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1 Introduction

In spite of the prevalence of wages and incentive contracts to guide economic activity, decen-

tralized collaboration within teams has a major role in modern societies. In research labs,

task-groups within corporations, and associations for the private provision of public goods for

the group (e.g., donations, lobbying), agents must rely on each other to achieve a common

goal. In these contexts, agents’ incentives to contribute are shaped by their expectations

about whether fellow group members will pull their own weight; a researcher who believes

that her fellow lab members will slack after she exerts effort may not have incentives to work

hard in the first place.

Attaining powerful incentives for collaboration can be particularly challenging when the

team is composed of distinct subgroups. In these contexts, agents have to engage both

peers and “outsiders,” who can have a lower valuation for completion of the project, or

face a higher cost to move the project forward. These formal or informal divisions within

teams are, nevertheless, pervasive. In research labs, senior scholars collaborate with junior

researchers, for whom a publication can have a larger career impact. In business, new

product launches usually involve both Product and Operations personnel, who are jointly

tasked with developing new infrastructure to make the product available to clients. In

open source software, amateur and professional developers contribute towards writing the

code that drives projects like Linux and Mozilla Firefox. Collaboration between groups

is also paramount in political economy. In lobbying, for instance, beneficiaries of a piece

of legislation are typically segmented into distinct economic sectors, each of which has a

different stake in the bill’s success.

In this paper, we study the ability of multi-group teams to “get things done” in a decen-

tralized environment. In line with our examples, we focus on binary public goods; i.e.,

projects that generate no benefits until they have been completed (that is, payoffs accrue

only when the paper is completed, when the product is launched, when the bill passes, etc).1

Moreover, we focus on settings in which agents make decentralized sequential contributions,

without commitment. This is important in environments in which effort is non-contractible,

or is elicited through a horizontal structure (i.e., open source contributions, cross-functional

teams in business).

In the model, two groups of internally identical agents – say junior and senior researchers

1The distinction between continuous and binary public goods is fundamental for dynamic free-riding
incentives. In continuous public goods, efforts are strategic substitutes across time. In this case, contributions
lead to a reduction of effort in the future. In binary public goods, instead, efforts are strategic complements
across time, in that a higher contribution by one agent induces larger contributions in the future.
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– collaborate on a binary project. To capture the decentralized nature of contributions, we

assume that in each period an agent is selected at random to make a contribution to the

project. We allow juniors and seniors to have a different probability of having an opportunity

to contribute, but assume that this is equal among agents of the same group. In line with

the binary project assumption, we assume that agents of group m get a payoff θm > 0

when the project is completed, and zero otherwise. To distinguish strategic considerations

from technological incentives for gradualism, we assume that the cost of contributing is

linear. We rule out history-dependent strategies (as in Marx and Matthews (2000)) by

focusing on Markov perfect equilibria (MPE), in which strategies are a function of the amount

outstanding for completion of the project. Consistent with the within-group homogeneity in

fundamentals, we focus on symmetric MPE. We assume there are no deadlines, or asymmetric

information among agents.

Our analysis highlights several new findings that are consistent with stylized facts commonly

observed in these contexts. First, the equilibrium outcomes of our model display gradualism;

i.e., agents (inefficiently) delay completion of the project, making small steps towards com-

pletion. While gradualism has been explained in models with strictly convex costs (Admati

and Perry (1991), Kessing (2007)), history-dependent outside options (Compte and Jehiel

(2004)), history-dependent strategies (Marx and Matthews (2000)) or moral hazard (Bonatti

and Hörner (2011), Giorgiadis (2014)), with decentralized sequential contributions, gradual-

ism emerges entirely due to in-group free riding. Second, due to out-group free riding, our

model also generates inaction on the path of play; i.e., at different points in time, no work

is done on the project with positive probability. Inaction matters to equilibrium outcomes

directly, through its effect on delay, and indirectly, by changing the organization of work

within the group. In fact, we show that in large projects, the combination of inaction and

gradualism leads to contribution cycles, wherein juniors and seniors alternate taking respon-

sibility for moving the project forward as the “active group,” while members of the other

group do nothing.

We now provide a brief intuition for our main results. Consider first behavior near project

completion. Because delaying completion is costly, any agent is willing to finish the project

outright if the project is sufficiently advanced. Generically, however, one group— say,

juniors—is willing to contribute more. Seniors can thus credibly commit to reducing the

size of their contributions, relying on juniors to finish otherwise. This is due to asymmetry

in preferences between groups, and the binary nature of the project, which leads to dynamic

strategic complementarities.
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As the project is farther from completion, seniors split their work into smaller contributions.

More precisely, we show that for project sizes for which juniors are still willing to finish the

project outright, seniors play a cutoff strategy with a sequence of cutpoints {s1(k)}, moving a

project in state s ∈ [s1(k), s1(k+1)] only to s1(k). Due to the fact that delay increases along

the sequence, in-group free riding leads seniors to produce smaller and smaller contributions

as the project is farther away from completion, so |s1(k)− s1(k + 1)| decreases with k, and

the sequence {s1(k)} converges to a limit s1.

As the number of steps and the associated delay introduced by senior agents increases,

juniors’ willingness to contribute increases as well. For them, the more sluggish seniors

become, the more attractive completion becomes in order to avoid costly delay. We show

that the compounding of these incentives leads to an extreme form of out-group free riding,

in which from a maximal state s = φ1, juniors finish the project outright, while seniors

remain inactive, contributing nothing (i.e., s1 < φ1). Out-group free riding thus leads to

inaction.

On the other hand, we show that in-group free riding leads to gradualism. In particular,

any sufficiently large project is segmented into a sequence of small projects {[φ`, φ`+1]}, each

“owned” by agents of exactly one group. Formally, because juniors finish the project outright

up to φ1, the equilibrium of the game has a recursive structure. Because there are multiple

agents within each group, incentives to contribute are never extinguished in one-shot, but

rather conserved by the existence of a dependable peer on whom an agent of the active group

can free ride. The size of each small project is thus reduced by in-group free riding, while

the number of small project segments increases.

Figure 1: Junior (blue) and senior (red) agents alternate contributing in stints of small
projects towards completion of the project.

Because “owning” a small project is costly, this partition of the project leads to contribution

cycles, where juniors and seniors alternate taking steps towards completion of the project.

Different from the one-to-one alternation typically assumed in the literature, however, cycles

in our environment are asymmetric and are endogenously determined by free-riding incen-

tives. Typically, one group carries out multiple small projects consecutively, while the other

3



only bears responsibility for one small project in a single stint. In particular, we show that

the group of agents who are active contributors in “long” stints of contribution steps is

the group for which in-group free-riding incentives are larger (i.e., the largest group), and

out-group free-riding incentives are smaller (i.e., the group which is more likely to have

opportunities to contribute).

Unsurprisingly – in the context of public goods without commitment – equilibrium outcomes

are inefficient. This inefficiency takes two forms. First, due to gradualism and inaction

along the path of play, there is inefficient delay. In fact, expected delay grows more than

proportionally with project size, and goes to infinity as the project size approaches the

maximum level that is completed in equilibrium. Second, some welfare-enhancing projects

are not completed. What’s more, due to in-group free riding, this is true even as frictions

vanish (as agents become arbitrarily patient).

Our results speak to an influential observation by Mancur Olson in his landmark work The

Logic of Collective Action (1965, p. 35):

This suboptimality or inefficiency [in provision of a collective good] will be somewhat

less serious in groups composed of members of greatly different size or interest in the

public good. In such unequal groups, on the other hand, there is a tendency toward an

arbitrary sharing of the burden of providing the collective good. The largest member, ...

who would on his own provide the largest amount of the good, bears a disproportionate

share of the burden of providing the collective good.

Olson’s suggestion that inefficiency in public good provision would attenuate with greater

within-team heterogeneity, is borne out by our analysis. We show that a team composed of

two equally large groups can complete larger projects than a fully homogenous team, even

as the difference in preferences for completion among the two groups is arbitrarily small. In

addition, if the project is sufficiently large, the two-group team always completes the project

strictly faster in expectation. Olson’s intuition that asymmetries across the agents will lead

to work being shared unequally is also reflected in our model locally, since only a subset of

the agents bear the burden of each small project. However, we show that in the context

of multi-group teams, the overall share of work within the project borne by a given group

m is not determined only (or primarily) by preference intensity, as Olson suggests, but by

in-group and out-group free-riding incentives.

The remainder of the paper is structured as follows. Section 2 provides a review of the

related theoretical and experimental literature on inter-group collaboration within teams,

particularly in public goods provision. In Section 3, we outline the model in detail. Section
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4 is the heart of the paper’s analysis and contains all main results. Section 4.1 derives

equilibrium behavior within each “small project,” while Section 4.2 builds on this work to

characterize the equilibrium structure in large projects. Section 5 concludes. All proofs are

in the Appendix (proofs of Lemma 4.1 and Theorem 4.9 are in the Online Appendix).

2 Related Literature

Our paper is related to the literature on dynamic contributions to public goods. The general

problem considered by this literature is how free-riding incentives are changed by dynamic

considerations.

Two early papers are Fershtman and Nitzan (1991) and Admati and Perry (1991). Fersht-

man and Nitzan (1991) consider a problem in which the public good delivers continuous

benefits, and study the efficiency of public good provision in steady state. Admati and

Perry (1991), instead, consider a binary project, in which benefits are attained only when

the project is completed, as in our paper. The distinction between continuous and binary

public goods is fundamental for dynamic free-riding incentives. As pointed out by Kessing

(2007), in continuous public goods, efforts are strategic substitutes across time. In this case,

contributions lead to a reduction of effort in the future. In binary public goods, instead,

efforts are strategic complements across time, in that a higher contribution by one agent

induces larger contributions in the future.2 The latter is a basic feature of our model, as well

as of Admati and Perry (1991), Compte and Jehiel (2003, 2004)), Kessing (2007), Giorgiadis

(2014), and Bowen, Georgiadis, and Lambert (2016). On the other hand, Battaglini, Nun-

nari, and Palfrey (2014) and Harstad (2016), consider models in which the public good gives

continuous benefits, as in Fershtman and Nitzan (1991), while Marx and Matthews (2000)

consider both cases.

Our paper is most closely related to Admati and Perry (1991) and Compte and Jehiel

(2003). Admati and Perry (1991) consider a model in which two homogeneous agents take

turns in making contributions to the public good. Admati and Perry show that if the cost of

contributing is strictly convex, the game has an essentially unique SPE path, in which agents

make gradual contributions to the project.3 If the contribution cost is linear, the inefficient

2This induces inefficient delay due to a time-consistency problem, because contributing more heavily early
on and then reducing effort is not credible. In order to prevent others from free riding, each player delays
her contributions inefficiently.

3This assumes the cost of provision is not “too high”; otherwise the public good is not provided and
agents contribute nothing. This threshold is inefficient, in the sense that some socially desirable projects
may not be completed.
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equilibrium with gradual contributions still exists, although there is also a no-delay, “one-step

completion” equilibrium.

Compte and Jehiel (2003) consider a variant of Admati and Perry’s model in which agents

differ in their valuation of the good and focus on the case of linear costs. Compte and Jehiel

show that whenever the project is socially desirable, the project is completed as players grow

infinitely patient, and in equilibrium, each player makes only one large contribution. Thus,

the gradual equilibrium of Admati and Perry appears not to be robust to asymmetries in

agents’ valuations.4 Compte and Jehiel conclude that “the sunk character of contributions

does not per se provide a satisfactory explanation of the commonly observed contribution

pattern in which agents alternate in making small steps towards the completion of the trans-

action.”

Our paper considers a similar environment as that in Compte and Jehiel (2003), but with

multiple agents of each type, and no pre-specified order of play. Instead, agents are selected

randomly to make a contribution. We show that cycles emerge endogenously in equilibrium

if the project is large enough. In this equilibrium, agents make partial contributions to the

public good, recovering the gradualism in Admati and Perry (1991). Moreover, we show that

our model produces the result of Compte and Jehiel (2003) in which the project is completed

in two steps in the special case in which there is exactly one agent of each type.5 We conclude

that gradualism and alternation can appear as a purely strategic phenomenon (without

strictly convex costs), provided there are in-group free-riding incentives. The emergence of

endogenous contribution cycles is, to the best of our knowledge, new to the literature.

The gradualism present in the equilibrium of our model is captured in the literature through

different incentive structures. Compte and Jehiel (2004) consider a variant of the model

in Compte and Jehiel (2003) in which each party has the option to terminate the game,

and in case of termination, the pay-offs obtained by players depend on the history of offers

or concessions made in the bargaining process. They show that history-dependent outside

options can lead to gradualism. Kessing (2007) generalizes the gradualism of Admati and

Perry (1991) that arises from convex costs to a differential game counterpart, with n > 1

homogeneous agents. Differently to most papers in the literature, Marx and Matthews (2000)

focus on history-dependent strategies. They show that allowing contributions to be made

slowly over time enhances efficiency in some equilibria, even though individual contributions

4The key idea behind this result is that with asymmetry in valuations, the player who values the project
most is unable to commit not to complete the project whenever the amount left to be contributed is inferior
to his valuation. Thus, in equilibrium, the player who values the project most makes the last contribution
and the cost of that contribution is equal to his valuation for the project.

5In our case, however, the non-active type of agent displays inaction.
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are private information. In these equilibria, players’ contributions are supported by the threat

of stopping cooperation.6 Finally, Bonatti and Hörner (2011) consider an “experimentation”

model of public good provision. Completing the project requires a breakthrough, which in

turn requires effort. Some projects can never be completed, and achieving a breakthrough

is the only way to ascertain the project’s type. Agents’ choice of effort is unobserved by the

other agents, which leads them to postpone effort, as in other work reviewed here. However,

unlike these related papers (including our own), the effort expended decreases over time due

to growing pessimism.

Furthermore, we consider in our paper how the recognition probabilities of different types and

the scale of the project affects equilibrium structure and efficiency. Bowen, Georgiadis, and

Lambert (2016) consider a problem in which agents choose the scale of the binary project.

The analysis for fixed project size builds on the model proposed by Kessing (2007), with

two heterogeneous agents. The main contribution of the paper is to analyze how institutions

for the collective decision of the scale of the project (unanimity/dictatorship) affect equilib-

rium outcomes in this setting. Giorgiadis (2014) focuses on institutional design in dynamic

contribution games. He studies this problem in a continuous time moral hazard model with

simultaneous contributions, in which contributions advance the project stochastically, and

effort choices are unobservable.7

Finally, our paper also connects to a wide experimental literature analyzing the effects of

group heterogeneity and team stratification on contributions to public goods. The experi-

mental literature has nearly exclusively focused on the case of continuous public goods. Chan,

Mestleman, Moir, and Muller (1999) study team heterogeneity along two dimensions— initial

endowments amongst agents, and their valuations for the public good. They show that under

complete information, heterogeneity in exactly one dimension— that is, either endowment

or valuation heterogeneity, but not both— spurs an increase in contributions. In a linear

public good provision game, Chakravarty and Fonseca (2014) study the effects of the degree

of team fragmentation on contribtuions, by altering the size of the “minority” sub-group.

They find that as long as a minority sub-group existed ex ante, increasing its size leads to

lower public good provision. We recover a similar effect in our binary public good model

by noting that sub-group size and in-group free riding are intertwined (see Subsection 4.1).

Kölle (2015) posits a central research question similar to our own, focusing on “how, and

6 A key part of the argument is to show that these strategies can be implemented even when the identity
of the deviator is not common knowledge.

7A key result for his analysis in the underlying contribution game is that members of a larger team work
harder than members of a smaller team both individually and on aggregate if and only if the project is
sufficiently far from completion.
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to what degree collective action is affected by inequality among group members.” He deter-

mines that while asymmetric valuations have detrimental effects on voluntary contributions,

asymmetric capabilities— or costs of contribution— have a positive effect. In our model, the

role of costs and valuations is interchangeable. Other related experimental studies include

Fisher, Isaac, Schatzberg, and Walker (1995) and Buckley and Croson (2006).

3 The Model

We consider a model in which n agents collaborate to produce a public good, which requires

q units of investment. There is an infinite horizon, t = 1, 2, . . .. In each period t, an

agent i selected at random has the opportunity to invest ei(t) ≥ 0 towards the public good.

Contributing e units has a cost C(e) = ce, for c > 0. Letting e(t) denote the contribution

made in period t by the agent selected in that period, the amount of effort outstanding for

completion of the good at the end of period t is

s(t) = max{s(t− 1)− e(t), 0}, with s(0) = q.

There are two groups of agents, m = 1, 2, and nm > 1 agents of type m = 1, 2.8 For

convenience, we refer to group 1 agents as juniors, and to group 2 agents as seniors. We

assume that the probability that any particular individual of group m is selected is πm =

π̃m/nm, where π̃1 + π̃2 = 1. The payoff of a group-m agent i is:

U i = (1− δ)
∞∑
t=1

δt−1
[
um(s(t))− cei(t)

]
,

where um(s(t)) = 0 for s(t) > 0 and um(0) = θm > 0.

An equilibrium is a (group) symmetric Markov perfect equilibrium. The state is the amount

outstanding for completion of the good, s ∈ S = [0, q]. A pure strategy for a group-m agent

i is a function σm(·) : S → R+, where σm(s) denotes the investment of an agent of group-m

in state s when she has the opportunity to contribute.

For any s ∈ (0, q], the payoff for a group-m agent of contributing e ∈ [0, s] at s ∈ S when is

8We postpone the analysis of the case where there is some j ∈ {1, 2} such that nj = 1 to the Remarks
below.
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her time to play is

Wm(e, s) = δV m(s− e) + (1− δ) [um(s− e)− ce] , (3.1)

where the value of a player i of type m in state s, V m(s), satisfies (i) V m(0) = θm and (ii)

for any s > 0, letting σm(s) = arg maxe≥0 W
m(e, s),

V m(s) =
2∑
j=1

π̃j
[
δV m(s− σj(s)) + (1− δ)um(s− σj(s))

]
− πmc(1− δ)σm(s). (3.2)

We formally define our notion of equilibrium discussed above, as follows.

Definition 3.1. A (group) symmetric MPE in pure strategies is a pair (σ1(·), σ2(·)) such

that (3.1) - (3.2) hold for all s ≤ q

4 Results

In this section, we present our results. We begin by analyzing “small” projects in Section 4.1.

We define a project as small if there exists an equilibrium in which the project is completed

immediately with positive probability, and denote the largest small project by φ1. After

characterizing equilibria of small projects, we turn to our main analysis in Section 4.2. We

show that any project of size q > φ1 can be seen as a sequence of small projects. Thus, the

equilibrium can be characterized recursively. Using these tools, we characterize equilibrium

outcomes in large projects, in particular contribution cycles and efficiency.

4.1 Small Projects

We begin by establishing that in equilibrium, there exists a unique threshold w(1) > 0 such

that the project is completed without delay if and only if s ≤ w(1).

Lemma 4.1. In equilibrium, σm(s) = s for all m ∈ {1, 2} if and only if s ≤ w(1), where

wm(1) ≡
(

1

1− δπm

)
θm

c
and w(1) ≡ min{w1(1), w2(1)}. (4.1)

The logic for the result is straightforward. First, for s sufficiently small, it is a dominant
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strategy for any agent to finish the project outright.9 For notational purposes, let σ̂m denote

outright completion by group-m agents (i.e., σ̂m(s) = s for any s). We next find the threshold

wm(1) such that for all s ≤ wm(1), it is a best response for a group-m agent to finish

the project outright whenever all other agents do the same. The payoff for completing the

project from state s is Wm(s, s|σ̂m, σ̂m′) = θm−(1−δ)cs. Since for e < s, Wm(e, s|σ̂m, σ̂m′) =

δ [θm − πm(1− δ)c(s− e)]−(1−δ)ce, which is decreasing in e, this threshold is given by (4.1).

By construction, it is an equilibrium for all agents to finish the project outright whenever

s ≤ w(1) = min{w1(1), w2(1)}. Moreover, since contributions are strategic substitutes, the

equilibrium conjecture (σ̂m, σ̂m
′
) maximizes free riding incentives for any agent. Thus, this

is in fact the unique equilibrium for s ≤ w(1). Finally, note that if wm(1) < wm
′
(1), then

σm(s) < s whenever s ∈ (w(1), wm
′
(1)]. Thus for s > w(1), there is delay with positive

probability.

Given the significance of wm(1) for the construction of equilibrium that follows, we consider

the generic case where w1(1) 6= w2(1).10 For presentation purposes we assume that juniors

have a higher willingness to finish the project than seniors; i.e., w2(1) < w1(1).

Given this labeling, as we have seen, seniors do not immediately finish the project when

they have an opportunity to play at s > w(1). Because contributions are strategic substi-

tutes, this implies there is s′ > w1(1) such that any junior agent still completes the project

immediately whenever s ≤ s′. Let φ1 denote the largest such s; that is, the largest state

s such that juniors finish the project outright in equilibrium. How would seniors react in

states (w(1), φ1]? We show that for all states s below some threshold s1 ≤ φ1, seniors use

a cutpoint strategy in equilibrium, gradually moving the project towards completion when

they have an opportunity to play.

Definition 4.2. We say that σm is a cutpoint strategy in [a, b] ⊆ S if there is a strictly

increasing sequence {s(k)}Kk=0, with K possibly infinite, such that

1. s(0) ≡ a, and limk→K s(k) = b,

2. σm(s) = s− s(k − 1), ∀s ∈ (s(k − 1), s(k)] and ∀k : 1 ≤ k ≤ K.

Note that by our previous arguments, in equilibrium seniors follow a cutpoint strategy in

[0, w(1)]. So let s1(0) = 0 and s1(1) = w(1), and consider a state s > w(1) close to w(1). We

9This is intuitive: if the agent does not finish outright, she can at best expect another agent to finish
the project tomorrow for sure. Thus, the payoff for waiting is at most δθm. On the other hand, finishing
outright gives a payoff θm − c(1− δ)s which is higher than δθm whenever cs < min{θ1, θ2}.

10That is, for all but a measure zero of the parameter-values {θm}, πm, δ, w1(1) 6= w2(1).
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Figure 2: Summary of equilibrium behavior by both sub-groups, close to project completion.

know already that seniors don’t finish the project outright whenever s > w(1). In fact it is

easy to see that seniors will contribute at most s−w(1): making a contribution that jumps

over w(1) without finishing the project doesn’t reduce delay, but reduces the maximum

benefit of free riding, as any investment above w(1) could be saved with some probability.

On the other hand, investing e ∈ (0, s−w(1)) is also wasteful. Given that σ2(s) ≤ s−w(1),

seniors are strictly better off by choosing e = 0 for s close to w(1). Thus, in equilibrium, for

s close to s(1), seniors must either move the project to s(1) or remain inactive.

By an analogous argument to that used to establish the existence of w(1), there must exist

s sufficiently close to w(1) such that a senior member is strictly better off expending the

effort to move the project to w(1) rather than not contributing. This inequality is preserved

up to some point s1(2) > w(1), at which senior members would be indifferent between

contributing e = s1(2) − w(1) and contributing zero, given the equilibrium conjecture that

σ2(s1(2)) = s1(2) − w(1). It follows that, in equilibrium, seniors follow a cutpoint strategy

in [0, s1(2)]. We can then extend this logic recursively for states s > s1(2), provided at each

step k, s1(k) < φ1.

The previous argument — which we make precise in the proof of Proposition 4.3 — shows

that in equilibrium, seniors follow a cutpoint strategy for all s ≤ min{φ1, limk→K s1(k)}.
This is intuitive, and in line with the logic in Admati and Perry (1991), Compte and Jehiel

(2003), and other papers in the literature. Remarkably, though, we show that in this context,

in equilibrium this process must come to a halt at a point s1 strictly below φ1. Thus, there is

a region [s1, φ1] within which seniors do not contribute at all, while juniors finish the project

outright (see Figure 3). This is an extreme form of free riding from seniors, who in this

region of the state space fully rely on juniors finishing the project right away.

Proposition 4.3. In equilibrium,
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Figure 3: Equilibrium in Small Projects, in the generic case w1(1) > w2(1).

1. Juniors finish the project outright for all s ≤ φ1; i.e., σ1(s) = s for all s ≤ φ1, where

φ1 =

(
1

1− δ + δπ̃1
(
n1−1
n1

)) θ1

c
. (4.2)

2. Seniors follow a cutpoint strategy in [0, s1] ⊂ [0, φ1] with cutpoints given by

s1(k) =
1−

(
δπ̃2

(
n2−1
n2−δπ̃2

))k
1− δπ̃2

θ2

c
< s1 ≡

(
1

1− δπ̃2

)
θ2

c
∀k ≥ 1, (4.3)

3. s1 < φ1; seniors do not contribute (σ2(s) = 0) for all s ∈ [s1, φ1].

To understand part two of the result, note that seniors’ behavior drastically changes around

each s1(k). In fact, when a senior has an opportunity to contribute at s = s1(k) + ε, it must

be that she prefers to contribute in order to reach the cutoff s1(k) instead of overshooting

and contribute to reach any other s < s1(k). On the other hand, at s = s1(k) − ε, it must

be that she prefers to contribute in order to reach the cutoff s1(k − 1) instead of staying in

state s1(k)− ε. Taking the limit as ε→ 0 we get

δV 2(s1(k)) + c(1− δ)s1(k) = δV 2(s1(k − 1)) + c(1− δ)s1(k − 1)

which gives

δV 2(s1(k)) = θ2 − c(1− δ)s1(k). (4.4)

On the other hand, note that for all k in the sequence, and all s ∈ (s1(k − 1), s1(k)], the
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value (3.2) for a group-m agent is

V m(s) = π̃1θm + π̃2δV m(s1(k − 1))− πmc(1− δ)σm(s) (3.2b)

Combining (4.4) with (3.2b) for m = 2 gives

s1(k) =
1

1− δπ2

θ2

c
+

δπ2

1− δπ2
(n2 − 1)s1(k − 1). (4.5)

Three points are noteworthy. First, note that the equilibrium cutpoints s1(k) are uniquely

determined. Second, note that solving this difference equation allows us to characterize the

equilibrium values V m(s) for both types, for all s ≤ min{φ1, limk→K s(k)}, using equation

(3.2). Third, note that

s1(k)− s1(k − 1) =
1

1− δπ2

(
θ2

c
− (1− δπ̃2)s1(k − 1)

)
is decreasing in k. Thus, seniors’ contributions become smaller the farther away from com-

pletion the project is. This is one form of delay that arises in equilibrium: seniors partially

free ride both sub-groups’ contributions. The further away from completion, the lower the

expected value of contributing just a small amount, and the higher the incentives to free

ride. To compensate for this, it must be that the cost borne by a senior decreases, which

means reducing the amount of the marginal contribution.

To understand the inaction gap (s1 < φ1), from the third part of Proposition 4.3, consider

some k̂ ∈ {1, 2, . . . , ...} as the maximal finite index of the sequence {s1(k)}k̂k=1, at which

any senior contributes to reach s1(k̂ − 1). That is, suppose seniors use exactly k̂ cutpoints

below φ1. Let s̃(1, k̂) be the state s at which any junior agent is indifferent between finishing

outright and not contributing, given that any senior has exactly k̂ cutpoints below s̃(1, k̂).

Furthermore, assume that there is an equilibrium in which s1(k̂) < s̃(1, k̂) ≤ s1(k̂ + 1), a

necessary condition for the seniors’ cutoff strategy to be composed of exactly k̂ cutpoints.

We show by contradiction that this is not possible.

Given that w1(1) > w2(1) = w(1), seniors must have at least one cutpoint strictly below

w1(1). Consider then k̂ = 1, and note that, in fact, s̃(1, 1) must also be greater than w1(1).

Since w1(1) is the maximal point at which any junior completes the project given that

seniors also do so at w1(1), and this is not the case in equilibrium at w1(1), it follows that

s̃(1, 1) > w1(1). In particular, since juniors cannot rely on seniors to complete the project

at w1(1), their ability to out-group free ride is attenuated. Hence, the maximal contribution
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junior agents are willing to make to complete increases.

Note that once k̂ < ∞ is fixed and the assumption about equilibrium s1(k̂) < s̃(1, k̂) ≤
s1(k̂ + 1) in place, it is straightforward to calculate the value functions for this equilibrium

candidate. We use these value functions to determine s̃(1, k̂) explicitly. As k̂ increases, the

incentives for juniors to complete the project are compounded, as seniors take progressively

smaller steps, pushing s̃(1, k̂) farther away. We show that in fact s1(k̂ + 1) < s̃(1, k̂) for all

k̂, contradicting our assumption about equilibrium. It follows that in equilibrium we must

have an infinite sequence of cutpoints strictly below φ1.

Figure 4: Eliminating the possibility of Finitely Many Cutpoints Below φ1.

There are three key take-away points from Proposition 4.3. First, small projects have a

unique equilibrium. Second, in equilibrium, agents of group m̃ = arg minm{wm(1)} (i.e.,

juniors) finish the project outright whenever they have an opportunity to move, while agents

of the other group (i.e., seniors) make gradual contributions, or no contributions at all.

Third, the size of seniors’ gradual contributions vanishes as we move farther away from

completion, and eventually seniors do not contribute at all. Thus in [s1, φ1], only juniors

contribute on the path of play. Given this, the values at the “beginning” of the small project

are independent of the details of seniors’ cutpoint strategy, and given by

V 1(φ1) =

(
(1− 1/n1)π̃1

1− δ + (1− 1/n1)δπ̃1

)
θ1 and V 2(φ1) =

(
1− π̃2

1− δπ̃2

)
θ2 (4.6)

In-group and Out-group Effects. At the core of these results is the tradeoff be-

tween delay and free-riding for each agent. To understand how this tradeoff is resolved in

equilibrium, it is useful to decompose free-riding incentives into two distinct components:

in-group and out-group effects. Agents in our model can free ride on their group peers, and

on the other sub-group. The incentive to free-ride on peers is the in-group effect, and is
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parametrized by nm. The incentive to free-ride on members of the other sub-group is the

out-group effect, and is parameterized by π̃m.

Consider first in-group effects. In principle, in-group effects can have both direct and indirect

consequences for equilibrium. Thus, a change in the number of juniors can affect seniors’

equilibrium strategy and vice-versa. However, provided the change in the number of agents

in each group does not affect the ranking w1(1) > w2(1), in-group effects only affect the

behavior of agents of the same group, in equilibrium. In fact, note that the number of junior

members affects the small project size, φ1, but not the sequence of cutpoints {s1(k)} in

seniors’ strategy, or its limit s1. Similarly, for any k finite, the size of the senior group affects

the cutpoint s1(k), but not the inaction gap or the size of the small project— s1 or φ1.

With this noted, characterizing in-group effects in small projects is straightforward. Reduc-

ing the number of juniors (reducing in-group free riding incentives) increases the maximum

size of the project that juniors are willing to complete outright, φ1. As the numbers of

juniors in the team decreases, there is a higher chance that any single junior member would

have to contribute in the next period, were she to shirk in the current period. Since at φ1 a

junior must be indifferent in equilibrium between shirking and finishing outright, the lower

benefit of shirking must have the effect of increasing the amount of effort required to finish

the project. As we can see from (4.6), both the direct and the indirect equilibrium effects of

reducing the number of juniors in the team have a negative impact on juniors’ value at the

cutpoint, lowering V 1(φ1). For exactly the same reason, reducing the number of seniors in

the team increases the size of each increment s1(k)− s1(k− 1) along the sequence of seniors’

strategy cutpoints (see equation (4.5)). However, because φ1 is not affected by the size of

the senior group, both V 1(φ1) and V 2(φ1) are unchanged.

Next, we consider out-group effects. Possibly counterintuitively at first, increasing π̃1 (nom-

inally reducing out-group free riding incentives for juniors) shrinks the size of the largest

project that juniors are willing to complete outright, φ1. To understand why this is the case,

note that since juniors are the only ones contributing at φ1, the beneficial effect of free-riding

to out-group agents is quashed. Indeed, in this case, there is no action by seniors to free-ride

on. Quite to the contrary, each period a senior agent is given an opportunity to contribute,

progress on the project remains stalled. Thus, as π̃1 increases, delay decreases, lowering the

cost of shirking. Hence, φ1 must decrease in order to restore indifference for a junior at the

cutpoint. As a result, increasing π̃1 increases V 1(φ1) and V 2(φ1).11

11 Reducing π̃1 has the effect of increasing all senior members’ cutpoints {s1(k)}, as expected. Because
the prospect of free riding on juniors is less likely, shirking becomes less attractive. Since at any cutpoint
s1(k), seniors must be indifferent between shirking or moving to the next cutpoint, s1(k − 1), the cost of
contributing must increase, increasing s1(k). Since this holds for all previous cutpoints in the sequence,
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So far, we have assumed that nm > 1 for all m ∈ M . Before moving on to efficiency

considerations, we consider the special case of single-agent teams.

Single-Agent Teams. The basic structure of equilibria remains essentially unchanged if

there is only one agent in any group. However, equilibrium outcomes have some noteworthy

features, resulting from the elimination of in-group free riding. The case n1 = 1 < n2

is unremarkable, with the exception that having a single junior member maximizes the

set of projects that are completed immediately with positive probability. Consider next

n2 = 1 < n1. Note that by (4.3), s1(k) = w(1) = s1 for all k ∈ N. In this case, the single

senior agent takes one step whenever s ≤ s1, and remains inactive in [s1, φ1]. Since s1 and

φ1 are not a function of n2, making n2 = 1 has an unambiguous effect of reducing delay in

small projects. Not surprisingly, when n2 = 1 = n1 we have a combination of both cases:

more projects are completed immediately with positive probability, and there is less delay

in states close to completion.

Efficiency. In Proposition 4.3 we showed that for any small project with q ∈ (w(1), φ1],

there is delay in equilibrium with positive probability. Efficiency, on the other hand, requires

that the project be completed if and only if total benefits exceed total costs,

∑
m

nmθm ≥ c(1− δ)q ⇔ q ≤ n1θ1 + n2θ2

c(1− δ)
,

and that whenever the project is completed, it is completed outright. Since w(1) =
(

1
1−δπ2

)
θ2

c
,

it follows immediately that there is a nonempty set of projects for which the equilibrium is

inefficient. In fact, given our equilibrium characterization, we can compute the expected

time for completion of the project from any state s ≤ φ1, as

E(s) =


1−(π̃2)k

π̃1 if s ∈ (s1(k − 1), s1(k)], for k = 1, . . .

1
π̃1 if s ∈ [s1, φ1]

. (4.7)

Using (4.3) to substitute the cutpoints in terms of primitives, it follows that for any project

q < s1,

E(q) = (1− (π̃2)ψ(q))/π̃1, where ψ(q) ≡

⌈
log
(
1− cq

θ2
(1− δπ̃2)

)
log
(
δπ̃2

(
n2−1
n2−δπ̃2

)) ⌉
. (4.8)

the effect of reducing π̃1 compounds over time shifting s1(k) more the higher k is. Thus, in equilibrium,
∂s1(k)/∂π̃2 > ∂s1(k − 1)/∂π̃2 > 0 for all k ≥ 1.
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Note that ψ(q), and therefore E(q), are weakly increasing in the total cost of the project cq,

and weakly decreasing in the value that senior agents put on completion of the project, θ2.

Moreover, as we discussed before, increasing the number of senior agents reduces the size of

each increment s1(k)− s1(k− 1) along the sequence of seniors’ strategy cutpoints, and does

not affect s1 or φ1. As a result, the expected delay for q < s1 is also weakly increasing in the

number of senior agents in the group. Interestingly, expression (4.8) shows that there is an

upper bound on expected delay for any q ≤ φ1, given by 1/π̃1. Thus, even when a change of

parameters leads to a large increase in the k such that q ∈ (s1(k − 1), s1(k)], this does not

lead to a proportional increase in the expected time for completion.

4.2 Large Projects

We now move to studying the equilibrium of the contribution game for any possible project

length q. Our first result justifies the attention we paid to understanding small projects. We

show that any project of size q > φ1 can be seen as a sequence of small projects. Thus, the

equilibrium can be characterized recursively, following the analysis of Section 4.1.

Theorem 4.4. There exists an almost everywhere unique equilibrium in pure strategies. The

equilibrium is characterized by an increasing sequence {φτ}ττ=0, with φ0 = 0 and τ possibly

infinite, such that:

(i) For any τ ≥ 1, there is a unique mτ ∈ {1, 2} such that

(a) σmτ (s) = s− φτ−1 for all s ∈ (φτ−1, φτ ], and

(b) σ−mτ is a cutpoint strategy in [φτ−1, sτ ] for a sτ < φτ , and σ−mτ = 0 in (sτ , φτ ].

(ii) The sequence {φτ} converges to a limit φ̃ > 0, and for τ > 1,

φτ − φτ−1 =

(
1

1− δ + δπmτ (nmτ − 1)

)
δV mτ (φτ−1)

c
. (4.9)

(iii) If q < φ̃, the project is finished in finite time, and otherwise, the project is never started;

i.e., σm(s) = 0 ∀s ∈ [φ̃, q] and m ∈ {1, 2}.

The basic intuition for this result relies on two key facts. First, note that at any s > φ1,

agents of both groups are not willing to contribute more than the needed amount to reach

φ1, i.e. σm(s) ≤ s− φ1. It follows that no agent moves the project beyond φ1 at any s > φ1

(see Lemma A.1 in the Appendix). This implies that for the project to be completed from
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s > φ1, the project at some point reaches φ1 and has to transit through φ1 on the equilibrium

path. It follows then that the game can be truncated at

φ1 =

(
1 +

δ(1− π̃1)

1− δπ1 − δ(1− π̃1)

)
w1(1)

by considering φ1 as the terminal state, which pays out δV m(φ1) when φ1 is attained.

Second, recall that the equilibrium characterization in Proposition 4.3 relied solely on the

labeling assumption that w2(1) < w1(1). In a similar fashion, when considering the truncated

game at φ1, we define

wm(2) ≡ 1

1− δπm
δV m(φ1)

c
= wm(1)

δV m(φ1)

θm

Proposition 4.3 gives that m2 = {m = 1, 2 : wm(2) > w−m(2)} is the active contributor in

this new small project. Equilibrium behavior in this second small project is described by

replacing juniors (group 1) for type m2, wm(1) for wm(2), and θm for δV m(φ1) (see Figure

5).

Figure 5: Successively truncating the game at the maximal point at which either type is
willing to contribute to the previous terminal node, and applying our equilibrium character-
ization for small projects, we obtain the equilibrium structure of Theorem 4.4 recursively.

Note that generically, w1(τ) 6= w2(τ) for any τ ≥ 1, so we can continue to characterize

the equilibrium for the full game, by recursively truncating the game at each state φτ that

determines the upper bound of step τ , for a given φτ−1.12 Continuing this process, we

continue to obtain the same structure recursively. Proceeding in this fashion, parts (i) and

12Generically projects are finished in a finite number of steps, or contributions never start. In the former,
generically wm(τ) 6= wm

′
(τ), while in the latter this equality cannot be ruled out by standard measure

theoretic arguments. Nevertheless, in any equilibrium with τ → ∞, the case in point, contributions never
start generically. In that sense, there could be multiple equilibria that sustain all equilibria in which projects
are never finished, and hence, V m(q) = 0.
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(ii) of the theorem follow immediately from our analysis in Section 4.1. For (iii), note that

if φτ → φ̃ < q, then for each m ∈ {1, 2},

wm(τ) :=
δV m(φτ−1)

c(1− δπm)
→ 0,

for else, φτ ≥ φτ−1+min{w1(τ), w2(τ)}, which would contradict convergence of {φτ}. Hence,

V m(φτ )→ 0, so that V m(φ̃) = 0. It follows that at any s > φ̃, contributing nothing is strictly

prefered by both types to contributing any positive amount.

4.2.1 Endogenous Contribution Cycles

In this section, we explain the emergence of contribution cycles. From Theorem 4.4, there

is generically a unique contributor at each cutpoint φτ . We call m(τ) the active contributor

in step τ , and let −m(τ) = {m ∈ M : m 6= m(τ)}. From (4.6), and using δV m(φ1) as the

terminal payoffs in the truncated game, for all τ > 1 we have:

V mτ (φτ ) = αmτV mτ (φτ−1) and V −mτ (φτ ) = β−mτV −mτ (φτ−1) (4.10)

where

αm ≡ δπm(nm − 1)

δπm(nm − 1) + (1− δ)
and βm ≡ δ(1− π̃m)

1− δπ̃m
.

Clearly, both αm < 1 and βm < 1, so agents’ values decrease as we move farther away from

completion. Moreover, from (4.10),

V mτ (φτ )

V −mτ (φτ )
= ∆mτ

V mτ (φτ−1)

V −mτ (φτ−1)
where ∆m ≡ αm

β−m
< 1, (4.11)

reflecting the fact that the value of the active contributor decreases faster than that of the

non-active contributor. Note that the equilibrium payoff of non-active contributors only

decreases with τ due to impatience and delay, which occurs when one of them is selected

to contribute. Thus their value decreases with τ faster the smaller is the probability that

a contributor is selected to contribute, π̃mτ , and the lower is the discount factor δ. On the

other hand, the contributor’s value decreases with τ due to impatience, delay, and due to

the cost of moving the project forward. Since this expected cost is smaller the larger the

within-group externalities, their value decreases slower the larger nmτ is.

Since the value of the active contributors decreases with τ faster than the value of the non-

active contributors, whenever the same group plays the role of active contributor in successive
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small projects, initial differences in willingness to pay at any given state φτ wash out the

farther away from φτ the process is. This opens the possibility that seniors can be active

contributors in earlier phases of the game if juniors are exclusively responsible for finishing

a sufficiently large number of small projects in the later phases. In particular, note that for

any τ ≥ 1, an agent of group m is the active contributor for small project τ if and only if

1 < Ωm(φτ ) ≡ wm(φτ )/w
−m(φτ ). Since wm(τ) = δVm(φτ−1)

c(1−δπm)
is linear in V m(φτ−1), the growth

rate of Ωmτ (φτ ) is equal to the growth rate of V mτ (φτ−1)/V −mτ (φτ−1), and then by (4.11),

we have:

Ωmτ (φτ+1) = ∆mτΩmτ (φτ ). (4.12)

Expression (4.12) allows us to determine the identity of the active contributor, mτ , recur-

sively. Note that by construction we must have Ωmτ (φτ ) > 1. Given this, mτ+1 = mτ if and

only if Ωmτ (φτ+1) > 1, or equivalently ∆mτΩmτ (φτ ) > 1. We use this result to study the

emergence of contribution cycles.

We begin by providing a necessary and sufficient condition for agents of different types

to alternate in the role of active contributors. Recall that by assumption, m1 = 1 (i.e.,

junior agents finish the last small project). Suppose juniors remain in the role of active

contributors for a stint of h(1) ≥ 1 consecutive steps. Noting that Ω1(φτ ) = (∆1)τ−1Ω1(φ1)

for all τ ≤ h(1) + 1, there is a switch in the identity of the active contributor at h(1) + 1 if

and only if

Ω1(φh(1)+1) < 1 < Ω1(φh(1)) ⇔ (∆1)h(1) < Ω2(φ1) < (∆1)h(1)−1.

Since ∆1 < 1, and by assumption Ω2(φ1) < 1, there exists a unique h(1) ∈ Z+ that satisfies

this inequality, which is given by

h(1) =

⌊
1 +

logw2(1)− logw1(1)

log (∆1)

⌋
. (4.13)

Together with (4.9), which pins down the size of each small project τ ≤ h(1), (4.13) pins

down the maximal project size for which there is no alternation in active contributors. While

this does not necessarily imply that only juniors contribute on the path of play (as seniors

can make partial steps in an initial small project τ if φτ−1 < q < sτ ), it does rule out

contribution cycles for projects that are not sufficiently large, as the project transitions from

φτ−1 to φτ−2, from φτ−2 to φτ−3, and so on, with contributions by juniors in each small

project, with possible delay at each point whenever a senior agent has an opportunity to

move.
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Remark 4.5. The equilibrium has no contribution cycles if and only if

q <

(
1

1− δπ̃2 − δπ̃1/n1

)
1− (α1)h(1)

(1− α1)

θ1

c
= φh(1).

Provided q > φh(1), the final stint of h1 small projects in which juniors are active contributors

is preceded by a stint of steps in which seniors are active contributors. How does this process

evolve for q large? Suppose seniors remain in the role of active contributors for a stint of

h(2) ≥ 1 consecutive steps. Note that for all τ such that h(1) + 1 ≤ τ ≤ h(1) + h(2) + 1,

Ω1(φτ ) =
1

(∆2)τ−h(1)−1
Ω1(φh(1)+1) =

(∆1)h(1)

(∆2)τ−h(1)−1
Ω1(φ1).

Thus, there is a switch in the identity of the active contributor at h(1) +h(2) + 1 if and only

if

Ω1(φh(1)+h(2)) < 1 < Ω1(φh(1)+h(2)+1) ⇔ (∆1)h(1)

(∆2)h(2)−1
< Ω2(φ1) <

(∆1)h(1)

(∆2)h(2)
.

Since ∆1 < Ω2(φ1)/(∆1)h(1)−1 < 1 by definition of h(1), there is an h(2) ≥ 1 that satisfies

this inequality. This alternation between juniors and seniors in the role of active contributors

continues until the associated sequence of contributions φτ − φτ−1 in each step τ converges

to zero, or the cumulative contributions reach q (whichever happens earlier). This gives one

of our main results.

Theorem 4.6 (Contribution Cycles). For any integer k ≥ 1, define recursively the total

number of steps up to and including stint k as H(k) ≡ H(k − 1) + h(k), letting H(0) = 0.

Let ι(k) = 1 if k is odd, ι(k) = 2 if k is even, and Ω1(φ0) ≡ 1−δπ2

1−δπ1
θ1

θ2
. Then for all k ≥ 1:

mτ =

1 if H(2k − 2) < τ ≤ H(2k − 1)

2 if H(2k − 1) < τ ≤ H(2k),

where the number of steps in stint k, h(k), is given recursively by:

Ωι(k)(φH(k)) = [∆ι(k)]h(k)Ωι(k)(φH(k−1)) and ∆ι(k) < Ωι(k)(φH(k)) < 1. (4.14)

Theorem 4.6 shows that in the generically unique equilibrium, agents belonging to distinct

sub-groups within the team endogenously alternate actively contributing to the public good,

until either the sequence {φτ} converges or q is reached. This defining feature of equilibrium
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endogenizes the alternation in player contributions that was heretofore exogenously imposed

in the related literature, following Admati and Perry (1991). To our knowledge, our paper

is the first to demonstrate the emergence of endogenous contribution cycles in equilibrium.

In-group and Out-group Effects. In general, each contribution stint k can consist of

multiple small projects. However, in the special case in which ∆1 = ∆2 = ∆, the ratio of

values changes at the same rate when junior and senior agents are active contributors. As a

result, asymmetries in the length of the contribution stints by each group lead to imbalances

in the ratio of values which are inconsistent with equilibrium. In fact, in this case we must

have that with the exception of the final stint, juniors and seniors take turns completing a

single small project.13 Now, note that

∆m =
(nm − 1)(1− δπ̃−m)

nm(1− δπ̃−m)− δπ̃m

Therefore, if groups are symmetric, so that nm = n/2 and π̃m = 1/2 for all m ∈ M , then

∆1 = ∆2 = ∆. We then obtain the following result:

Corollary 4.7. If both groups have equal in-group and out-group free-riding incentives, then

h(k) = 1 for all k > 1.

When ∆1 6= ∆2, the rate of change of Ωm(φτ ) varies with the identity of the active con-

tributor, and one-step cycles may not be sufficient to maintain a balance in the relative

willingness to pay. In order to restore equilibrium, then, the length of contribution stints

by each group must be asymmetric. In our next result, we characterize the asymmetry in

contribution cycles.

Proposition 4.8. If ∆m′ < ∆m, contribution cycles alternate between single-step stints by

type m′ agents and stints of either xm or xm + 1 small projects by group-m agents, where

xm ≡
⌊

log[∆m′ ]

log[∆m]

⌋
�

Two points are worth emphasizing. First, note that the length of each stint k > 1 does not

depend on relative preference intensity. This is because in equilibrium, the last contribution

13To see this formally, note that from Theorem 4.6, at any k odd for equilibrium we need ∆1 < Ω1(φH(k)) <

1 and ∆2Ω1(φH(k)) < [∆2]h(k+1) < Ω1(φH(k)). If ∆1 ≥ ∆2, we get that
(
∆2
)h(k+1)

> (∆2)2, and hence
h(k + 1) = 1. On the other hand, if ∆1 ≤ ∆2, we get that h(k + 2) = 1.
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stint by juniors eliminates all differences in willingness to pay across members of both groups

due to differences in preference intensity. As a result, in earlier stages of the game, the de-

termination of the identity of the active contributor solely depends on free-riding incentives,

as captured by nm and π̃m.

Second, note that if both groups have equal size, then ∆1 > ∆2 if and only if juniors are

more likely to be selected to contribute (π̃1 > 1/2). Similarly, if both groups are equally

likely to contribute, then ∆1 > ∆2 if and only if juniors outnumber seniors.

The first case balances out in-group free riding incentives. Proposition 4.8 says that the group

of agents who are active contributors in “long” stints of small projects is the group for which

out-group free-riding incentives are smaller. While this result might appear counterintuitive

at first glance, the logic is familiar to us from the analysis of Section 4.1. What determines the

length of a contribution stint is how fast the ratio of values V mτ (φτ−1)/V −mτ (φτ−1) decreases

towards balance when type m is the active contributor. As we showed in Section 4.1, the

reason for the counterintuitive sign of the out-group effect on type m agents is that at the

cutpoint φ(τ), type −m agents don’t make positive contributions. Thus, shifting recognition

probability to the opposite group effectively does not increase free-riding opportunities for

type m agents, and increases delay. As a result, increasing π̃mτ leads to a lower depreciation

of the value of the active contributors.

The second case balances out-group effects across groups. Proposition 4.8 says that the

group of agents who are active contributors in “long” stints of contribution steps is precisely

the group for which in-group free-riding incentives are larger. This is because a larger group

size means a smaller expected dent in the value of the active contributors in each step, since

other agents of the same group can also foot the bill. Thus, it takes a longer stints of small

projects to achieve balance in the value ratio.

The previous results fully characterize equilibria of the game. In Section 4.2.2, we analyze

the efficiency of equilibrium outcomes. Before doing so, we consider equilibria of the game

in the special case in which one or both groups are composed of a single member, so there

are no in-group free riding incentives.

Single-Agent Teams. Suppose n1 = n2 = 1. From our analysis in Section 4.1, the

equilibrium for small projects in this case is characterized by cutpoints

s1(1) =
θ2/c

1− δπ̃2

and φ1 =
θ1/c

1− δ
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such that σ1(s) = s ∀s ≤ φ1, σ2(s) = s ∀s ≤ s1(1), and σ2(s) = 0 ∀s ∈ (s1(1), φ1]. Since

at the cutpoint φ1 the single junior agent is indifferent between completing the project and

not contributing, we must have V 1(φ1) = 0. This implies that for all s > φ1, only the senior

member contributes. It is easy to see then that σ2(s) = s− φ1 for all s ∈ (φ1, φ2] with

φ2 = φ1 +
δπ̃1

1− δπ̃2

θ2/c

1− δ

and V 2(φ2) = 0. It follows that the project is completed if and only if

q ≤ 1

1− δ

[
θ1

c
+
δ(1− π̃2)θ2

c(1− δπ̃2)

]
, (4.15)

and if completed, is completed in at most two steps.

This result is analogous to the main theorem of Compte and Jehiel (2003) (see Proposition 1

in that paper). We can think of the above result as extending their finding to the case where

recognition among two heterogeneous agents is stochastic instead of sequentially determined.

Theorem 4.9 shows that this result depends crucially on there being a single agent of each

group, and thus on the non-existence of in-group free-riding incentives.

Next, suppose n2 > 1 and n1 = 1. As in the previous case, here φ1 = (θ1/c)/(1 − δ) and

V 1(φ1) = 0, and the single type 1 agent is unwilling to contribute for any s > φ1. The game

truncated at final node φ1 now only involves senior agents, who are fully homogeneous, as

in Admati and Perry (1991). The equilibrium of the truncated game is characterized by the

sequence

φτ = φ1 +
δπ̃1

1− δπ̃1

∆2

(n2 − 1)

[
1− (∆2)τ

1−∆2
− 1

]
s1 for τ > 1

with associated values

V 2(φτ ) = (∆2)τ−1 π̃1

1− δπ̃2

θ2,

recovering the structure of the equilibrium in Admati and Perry (1991).

4.2.2 Efficiency Considerations

We now analyze the efficiency of equilibrium outcomes. We consider two distinct questions

related to efficiency: (i) whether all welfare-improving projects are completed, and (ii) what is

the delay incurred in finishing efficient projects. Finally, we also compare both the completion

of welfare-improving projects and delay to those within a team of homogenous agents.
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Our normalization of utility by factor 1 − δ affects both the project’s infinite-lasting flow

of payoffs and the one-stage cost of each paid contribution. This normalization simplifies

the expressions of the value function as θm represents both a flow payoff and the discounted

utility of the project. For any δ < 1 this double role of θm does not affect the arguments

above and, in particular, does not affect the efficiency considerations. However, as δ → 1,

any finite contribution in a single period vanishes relative to the discounted utility of the

infinite-lasting project. Hence, when discounting disappears, efficiency considerations are

more subtle. To simplify the expressions in this section, we consider a project that, once

completed, lasts for T finite periods and delivers θm in each period. The utility of such a

finished project to agent i of type m = 1, 2 is

U i = (1− δ)
T∑
t=1

δt−1θm = (1− δ)θ̂m where θ̂m ≡
(

1− δT

1− δ

)
θm.14

Implementable Projects. By expression (4.9) in Theorem 4.4, for any τ > 1, if type m

is the unique contributor at τ ,

φτ − φτ−1 =

(
1

1− δπ̃−m − δπm

)
δV m(φτ−1)

c
.

where

V m(φτ−1) =

αmV m(φτ−2) if m(τ − 1) = m

βmV m(φτ−2) if m(τ − 1) 6= m

Since αm < βm < 1, the value Vm(φτ ) is decreasing in τ , and goes to zero as τ → ∞. It

follows that the incremental contribution φτ − φτ−1 is decreasing in τ and goes to zero as

τ → ∞. This means that the sequence {φτ} converges to a point φ̃. The threshold φ̃ gives

the size of the smallest project that will not be completed in equilibrium.

Now, note that using (4.9) and the derived values for each agent at the end of any given

contribution stint, we can calculate φH(k) for any k ≥ 1. In particular, note that the values

at the end of any given stint k only depend on the number of times each agent contributes

up to the kth stint. For instance, for k ≥ 1 odd, we have

V 1(φH(k)) = [α1]h(k)[β1]h(k−1)V 1(φH(k−2))

14Note that limδ→1
Ui

1−δ = limδ→1 θ̂
m = limδ→1

1−δT
1−δ θ

m = Tθm. Hence, the payoff of an agent i in group

m = 1, 2 is U i = (1− δ)
∑∞
t=1 δ

t−1 [um(s(t))− cei(t)
]
, where um(s(t)) = 0 for s(t) > 0 and um(0) = θ̂m > 0.
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and

V 2(φH(k)) = [β2]h(k)[α2]h(k−1)V 2(φH(k−2))

Proposition 4.8 then allows us to obtain an upper bound for the limit φ̃. We present the exact

characterization of this bound in the proof of Theorem 4.9. Using this bound, we address

the question of whether all projects which would be efficient to pursue – i.e., projects such

that cq < (n1θ̂1 + n2θ̂2) – are in fact completed. We call these projects efficient for short.

We show that in equilibrium not all efficient projects are completed, even in the limit as

δ → 1.

Theorem 4.9. For any δ < 1, cφ̃ < θ̂1 + θ̂2. Hence, (i) for any fixed δ < 1, some efficient

projects are not completed. Moreover, (ii) since nm > 1 for any m ∈ {1, 2}, then even in the

limit as δ → 1, some efficient projects are not completed.

The qualification that nm > 1 for any m ∈ {1, 2} is important. As we discussed in the

previous section, when n1 = n2 = 1 the project is completed if and only if (4.15) holds, and

if completed, it is completed in at most two steps. It follows that

cφ̃n1=n2=1 = θ̂1 +
1− π̃2

1− δπ̃2
δθ̂2

which implies that in the limit as δ → 1, all efficient projects are completed. We thus see

that as agents become arbitrarily patient, in-group free riding (possible only when nm > 1

for at least one m ∈ {1, 2}) is uniquely responsible for inefficiency in project completion.

Delay. As we have shown before, the incremental contribution φτ−φτ−1 in (4.9), is decreas-

ing in τ and goes to zero as the sequence {φτ} approaches the limit φ̃. It follows that the num-

ber of steps required to finish a project of size q, H(k̂(q)), where k̂(q) ≡ min{k : φH(k) ≥ q},
(i) is an increasing and convex function of q, and (ii) H(k̂(q))→∞ as q → φ̃. Because the

number of steps in each contribution stint is fixed, this means that the number of contribution

stints required to complete a project of size q, k̂(q), is also an increasing and convex function

of q, such that k̂(q)→∞ as q → φ̃. In our next result, we use the structure of equilibrium

strategies characterized in the previous section to compute the expected delay E (q) associ-

ated with completion of a project of size q. In particular, we first show that the expected

completion time of a project that requires k̂(q) contribution stints, {h(1), . . . , h(k̂(q))} is

given by

Ẽ (q) ≡ E
(
{h`}k̂(q)

`=1

)
=

k̂(q)∑
`=1

(
h(`) + π̃m−`(π̃m`)

h(`)−2
)
,
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where ι(k) = 1 if k is odd and ι(k) = 2 if k is even.

By Proposition 4.8, moreover, we know that if ∆m′ < ∆m, contribution cycles alternate

between stints of either xm or xm + 1 steps by group-m agents, and single-step stints by

group-m′ agents, while if ∆m′ = ∆m, both groups alternate in single-step stints. We can

then split the terms of the above expression in stints taken by each group, and incorporate

this information to compute tight bounds on expected delay for a project of size q.

Proposition 4.10. Suppose q = φ` for ` > h(1), and let E1 ≡ h(1) + π̃2(π̃1)h(1)−2. If

∆m ≥ ∆m′, the expected delay associated with completion of a project of size q is:

Ẽ (q) = E1 +

(
k̂(q)− 1

2

){
(1 + x) +

π̃m
π̃m′

+ π̃m′(π̃m)x−2

}
.

for some x ∈ [xm, xm + 1], where xm ≡
⌊

log[∆m′ ]
log[∆m]

⌋
.15 In particular, Ẽ (·) is an increasing and

convex function, and limq→φ̃ Ẽ (q) =∞.

Proposition 4.10 quantifies delay from any member of the sequence {φ`}. Therefore, together

with the characterization for delay in small projects given by (4.8), we have a full characteri-

zation of delay from arbitrary q. Proposition 4.10 connects the two components of efficiency

discussed in this paper. The first, inherently tied with the structure of equilibrium we char-

acterized, is gradualism and the associated inefficient delay. The second, from theorem 4.9,

is the result that some efficient projects are not completed, even as δ → 1. Proposition

4.10 shows that the expected delay increases non-linearly with the size of the project, and

goes to infinity as the size of the project approaches the smallest project not completed in

equilibrium, φ̃. Thus, the expected delay is a smooth measure of both types of inefficiency.

Comparison with Homogenous Teams. Despite the prevalence of inter-group cooper-

ation in the real world, the case of homogenous teams remains an important benchmark in

the literature. How does deviating from this benchmark, by introducing groups with distinct

incentives, affect equilibrium outcomes?

To help fix ideas, consider 2n agents who participate in the completion of a binary project.

We compare the performance of a team in which each of the 2n agents has an identical value

15We state the result for an odd number of contribution stints. In the proof of Proposition 4.10, we also
provide the result for the case of an even number of contribution stints. Note also that the expression of
expected delay in the proposition assumes that the project starts exactly at a cutpoint, i.e., q = φ` for some
` > h(1). It is straightforward to compute expected delay when the project starts at a point interior to a
small project, using the expression (4.8) for expected delay in small projects.
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of θ for completing the project, to one in which there are two payoff-distinct groups – n

group 1 members obtain payoff θ + ε and n group 2 members θ − ε, for some ε ∈ [0, θ],

upon completion. For ease of exposition, we assume that in both teams, each agent is

equally likely of being recognized to contribute (i.e., has probability 1/2n), and each has

per-unit contribution cost c. Thus, the set of welfare-enhancing projects is the same across

both teams. In line with the previous analysis, for each team, we examine both the set of

implementable projects and expected delay, conditional on completion, for any δ and n. We

are particularly interested in the case where ε ↘ 0, as this indexes the marginal effect of

introducing inter-group heterogeneity within a team.

Implementable Projects. We begin by noting that equilibrium behavior within the homoge-

nous set of agents is akin to that of a two-group team in which the recognition probability

of the “other group” vanishes. That is, the behavior of any agent within this arrangement

mirrors that of seniors in the two-group case, under the proviso that the recognition proba-

bility of juniors, π̃1, goes to zero, even as they remain the group with the larger incentive to

complete.16 We denote the cut-points used by the agents {t(k)}∞k=1. Using expression (4.3),

we obtain

t(k) =
1

1− δ

[
1−

(
δ · 2n− 1

2n− δ

)k]
θ

c
< t =

θ

c(1− δ)
, (4.16)

where t ≡ limk→∞ t(k), and thus represents the largest project implementable by the team

of homogenous agents.

On the other hand, our previous analysis directly allows us to obtain the maximum project

size φ̃ undertaken by the two-group team. In particular, our assumptions guarantee17 that

∆1 = ∆2, so that by Corollary 4.7, h(k) = 1 for k > 1. Note that the group 1 agents— who

have a higher value for the project— will be active near completion. Thus, from Theorem

4.4, the values to members of each group, respectively, at the start of the final small project

16As in the rest of the paper, here we restrict to symmetric MPE. A possible question is whether we
could support the equilibrium behavior of the two-group case in the single group case, by arbitrarily dividing
members into two equal size groups and impose that members of group 1 complete the project outright from
any cutpoint s1(k) of group-2 members. One can check that in fact this is a valid equilibrium construction;
it is however not robust. In particular, when costs deviate even an arbitrarily small degree from linearity to
become convex— i.e., c(e) = c · e1+ν for ν small— an equilibrium of this form no longer exists. On the other
hand, the equilibrium we consider for homogenous agents is robust to this perturbation (it is the limiting
equilibrium as ν → 0). The same is true for the equilibrium described for the two-group case throughout
the paper, where groups are distinguished by tangible heterogeneity in values or recognition probabilities.

17The incentives to free-ride are the same across both groups, since each has the same recognition proba-
bility, 1

2 , and the same number of agents, n, within it.
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are given by V 1(φ1) = α/δ · (θ + ε) and V 2(φ1) = β/δ · (θ − ε), where

α =
δ(n− 1)

2n− δ(n+ 1)
, β =

δ

2− δ
.

Clearly, m2 = 2 if and only if V 2(φ1) > V 1(φ1). We thus obtain a global one-to-one

alternation in group responsibility over small projects, whenever ε <
(

1−δ
(2−δ)n−1

)
θ. Suppose

this inequality holds. Using (4.9) and (4.10) recursively, we directly obtain

φk =
2n

c(2n− δ (n+ 1))


b k−1

2
c∑

`=0

(αβ)` + β ·
b k
2
c−1∑
`=0

(αβ)`

 θ +

b k−1
2
c∑

`=0

(αβ)` − β ·
b k
2
c−1∑
`=0

(αβ)`

 ε
 ,

with

lim
k→∞

φk ≡ φ̃ =
2n

c(2n− δ (n+ 1))

(
1

1− αβ

)
((1 + β)θ + (1− β)ε) .

We see from above that, within the prescribed range for ε, the size of the largest imple-

mentable project is increasing in inter-group heterogeneity (i.e., in ε). We now consider

the marginal introduction of heterogeneity within the team by letting ε → 0 in the above

expression. The largest implementable project in the limit is

φ̃ = Rδ(n) · θ
c
, where Rδ(n) ≡ 2n

2n− 2δ(n+ 1) + δ2
,

substituting for α and β, and simplifying. By comparison with t in (4.16), the gain in the

size of the largest implementable project in the two-group setting over the homogenous team

is given by

Γδ(n) · θ
c
, with Γδ(n) ≡ Rδ(n)− 1/(1− δ).

It follows that the two-group team is able to complete a larger set of welfare-enhacing projects

whenever Γδ(n) > 0. But, by direct inspection, Γδ(n) is a strictly decreasing function of n,

with limn→∞ Γδ(n) = 0. Hence, this is universally the case for any δ, n.

We thus illustrate an important principle: the introduction of within-team heterogeneity in

the form of value-differentiated groups improves the size of the largest implementable project

by an amount bounded away from 0, for any fixed δ, n. As n grows large, this benefit decreases

and becomes zero in the limit, as shown in the left panel of Figure 6.

Delay. We now compare project completion times across the two team structures, focusing

again on the case where ε ↘ 0. The analysis we have done so far is nearly sufficient to

undertake this comparison. Suppose q = φk, as in the characterization of delay given by
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Project Size Expected Delay

Figure 6: Efficiency Comparison Across Homogenous and Two-Group Teams. The left panel
plots the difference in the size of the largest implementable project between two groups and
a homogenous team, as a function of team size. The pink (blue) area on the right panel plots
the set of (n, k) for which expected delay is smaller (larger) in the two group team than in
the homogeneous team.

Proposition 4.10. Consider first the two-group team. We know the expected completion

time for a project of size q is exactly 2k periods, since each small project takes two periods

to complete in expectation. This is because exactly one of the two teams completes it

outright, and the recognition of a member of either team in each period is 1
2
. On the other

hand, the homogenous team moves precisely one cutpoint—that is, from t(`) to t(` − 1)—

in each period. Hence, the two-group team achieves project completion strictly faster than

the homogenous team if and only if φk > t(2k).

Moreover, because limk→∞ φk = φ̃ > t = limk→∞ t(2k), it follows that for any δ, n, there

exists k∗(δ, n) ∈ N such that φk > t(2k) whenever k ≥ k∗(δ, n). In the right panel of

Figure 6, the pink region represents those (n, k) for which the two-group team completes

the project φk strictly faster than the homogenous team, while the blue region indicates

where the homogenous team performs weakly better. Hence, k∗(δ, n) is non-trivial— that

is, for large n and δ, projects of relatively small size are completed more efficiently with

homogenous teams. As the total project size increases, however, eventually the two-group

team always dominates in performance.
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5 Conclusions

In this paper, we study inter-group collaboration within a team of agents through a model

of sequential contributions to a joint project, in a decentralized environment. We assume

the joint project is a binary public good, delivering benefits inexcludably to the team of

agents only once completed, and that there is no deadline or asymmetric information among

agents. Crucially, we focus on the case where the team is naturally divided into two sub-

groups, each of which has a distinct value from completing the project. This particular

problem has several real-world analogues— concerted lobbying amongst firms from different

economic sectors, a socio-economically divided population engaging in collective action, and

junior and senior scholars collaborating on research, to name but a few.

We show that if the project is sufficiently large, the unique equilibrium of the model dis-

plays endogenous contribution cycles, in which agents from different groups within the team

alternate making gradual contributions towards project completion. Importantly, within

this structure, delay, inaction, and alternation in work between the sub-groups — familiar

features of the teamwork setting— all emerge as features of equilibrium. Neither collabora-

tion between homogenous, nor fully heterogenous agents captures these stylized facts. This

points to the salience of the inter-group case as a descriptive framework for collaborative

settings whenever contributions are transparent and decentralized. Indeed, even when they

are not facially evident, it is natural to think that divisions and self-categorizations within

a team certainly do exist. Our results are suggestive of the important role played by such

group fragmentation.

By focusing on the case of two sub-groups, we are able to clearly examine the roles of in-

group and out-group free riding, which underpin our results. First, our results show that

delay is a clear consequence of in-group free riding. With nm = 1, in-group free riding

incentives dissipate and the single group-m agent contributes at most once. The existence

of multiple agents in each group is thus responsible for delay and gradualism. On the other

hand, out-group free riding is responsible for inaction. In particular, as the group of agents

with a smaller incentive to move the project forward (say seniors) takes more and more steps

to complete a progressively larger task, the incentive for juniors to move forward in order

to avoid delay on the path of play increases. This leads to an extreme form of out-group

free riding wherein any junior with an opportunity to contribute completes the small project

with a single contribution, and senior agents remain inactive. Together, gradualism and

inaction (or in- and out-group free riding) lead to the emergence of a “small project” as the

core segment of work in equilibrium, and the emergence of alternation through endogenous
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contribution cycles across the two sub-groups.

In the paper, we focused on binary public goods/joint projects. In this case, members of the

team only reap benefits when the project is completed. In other cases, agents may also obtain

a flow payoff even if the project is incomplete; i.e., um(s(t)) = rm(q − s(t)) for s(t) > 0 and

um(0) = qrm + θm > 0. All of our analysis extends to this case, with suitable modifications,

when the flow payoff rm is “small.” Thus, our conclusions can be extended to applications in

which the terminal payoff dominates. When the flow payoff rm is large relative to terminal

payoffs θm, however (e.g., collaboration across countries to reduce carbon emissions), the

strategic analysis changes qualitatively. This is because in binary public goods settings,

agents’ efforts are strategic complements across time (in that a higher contribution by one

agent induces larger contributions in the future), while in continuous public good settings,

efforts are strategic substitutes across time (i.e., contributions lead to a reduction of effort

in the future). We believe that extending the analysis in this paper to the continuous public

good case would be a promising avenue for future research.

In addition to the theoretical contributions we have emphasized throughout our discussion,

our paper also provides guidance for applied research. In the equilibrium of our model, agents

with the higher valuation for completion ex ante will assume responsibility for finishing the

project in the final stages, but do not necessarily make larger contributions than agents with

lower ex ante valuation at all points in time. Moreover, the prevalence of inaction across

groups, and the length of contribution stints by agents in both groups are solely determined

by in- and out-group free riding incentives, and not ex ante valuations for completion. This

suggests that in this context, strategic considerations are a key element to be considered in

linking parameters to observed data.

♦ ♦ ♦
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A Proofs

Proof of Proposition 4.3. We prove this in a series of steps.

Step 1. Suppose s1(2) is such that σ1(s) = s for all s ≤ s1(2). Then:

1. For any s ∈ (s1(1), s1(2)], σ2(s) = s− w(1).

2. For any s > s1(2), σ2(s) ≤ s− s1(2).

Proof. Suppose s ∈ (s1(1), s1(2)], and consider the problem of a senior (i.e., group 2) agent,
i. We have shown that for s > w(1), σ2(s) < s. Contributing e ∈ (s − w(1), s) is clearly
dominated, since by moving to w(1) the project will be finished at the same time, with lower
expected costs. Thus, σ2(s) ∈ {0, s− w(1)}.

Suppose first σ2(s) = s − w(1) for all s ∈ (s1(1), s1(2)]. Note that since in equilibrium all
agents finish the project outright for s ≤ w(1), if agent i contributes e = s− w(1), she gets
a payoff

W 2(s− w(1), s) = δV 2(w(1))− (1− δ)c(s− w(1))

= δ
[
θ2 − π2c(1− δ)w(1)

]
− (1− δ)c(s− w(1)).

(A.1)

Now suppose i deviates and contributes e ∈ [0, s − w(1)), say e = s − w(1) − ε, with
0 < ε ≤ s− w(1). This gives her a payoff

W 2(e, s) = δV 2(w(1) + ε)− (1− δ)c(s− w(1)− ε)
= δ

[
π̃1θ2 + π̃2

(
δV 2(w(1)

)
− π2(1− δ)cε

]
− (1− δ)c(s− w(1)− ε)

= δθ2(π̃1 + δπ̃2)− (δ)2π̃2(1− δ)π2cw(1)− (1− δ)c(s− w(1)) + ε(1− δ)c(1− π2δ)
(A.2)

Note that this expression is increasing in ε. Thus, the binding deviation is e = 0, or
ε = s− w(1). This is not a profitable deviation iff

s ≤
(

δπ̃2

1− δπ2

)
θ2

c
+

{
1− δπ2(2− δπ̃2)

1− δπ2

}
w(1)

⇔ s ≤ w(1) + w(1)

[
δπ2(n2 − 1)

1− δπ2

]
= s1(2).

Suppose instead that in equilibrium σ2(s) < s−w(1) for some s ∈ (s1(1), s1(2)]. Note that the
equilibrium payoff for a senior agent at s is bounded above by the RHS of A.2. On the other
hand, a deviation to e = s− w(1) at s gives a payoff A.1. Since s ∈ (s1(1), s1(2)], it follows
that this is a profitable deviation, and thus in equilibrium we must have σ2(s) = s − w(1)
for all s ∈ (s1(1), s1(2)].

For part 2, note that our previous argument shows that σ2(s) < s − w(1) for all s > s1(2).
Now, for any such s, moving the project to any s ∈ (s1(2), w1) is clearly dominated by
moving the project to s1(2), since the project will be finished at the same time, with lower
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expected costs. Thus σ2(s) ≤ s− s1(2) for all s > s1(2).

Step 2. Suppose there is b ∈ R+ such that senior (group 2) agents follow a cutpoint strategy
in [0, b] and σ1(s) = s at all s ≤ b. Then

1. The sequence of cutpoints is described by (4.3):

s1(k) =
1−

(
δπ̃2

(
n2−1
n2−δπ̃2

))k
1− δπ̃2

θ2

c

2. The values for junior (group 1) agents are given by

V 1(s1(1)) = θ1 − π1n
1c(1− δ)s1(1), (A.3)

and for k > 1,

V 1(s1(k)) =

(
1− (π̃2δ)k

1− π̃2δ

)[
π̃1θ1

]
+ (π̃2δ)kθ1

− π1

(
1− δ

1− δπ̃2

)[(
1− (δπ̃2)k

1− δπ̃2

)
−
(
δπ̃2
)k (n2 − δπ̃2

1− δπ̃2

)[
1−

(
n2 − 1

n2 − δπ̃2

)k]]
θ2

(A.4)

Proof. Using (4.4) for s1(k) and s1(k − 1) in (3.2b) gives

s1(k) =
1

c

(
n2

n2 − δπ̃2

)
θ2 + δπ̃2

(
n2 − 1

n2 − δπ̃2

)
s1(k − 1) (A.5)

= w2(1) + δπ̃2

(
n2 − 1

n2 − δπ̃2

)
s1(k − 1)

Solving the difference equation, we have:

s1(k) =

[
k−1∑
`=0

(
δπ̃2

(
n2 − 1

n2 − δπ̃2

))`] [
1

c

(
n2

n2 − δπ̃2

)
θ2

]

and using that
∑k−1

`=0 x
` = 1−xk

1−x we get (4.3).

The values of junior agents for k = 1 follows trivially from the fact that agents in both
groups contribute to complete the project at s1(1). Consider k > 1. Note that the value for
a junior at s1(k) is

V 1(s1(k)) = π̃1θ1 + π̃2δV 1(s1(k − 1))− π1c(1− δ)s1(k) (A.6)

and
V 1(s1(k − 1)) = π̃1θ1 + π̃2δV 1(s1(k − 2))− π1c(1− δ)s1(k − 1)

So substituting, recursively,
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V 1(s1(k)) =

(
1− (π̃2δ)k−1

1− π̃2δ

)
π̃1θ1 + (π̃2δ)k−1θ1 − π1c(1− δ)

[
k−1∑
`=0

(π̃2δ)`s1(k − `)

]

and substituting s1(k − `), we get

V 1(s1(k)) =

(
1− (π̃2δ)k−1

1− π̃2δ

)
π̃1θ1 + (π̃2δ)k−1θ1

− π1(1− δ)θ2

k−1∑
`=0

(π̃2δ)`

1−
(
δπ̃2

(
n2−1
n2−δπ̃2

))k−`
1− δπ̃2




simplifying further, we have the expression in the statement of step 2.

Step 3. In any symmetric MPE, σ2(s) is a cutpoint strategy in [0, s1] for s1 ≡ supk≥1 s1(k)
if σ1(s) = s for all s ≤ s1.

Proof. We prove this result by induction. First note that by lemma 4.1 and step 1 above,
the statement is true up to k = 2, with s1(0) ≡ 0, s1(1) ≡ w(1), and s1(2) as defined in
step 1. Next, suppose the statement is true up to k, and consider s ∈ (s1(k), s1(k + 1)].
Note that if we show that for any s ∈ (s1(k), s1(k + 1)], σ2(s) ≤ s − s1(k), an argument
analogous to that of step 1 establishes the induction step. To prove this, we show that for
any s ∈ (s1(k), s1(k + 1)], if σ2(s) > s − s1(k), a senior (group 2) agent would gain by
deviating to contributing zero.

Note that since moving to a non-cutpoint is dominated by moving to a cutpoint, it is enough
to consider σ2(s) = s− s1(k − `) for all ` : 1 ≤ ` < k. In the proposed equilibrium, a senior
agent that gets to contribute would get a payoff

W 2(s− s1(k − `), s) = δV 2(s1(k − `))− (1− δ)c(s− s1(k − `)) = θ2 + r2q − (1− δ)cs

If instead she deviated to contributing zero, she would get

W 2(0, s) = δV 2(s)

Since by assumption σ2(s) = s − s1(k − `) and we know σ1(s′) = s′ for all s′ ≤ s1, at s we
have

V 2(s) = π̃2δV 2(s1(k − `)) + (1− π̃2)θ2 − π2c(1− δ)[s− s1(k − `)]

Therefore

W 2(0, s) = δθ2 − δπ̃2(1− δ)cs1(k − `)− δπ2c(1− δ)[s− s1(k − `)]
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Thus, contributing zero is a profitable deviation iff(
n2 − δπ̃2

n2

)
s− δπ̃2

(
n2 − 1

n2

)
s1(k − `) > θ2

c

Note that if this is satisfied for ` = 1, it is satisfied for all ` : 1 ≤ ` < k. Moreover, recall
that s > s1(k), so writing s = s1(k) + ε, for ε > 0, this is a profitable deviation iff

(
n2 − δπ̃2

n2

)
(s1(k) + ε)− δπ̃2

(
n2 − 1

n2

)
s1(k − 1) >

θ2

c

and using (A.5), the inequality becomes:(
n2 − δπ̃2

n2

)
ε > 0,

which always holds.

Having shown that for any s ∈ (s1(k), s1(k + 1)], σ2(s) ≤ s− s1(k), an argument analogous
to that of step 1 shows that in equilibrium σ2(s) = s − s1(k) for any s ∈ (s1(k), s1(k + 1)].
This completes the induction step, and concludes the proof of step 3.

Step 4. Suppose s1 < φ1 and σ1(s) = s for all s ≤ φ1. Then σ2(s) = 0 for all s ∈ [s1, φ1].

Proof. (i) First, note that for all s ∈ [s1, φ1], σ2 < s − s1(k) for all k in the sequence. The
formal argument is the same as part (i) of the proof of step 3, and therefore omitted here. (ii)
Now suppose for s ∈ [s1, φ1], σ2(s) ∈ [0, s− s1], say σ2(s) = s− s1 − ε, with 0 ≤ ε ≤ s− s1.
This gives her a payoff

W 2(e, s) = δV 2(s1 + ε)− (1− δ)c(s− s1 − ε)

Now, by part (i), any contribution e ∈ [0, s − s1] will never result in a move to a state in
which (directly or indirectly), a senior (group 2) agent advances the project to any s1(k) in
the sequence. Thus V 2(s1+ε) ≤ (1−π̃2)θ2. Hence, for any e = s−s1−ε, with 0 ≤ ε ≤ s−s1,

W 2(e, s) ≤ δ(1− π̃2)θ2 − (1− δ)c(s− s1 − ε)

It follows that if σ2(s) > 0 for any such s, a type two agent would gain by deviating to
contributing zero.

To complete the proof, we show that if σ2(s) = 0 for all s ∈ [s1, s1(1)], type 2 agents don’t
have a profitable deviation in this interval. Note that for any such s:

V 2(s) =

(
1− π̃2

1− δπ̃2

)
θ2
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A deviation to any cutpoint s1(k) gives

W 2(s− s1(k), s) = δV 2(s1(k))− c(1− δ)(s− s1(k))

= θ2 − (1− δ)cs1(k)− c(1− δ)(s− s1(k)) = θ2 − (1− δ)cs

where we used (4.4). This is a profitable deviation iff W 2(s− s1(k), s) > δV 2(s) or

s <

(
1

1− δπ̃2

)
θ2

c
= s1,

a contradiction.

Step 5. In any equilibrium, there are infinitely many cupoints {s1(k)} below φ1.

Proof. Assume, towards a contradiction, that there exists a k̂ <∞ such that

s1(k̂) < s̃(1, k̂) ≤ s1(k̂ + 1).

Recall from the text that, by definition, s̃(1, k̂) coincides with φ1 when there are exactly k̂
cutpoints of juniors below φ1. The above is thus a necessary condition to sustain an equi-
librium with exactly k̂ senior cutpoints.

(a) Note that if s1(k̂) < s̃(1, k̂) ≤ s1(k̂+ 1), it must be that σ2(s) = s− s1(k̂) and σ1(s) = s
for all s ∈ (s1(k), φ̂1(k̂)], so any junior agent’s value at s̃(1, k̂) is:

V 1(s̃(1, k̂)) = π̃1θ1 − π1c(1− δ)s̃(1, k̂) + π̃2δV 1(s1(k̂)) (A.7)

where V 1(s̃(1, k̂)) must verify:

δV 1(s̃(1, k̂)) = θ1 − c(1− δ)s̃(1, k̂)

and replacing in (A.7) we get

s̃(1, k̂) = w1(1)

[
1 +

δπ̃2

1− δ
θ1 − δV 1(s1(k̂))

θ1

]
(A.8)

(b) We then define18

ψ(k) :=
1−

(
δπ̃2

(
n2−1
n2−δπ̃2

))k
1− δπ̃2

θ2

c
.

Of course, for all k ≤ k̂, s1(k) = ψ(k). Thus, if ψ(k̂ + 1) < s̃1(1, k̂), then it cannot be that
there exists an equilibrium which prescribes k̂ cut-points for seniors below φ̂1(k̂). This is
because while junior agents contribute to complete the project, the maximal amount any

18Note that ψ is meant to disambiguate between the actual cutpoints s1(k), and those cutpoints of senior
agents that would exist if there were arbitrarily many cutpoints below φ1.
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senior agent is willing to contribute to obtain the state s1(k̂) is ψ(k̂+ 1)−ψ(k̂) < s̃1(1, k̂)−
s1(k̂). Thus, at s̃(1, k̂), only a junior agent would be willing to contribute, contradicting the
hypothesized equilibrium structure.

We now show precisely that s̃1(1, k) > ψ(k + 1) for all k ≥ 1.

Consider first the case k ≥ 2. From part ( a),

s̃(1, k̂) =

[
n1

n1 − δπ̃1

]
1

c

{[
1− δπ̃1

1− δ

]
θ1 −

(
δ2

1− δ

)
π̃2V 1(s1(k))

}
=

n1

n1 − δπ̃1
· 1

c

{
θ1 ·

[
1− (δπ̃2)k+1

1− δπ̃2

]
+ θ2T (n2)

}

where

T (n2) ≡
δ2π̃1π̃2

(
1− (δπ̃2)k

(
n2 − (n2 − 1)

(
1−

(
n2−1
n2−δπ̃2

)k)))
n1(1− δπ̃2)2

results from substituting V 1(s1(k)) from (A.4) and simplifying. Noting that

∂

∂n2

(
n2 − (n2 − 1)

(
n2 − 1

n2 − δπ̃2

)k)
= 1 + k

(
n2 − 1

n2 − δπ̃2

)k−1

− (k + 1)

(
n2 − 1

n2 − δπ̃2

)k
,

and that for any k, the function

f(x) = k · xk−1 − (k + 1)xk

has its maximum at x = k−1
k+1

with f(k−1
k+1

) =
(
k−1
k+1

)k−1
, we see that

∂

∂n2

(
n2 − (n2 − 1)

(
n2 − 1

n2 − δπ̃2

)k)
> 0.

Moreover, because

lim
n2→∞

[
n2 − (n2 − 1)

(
n2 − 1

n2 − δπ̃2

)k]
= (1− δπ̃2)k,

we see that

T (n2) > lim
n2→∞

T (n2) =
δ2π̃1π̃2

(
1− (δπ̃2)k (1 + (1− δπ̃2) · k)

)
n1(1− δπ̃2)2

.

Now, (δπ̃2)k(1 + k(1− δπ̃2)) is decreasing in k. Hence,

T (n2) >
δ2π̃1π̃2 (1− (δπ̃2)(2− δπ̃2))

n1(1− δπ̃2)2
> 0.
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Therefore, for any k ≥ 2,

s̃(1, k)

ψ(k + 1)
>

n1

n1 − δπ̃1
· θ

1

θ2
· 1− (δπ̃2)k+1

1−
(
δπ̃2

(
n2−1
n2−δπ̃2

))k+1
.

Further using the fact that w1(1) > w2(1) =⇒ n1

n1−δπ̃1 · θ
1

θ2
> n2

n2−δπ̃1 , we obtain

s̃(1, k)

ψ(k + 1)
>

n2

n2 − δπ̃2
· 1− (δπ̃2)k+1

1−
(
δπ̃2

(
n2−1
n2−δπ̃2

))k+1

=
(
1− (δπ̃2)k+1

)
·
[

n2(n2 − δπ̃2)k

(n2 − δπ̃2)k+1 − (δπ̃2)k+1(n2 − 1)k+1

]
:= R(n2, k).

For any fixed, arbitrary k, by direct inspection,

sgn

(
∂

∂n2
R(n2, k)

)
= sgn

((
n2(k + 1)− δπ̃2(kn2 + 1)

) (
δπ̃2(n2 − 1)

)k − (n2 − δπ̃2
)k+1

)
= −1.

That is, ∂
∂n2R(n2, k) < 0 so that from above,

s̃(1, k)

ψ(k + 1)
> R(n2, k) > lim

n2→∞
R(n2, k) = 1,

which yields the desired result s̃(1, k) > ψ(k + 1), for any k ≥ 2.

Consider now the case where k = 1. From part (a) and step 2, we have that

s̃(1, 1) =
n1(1 + δπ̃2)

n1 − δπ̃1

θ1

c
+

δ2π̃1π̃2 · n2

(n1 − δπ̃1)(n2 − δπ̃2)

θ2

c

by direct computation. By definition,

ψ(2) =
1− (δπ̃2 · n2−1

n2−δπ̃2 )2

1− δπ̃2
, so that

s̃(1, 1)

ψ(2)
>

n1

n1 − δπ̃1
· θ

1

θ2
· 1 + δπ̃2

1−(δπ̃2· n2−1

n2−δπ̃2
)2

1−δπ̃2

>
n2

n2 − δπ̃2
· 1− (δπ̃2)2

1− (δπ̃2 · n2−1
n2−δπ̃2 )2

(w1(1) > w2(1))

>
n2

n2 − δπ̃2
· 1− (δπ̃2)2

( n2−1
n2−δπ̃2 )2(1− (δπ̃2)2)

=
n2(n2 − δπ̃2)2

(n2 − δπ̃2)(n2 − 1)2
> 1.
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Again, we obtain the desired result in this standalone, residual case. This establishes that
there can be no eqbm. with finitely many senior cutpoints {s1(k)}k̂k=1 below φ1, for any k̂.

Step 6 (Conclusion). We now conclude the proof of Proposition 4.3. Step 5 rules out
equilibria in which there are finitely many senior cutpoints. Thus, any equilibrium must
have infinitely many cut-points with

s1 = lim
k→∞

s1(k) = lim
k→∞

1−
(
δπ̃2

(
n2−1
n2−δπ̃2

))k
1− δπ̃2

θ2

c
=

(
1

1− δπ̃2

)
θ2

c
< φ1.

Here, the second equality results from substituting the expression for s1(k) from (4.3), es-
tablished in Step 2, and the final inequality is a direct consequence of Step 5. We now verify
that the remaining candidate is, in fact, an equilibrium, and derive an explicit expression
for φ1. This completes the proof of the main proposition.

Step 3 uniquely identifies senior agent behavior as a cut-point strategy in equilibrium for
any s < s1 < φ1. Given the full completion (σ1(s) = s) by junior agents from any s ≤ φ1,
it must be the case in any equilibrium— from Step 4— that σ2(s) = 0 for all s ∈ [s1, φ1].
That is, the prescribed behavior of seniors is a best response to juniors’ putative strategy
σ1(s) = s for all s ≤ φ1. It thus only remains to show there is no profitable deviation for
juniors, given seniors’ behavior.

Given that s1 < φ1, and σ2(s) = 0 for all s ∈ (s1, φ1], we have V 1(φ1) = π̃1θ1 + π̃2δV 1(φ1)−
π1c(1− δ)φ1 and V 2(φ1) = π̃1θ2 + π̃2δV 2(φ1), and thus we have

V 1(φ1) =

(
1

1− δπ̃2

){
π̃1θ1 − π1c(1− δ)φ1

}
(A.9)

and

V 2(φ1) =

(
1− π̃2

1− δπ̃2

)
θ2 (A.10)

Since in equilibrium juniors’ values must verify

δV 1(φ1) = θ1 − c(1− δ)φ1,

(A.9) directly gives (4.2). Substituting in (A.9) and (A.10) gives (4.6). Next we show that
junior agents don’t have a profitable deviation in [0, φ1]. At φ1, by definition junior agents
are indifferent between completing the project or staying put. They clearly cannot gain
by moving to a non-cutpoint point, so it is enough to consider deviations to senior agents’
cutpoints.

In equilibrium, W 1(φ1, φ1) = θ1 − (1 − δ)cφ1. Say the agent deviates and moves to some
s1(k), contributing e′ = φ1 − s1(k). By doing this, she gets a payoff:

W 1(e′, φ1) = δV 1(s1(k))− (1− δ)c(φ1 − s1(k))
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This is not a profitable deviation iff

0 ≥ δV 1(s1(k)) + (1− δ)cs1(k)− θ1 ≡ L1
k (A.11)

Using now (A.6) we have that

L1
k

1− δ
= −θ1 +

δ

1− δ
π̃2L1

k−1 − δπ̃2cs1(k − 1) + (1− δπ1)cs1(k)

and replacing s1(k − 1) with the expression from (A.5) we get

L1
k

1− δ
= −θ1 +

δ

1− δ
π̃2L1

k−1 + cw2(1)
n2 − δπ̃2

n2 − 1
− cs1(k)

(
1− δπ̃2

n2 − 1
+ δπ1

)
≤ −θ1 +

δ

1− δ
π̃2L1

k−1 + cw2(1)
n2 − δπ̃2

n2 − 1
− cw2(1)

(
1− δπ̃2

n2 − 1
+ δπ1

)
≤ δ

1− δ
π̃2L1

k−1 + c
(
1− δπ1

) (
w2(1)− w1(1)

)
and the inequality is strict if w2(1) < s1(k). Therefore it is necessary and sufficient for junior
agents not to deviate to any s1(k) from φ if L1

1 ≤ 0 which is true since

L1
1 = δ

(
θ1 − π1c(1− δ)w2(1)

)
+ (1− δ)cw2(1)− θ1

= (1− δ)c(1− δπ1)(w2(1)− w1(1)) < 0.

Proof of Remark 4.5. For τ = 1, V 1(φ1) = (α1/δ)θ1, and for 2 ≤ τ ≤ h1:

V 1(φτ ) = α1V 1(φτ−1)⇒ V 1(φτ ) = (α1)τ
1

δ
θ1

On the other hand, for τ : 2 ≤ τ ≤ h∗1:

φτ − φτ−1 =

(
1

1− δπ̃2 − δπ̃1/n1

)
δV 1(φτ−1)

c

= φ1(α1)τ−1

where we used (4.2) for τ = 1. Summing up over all 2 ≤ τ ≤ h1 we get

φh1 = φ1

[
h1−1∑
τ=0

(α1)τ

]
= φ1

1− (α1)h1

(1− α1)
(A.12)

Thus, there is no alternation of effort on the equilibrium path iff q < φh1 , or

q < φ1
1− (α1)h1

1− α1
(∗)
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Proof of Proposition 4.8. In the text we prove that if ∆m < ∆m′ then all stints of type m
were one-step stints except for potentially the first one, which is the case only if m′ = 1. We
prove the result for ∆2 < ∆1. The case of ∆2 > ∆1 is analogous.

Note that for k − 1 even, (4.14) gives

Ω2(φH(k−1)) = ∆2Ω2(φH(k−2)) ∆2 < Ω2(φH(k−1)) < 1

so
∆2 < Ω1(φH(k−2)) < 1 (A.13)

and for k odd, (4.14) gives

Ω1(φH(k)) = [∆1]h(k)Ω1(φH(k−1)) ∆1 < Ω1(φH(k)) < 1

so
∆1 < [∆1]h(k)Ω1(φH(k−1)) < 1

or multiplying by ∆2

∆2∆1 < [∆1]h(k)Ω1(φH(k−2)) < ∆2 (A.14)

Note that the left hand side of (A.14) and Ω1(φH(k−2)) < 1 from (A.13) imply that ∆2 <
[∆1]h(k)−1. Now consider k − 2 which is odd and gives ∆1 < Ω1(φH(k−2)) < 1. Thus,

∆1 < ∆2Ω1(φH(k−1))

[∆1]h(k)+1 < [∆1]h(k)∆2Ω1(φH(k−1))

[∆1]h(k)+1 < ∆2,

where the first inequality follows since Ω2(φH(k−1)) = ∆2Ω2(φH(k−2)), the second from mul-
tiplying by [∆1]h(k), and the third from the fact that [∆1]h(k)Ω1(φH(k−1)) < 1.

Note that it must be that for all k odd

[∆1]h(k)+1 < ∆2 < [∆1]h(k)−1

h(k)− 1 <
log[∆2]

log[∆1]
< h(k) + 1

log[∆2]

log[∆1]
− 1 < h(k) <

log[∆2]

log[∆1]
+ 1

Assume first that log[∆2] = ` log[∆1] for some ` ∈ Z+. Then we have that `−1 < h(k) < `+1
which implies that h(k) = `. Let now

byc ≡ sup {x ∈ Z+ : x ≤ y}

43



and assume that
log[∆2]

log[∆1]
=

⌊
log[∆2]

log[∆1]

⌋
+ ε

for some ε ∈ (0, 1). It follows then that⌊
log[∆2]

log[∆1]

⌋
− 1 + ε < h(k) <

⌊
log[∆2]

log[∆1]

⌋
+ 1 + ε⌊

log[∆2]

log[∆1]

⌋
≤ h(k) ≤

⌊
log[∆2]

log[∆1]

⌋
+ 1

Proof of Proposition 4.10. We show that the expected completion time of a project that
requires L contribution stints, {h1, . . . , hL}, is given by

E
(
{h`}L`=1

)
=

L∑
`=1

h` +
L∑
`=1

π̃m−`(π̃m`)
h`−2, (A.15)

where m` = 1 if ` is odd and 2 if ` is even, and m−` = m ∈ M 6= m`. The second part of
the proposition follows by the argument in the text.

Consider the sequence {h`}L`=1 and define the random variable x
(
{h`}L`=1

)
, as the number

of periods it takes to finish the project. Note that this random variable has the following
distribution:

x
(
{h`}L`=1

)
= hL + x

(
{h`}L−1

`=1

)
w.p. (π̃1)hL

x
(
{h`}L`=1

)
= hL + 1 + x

(
{h`}L−1

`=1

)
w.p. (π̃1)hLπ̃2

. . .

x
(
{h`}L`=1

)
= hL + k + x

(
{h`}L−1

`=1

)
w.p. (π̃1)hL(π̃2)k

It follows that x
(
{h`}L`=1

)
= x (hL) + x

(
{h`}L−1

`=1

)
=
∑L

`=1 x (h`), and therefore

E
(
x
(
{h`}L`=1

))
=

L∑
`=1

E (x (h`))

Note that, letting m` = 1 if ` is odd and 2 if ` is even, and m−` = m ∈M 6= m`, we have:
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E (x (h`)) = h` + (π̃m`)
h`

[
∞∑
k=1

(π̃m−`)
kk

]

= h` + (π̃m`)
h`

[
π̃m−`

d
∑∞

k=0(π̃m−`)
k

dπ̃m−`

]

= h` + (π̃m`)
h`

π̃m−` d
(

1
1−π̃m−`

)
dπ̃m−`


= h` + (π̃m`)

h`−2
[
π̃m−`

]
,

and therefore

E
(
x
(
{h`}L`=1

))
=

L∑
`=1

h` +
L∑
`=1

(π̃m`)
h`−1

[
π̃m−`
π̃m`

]

Now, suppose q = φ` for ` > h(1) and ∆m > ∆m′ , and let E1 ≡ h(1) + π̃2(π̃1)h(1)−2, as
in the statement of the proposition. Since ∆m > ∆m′ , before the final stint of h(1) small
projects by juniors, juniors and seniors alternate in a contribution cycle in which group m′

completes single small projects, while group m completes either xm ≡
⌊

log[∆m′ ]
log[∆m]

⌋
or xm + 1

small projects before turning it over to members of the other group. We can then split the
terms of (A.15) in stints taken by each group, and incorporate this information to compute
expected delay for a project of size q.

Suppose first that k̂(q) is odd. Then in addition to the last stint by group 1 agents there are
(k̂(q)− 1)/2 stints by each group, so for some x ∈ [xm, xm + 1],

E
(
{h`}k̂(q)

`=1

)
= E1 +

(
k̂(q)− 1

2

){
(1 + x) +

π̃m

π̃m′
+ π̃m

′
(π̃m)x−2

}
.

In particular, if ∆m = ∆m′ , groups alternate in single step stints, so

E
(
{h`}k̂(q)

`=1

)
= E1 +

(
k̂(q)− 1

){
1 +

(π̃m)2 + (π̃m
′
)2

2π̃m′π̃m

}
,

Similarly, if k̂(q) is even, then in addition to the last stint by juniors there are k̂(q)/2 stints
by group m′ agents and k̂(q)/2− 1 stints by group m agents, so that

E
(
{h`}k̂(q)

`=1

)
= E1 +

k̂(q)

2

{
(1 + x) +

π̃m

π̃m′
+ π̃m

′
(π̃m)x−2

}
−
(
x+ π̃m

′
(π̃m)x−2

)
,
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Online Appendix

Proof of Lemma 4.1. (a) First we show that there exists a b > 0 such that σm(s) = s for all
m for all s ≤ b. Note that for s ≤ min{θ1, θ2}/c,

Wm(s, s) := θm − (1− δ)cs ≥ δθm, ∀m,

where the right-hand side is an upper bound on Wm(e, s) for any e < s, since it is the value
from zero contribution and the project being completed by another agent in the subsequent
period. Letting b = min{θ1, θ2}/c completes the step.

(b) We now determine the candidates wm(1). It is clear that for s > minm{ θm

c(1−δ)} we can

never have σm(s) = s for all m, for this would give some agents a negative payoff, making it
profitable to deviate and contribute zero at s. Thus, there exists a finite

w(1) ≡ sup{b : σm(s) = s ∀s ≤ b, ∀m ∈M}

Note that for e < s:
Wm(e, s) = δV m(s− e)− (1− δ)ce.

Take any s ≤ w(1). From (3.2), and since σm(s) = s for all m for s < w(1), for any e < s
we have19

V m(s− e) = θm − πmc(1− δ)(s− e)

Thus for e < s:
Wm(e, s) = δθm − c(1− δ) (e+ δπm(s− e))

Note that for any 0 < e < s:

Wm(0, s)−Wm(e, s) = c(1− δ)e (1− δπm) > 0

Thus, when all agents finish the project on their turn, an agent is better off contributing
zero than contributing e ∈ (0, s). Moreover, Wm(s, s) ≥ Wm(0, s) if and only if

s ≤ θm

c (1− δπm)
≡ wm(1),

with equality uniquely at s = wm(1). Thus σm(s) = s for m = 1, 2 if s < w(1) ≡ minmwm(1)
and only if s ≤ w(1). In particular, we see it is always an equilibrium that σm(w(1)) = w(1)
for m = 1, 2.

(c) We consider, moreover, conditions for the uniqueness of equilibrium behavior at w(1).
Note that if wm(1) > w(1), then agents of type m have a strict incentive to contribute at
w(1) and so we need only consider those types m for which wm(1) = w(1). From previous

19Note that it is possible that σm(w(1)) 6= w(1). However, in this case because w(1) is the supremum of
the states at which m contributes, she is indifferent between contributing and not. Hence, when s = w(1)
and e = 0, V m(s− e) will have the same value as that given in the above proof.
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work, we know that σm(w(1)) ∈ {0, w(1)}. Consider therefore an equilibrium in which
σm(w(1)) = 0. In such an equilibrium,

V (w(1)) =
π̃m
′
θm

1− δπ̃m
. (A.16)

Consider now a deviation of a player of type m to contributing w(1),

Wm(w(1), w(1)) = θm − c(1− δ)w(1) = δθm
1− πm

1− δπm

= δV (w(1))
1−πm
1−δπm
1−π̃m
1−δπ̃m

> δV (w(1)) (A.17)

Thus, there is a profitable deviation for the type m agents from the conjectured equilibrium
and so we have that equilibrium behavior at w(1) is unique and entails completion of the
project.

(d) It remains to show that if wm(1) > wm
′
(1), then σm(s) = s for all s ∈ (wm

′
(1), wm(1)].

So let consider first s ∈ (wm
′
(1), wm(1)). As before, Wm(s, s) = θm − c(1 − δ)s. However,

since type m′ agents don’t finish the project outright, for any e ∈ [0, s) we have

Wm(e, s) < δθm − c(1− δ) [e+ δπm(s− e)] ≤ δ (θm − c(1− δ)πms)

Thus Wm(s, s) > Wm(e, s) for all e ∈ [0, s) if and only if s < wm(1). Now consider
the situation when s = wm(1). Using similar arguments we have that Wm(wm(1), wm(1)) >
Wm(e, wm(1)) for all e ∈ (0, wm(1)), so we only need to consider equilibria with σm(wm(1)) ∈
{0, wm(1)}. The definition of wm(1) gives that when σm(wm(1)) = wm(1) is indeed an
equilibrium. For uniqueness, assume that σm(wm(1)) = 0. It follows then that

V m(wm(1)) =
π̃m
′
δ

1− π̃mδ
V m

(
wm(1)− σm′(wm(1))

)
Since no type finishes the project outright, we must have that

V m
(
wm(1)− σm′(wm(1))

)
≤ θm − πmc(1− δ)

(
wm(1)− σm′(wm(1))

)
Therefore, there is a profitable deviation for type m if δV m(wm(1)) < θm − c(1 − δ)wm(1).
It is sufficient if

π̃m
′
δ

1− π̃mδ

(
θm − πmc(1− δ)

(
wm(1)− σm′(wm(1))

))
< θm − c(1− δ)wm(1)

1− π̃m

nm − π̃m
σm
′
(wm(1)) < wm(1),

which is true.
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Lemma A.1. For all s > φ1 and m ∈ {1, 2}, σm(s) ≤ s− φ1.

Proof of Lemma A.1. Consider first junior (group 1) agents. Note that by construction, φ1 is
the largest s at which juniors would want to finish the project outright when they anticipate
that seniors do not contribute at s (i.e., given that σ2(s) = 0). Since σ2(s) = 0 minimizes
free riding incentives, it follows that φ1 is the largest s at which juniors would want to finish
the project outright, for any σ2(s). Thus, at any s > φ1, σ1(s) < s. Now, we know by
Lemma 4.1 that in any s ∈ (0, φ1), a junior agent prefers to finish the project outright than
playing e ∈ [0, s). By the linearity of costs, it follows that for s > φ1 a junior agent would
weakly prefer to finish the project outright than to move the project to s′ ∈ (0, φ1). Thus it
follows that at any s > φ1, σ1(s) ≤ s− φ1.

Next consider senior agents. Since σ2 is a cutpoint strategy in [0,
(

1
1−δπ̃2

)
θ2

c
), we know that

for any k in the sequence, and any s > s1(k), σ2(s) ≤ s−s1(k). Thus, for all s > φ1, σ2(s) ≤
s −

(
1

1−δπ̃2

)
θ2

c
. Now, we know that in equilibrium σ2(s) = 0 for all s ∈ [

(
1

1−δπ̃2

)
θ2

c
), φ1].

It follows immediately that for any s > φ1, moving the project to s′ ∈ [
(

1
1−δπ̃2

)
θ2

c
), φ1)

is dominated by moving the project to φ1, since this doesn’t increase delay and reduces
expected costs. Thus, for any s > φ1, σ2(s) ≤ s− φ1.

Proof of Theorem 4.9. We prove the theorem for the case of public goods with an infinite-
stream of payoffs θm in each period and then analogize to the case of a finite stream of payoffs
of length T , which allows us to make the efficiency comparison as δ → 1. In particular, we
prove the following result:

1. Suppose (∆1)y < ∆2 < ∆1 for some y ∈ N. Let y∗ denote the smallest integer y∗ such
that this inequality holds. Then,

φ̃ ≤ θ1

c(1− δπ̃2 − π1)

[
1− (α1)h1

1− α1
+

(α1)h1β1(1− (α1)y
∗
)

(1− α1)(1− β1(α1)y∗)

]
+

(β2)h1θ2

c(1− δπ̃1 − δπ2)(1− α2(β2)y∗)
.

2. Suppose (∆2)y < ∆1 < ∆2 for some y ∈ N. Let y∗ denote the smallest integer y∗ such
that this inequality holds. Then,

φ̃ ≤ θ1

c(1− δπ̃2 − π1)

[
1− (α1)h1

1− α1
+

(α1)h1(β1)y
∗

1− α1(β1)y∗

]
+

(β2)h1(1− (α2)y
∗
)θ2

c(1− δπ̃1 − δπ2)(1− α2)(1− β2(α2)y∗)
.

3. Suppose ∆1 = ∆2 = ∆. Then

φ̃ ≤ θ1

c(1− δπ̃2 − π1)

[
1− (α1)h1

1− α1
+

(α1)h1β1

(1− β1α1)

]
+

(β2)h1θ2

c(1− δπ̃1 − δπ2)(1− α2β2)
.

Proof. We prove (1), as (2) is analogous. Part (3) follows directly from (1) or (2), making

3



y∗ = 1. From (4.2), we have

φ1 =

(
1

1− δπ̃2 − δπ1

)
θ1

c

φ2 = φ1 +

(
1

1− δπ̃2 − δπ1

)
δV 1(φ1)

c

=

(
1

1− δπ̃2 − δπ1

)
(1 + α1)θ1

c
...

φh1 =

(
1

1− δπ̃2 − δπ1

) (
1 + α1 + . . .+ αh1−1

)
θ1

c

=

(
1

1− δπ̃2 − δπ1

)(
1− (α1)h1

1− α1

)
θ1

c
.

At φh1+1, the active contributor switches from juniors (group 1) to seniors (group 2). Hence,

φh1+1 = φh1 +

(
1

1− δπ̃1 − δπ2

)
δV 2(φh1)

c

= φh1 +

(
1

1− δπ̃1 − δπ2

)
(β2)h1θ2

c
.

In the case (1) being analyzed, H(2) = h(1) + 1 since each stint of senior agents is of length
one. Continuing forward,

φH(3) = φH(2) +

(
1

1− δπ̃2 − δπ1

)
(α1)h1β1θ1

c

(
1− (α1)h3

1− α1

)
,

analogous to the formulation of φh1 . Moreover, note that by case (1), h(3) ≤ y∗, and
substituting gives us

φH(3) ≤ φH(1) +

(
1

1− δπ̃1 − δπ2

)
(β2)h1θ2

c
+

(
1

1− δπ̃2 − δπ1

)
(α1)h1β1θ1

c

(
1− (α1)y

∗

1− α1

)
.

In general, note that the Lth stint for L > 1 odd will consist of at most y∗ steps actively
contributed by juniors, and the (L + 1)−th stint one step actively contributed by senior
agents. With this emergent pattern, for any L ≥ 1, the following formula holds for odd

4



numbered stints:

φH(2L+1) ≤ φH(1) +

(
1

1− δπ̃1 − δπ2

)
(β2)h1θ2

c

L−1∑
k=0

(
α2(β2)y

∗)k
+

(
1

1− δπ̃2 − δπ1

)
(α1)h1β1θ1

c

(
1− (α1)y

∗

1− α1

) L−1∑
k=0

(
β1(α1)y

∗)k
. (A.18)

Substituting for φH(1) from above and taking the limit as L goes to infinity in (A.18) gives
us

φ̃ ≤ θ1

c(1− δπ̃2 − π1)

[
1− (α1)h1

1− α1
+

(α1)h1β1(1− (α1)y
∗
)

(1− α1)(1− β1(α1)y∗)

]
+

(β2)h1θ2

c(1− δπ̃1 − δπ2)(1− α2(β2)y∗)
(A.19)

We consider two possible cases. Suppose first that there exists minimal positive integer y∗

such that (∆1)y
∗
< ∆2 < ∆1. From (A.19),

φ̃ ≤ θ1

c(1− δπ̃2 − δπ1)

[
1

1− α1
− (α1)h1(1− β1)

(1− α1)(1− β1(α1)y∗)

]
+

(β2)h1θ2

c(1− δπ̃1 − δπ2)(1− α2(β2)y∗)

<
θ1

c(1− δπ̃2 − δπ1)(1− α1)
+

θ2

c(1− δπ̃1 − δπ2)(1− α2)
,

where the second inequality follows from the fact that β2 < 1. Furthermore, for each group
j ∈ {1, 2},

1− αj = 1− (1− 1/nj)π̃jδ

1− δπ̃−j − δπj
=

1− δ
1− δπ̃j − δπj

Substituting into the above inequality, and re-arranging we obtain

cφ̃ <
θ1 + θ2

1− δ

for any fixed δ < 1, in the case of infinte-lasting flow payoffs. For a project whose flow
payoffs last exactly T periods, the analogous expression is

cφ̃ <
(1− δT )(θ1 + θ2)

1− δ
= θ̂1 + θ̂2.

If instead there does not exist a minimal positive integer y∗ such that (∆1)y
∗
< ∆2 < ∆1,

5



there exists a positive integer y∗ such that (∆2)y
∗
< ∆1 < ∆2. From (A.19),

φ̃ ≤ θ1

c(1− δπ̃2 − δπ1)

[
1− (α1)h1

1− α1
+

(α1)h1(β1)y
∗

1− α1(β1)y∗

]
+

(β2)h1(1− (α2)y
∗
)θ2

c(1− δπ̃1 − δπ2)(1− α2)(1− β2(α2)y∗)

<
θ1

c(1− δπ̃2 − δπ1)(1− α1)
+

θ2

c(1− δπ̃1 − δπ2)(1− α2)
,

so that we again obtain the first desired result,

cφ̃ ≤ θ1 + θ2

1− δ
.

Redacting the flow payoffs from the public good to a horizon of length T gives the analogous
expression

cφ̃ ≤ θ̂1 + θ̂2.

Since for any δ < 1, we have cφ̃ < θ̂1 + θ̂2, then for nm > 1 for some m ∈ {1, 2},

lim
δ→1

cφ̃ ≤ θ̂1 + θ̂2 < n1θ̂1 + n2θ̂2.

Since φ̃ is the maximal quantity q corresponding to projects completed in equilibrium, this
gives us the second result.
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