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ABSTRACT

For those who follow health and technology news, it is difficult to go more than a few days 
without reading about a compelling new application of Artificial Intelligence (AI) to health care. 
AI has myriad applications in medicine and its adjacent industries, with AI-driven tools already in 
use in basic science, translational medicine, and numerous corners of health care delivery, 
including administrative work, diagnosis, and treatment. In diagnosis and treatment, a large and 
growing number of AI tools meet the statutory definition of a medical device or that of an in-vitro 
diagnostic. Those that do are subject to regulation by local authorities, resulting in both practical 
and strategic implications for manufacturers, along with a more complex set of innovation 
incentives. This chapter presents background on medical device regulation—especially as it 
relates to software products—and quantitatively describes the emergence of AI among FDA-
regulated products. The empirical section of this chapter explores characteristics of AI-supported/
driven medical devices (“AI devices”) in the United States. It presents data on their origins (by 
firm type and country), their safety profiles (as measured by associated adverse events and 
recalls), and concludes with a discussion of the implications of regulation for innovation 
incentives in medical AI.
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1. INTRODUCTION 

For those who follow health and technology news, it is difficult to go more than a few days without reading 

about a compelling new application of Artificial Intelligence (AI) to health care. Applications range from basic 

science (e.g., understanding protein folding), to translational science (e.g., supporting drug discovery), to improv-

ing existing digital offerings (e.g., machine learning (ML) algorithms to adjust for missing data in whole genome 

sequencing software), to tools that promise to improve health care delivery in myriad ways. Recent work has 

highlighted and categorized the applications of AI to health care delivery and emphasized how contemporary 

deep learning approaches are likely to transform health care (Hinton 2022). The overwhelming majority of appli-

cations of AI fall into one of three broad categories: (1) administrative work, (2) diagnosis, and (3) treatment. 

Table 1 provides examples of the types of AI tools that would fit into each of these categories.   

 

Table 1: Applications of AI to health care delivery: examples 

Category  Examples 

(1) Administrative Work 

Provider documentation 

Order, prescription, coding entry for providers 

Data entry 

Scheduling 

Triaging  

(2) Diagnosis 

Imaging / pathology review 

Diagnostic models / symptom analysis 

Phenotyping 

Incorporating non-traditional data sources 

(3) Treatment 

Surgical assistance 

Individualized / personalized medicine 

Adherence and health coaching 

Generating treatment recommendations 

Digital therapeutics 
Source: Adapted from Sanders et al. 2019 

 

 To make their way into routine health care delivery, AI tools for administrative work will need to cater to 

provider preferences, workflows, and other site-specific norms (Sanders et al. 2019). Beyond these practical and 

design challenges, AI-driven administrative support tools need to comply with data privacy regulations in the 
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jurisdictions in which they are used—most notably, the HIPAA Privacy Rule1 in the United States and the GDPR2 

in Europe. AI tools to perform or support administrative work in health care hold great promise to improve the 

efficiency of health care delivery by aiding in clinician notetaking and documentation, scheduling, triaging, order-

ing medications, and avoiding medication errors – including foreseeable negative interactions. Importantly, how-

ever, administrative support tools rarely qualify as regulated medical products and, conditional on compliance 

with appliable privacy laws, therefore rarely fall under the jurisdiction of medical product—chiefly, medical de-

vice—regulations.  

In diagnosis and treatment, however, a large and growing number of AI tools meet the definition of a medical 

device or that of an in-vitro diagnostic. Those that do are subject to regulation by local authorities, with implica-

tions for manufacturers and a more complex set of innovation incentives. This chapter provides brief background 

on medical device regulation in the United States and Europe and discusses a few emergent regulatory approaches 

that are designed to address some of the unique challenges of regulating software as a medical device. It then 

takes a closer look at regulated AI devices in the United States by identifying such devices in the FDA’s databases.  

The empirical section of this chapter explores regulated, software-based, AI-supported/driven medical de-

vices (“AI devices”) in the United States. By taking advantage of publicly available information about all medical 

device clearances and associated product summaries, this section uses text analysis to identify AI devices and 

compare these to other devices in the same medical product areas – including the subset of comparator devices 

that are themselves software-driven. In particular, we characterize AI devices based on the types of firms they 

originate in and the countries in which they are developed. The chapter also presents summary data on the safety 

profiles of AI devices, as measured by mandatory adverse event reports and product recalls. Building on descrip-

tive statistics from the U.S. data, the fourth section of this chapter discusses how regulation is likely to shape 

innovation incentives for (certain types of) AI devices and how both regulatory innovation and regulatory trans-

parency may play a role in the future of regulated AI devices. The chapter concludes with a brief discussion of a 

forward-looking research agenda. 

 
1 The U.S. Health Insurance Portability and Accountability Act (HIPAA) dates back to 1996. The HIPAA Privacy Rule “establishes national 
standards to protect individuals' medical records and other individually identifiable health information (collectively defined as “protected health 
information” [PHI]) and applies to health plans, health care clearinghouses, and those health care providers that conduct certain health care 
transactions electronically.” In addition to requiring appropriate safeguards” to protect PHI, the rule limits how data can be used/reused without 
an individual’s authorization and gives individuals the right to obtain and examine copies of their own health records. 
(https://www.hhs.gov/hipaa/for-professionals/privacy/index.html)  
2 The European Union’s General Data Protection Regulation (GDPR) “lays down rules relating to the protection of natural persons with regard 
to the processing of personal data and rules relating to the free movement of personal data.” The regulation further “protects fundamental rights 
and freedoms of natural persons and in particular their right to the protection of personal data” and governs the movement of such data within 
the EU. (Art. 1 GDPR, https://gdpr-info.eu/art-1-gdpr). The GDPR specifically recognizes “data concerning health” as its own category and 
provides specific definitions for health data for the purposes of data protection under the GDPR (https://edps.europa.eu/data-protection/our-
work/subjects/health_en). 
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2. BACKGROUND AND POLICY APPROACHES 

Medical device regulation in the United States 

US medical product regulation can be traced back over a century to the Pure Food and Drug Act of 1906. 

However, modern medical device regulation began with the 1976 “Medical Device Amendments” (MDA) to the 

1938 Federal Food, Drug, and Cosmetic Act. The MDA created federal oversight of medical devices for the first 

time (previously they had been regulated by the states) and established the framework for how medical devices 

are regulated today. Section 201(h) of the Food, Drug, and Cosmetic Act defines a medical device as: 

An instrument, apparatus, implement, machine, contrivance, implant, in vitro reagent, or other similar or related article, including 
a component part, or accessory which is: 
 

1. recognized in the official National Formulary, or the United States Pharmacopoeia, or any supplement to them,  

2. intended for use in the diagnosis of disease or other conditions, or in the cure, mitigation, treatment, or prevention of 
disease, in man or other animals, or 

3. intended to affect the structure or any function of the body of man or other animals, and which does not achieve its 
primary intended purposes through chemical action within or on the body of man or other animals and 

which does not achieve its primary intended purposes through chemical action within or on the body of man or other animals and 
which is not dependent upon being metabolized for the achievement of its primary intended purposes. The term "device" does not 
include software functions excluded pursuant to section 520(o).3  
 

In short, a medical device is a tool for the diagnosis or treatment of disease, which is not a metabolized (biological 

or pharmaceutical) product.  

Current medical device regulations are focused on providing users (including patients, clinicians, provider 

organizations, and caregivers) reasonable assurance regarding the safety and effectiveness of medical devices. 

Medical devices are regulated by the FDA’s Center for Devices and Radiological Health (CDRH), which uses a 

risk-based (3-tier) classification system for all devices:4  

• Devices of the lowest risk (Class I) are subject to only general manufacturing controls and typically 
exempt from needing a premarketing submission/application. These include products such as 
tongue depressors, condoms, latex gloves, bandages, and surgical masks.  

• Moderate risk (Class II) devices are typically regulated through a process called “Premarket Notifi-
cation” or, more often, the “510(k) process.” This process requires a device to demonstrate “sub-
stantial equivalence” with one or more already legally marketed devices.5 Class II devices that do 
not have a legally marketed “predicate” device can also use a “De Novo” Classification request to 

 
3 https://www.fda.gov/medical-devices/classify-your-medical-device/how-determine-if-your-product-medical-device 
4 https://www.fda.gov/medical-devices/overview-device-regulation/classify-your-medical-device 
5 A device is considered substantially equivalent if, in comparison to a predicate it has the same intended, the same technological characteristics, 
or the same intended use and has different technological characteristics and does not raise different questions of safety and effectiveness; and 
the information submitted to FDA demonstrates that the device is as safe and effective as the legally marketed device (https://www.fda.gov/med-
ical-devices/premarket-submissions-selecting-and-preparing-correct-submission/premarket-notification-510k) 
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come to market if the manufacturer is able to provide reasonable assurance of safety and effective-
ness of the device for the intended use. Subsequent devices can then use a device that came to mar-
ket through the De Novo process as a predicate in their own ensuing 510(k) applications.  

• Finally, devices of the highest risk (Class III) are those that are implantable and/or life sustaining 
and, as such, require significant evidence of safety and effectiveness to be approved for marketing. 
With a few exceptions for devices that pre-date the MDA, Class III devices are regulated through a 
process called “Premarket Approval” or the “PMA process,” which is the most rigorous of all pre-
market submissions and typically requires evidence from clinical studies. The PMA process is signif-
icantly more onerous than the 510(k) process and has been associated with longer periods of regula-
tory approval for first movers in new medical device product codes (Stern 2017).  

In addition to establishing these regulatory pathways for new medical devices, the MDA created a regulatory 

pathway for new investigational devices to be studied in human patients, the Investigational Device Exemption 

(IDE), and established several postmarket requirements and processes—including adverse event reporting re-

quirements—and Good Manufacturing Practices (GMPs). The Safe Medical Devices Act of 1990 filled in addi-

tional policy gaps in medical device regulation by authorizing the FDA to order device recalls, to impose civil 

penalties for violations, and improved postmarket surveillance by requiring both manufacturers as well as user 

facilities (hospitals, clinics, nursing homes, etc.) to report adverse events associated with the use of specific medical 

devices.6 Further, the FDA’s Breakthrough Devices Program was created in 2018 to provide patients and health 

care professionals with more timely access to devices that “provide for more effective treatment or diagnosis of 

life-threatening or irreversibly debilitating diseases or conditions” and as of the end of Q3, 2022 a total of 56 

devices with the Breakthrough Device Designation had received marketing authorization.7 

Regardless of the regulatory pathway used, all devices are categorized into 3-letter product codes that describe 

the device’s generic category of use. Within a product code, devices are thus very good to excellent substitutes for 

one another. For example, unique product codes exist for Coronary Drug-Eluting Stent (NIQ), Catheter, Balloon For 

Retinal Reattachment (LOG), Oximeter, Fetal Pulse (MMA), and Infusion Safety Management Software (PHC).8 Regulation 

happens at the level of 18 panels of the CDRH Advisory Committee, which are organized by medical specialty 

(e.g., the “Circulatory System Devices Panel” reviews cardiovascular devices, while the “Radiological Devices 

Panel” reviews radiology devices).  

For devices that are cleared via the 510(k) or De Novo processes or approved via the PMA process, several 

public documents are published online at the time that a device receives a positive regulatory decision. These 

include a device “Summary” for 510(k)-track devices, which “includes a description of the device such as might 

 
6 https://www.fda.gov/medical-devices/overview-device-regulation/history-medical-device-regulation-oversight-united-states 
7 https://www.fda.gov/medical-devices/how-study-and-market-your-device/breakthrough-devices-program 
8 https://www.fda.gov/medical-devices/classify-your-medical-device/product-code-classification-database 
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be found in the labeling or promotional material for the device, including an explanation of how the device func-

tions, the scientific concepts that form the basis for the device” as well as information on “the significant physical 

and performance characteristics of the device, such as device design, material used, and physical properties,” 

making this document an excellent source of information on a device’s key technological characteristics. The 

PMA process also requires a product-specific summary document, which is made publicly available at the time 

the device is approved. PMA summary documents also contain information on indications for a device’s use and 

a detailed device description, including “how the device functions, the basic scientific concepts that form the basis 

for the device, and the significant physical and performance characteristics of the device” in addition to other 

requirements.9 The text analysis that follows takes advantage of publicly available product summaries in order to 

understand and categorize devices’ technical content and functionality at scale.  

 

Regulation of Software-Driven Medical Devices 

Because U.S. medical device regulation is grounded in legislation from 1976 (namely, the MDA), provisions 

for thinking about the regulation of software-driven products were not codified for the first several decades. This 

means that until recently, medical device regulations were woefully mismatched to the special needs and nuances 

of software products. Specifically, any significant updates to medical devices have historically required new appli-

cations to regulators. For a moderate risk device, there are no regulatory provisions for amending or changing an 

existing 510(k) clearance – that is “if it is determined the modification is not covered by the current 510(k) a new 

510(k) must be submitted.”10 PMA-track devices can only be modified through a “PMA supplement,” a “submis-

sion required for a change affecting the safety or effectiveness of the device for which the applicant has an ap-

proved PMA.”11 For example, a software change “that significantly affects clinical functionality or performance 

specifications” would require a new premarket submission (FDA 2019).  

This policy rigidity and the discreteness of product updates in this context contrast starkly with products in 

consumer technology settings, where software programs are regularly, if not constantly, being improved upon and 

modified by developers. Nevertheless, a strict interpretation of U.S. regulatory policies would require a new reg-

ulatory submission in the event of a modification to an existing software program that improves the accuracy of 

a diagnosis being made or information being conveyed to clinicians. While some exceptions were made previously 

for the addressing of safety and security issues associated with medical device software, it was not until 2017 that 

 
9 https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?FR=814.20 
10 https://www.fda.gov/medical-devices/premarket-notification-510k/new-510k-required-modification-device 
11 https://www.fda.gov/medical-devices/premarket-approval-pma/pma-supplements-and-amendments 
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the FDA published formal regulatory guidance addressing when a manufacturer should submit a 510(k) for a 

software change to an existing medical device.12 

There are two primary ways in which software can be included in a medical device: (1) the medical device may 

be software-driven in that it is a physical device that is powered by software that is inextricable from the device’s 

functionality, sometimes called “Software in a Medical Device” or “SiMD.” An example of SiMD would be the 

software that powers a CT scanner: the hardware device does not work without the software. (2) Alternatively, a 

medical device may entirely software-based—that is, the software itself meets the definition of a medical device 

(including in-vitro diagnostics). This second category is termed “Software as a Medical Device” or “SaMD” by 

the International Medical Device Regulators Forum, which defines SaMD as “software intended to be used for 

one or more medical purposes that perform these purposes without being part of a hardware medical device”—

that is, stand-alone software (IMDRF 2013).  

In the United States, SaMD products are typically classified as Class II devices and are regulated via the 510(k) 

or De Novo pathways. However, low-risk products that meet the definition of SaMD often qualify for “enforce-

ment discretion” meaning that the FDA will not enforce regulatory requirements for these software products.13 

14 In light of the complexity of regulating SaMD products, there have been recent calls for “innovation in regula-

tory approaches” to further address the unique needs of SaMD (Torous et al. 2022).  

One proposed approach to the regulation of SaMD products was considered in the FDA’s Digital Health 

Software Pre-Certification Program (Pre-Cert), a pilot program that was first initiated in 2017 and ran until Sep-

tember of 2022.15 The pilot phase of the program was intended to “help inform the development of a future 

regulatory model that [would] provide more streamlined and efficient regulatory oversight of software-based med-

ical devices” and included an outline of how FDA might evaluate SaMD products more responsively by focusing 

on reviewing an “Excellence Appraisal” of the manufacturer’s software development practices, as well as review 

pathway determination, streamlined review, and real-world performance data collection and evaluation.16 While 

the program held the promise of being more dynamic—an approach that surely makes sense for medical soft-

ware—it was ultimately concluded abruptly in September of 2022 after “FDA encountered challenges with im-

plementing the proposed approach under [its] current statutory authorities.” Among other things, FDA reported 

 
12 https://www.fda.gov/media/99785/download 
13 https://www.fda.gov/media/80958/download 
14	Other sometimes-regulated products include “smart wearables” such as devices manufactured by Fitbit, AliveCor, Grarmin, and Apple, which 
have both medical and consumer applications. Felber and Maciorowski (2023) provide an overview of how such “smart wearables” are used and 
regulated in the United States along with relevant risks and public purpose considerations. 	
15	https://www.fda.gov/media/161815/download	
16 https://www.fda.gov/media/106331/download 
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that it “was simultaneously unable to pilot the program approaches with a broad sample of devices while also 

being unable to limit the scope of any resulting device classifications” It noted that certain types of information 

gathering were hampered by the fact that it “could not require pilot participants to provide information under the 

pilot that was not otherwise already required under existing statute,” however many participants helped voluntar-

ily.17 Other challenges with the Pre-Cert approach were foreshadowed even before the conclusion of the pilot. 

For example, researchers found it difficult “to identify a standard measure that differentiated apps requiring reg-

ulatory review from those that would not” using publicly available information, including product descriptions 

(Alon et al. 2020). Thus, while it is almost certainly the case that novel regulatory approaches are needed for SaMD 

in general and for AI devices in particular, it will likely be difficult to implement such approaches in the absence 

of formal updates to regulators’ statutory authority that take into account the specific and dynamic needs associ-

ated with software products.  

 

Medical Device Regulation in the European Union 

The regulation of medical devices in European Union (EU) member states bears several similarities to U.S. 

medical device regulation (including a risk-based framework governing device classification and regulation), but 

also has many important differences. The EU Medical Device Regulation 2017/745 (MDR)18 was adopted in 2017 

and fully implemented—thereby replacing previous directives and regulations—in May of 2021. The MDR de-

fines a medical device as: 

any instrument, apparatus, appliance, software, implant, reagent, material or other article intended by the manufacturer to be 
used, alone or in combination, for human beings for one or more of the following specific medical purposes: 

• diagnosis, prevention, monitoring, prediction, prognosis, treatment or alleviation of disease, 

• diagnosis, monitoring, treatment, alleviation of, or compensation for, an injury or disability, 

• investigation, replacement or modification of the anatomy or of a physiological or pathological process or state, 

• providing information by means of in vitro examination of specimens derived from the human body, including organ, 
blood and tissue donations, 

and which does not achieve its principal intended action by pharmacological, immunological or metabolic means, in or on the 
human body, but which may be assisted in its function by such means. 

 
In the EU, medical devices undergo a conformity assessment, leading to a “CE-Mark,” from a notified body 

(an organization designated by an EU country to assess the conformity of certain products before being placed 

 
17	https://www.fda.gov/media/161815/download	
18	https://eur-lex.europa.eu/eli/reg/2017/745/2020-04-24	
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on the market19) and must comply with the EU’s General Data Protection Regulation ((EU) 2016/679, GDPR)20, 

which “protects fundamental rights and freedoms of natural persons and in particular their right to the protection 

of personal data” and presents a general and binding framework for processing the personal data of any person 

within the EU and by any data processor (party) in the EU. Brönneke et al. (2021) provide an overview of regu-

latory, legal, and market aspects facing digital products, including a more detailed discussion of the application of 

the MDR and GDPR to digital medical devices.  

3. DATA 

The empirical section of this chapter explores regulated, software-based, AI-supported & AI-driven medical 

devices (henceforward “AI devices”)21 in the United States. By taking advantage of detailed, publicly available 

information about medical device clearances and associated product summaries, this section uses text analysis to 

identify AI devices and compare these to other devices in the same medical product areas – including the subset 

of those comparator devices that are themselves software-driven.  

One of the first studies to survey FDA-regulated AI devices was Benjamens et al. 2020, which claimed to 

publish “the first comprehensive and open access database of strictly AI/ML-based medical technologies that 

have been approved by the FDA.” The database, hosted by The Medical Futurist Institute (TMF) included 79 

devices, as of mid-2022 (but had not been updated since mid-2021). 22 While the data used in this chapter were 

collected independently, the TMF database provided early clues to inform how to best identify AI devices and 

which medical specialties are likely to be most relevant for AI applications at present. For example, just two of 

the devices in the database were regulated through the PMA process for devices of the highest risk, with the 

remainder were brought to market via the 510(k) or De Novo pathways. This is consistent with most SaMD 

products coming to market through these pathways, as envisioned by the Pre-Cert program. Further, among the 

devices in the TMF database, over 80% are either radiology or cardiology devices, pointing to the outsized repre-

sentation of these two medical specialties among AI devices. Combined, these facts strongly suggest that focusing 

just on a) devices regulated via the 510(k) pathway and b) the most common regulatory medical specialties includ-

ing cardiology and radiology, should allow us to limit the scope of data collection, while still likely capturing the 

vast majority of FDA-regulated AI devices. A subsequently published list of AI devices released by the FDA and 

 
19	https://single-market-economy.ec.europa.eu/single-market/goods/building-blocks/notified-bodies_en	
20	https://gdpr-info.eu/	
21 This study does not distinguish between AI-supported vs. (entirely) AI-driven medical devices. For example, a piece of radiology equipment 
that uses AI to improve image quality (AI-supported) would qualify as an AI device, as would a SaMD product in which the algorithm itself 
constitutes the entirety of the medical device (fully AI-driven).  
22 List pulled on June 7, 2022 from https://medicalfuturist.com/fda-approved-ai-based-algorithms 
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updated in October 2022 confirmed similar patterns, with just two out of hundreds of AI devices that came to 

market since 2010 having done so via the PMA pathway.23 The data assembly strategy and empirical analyses that 

follow are based on this data-informed approach.   

As the basis for our analysis, we download the full 510(k) database for the years 2010 through 2022Q3.24 We 

focused on the eight largest medical specialties (as defined by their respective FDA Advisory Committee Panels), 

which are (1) Clinical Chemistry and Toxicology Devices; (2) Cardiovascular Devices; (3) Dental Products; (4) 

Gastroenterology-Urology Devices; (5) General Hospital and Personal Use Devices; (6) Orthopedic and Rehabil-

itation Devices (7) Radiological Devices; and (8) General and Plastic Surgery Devices. This resulted in a total of 

38,812 unique device clearances over 13 calendar years, as presented in Table 2. The 510(k) database includes 

information on the device type (product code), data about the applicant firm (device manufacturer), such as its 

name and filing address, the dates on which each application was submitted to regulators, the dates on which each 

device was cleared by the FDA, and the medical specialty (as assigned to one of the FDA Medical Device Advisory 

Committees25) associated with the device. We further flag devices that were part of the “Breakthrough Devices 

Program” (see section 2 for more detail).  

We merge onto this database two additional sources of information on device outcomes: (1) data on adverse 

events associated with medical devices, as collected in the FDA’s medical device adverse event reporting database 

(the “Manufacturer and User Facility Device Experience” or MAUDE database)26; and (2) data on medical device 

recalls—a more definitive indication of a systematic problem with a product—from the FDA’s recall database.27 

The MAUDE database includes all reported adverse events involving medical devices. Notably, the FDA 

cautions against causal interpretation: because a device is involved in an adverse event, it does not mean that the 

device caused the adverse event. For example, the FDA’s website explains:  

“The FDA reviews all medical device reports (MDRs) received. The FDA's analysis of MDRs evaluates 
the totality of information provided in the initial MDR as well as any MDR supplemental reports subse-
quently provided. The submission of an MDR itself is not evidence that the device caused or contributed 
to the adverse outcome or event. For example, in certain MDRs, the text of the report may include the 
word "death" or a related term. However, the MDR would not, and should not, be classified as death 

 
23 For the most recent list of AI/ML devices from the FDA see https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-
intelligence-and-machine-learning-aiml-enabled-medical-devices	
24 Data downloaded on October 4, 2002 from https://www.fda.gov/medical-devices/510k-clearances/downloadable-510k-files 
25 https://www.fda.gov/advisory-committees/medical-devices/medical-devices-advisory-committee 
26 Data downloaded on March 2, 2022 from https://www.fda.gov/medical-devices/mandatory-reporting-requirements-manufacturers-import-
ers-and-device-user-facilities/manufacturer-and-user-facility-device-experience-database-maude 
27 Manually downloaded and scraped recall database from FDA in May 2021 https://www.ac-
cessdata.fda.gov/scripts/cdrh/cfdocs/cfres/res.cfm 
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unless the reporter believes the patient's cause of death was or may have been attributed to the device or 
the device was or may have been a factor in the death.” 28 
 

Nevertheless, the MAUDE database is useful as a surveillance tool, and it provides regulators and researchers 

with a quantitative and qualitative overview of potential safety issues associated with devices.  

When such safety issues are found to be systematic, the manufacturer may issue a recall, under the FDA’s 

oversight, which would remove the device from the market (either indefinitely or until remedial action can be 

taken) due to a problem with a medical device that violates FDA law. The types of “correction or removal” actions 

that may constitute recalls include inspecting a device for problems, repairing a device, notifying patients of a 

problem with their device, re-labeling a device, adjusting settings on a device, monitoring patients for health issues, 

etc.29 The FDA’s recall database provides detailed information on the date and severity of a recall. The FDA 

clearly defines three classes of medical device recalls:  

• Class I: A situation where there is a reasonable chance that a product will cause serious health 
problems or death. 

• Class II: A situation where a product may cause a temporary or reversible health problem or 
where there is a slight chance that it will cause serious health problems or death. 

• Class III: A situation where a product is not likely to cause any health problem or injury. 

The FDA’s recall database was manually downloaded and scraped, such that all medical device recalls are 

linked to their associated product(s) via its 510(k) number. This allows recalls and specific products to be directly 

linked.30 Similarly, the MAUDE database includes a flag for the 510(k) number of the device associated with each 

adverse event report, allowing each adverse event to be linked to its respective product.  

The next steps use text analysis to identify devices with a software component as well as those that incorporate 

AI (i.e., “AI devices” as defined above). Both exercises rely on the availability of machine readable, publicly avail-

able summary documents (as described in section 2). Among the 30,779 top-8 specialty devices cleared during 

our period of analysis, 30,294 (or 98.4%) had such documents available and these form the basis of the text 

analysis used to flag those of interest. We apply the algorithm described in Stern & Foroughi 2020 to identify all 

software devices (both SiMD and SaMD) and then perform a further keyword search to identify AI devices as a 

subset of those. The keywords specifically selected for this exercise are “artificial intelligence,” “deep learning,” 

 
28 	https://www.fda.gov/medical-devices/mandatory-reporting-requirements-manufacturers-importers-and-device-user-facilities/about-manu-
facturer-and-user-facility-device-experience-maude	
29	https://www.fda.gov/medical-devices/medical-device-recalls/what-medical-device-recall	
30 The databases are merged in a “many-to-one” fashion, since an individual recall event can potentially impact more than one medical device. 
For example, a recall due to a safety issue with a material that is used in multiple devices would impact all devices that contain that material. 
Similarly, a recall impacting a piece of medical device software would impact all devices that run that software.  
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“machine learning,” and “neural network.” These terms were chosen for their direct and relationship with the 

description of AI algorithms and their likely lack of ambiguity when used, as such.31 Manual inspection of a ran-

dom sample of device summaries confirmed a 0% rate of false positives based on this method. Figure 1 presents 

a flow chart of how the analysis sample was constructed and Table 2 presents a breakdown of the analysis sample 

by medical specialty.  

 

Figure 1: Analysis sample construction 

 

 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  

 
31 An initial version of the keyword list included the word “algorithm,” however manual review suggested that it was being used in several 
cases where the device was collecting data that could be fed into an analysis program or used in a decision algorithm, where the product or 
method in question was not an AI tool. As such, the more conservative version of our keyword-based identification of AI devices does not 
incorporate the word “algorithm,” however we continue to count its use among otherwise-identified AI devices, noting that there are 
virtually no “false positive” uses of the word conditional on it being used in the context of a product with other AI-related keywords in its 
description. For an excellent summary of deep learning techniques such as neural networks, see Hinton (2022).  

Full sample (2010-2022Q3 clearances) 

N=38,812 

Top 8 medical specialty area devices 

N=30,779 

Those flagged as including software  

N=8,677 

Those flagged as including AI keywords 

N=303 

Limit to devices with public + machine readable regulatory documents 

N=30,294 (analysis sample) 
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Table 2: Analysis Sample Devices by Specialty 

Specialty (FDA Advisory Committee Panels) Analysis sample All software All AI software 

Clinical Chemistry and Clinical Toxicology 1,408 (4.7%) 375 (4.3%) 1 (0.3%) 

Cardiovascular 4,355 (14.4%) 1,515 (17.5%) 14 (4.6%) 

Dental 2,928 (9.7%) 466 (5.4%) 0 (0.0%) 

Gastroenterology-Urology 1,979 (6.5%) 428 (4.9%) 4 (1.3%) 

General Hospital and Personal Use 3,796 (12.5%) 462 (5.3%) 0 (0.0%) 

Orthopedic and Rehabilitation 6,893 (22.8%) 471 (5.4%) 0 (0.0%) 

Radiology 4,752 (15.7%) 3,729 (43.0%) 283 (93.4%) 

General and Plastic Surgery 4,183 (13.8%) 1,231 (14.2%) 1 (0.33%) 

Total 30,294 (100.0%) 8,677 
(100.0%) 303 (100.0%) 

 

A few interesting findings emerge from reviewing summary statistics from the analysis sample (Table 3). First, 

it is notable that nearly 29% of the analysis sample devices included software. This is consistent with Stern and 

Foroughi (2020), who document significant digitization of the medical device industry with the highest rates of 

SiMD and SaMD seen in radiology devices, followed by cardiology devices. Having a digitized device that includes 

a software component is, of course, a necessary, but not sufficient condition for the incorporation of AI.  

 

Table 3: Summary Statistics 

		 Analysis sample All software All AI software 
 

Keyword-based flags (all binary)        

software  8,677 (28.6%) 8,677 (100.0%) 303 (100%)  

algorithm  1,884 (6.2%) 1,724 (19.9%) 256 (85%)  

artificial intelligence  118 (0.4%) 118 (1.4%) 118 (39%)  

deep learning  132 (0.4%) 132 (1.5%) 132 (44%)  

machine learning  122 (0.4%) 122 (1.4%) 122 (40%)  

neural network  90 (0.3%) 90 (1.0%) 90 (30)  

Device features (binary)        

Breakthrough Device Program 9 (0.03%) 4 (0.05%) 2 (0.7%)  

De Novo 128 (0.4%) 83 (1.0%) 5 (1.7%)  

Firm information        

US-based application 66.3% 57.7% 46.5%  

Publicly listed, %  30.7% 39.1% 39.3%  

Revenue in millions if public, mean 23,955 35,467 51,924  

Employees if public, mean 75,013 118,476 163,436  

R&D Spend if public, mean 1,633 2,083 3,219  

Total number of devices 30,294 8,677 303  
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While the sample sizes are small, Table 3 also indicates that a) software devices and b) AI devices appear more 

likely to have received the Breakthrough Device Designation: while just 0.03% of all analysis sample devices 

received this designation, the rate rises to 0.05% among software devices and 0.7% among AI devices. The use 

of the De Novo pathway is also nearly two times more common among AI devices, a fact that is consistent with 

these devices being more likely to be novel and less likely to have a clear “predicate” product, although these 

summary statistics too are based on relatively small totals. Perhaps most interestingly, we note a significant differ-

ence in the likelihood that the manufacturer of a software or AI device is a publicly listed firm: the share of all AI 

devices brought to market by public firms is 39.3%, vs. 39.1% for software devices and 30.7% for all sample 

devices. That is, over 60% of AI and software devices (vs. roughly 70% of comparator devices from the same 

specialties) are being brought to market by privately held firms. This indicates that digital devices are being devel-

oped by a differentiated group of innovator firms, which may in turn have different needs and backgrounds.  

 

Figure 2: Growth in Software and AI Devices 
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Figure 2 shows the growth in both software devices as well as AI devices over the sample period. Consistent 

with past work (Foroughi and Stern 2020), we observe significant, continued growth in software devices (left 

axis), with a more than doubling in the number of new devices cleared per year over the period of observation. 

AI device growth (right axis) shows even more dramatic growth (albeit off a much lower base), with annual 

clearances of no more than just a few devices per year through 2016 and then rising dramatically to 91 in just the 

first three quarters of 2021. (NB: in Figure 2, the totals for the datapoint used for 2022 were inflated but a factor 

of 4/3 to generate an annualized number). 

 

Table 3: AI Devices by Country of Application 

Country 
Code Country Count % of AI Sample 
US United States 141 46.53 
IL Israel 33 10.89 
JP Japan 26 8.58 
FR France 15 4.95 
CN China 13 4.29 
KR South Korea 12 3.96 
NL Netherlands 10 3.3 
SE Sweden 7 2.31 
CA Canada 6 1.98 
DE Germany 6 1.98 
GB United Kingdom 6 1.98 
AU Australia 5 1.65 
TW Taiwan 5 1.65 
FI Finland 3 0.99 
IN India 3 0.99 
SG Singapore 3 0.99 
BE Belgium 2 0.66 
IE Ireland 2 0.66 
AT Austria 1 0.33 
BG Bulgaria 1 0.33 
DK Denmark 1 0.33 
PT Portugal 1 0.33 
VN Vietnam 1 0.33 
Total   303 100 
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Because the 510(k) database includes a field for the applicant firm’s addresses, we can also report on the ad-

dress from which each application was submitted (NB: this is the address from which the firm submitted the 

application, not necessarily the same as the address of the headquarter of the manufacturer firm. However, in 

many cases, this may be a more accurate representation of where R&D took place. For example, a German 

medical device firm that has its software development team/division in the United States might submit an appli-

cation from the address of that U.S. division). Table 3 reveals that AI devices are more likely to come from in-

ternational applicants than either comparator group in the analysis sample. Overall, 66.3% of all sample devices 

submitted regulatory applications from a U.S. address, relative to 57.7% of software devices and just 46.5% of 

AI devices. A natural question to ask is: which other countries are developing AI devices? Table 3 presents the 

distribution of the nationalities of AI device submissions. Notably, while the United States is the most repre-

sented country in the sample, U.S. applications represent less than half (46.5%) of the AI products identified, 

highlighting the importance of other countries such as Israel, Japan, France, and China in the AI device devel-

opment ecosystem. 

A final set of descriptive statistics explores the safety profiles of our sample devices. As described above, we 

consider both adverse events and recalls as relevant safety outcomes. We consider the first two years after a 

product is cleared for marketing in order to capture the most relevant period of time after a new product’s 

launch and to ensure that adverse event and recall outcomes are comparable across older vs. newer devices. 

 

Table 4: Device Safety Outcomes 

Panel I: Safety Outcomes (All years) Analysis sample All software All AI software 

Adverse events (AE)    
    Any AE in the first two years  4,212 (13.9%) 1,047 (12.1%) 9 (3.0%) 

    Any mandatory AE report in the first two years  4,206 (13.9%) 1,044 (12.0%) 9 (3.0%) 

    Average # of AEs in the first two years (count) 15.861 46.250 0.046 
    Average # of Mandatory AEs in the first two years (count) 15.855 46.244 0.046 
Recalls    
    Any recall in the first two years 1,158 (3.8%) 523 (6.0%) 5 (1.7%) 

    …categorized as Class I 39 (0.1%) 14 (0.2%) 0 (0.0%) 

    …categorized as Class II 1,103 (3.6%) 509 (5.9%) 5 (1.7%) 

    …categorized as Class III 29 (0.1%) 4 (0.1%) 0 (0.0%) 

   Average # Recalls in the first two years (count) 0.052 0.092 0.046 

    …categorized as Class I 0.001 0.002 0.000 

    …categorized as Class II 0.050 0.090 0.046 

    …categorized as Class III 0.001 0.000 0.000 

Total number of devices 30,294 (100.0%) 8,677 (100.0%) 303 (100.0%) 
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Panel II: Safety Outcomes (2010-2020 clearances only) Analysis sample All software All AI software 

Adverse events (AE)    
    Any AE in the first two years  4,121 (15.9%) 1,011 (14.2%) 9 (7.1%) 

    Any mandatory AE report in the first two years  4,115 (15.9%) 1,008 (14.2%) 9 (7.1%) 

    Average # of AEs in the first two years (count) 18.454 56.388 0.111 
    Average # of Mandatory AEs in the first two years (count) 18.447 56.381 0.111 
Recalls    
    Any recall in the first two years 1,154 (4.4%) 519 (7.3%) 5 (4.0%) 

    …categorized as Class I 39 (0.1%) 14 (0.2%) 0 (0.0%) 

    …categorized as Class II 1,099 (4.2%) 505 (7.1%) 5 (4.0%) 

    …categorized as Class III 29 (0.1%) 4 (0.1%) 0 (0.0%) 

   Average # Recalls in the first two years (count) 0.061 0.112 0.111 

    …categorized as Class I 0.002 0.002 0.000 

    …categorized as Class II 0.058 0.109 0.111 

    …categorized as Class III 0.001 0.001 0.000 

Total number of devices 25,962 (100.0%) 7,108 (100.0%) 126 (100.0%) 

 

Panel I of Table 4 presents outcomes for the entire dataset (which is truncated due to the inability to ob-

serve two years of follow-up data for those devices approved during or after Q3 of 2020). Panel II includes only 

safety outcomes for devices cleared through 2020 (but includes outcome data through Q3 of 2022) for a sub-

sample with a balanced follow-up period. The obvious tradeoff in building the balanced subsample is the quan-

tity of data: since over half of AI devices in the sample were cleared in 2021 and 2022, the total number of AI 

devices considered (right-most column) drops significantly from Panel I to Panel II.  

The safety outcome data reveal an interesting story: adverse events appear similarly likely to be recorded 

when comparing software devices to the full sample of devices, however the likelihood of an AI device having 

any adverse event reports drops dramatically in both samples. When considering counts of adverse events, both 

samples suggest a roughly 3x increase in adverse events among software devices relative to the overall sample, 

but a more than 100x decrease in adverse event counts per device among AI devices, again hinting at their rela-

tive safety.  

Similarly, data on recalls (a thankfully much rarer outcome) suggest that software devices are more likely to 

experience recalls (and when they do, they experience more of them) relative to the full sample, however AI de-

vices are either modestly or significantly less likely to experience recalls. While more work is needed to under-

stand the drivers of adverse event reports and medical device recalls, the findings here paint a preliminarily san-

guine picture of AI device safety: on average, AI devices appear to be at least as good or better than comparable 
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samples of devices in terms of the likelihoods with which negative safety outcomes are observed. These findings 

are consistent with Everhart and Stern (2022), who find somewhat higher rates of adverse events and recalls 

among software devices in many settings, however these results suggest an added layer of nuance in that the 

subset of AI-driven devices identified here are actually less likely to experience adverse safety-related outcomes.   

4. INNOVATION INCENTIVES 

How should innovation policy researchers think about the intersection of medical AI and medical product 

regulation and what can be learned from early data on regulated AI in the United States? A clear starting point 

for answering the first questions is the FDA’s current position on the regulation of AI/ML products, which was 

articulated in early 2021 in the “Artificial Intelligence and Machine Learning (AI/ML) Software as a Medical 

Device Action Plan” published by the CDRH’s Digital Health Center of Excellence (FDA 2021) and the “Pro-

posed Regulatory Framework for Modifications to Artificial Intelligence/Machine Learning (AI/ML)-Based Soft-

ware as a Medical Device (SaMD) - Discussion Paper and Request for Feedback” published previously (FDA 

2019). Ideas in both documents rely on the risk categorization principles outlined by the IMDRF32 and are based 

on the “total lifecycle approach” envisioned by the software Pre-Cert pilot program (see Section 2 for more detail).  

A key part of the proposed framework for the future regulation of AI/ML devices is the “algorithm change 

protocol,” which would rely on real-world performance data and ongoing monitoring to allow regulators to flex-

ibly balance the FDA’s dual mandate to protect public health while still providing timely access to new products. 

More generally, the Action Plan outlines five key actions that it sees as the focus of FDA’s work going forward:  

1. Tailored Regulatory Framework for AI/ML-based SaMD 

2. FDA to encourage harmonization of Good Machine Learning Practice (GMLP) development (an analog to GMP in 
physical devices)  

3. Patient-Centered Approach Incorporating Transparency to Users 

4. Regulatory Science Methods Related to Algorithm Bias and Robustness 

5. Real-World Performance 

The fact that the Action Plan exists and that its first articulated goal is the establishment of a tailored regulatory 

framework for AI/ML-based SaMD send a clear signal that U.S. regulators are aware of the special challenges 

(and opportunities) inherent in the regulation of AI-based SaMD. And yet great uncertainty remains as to how 

precisely AI device regulation will be implemented in practice—and, as is always the case—the devil will be in the 

details. As just one example, understanding whether casual inference will play a role in the FDA’s regulation of 

 
32 https://www.fda.gov/medical-devices/software-medical-device-samd/global-approach-software-medical-device 
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certain types of products will meaningfully shape the types of products brought to market—both within the 

regulated setting and beyond (Stern and Price 2019).  

A laundry list of other questions that flow from the Action Plan’s component sections remain unanswered: 

For example, what will be the scope and specificity of the tailored regulatory framework that emerges? CDRH 

plans to encourage the harmonization33 of GMLPs, which are expected to include best practices for data man-

agement, feature extraction, training, interpretability, evaluation, and documentation that FDA acknowledges as 

being “akin to good software engineering practices or quality system practices” (FDA 2021)—how detailed and 

how burdensome (two related but ultimately distinct features) will these GMLPs be? How closely aligned will they 

be with the state-of-the-art in algorithm development? The answers to both questions—in particular, the latter—

will meaningfully shape the barriers to entry for developers to enter the regulated SaMD space.  

In addition to active participation in the IMDRF’s AI Medical Device working group, the FDA maintains 

relationships with the Institute of Electrical and Electronics Engineers’ (IEEE) AI medical device working group 

as well as the International Organization for Standardization/Joint Technical Committee’s Sub-Committee on AI 

and the British Standards Institution’s initiative on AI in medical technology (FDA 2021).34 Such relationships 

are deeply important: (internationally recognized) standard setting organizations are known to be vital for identi-

fying the most promising technologies and influencing the trajectory of technology adoption in other contexts 

(Rysman and Simcoe 2008) and regulatory clarity is known to accelerate time-to-market for other types of medical 

devices (Stern 2017).  

With respect to patient-centricity in incorporating transparency for users, regulatory science methods to re-

lated to algorithm bias and robustness, and the creative, but still-rigorous application of real-world performance 

data, countless questions of a similar nature remain to be articulated by stakeholders and answered by regulators. 

A challenge with developing AI is often a lack of transparency as to how AI/ML algorithms such as neural 

networks performs their tasks; at present, it’s simply not possible (Hinton 2022) . Nonetheless, there needs to be 

a mechanism to build trust in the outcomes via specific validation tests, which is where “real-world performance” 

studies can play an important role. On all of these topics, the broader digital medicine community can also col-

laborate to move medical AI forward; for example, in articulating best practices and priorities for the generation 

and use of real-world evidence in the assessment of digital health products (Stern et al. 2022). This work will 

necessarily touch on patient-centricity, transparency, and various aspects of regulatory science. For example, the 

 
33	FDA is also moving to harmonize regulatory guidelines with international standards for quality systems such as ISO 13485, which covers 
quality management systems for medical devices and requirements for regulatory purposes (https://www.iso.org/standard/59752.html).	
34 In 2021, the FDA officially joined the Xavier AI World Consortium Collaborative Community, the Pathology Innovation Collaborative Com-
munity, and also participates in the Collaborative Community on Ophthalmic Imaging (FDA 2021)  
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articulation of best practices for real-world evidence generation will lead to greater consensus on questions of 

how to handle and understand the implications of missing data, characterizing the generalizability and transport-

ability of findings to broad populations, and understanding and standardizing hypothesis testing around whether 

digital health products are complements or substitutes to existing standards of care, to name just a few aspects. 

Finally, other questions that are not covered in the scope of the Action Plan also surface quickly: what about the 

large number of AI devices (as defined here) that are SiMD, rather than SaMD products? The scope of the Action 

Plan is explicitly limited to stand-alone software, with the corollary that a good deal of uncertainty may remain 

for AI SiMD products.  

Against this backdrop, innovation policy questions associated with the concept of regulatory uncertainty become 

all the more trenchant: in the U.S. medical device setting, regulatory uncertainty—e.g., as experienced when a 

first-of-its-kind medical device goes through a regulatory approval process for the first time—has been associated 

with first-mover disadvantages and lower rates of novel device commercialization among small firms (Stern 2017). 

There is every reason to believe that regulatory uncertainty will negatively impact firms’ willingness to engage in 

innovation in the regulated space broadly and to embark on more novel R&D projects (specifically, those without 

regulatory precedent) in particular. But this also indicates the great potential that proactive approaches could have 

in this setting: the provision of regulatory clarity through formal guidance documents has been shown to speed 

regulatory approval of new high-risk devices (Stern 2017), suggesting the vital role that regulatory innovation and 

policy clarification can play in shaping innovation incentives.  

The value of regulatory innovation and regulatory clarity may be particularly important in the context of AI 

devices because such a large share of innovations to-date have emerged from smaller firms and those from other 

countries. Large (e.g., publicly listed) and domestic firms are far more likely to possess U.S. regulatory expertise 

in the first place and these firms also have, on average, more experience in the (U.S.) regulated product space than 

their smaller and/or internationally based peers. Yet evidence on the early years of AI device rollout in the United 

States suggests that privately held, international manufacturers are disproportionately likely to be developing AI 

devices relative to what is otherwise seen in the regulated space.  

Taking an even larger step back, it is worth considering the margin between regulated and unregulated AI 

tools – that is, asking the “extensive margin question”: what role does regulation itself play in innovation incentives 

for new AI devices. As is often the case, the answer is “it depends”: in some situations, pursuing a non-regulated 

product development approach may be incentivized – e.g., to get a product to market more quickly. In other 

cases, however, having a regulated product on the market may itself be part of the commercialization and/or reim-

bursement strategy for a digital tool.  
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The gray area in which many devices reside and in which many manufacturers operate is substantial and there 

may be strategic reasons to pursue FDA regulation or to avoid it. One reason to pursue a strategy of formal 

regulation is that reimbursement by payers may be more straightforward for regulated medical products, increas-

ing manufacturers’ appetite for going through a clearance process, since it may be a significant component of 

their reimbursement strategy. In the extreme, this is already being seen in the case of “prescription digital thera-

peutics” (sometimes called PDTs), which are software-based (SaMD) therapeutic devices that are intended only 

for prescription by clinicians. Notably, the label “PDT” is one that was created by the SaMD industry – unlike 

drugs, the word “prescription” does not (necessarily) indicate anything about the product’s risk level; rather the 

term is often used as part of a market access strategy for the manufacturer, which in turn is making a bet that 

products prescribed by physicians will be more likely to qualify for insurance coverage than direct-to-consumer 

apps/tools. Indeed, anecdotes suggest that other types of digital health companies are pursuing an FDA regulatory 

pathway in order to gain legitimacy in the eyes of clinician recommenders and health insurance companies. Such 

behavior has precedent: Eisenberg (2019) describes how a situation of “opting into device regulation” has been 

observed among developers of next generation sequencing (NGS) diagnostic tests for tumor DNA, where “un-

derstanding the rules and practices that govern health insurance coverage and the important role of FDA in 

assessment of new technologies” is key to understanding such a decision by a manufacturer.  

On the other hand, manufacturers may deliberately select language so as to avoid making medical claims that 

would require premarket review in order to get products to market faster or at a lower cost, since FDA submis-

sions are notoriously costly to file and take several months to years. Relatedly, many SaMD products will meet 

the definition of a medical device, but qualify for enforcement discretion (e.g., because they pose only a very low 

risk to patients), such that they are, de facto, not regulated by the FDA. A final set of innovations are likely to 

emerge outside of the regulated space, but may have spillover effects on the types of other AI products that can 

be commercialized. For example, Price, Sachs, and Eisenberg (2021) point out that AI tools such as those that 

might be used for quality improvement initiatives or for optimizing use of scarce hospital facilities are likely to be 

developed by health systems and insurers (rather than machine learning experts and/or medical device compa-

nies), since these parties already control the relevant training datasets and have the greatest operational interest in 

such products’ development. Importantly, the authors note that “data possession and control play a larger role in 

determining capacity to innovate in this [more operationally-oriented] space” (Price, Sachs, and Eisenberg 2021) 

In certain cases, of course, there will not be any gray area: very high (or very low) risk products will (or will not) 

unambiguously qualify as regulated medical devices. and these realities, in turn, could impact the availability of 

datasets for AI development in other settings.  
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Notably, FDA does not actively regulate two significant types of AI systems that are likely to play a growing 

role in care delivery as well as in AI R&D (Stern and Price 2019). First, the FDA does not regulate certain types 

of clinical decision support software (CDS), software that “helps providers make care decisions by, for instance, 

providing suggested drug dosages or alerts about drug interactions.” When providers have an opportunity to 

review the rationale behind the recommendation made by an AI, it is likely to be exempt from what FDA con-

siders a device (21 U.S. Code § 360j). However recent regulatory guidance has served to significantly narrow the 

set of applications that qualify as CDS35 and as a corollary, many more applications are likely to be considered 

devices. Further, some AI tools will be considered “laboratory-developed tests” which are those that are devel-

oped and used within a single health care facility such as hospital. For such tests, the FDA also holds back from 

exercising its regulatory authority. In both cases, we should expect to see notable growth in AI, although use cases 

with cost and/or comparative effectiveness have yet to be established.  

5. CONCLUSION 

A survey of the regulated medical device landscape suggests a dramatic uptick in the commercialization of AI 

products over recent years. At the same time, regulators have begun a germane and important discussion of how 

such devices could be regulated constructively in the future—ultimately under the umbrella of the FDA’s dual 

mandate of ensuring public health, while facilitating patient access to important new medical technologies. There 

are several margins along which innovation incentives are likely to play a role. To the extent that many applications 

of AI for diagnosis and treatment of medical conditions are likely to meet the formal definition of a medical 

device, medical product regulation will be an ongoing presence in this space—and one that will shape incentives 

for software developers, established medical device companies, venture capital investors, and user-innovators.  

Whether or not an AI tool qualifies as a medical device and the extent to which the answer occupies the gray 

area of ambiguity on this question will impact whether products are developed, what R&D decisions are made at 

the margin, and how new AI tools are paid for in the health care system once they are commercialized. Among 

regulated devices, meaningful differences in the burden of clinical evidence and paperwork required for commer-

cialization already exist, depending on whether a device is classified as being of low, moderate, or high risk. These 

differences will be even more salient for AI developers, who are likely to have less medical device regulatory 

experience than those engaging in R&D activities in traditional medical technology firms. And of course, emergent 

guidelines from the FDA and best practices from the broader digital medicine community (including clinical 

 
35	https://www.fda.gov/media/109618/download 	
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researchers, standard setting organizations, and companies) will impact the amount of uncertainty associated with 

new product development in this space and therefore the incentives for firms—both small and large—to innovate.  

Such guidelines and best practices will of course emerge in the context of a larger societal conversation about 

AI in health care and must necessarily be considered against the backdrop of key issues such as those highlighted 

by the U.S. National Academy of Medicine (Matheny et al. 2019). These include the imperative of promoting 

population-representative data with accessibility, standardization, and quality; prioritizing ethical, equitable, and 

inclusive health care AI, while addressing explicit and implicit bias; contextualizing the dialogue of transparency 

and trust according to differential needs; cultivating a near-term focus on augmented intelligence vs AI autono-

mous agents; developing and deploying appropriate training and educational programs; leveraging frameworks 

and best practices for learning health care systems, human factors, and implementation science; and balancing 

innovation with safety via regulation and legislation to promote trust (Matheny et al. 2020)—a final priority that 

brings the discussion back to the role of regulatory and legal aspects of medical AI.  

The emergence of regulated AI devices holds great promise for delivering higher-quality care to patients and 

addressing un- or under-served populations. It also can improve workflows, efficiency, and confidence in diag-

nosis and treatment decisions for clinicians, with secondary benefits to health care payers and clear financial 

benefits to product companies. Yet ongoing regulatory clarity and policy innovation will be necessary for regula-

tion to keep pace with AI innovation in health care. Further research on innovation policy in medical AI should 

focus on understanding which aspects of regulatory clarity and regulatory policy are most likely to induce and 

facilitate the commercialization of welfare-enhancing innovations.  
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