recordings, mortgages, and other non-sale-related documents in years prior to 2019, even

though we have taken steps to clean the data according to best practices.
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Figure B.3: Comparing OH and PA State-Level Statistics
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Notes: This figure compares prices and volume of transactions for OH and PA across three data sources: Zillow ZTRAX,
Redfin, and Census. Panel (a) presents state level median price computed from Ztrax data, state-level median price from
Redfin transactions, and the median of our 50th percentile price (where median is taken across tracts). Panel (b) shows
transaction volumes computed by Zillow Ztrax versus that reported by Redfin.
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B.2 Understanding Census Tract-based Treatment and Comparison Groups

We first use the transaction data to understand our treatment effects in the context of actual
distance from a house to a RCRA site. Because we employ Census tract-level data in this paper,
we define distance to a RCRA site as the minimum distance from the Census tract to the site. This
means that we may include in our treatment group homes relatively far from a site but still on the
same tract. This is a form of measurement error that could cause attenuation of our estimates.

To investigate the extent of this issue, we provide information on actual distance to site in
Figure B.4. In panel B.4a, we show summary statistics by bin, where the bins are defined as the
minimum distance from tract to site. The median, 5th, and 95th percentiles are all increasing in
census distance bin. Panel B.4b of the same figure shows the kernel densities of actual distance to
site for both the treatment (same tract as RCRA site) and the comparison (Census tract (0-10] km
away) groups. The distributions demonstrate a small amount of overlap- for the most part, houses
in our census-tract based treatment group are near the sites, and those in our comparison group
are far from RCRA sites. In summary, actual distance to site is well-proxied by Census tract to site,
at least relatively speaking.

Individual transaction data also allows us to examine the price distribution. In Figure B.5, we
show the kernel density plots of price for both the treatment and comparison groups, measured

prior to cleanup. The distributions are similar.
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Figure B.4: Actual Distance to Site vs. Census Tract Distance
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Notes: This figure depicts summary statistics and a kernel density of actual distances to site for houses in Ohio and
Pennsylvania from the Zillow Ztrax database, for the treatment and comparison groups in our main analysis (which
are defined by distance from Census tract to site).
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Figure B.5: Price Kernel Density, Census Tract-based Treatment and Comparison Groups

.003
.002

>

= 0 km

C

g (0,10] km

.001 4
0 -
T T
2000 3000

1000

Price

Notes: This figure depicts a kernel density of pre-cleanup transaction prices for houses in Ohio and Pennsylvania from
the Zillow Ztrax database, separately for the treatment and comparison groups defined in our main analysis. Note that
the figure only plots prices less than 3 million dollars (3000 in thousand dollar units) for readability. These discarded

prices account for less than 1% of observations. Prices are adjusted to 2023 dollars.
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B.3 Results Using Census Data With OH-PA Subset of Tracts

Here, we re-estimate our main specification using the sample of tracts in OH and PA. Price
effects generally follow our main sample results in sign, with larger magnitudes, but are less precise
(likely due to the restricted sample size).

Table B.1: Main Spec, OH-PA Sample

Dep. var: Pricek?/
loth zoth 30th 40th SOth 60th 7Oth 80th 90th

0 km X Post 22.940%  12.968* 8.392 9.050 10.409 13.796 19.231 16.378 21.231

(13615)  (6.871)  (5.856) (5.931)  (6.897)  (9.904) (12.477) (15.942) (19.489)
0 km X In Prog 11.037 3.424 3.362 6.997* 7.803* 8.814 12.155*  17.896** 16.176

(10.638)  (4534)  (3.426) (3.697)  (4.425) (5.800)  (6.698)  (8.225)  (13.073)
Avg Price 95.966 123.455 143.634 162.031 181.147 202.627  228.495 264.652 328.496
Adj R? 0.827 0.896 0.926 0.931 0.929 0.922 0.911 0.889 0.861
Clusters 721 721 721 721 721 721 721 721 721
Obs 2,774 2,774 2,774 2,774 2,774 2,774 2,774 2,774 2,774

Notes: This table presents estimates from our main specification where the sample consists only of tracts in Ohio and
Pennsylvania.
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B.4 OQuantile Treatment Effects Using Individual Transaction Data

In this sub-section, we use Zillow data to show that our main results are robust to use of

individual transaction-level data.

B.4.1 OQuantile Treatment Effect Approach

We employ a recentered influence function approach (Firpo, 2007; Firpo, Fortin and Lemieux,
2009; Havnes and Mogstad, 2015; Dube, 2019) to estimate quantile treatment effects of cleanup on
housing prices using individual housing transaction data.

The recentered influence function, or RIF, is a transformation that represents a distributional

statistic.? For the 7*" quantile g, the RIF is:

- 1{p < q.})
f(qr)

In the above, p is the outcome variable and f(q;) is the population distribution function for the

RIF(p,q;) = q: + (B.1)

outcome variable.

Estimation is a two-step process: first, obtain the RIF for each value of the outcome variable
(price). The only element of the expression that varies across observations is 1{p < q.}, which is
estimated as a linear probability model. Second, regress the RIF against Near;, Post;, and Near; X
Post;:

RIF;(q;) = p1Near; X Post; + foPost, + f3Near; + €; (B.2)

The coefficient f; is interpreted as an unconditional partial effect (UPE) of cleanup on the 7"
quantile of the price distribution. The identifying assumption is that, in the absence of treatment,
the change in shares or frequency of houses from before to after treatment around a given level of
the housing price would be the same in the treatment group as in the comparison group.’

The estimator is invariant to monotonic transformations of the outcome variable. Therefore,
it allows a common trend in the outcome variable, both in absolute and relative terms.* As Firpo
et al. (2009) recommend, we bootstrap the standard errors (clustering at the tract level to parallel
other parts of this paper).

We see this investigation as a robustness check of our main effects. Recall that our main effects

21t amounts to re-centering an influence function. In (B.1), the second term is the influence function.

3Following the notation in Havnes and Mogstad (2015), assume that F;(p) is the counterfactual price distribution
for houses on the same tract as the site, and G;(p) is the counterfactual price distribution for houses in the comparison
group (houses on a Census tract 5-10 km away from the site.) We will consider two periods for simplicity, so t = 0
indicates pre-cleanup and ¢t = 1 indicates post-cleanup. The counterfactual price distribution for post-cleanup houses
is taken to be:

F1(p) = Fo(p) + G1(p) — Go(p) (B.3)

So, for a given price level p, the estimated quantile treatment effect is the difference between the actual and counter-
factual price distribution at that price level, net of the same difference for the comparison group.
“Therefore, taking a logarithmic transformation of price would not change our conclusions.
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are estimated at the Census tract level.

To ensure that results are directly comparable, we use the exact same definition of distance
here. That is, we compare houses on the same tract as a RCRA site (“0 km”) to houses on a Census
tract that is (0, 10] km away from the nearest site. Instead of using distance from house to nearest
site, we employ a Census-tract based measure of distance to be consistent with the design used in
the rest of the paper. If the percentile regressions using aggregate data in the main body of our
paper yield estimates similar to the true quantile treatment effects, we will consider our primary
specification to be validated. In order to ensure we compare apples to apples in this exercise, we
need to keep the group of houses the same, so we define “Near” and “Far” using minimum Census

distance.

B.4.2 Quantile Treatment Effect Results

We plot the estimates of f; from (B.2) in Figure B.6; the full results are presented in Table B.2.
The results show that only the lower quantile effects are similar to those in Figure 4. The only
estimated coeflicient that is statistically significant at any reasonable level of significance is the
10th percentile quantile effect, which is statistically significant at the 10% confidence level. The
magnitudes of the coeflicients are positive and comparable in magnitude to the main results for
the lower deciles, but are very small for the 80th percentile and become negative and very large
at the 90th percentile (although confidence intervals are so large that we cannot rule out positive
effects). The substantive conclusion of our main analysis— that there is a positive cleanup effect

for the lower deciles of the price distribution- is corroborated by this robustness check.
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Figure B.6: Quantile Treatment Effects, 0 km vs. (0, 10] km
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Notes: This figure depicts the estimated Quantile Treatment Effects on the OH-PA Zillow dataset. These are the 0km x
Post estimates from Table B.2.

Table B.2: Quantile Treatment Effects, OH-PA Transaction Data

Dep. var: Pricekth
10th 20th 30th 40th 50th 60t 70th 80th 90th
0 km X Post 11.988* 10.268 9.915 8.140 8.730 18.046 16.016 2.568 -49.053
(6.258)  (10.351) (14.770) (18.315) (22.608) (36.433) (53.844) (80.903) (113.328)
0 km x In Prog  31.681 39.676  48.083*  57.015"  66.819"  72.843 58.718 12.524 -39.086
(23.256)  (26.189) (27.162) (29.413) (28.910) (46.065) (65.310)  (83.760) (98.780)
Post -23.121%"% -29.336™"* -34.427""* -36.994""* -38.113*"" -42.673""" -51.858""" -59.706*"" -77.140%**
(2.105) (3.209) (3.880) (4.993) (5.697) (6.695) (8.463)  (11.969) (17.624)
In Prog -44.780™** -54.253™** -62.150™** -66.737"** -69.483"** -70.108"** -75.756"** -75.264"** -68.604™*
(6.673) (8.298) (9.167) (9.959)  (10.603) (11.427) (14.110) (17.977) (29.150)
0 km -20.837"* -28.170"" -34.092"* -37.487" -44.426" -51.434  -51.405  -45.827 -13.727
(7.601)  (11.843) (15.675) (20.040) (23.963) (38.689) (54.854) (82.157) (113.271)
Avg Price 44.752 77.216 108.843  139.335  172.803  208.528  253.184  318.009 434.216
Clusters 721 721 721 721 721 721 721 721 721
Obs 714,200 714,200 714,200 714,200 714,200 714,200 714,200 714,200 714,200

Notes: This table presents Quantile Treatment Effect estimates using individual housing transaction data from Zillow
Ztrax spanning the states of Ohio and Pennsylvania. We use transaction data from all tracts within 10 km of at most one
RCRA facility in these regressions. Standard errors are bootstrapped (999 bootstrap replications), clustering on Census
Tract to parallel other sections of this manuscript.
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B.5 Construction of the Zillow Data Set for OH and PA

In this appendix section, we detail our Zillow data cleaning. We obtained pre-cleaned data
as well as code used to produce it (written by researcher Max Harlemann and used for Harle-
man (2024)), and the source files have been deleted as per our contract with Zillow (Ztrax was

discontinued Sept 30, 2023). The code provided by Max filtered for arms-length transactions by:

- Keeping only deed transfers (DataClassStndCode “D”, “H”, “U”, “J”). “U” and “J” apply only
to Hawaii so they will not affect our analysis. “D” and “H” are characterized by Nolte,
Boyle, Chaudhry, Clapp, Guignet, Hennighausen, Kushner, Liao, Mamun, Pollack, Richard-
son, Sundquist, Swedberg and Uhl (2024) as highly probable indicators of sale.

- Dropping refinancing (LoanTypeStndCode “RE”)

- Dropping intra-family transfers (IntraFamilyTransferFlag “Y” or other value that’s not miss-
ing), “INTR”

- Dropping transactions exempt from transfer tax (TransferTaxExemptFlag)
- Dropping partial interest transactions (PartiallnterestTransferStndCode)
In terms of identifying property types,

- The code uses the AssessmentLandUseStndCode to categorize property types as recom-
mended by Nolte et al. (2024).

- The code drops coop, government, exempt, and recreational properties. Specific dropped
indicators are: GV EI HI RC RI EX CP MS PP RC TR AP CP EX IM RC MX PD.

Lastly, the code drops observations with missing or zero values for sales price and lot size.
After receiving the data and code, we enacted three further restrictions to bring the sample in
line with best practices due to Nolte et al. (2024):

- We drop sales with price < $1,000.

- We drop records with missing coordinate information, and discard any observation where

the lat/long value does not match to the county and state recorded by Zillow.

- We filter on “RR” (Residential) use code plus a building indicator, which is 0 whenever build-

ing area is 0 or missing.
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C Census Data Appendix

Our Census and American Community Survey data comes from the National Historical GIS
(NHGIS) Website (Manson et al., 2024). In this paper, our main specifications combine the long-
form decennial Census summary files for 1990 and 2000 and American Community Survey (ACS)
5-year estimates for 2008-2012 and 2018-2022 (and replace Connecticut with 2017-2021 due to
changes in geography). Due to changes in how race is recorded over time, we use short form
decennial Census summary files for 2010 and 2020 to include variables on owner-occupied and
renter-occupied tenure by race in our sorting models (Section C.10). In this Appendix, we describe
how we interpolate these files to consistent geographic boundaries (i.e., 2010 tracts) and show
robustness checks around various interpolation methods (i.e., NHGIS versus LTDB). We also who
robustness to interpolation back to 2000 tracts. These robustness checks are described in section
C.1.1.

There has been a shift in the racial categorization in the Census and ACS over time as well as
changes in how respondents self-identify their race and ethnicity (described in detail in Section
C.5 and Section C.7). Therefore, how any respondent is recorded over time in the Census or ACS
may be influenced by measurement changes as well as changes in identity. For the purposes of this
paper, these changes have led to challenges in harmonizing racial categories over time for 1990,
2000, 2010 and 2020 especially involving multiracial and Hispanic individuals. We describe trends
in our harmonized data (main approach) in Section C.9.

The following describe each subsection in this appendix.

- Section C.1 provides details regarding interpolation

— Section C.1.1 presents robustness checks for different interpolation methods and tract

boundaries
— Section C.1.2 presents the crosswalks and weighting mechanisms

— Section C.1.3 highlights the method used to interpolate Census data to 2010 tract bound-

aries
— Section C.1.4 explains further interpolation to the 2000 tract boundaries

— Section C.1.5 presents primary specification and robustness check details
- Section C.2 describes general sample selection decisions
- Section C.3 describes how we calculate percentiles
- Section C.4 discusses changes in owner occupied housing values

- Section C.5 describes in detail how race/ethnicity measurement has changed
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— Section C.5.1 provides background on the 1977 OMB Directive on Race
— Section C.5.2 provides background on the single-race categorization in the 1990 Census

— Section C.5.3 provides background on the shift to multiple race categorization on the
2000 Census

— Section C.5.4 highlights similarities between the racial categorization questions in the
2010 Census and the 2008 - 2012 ACS

— Section C.5.5 addresses the changes in the racial categorization questions in the 2020

Census

- Section C.6 describes how changes in coding race for Hispanics led to large amounts of

Hispanics coded as “some other race” in 2020

- Section C.7 discusses literature suggesting growth in survey respondents’ identification as

multiracial
- Section C.8 describes NHGIS approach to coding race/ethnicity, which we follow
- Section C.9 shows trends in Census and ACS variables over our sample

- Section C.10 describes data specifics for the tenure by race variables used in the sorting

model (i.e., racial/ethnic breakdown of owners)

- Section C.11 describes the acreage and land use data we include for Table 5
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C.1 Overview of Interpolation & Data Harmonization

Table C.1: Crosswalk and Weighting Methods

Specification Boundary  Weight Crosswalk

Main 2010 wt_ownhu; wt_renthu! NHGIS?

Robustness Estimate 1~ 2010 Area and population weights by NHGIS (PAREA)  NHGIS?

Robustness Estimate 2~ 2010 Area and population weights by LTDB (weight)® LTDB*

Robustness Estimate 3 2000 Area and population weights by LTDB (weight)® “Backwards LTDB”®
Robustness Estimate 4 2010 Universe Defined Weights (UDW)’ NHGIS?

Notes: ! When wt_ownhu or wt_renthu is missing, PAREA is used as a backup weight.

2 NHGIS crosswalk available at nhgis.org/geographic-crosswalks.

3 For Robustness Estimate 2, the LTDB crosswalk for 2020 did not work and so we swapped it with the NHGIS
tract-level crosswalk for 2022 ACS.

* LTDB crosswalk available at https://s4.ad.brown.edu/projects/diversity/researcher/LTBDDload/DataList.aspx.

5 For Robustness Estimate 3, the Robustness Estimate 2 data are interpolated to 2000 via the “Backwards LTDB”
Crosswalk.

6 Backwards LTDB crosswalk available at https://s4.ad.brown.edu/projects/diversity/researcher/LTBDDload/DataList.aspx
7 NHGIS crosswalks details available at nhgis.org/geographic-crosswalks.

8 NHGIS crosswalks available at nhgis.org/geographic-crosswalks.

As this paper spans data across 30 years, with Census and ACS reported at different geographic
levels (e.g., blocks, block group parts, block groups), we aim to standardize and interpolate this data
to 2010 tract level boundaries. We use Stata code provided by the Longitudinal Tract Data Base
(LTDB) that allows users to provide user-defined source data, crosswalks, and choice of counts and
medians (LTDB stata code). We modified it to interpolate using both NHGIS crosswalks and LTDB
crosswalks (described in detail below). See Table C.1 for a summary of our approaches in our main
specification and robustness checks. We have tested robustness to different spatial boundaries
(2010 tracts versus 2000) and to different interpolation weights.

To analyze spatial and demographic changes consistently across Census years, it is crucial to
harmonize historical Census data to a standardized geographic framework. The key methodolog-
ical challenge arises because Census geographic units, such as blocks, block groups, and Census
tracts, are frequently redefined due to population growth, urban expansion, and redistricting. Cen-
sus blocks are the smallest geographic unit, block groups are aggregations of blocks, and Census
tracts are larger units consisting of multiple block groups. To address these boundary changes,
our methodology relies on interpolation techniques that leverage geographic crosswalks. At a
conceptual level, interpolation involves redistributing demographic and housing characteristics
from historical geographic units (source units) into more recent, standardized units (target units).
This approach ensures comparability and consistency across multiple Census periods despite ge-
ographic shifts.

The interpolation methodology proceeds in three primary stages. First, we begin with the

smallest available geographic units, typically blocks for Census short-form (full-count) data and
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block group parts or block groups for Census long-form (sample-based) and ACS data. Using
smaller units reduces estimation error because these units typically nest more precisely into sub-
sequent geographic definitions. Second, we apply geographic crosswalks obtained from the Na-
tional Historical Geographic Information System (NHGIS). These crosswalks establish the precise
geographic correspondence between historical source units and target units by assigning inter-
polation weights that reflect the expected proportion of a source unit’s characteristics residing
within a target unit. For the most granular units, such as Census blocks, NHGIS provides a single
interpolation weight. This weight, calculated using target-density weighting methods, assumes
a homogeneous distribution of population and housing characteristics within each source block,
allowing proportional allocation to target units (Schroeder, 2007a).

For larger geographic units, such as block group parts, block groups, and Census tracts, NHGIS
provides multiple universe-specific interpolation weights. These distinct weights address the het-
erogeneous spatial distribution of various demographic and housing characteristics. For example,
separate weights are available for total population, adult population, households, families, total
housing units, owner-occupied housing units, and renter-occupied housing units. By using these
universe-specific weights, we ensure that each demographic group or housing characteristic is al-
located to the target geography according to its unique spatial distribution, thereby improving the
accuracy of our interpolated estimates.

In situations where universe specific weights are unavailable or unreliable, we resort to an
area-based weighting measure known as PAREA provided by NHGIS in their crosswalks. The
PAREA weight represents the proportion of land area from the source geographic unit that falls
within each target unit. While less precise than population-based measures, this fallback ensures
data continuity and provides a robust alternative when other weighting information is limited
or missing. Finally, after allocating historical data according to these interpolation weights, we
aggregate redistributed characteristics across all source units within each target unit. This step
ensures that the final estimates accurately reflect the demographic and spatial composition of
the standardized geographic boundaries. This approach was adapted from code provided by the
LTDB.

We perform a few robustness checks (Section C.1.1) using alternative NHGIS weights, geogra-
phies and using the LTDB (Table C.1 summarizes all robustness checks). The LTDB interpolation
method primarily relies on a combination of area-based and population-based interpolation to es-
timate past Census tract data within 2010 boundaries (Logan et al., 2014). When tract boundaries
have changed over time, LTDB redistributes populations based on block-level data, assuming spa-
tial uniformity or stationarity — that demographic characteristics are evenly distributed within
source tracts. However, this assumption introduces errors, particularly in tracts characterized by

demographic clustering or uneven distribution (Logan, Stults and and, 2016; Logan, Zhang, Stults

SLTDB crosswalk available at https://s4.ad.brown.edu/projects/diversity/researcher/LTBDDload/DataList.aspx.
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and Gardner, 2021a).

To improve on these limitations, LTDB developed a more refined approach incorporating an-
cillary data such as water boundaries and using block-level population counts to minimize misal-
locations into uninhabited areas, though this method still treats all non-water land as uniformly
habitable (Logan et al., 2014, 2016). While this method considerably improves estimates over basic
area weighting, it still faces limitations when internal populations of census blocks are unevenly
distributed or when block boundaries themselves are split across new census tracts (Logan et al.,
2016)

The two primary methodological differences between the NHGIS and LTDB harmonization
techniques are as follows. First, NHGIS crosswalks build up from the smallest available geographic
units (blocks for short-form Census data or block-group parts for long-form and ACS data), im-
proving interpolation accuracy (Manson et al., 2024). In contrast, the LTDB approach initially
interpolated primarily at the tract level (for data from 1970-1990), relying only on aggregate tract-
to-tract area interpolation, and subsequently incorporated block-level population weighting from
2000 onward (Logan et al., 2014). Second, whereas the LTDB interpolation method primarily omits
water bodies and treats all other land equally as potentially inhabited (Logan et al., 2014), for 2000
Blocks to 2010 geographies NHGIS incorporates a refined dasymetric interpolation approach that
excludes not only water bodies but also non-residential spaces such as large forests, industrial
zones, highways, and open fields, utilizing residential road buffers and detailed land cover data
(Schroeder, 2007a).

C.1.1 Robustness Checks: Alternative Interpolation Approaches & Various Tract Bound-
aries

As a set of robustness checks, we employ the LTDB interpolation approach for 2010 tracts
and also use their reverse interpolation crosswalks for 2000 tracts (summarized in Table C.1). All
interpolation details are described in Section C.1.2.

Our main approach uses NHGIS owner-occupied weights to harmonize the data to 2010 tract
boundaries. As described in the previous section, when owner-occupied weights are missing, we
use parea weights; this gives us the same number of tracts across weights. To make sure our re-
sults are not sensitive to different interpolation weights, we employ 4 robustness checks: (1) NHGIS
parea weights with 2010 boundaries, (2) LTDB weights with 2010 boundaries, (3) LTDB weights
with 2000 boundaries, (4) NHGIS universe defined weights (i.e., separate weights for each uni-
verse of the underlying data, e.g., population, households, housing units, owner-occupied, rental
occupied) with 2010 boundaries. Our robustness checks (see C.1) support limited differences in
estimates across the various crosswalks and geographic boundaries. In Tables C.2-C.4 we show
similar robustness checks for Table 6. As with our housing price results, we find minimal differ-
ences across weights and tract boundaries for our reduced form results for changing demographics

around clean-ups.

85



Figure C.1: Robustness Check: Varying Census Tract Boundaries and Data Interpolation Methods
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Notes: This figure shows five combinations of tract boundaries and interpolation weights. See Section C.1 for crosswalk
sources and details. These robustness checks are summarized in Table C.1. Owner-occupied, parea, UDW = universe
defined weights are all NHGIS weights available in their crosswalks. This figure is similar to Figure 5 in the main text;
Panel a is exactly the same. It shows the coefficient representing the difference in the near (0 km) and far ((0, 10] km)
bins over time from the event study specification in equation 13. We use the same fixed effects and sample as in the main
regression. The coefficient for the two years just prior to the cleanup (at position -2) is normalized to 0 by excluding
the dummy on Nearx Event time=-2 from the regression. Data from the during-cleanup phase is represented by “In
Prog,” and “0” represents the two-year immediately following cleanup completion. Whiskers marked with horizontal
lines and vertical protruding segments indicate 95% and 99% Cls respectively, clustering at the tract level. Prices are

denominated in thousands of dollars.
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While methodological differences between NHGIS and LTDB interpolation procedures en-
hance NHGIS’s accuracy, particularly in complex tract boundary changes, these differences are
minor for most tracts. Logan, Stults, and Xu (2016) indicate that both NHGIS and LTDB yield highly
comparable estimates for tracts with stable or minimally adjusted boundaries, such as unchanged
or merged tracts. However, for tracts involving more complex boundary changes—especially those
where census blocks were divided—NHGIS’s incorporation of additional ancillary data (such as
land cover and road networks) slightly improves accuracy relative to LTDB, reducing estimation
errors. Despite this improvement, the overall difference between NHGIS and LTDB estimates re-

mains small for most cases (Logan et al., 2016). Our robustness checks reflect this.

C.1.2 Crosswalks and Weighing Mechanisms

NHGIS crosswalks provide interpolation weights that estimate how a source unit’s population
and housing characteristics should be redistributed across target units. These weights account for
geographic splits and allow users to proportionally allocate data. The types of Weights in NHGIS

Crosswalks are listed below.
Block-Level Weights (Simplest case)
- Single WEIGHT field

- Represents the proportion of a source block’s population and housing units that fall within

a target tract.

- Applied uniformly to all characteristics.

Block Group Parts and Higher Geographic Levels (More complex cases)

- Provide universe-specific weights to improve accuracy. These include:

- wt_pop (total population)

— wt_adult (adult population)

- wt_fam (families)

— wt_hh (households)

— wt_hu (total housing units)

— wt_ownhu (owner-occupied housing units)
— wt_renthu (renter-occupied housing units)

- These weights account for spatial clustering of demographic groups and prevent errors as-

sociated with spatial stationarity assumptions.
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Table C.2: Robustness Check 1: Impacts on Sociodemographic and Housing Variables, Near-Far
Comparison

(a) Income and Education-related Variables

Dep. var:
Avg HH Income % Below Poverty % College Educated % on Public Assistance % Unemployment
0 km x Post 0.152 -0.515 0.768 0.223 0.520
(1.319) (0.512) (0.469) (0.282) (0.361)
0 km X In Prog -0.807 -0.553 0.552 0.077 0.168
(1.042) (0.450) (0.358) (0.224) (0.314)
Avg Outcome 101.199 12.706 26.469 3.661 6.020
Adj R? 0.876 0.789 0.899 0.590 0.517
Clusters 13,137 13,140 13,150 13,137 13,146
Obs 52,387 52,436 52,513 52,422 52,478

(b) Impacts on Demographic Variables, Near-Far Comparison

Dep. var:
% Black % Female Head of Household % Hispanic Population Density % White % Under 18
0 km x Post -0.050 0.264 -0.108 -3.587 -0.250 -0.308
(0.363) (0.568) (0.376) (11.118) (0.515) (0.308)
0 km X In Prog 0.271 0.433 -0.494 7.949 0.059 -0.141
(0.259) (0.421) (0.309) (8.378) (0.417) (0.256)
Avg Outcome 11.089 17.725 12.781 1,506.397 69.677 24.027
Adj R? 0.928 0.758 0.935 0.971 0.939 0.734
Clusters 13,147 13,129 13,147 13,155 13,147 13,147
Obs 52,482 52,370 52,482 52,607 52,482 52,482

(c) Impacts on Housing-Related Variables, Near-Far Comparison
Dep. var:
% Built % Built

% 4+ Bedrooms in Last 5 Years % Mobile Home in Last 5 Years % Owner Occupied % Vacant
0 km X Post -0.163 0.258 1.078* -0.076 0.394 0.292
(0.493) (0.566) (0.642) (0.612) (0.578) (0.478)
0 km X In Prog -0.032 0.354 1.402 -0.088 -0.013 -0.073
(0.396) (0.512) (0.902) (0.559) (0.457) (0.357)
Avg Outcome 20.046 7.101 7.492 29.313 67.337 9.630
Adj R? 0.847 0.568 0.264 0.901 0.907 0.765
Clusters 13,138 13,138 13,137 13,137 13,130 13,134
Obs 52,431 52,431 52,422 52,422 52,382 52,400

Notes: The data in this table is harmonized using the NHGIS parea weight and harmonized to 2010 tract boundaries
(Robustness Check 1 in Table C.1). This table tests the impacts of RCRA cleanups on 17 socioeconomic and housing
variables, comparing changes in outcomes for tracts containing a RCRA site (0km) over time. The regression model is
the same as the main model in Table 2 except with one of the 17 socioeconomic and housing variables as the dependent
variable. We use all tracts within 10 km of one RCRA facility in this regression. All regressions include fixed effects for
tract, bin by year, site by year, and state by year. The excluded category is tracts (0, 10] km away from a facility. All
standard errors are clustered on census tract.
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Table C.3: Robustness Check 2: Impacts on Sociodemographic and Housing Variables, Near-Far
Comparison

(a) Income and Education-related Variables

Dep. var:
Avg HH Income % Below Poverty % College Educated % on Public Assistance % Unemployment
0 km x Post -0.283 -0.496 0.810* 0.206 0.344
(1.324) (0.487) (0.467) (0.276) (0.348)
0 km X In Prog -0.812 -0.554 0.732** 0.004 -0.036
(1.016) (0.456) (0.353) (0.221) (0.308)
Avg Outcome 101.025 12.711 26.468 3.668 6.024
Adj R? 0.876 0.789 0.900 0.613 0.524
Clusters 13,140 13,141 13,150 13,140 13,146
Obs 52,405 52,451 52,522 52,440 52,488

(b) Impacts on Demographic Variables, Near-Far Comparison

Dep. var:
% Black % Female Head of Household % Hispanic Population Density % White % Under 18
0 km x Post -0.164 0.035 -0.215 -1.916 -0.197 -0.692**
(0.380) (0.535) (0.382) (11.795) (0.537) (0.342)
0 km X In Prog 0.085 0.190 -0.547* 7.865 0.273 -0.358
(0.274) (0.410) (0.322) (9.118) (0.431) (0.260)
Avg Outcome 11.119 17.751 12.804 1,497.131 69.625 24.083
Adj R? 0.926 0.758 0.936 0.977 0.938 0.749
Clusters 13,148 13,134 13,148 13,155 13,148 13,148
Obs 52,503 52,395 52,503 52,619 52,503 52,503

(c) Impacts on Housing-Related Variables, Near-Far Comparison
Dep. var:
% Built % Built

% 4+ Bedrooms in Last 5 Years % Mobile Home in Last 5 Years % Owner Occupied % Vacant
0 km X Post -0.223 0.133 0.823 -0.169 0.527 0.348
(0.506) (0.573) (0.512) (0.633) (0.670) (0.544)
0 km X In Prog 0.059 0.317 0.498 -0.362 0.053 0.069
(0.389) (0.501) (0.410) (0.538) (0.521) (0.364)
Avg Outcome 19.978 7.065 7.301 29.387 67.261 9.631
Adj R? 0.833 0.632 0.878 0.919 0.890 0.784
Clusters 13,141 13,141 13,140 13,140 13,135 13,137
Obs 52,448 52,448 52,445 52,440 52,414 52,428

Notes: The data in this table is harmonized using the LTDB weights and harmonized to 2010 tract boundaries (Robustness
Check 2 in Table C.1). This table tests the impacts of RCRA cleanups on 17 socioeconomic and housing variables,
comparing changes in outcomes for tracts containing a RCRA site (0km) over time. The regression model is the same
as the main model in Table 2 except with one of the 17 socioeconomic and housing variables as the dependent variable.
We use all tracts within 10 km of one RCRA facility in this regression. All regressions include fixed effects for tract,
bin by year, site by year, and state by year. The excluded category is tracts (0, 10] km away from a facility. All standard
errors are clustered on census tract.
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Table C.4: Robustness Check 3: Impacts on Sociodemographic and Housing Variables, Near-Far
Comparison

(a) Income and Education-related Variables

Dep. var:
Avg HH Income % Below Poverty % College Educated % on Public Assistance % Unemployment
0 km x Post -0.968 -0.430 0.405 0.390 0.295
(1.288) (0.455) (0.441) (0.245) (0.322)
0 km X In Prog -0.789 -0.608 0.553 0.103 0.098
(0.931) (0.425) (0.347) (0.193) (0.299)
Avg Outcome 98.888 13.274 25.579 3.860 6.194
Adj R? 0.903 0.805 0.913 0.622 0.531
Clusters 11,298 11,301 11,311 11,298 11,305
Obs 45,139 45,164 45,214 45,152 45,181

(b) Impacts on Demographic Variables, Near-Far Comparison

Dep. var:
% Black % Female Head of Household % Hispanic Population Density % White % Under 18
0 km x Post -0.176 0.101 -0.071 -7.018 -0.187 -0.185
(0.391) (0.518) (0.366) (10.353) (0.541) (0.313)
0 km X In Prog 0.213 0.078 -0.305 5.428 -0.069 -0.127
(0.282) (0.409) (0.303) (8.655) (0.427) (0.279)
Avg Outcome 11.651 18.334 12.520 1,480.461 69.567 23.977
Adj R? 0.934 0.783 0.942 0.978 0.944 0.762
Clusters 11,311 11,299 11,311 11,322 11,311 11,311
Obs 45,219 45,151 45,219 45,276 45,219 45,219

(c) Impacts on Housing-Related Variables, Near-Far Comparison
Dep. var:
% Built % Built

% 4+ Bedrooms in Last 5 Years % Mobile Home in Last 5 Years % Owner Occupied % Vacant
0 km X Post -0.652 -0.279 0.709 -0.188 -0.141 0.244
(0.436) (0.588) (0.475) (0.682) (0.649) (0.468)
0 km X In Prog -0.407 0.191 0.391 0.110 -0.640 0.504
(0.370) (0.513) (0.414) (0.603) (0.578) (0.404)
Avg Outcome 19.391 6.073 7.161 28.558 66.834 9.736
Adj R? 0.866 0.590 0.900 0.918 0.917 0.810
Clusters 11,299 11,299 11,299 11,298 11,300 11,303
Obs 45,157 45,157 45,157 45,152 45,168 45,176

Notes: The data in this table is harmonized using the LTDB weights and harmonized to 2000 tract boundaries (Robustness
Check 3 in Table C.1). This table tests the impacts of RCRA cleanups on 17 socioeconomic and housing variables,
comparing changes in outcomes for tracts containing a RCRA site (0km) over time. The regression model is the same
as the main model in Table 2 except with one of the 17 socioeconomic and housing variables as the dependent variable.
We use all tracts within 10 km of one RCRA facility in this regression. All regressions include fixed effects for tract,
bin by year, site by year, and state by year. The excluded category is tracts (0, 10] km away from a facility. All standard
errors are clustered on census tract.
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Table C.5: Robustness Check 4: Impacts on Sociodemographic and Housing Variables, Near-Far
Comparison

(a) Income and Education-related Variables

Dep. var:
Avg HH Income % Below Poverty % College Educated % on Public Assistance % Unemployment
0 km x Post 0.035 -0.470 0.763 0.297 0.508
(1.313) (0.499) (0.474) (0.284) (0.359)
0 km X In Prog -0.907 -0.509 0.508 0.157 0.176
(1.039) (0.441) (0.358) (0.221) (0.317)
Avg Outcome 101.222 12.703 26.467 3.660 6.020
Adj R? 0.872 0.788 0.896 0.587 0.516
Clusters 13,137 13,140 13,150 13,137 13,146
Obs 52,387 52,436 52,513 52,422 52,478

(b) Impacts on Demographic Variables, Near-Far Comparison

Dep. var:
% Black % Female Head of Household % Hispanic Population Density % White % Under 18
0 km x Post -0.046 0.256 -0.102 -2.864 -0.251 -0.284
(0.363) (0.565) (0.375) (11.052) (0.515) (0.308)
0 km X In Prog 0.278 0.447 -0.488 8.053 0.049 -0.143
(0.259) (0.422) (0.309) (8.383) (0.417) (0.256)
Avg Outcome 11.088 17.725 12.781 1,506.876 69.679 24.026
Adj R? 0.928 0.757 0.934 0.971 0.939 0.734
Clusters 13,147 13,129 13,147 13,155 13,147 13,147
Obs 52,482 52,370 52,482 52,607 52,482 52,482

(c) Impacts on Housing-Related Variables, Near-Far Comparison
Dep. var:
% Built % Built

% 4+ Bedrooms in Last 5 Years % Mobile Home in Last 5 Years % Owner Occupied % Vacant
0 km X Post -0.392 0.081 0.830 -0.100 0.327 0.286
(0.469) (0.591) (0.561) (0.616) (0.575) (0.478)
0 km x In Prog -0.224 0.097 1.351 -0.180 -0.013 -0.057
(0.390) (0.521) (0.887) (0.558) (0.457) (0.358)
Avg Outcome 20.053 7.072 7.468 29.285 67.339 9.632
Adj R? 0.847 0.557 0.194 0.898 0.907 0.763
Clusters 13,138 13,138 13,137 13,137 13,130 13,134
Obs 52,431 52,431 52,422 52,422 52,382 52,400

Notes: The data in this table is harmonized using the NHGIS universe defined weights (UDW) weights and harmonized
to 2010 tract boundaries (Robustness Check 4 in Table C.1). This table tests the impacts of RCRA cleanups on 17
socioeconomic and housing variables, comparing changes in outcomes for tracts containing a RCRA site (0km) over
time. The regression model is the same as the main model in Table 2 except with one of the 17 socioeconomic and
housing variables as the dependent variable. We use all tracts within 10 km of one RCRA facility in this regression. All
regressions include fixed effects for tract, bin by year, site by year, and state by year. The excluded category is tracts
(0,10] km away from a facility. All standard errors are clustered on census tract.
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PAREA (Area Proportion Weights) (Used for robustness checks)
- Represents the proportion of a source unit’s land area that falls within a target unit.

- Used as a fallback when other population or housing weights are unavailable.

LTDB Weights
- Single interpolation weight per record

— Primarily based on total population proportions derived from census block-level data.

— Applied uniformly across all demographic and housing characteristics. However, re-
cent iterations include trait-based adjustments to improve accuracy for specific full-

count variables.

C.1.3 Interpolation to 2010 Census Tract Boundaries

To harmonize historical Census data to 2010 tracts, we follow a bottom-up interpolation ap-
proach, utilizing NHGIS-provided crosswalks. Each step depends on the smallest available geo-

graphic level for each Census year.

Selecting the Source and Target Geographies
For each Census year, we determine the source geographic level (i.e., where the data originates)

and the target level (i.e., where it is being mapped).

- 1990 Census:
— Short-form data (full count) — STF1 (Block-level) interpolated to 2010 tracts using
NHGIS block-to-tract crosswalk.

— Long-form data (sample-based) — STF3 (Block group parts) interpolated separately to
2010 tracts using NHGIS block group parts-to-tract crosswalk.

— Final step: Merging block-based and block group parts-based estimates to produce 1990
data in 2010 tract boundaries.
- 2000 Census:
— Short-form data — SF1b (Block-level) interpolated to 2010 tracts using NHGIS block-
to-tract crosswalk.

— Long-form data — SF3b (Block group parts) interpolated separately to 2010 tracts using
NHGIS block group parts-to-tract crosswalk.

— Final step: Merging these two estimates.
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- 2020 ACS Data:
— ACS 2018-2022 and ACS 2017-2021 (for Connecticut correction) are provided at block
group level.

— Interpolated to 2010 tracts using NHGIS block group-to-tract crosswalk.
Interpolation via LTDB

- As part of our robustness checks, we also employ the LTDB crosswalk for interpolating
1990 and 2000 data to 2010 boundaries and further interpolating data from 2010 to 2000
tract boundaries. However, due to data quality issues encountered when applying the LTDB
crosswalk to interpolate 2020 data back to 2010 tract boundaries, we rely exclusively on
the NHGIS crosswalk for the 2020-to-2010 interpolation, in particular when interpolating
the 2020_DHCa Tract File, ACS 2021 Tract file and the ACS 2022 Tract File to 2010 Tract

Boundaries.

Once all data is mapped to 2010 tracts, we proceed to reverse-interpolate it to 2000 Census

tract boundaries using “Backwards LTDB” Crosswalk.

C.1.4 Interpolation to 2000 Census Tract Boundaries

After standardizing all data to 2010 tract boundaries, we further harmonize it to 2000 tract
boundaries using LTDB’s 2010-to-2000 crosswalk (“Backwards LTDB” Crosswalk).

- Unlike NHGIS, LTDB provides a single weight per record, meaning all characteristics are
allocated uniformly when shifting from 2010 tracts to 2000 tracts.

- Since 2010 tracts were formed by modifying 2000 tracts (e.g., splitting or merging tracts),

the crosswalk ensures that past data remains comparable.

C.1.5 Implementation in This Study

Primary Specification
- For block-to-tract interpolation, a single WEIGHT field is applied.

- Uses wt_ownhu (for owner-occupied housing) and wt_renthu (for renter-occupied housing)

for block group parts and higher level interpolation.

— When wt_ownhu and wt_renthu are unavailable, PAREA weights are substituted fol-

lowing NHGIS best practices.

Robustness Checks
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C.2

- PAREA-based interpolation to assess sensitivity of results.
- LTDB weights
- UDW weights

— The 2020 crosswalk was not usable so we created 2022 estimates using the NHGIS

PAREA weight and used LTDB crosswalks for other years (1990, 2000).

General Sample Selection & Data Cleaning

- We adjusted prices to 2023 dollars using (U.S. Bureau of Labor Statistics, 2025) . The inflation

adjustment was made as follows:

For the 2008-2012 ACS, we treated the values as if they were from the year 2010 (the
midpoint of the year range) when adjusting for inflation. This is because the Census

Bureau did not make any adjustments when producing aggregate statistics.

For the 2018-2022 ACS, there was a change in how the Census Bureau aggregated the
housing values across years- they undertook an inflation adjustment to get all values
in 2022 dollars already. So, for these ACS observations, we treated values as if they
were denominated in 2022 dollars. For details on the change and how it impacts inter-

pretation, please see (United States Census Bureau, 2023).

For the ACS (2017-2021), which was used as the 2020 value for the state of Connecticut,

we treated the values as if they were denominated in 2019 dollars.

The universe-specific weights sometimes add to 0 for a particular 2010 geographic tar-
get unit in years other than 2010, and this can happen even when population and/or
housing is nonzero in that target unit & year. For example, Census Tract 228, Placer
County, California (2010 tract id 06061022800) had a population of 2,230 in 2010. In
2000, using area weighting, the tract has a non-missing count of both population and
housing, but universe-specific weights show counts of 0 and thus variables are missing.
In line with practices of NHGIS in construction of their time series data, if a variable
is missing in the housing or universe-specific weighted data but not in the area weight
data, we use the value from the area-weight interpolated data to fill in the missing

value. ¢

We only include tracts near sites with a 725 or 750 CA.

®For an example, see their revision history page at https://www.nhgis.org/revision-history, where they state, “For

example, in the crosswalk from 2010 block groups to 2020 tracts, if a 2010 block group contains no families, it is not
possible to compute a valid wt_fam using family counts. We compute wt_fam instead by using the sum of population
and housing units, or, if that sum is also zero for the 2010 block group, we use the proportion of the 2010 block group’s
area in the 2020 tract”
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C.3 How We Calculate Percentiles

We construct a cumulative distribution from binned price data by allocating counts of data to
construct an empirical distribution by linear interpolation.

Table C.6 shows a numerical example based on the count of data in each price bin for a hy-
pothetical Census tract.” The first column lists the bins. The second column lists the count of
observations in that bin for the Census tract, and the third column shows the percent of observa-

tions calculated to be strictly below the upper bound price value of the bin.

Table C.6: Numerical Example Data

Count
Count  Percent < Upper Bound

<10 14 1.350
[10,15) 10 2.314

[15, 20) 9 3.182

[20, 25) 9 4.050

[25,30) 9 4918

(30, 35) 10 5.882

[35, 40) 7 6.557

[40, 50) 20 8.486

(50, 60) 24 10.800
(60, 70) 28 13.500
[70, 80) 32 16.586
(80, 90) 39 20.347
[90, 100) 35 23.722
(100, 125) 87 32.112
[125, 150) 76 39.441
[150, 175) 92 48.312
[175, 200) 64 54.484
[200, 250) 109 64.995
[250, 300) 83 72.999
(300, 400) 108 83.414
[400, 500) 59 89.103
[500, 750) 66 95.468
[750,1000) 24 97.782
> 1000 23 100.000
Total 1,037 100.000

Notes: This table depicts count data for a hypothetical census tract based
on 2010 price bins. The first column presents the bins. The second col-
umn is the count in each bin for the tract. The third column is the im-
plied percent of houses below the upper bound value of the bin.

Table C.7 shows the implied deciles based on the data in Table C.6 produced by our procedure.
To ensure that all quantiles calculated by the procedure are valid, we do not allow for situa-
tions where any of the computed quantiles fall in the bottom-most or top-most category of prices.

For example, in 2010, if the 10th percentile computed from this procedure fell in the < 10 cate-

7To make the exercise realistic, the hypothetical tract data was constructed by rounding mean price counts in each
bin for the year 2010.
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gory, we would designate the entire geographic unit as having invalid quantiles. This restriction
accomplishes two goals. First, it ensures that the quantiles are relatively accurate and not skewed
by outlier values. Second, it avoids the need for a researcher-chosen “top” and “bottom” value that

houses could take in each year.

Table C.7: Numerical Example Computed Deciles

Price Decile

10 56.542
20 89.077
30 118.707
40 151.576
50 181.836
60 226.238
70 281.265
80 367.222
90 535.227

Notes: This table presents the computed deciles
produced by our linear interpolation procedure
when we input the counts in Table C.6.

C.4 Specified-Owner Occupied Housing Values

Our study uses data from four major surveys to analyze owner-occupied housing values: the
1990 Census, the 2000 Census, the 2008-2012 American Community Survey (ACS) and the 2018-
2022 ACS. Our main variable of interest is owner-occupied housing values across these datasets.
In Table C.8, we summarize how owner-occupied housing has changed definitions over time and
show the definition of owner-occupied home values in our main specification and our robustness
check. In particular, the definition shifted from specified owner occupied (SOO) in 1990 and 2000
to owner-occupied (OO) in 2000, 2012 ACS, 2022 ACS.

Before 1990, much of the owner-occupied housing inventory comprised of single-family homes,
either detached or attached. Therefore, earlier census data provided financial housing characteris-
tics for the specified owner-occupied unit universe. However, the housing market began to change
during the 1990s as an increasing number of units in multi-unit structures were constructed and
sold as condominiums and mobile homes became a more common option for lower-income home-
owners. As a result of these changes, the ACS abandoned the concept of the specified owner-
occupied universe to ensure housing data was provided for all owner-occupied units, including
mobile homes and units in multi-unit structures. This shift is reflected in the preambles to the
sections on owner-occupied housing values.

Owner-occupied housing is defined in the 1990 Census as "the owner or co-owner lives in the
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unit even if it is mortgaged or not fully paid for”® The 2000 Census® and 2008-2012 ACS!® have

similar definitions. Where they differ is described in detail below.

1990 Census In the 1990 Census, respondents were asked to “Answer only if you or someone in
this household OWNS OR IS BUYING this house or apartment” regarding the question on declaring
the value of their owner-occupied home, which asked, “What is the value of this property; that
is, how much do you think this house and lot or condominium unit would sell for if it were for
sale?”!!

About tabulating owner-occupied housing values, the 1990 census states: “Value is tabulated
separately for all owner-occupied and vacant-for-sale-only housing units, owner-occupied and
vacant-for-sale mobile homes or trailers, and specified owner-occupied and specified vacant-for-
sale-only housing units. Specified owner-occupied and specified vacant-for-sale-only housing
units include only one-family houses on less than 10 acres without a business or medical office
on the property. The data for ’specified’ units exclude mobile homes, houses with a business or

medical office, houses on 10 or more acres, and housing units in multi-unit buildings.”12

2000 Census In the 2000 Census, the question was expanded to: “Answer questions 47a—53
if you or someone in this household owns or is buying this house, apartment, or mobile home;
otherwise, skip to questions for Person 2 The question asked, “What is the value of this property;
that is, how much do you think this house and lot, apartment, or mobile home and lot would sell
for if it were for sale?”"

In the available 2000 Census long-form summary file, both specified-owner occupied and

owner-occupied housing values are available for analysis.

2008-2012 ACS The 2012 ACS survey states: “Please answer the following questions about the
house, apartment, or mobile home at the address on the mailing label” The survey then asks,
“About how much do you think this house and lot, apartment, or mobile home (and lot, if owned)
would sell for if it were for sale?” Respondents fill in a free response number regarding the value

of their owner-occupied housing.!*

2018-2022 ACS Inthe 2022 ACS survey respondents report the estimated value of their property
through an open-ended question: “About how much do you think this house and lot, apartment,
or mobile home (and lot, if owned) would sell for if it were for sale?” This ensures consistency in

data collection across different housing structures and ownership.'

81990 Decennial Census of Population and Housing Technical Documentation
9Census 2000 Summary File 1; prepared by the U.S. Census Bureau, 2001
102010 Census Summary File 1; prepared by the U.S. Census Bureau, 2011
111990 Decennial Census of Population and Housing Technical Documentation
121990 Decennial Census of Population and Housing Technical Documentation
13 Census 2000 Summary File 1 prepared; by the U.S. Census Bureau, 2001
142010 Census Summary File 1; prepared by the U.S. Census Bureau, 2011
15 American Community Survey and Puerto Rico Community Survey 2022 Subject Definitions
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Summary Asshown above, the composition of houses included in owner-occupied housing val-
ues in these surveys has changed. The 2000 Census, 2008-2012 ACS and 2018-2022 ACS include
mobile homes, whereas the 1990 Census primarily focused on single-family homes when asking to
declare owner-occupied housing values. The 2000 Census provides financial housing characteris-
tics for both all owner-occupied units and the more restricted universe of specified owner-occupied
units. The ACS, however, only publishes financial housing characteristics for all units. To ensure
compatibility and consistency over time, specified owner-occupied housing values can be used
for 1990 to 2000. As the data for specified units exclude mobile homes, houses with a business or
medical office, houses on 10 or more acres, and housing units in multi-unit buildings, we chose
to use specified units for 1990 and 2000, but can only use owner-occupied for 2008-2012 ACS and
2018-2022 ACS due to this change in survey. We perform robustness checks instead using owner-
occupied in 2000, 2008-2012 ACS and 2018-2022 ACS with 1990 as specified only. See Table C.8 for

a summary of these definitions and how they are used in this paper.

Table C.8: Comparison of Census Housing Values Definitions

Census Year | Specified Owner Owner- Main Spec | Robustness
Occupied (SOO) Occupied (00)

1990 Y SO0 SO0

2000 Y Y SO0 (0]0)

2010 Y (0]0) 0]0)

2020 Y 00 (0]0)

Definitions

Specified Owner Occupied (SOO) Single-family houses on less than 10 acres

Owner-Occupied (00) Multi-family, condos, mobile homes, trail-

ers, and single-family

We present a robustness check of our main results when substituting the owner occupied

housing values in Table C.9.
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Table C.9: Robustness Check: Including Data from Owner Occupied Housing Units in 2000

Dep. var: Pricek?/
loth zoth 30th 4Oth SOth 60th 70th 80[}1 90th

0 km x Post 8.178"*  8.081** 6.629* 5.690 6.306 4.970 7.284 7.552 3.651

(3.772)  (3597)  (3.649) (3.761)  (3.983)  (4.211)  (4.671)  (5.801)  (8.778)
0 km X In Prog 7.843%  6.197** 4.479 3.664 3.543 2.665 4.254 4.368 5.027

(3.285)  (3.075) (3.082)  (3.348)  (3.266)  (3.440) (3.810) (5.014)  (8.114)
Avg Price 152.342  190.306  218.593  244.312 270.512  299.897 335.210 383.801 470.379
Adj R? 0.840 0.889 0.906 0.915 0.918 0.918 0.914 0.903 0.874
Clusters 12,699 12,699 12,699 12,699 12,699 12,699 12,699 12,699 12,699
Obs 48,224 48,224 48,224 48,224 48,224 48,224 48,224 48,224 48,224

Notes: This table presents the results from a version of the dependent variable using housing values from owner occupied
housing units from the year 2000. This is in contrast to our main results which use specified owner occupied values in
2000.
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C.5 Change In Race/Ethnicity Questions Over Time

The U.S. Census has changed the way that race and ethnicity are collected and recorded during
the period relevant to this analysis, creating measurement issues when harmonizing data across
geography and time, with particular challenges for defining multiracial and Hispanic populations.
We summarize these changes in Table C.10 and describe them in detail below. The main changes
occur from 1990 to 2000, when race categorization changes from choosing a single race (1990)
to allowing for multiple racial identities (2000) and another major change occurred from 2010 to
2020, when the survey allowed for write-ins for all major racial groups (requesting origins), and ex-
panded the length of write-in boxes from 30 characters to 200 characters. There were also changes
in coding any Hispanic categorization as “some other race” leading to increases in multiracial

categorization. These changes are described in more detail below.

Table C.10: Summary of Census and ACS Race/Ethnicity Questions & Coding

Data Form Coding Categories Used in Paper
1990 Census Race: Fill in one race: One Major Race Group: Hispanic and non-Hispanic
- White - White Racial Breakdown:
- Black - Black - Non-Hispanic White
- Indian [American] (print tribe) - American Indian - Non-Hispanic Black
- Eskimo - Chinese - Hispanic
- Aleut - Japanese
- Asian or Pacific Islander (API) - Other API
— Chinese - Other race
— Japanese
- Filipino
— Asian Indian
- Hawaiian
— Samoan
— Korean
- Guamanian
— Vietnamese
— Other API
- Other Race

Hispanic: Is this person of
Spanish/Hispanic origin? Fill ONE circle
for each person.

- No (not Spanish/Hispanic)

- Yes, Mexican, Mexican-Am., Chicano

- Yes, Puerto Rican

- Yes, Cuban

- Yes, other Spanish/Hispanic
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Table C.10 - continued from previous page

Data Form Coding Categories Used in Paper
2000 Census Race: Fill in one or more race: One Major Race Group: Hispanic and non-Hispanic

- White - White Breakdown:

- Black - Black - Non-Hispanic White

- American Indian or Alaskan Native - American Indian or Alaskan - Non-Hispanic Black

(print tribe) Native - Non-Hispanic Two or More

- Asian Indian - Chinese - Hispanic

- Chinese - Japanese

- Filipino - Other API

- Japanese - Other race

- Korean - Two or More Major Races

- Vietnamese - Three or More Major Races

- Other Asian

- Native Hawaiian

- Guamanian or Chamorro

- Samoan

- Other PI (print)

- Some other race (print)

Hispanic: Is this person

Spanish/Hispanic/Latino? Mark [X] the

“No” box if not Spanish/Hispanic/Latino.

- No, not Spanish/Hispanic/Latino

- Yes, Mexican, Mexican Am., Chicano

- Yes, Puerto Rican

- Yes, Cuban

- Yes, other Spanish/Hispanic/Latino —
Print group:
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Table C.10 - continued from previous page

Data Form Coding Categories Used in Paper
2010 Census/ Race: Mark (X) one or more boxes: One Major Race Group: Hispanic and non-Hispanic
2012 ACS - White - White Breakdown:

- Black, African Am., or Negro - Black - Non-Hispanic White

- American Indian or Alaska Native - - American Indian or Alaska - Non-Hispanic Black

Print name of enrolled or principal tribe Native - Non-Hispanic Two or More

- Asian Indian - Chinese - Hispanic

- Japanese - Japanese

- Chinese - Other API

- Korean - Other race

- Filipino - Two or More Major Races

- Vietnamese - Three or More Major Races

- Other Asian — Print race, for example,
Hmong, Laotian, Thai, Pakistani,
Cambodian and so on

- Native Hawaiian

- Guamanian or Chamorro

- Samoan

- Other Pacific Islander — Print race, for
example, Fijian, Tongan, and so on

- Some other race — Print race.

Hispanic: Is Person 1 of Hispanic, Latino,

or Spanish origin?

- No, not of Hispanic, Latino, or Spanish
origin

- Yes, Mexican, Mexican Am., Chicano

- Yes, Puerto Rican

- Yes, Cuban

- Yes, another Hispanic, Latino, or
Spanish origin — Print origin, for
example, Argentinean, Colombian,
Dominican, Nicaraguan, Salvadoran,
Spaniard, and so on.
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Table C.10 - continued from previous page

Data Form Coding Categories Used in Paper
2020 Census/ Race: What is Person X’s race? Mark (X) ~ One Major Race Group: Hispanic and non-Hispanic
2022 ACS one or more boxes AND print origins. - White Breakdown:

- White — Print, for example, German, - Black - Non-Hispanic White

Irish, English, Italian, Lebanese,

- American Indian or Alaska

- Non-Hispanic Black

Egyptian, etc. Native - Non-Hispanic Two or More
- Black or African Am. — Print, for - Chinese - Hispanic

example, African American, Jamaican, - Japanese

Haitian, Nigerian, Ethiopian, Somali, - Other API

etc. - Other race
- American Indian or Alaska Native — - Two or More Major Races
Print name of enrolled or principal - Three or More Major Races
tribe(s), for example, Navajo Nation,
Blackfeet Tribe, ..., etc.
- Chinese
- Vietnamese
- Native Hawaiian
- Filipino
- Korean
- Samoan
- Asian Indian
- Japanese
- Chamorro
- Other Asian — Print, for example,
Pakistani, Cambodian, Hmong, etc.
- Other Pacific Islander — Print, for
example, Tongan, Fijian, Marshallese,
etc.
- Some other race — Print race or origin.

C.5.1 OMB Directive on Race from 1977

In 1977, the Office of Management and Budget (OMB) established a clear taxonomy for racial
categorization, called Directive 15, identifying five primary groups, American Indians and Alaska
Natives, Asians and Pacific Islanders, Non-Hispanic Blacks, Non-Hispanic Whites, and Hispanics
of any race. This directive emphasized that these categories were not to be viewed as scientific
or anthropological, signaling a deliberate departure from biological notions of race. (Strmic-Pawl,
Jackson and Garner, 2018)

C.5.2 1990 Census Allowed Single Race Categorization

Starting from the 1980 Census, this standardized “ethnoracial pentagon” (White, Black, Indige-
nous, Asian, and Hispanic) was established and was used for the 1990 Census. In the 1990 Census,
respondents could select only one racial category. If a respondent marked multiple racial cate-
gories, the Census Bureau recoded the individual into a single racial group, generally using the
mother’s race, if available. Additionally, the 1990 form asked separately about Hispanic origin (eth-

nicity), continuing the two-question format initiated in 1980, asking first whether the respondent
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was of “Spanish/Hispanic origin” and, if so, which national origin (e.g., Mexican, Puerto Rican,
Cuban). (Pew Research Center, 2015)

C.5.3 2000 Census Changed to Multiple Race Categorization

A major shift came in the 2000 Census, when respondents, for the first time, could select more
than one racial category to self-identify (see Table C.10). The racial identification question now
explicitly instructed respondents to “mark one or more races,” providing options such as “White,”
“Black or African American,” “American Indian or Alaska Native,” various Asian national origins
(e.g., “Chinese,” “Japanese,” “Filipino”), “Native Hawaiian or Pacific Islander,” and “Some other race”
This resulted in 2.4% of Americans identifying with two or more races in 2000, significantly altering
the measurement compared to 1990 (Pew Research Center, 2015). Though an explicit “multiracial”

category was not adopted, this allowed for significantly greater complexity.

C.5.4 From 2010-2012 the Questions Were Consistent but Allowed for More Detailed

Categories

In the 2010 Census, the format for race and Hispanic ethnicity questions remained consistent
with 2000, maintaining the option for multiple racial selections (see Table C.10). However, the de-
tailed categories expanded further, resulting in 63 possible race categories (six single-race options
plus 57 possible combinations), and up to 126 combinations when including Hispanic ethnicity op-
tions (Strmic-Pawl et al., 2018). This resulted in greater specificity and complexity of self-reported
racial data. By 2010, the percentage of Americans selecting two or more races increased slightly
to approximately 2.9%, underscoring the continued evolution of multiracial identification in the
Census data (Pew Research Center, 2015).

The 2008-2012 ACS closely mirrored the 2010 Census in its race and Hispanic origin questions,
following the OMB’s 1997 standards for collecting race and ethnicity separately. The Hispanic ori-
gin question was updated in 2008 to match the 2010 Census wording, asking, “Is this person of His-
panic, Latino, or Spanish origin?” with specific checkboxes for Mexican, Puerto Rican, and Cuban,
plus a write-in option for other origins (U.S. Census Bureau, 2012b) . The race question allowed
multiple selections and included 15 categories, with separate checkboxes for major Asian and Pa-
cific Islander groups and a write-in option for “Other Asian” and “Other Pacific Islander” (U.S.
Census Bureau, 2012b) .

C.5.5 2020 Census and ACS Changes in Race and Hispanic Origin Questions

- Key Changes Introduced in the 2020 Census:
— Addition of write-in fields under the “White” and “Black or African American” cat-
egories, allowing respondents to specify detailed ethnic origins (e.g., “German,” “Ja-
maican,” “Nigerian”).

— Revision of Hispanic origin examples in write-in instructions to better represent major
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U.S. Hispanic subgroups, including the addition of “Ecuadorian” and “Guatemalan.”

— Modification of the “Some Other Race” (SOR) instructions from “Print race” to “Print
race or origin,” encouraging respondents to provide more detailed ethnic identification.

— Expansion of coding capacity from 30 characters and two codes (in 2010) to 200 char-
acters and six codes (in 2020).

— Consolidation of coding lists: In 2020, race and Hispanic-origin write-ins were coded
using a single combined list, rather than separate lists for ethnicity and race.

While these updates maintained consistency with OMB standards—separating race and His-
panic ethnicity and classifying individuals as either “Hispanic or Latino” or “Not Hispanic”—the
new procedures significantly altered racial and ethnic classification (Marks and Rios-Vargas, 2021;
Brumfield, Goldvale and Brown, 2019). Specifically, the combined coding list and expanded char-
acter limit led to dramatic increases in multiracial classifications. These procedural changes, rather
than demographic shifts, largely explain the 275.5% growth in Americans classified as multiracial
from 2010 to 2020 (Jones, Marks, Ramirez and Rios-Vargas, 2020).

As Arias, Liebler, Garcia and Saenz (2025) highlight, the revised coding rules disproportion-
ately impacted Hispanic and American Indian and Alaska Native (AIAN) populations. For instance,
the Hispanic “White alone” population dropped by 75%, while the “White and SOR” category in-
creased by 2,427%. Similarly, due to coding adjustments, a respondent marking “Black” and writing
“Cuban” could be classified as multiracial (“Black and SOR”), causing Hispanic multiracial numbers
to spike by 576.7%. The AIAN population in combination with another race grew by 160%, adding
approximately 5.9 million individuals—a change likely driven by new write-in coding rather than
genuine demographic trends (Arias et al., 2025).

By 2020, the ACS fully incorporated these 2020 Census changes, adopting identical write-
in fields, coding procedures, and removing outdated terms such as “Negro” (U.S. Census Bureau,
2021). This alignment increased data detail and accuracy but introduced substantial discontinuities
in historical trend comparisons, necessitating bridging methods for accurate longitudinal analy-
ses (Arias et al., 2025).

C.6 Change in Coding Race for Hispanics Leading to Large #s of “Some Other Race”

From 1990 to 2020, the U.S. Census consistently asked respondents about Hispanic ethnicity
separately from race. However, significant ambiguity persisted, as many Hispanic respondents felt
their racial identity was inadequately captured by the available racial categories, frequently select-
ing “Some Other Race” (SOR) and providing Hispanic-origin write-in responses such as “Mexican”
or “Latino.” This issue was substantial: in 2010, for example, 37% of Hispanic respondents chose
“Some Other Race,” underscoring persistent measurement difficulties that complicate the compa-
rability of racial demographic data over time (Pew Research Center, 2015).

The transition from the 2010 to the 2020 Census significantly exacerbated these measurement

issues, particularly among Hispanic and multiracial populations, primarily due to methodological
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rather than demographic shifts. Between 2010 and 2020, the proportion of the U.S. population
identifying as “Two or More Races” rose sharply from 2.9% to 10.2%, while the “White alone” cate-
gory dropped from 72.4% to 61.6% (Starr and Pao, 2024). This change is largely attributed to Census
Bureau revisions in question design and coding practices, rather than genuine shifts in racial self-
identification. In 2020, approximately 94% of respondents categorized as “Some Other Race alone”
were Hispanic individuals providing Hispanic-origin write-in responses (Jensen, Jones, Rabe, Pratt,
Medina, Orozco and Spell, 2021). Furthermore, Hispanic respondents who selected both a conven-
tional racial category and provided a Hispanic-origin write-in were often reclassified as multiracial
(one conventional race plus SOR), whereas in 2010, similar responses typically remained single-
race. Consequently, among Hispanics specifically, identification as “White alone” fell dramatically
from 53.0% in 2010 to 20.3% in 2020, while the proportion classified as multiracial rose from 6% to
32.7% (Arias et al., 2025).

This reclassification practice, for example, recoded respondents who selected only “Black” but
wrote “Cuban” in the race question as “Black plus Some Other Race,” inflating multiracial counts
even if respondents did not perceive themselves as multiracial (Starr and Pao, 2024). Similar reclas-
sification widely affected respondents of Hispanic, Middle Eastern, or North African origin who
had initially identified solely as “White” or “Black” Such coding practices significantly inflated
multiracial counts and substantially reduced the “White alone” category.

These methodological changes created discontinuities not only in the 2020 Census but also in
subsequent American Community Survey (ACS) data, beginning in 2021. Similar to the Census,
the ACS adopted identical question design and coding updates, leading to parallel discontinuities
between the 2019 ACS and the 2021-2022 ACS (Arias et al., 2025). While exact magnitudes differ
slightly from the Census, the ACS experienced comparable shifts—decreases in “White alone” and
substantial increases in multiracial identification among Hispanic respondents.

Recognizing these measurement challenges, the Census Bureau has employed bridging esti-
mates to align recent data with historical racial definitions. For instance, official bridged popu-
lation estimates indicated that the non-Hispanic White share of the population declined steadily
from 69.1% in 2000 to 63.7% in 2010 and 57.8% in 2022 (Economic Policy Institute, 2022), reflecting
more gradual demographic trends once methodological discontinuities are accounted for. In the
ACS data we use, we observe the share of the population identifying as non-Hispanic
White declined from 63.16% in 2012 to 58.97% in 2022, which is very similar to the bridg-
ing estimates performed by the Census Bureau. Our understanding is that by using mutually
exclusive categories (non-Hispanic White, non-Hispanic Black, non-Hispanic two or more, and

Hispanic, see Table C.11), our data is less affected by these coding changes.
C.7 Growth in Multiracial Identification of Survey Respondents

For the purposes of our project, we have two issues: (1) changes in Census questions and coding

of racial/ethnic categories over time and (2) changes in how individuals identify their racial and
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Table C.11: Racial Composition for Selected ACS Years

ACS 2008-2012 ACS 2018-2022
Non-Hispanic White 63.16% 58.97%
Non-Hispanic Black 13.24% 12.83%
Non-Hispanic Two or More 0.20% 3.46%
Hispanic 16.24% 18.39%

Notes: This table reports racial and ethnic composition from the American Community Survey (ACS) 5-year estimates.
Only the focal racial/ethnic categories examined in this analysis are presented; additional classifications in the NHGIS
data are omitted, resulting in percentages that do not sum to 100%. The data indicate a 4.19 percentage point decline in
the Non-Hispanic White population and increases of 2.15 and 3.26 percentage points in the Hispanic and Non-Hispanic
Two or More Race populations, respectively.

ethnic identities. This section describes in detail the research on stability of racial identities over
time and the fact that there is a sociological change that can influence our sorting results along
racial lines.

For the purposes of our project, we have two issues: (1) changes in Census questions and coding
of racial/ethnic categories over time and (2) changes in how individuals identify their racial and
ethnic identities. This section describes in detail the research on the stability of racial identities
over time and the fact that there is a sociological change that can influence our sorting results
along racial lines.

Since the U.S. Census Bureau began allowing individuals to select more than one racial cate-
gory in Census 2000, the reported multiracial population has grown significantly. Between 2000
and 2010, the number of individuals identifying as multiracial increased by 32%, reflecting both
demographic shifts and evolving social norms around racial identification (U.S. Census Bureau,
2012a). In the 2000 Census, approximately 6.8 million individuals, or 2.4% of the U.S. population,
reported two or more races. By 2010, this number had risen to approximately 9 million, comprising
2.9% of the population (Jones and Bullock, 2012).

Between 2000 and 2010, the multiracial population in the United States grew substantially,
reflecting shifting social norms and evolving patterns of racial self-identification. The number of
individuals identifying as both White and Black or African American more than doubled, while
those identifying as White and Asian increased by 87% (Pew Research Center, 2015). More broadly,
the share of the U.S. population with two-race ancestry nearly doubled, rising from 2.2% in 1980
to 4.3% in the 2010-2012 period (Pew Research Center, 2015).

Racial self-identification is also highly fluid, with about 30% of adults with multiracial back-
grounds reporting that they have changed how they describe their racial identity over their life-
times (Davenport, 2020). This fluidity is especially pronounced among mixed-race adolescents,
who are significantly more likely to revise their racial identification over time. The intersection
of racial and ethnic identity further complicates self-identification, particularly among Hispanic

individuals. While the Census Bureau classifies Hispanic origin as an ethnicity rather than a race,
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two-thirds of Hispanics perceive their Hispanic identity as part of their racial background (Dav-
enport, 2020). As a result, changes in racial classification may reflect not only individual identity
shifts but also the ambiguity in how Hispanic individuals navigate race within official classification
systems.

Analyzing linked individual-level Census data from 2000 and 2010, Liebler, Porter, Fernan-
dez, Noon and Ennis (2017) found that 6.1% of individuals (9.8 million people) changed their re-
ported race and/or Hispanic origin between the two Censuses. However, this figure conceals sig-
nificant differences across racial groups. Racial identification remained relatively stable among
non-Hispanic Whites, Blacks, and Asians, with at least 90% consistency over time. In contrast,
American Indians, Pacific Islanders, Hispanics, and multiracial individuals exhibited significantly
higher levels of response change. Notably, only one-third of individuals who identified as Ameri-
can Indian in 2000 retained the same racial identification in 2010 (Liebler, 2016).

Measurement inconsistencies may also contribute to observed shifts in racial identification.
The 2010 Census expanded racial categorization from six single-race options to 63 possible selec-
tions, introducing greater specificity but also potential confusion for respondents. This change
likely increased measurement error, particularly for multiracial individuals and those identifying
as “Some Other Race” Among Hispanic respondents, racial classification was especially unsta-
ble, with 13% reporting a different Hispanic or non-Hispanic designation in 2010. Additional fac-
tors such as age, geographic location, and survey enumeration method also influenced response
changes, with younger individuals and those interviewed in person showing greater variation over
time. These findings underscore the challenges of harmonizing racial and ethnic data across time
periods, as changes in survey design may introduce variation that does not necessarily reflect
underlying demographic or social shifts.

The expansion of racial classification options in Census 2000 and beyond reflects and reinforces
an increased recognition of racial fluidity. As attitudes toward racial boundaries have shifted,
particularly among younger generations, individuals are increasingly open to identifying with

multiple racial backgrounds (Davenport, 2020).
C.8 BestPractices as per IPUMS NHGIS for Addressing Changes in Race-Ethnicity Ques-

tions and Coding Over Time

NHGIS addresses challenges posed by changes in racial identification over time by harmoniz-
ing multi-race responses in a consistent manner, particularly in its standardized-to-2010-tract time
series data. Prior to the 2000 Census, respondents could select only one racial category, making it
impossible to determine which individuals might have identified as multiracial in earlier Censuses.
To address this limitation, NHGIS aligns pre-2000 race categories with the corresponding “one race
alone” categories introduced in 2000 and used in subsequent Censuses. For instance, the pre-2000
category of “White” is aligned with “White alone” from 2000 onward. Individuals reporting “Two

or More Races” in 2000 and later Censuses are treated separately, with no direct linkage to pre-
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2000 data. As a result, some of the observed shifts in single-race categories between 1990 and 2000
reflect this reclassification of multiracial individuals rather than actual demographic change.

While NHGIS primarily focuses on harmonizing pre-2000 racial classifications to align with
post-2000 Census categories, it continues to rely on the racial categories provided by the Census
Bureau and the American Community Survey (ACS) for post-2000 data, including the 2020 Census
and 2020 and beyond ACS. Despite changes in how race is coded and processed, particularly in
the 2020 Census, which modified race question instructions and expanded the detail captured in
write-in responses, the racial categories themselves remain consistent from 2000 onward. NHGIS
therefore adopts the Census and ACS classifications for post-2000 racial data without modification
while focusing its harmonization efforts on pre-1990 classifications.

We consider NHGIS’s methodology to represent best practices for harmonizing racial catego-
rization in time-series analyses. Accordingly, our analysis adopts this same approach, aligning
pre-2000 race data with the single-race categories from 2000 onward and separately accounting
for those reporting two or more races starting in 2000. This approach allows for a consistent ex-
amination of racial trends over time, ensuring that shifts in Census racial classifications do not

introduce artificial discontinuities in the data.
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C.9 Exploration of Variables from Census Summary Files

In Figures C.2, we show trends over time for all the variables of interest in our study, with

separate lines depicting the mean for tracts 0 km from a RCRA site, tracts (0, 10] km from a RCRA
site, and all tracts in the United States.

Figure C.2: 10""-90"" Percentiles of Housing Price Over Time
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Notes: This figure depicts trends in housing percentiles over time. Lavender lines depict the mean for tracts containing
a RCRA site, cyan lines depict the mean for tracts (0, 10] km away from the nearest site, and magenta lines show the
national mean. Shaded regions are constructed by adding/subtracting from the mean 1.96 times the standard error of
the mean (defined as the standard deviation over the square root of the number count of observations).
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Figure C.3: Income and Education-related Variables Over Time
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Notes: This figure depicts trends in income and education-related variables over time. Lavender lines depict the mean
for tracts containing a RCRA site, cyan lines depict the mean for tracts (0,10] km away from the nearest site, and
magenta lines show the national mean. Shaded regions are constructed by adding/subtracting from the mean 1.96
times the standard error of the mean (defined as the standard deviation over the square root of the number count of

observations).
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Figure C.4: Demographic Variables Over Time
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Notes: This figure depicts trends in demographic variables over time. All major racial categories (White, Black, Two
or More) are non-Hispanic. Lavender lines depict the mean for tracts containing a RCRA site, cyan lines depict the
mean for tracts (0, 10] km away from the nearest site, and magenta lines show the national mean. Shaded regions are
constructed by adding/subtracting from the mean 1.96 times the standard error of the mean (defined as the standard
deviation over the square root of the number count of observations).
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Figure C.5: Tenure by Race Variables Over Time
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Notes: This figure depicts trends in demographic variables over time. All major racial categories (White, Black, Two
or More) are non-Hispanic. Lavender lines depict the mean for tracts containing a RCRA site, cyan lines depict the
mean for tracts (0, 10] km away from the nearest site, and magenta lines show the national mean. Shaded regions are
constructed by adding/subtracting from the mean 1.96 times the standard error of the mean (defined as the standard
deviation over the square root of the number count of observations).
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Figure C.6: Housing-related Variables Over Time
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Notes: This figure depicts trends in housing-related variables over time. Lavender lines depict the mean for tracts
containing a RCRA site, cyan lines depict the mean for tracts (0, 10] km away from the nearest site, and magenta lines
show the national mean. Shaded regions are constructed by adding/subtracting from the mean 1.96 times the standard
error of the mean (defined as the standard deviation over the square root of the number count of observations).
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Figure C.7: 10""-90*" Percentiles of Rent Over Time
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Notes: This figure depicts trends in rent percentiles over time. Lavender lines depict the mean for tracts containing a
RCRA site, cyan lines depict the mean for tracts (0, 10] km away from the nearest site, and magenta lines show the
national mean. Shaded regions are constructed by adding/subtracting from the mean 1.96 times the standard error of
the mean (defined as the standard deviation over the square root of the number count of observations).
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C.10 Tenure by Race

Table C.12: Tenure by Race Variable Sources and Definitions by Year

Year

Dataset Used by Type

ME and NME Vars

1990

2000

2010

2022

ME: 1990 STF1
NME: 1990 STF1

ME: 2000 SF1b; 2000 SF2
NME: 2000 SF1b; 2000 SF2

ME: 2010 SF1b
NME: 2008-2012 ACS; 2010
SF1a

ME: 2020_DHCa
NME: 2020_DHCa; ACS 2018-
2022

ME Owner: owner_nonhisp_white, owner_nonhisp_afamer,
base_owner_byrace

ME Renter: renter_nonhisp_white, renter_nonhisp_afamer,
base_renter_byrace

NME Owner: owner_white_alone, owner_afamer_alone,
owner_hispanic, base_owner_nme

NME Renter: renter_white _alone,
renter_hispanic, base_renter_nme

renter_afamer_alone,

ME Owner: owner_nonhisp_white, owner_nonhisp_afamer,
owner_nonhisp_two_or_more, base_owner_byrace

NME Owner: owner_white_alone, owner_afamer_alone,
owner_two_alone, owner_hispanic, base_owner_nme

NME Renter: renter_white_alone, renter_afamer_alone,
renter_two_alone, renter_hispanic, base_renter_nme

ME Owner: owner_nonhisp_white, owner_nonhisp_afamer,
owner_nonhisp_two_or_more, base_owner_byrace

ME Renter: renter_nonhisp_white, renter_nonhisp_afamer,
renter_nonhisp_two_or_more, base_renter_byrace

NME Owner: owner_white_alone, owner_afamer_alone,
owner_two_alone, owner_hispanic, base_owner_nme

NME Renter: renter_white_alone, renter_afamer_alone,
renter_two_alone, renter_hispanic, base_renter_nme

ME Owner: owner_nonhisp_white, owner_nonhisp_afamer,
owner_nonhisp_two_or_more, base_owner_byrace
ME Renter:

renter_nonhisp_white, renter_nonhisp_afamer,
renter_nonhisp_two_or_more, base_renter_byrace

NME Owner: owner_white_alone, owner_afamer_alone,
owner_two_alone, owner_hispanic, base_owner_nme

NME Renter: renter_white_alone, renter_afamer_alone,
renter_two_alone, renter_hispanic, base_renter_nme

Notes: ME = Mutually Exclusive; NME = Non-Mutually Exclusive. For each survey year, we identify the specific datasets
used and classify tenure data by race. ME variables exclude Hispanics, while NME variables allow overlap with Hispanic
origin.

As part of our analysis, we utilize NHGIS data on housing tenure, classifying units as ei-
ther "Owner Occupied” or "Renter Occupied,” stratified by race. We define racial categories using
both mutually exclusive(ME) and non-mutually exclusive(NME) variables.. The mutually exclusive
racial categories we include to match our main approach in the paper are "White Non-Hispanic,’
"African American Non-Hispanic,” "Two or More Non-Hispanic,” and "Hispanic.” Due to changes
in the summary files over time, this requires us to use the Decennial Summary Files for 2010 and
2020. Furthermore, 2000 does not have tenure-by-race at a lower geography than tract and so

we are interpolating tract to tract for 2000 data. Figure C.5 show trends in the variables used in
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our paper over time. Table C.12 provides a detailed overview of the specific datasets and racial
categorizations used by survey year.

The ACS 5-year estimates used in our paper only provide non-mutually exclusive racial cate-
gories, such as "White Alone,” “African American Alone,” and "Two or More Alone”. The “Alone”
classification allows for both Hispanic and Non-Hispanic individuals to be included hence, being
labeled as Non-Mutually Exclusive. We do not use these non-mutually exclusive categorizations

in any descriptive summaries as tenure-by-race data are only used in Table 7.
C.11 Acreage and Land Use

Lot size information was needed for robustness checks in Tables A.6 and A.7, but was not
publicly available at the tract level (or any geographic level below tract) for 1990, 2000, or 2010
(including both Decennial Census and ACS). The data is only available at the county level for
1990, and is limited to just two categories: “In housing units on properties of less than 1 acre”
and “In housing units on properties of 1 acre or more.” The county-level variables downloaded
represent counts of persons (not households or housing units) occupying housing units across
various categories:
- Urban: Inside urbanized area
— In households on properties of less than 1 acre
— In households on properties of 1 acre or more
— In group quarters

- Urban: Outside urbanized area
— In households on properties of less than 1 acre
— In households on properties of 1 acre or more
— In group quarters

- Rural

In households on properties of less than 1 acre

In households on properties of 1 acre or more: Farm

In households on properties of 1 acre or more: Nonfarm

In group quarters
These county-level data were merged under the assumption that county boundaries remain stable
over time (and only experience nominal changes, e.g. Dade County vs. Miami-Dade). Each count

variable was then converted to a percentage by dividing by the total represented population.
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D Choice of Distance Measure

In this appendix section, we describe the reasoning for our choice to use minimum distance to
Census tract boundary as our distance measure. We additionally provide robustness checks using
an alternative definition of distance- distance to population-weighted centroid.

One disadvantage of using minimum distance from any point in the tract to the nearest RCRA
site is that larger tracts are more likely to contain RCRA sites and hence are more likely to fall in
the “0 km” bin. In panel (a) of Figure D.1, we plot the 0 km distance bin as well as the other bins
within 10 km. We see that the treatment and control groups are quite different when it comes to
tract area. We think of treatment as possibly affecting an entire tract, since a tract represents a
neighborhood and percentiles of the housing price would depend on all the houses in the neigh-
borhood. Therefore, we see this issue as natural to our context, and thus primarily a challenge for
estimation and inference, rather than a problem with how we are measuring distance. As such,
we address these challenges using a regression adjustment in Table 5.

An alternative distance measure that could be employed in our main specification is the dis-
tance from the centroid to the site. Below, we discuss why we chose the minimum distance measure
rather than measuring the distance from centroid to tract.

The first reason we do not prefer the centroid-based measures is that the centroid-based mea-
sures resulted in the sample lacking larger tracts. In the case of a non-population-weighted cen-
troid, the issue is largely mechanical. For a census tract containing a site, the likelihood that the
centroid is, say, [0, 1] km from the site depends on the total area of the tract. This effect is par-
tially mitigated by using population-weighted centroids, though, since these need not be centrally
located.

To illustrate the problem, we produce kernel densities in Figure D.1 and summary statistics in
Table D.1. The very largest geographic units nationally are less represented among the treatment
or control groups defined according to the centroid-based distance measure than the minimum-
distance based one. The population-weighted centroid situation is an in-between case. However, as
a whole, the 5-10 km control group for the minimum distance measure is more similar to the overall
national area distribution. In fact, the entire [0, 10] km radius around a RCRA site in minimum
distance is more similar to the national area distribution than the [0, 10] km radius around a RCRA
site in centroid distance for either centroid-based measure.

Another reason why the minimum-distance based bins are helpful in our context is they ensure
that control units are not “close” to sites. To illustrate the issue, consider a comparison with the
(5,10] km distance bin (Figure D.2). With minimum distance, we know for sure that tracts in the
(5, 10] km minimum distance bin cannot contain any houses within 5 km of a RCRA site. This is
not true of the centroid-based approach- the (5, 10] km minimum distance bin defined according
to centroid based measures could contain houses even within 1 km of a RCRA site. This could

happen in two ways. First, the site might be on an adjacent tract and close to some of the houses
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Figure D.1: Kernel Densities of Area by Distance Measure
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ored lines represent binned distances, and the dashed dark gray line depicts the
overall distribution of tract areas for all tracts in the United States.
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in the tract. Second, the site might be on the tract, but the tract is large enough that the centroid
is far from the tract. In either situation, the control group is “treated” to some extent, which is

undesirable for inference.

Table D.1: Area by Distance Measure

Percentiles

Mean St. Dev. 10th 50th 90th Min Max
Minimum
0 km 159.401 923.311 2.213 13.712 238.378 0.164 20,042.633
(0,1] km 39.253 326.306 0.722 3.307 62.220 0.079 17,168.701
(1,2] km 26.906 152.233 0.539 2.548 40.462 0.041 4,461.864
(2,3] km 26.377 185.274 0.444 2.400 33.579 0.047 10,829.257
(3,4] km 25.016 140.990 0.463 2.408 32.871 0.051 5,987.342
(4,5] km 34.585 277.451 0.574 2.677 47.998 0.041 9,353.257
(5,10] km 46.722 278.971 0.689 3.595 98.000 0.008 18,028.428
[0,10] km 43.467 330.743 0.616 3.112 69.755 0.008 20,042.633
Centroid
[0,1] km 6.340 56.770 0.567 2.322 10.911 0.079 2,321.146
(1,2] km 6.622 49.364 0.439 1.958 10.032 0.056 2,579.057
(2,3] km 6.763 46.036 0.423 1.993 11.454 0.041 3,063.702
(3,4] km 8.425 45.889 0.410 2.170 13.979 0.051 2,561.966
(4,5] km 9.515 32.319 0.535 2.460 17.447 0.041 889.067
(5,10] km 18.670 67.082 0.708 3.311 40.795 0.008 2,801.969
[0,10] km 12.553 55.925 0.539 2.595 21.661 0.008 3,063.702
Pop-Weighted Centroid
[0,1] km 7.901 27.614 0.551 2.180 13.283 0.125 645.208
(1,2] km 8.099 49.856 0.465 2.079 12.647 0.056 2,429.864
(2,3] km 9.670 69.809 0.438 2.086 14.501 0.041 4,313.722
(3,4] km 12.259 116.354 0.424 2.249 15.930 0.051 7,275.870
(4,5] km 12.541 49.297 0.533 2.479 19.391 0.041 1,020.624
(5,10] km 25.931 242.063 0.709 3.309 44.552 0.008 19,679.541
[0,10] km 17.213 169.360 0.545 2.617 24.454 0.008 19,679.541
All Tracts
National 127.965 1,428.722 0.815 5.037 218.217 0.008 222,977.203

Notes: This table compares summary statistics on tract area for the three candidate measures of distance in this paper.
The distance bins are each defined according to the distance measures directly above them in italics. The first group
of distance bins is defined according to the minimum-distance from tract to site measure. The second is defined as
the distance from the geometric centroid to the nearest site. The third is defined as the distance from the population-
weighted centroid to the nearest site. At the bottom of the table, we present statistics for all tracts in the United States
for comparison purposes.

Despite the potential drawbacks of a centroid-based distance measure, it is valuable as a check
on our primary estimates. For this activity, we choose to use the population-weighted centroid
since it is less likely than the geometric centroid to suffer from the aforementioned issues.

It is unclear a priori what the equivalent of our “0 km” distance measure is in centroid distance
(especially given that some homes in “0 km” minimum distance are even 10 km away from the

site). Therefore, we determine the distance empirically using the analogue of Figure 3, as well as
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Figure D.2: Kernel Densities of Actual Distance by Distance Measure
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Notes: In this diagram, we show the kernel densities of actual distance from house to nearest RCRA site for different
measures of distance that could be employed in the main analysis. In panel (a), the peach region is the density for tracts
containing a RCRA site (“0 km”) and the lavender region is the density for tracts with minimum distance between 5
and 10 km away from the site. In panel (b) the peach region is the kernel density for tracts whose geometric centroid is
between 0 and 1 km away from the nearest RCRA site, whereas the lavender region is those whose geometric centroid
is 5-10 km away from the nearest RCRA site. Panel (c) is the same as panel (b), but applying the population-weighted
centroid instead.
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Figure D.3: Housing Price - Distance Gradient Using Population-Weighted Centroid Distance
(a) Excluded Distance Bin: (5, 10] km

40

Percentile:

207 —e— 10th
20th

30th

40th

50th

60th
—e— 70th
80th

207 —e— 90th

Housing Price ($1,000)

-40

[0.1] (121 23] (34] 5]
(km)

(b) Excluded Distance Bin: (10, 20] km

50

Percentile:
—e— 10th
20th
30th
40th
50th
60th
504 —e— 70th
80th
—e— 90th

Housing Price ($1,000)

-100

1 (12 (23 G4 @5 G ®7 (78 (89  (9,10]
(km)

Notes: This figure plots the set of Difference-in-Differences (DD) coefficients on the interaction of each 1-km distance
bin, defined according to population-weighted centroid distance, for each percentile from the 10th through the 90th,
All specifications include fixed effects for tract, bin by year, site by year, and state by year. The sample is the set of
tracts containing exactly one RCRA site within 10km (Panel a) or 20km (Panel b) in 1990, 2000, 2010 (ACS 2008-2012),
and 2020 (ACS 2018-2022).

a version of the same figure that takes the bins out to 10 km and uses (10, 20] km as the excluded
distance. The results are found in Figure D.3. Both indicate that the impacts are concentrated in

the [0, 1] km centroid-distance bin. Therefore, we will designate [0, 1] km to be the “Near” bin for

this exercise.

Next, we show the point estimates from the population-weighted centroid regressions in Figure
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Figure D.4: Robustness Check: Population-Weighted Centroid Distance

(a) Excluded Distance Bin: (1, 10] km
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(b) Excluded Distance Bin: (1,20] km
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Notes: This figure plots the set of Difference-in-Differences (DD) coefficients from the interaction of Post x [0, 1] km,
where the distance is calculated from population-weighted centroid to site, for each percentile from the 10th through
the 90", Panel (a) employs an excluded distance bin of (1, 10] km, whereas panel (b) uses an excluded distance bin of
(1, 20] km. All specifications include fixed effects for tract, bin by year, site by year, and state by year. The sample is the
set of tracts containing exactly one RCRA site within (Panel a) or 20km (Panel b) in 1990, 2000, 2010 (ACS 2008-2012),
and 2020 (ACS 2018-2022).

D.4. For panel (a), where we designate [0, 1] km as the “Near” bin and (1, 10] as the excluded bin,
we see that magnitudes of lower percentiles are higher than in our primary regressions, whereas
magnitudes approach 0 at the highest percentiles. The figure also confirms that the highest sta-
tistical significance is seen for the lower percentiles of the price distribution, as with our primary
results. For panel (b), where we instead use (1,20] as the excluded distance bin, the magnitudes
of the impacts are even higher at lower deciles of the price distribution, and the 90th percentile is
very imprecisely estimated. The overall takeaway is that the impacts we detect at the lowest price

deciles are also present using this alternative distance measure.
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E Multiple Hypothesis Testing

In this appendix section, we present and discuss Table E.1, which addresses multiple hypothesis
testing for our main results.

In the table, the second column shows the unadjusted conventional cluster-robust standard
errors from our main regressions, whereas the remaining columns feature different methods of
adjusting for multiple hypothesis testing. The third column shows the Bonferroni-corrected p-
values, which are the most conservative, but have a documented tendency to over-reject the null
hypothesis. The fourth column shows p-values corrected using the Holm method (Holm, 1979).
This is a step-down method that allows for arbitrary dependence between hypothesis tests.!® The
method fixes the FWER rather than merely fixing the significance level of each individual hypothe-
sis test. The sixth column shows the Westfall-Young corrected p-values (Westfall and Young, 1993).
This is a bootstrap resampling-based correction that also fixes the FWER, but takes into account
the fact that the estimators are not necessarily independent. The resampling procedure ensures

that the FWER will still be controlled under dependence across outcomes.

Table E.1: Adjustment of p-values for Multiple Hypothesis Testing

Dep. var: Pricekth

Conventional Bonferroni Holm Westfall-Young Romano-Wolf
10th 0.009 0.082 0.079 0.038 0.026
20th 0.015 0.112 0.107 0.054 0.031
30th 0.014 0.112 0.107 0.053 0.030
40th 0.028 0.159 0.149 0.068 0.046
50th 0.037 0.159 0.149 0.087 0.057
60th 0.047 0.159 0.149 0.092 0.058
70th 0.027 0.159 0.149 0.068 0.046
goth 0.047 0.159 0.149 0.092 0.058
90th 0.170 0.170 0.170 0.158 0.122

Notes: This table presents p-values adjusted for multiple hypothesis testing, for the hypothesis test that Near x
Post=0. For comparison, the first column reproduces unadjusted p-values from our main specification (Table 2) -
these are constructed from clustered standard errors. The second column features Bonferroni corrected p-values.
The third column shows Holm adjusted p-values. The fourth and fifth columns show Westfall-Young and Romano-
Wolf p-values, which are produced using resampling with 999 clustered bootstrap replications.

The Westfall-Young procedure requires the assumption of subset pivotality, which entails im-
posing the restriction that the constraints of all null hypotheses jointly hold. Romano, Shaikh
and Wolf (2008) assert that this assumption is overly stringent, while Westfall and Troendle (2008)
argue that it is not. In our case, the Westfall-Young p-values are mostly between the Holm and

Romano-Wolf p-values described below. While subset pivotality might not be necessary in our

16Starting with the individual p-values, we iteratively inflate them such that the smallest p-value is inflated the most,
and the largest p-value is not inflated at all (unless one of the smaller p-values is inflated above the largest p-value, then
the largest p-value will be inflated to preserve the order of p-values).
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context, we see the Westfall-Young p-values as complimentary to the Romano-Wolf p-values we
present, providing additional evidence on multiple hypothesis testing.

The seventh column shows the the Romano-Wolf corrected p-values (Romano and Wolf, 2005a,b),
computed using the algorithm in Romano and Wolf (2016). The Romano-Wolf method accounts
for the fact that there is dependence among the estimators. The intuition is as follows: consider
two extreme cases where hypothesis tests for two estimators are conducted. In the first case, the
two estimators are perfectly dependent (say, they come from the exact same regression using the
exact same data, and produce an identical coefficient, for example). In that case, we should not
penalize testing the two hypotheses at all. In the second case, the two estimators are independent.
In that case, we should heavily penalize testing the two hypotheses.

For both bootstrap-based adjustments, we use 999 replications and cluster the bootstrap at the
Census tract level.!” Holm-Sidak, Westfall-Young, and Romano Wolf all fix the family-wise error
rate (Romano and Wolf, 2005a).

The overall conclusion is that the two resampling-based multiple hypothesis correction tech-
niques indicate that the evidence for the 10th percentile is statistically significant at the 5% level
even after accounting for MHT. The evidence is weaker for the higher deciles, though not always

monotonically so.

7Jones, Molitor and Reif (2019) show in their online appendix the Westfall-Young algorithm performs poorly with
clustered standard errors but a non-clustered bootstrap.
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F Software and Packages Used

- We geocoded using ArcPy (ArcGIS Pro 10 Python 3).
- Stata Packages used:
- wyoung package (Reif, 2017)
— rwolf2 package (Clarke, Romano and Wolf, 2020)
- reghdfe package (Correia, 2016)
— ppmlhdfe package (Correia et al., 2020)
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