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A growing body of empirical evidence documents puzzling behavior in strategyproof

matching mechanisms: many participants play seemingly dominated strategies, both in

real, large-stakes applications and controlled lab experiments. A prominent example

of this behavior is documented in centralized clearinghouses that use rank-order lists

(ROLs) submitted by schools and students to match them together based on the deferred-

acceptance algorithm (DA; Gale and Shapley 1962). Even though the mechanism is

strategyproof for students, i.e., submitting a straightforward (“truthful”) ranking of

schools is a weakly dominant strategy, a nontrivial share of supposedly informed students

who participate in real-world matches appear to make dominated choices. Recent field

evidence from various countries shows that students do not rank a study program with

funding above the same program without the funding (see Artemov et al. 2017, Hassidim

et al. 2021 and Shorrer and Sóvágó 2022). Similarly, in simple allocation experiments, a

substantial fraction of participants rank smaller amounts of money above larger ones; see

Rees-Jones and Skowronek (2018) for the first lab-in-the-field evidence from the US, and

Hakimov and Kübler (2021) for a recent survey of lab evidence.

Recently, Dreyfuss et al. (2022) and Meisner and von Wangenheim (2021) showed

that expectations-based reference dependence (EBRD; also referred to as EBLA, for

expectations-based loss aversion) could potentially explain such non-straightforward

behavior. Intuitively, participants with EBRD preferences may intentionally downrank (or,

in some cases, completely omit) a high-value, low-probability school to avert the likely

disappointment from rejection. Both papers show how an EBRD model, as formulated by

Kőszegi and Rabin (2006, 2007, 2009), is consistent with various empirical patterns from

the lab and the field. The first paper also structurally analyzes existing lab data from Li

(2017) and shows that the EBRD model indeed fits the data significantly better than the

classical, reference-independent-preferences benchmark.

In this paper we ask: is there a DA implementation that induces straightforward

behavior even when students are loss averse? This question is both theoretically important

and has practical, real-world implications.

To answer this question, we study, both theoretically and empirically, the potential

role of EBRD in four different variants of DA. As summarized in Table 1, we analyze the

predicted effect of varying two features of DA: (i) static (normal-form) versus dynamic

(extensive-form) implementation, and (ii) student-proposing versus student-receiving (equiv-

alently, school-proposing) role designation. In the industry-standard DA variant, Static

student Proposing (SP), students propose to schools in an order determined by rank-order
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Table 1: Four Deferred Acceptance Variants

Static: Submit Dynamic: Decide
list in advance at each step

Proposing: Students apply to schools, schools retain the
highest ranked applications.

SP DP

Receiving: Schools send admission offers to students by
ranking, students can retain at most one offer in each step.

SR DR

lists (ROLs) they submit in advance. In the dynamic version of this variant, Dynamic

student Proposing (DP), students actively propose to schools, in real-time, in any order

they choose. In the Static student Receiving (SR) variant, students respond to school

admission offers according to ROLs they submit in advance. Finally, in the Dynamic

student Receiving (DR) variant, students actively respond to admission offers from schools,

in real-time, by retaining at most one offer at any given moment.

We make four contributions: theoretical, empirical, methodological, and practical.

First, we theoretically show that in large markets (with a continuum of students and a

finite number of schools), the DR variant is “EBRD-strategyproof” in that it eliminates

non-straightforward behavior for any level of loss aversion.1 In contrast, EBRD-driven

non-straightforward behavior is predicted to be quite prevalent under the other three

variants, especially in highly competitive settings where the chances of admission into top

schools are low.

Second, in what we view as our main contribution, we experimentally test the model’s

predictions, both (a) across the four algorithm variants, by randomly assigning different

participants to different variants, and (b) across matching settings, by exogenously varying

the degree of competitiveness across ten matching problems that each participant faces.2

In addition to providing strong empirical support for our DA-specific theoretical results

above, our experiment is also unique in providing one of the sharpest tests to date of the

EBRD model more generally. In particular, by holding everything fixed other than the

1As discussed below, in concurrent work, Meisner and von Wangenheim (2021) prove a related result.
2In related work, Klijn et al. (2019) run a similar four-treatment experiment with the four DA variants.

In contrast to our large-market framework, their experiment has four student subjects with full information
about others’ preferences, and four (non-strategic) schools. This design does not allow for comparisons
across role designation (proposing/receiving), and does not lend itself to testing our EBRD model predictions
for two main reasons. First, in small markets, switching role designation drastically changes the (classical-
preferences) incentive structure. Second, under full information, the uncertainty—the essential part of
the EBRD theoretical framework—is about other subjects’ strategies, and is hence not easily estimated or
modeled. Other related work with similar caveats includes Echenique et al. (2016), who run full-information,
dynamic one-to-one DA. See Hakimov and Kübler’s (2021) review for further details.
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timing of commitments and uncertainty resolution, (a) above provides a clean test of the

model’s timing predictions; and by holding everything fixed other than the competitiveness

of the setting, (b) above directly tests a central prediction of the model regarding how

changes in probability beliefs affect behavior.

Third, our experiment uses a novel design that simulates DA in a continuum economy.

In the experiment, each subjects draws a uniformly distributed priority score in every school,

and can get matched with the school only if their priority score is greater than the school’s

threshold. The subject learns each school’s threshold but not their own priority scores

at the different schools.3 This design has two main advantages: first, our single-player

framework allows us to directly (and exogenously) vary subjects’ beliefs about admission

probabilities—a central component of the EBRD model—with minimal assumptions on

probabilistic reasoning and no assumptions on beliefs about others’ play. Second, this

design allows us to compare behavior across the four different DA variants while keeping

incentives constant. Methodologically, this design can be easily adapted to test other

belief-based theories.

Finally, for practitioners, who may care less about theoretical results and their empirical

tests and more about pragmatics, our finding that of the four mechanism variants we

examine, DR in fact stands out in minimizing (though far from completely eliminating)

non-straightforward behavior has practical implications. As discussed below, we view

this result as a valuable, “bottom-line” policy-relevant empirical finding regardless of its

theoretical drivers.

We report our theoretical analysis in Section 1. We focus on large-market economies,

with a continuum of students and a finite set of capacity-constrained schools, and rely on

the theoretical characterization of Azevedo and Leshno (2016) and Abdulkadiroğlu et al.

(2015). We show that in such economies, DR is EBRD-strategyproof: for any degree of

loss aversion and any belief distribution, the EBRD model predicts that participants will

always play what we call straightforward strategies (“truthful strategies”). Straightforward

strategies are strategies consistent with a ranking of alternatives according to their con-

sumption values. In DR, straightforwardness implies that the student always picks the

highest-consumption-value offer from the set of available offers in each step. In contrast

with DR, the other three variants are not EBRD-strategyproof: in highly competitive

settings, the model predicts loss-averse individuals under SP, SR, and DP to behave in a

non-straightforward way.4

3Rees-Jones et al. (2020) use a similar design in a static, non-strategyproof setting.
4We prefer the more normatively neutral terms “straightforward” (Roth and Sotomayor, 1990) and
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The theory in Section 1 thus leads to three sets of testable predictions under the

EBRD model. First, within each variant, non-straightforward behavior should increase

with the competitiveness of the matching setting in the three non-EBRD-strategyproof

variants, but not in DR. Second, between the four variants, DR should stand out in having

the lowest share of non-straightforward behavior in competitive environments, but not

in noncompetitive ones (where shares should be similarly low in all variants). Third,

non-straightforward behavior should consist of specific strategies in specific environments

(precisely identified by the EBRD model).

These three sets of qualitative predictions, together with a given distribution of the

degree of loss aversion in a population—which we plug in from previous work—yield

specific quantitative predictions both across matching settings and across DA variants.

Our experiment is designed to evaluate them.

We outline our experimental design in Section 2. Subjects are randomly assigned

to one of the four variants, and play the same ten matching problems (but in different

random orders). Each problem simulates a different large-market matching economy, with

five schools whose values to participants are given in dollar amounts of takeaway money.

Using the population distribution of loss aversion from a previous study, the ten matching

problems are designed to create variation in the predicted prevalence, according to the

EBRD model, of straightforward behavior in the three non-DR treatments. Three of the

ten problems (“weak student” problems) are designed to simulate highly competitive

settings, and predict a moderately high fraction of non-straightforward behavior (24–31

percent); another four (“medium student”) problems predict a lower fraction of such

behavior (12–24 percent); and the remaining three (“strong student”) problems predict no

non-straightforward behavior (0 percent). (Recall that in comparison, the standard, no-

EBRD model predicts 0 percent of non-straightforward behavior under all four treatments

and all ten matching problems.)

In Section 3 we report experimental results from two independent samples, pooled

together (N = 500): Cornell students (N = 196) and Israeli psychology graduate-school

candidates (N = 304) who participated in the (DA-based) Israeli Psychology Master’s

Match (IPMM) and are therefore a highly relevant population with strong incentives to

understand the mechanism. Our main predictions and results are summarized in Figure 3

(page 28).

“non-straightforward” rather than “truthful” and “non-truthful” because it is unclear how to define “truthful
reporting” for an agent whose preferences over schools depend on an endogenously determined reference
point.
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Our findings support all three sets of theoretical predictions. First, within the three

non-DR treatments, the observed shares of non-straightforward behavior monotonically

decrease from weak- (33–48 percent) to medium- (30–37 percent) to strong-student prob-

lems (19–22 percent). In contrast, within the (EBRD-strategyproof) DR treatment, the

shares are essentially flat (19 to 16 to 16 percent). Second, across variants, these shares

also imply that between the variants, we find substantially lower levels of observed non-

straightforward behavior in DR compared to the other three treatments in competitive

environments, and essentially no difference in noncompetitive environments. Third, mov-

ing beyond mere shares of non-straightforward behavior, we further show that (i) the

specific non-straightforward strategies that the model predicts and does not predict, are

indeed those we commonly observe and do not observe in the data, respectively; and (ii) in

specific problems in which the model predicts specific non-straightforward strategies (e.g.,

ranking the third-highest-value school on the top of the list), these strategies are indeed

the most common.

A potential worry when comparing behavior across static and dynamic variants (in our

case, the static variants vs. DR) is that while in static variants we observe submitted rank-

order lists—i.e., the complete strategy—in dynamic variants we only observe actions. In

theory, this could mechanically downward-bias the observed share of non-straightforward

behavior in DR. In practice, however, our evidence suggests that such potential bias is

unlikely. Indeed, we find that in DR, (a) observed non-straightforward behavior primarily

consists of rejecting offers from low-value schools—offers that we typically observe; and

(b) observed non-straightforward behavior is no more prevalent in rounds where subjects

receive more offers.

We close Section 3 by discussing other theories that might explain our data. We make

two observations. First, we find across all problems and variants a baseline share of

16–22 percent observed non-straightforward behavior that the model does not predict

and cannot explain, and that is likely explained by strategic confusion, misunderstanding,

noisy decision-making, or other theories. Second, no model of misunderstanding or noise

that we are aware of predicts or explains the three sets of qualitative predictions that our

model predicts and that are borne out in the data: variation within and across variants,

and prevalence of specific types of non-straightforward behavior.

We conclude in Section 4, where we discuss the potential implications, as well as limi-

tations of our findings. From a theoretical point of view, our findings are unambiguously

more consistent with the EBRD than with a no-EBRD model—importantly, without adding
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degrees of freedom in the EBRD model (as we fixed parameter values in advance at a

previously estimated distribution). At the same time, we always find 10–20 percent more

non-straightforward behavior than the (parameter-constrained) EBRD model predicts—

strongly suggesting that loss aversion cannot account for all such observed behavior. From

a policy-maker’s point of view, our findings suggest that one of the four implementations

of DA that we examine—dynamic student receiving (DR)—minimizes such behavior. Of

course, our study leaves open the pragmatic question of whether DR is feasible to im-

plement in practice (however, see Grenet et al. 2022 for a recent real-world example of

quasi-dynamic implementation of student-receiving DA).

1 Theoretical Analysis

This section is notation-heavy and technical. Readers with powerful intuition may wish to

skip it and move directly to the mostly self-contained Section 2 (p. 18).

1.1 General Framework

Consider a two-sided market with n capacity-constrained schools and a unit mass con-

tinuum of atomistic students, governed by a DA mechanism that matches (masses of)

students to schools. Throughout this section, we rely on the large-market characterization

of Abdulkadiroğlu et al. (2015) and Azevedo and Leshno (2016) and their adaptation of

the DA mechanism to a continuum economy.5

In what follows we focus on the decision from student i’s perspective, fixing others’

(i.e., schools’ and other students’) behavior. We start by describing the fundamentals of the

economy underlying that perspective. The set of schools is denoted by S = {s1, . . . ,sn+1},
where sn+1 represents the outside option. Each school j has a capacity cj ∈ (0,1] that

represents the share of students it can admit and assigns each student i with a relative

rank ρij ∈ [0,1], which we call a priority score.

Each student i has a strict (reference-independent) preference over schools, represented

by the vector of utilities mi = (mi,1, . . . ,mi,n+1). We index WLOG schools by student i’s

preferences so that mi,j > mi,k for all j < k ≤ n. We call this utility component consumption

utility. Later in this section we add a news-utility (Kőszegi and Rabin, 2009) component.

5A problem that might arise in our setting is that while in the continuum economy, the DA algorithm
converges to a well-defined allocation in the limit, the process might not complete in finite time. We ignore
this issue and assume that a matching is always reached in finite time.
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As shown in Azevedo and Leshno (2016), the match resulting from running DA in

this economy (given some students’ and schools’ preferences) is characterized by a vector

of thresholds T = (T1, . . . ,Tn+1), one for each school, where each student i is assigned to

her highest ranked school such that ρij ≥ Tj . Moreover, student-proposing and student-

receiving DA result in the same match (and associated thresholds vector T).6 We assume

that the outside option is always available with certainty, i.e., cn+1 = 1, which then implies

Tn+1 = 0, .

Students know the thresholds T and—since students are measure zero, correctly—treat

them as exogenous. However, we assume that students do not know their own priority

score at each school, ρij , but rather perceive a probability distribution over their score,

which we denote by the CDF Gij .7 This assumption captures the idea that while students

know how selective a school is, they do not necessarily know their exact ranking relative

to other students.8 We denote student i’s joint distribution of priority scores in all schools

by Gi . Since we focus on the single-agent problem, we often suppress the index i. To

simplify the presentation, we restrict our attention to schools that are acceptable to i, and

normalize mi,n+1 = 0, but none of our results meaningfully depend on this restriction.

As explained in the introduction, we focus on four different variants of the DA algo-

rithm, resulting from the product {proposing, receiving}×{static, dynamic}. We denote the

DA variant governing the market by M. A matching problem from student i’s perspective

can therefore be summarized by ⟨M,Gi ,T,mi⟩, where M defines the matching process, Gi

is the joint distribution over priority scores, T is a vector of thresholds, and mi is a vector

of school-consumption utilities.

1.2 Timing, Beliefs, and Strategies

Fixing all other players’ actions, we can treat each DA variant M as a game student i plays

against Nature, where G governs Nature’s moves. We define periods for each variant below,

but generally, we think of periods as decision nodes where either the student or Nature

makes a move.
6For the stable match to be unique, the joint distribution of preferences and priority scores needs to

satisfy some regularity conditions (see Azevedo and Leshno 2016, Theorem 1). For simplicity we restrict
student i’s beliefs to satisfy those regularity conditions throughout. Notice, however, that we do not assume
that others’ behavior is straightforward.

7We stress that in our model the thresholds can, but do not necessarily have to, arise from explicit beliefs
on the joint distribution of other applicants’ play and priority scores, and on school capacities.

8Notice that this framework can easily capture uncertainty about the thresholds by simply incorporating
it into Gij .
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A history h ∈ H is a sequence of actions by the student and Nature prescribed to every

period t it includes. We define G(· | h) as the student’s joint belief over priority scores

given history h, with G being her initial belief at h= ∅. A terminal history (in the set of

terminal histories) z ∈ Z is a history that includes a terminal period, i.e., the period in which

no more actions are taken, and the student is informed about her final match from S. The

index of that final match is represented by the outcome function O(z) : Z → {1, . . . ,n+ 1},
and the terminal period is denoted by tz. Subhistories are denoted using subscripts: zt
(with t ≤ tz) is the realization of the terminal history z up to period t.

A strategy l ∈ L for the student assigns an action to every period in which the student

is called to act, for every possible history.9 We denote the set of continuation strategies

consistent with (i.e., do not preclude reaching) history h by Lh. A history h induces belief

G(· | h). This belief, combined with a variant M, thresholds T, and a strategy l jointly

induce a belief over terminal histories, which we denote by F̃ l|h, and also a belief over final

payoffs (i.e., over the support mi) which we denote by F l|h.

In Appendix A we formally present the game our large-market framework induces

under each of the four variants. In the static variants (SP and SR), students submit a ROL

in the first period and learn about the result in the next one; in DP, they apply to a school

in one period and learn the result in the following period, until the first acceptance; and

in DR they receive a set of offers in one period, and can keep one of them in the following

period, until no more offers are received.

We now introduce our definition of non-straightforward behavior (“misrepresentation”

or “non-truthfulness”), which applies to all four variants.

Definition 1. In a DA variant, a strategy l that conforms to a rank order list (ROL) order-

ing schools by their consumption-utility value is a straightforward (SF) strategy. A non-

straightforward (NSF) strategy is any strategy inconsistent with this ROL.

In the static variants SP and SR, the SF strategy is simply the ROL that ranks schools

by their values. In DP, the SF strategy is sequentially applying to schools by order of their

values. In DR, it is retaining the highest value offer at any given decision node for any

given history.

9Throughout this section, we limit our attention to pure strategies. While we do not formally prove this,
we strongly suspect that none of our results would be affected if we allowed for mixed strategies. For a
related discussion on mixed strategies under EBRD see Dato et al. (2017).
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1.3 Expectations-Based-Reference-Dependent (EBRD) Preferences

As mentioned earlier, in addition to classical consumption utility, students’ utility func-

tions have a news-utility component. Absent this additional news component, given any

history h, the student’s objective function is simply EF l|h [m], i.e., the expected consumption

utility under strategy l given history h. The additional news-utility component is aimed

to capture a basic feature in people’s preferences: the utility and disutility from belief

updating. In particular, learning about a higher likelihood of a good outcome—a pleasant

surprise relative to previously held beliefs—in itself entails positive utility, while learning

about a lower likelihood—a disappointment—in itself entails disutility. Loss aversion in

this model means that the disutility from a downward update of one’s beliefs is larger

than the utility from an equally sized upward update.

News utility is therefore defined over belief updates. Formally, during the matching

process, when moving from the history ht to the history ht+1, the student rationally

updates her beliefs over final outcomes from F l|ht to F l|ht+1
. Let F and F̂ be, respectively,

previously held and updated belief distributions over outcomes. The news utility function

is given by:

N (F̂ | F) =
1∫

0

µ
(
F̂p −Fp

)
dp, (1)

where Fp denotes the consumption level at percentile p of F, and µ(·) is defined as:

µ (x) =

x if x ≥ 0

λx if x < 0,
(2)

with λ ≥ 1 representing an individual’s loss-aversion parameter. The function N describes

how updated beliefs are compared with previously held beliefs, percentile by percentile:

in each period t, the student compares, for each percentile, the outcome under F̂ to the

outcome under F, with a higher weight λ on negative surprises.

The total utility from a strategy l is therefore given by:

U (l) = EFl [m] +EF̃l

[
N

(
F l|z1

| F l|∅
)]
+EF̃l

 t̄z∑
t=2

N
(
F l|zt | F l|zt−1

) . (3)

The first term is expected consumption utility. The last two terms are the expected sum

of news utility streams from the terminal history, given a probability distribution over
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possible terminal histories F̃l .10 Note that beliefs over payoff prior to period 1, i.e., prior

to choosing a strategy, F l|∅, are not yet defined. To close the model, we assume that prior to

entering the mechanism, the student believes that she will consume the outside option with

certainty, i.e., F l|∅ = F0 for all l, where F0(x) = 1 for all x ≥mn+1 = 0 and 0 otherwise. This

assumption is calibrationally (i.e., quantitatively), but not qualitatively, substantive. In

particular, it does not affect our between-variant results, nor does it change our qualitative

predictions within each mechanism. However, it is calibrationally substantive in that

assuming more optimistic initial beliefs will require a higher value of λ for the optimal

strategy to be NSF.

Notice that this formulation implicitly assumes that utility from attending different

schools belongs to the same consumption dimension, which captures situations where

schools are differentiated vertically (rather than horizontally). Our between-variant result

(Proposition 1) does not hold if we relax it. Dreyfuss et al. (2022) shows a within-variant

result (similar to Proposition 2) under complete horizontal differentiation.

To summarize, given a realization of a terminal history z and a chosen strategy l, timing

in our model is defined as follows:

• Period 0: The student believes that she will consume the outside option with certainty.

No action is taken.

• Period 1: The student learns about the mechanism and chooses a strategy l. If she

is called to act, she takes the action prescribed to z1 by l.11 She updates her beliefs

from F0 to F l|z1
and receives N (F l|z1

| F0).

• Period 1 < t < tz: If called to act, the student takes the action prescribed to zt by l.

She updates from F l|zt−1
to F l|zt and receives N (F l|zt | F l|zt−1

).12

• Period tz: The student learns about her final match and updates to the degenerate

CDF F l|z. She receives mO(z) +N
(
F l|z | F l|zt−1

)
.13

10In the original version of the Kőszegi and Rabin (2009) model there are two additional parameters: η,
which captures the weight of news utility compared to consumption utility, and γ , which discounts news on
future consumption. We assume that η = 1 as well as γ = 1. The first assumption is simply a normalization.
The second assumption is more substantive and implies that the weight on news utility does not depend on
when in the future said consumption occurs. For further details on both assumptions, see Dreyfuss et al.
(2022).

11In the DR variant, Nature is the first to take an action, whereas in the other three variants, the student
takes the first action.

12Note, however, that in equilibrium, in all four variants new information is only learned after Nature’s
actions. Therefore, action taking and non-degenerate belief updating do not occur in the same period.

13In all four variants, Nature is always the last one to take an action: in the static variants, it responds to
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In both static variants, the news utility stream reduces to N (F l|h1
| F0)+EF̃l

[
N

(
F l|z | Fl

)]
(with h1 a history that contains the submission of ROL l). The first term compares the

belief over final matches induced by the submission of the ROL l in period 1 to an initial

belief F0 (consuming the outside option with certainty). The second term compares the

result of the matching process with the belief over outcomes induced by the submitted

ROL l (and recall that F l|z is degenerate). In the two dynamic variants, after the initial

period-1 update, beliefs potentially update after each time Nature takes an action (or when

the student changes her strategy, which does not happen in equilibrium). For example,

in DP, the student updates after each rejection or acceptance, and in DR, she potentially

updates after receiving each new set of offers.

1.4 Optimal Strategies

To derive predictions, we use Preferred Personal Equilibrium (PPE; Kőszegi and Rabin,

2009) as our solution concept for all variants.14 First, given a strategy l and a non-terminal,

t-periods-long history h, utility from deviating to some strategy l′ ∈ Lh is given by

Uh(l
′ | l) = EF l′ |h [m] +N

(
F l′ |h | F l|h

)
+EF̃ l′ |h

 t̄z∑
s=t+1

N
(
F l′ |zs | F l′ |zs−1

) , (4)

i.e., expected consumption utility under the deviating strategy plus news utility from

deviating from l to l′ (at time period t) plus the expected sum of streams of news utility

given the distribution of terminal histories under l′.

We adapt the backward-recursive definition of Kőszegi and Rabin (2009) of the PPE

consumption plan to our setup:

Definition 2. Let z be a terminal history. We define the set of zt-credible strategies in the

following backward-recursive way: the credible set L∗ztz−1
includes all strategies that maximize

utility at the last action period given the expectation they induce, i.e., all strategies l ∈ L
that satisfy Uztz−1

( l| l) ≥ Uztz−1
( l′ | l) for all l′ ∈ L. Then the set L∗zt contains all strategies

l ∈ ∩h∈Hzt
L∗h satisfying Uzt(l | l) ≥ Uzt(l

′ | l) for all l′ ∈ ∩h∈Hzt
L∗h, where Hzt is the set of

histories that strictly contain the subhistory zt. I.e., all strategies that maximize utility in the

the submitted ROL with a final match; in DP, it accepts an application; and in DR it stops sending offers.
14More precisely, we use a slightly modified solution concept, from Kőszegi and Rabin’s (2009) Online

Appendix, called optimal consistent plan (OCP). The main difference between the two solution concepts is
that while in PPE the DM holds correct beliefs about all future contingencies from the moment of birth (i.e.,
before the first period), in OCP the DM has some initial prior beliefs when she forms her plan (which we
fixed to F0 above).
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current period given the expectation they induce out of the strategies that prescribe a credible

continuation plan.

A zt-credible strategy maximizes utility given the expectation induced by the strategy:

a student that expects to play l must find it optimal to follow through with l at every

decision node that originates in zt, assuming any future self also plays optimally.15 The

definition of a zt-credible strategy allows us to define our solution concept:

Definition 3. Let L∗ ≡ L∗∅, i.e., the set of strategies that are credible in the empty history. A

PPE strategy l∗ is a strategy that satisfies

l∗ ∈ argmax
l∈L∗

U (l).

In PPE, the core difference between static and dynamic variants is the possibility of

commitment: the submission of a ROL in period 1 in a static variant can be seen as

committing in advance to a strategy in its dynamic counterpart.16 In the dynamic variants,

deviations are possible in each period, and therefore a strategy has to be optimal at all

decision nodes (not just the first one). For example, under DP, a set of on-path equivalent

strategies can be described as a ROL. However, for a ROL to be a PPE, there can be no

profitable deviations at any possible point where a decision can be made: conditional on

the first application prescribed by l (and given the belief induced by the continuation of

l), the student must find it optimal to follow through and send the second application

prescribed by l, and so on.

1.5 Strategyproofness

As mentioned above, under our large-market assumption, all four variants are strate-

gyproof for classical-preferences students and equivalently to loss-neutral students (λ= 1).

The following definition extends strategyproofness to markets with agents who have EBRD

preferences.

Definition 4. A DA variant M is EBRD-strategyproof if for any degree of loss aversion λ,

thresholds vector T and belief G, an optimal (PPE) strategy is SF.

15The forward-looking definition implies that when evaluating a strategy’s credibility, only credible
deviations are considered, i.e., potential deviations that prescribe non-credible continuation strategies are
not considered.

16In these variants, PPE strategy coincides with the definition of Choice-Acclimating Personal Equilibrium
(Kőszegi and Rabin, 2007).
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It is worth emphasizing that, since the EBRD model embeds classical preferences,

EBRD-strategyproofness implies standard strategyproofness. Our analysis therefore im-

poses a large-market structure that completely shuts down the (standard) strategic channel

that could potentially drive non-straightforward behavior in student-receiving DA variants.

EBRD-strategyproofness requires that, in addition to classical-preferences considerations,

the assignment algorithm must be such that under any belief about others’ behavior (which

in our framework is summarized by T and G), SF behavior is optimal for applicant i for

any degree of loss aversion.

Equipped with our new notion of strategyproofness, the following proposition differ-

entiates between the model’s prediction in the DR variant and the other three variants.

Proposition 1. The Dynamic student-Receiving (DR) variant is EBRD-strategyproof, while the

other three variants (SP, SR, DP) are not EBRD-strategyproof.

The proof is relegated to Appendix B. The second part of the proposition has been

discussed in Dreyfuss et al. (2022) and Meisner and von Wangenheim (2021) and is easily

proved by a counterexample (see below). The first part of the proposition is proved

by backward induction and has a very simple intuition. The model predicts that, no

matter what she had planned to do, when a student is presented with a choice set of

alternatives that she can get with certainty, she will always choose the one that gives her

the highest consumption utility. In DR, the student chooses only between schools that

have in fact sent her an offer, i.e., only between “sure things,” and hence cannot do better

than keeping the highest value one. Applying this argument iteratively shows that in DR,

the straightforward strategy is indeed the only one that is optimal in any decision node, in

any possible history. This highlights the importance of dynamic implementation: in (the

static) SR, the student can lower her expectations and reduce potential disappointment

by committing (via ROL submission) to reject some offers. In contrast, in DR, the student

anticipates that she will keep desirable offers and is therefore forced to choose a SF

strategy.17

We note that in concurrent work, Meisner and von Wangenheim (2021) (Proposition 4)

show a similar, albeit different result about DR, using Rosato (2014)’s model of dynamic

EBRD preferences. Assuming a unique stable matching for any realization of preferences,

they show the existence of a Bayesian Nash equilibrium in which all players play the SF

17This also illustrates a more subtle point about welfare: while we predict that DR maximizes the students’
ex-ante consumption utility, it actually decreases their overall (consumption and news) utility. We still find
DR appealing since we suspect that EBRD-driven behavior in these settings may be a mistake. For further
discussion, see Dreyfuss et al. (2022).
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strategy. The stable matching is always unique in large markets; see Karpov (2019) for

necessary and sufficient conditions in non-large markets. We assume large markets and

show EBRD-strategyproofness, i.e., for any profile of other players’ strategies, even an

arbitrarily loss averse student always chooses the SF strategy. We view the two results as

complementary: assuming large markets implies (EBRD) strategyproofness, generalizing

to all markets in which a unique stable matching is guaranteed implies existence of SF

equilibrium.

The following simple example further illustrates the intuition behind our result:

Example 1. Consider Lori, a loss-averse applicant with a loss-aversion parameter λ. There are

two schools (in addition to the outside option), and we therefore have m1 > m2 > m3 = 0. To

further simplify, assume that the priority scores ρ1 and ρ2 are independent, and that Pr(ρ2 ≥
T2) = 1. Denote Pr(ρ1 ≥ T1) = q. This captures a situation with a reach “elite” school and a

safe “district” school. We now analyze Lori’s behavior under each of the four variants.

SP and SR: As discussed above, in our framework, the two static variants are equivalent.

Moreover, since there is only one decision periods, finding a PPE is equivalent to finding the

utility-maximizing ROL. Denote the SF ROL 12 ≡ l∗, and notice that this strategy induces a

distribution Fl∗ that gives Lori m1 with probability q, and m2 with probability 1− q.

By the definition of N (· | ·), if Lori gets admitted to s1 (a deterministic belief denoted by A),

we have N (A | Fl∗) = (1− q)(m1 −m2). Similarly, if she gets rejected by s1 and gets accepted to

s2 (a deterministic belief denoted by R) we have N (R | Fl∗) = −qλ(m1 −m2).

Utility from submitting the SF ROL is therefore given by

U (l∗) = qm1 + (1− q)m2︸               ︷︷               ︸
cons. u

+ N (Fl∗ | F0)︸      ︷︷      ︸
prospective news u

+qN (A | Fl∗) + (1− q)N (R | Fl∗)︸                                  ︷︷                                  ︸
E(contemporaneous news u)

= 2(qm1 + (1− q)m2) + q(1− q)(m1 −m2) + (1− q)(−qλ(m1 −m2))

= 2(qm1 + (1− q)m2) + q(1− q)(1−λ)(m1 −m2) (5)

News and consumption utility from submitting the ROL 2 is simply given by

U (2) = 1 ·m2︸︷︷︸
cons. u

+ N (R | F0)︸     ︷︷     ︸
prospective news u

= 2m2.
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Therefore SF behavior is strictly suboptimal for Lori if U (2) > U (l∗). Solving for λ we get:

λ >
3− q
1− q

(6)

Hence, (i) there exists a level of loss aversion λ above which SF behavior is suboptimal, and

(ii) an increase in the competitiveness of the setting (i.e., a lower q) lowers that λ threshold. As

shown in the next subsection, this generalizes to settings with more than two schools.

DP: Notice that in our simple example, DP is very similar to the static mechanisms.18 First, it

is easy to see that applying to s2 is a credible strategy (since admission is guaranteed, the game

ends on the next period and there are no opportunities to deviate). The utility from this strategy

is, as before, U (2) = 2m2. Having made sure that 2 is a credible strategy, a sufficient condition

for l∗ to not be a PPE is U (2) > U (l∗). It is easy to see that the utility from l∗ is the same in this

case, and therefore the condition on λ is given by the inequality (6) above (in general, however,

the λ threshold under DP need not be the same as in the static mechanisms; see Section 2).

DR: For simplicity, we restrict our attention to strategies that can be represented as ROLs. To

arrive at a contradiction, assume that the PPE corresponds to an NSF ROL that does not rank s1

on top, and denote it by l̃. Denote the highest ranked alternative on the ROL l̃ by s̃ (where s̃ can

be either the outside option or s2), and its associated consumption utility by m̃ < m1.

Let ẑ be a history such that in the last action period, the set of available offers includes s̃ and

s1. Focusing on the last action period, if Lori follows through with the strategy l̃, she receives no

news utility and m̃ consumption utility and so her overall utility is given by m̃. However, if she

deviates and takes s1 her overall utility is given by

Uẑt̄ẑ−1
(l∗ | l̃) =m1 + (m1 − m̃)

where the first term is news utility from the positive surprise, and the second term is consumption

utility. Therefore, any strategy that corresponds by a ROL that does not rank s1 on top is not

consistent in the history ẑ. Using similar arguments we can show that s2 must be ranked above

the outside option. By symmetric arguments, it is easy to verify that the SF strategy is credible,

and therefore we conclude that the unique PPE must be SF. Notice that Lori’s expected utility

from playing the SF strategy is given by (5) above, which, as we saw, can be negative for a

18Notice that this is not true in general: even with only two schools, when the admission probability to s2
is smaller than 1, the analysis of this mechanism becomes significantly more complicated.
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sufficiently large value of λ. However, our analysis here shows that all other strategies are not

credible.

1.6 Varying Competitiveness

Proposition 1 makes a stark prediction about observed behavior in DR vs. the other variants.

We now formalize the model’s second prediction, which relates observed behavior in the

static variants to competitiveness.

In each non-DR variant, the threshold λ above which NSF behavior is optimal depends

on the matching environment. In particular, since NSF behavior reflects an attempt to

avoid disappointment from future rejections, this threshold λ increases as disappointment

becomes less likely, all else equal. This makes an additional testable comparative static:

NSF behavior increases with competitiveness.

Formally, denote the admission probability to school j by Pr(ρj > Tj) ≡ qj . Competi-

tiveness is defined by the probability of acceptance at the highest value school, q1. The

next proposition is an extension of Meisner and von Wangenheim (2021)’s Proposition 2.

Before stating it, we impose the following assumption:

Assumption 1.

1. ρj ⊥ ρk for all j, k.

2. qj < qk for all j < k.

In words, we assume that (1) priority score is independent across schools, and (2) admission

probability is decreasing with school value. While its part (1) in particular may not hold in

important real-life deployments of DA, assumption 1 yields sharper theoretical predictions

that our experiment—which satisfied it by design—can cleanly test. In particular, it

generates a tighter upper bound on the threshold λ, and it generates an upper bound in

the case of q1 ≥ 0.5.19

Proposition 2 (Based on Meisner and von Wangenheim 2021).

1. If λ < 1+ 2
1−q1
≡ λ, the SF ROL is strictly optimal in SP and SR.

2. Suppose that assumption 1 holds. Then:

If λ > 1+ 2
(1−q1)2 ≡ λ, the SF ROL is strictly suboptimal in SP and SR.

19In the parameters of our model, Meisner and von Wangenheim (2021)’s upper bound λ translates to
1+ 1

1−2q1
, and does not exist for q1 ≥ 0.5.
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In the following sections, we test specific predictions implied by this proposition (see,

e.g., Figure 2 and the related explanation in the next section). We do so by experimentally

varying q1. Specifically, subjects in our experiment face matching environments (i.e.,

rounds) with three levels of competitiveness: high, medium, and low, with q1 = 0.05, q1 =

0.2–0.3, and q1 = 0.6–0.65, respectively. In Proposition 2 these q1 values translate to the

following non-overlapping bounds around λ: λ= 3.11, λ= 3.22 (high competitiveness);

λ = 3.50–3.85, λ = 4.13–5.08 (medium); and λ = 6.00–6.71, λ = 13.50–17.32 (low

competitiveness). As long as the population distribution of λ has a sufficiently large

mass outside the bounded intervals (i.e., inside the ranges 3.22–3.5 and 5.08–6.00), the

proposition implies that the prevalence of NSF behavior should increase with round

competitiveness.20

2 Experimental Design and Predictions

2.1 The Experiment

The experiment consists of simulating a large matching market.21 Each subject is randomly

assigned to one of 2 × 2 ({Static vs. Dynamic} × {Proposing vs. Receiving}) treatments

denoted SP, SR, DP, and DR. This 2 × 2 design allows us to independently explore the

difference both between proposing and receiving mechanisms and between static and

dynamic implementations, by varying each of the two features while holding the other one

fixed at both states. However, since the theory sets the EBRD-proof DR variant apart from

the other three, it is assigned 40% of the subjects, while the other three are each assigned

20% of subjects.

Our goal was to design four treatments as similar to each other as reasonably possible in

terms of instructions structure, length and language, and, more generally, all aspects of the

user-interface look and feel. (Online Appendix A provides screenshots for all treatments,

and uses a four-color-coding scheme to indicate all cross-treatment differences.) In all

treatments, following a tutorial and an attention check, each subject participates in

ten order-randomized incentivized matching problems, each simulating a different large

20Specifically, these analytical bounds imply that the increase in NSF share between high vs. medium
round competitiveness is determined by the mass inside the range 3.22–3.5 and the increase in NSF share
between medium vs. low competitiveness is determined by the mass inside the range 5.08–6.00. Notice that
in the next section, we use specific matching problems and therefore get specific thresholds (rather than
bounds).

21The experiment was programmed using the oTree platform (Chen et al., 2016).
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matching market. We then collect demographic variables and feedback. Each subject

who successfully finishes the experiment receives a participation fee and the sum of

matched-school values from every matching problem.

2.1.1 A Matching Problem

A matching problem consists of five schools; the subject can be matched with at most one

at the end of the matching process. Each school is given a dollar value—the payment the

subject will gain if matched with said school.

The experimental design closely follows the theory section: The subject is assigned a

priority score at every school, which is a random, uniformly and independently distributed

integer between 0 and 99. Each school has a threshold, the minimal accepted priority score.

That is, only candidates whose priority score is above a school’s threshold can be accepted

to that school.

At the beginning of each problem, the subject learns each school’s threshold but not

her own priority scores at the different schools. This creates an unconditional probability

of acceptance at each school (= 1− threshold
100 ). Figure 1 reproduces the example matching

problem given in the tutorial, the way it appears on subjects’ screen.22

Figure 1: Screenshot of an example matching problem

Notes: Example screenshot of the table describing a matching problem. The table’s structure is identical in
all treatments and rounds. School names and parameters differ by round. See Table 2 for the parameters
used in the ten paying rounds (the shown screenshot is taken from the tutorial round).

To make the process transparent and easier to monitor, at the end of every matching

process subjects receive full information: they learn their match as well as their priority

22We randomized the order of columns in the interface. Half the subjects had, for the ten matching
problems, “Threshold” to the left of “Value” (as in Figure 1). The other half had “Value” to the left of
“Threshold.” As shown in Online Appendix C, the order of columns had no effect on behavior under SP, SR
and DR. We do not have data on column order for DP due a data-logging error.
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score at each school (the “?”s in Figure 1 are replaced with the realized priority scores).

2.1.2 The Matching Process

The matching process varies by treatment, closely resembling the structure outlined in

the theory section. In both static treatments (SP and SR), subjects submit a rank-order list

(ROL) of schools in advance and are matched with the highest ranked school in which

their priority score exceeds its threshold. In DP, subjects sequentially apply to schools,

and get accepted to the first school in which their priority score exceeds its threshold. In

DR, subjects sequentially receive offers from schools in which they exceed the threshold,

with scores higher above the threshold resulting in earlier-arriving offers, and can keep at

most one offer at any point.23

2.2 Theoretical Predictions

2.2.1 Matching Problems

As explained in the theory section, a subject with a coefficient of loss aversion λ is faced

with a matching problem ⟨M,G,T,m⟩, where M is the matching process, G is the joint

distribution over priority scores (recall that priority scores in the experiment are uniform

and independent), T is a vector of thresholds and m is a vector of school consumption

utilities. We assume a linear consumption utility, i.e., if sj is worth v dollars, then mj = v.

Last, schools are denoted by their indices (i.e., s1 is denoted by 1), and ROLs are represented

by a sequences of numbers denoting the order in the list (i.e., the ROL ranking five schools

in descending order of value is 12345).

When designing our experiment, our goal was to create variation in NSF predictions

not only across treatments—DR vs. the other three variants, testing Proposition 1—but

also across problems—more vs. less competitive, testing Proposition 2. To create variation

in competitiveness, we searched for settings we could classify into three levels of predicted

NSF: high, medium, and low. We briefly describe our search process; for further details,

see Online Appendix D.

We calculated optimal-strategy predictions for a range of λs, for each of the non-DR

23The stream of offers a subject i receives in DR contains at most five periods and is determined as follows.
For each school sj in which the subject exceeds the threshold, the segment [threshold, 99] is divided into
five quintiles, Q1, . . . ,Q5 (where Q1 is the bottom quintile). The subject then receives an offer from sj in
period 6−Qij , where Qij is the quintile in which her priority score lies. This induces a stream of offers from
different sets of schools at different periods, where periods with no offers are eliminated.
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variants, in each matching problem from a large pool of candidate problems. Figure

2 illustrates, for two example matching problems (#1 and #7), the prediction over the

range λ ∈ [2.5,5.5]. For each possible strategy—which, for these three variants, can be

represented as a ROL—we calculated the resulting expected overall (consumption + news)

utility at a range of λs. Each subfigure shows all the ROLs that maximize utility for some

λ in the range for a given problem and variant. For the dynamic variant DP, we also

verified that any point on the envelope represents a consistent strategy, i.e., it is immune to

profitable surprise deviations, and is thus a PPE. Therefore, the envelope in each subfigure

represents the model’s optimal-strategy predictions by λ.

As the figure demonstrates, an optimal strategy in the non-DR variants indeed depends

on λ. For low levels of loss aversion, the SF strategy (i.e., the ROL 12345) is optimal.

However, there exists a threshold λ above which NSF strategies are optimal. Because

the gradual resolution of uncertainty in DP yields a different expected news utility, said

threshold differs across the variants—compare subfigures (a) and (c) with subfigures (b)

and (d). Moreover, because the environment in problem #7 is less competitive than in

problem #1, the threshold is higher in problem #7, implying less prevalent NSF behavior—

compare subfigures (a) and (b) with subfigures (c) and (d). Importantly, the envelopes

consist of specific NSF strategies that the model predicts as optimal under the different

problems and variants, yielding an additional prediction that we assess empirically below.

Having created, for each candidate matching problem, optimal-strategy predictions

as a function of an individual’s loss aversion λ, we generated population predictions. We

wanted to create ex-ante, no-degrees-of-freedom predictions but, naturally, did not have a

previously estimated distribution of λ in our subject populations. We opted for basing our

population predictions on past estimates from a somewhat similar population: estimates

from (Dreyfuss et al., 2022) among lab-experiment participants in a related context (Li,

2017). In those estimates, 67 percent have 1 ≤ λ ≤ 3, and are therefore never predicted

to deviate from SF behavior; 24 percent have 3 < λ ≤ 5; 7 percent have 5 < λ ≤ 7; and 2

percent have 7 < λ ≤ 10; for details, see Online Appendix D. We note that any distribution

with a tail of λ > 3 will result in qualitatively similar directional predictions.

Table 2 presents the ten matching problems we selected for our experiment. Each

problem is defined as five school values and (unconditional) probabilities of acceptance.

The three columns under “NSF (%)” report the population prediction for the prevalence

of NSF strategies under each of the four treatments (recall that our large market property

implies that the two static treatments are equivalent, so their predictions coincide). For
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Figure 2: Candidate optimal strategies in example matching problems
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(c) Static variants, problem #7
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Notes: Candidate optimal strategies for matching problems #1 and #7. Schools are denoted by their indices
(i.e., s1 is denoted by 1), and ROLs are represented by a sequences of numbers denoting the order in the list.
Matching problem #1 is defined by the vectors of dollar school values (1.5, 1, 0.75, 0.5 0.25) and thresholds
(0.95,0.8,0.75,0.1,0), and problem #7 is defined by school values (1.25, 1, 0.75, 0.5 0.25) and thresholds
(0.7,0.15,0.1,0.05,0). (See Table 2 for school values and thresholds for all problems #1–#10.) Subfigures (a)
and (c) plot, for the static variants, utilities from all strategies that are optimal for some loss-aversion
parameter in the range 2.5 ≤ λ ≤ 5.5 (grid step = 0.1). Panels (b) and (d) do the same for DP.
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example, the 31% prediction in problem #1 in the SP/SR column reflects the estimated

population share with λ > 3.1, which in that problem implies that the ROL 12345 is no

longer an optimal strategy (see Figure 2(a)). We chose these ten matching problems, which

each subject in our experiment faces, based on the population predictions in these “NSF

(%)” columns. (The four rightmost columns report, for the relevant treatments, population

predictions using alternative measures; we discuss them below.)

2.2.2 Within-treatment Predictions

The most important feature for predicting NSF shares in a matching problem is the

probability of acceptance at the highest value school (see Proposition 2). Specifically,

this probability determines the predicted behavior of a subject with a moderately high

loss-aversion parameter (say, 3 < λ < 6).

We use the label “weak-student” problems for matching problems 1–3, where the

probability of acceptance at the highest value school is small (5%), which implies a large

predicted share of NSF strategies (24%–31% in the non-DR “NSF (%)” columns). We

use the label “medium-student” problems for problems 4–7, where the probability of

acceptance at the highest value school is larger (20%–30%), implying a lower predicted

share of NSF strategies (12%–24%). Finally, we use the label “strong-student” problems

for problems 8–10, where the probability of acceptance at the highest value school is

high (60%–65%), which implies no predicted NSF strategies (under the past empirically

estimated distribution of λ we use). Online Appendix D further describes the process and

the criteria we used for choosing the sets of values and probabilities in the ten problems.

In summary, we predict that under the three non-DR treatments, the share of NSF

strategies will monotonically decrease from weak- to medium- to strong-student problems.

We also predict how agents will depart from SF strategies. For example, as Figure 2 implies,

the second and third most prevalent NSF ROLs in the static treatments are predicted to be

21345 and 23145, respectively.

2.2.3 Between-treatments Predictions

As reported in the three columns under “NSF (%)” in Table 2, we predict varying shares of

NSF strategies under the three non-DR treatments, and none under DR. It is important

to note that these are predictions on chosen strategies; however, in our experiment we

only collect data on observed behavior. Under the static treatments (SP, SR) there is no

difference between strategies and behavior, as we fully observe subjects’ submitted ROLs.

23



Table 2: Matching problems and EBRD predictions

Matching problem Predictions

#
$ Values (s1,s2,s3,s4,s5) NSF (%) Costly NSF (%) DO NSF (%)

Probs. (q1,q2,q3,q4,q5) DR SP/SR DP SP/SR DP SP SR

1
(1.50, 1.00, 0.75, 0.50, 0.25)

0% 31% 26% 7% 7% 31% 7%
(0.05, 0.20, 0.25, 0.90, 1.00)

2
(1.50, 1.00, 0.75, 0.50, 0.25)

0% 31% 24% 7% 9% 31% 7%
(0.05, 0.20, 0.30, 0.40, 1.00)

3
(1.50, 1.00, 0.75, 0.50, 0.25)

0% 29% 29% 4% 3% 29% 4%
(0.05, 0.10, 0.85, 0.9, 1.00)

4
(1.25, 1.00, 0.75, 0.50, 0.25)

0% 24% 18% 4% 3% 24% 4%
(0.20, 0.80, 0.90, 0.95, 1.00)

5
(1.50, 1.00, 0.75, 0.50, 0.25)

0% 21% 18% 4% 4% 21% 4%
(0.25, 0.80, 0.85, 0.95, 1.00)

6
(1.25, 1.00, 0.75, 0.50, 0.25)

0% 19% 12% 4% 2% 19% 4%
(0.25, 0.75, 0.80, 0.85, 1.00)

7
(1.25, 1.00, 0.75, 0.50, 0.25)

0% 18% 14% 5% 3% 18% 5%
(0.30, 0.85, 0.90, 0.95, 1.00)

8
(1.25, 1.00, 0.75, 0.50, 0.25)

0% 0% 0% 0% 0% 0% 0%
(0.65, 0.70, 0.85, 0.95, 1.00)

9
(1.50, 1.25, 1.00, 0.50, 0.25)

0% 0% 0% 0% 0% 0% 0%
(0.65, 0.75, 0.80, 0.85, 1.00)

10
(1.25, 1.00, 0.75, 0.50, 0.25)

0% 0% 0% 0% 0% 0% 0%
(0.60, 0.65, 0.80, 0.90, 1.00)

Notes: Parameters and population predictions for each of the ten matching problems. Matching problem
columns describe schools’ money values (top row) and unconditional probabilities of acceptance (bottom
row) in each problem. Prediction columns are based on an empirically estimated distribution of λ from
Dreyfuss et al. (2022).
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However, under the dynamic treatments (DP, DR), we only observe actions dynamically

taken by subjects, which only reveal partial information on full strategies.

Specifically, under DP, we only observe the set and order of schools a subject applied to

by the time the process ends (when either some school accepts, the subject decides to stop

the process, or every school rejected the subject). Similarly, under DR we only observe the

sequence of offer sets a student received and the schools the student decided to keep from

those sets. Such observed decisions can be either SF-consistent or SF-inconsistent.

For example, suppose a subject’s priority score at the highest value school is higher than

the threshold (so once the subject applies to that school, the process terminates). In that

case, a SF-consistent behavior under DP consists of the subject only applying to that school.

However, such observed behavior could also result from a NSF strategy such as 14235. On

the other hand, suppose a subject’s priority score at the highest value school is lower than

the threshold. Under DR, the school never sends an offer to that subject. In that case—by

far the most common case in weak-student matching problems (see Table 2)—we will never

observe the subject’s choice regarding that highest value school in DR. More generally, a

subject’s behavior may be SF-consistent merely because we had limited opportunity to

observe deviations. As a result, SF-inconsistent behavior in dynamic treatments is only a

lower bound on NSF strategies.

Table 2’s four rightmost columns report theoretical predictions using two alternatives

to our primary (“NSF (%)”) measure. These alternative measures allow for a more di-

rect comparison across treatments. However, as discussed below, the theory predicts

only relatively small cross-treatment differences in these measures—differences that our

experiment is not optimized to detect.

The first measure is costly NSF behavior, which measures NSF behavior that is also

payoff relevant (i.e., SF-inconsistent behavior that affected the subject’s final match). This

measure allows for direct comparisons between all four treatments. Clearly, under the

DR treatment, we predict no such behavior; however, as the two columns under “Costly

NSF (%)” in Table 2 show, the predicted share for this measure varies little across both

matching problems and treatments (and always remains below 10%).24

The second measure is dynamically-observable (DO) NSF behavior, which counts NSF

ROLs in the static treatments that would have been observed as SF-inconsistent behavior

in their dynamic counterpart treatment. For SP, these are ROLs that would have been

24A potential alternative to costly NSF is actual earnings; this measure is omitted from Table 2 but is
presented in Online Appendix C. Further details on generating predictions for costly and dynamically
observable NSF can be found in Online Appendix B.
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classified as SF-inconsistent if implemented as a sequence of applications to schools. For

SR, these are ROLs that would have been classified as SF-inconsistent if implemented as

keep/reject responses to sequentially arriving school offers.

As suggested by the two columns under “DO NSF (%)” in Table 2, the theory predicts

that under SP, every NSF strategy is also dynamically observable. In contrast, the theory

predicts that under SR, all dynamically observable NSF strategies are costly. These two

predicted identities limit the usability of this measure as an alternative for cross-treatment

comparisons; however, they provide additional within-treatment predictions that we

investigate in the next section.25

3 Results

3.1 Sample

We ran the experiment on two different samples:26 participants in Cornell’s BSL (Business

Simulation Lab) SONA-system, recruited from June 30 to July 9, 2021, and participants

in the 2020 and 2021 Israeli Psychology Matching Mechanism (IPMM)—a DA-based

clearinghouse that matches students and graduate programs in psychology—recruited

from August 26 to September 5, 2021. We used identical experimental interfaces, except

for language (English vs. Hebrew) and currency (we used 1 USD = 4 NIS in the experiment

and $4 vs. 15 NIS as a show-up fee).

At Cornell, 223 subjects clicked on the experiment’s link, and we closed the experiment

after 206 subjects completed it. They earned on average $13.23 (including the show-up

fee); the median completion time was 16.8 minutes. As preregistered, we dropped eight

subjects who failed the attention check and another two who completed the experiment

itself (after the tutorial) in more than an hour. The remaining 196 subjects’ assignment is:

77 (39.3 percent) DR, 39 (19.9) SR, 40 (20.4) SP and 40 (20.4) DP.

In Israel, we first emailed 1,095 invites to the 2021 IPMM participant pool, of whom

225 clicked on the experiment and 171 completed it. To meet our preregistered 200-

subjects target, we emailed 1,206 additional invites to the 2020 pool, of whom 215 clicked

on the experiment and 138 completed it. Together, they earned an average of $16.43

25The driver behind these predicted identities is the fact that the NSF strategies predicted by the model in
the non-DR treatments always involve the highest value school. See Meisner and von Wangenheim (2021)’s
characterization.

26Preregistered separately at https://aspredicted.org/rd2y5.pdf and https://aspredicted.org/4qc8q.pdf.
Online Appendix E discusses our main-text analysis in light of the prespecified analysis plan.

26
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(including the show-up fee) in a median completion time of 22.2 minutes. After dropping

five subjects who failed the attention check, the remaining 304 subjects’ assignment is:

126 (41.4 percent) DR, 60 (19.7) SR, 59 (19.4) SP, and 59 (19.4) DP.

In the rest of this section we pool the samples (N = 500; 203 DR and 99 each SP, SR,

and DP). Online Appendix C replicates the main analysis by sample. While the general

level of observed NSF behavior is markedly lower in the IPMM sample, our main findings

remain similar across the samples.

3.2 NSF Shares

Panel (a) of Figure 3 presents the EBRD model’s predictions regarding NSF shares (based

on said past estimated population distribution of loss aversion; ▲) compared to classical-

preferences predictions (▼), by treatment and problem type. Within treatments, in the

three non-DR treatments, the EBRD-predicted NSF-share declines as competitiveness

decreases. Across treatments, it shows the EBRD-predicted lower (0 percent) NSF share

in DR compared to the other three treatments, in all but strong-student problem types.

Trivially, classical preferences predict 0 percent NSF in all treatments and problems.

Panel (b) presents empirical shares of NSF behavior (■), as well as p-values from

equality-of-coefficients tests.

We make three observations. First, looking at levels, there appears to be an across-the-

board minimum “baseline” of 16–22 percent NSF behavior, in all treatments, that neither

classical nor EBRD preferences can explain.

Second, looking at within-treatment trends, the data strongly support the EBRD predic-

tion of a notable decrease in the share of observed NSF behavior in all non-DR treatments

when moving from weak- to medium- to strong-student problem types: from 33–48 to

30–37 to 19–22 percent. (The flat, zero-NSF predictions of classical preferences are easily

rejected.27) In contrast, the trend in DR is much flatter (from 19 to 16 to 16 percent

NSF), consistent with our EBRD-model predictions (which, for DR, coincide with those of

classical preferences).28

27The classical-vs.-EBRD comparison is “fair” in that both models have zero degrees of freedom. (While
the EBRD model has a free parameter (λ), our predictions have no free parameters, as they were generated,
prior to data collection, based on a previously estimated population distribution of λ.)

28In addition to these aggregate shares, in Online Appendix C we look at pairwise correlations in NSF
across the ten different problems. We find that individual behavior appears fairly consistent across the
ten problems and, in line with the model’s predictions, behavior is substantially more consistent within
weak- or medium-student problems (correlations = 0.55–0.70 for pairs within problems #1–7) than across
strong-student problems (corr. = 0.35–0.51 for pairs that include at least one problem from #8–10) in
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Figure 3: Non-straightforward (NSF) behavior
(a) Theoretical Predictions: Classical & EBRD Preferences
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Notes: Panel (a): NSF-share predictions by treatment and problem type under classical preferences
(downwards triangle) and EBRD preferences (upwards triangle). Panel (b): empirical shares. Error bars:
standard errors from a regression of NSF behavior on problem type, clustering at the individual level.
p-values: Wald tests.
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Third, comparing across treatments, the EBRD predictions are also supported by

the data. In contrast with the constant no-behavior-difference prediction of classical

preferences, NSF shares in DR are substantially lower than in other treatments in weak-

and medium-student problems, where EBRD predicts a difference; but are essentially

indistinguishable in strong-student problems, where the model predicts no difference (In

Online Appendix C we test this formally by regressing NSF on treatment, by problem

type; we strongly reject the null SP = SR = DP in weak- and medium (p = 0.000), but not

in strong-student, problem types (p = 0.32)).

Online Appendix C reproduces panel (b) of Figure 3 twice: for subjects’ first vs. last five

rounds. While the above three observations generally hold in each of the two subsamples,

NSF shares noticeably drop from the first to last five rounds—suggesting that experience-

based learning during the experiment may make our results still more consistent with

the EBRD model’s predictions. In particular, regarding levels, the minimum baseline that

neither model can explain decreases in the last five rounds to 10–17 percent; and, regarding

trends, the declines in the non-DR treatments from weak- to medium- to strong-student

problems become 30–37 to 23–36 to 12–16.

3.3 ROL Types

Moving beyond mere NSF shares, the model (with our distribution of λ) predicts a specific

distribution of NSF ROLs in both static treatments.29 Figure 4 compares the predicted

distribution (horizontal axis) vs. the observed distribution (vertical axis), pooling together

all ten matching problems in the two static treatments.

The figure shows that NSF ROLs that are predicted to be prevalent—dots closer to the

right half of the figure—are indeed roughly as empirically common—close to the 45◦ line.

In particular, the two NSF ROLs with the first and second highest predicted shares—21345

and 23145, respectively—are also the first and second most empirically prevalent NSF

ROLs. While some predicted ROLs are never observed in the data and vice versa, the

differences between prediction and empirical prevalence are never much higher than one

percentage point.

Finally, zooming further in, we examine specific ROL-type predictions in specific

problems. We focus on weak problems: problems #1–3 in Table 2. In addition to having

non-DR treatments, but not in DR (corr. = 0.19–0.57 and 0.15–0.45, respectively).
29The same is true for DP; however, in DP we do not observe complete strategies but rather incomplete

sequences of applications.
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Figure 4: Predicted vs. observed frequency of ROLs
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Notes: Theoretical EBRD predictions and empirical shares of ROLs in the static treatments. N =1,980.
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predicted and observed shares to allow for the inclusion of observations with zero predicted/observed
shares. All ROLs are color coded by the first-ranked school. ROLS with at least 1% predicted or empirical
share are labeled. Since the probability of admission to school 5 is one, ROL sets that are identical up to
school 5 are grouped together, with “X” denoting the payoff-irrelevant part of the list.
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a higher predicted NSF share, we intentionally designed these three problems to show

variation in the top-ranked school among loss-averse subjects. Specifically, in problem

#3, q2 = 0.1 is relatively low, while q3 = 0.85 is relatively high, yielding a prediction that

the most prevalent NSF ROL will rank the third-highest-value school on top. In contrast,

in problems #1 and #2, q2 = 0.2 is higher, and q3 = 0.25–0.3 is only slightly above q2,

yielding a prediction that the most prevalent NSF ROL will rank the second-highest-value

school on top. Since problems #1–3 are otherwise similar to each other, we view the test of

these predictions as a particularly sharp test of the theory.

Figure 5 has similar structure to Figure 3, but it shows predictions and results by

problem, only for problems #1–3 and only for NSF behavior with s2 on top in panels (a)

and (b), and with s3 on top in panels (c) and (d).

Comparing panel (a) vs. (b) and panel (c) vs. (d) suggests that the data qualitatively

track most patterns predicted by the EBRD model. In contrast, the non-trend predicted by

classical preferences is mostly rejected by the data.

3.4 NSF Behavior in DR

Our main between-treatments prediction compares DR to the other three treatments.

However, as discussed in Section 2, such comparisons may favor DR because our main

outcome, NSF shares, only counts actions taken by subjects, not full strategies. The

general worry is that unlike in the static treatments, in DR, some NSF strategies would

not lead to observed NSF behavior unless the subject received sufficiently many offers. In

particular, if NSF behavior in DR is driven by strategies consistent with ROLs prevalent

in the static treatments—e.g., ROLs like 21345—then observations in which the subject

does not receive an offer from the highest value school, which are quite common given

our design, would not be classified as SF-inconsistent even if the subject played a non-

straightforward strategy. In short, subjects may have fewer opportunities in DR to display

SF-inconsistent behavior—especially if they play NSF strategies consistent with common

NSF ROLs observed in the static treatments.

In this section, we present two types of evidence suggesting that this is not likely the

case. First, we show that the most prevalent NSF behavior in DR does not reflect NSF

strategies that would often fail to appear as SF-inconsistent. Second, we show that observed

NSF does not increase with the number of offers, or with the presence of high-value offers.

First, across all ten problems, 338 out of 2,030 subject-problem observations (17

percent) in DR are classified as NSF. Of these 338 NSF observations, 249 (74 percent)
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Figure 5: NSF by ROL Type
(a) Theoretical Predictions (2 on Top): Classical & EBRD Preferences
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(c) Theoretical Predictions (3 on Top): Classical & EBRD Preferences
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Notes: Fraction of NSF ROLs where the 2nd (3rd) highest value school is the one ranked first (weak problems
only). Panels (a) and (c) present chosen NSF strategy predictions by problem type under Classical
(downward triangles) and EBRD (upward triangles) preferences. Panels (b) and (d) present the empirical
shares. Error bars: standard errors from a regression of NSF behavior on problem type, clustering at the
individual level. p-values: Wald tests.
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involve rejecting offers received in the first period. Of these first-period offer sets, 215

(86 percent) contain only the lowest-, or second-to-lowest-value school, or both. In other

words, most observed NSF behavior in DR involves getting offers only from low-value

schools in the first period, and rejecting them. This behavior appears unique to DR and,

moreover, implies that NSF behavior in our DR data typically occurs in situations that

subjects often face.

Second, we do not find that observed NSF behavior increases with the number of offers

received. Table 3 classifies all 2,030 DR observations and all 338 DR NSFs by the number

of offers received, and, if anything, shows the opposite trend.

Table 3: NSF by number of received offers in DR

# offers # obs. # NSF behavior obs. % NSF behavior obs.

1 95 25 26%
2 294 51 17%
3 592 94 16%
4 743 122 16%
5 306 46 15%

1–5 2,030 338 17%

Notes: Distribution of DR observations by the number of offers the subject received (N = 2,030).

Moreover, if subjects followed a strategy consistent with a ROL such as 21345, we

would expect to see a higher fraction of observed NSF behavior conditional on receiving

an offer from the highest value school compared to not receiving it. However, we do not

find that in the data: there are 621 observations in which subjects received an offer from

the highest value school and 1,409 in which they did not; of those, respectively, 98 (16

percent) and 240 (17 percent) are classified as NSF.

3.5 Alternative Measures

As discussed in Section 2, in addition to the share of all NSF behavior, we had two addi-

tional NSF measures that allow for more direct comparisons across treatments. The first,

costly NSF, counts only payoff-relevant NSF behavior, and allows for direct comparisons

across all four treatments. The second, dynamically observable NSF (DO NSF), counts

only NSF behavior that would have been observable in a dynamic implementation, and

allows for direct comparisons between SP and DP, and between SR and DR.
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Panels (a) and (c) in Figure 6 show our predictions (see also Table 2 on page 24 and its

accompanying discussion). As panel (a) shows, we predict a small share of costly NSF, with

little variation across and within treatments (0–7 percent). Panel (c) shows that for DO

NSF, in SP we predict significant variation—the same variation predicted for NSF—across

problem types, and in SR we predict small variation—the same variation predicted for

costly NSF—across problem types.

Empirically, panel (b) shows a slightly higher-than-predicted level of costly NSF behav-

ior (6–14 percent), with no systematic differences across treatments and problem types.

Panel (d) shows that for SP, when moving from weak- to medium- to strong-student prob-

lem types, DO NSF drops from 31 to 27 to 15 percent, consistent with the EBRD-predicted

trend. In SR, the level of DO NSF is higher than predicted (11–17 percent), with no clear

trend across problem types.

While we did not optimize our experiment to detect differences in these alternative

measures, in principle we did collect enough observations to marginally detect a 4–6

percent predicted difference in them, both within each of the non-DR treatments and

between DR and non-DR treatments, under ideal conditions—i.e., if the data were perfectly

described by the model. However, as discussed above, we find higher NSF shares than our

model predicts. These higher NSF shares muddy the picture for both alternative measures.

Start with costly NSF. We find that NSF behavior where the model does not predict

it—in DR and in strong-student rounds—is costly 36–63 percent of the time, whereas

in weak- and medium-student rounds in the non-DR treatments it is costly only 18–42

percent of the time (and always less, within each non-DR treatment, than in strong-student

rounds). Therefore, the empirical NSF-to-costly-NSF ratio differs both between DR and

non-DR treatments, and between problem types within the non-DR treatments, reflecting

behavior that our model does not predict.

Moving to DO NSF, in SR we see a similarly high NSF-to-DO-NSF ratio in strong-

relative to medium- and weak-student problems, masking the (small) predicted difference

in DO NSF. In contrast, in SP, this ratio is similarly high across problem types. Both of

these findings simply reflect the empirical distribution of NSF ROLs, discussed in Section

3.3: since NSF ROLs typically involve downranking the highest value school, they are

typically dynamically observable under DP, but much less so under DR.

To summarize, we examine two alternative measures, both allowing direct comparisons

between DR and other treatments. However, for these measures, our model predicts small

variation, making it difficult to detect such differences in our (inherently noisy) data.
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Figure 6: Alternative Measures
(a) Theoretical Predictions (Costly NSF): Classical & EBRD Preferences
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(c) Theoretical Predictions (Dynamically Observable NSF): Classical & EBRD Preferences
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Digging further in, we find that this variation is masked by the presence and the type

of NSF behavior in the treatment (DR) and problem type (strong) in which the model

predicts no NSF.

3.6 Alternative Explanations

Throughout this section, we show that the data fit our (no-degrees-of-freedom) EBRD

model significantly better than they do classical preferences. But what about alternative

models? How well can they explain the data?

Recall that we review three sets of empirical patterns, all consistent with our EBRD

model: (i) variation in NSF shares within DA variants; (ii) variation in shares across

variants; and (iii) prevalence of specific NSF types, both pooling across matching problems,

and for specific problems. At the same time, as we note at the beginning of this section,

we also find a little-varying “non-pattern”: an across-the-board “baseline” NSF share

(of roughly 16–22 percent in Figure 3) that neither classical nor EBRD preferences can

explain.

In summary, the EBRD model, while explaining a lot of the observed data, appears to

be an incomplete explanation. Alternative explanations—noisy decision making, cognitive

limitations, strategic confusion, misunderstanding, or other explanations—likely play a

role too. However, no alternative model we are aware of can replace EBRD in explaining

the three patterns above.

Trembling-hand models, with an exogenous probability of making errors, are inconsis-

tent with the observed within-treatment variation (as long as the trembles are independent

of the matching problem—as is typically assumed). They are also inconsistent with the

observed cross-treatment variation: in DR, subjects typically make multiple Keep/Reject

decisions, and are therefore predicted by trembling-hand models to make more errors

than in the (single-ROL-decision) static treatments. Finally, they cannot easily explain

the prevalence of specific NSF strategies (unless one imposes a specific distribution over

trembles), and in particular of specific NSF strategies in specific matching problems.

Random utility models (RUMs)—which in our context boil down to decision-makers

randomly making errors, with the probability of making an error decreasing with its

cost—also cannot easily explain our findings. (In fact, as explained in Online Appendix D,

when choosing parameters for our experiment, one of our goals was to tell apart EBRD

from RUMs; we chose parameters such that EBRD and logit—a specific RUM—make

different predictions.) First, they cannot generally explain the observed within-variant
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patterns: when moving from weak- to medium- and strong-student problems, the cost

of submitting ROLs that flip/omit low-value schools, e.g., the ROL 12354, instead of

12345 becomes extremely low,30 and therefore such ROLs’ RUM-predicted share increases.

In Online Appendix D we show that under logit, as we move from weak to strong- and

medium-student problems, predicted NSF share indeed increases—but this is the opposite

of what we find in the data (see Figure 3).31 Second, these models are also inconsistent

with the observed cross-treatment variation, for the same reason that trembling-hand

models are. Third, they are also inconsistent with the specific ROL types that are prevalent

in our data (see Figure 4): as discussed above, the NSF ROLs that logit predicts to be

prevalent omit/flip low-value schools, but these are rarely seen in the data. Finally, this

same feature also makes the predicted variation of ROL types across problems inconsistent

with the findings presented in Figure 5.

Recent models of cognitive limitations, strategic confusion, and misunderstanding—

such as Li (2017), Pycia and Troyan (2021), Börgers and Li (2019) and Gonczarowski

et al. (2022)—classify mechanisms, their variants, or their implementations (e.g., how the

variant is described to subjects) by different notions of how simple they are. Therefore,

they do not generally explain variation in behavior within a specific implementation of

a specific variant of a specific mechanism. Moreover, while some such models suggest

that dynamic implementation increases straightforward behavior, none of the models we

are aware of tells apart dynamic-proposing and dynamic-receiving DA—implying that

these models cannot easily explain the observed variation across treatments either. Finally,

these models are also silent on the specific types of errors people make in specific choice

situations (within a specific mechanism) and thus cannot easily explain the prevalence of

specific NSF types in general or within specific matching problems.32

30Submitting 12354 costs 25 cents with probability 0.013–0.319 in weak-student problems, and with
probability 0.0005–0.006 in strong- and medium-student problems.

31This predicted pattern holds for the entire range of the (calibrationally reasonable) logit scale parameter
we tested. We have not created predictions for other RUMs such as probit, but we strongly suspect that those
will have a similar predicted trend.

32Meisner (2022) proposes a model of report-dependent utility that is consistent with some of our
within-treatment results within the static mechanisms. As Meisner (2022) notes, telling apart EBRD and
report-dependent utility is possible only under specific conditions, (e.g., when the admission probability of
low-value schools is higher than that of high-value schools). Our experiment is not designed to tell the two
models apart, and does not have those features. In addition, report-dependent utility is not well defined in
dynamic mechanisms, and in particular does not tell apart dynamic student proposing and receiving—and
hence cannot easily explain our findings within and between our two dynamic treatments.
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4 Discussion

Our findings have several implications. First, we replicate previous findings that a sub-

stantial fraction of participants in simple allocation games choose seemingly dominated

actions. Such findings are particularly striking in controlled lab settings, where said

seemingly dominated actions are equivalent to choosing first-order stochastically domi-

nated (FOSD) lotteries over sums of money. While in clear violation of the predictions of

classical-preferences models, our analysis suggests that the inclusion of EBRD preferences

can explain a substantial fraction of such behavior. Moreover, the EBRD model can explain

specific types of such FOSD-violating behavior, both predicted by the model and observed

in the data. Importantly, these predictions are made while adding no additional degrees of

freedom relative to the no-EBRD model; rather, we merely replace the default assumption

of no loss-aversion—i.e., λ= 1 for everybody—with an empirical population distribution

of λ estimated in a previous study.

At the same time, while our DR treatment is predicted to be EBRD-proof, a non-

negligible fraction of participants still choose dominated actions—actions that remain

dominated at any degree of loss aversion. We also find similar fractions of participants

choosing such actions in “strong student” problems under our other DA variants, where

the (parameter-constrained) EBRD model also predicts no such behavior. These findings

underscore the need for additional explanations, for example, along the lines of Li (2017)

and Gonczarowski et al. (2022).

Another important prediction of the EBRD model that our experiment confirms is that

while the fraction of such non-straightforward (NSF) behavior varies significantly across

both DA variants and matching problems, the fraction of costly NSF behavior does not vary

much across either. From a theoretical point of view, the intuition behind this prediction

is simple: for a fixed distribution of loss aversion λ, the EBRD model predicts more FOSD

violations the lower the probabilities of acceptance at higher value schools. However, the

lower those probabilities, the lower the chance that such violations will end up costly.

From a policymaker’s point of view, one potential reaction is that there is little value in

reducing the prevalence of NSF if it is mostly bottom-line-outcome irrelevant. However,

such reactions may overlook two nuances. First, in our data, NSF behavior does not

only decrease under DR; it also changes, and could have distributional consequences. The

(reduced) NSF behavior that we find under DR—and that the EBRD model cannot explain—

may be consistent with, e.g., (potentially overoptimistic) subjects rejecting low-value offers

and expecting to get better ones; whereas EBRD-consistent NSF in the non-DR variants
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is consistent with (potentially over-pessimistic) loss-averse subjects shying away from

applying to high-value schools.

Second, informal conversations with policymakers suggest that at least some of them

strongly view prevalent NSF behavior as a problem to be minimized, regardless of the

actual cost. For example, “leveling the playing field” and other equity arguments in favor

of DA become more complicated when NSF behavior is prevalent. From that perspective,

reducing the actual incidence of NSF behavior is a goal in itself.

Finally, for policymakers, the question of implementation feasibility looms large—a

question that we do not address in this paper. By definition, dynamic implementations

of a matching mechanism require it to run for longer periods of time, during which

participants are repeatedly asked to make decisions. For investigations like ours to have

real-world impact, progress will have to be made on whether and how to implement such

variants.
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A Large-Market DA Variants as Games Against Nature

A.1 Static Variants

There are only two periods in both static variants (SP and SR): at t = 1, the student chooses

a ROL (rank order list), and t = 2 is the terminal period in which she learns about her

final match. In both variants, the set of strategies L is the set of possible ROLs, i.e., all

permutations of all sets in the power set of S. Under our large-markets assumption, both

variants are outcome equivalent: for every ROL the student submits at t = 1, at t = 2 she

is matched with the highest-ranked school sj such that ρj ≥ Tj .

A.2 DP

In the dynamic student-proposing (DP) variant, the student applies to single schools in odd

periods, and Nature sends a response in the following even periods until an application

is accepted. Specifically, at t = 1, the student applies to some school sj ∈ S, and at t = 2

learns the outcome. In case of acceptance, the game ends at t = 2. In case of rejection, at

t = 3 the student applies to a different school that has not previously rejected her (i.e.,

some sj ′ ∈ S \ {sj}) and learns the outcome at t = 4. The game continues in this way until

an application is accepted.33 Under our assumptions, an application to sj is accepted iff

ρj ≥ Tj . Notice that any set of on-path equivalent strategies in DP can also be represented

by a ROL, which determines the order of (on-path) applications.

A.3 DR

In the dynamic student-receiving (DR) variant, the student receives offers during odd

periods and responds to during even periods. Nature’s actions are determined by a set

of (known) functions φj(·) : [0,1]→ 2N+ 1 which map priority scores at sj ∈ S to (odd)

time periods in which the student receives an offer from sj . The student receives an offer

from sj during the matching process iff ρj ≥ Tj . Otherwise, we have φj(ρj) =∞, which is

interpreted as not receiving an offer from sj during the matching process. While these

functions depend on capacities and other students’ actions, it is always the case that all

else equal, a higher priority score at a school is associated with an offer that arrives at a

33Since the outside option is in S, an application will always eventually be accepted.
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(weakly) earlier period. We denote the set of offers the student receives in each period by

ζt =
{
sj : φj(ρj) = t

}
.

Notice that φn+1 (·) = 1, i.e, the outside option is always offered on the first period.

At t = 1, the student receives the set of offers ζ1, then at t = 2, she must keep exactly

one offer from ζ1. We denote the kept offer by κ2 ∈ ζ1. At t = 3, she might receive offers

from a disjoint set of schools, ζ3 ⊆ S \ ζ1, and then at t = 4 she must keep exactly one offer

from {κ2} ∪ ζ3 (i.e., the currently-held offer and the set of new offers). The game continues

in this way until the student receives no more offers, i.e., until the first period in which

ζt = ∅.
A strategy l in the DR variant determines the offer the student retains from {κt} ∪ ζt+1,

given any history of prior offers and decisions. Notice that the strategy space in DR

contains, but is not limited to, all possible ROLs, as not all strategies conform to a ROL.34

B Proofs

B.1 Proof of Proposition 1

Proof. We prove that the DR variant is EBRD-strategyproof. The proof for the other

variants is a matter of constructing a simple counter-example, e.g., Figure 2.

The structure of the proof is as follows: we first show (Lemma 1) that when there is no

uncertainty, SF behavior must be optimal.35 Next, we show that given a stream of offers,

news utility is maximized for a strategy that induces a path of beliefs about consumption

which deviates minimally from the shortest possible path (Lemma 3). We then use this

result to show that, fixing SF behavior in all continuation histories, SF behavior in the

current period maximizes news and consumption utility and is hence uniquely credible.

Since there is always a positive probability of reaching an action period with no uncertainty,

by backward induction, the unique PPE must be SF strategy.

Consider a game Γ induced by a matching market governed by DR, summarized from

34In particular, treating the available offers {κt} ∪ ζt+1 as the state variable, a ROL cannot describe
non-Markovian strategies.

35While this lemma sounds trivial, it is not. The lemma states that regardless of the beliefs that the agent
holds at the beginning of the period, SF behavior is optimal. This result is tightly related to some of the
modelling assumptions we make. For example, consider a model of horizontal differentiation (which would
imply multidimensional consumption utility). In such a model, the loss from giving up on the currently held
offer might loom larger than the added utility from keeping a new offer with a higher consumption utility.
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student i’s point of view by ⟨G,T,m,DR⟩. Throughout this proof, we will slightly abuse

notation by treating schools as representing their utility values, and so sk > sl means that

schools sk and sl are such that mk > ml . Similarly, for a set of schools A, maxA represents

the school with the highest consumption value. Recall that G(· | h) is the student’s joint

belief over priority scores given history h and denote the subgame induced by history h by

Γ h.

Define a sure-thing period as a period where the student is called to act and knows with

certainty that the game ends after it. In particular, in this period the student receives a set

of offers and knows with certainty that no more offers will arrive (i.e., she knows that she

is below the threshold in all schools that have not yet sent her an offer, if there are any).

We first show that an optimal strategy must prescribe SF behavior in sure-thing periods:

Lemma 1. Let z be a terminal history that contains a sure-thing period, tz −1. Then an optimal

strategy prescribes SF behavior in the sure-thing period, i.e., κtz−1 = max
(
ζtz−2 ∪ {κtz−3}

)
.

Proof of Lemma 1. Denote the currently held offer by sk. First, assume that the student

only receives an offer from one school, denoted sj .

We consider the two cases: sj > sk (the new offer has a higher value) and sk > sj (lower

value), and show that the SF strategy (i.e., picking the higher value offer) is uniquely

optimal in both.

Assume sj > sk. Assume by contradiction that NSF behavior in this period is optimal.

Then the student enters the period believing she will consume mk with certainty. Following

through and rejecting the offer from sj yields mk consumption utils (and no news utility).

Deviating and keeping sj instead of sk yields

mj + (mj −mk) > mk,

where the first and second expressions on the LHS correspond to consumption and news

utility, respectively. Therefore, we found a profitable deviation, a contradiction. This

implies that such NSF strategy is not credible.

An SF strategy prescribes keeping sj , so the student enters the period believing that she

will consume mj with certainty. Following through with it yields mj consumption utility
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and no news utility.36 Deviating and rejecting sj yields

mk −λ
(
mj −mk

)
< mj ,

where the last term on the LHS is news utility from a decrease in beliefs about consumption.

This implies that in this case, the SF strategy is the only element in L∗ztz−1
.

Assume sj < sk (i.e., sk has higher value). Using a symmetric argument (switching the

indices j and k) we conclude that the SF strategy is the only element in L∗ztz−1
.

In similar vain, it is easy to show that in case the student receives multiple offers in

the sure-thing period, taking the highest-valued school yields higher consumption and

news utility than taking any other offer. Therefore SF behavior is optimal in this case as

well. QED

Having shown this, the proposition immediately follows by backward induction from

the following lemma:

Lemma 2. Let h be a history in which the student is called to act, and fix the strategy in the

remainder of the game to be SF (i.e., assume that starting next period, the unique credible

strategy is the SF strategy), then the unique credible strategy in the subgame Γ h is SF.

In other words, if the student knows that she will follow an SF strategy in all future

decision nodes, no matter what she does now, then SF behavior is optimal also now. Since

we have shown that the SF strategy is the only credible strategy in a history where the

student knows there is no continuation, by backward induction, Lemma 2 guarantees that

playing SF is the only credible strategy in every possible history of the game and therefore

must be the unique PPE.37

To prove Lemma 2 we first have to introduce a definition and prove an auxiliary lemma.

Definition 5 (Excess deviation and total excess deviation). Let W ≡ (Wt)
T
t=0 be a sequence

of beliefs (CDFs) over consumption. Similarly, let W p
t denote the consumption level at per-

centile p of Wt, and let W p = (W
p
t )

T
t=0 denote the sequence of consumption levels at percentile

p. Define the excess deviation at p , denoted Ŵ p, to be half of the sum of the distance

traveled along the sequence W p in excess of the shortest route from W
p
0 to W

p
T : Formally,

36Note that while there is news utility from receiving the offer, we focus on the decision after the student
learns about the offer.

37Note that while a terminal history might not end in a sure-thing period, the student must take into
account the possibility for such continuation.
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Ŵ p ≡
∑T−1

t=0

∣∣∣W p
t+1−W

p
t

∣∣∣−∣∣∣W p
T −W

p
0

∣∣∣
2 . Similarly, define the total excess deviation of a belief sequence

W , denoted Ŵ to be the integral of excess deviations over all percentiles: Ŵ ≡
∫ 1

0
Ŵ pdp.

Intuitively, given a prior belief W0 and a posterior belief WT , excess deviation of per-

centile p, Ŵ p, is the total distance traveled away from W
p
T , i.e., it is the sum of downward

movements in all periods with W
p
t <W

p
T plus the sum of upwards movements in all peri-

ods with W
p
t >W

p
T .38 Similarly, Ŵ is the integral of these deviations over all percentiles.

Effectively, it measures the excess disappointment the student experiences in the process of

updating from a given prior to a given posterior.

Therefore, the per-period excess deviation in period t is defined as follows:

e(X
p
t ,Xp

t−1,Xp
T ) =



0 X
p
T > X

p
t > X

p
t−1 (up & towards)

X
p
t−1 −X

p
t X

p
T > X

p
t−1 > X

p
t (down & away)

0 X
p
t−1 > X

p
t > X

p
T (down & towards)

X
p
t −X

p
t−1 X

p
t > X

p
t−1 > X

p
T (up & away)

X
p
t −X

p
T X

p
t > X

p
T > X

p
t−1 (overshoot upwards)

X
p
T −X

p
t X

p
t−1 > X

p
T > X

p
t (overshoot downwards)

e(·) ≥ 0 measures movements away from W
p
T as well as those overshooting W

p
T in a given

period. Clearly,
∑T

t=1 e(X
p
t ,Xp

t−1,Xp
T ) = X̂p.

The following lemma establishes a relationship between excess deviation and total

news utility:

Lemma 3. Let A and B be beliefs over consumption, and let X and Y be two sequences of beliefs

such that X0 = Y0 = A and XT = YT = B. Then, news utility from the stream of news X is

greater than the news utility from the stream of news Y if and only if total excess deviation

under Y is greater than total excess deviation under X:

T−1∑
t=0

N (Xt+1 | Xt) >
T−1∑
t=0

N (Yt+1 | Yt)⇐⇒ Ŷ > X̂.

Proof of Lemma 3. Let W p ∈ {Xp,Y p}. Notice that since W
p
0 = Ap and W

p
t = Bp for all p by

assumption, we must have:

38For example, if W p = (0,3,1) then Ŵ p = 2 because at t = 2 the sequence “unnecessarily” deviated two
units above the terminal value.
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T−1∑
t=0

µ(W
p
t+1 −W

p
t ) = µ(Bp −Ap)− (λ− 1)Ŵ p.39

Thus, the following holds:

T−1∑
t=0

N (Xt+1 | Xt)−
T−1∑
t=0

N (Yt+1 | Yt) =∫ 1

0

(T−1∑
t=0

µ(X
p
t+1 −X

p
t )−

T−1∑
t=0

µ(Y
p
t+1 −Y

p
t )

)
dp =∫ 1

0

(
µ(Bp −Ap)− (λ− 1)X̂p −µ(Bp −Ap) + (λ− 1)Ŷ p

)
dp =

(λ− 1)
∫ 1

0
(Ŷ p − X̂p)dp = (λ− 1)(Ŷ − X̂) >0 iff Ŷ > X̂

QED

Proof of Lemma 2. Consider WLOG a history h in which the student faces a decision be-

tween two offers from schools sj > sk. With some abuse of notation, denote the SF and NSF

strategies by SF and NSF, respectively. The belief distributions induced by these strategies

are then denoted by FSF|h and FNSF|h.

Suppose that in the remainder of the game, the student follows an SF strategy.40 We

call two histories that contain the same sequence of offers, but diverge on whether the

student chose SF or NSF at h twin histories.41 Then, for any twin histories h′ and h′′ future

straightforward behavior implies that (i) realized consumption utility would be at least as

high as the currently held offer, i.e., at least mk under NSF, and at least mj under SF, and

(ii) for all s > sj the probability of matching with s is the same under SF and NSF. Taken

together, (i) and (ii) imply:

F
p
SF|h′ > F

p
NSF|h′′ for p ∈ [0,ph′)

F
p
SF|h′ = F

p
NSF|h′′ for p ∈ [ph′ ,1]

(7)

39For example, if Ap = 0, Bp = 1 and W p = (0,3,1) then:
T−1∑
t=0

µ(W
p
t+1 −W

p
t ) = 3−λ · 2 = 1− (λ− 1) · 2.

40Notice that the strategy NSF chooses the lower value sk in history h, but prescribes SF behavior in all
subsequent periods.

41Notice that while behavior under both histories is straightforward, the student’s behavior might diverge
between the two histories, since the student starts each continuation history holding a different offer.
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where p̄h′ = p̄h′′ is the probability of not receiving an offer from some s > sj .42

We now show that, no matter if SF or NSF was initially planned, for any stream of

offers, the total excess deviation is always higher under NSF than under SF, which, by

Lemma 3 implies that news utility is higher under SF.

Let z and ż be a pair of terminal twin histories that contain h, with z and ż representing

SF- and NSF-behaving history, respectively. We start by looking at the case where the

student receives (at some later period) an offer from sd > sj . Therefore, the student’s beliefs

in the first and last period of the game Γ h are the same, regardless of whether she plays

SF or NSF: she starts the game with some plan, and ends the game with the degenerate

belief Fp
T =md for all p.43 Since these are twin histories, we have p̄zt−1

= p̄żt−1
and p̄zt = p̄żt

for all t. We introduce the following shorthand notation: Let Fp
t := F

p
SF|zt and similarly

Ḟ
p
t := F

p
SF|żt , and let ept := e(F

p
t ,Fp

t−1,Fp

tz
) and similarly ė

p
t := e(Ḟ

p
t , Ḟp

t−1, Ḟp

tż
).

We start with the first period in Γ h, denoted t0. Notice that this is the only period

where the initial plan matters. Assume the initial plan is NSF (i.e., keeping sk). Following

through implies no belief movement, and hence e
p
t0
= 0 for all p. Deviating to SF implies

a “up and towards” movement, for p ∈ [0, p̄h] (and no movement elsewhere), which again

implies e
p
t0
= 0 for all p. Assume that the initial plan is SF. Following through implies

no movement and hence e
p
t0
= 0 for all p. Deviating to NSF (keeping sk) implies a “down

and away” movement and hence ė
p
t0
> 0 for p ∈ [0, p̄h] (and no movement elsewhere). We

conclude that regardless of the initial plan e
p
t0
= 0 ≤ ė

p
t0

for all p.

Next, let zt−1 and zt be two consecutive subhistories of z and similarly let żt−1 and żt be

their twin subhistories of ż.

Assume p̄zt−1
≤ p̄zt , corresponding to a reduction in the probability of the student

receiving an offer from some s > sj . For p ∈ [0, p̄zt−1
), Fp

t = F
p
t−1 and hence e

p
t = 0 ≤ ė

p
t . For

p ∈ [p̄zt−1
, p̄zt ], by (7) we have F

p
t−1 = Ḟ

p
t−1 and F

p
t =mj > Ḟ

p
t , which implies

e
p
t = F

p
t−1 −mj ≤ Ḟ

p
t−1 − Ḟ

p
t = ė

p
t .

For p ∈ (p̄zt ,1], we have F
p
t = Ḟ

p
t and F

p
t−1 = Ḟ

p
t−1 which implies ept = ė

p
t . We conclude that

in this case, ept ≤ ė
p
t for all p.

Now assume p̄zt−1
≥ p̄zt , corresponding to a (weak) increase in the probability of the

student receiving an offer from some s > sj . As before, for p ∈ [0, p̄zt) we have F
p
t = F

p
t−1,

i.e., ept = 0 ≤ ė
p
t . For p ∈ [p̄zt , p̄zt−1

] we have F
p
t = Ḟ

p
t . We have e

p
t > 0 iff F

p
t > md (where md is

42Notice that an update to the belief G(·|h′) will possibly change p̄h′ , but (7) will still hold.
43This is true regardless of whether the student plans to play SF or NSF.
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the utility of the terminal belief under both histories), since in this case beliefs overshoot

upwards under both strategies. However, notice that ept = ė
p
t = F

p
t −md . Last, as before, for

p ∈ (p̄zt−1
,1] we have e

p
t = ė

p
t . We conclude that in this case as well, ept ≤ ė

p
t for all p.

The above implies that for any pair of twin terminal histories such that the student

receives an offer from sd > sj , total excess deviation is greater under NSF, and therefore by

Lemma 3 news utility is weakly higher under SF.

It is straightforward to see that this implies that when the student does not receive an

offer from some school sd > sj , news utility is also higher under SF. To see why, add an

auxiliary period in which the student receives and accepts a second offer from sj (i.e., in

addition to the offer received in h). We can then use the analysis above to show that in

this modified game, news utility is weakly higher under SF than under NSF, which in turn

implies that the same holds in the original game as well.

We have shown that news utility is weakly higher under SF in the game Γ h, for any

terminal history, independent of the initial plan entering the game. Since expected

consumption utility is also higher under SF, we can conclude that the SF strategy is credible

in the subgame Γ h. Moreover, whenever there is uncertainty over final consumption, these

inequalities are strict, implying that if Γ h has some uncertainty, then any credible strategy

in Γ h is SF.

QED

Lemmas 1 and 2 imply that whenever there is a positive probability of reaching a sure-

thing period, only SF behavior is a credible strategy. However, in any history, either the

student is in a sure-thing period, or there is a positive probability of reaching a sure-thing

period. Therefore any element in L∗ must prescribe SF behavior. QED

B.2 Proof of Proposition 2

Proof. This result is based on and extends Meisner and von Wangenheim (2021)’s Propo-

sition 2. While they use the static Kőszegi and Rabin (2007) (whereas we use Kőszegi

and Rabin, 2009), for the static mechanisms these two models essentially coincide. In

particular, in our framework (and under our assumption on prior beliefs) the DM receives

positive news utility upon submission (whose size equals the expected value of the lottery),

which is absent from their static framework. In addition, they use the parameterization

Λ= η(λ−1) which, in our model (see footnote 10), translates to Λ= λ−1. Taken together,

the two models are identical up to the scale of the loss-aversion parameter. We can then
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follow exactly the same steps they take in proving the first part of their Proposition 2 to

get that if λ < 1+ 2
1−q1
≡ λ, the SF ROL is strictly optimal in the static SP and SR.

The second part of our proposition is an extension that relies on monotonic and

independent probabilities of admission. In particular, translated to the terms of our

framework, the proof in Meisner and von Wangenheim (2021) has the following condition

for the suboptimality of the SF ROL:

1
λ− 1

≥ −q1 + ϵ+ (1− q1)

(recall that q1 is the probability of being above the threshold at school 1). The parameter ϵ

is defined as the probability of being above the threshold at the two highest-value schools:

ϵ = P r(ρ1 > T1 ∧ ρ2 > T2).

While Meisner and von Wangenheim (2021) get an upper bound by taking the lower

bound of ϵ (zero), we can use assumption 1 on priority scores and admission probabilities

to tighten the bound. In particular, under our assumptions we have ϵ = q1 · q2 > q2
1.

Therefore, we get that if λ > 1+ 2
(1−q1)2 ≡ λ, the SF ROL is strictly suboptimal in SP and

SR. QED
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Online Appendix for “Deferred Acceptance
with News Utility”

1



A Experiment Instructions and Interface

The experiment consists of the following parts:

1. Consent form

2. General instructions

3. Specific instructions (for each treatment)

4. Tutorial

5. Attention question

6. Ten order-randomized matching problems

7. Demographic questions

8. Feedback

We provide screenshots for the General instructions, Specific instructions and an

example for the interface in a matching problem.These screenshots are color-coded (only

for illustration here) to highlight the differences between treatments. We will use the

following color scheme:

Color-coding for screenshots

All pages shown here will have a color-coded symbol at the bottom right corner,

illustrating how different parts of the instructions appeared on different treatments.

A.1 General Instructions

2



General instructions - page 1

General instructions - page 2

General instructions - page 3
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General instructions - page 4

A.2 Specific Instructions

The following four screenshots present the instruction page that differs between treatments.

These pages also include color-coded symbols for specific lines (left to the specific line),

indicating whether this line is unique for this treatment, or whether it is the same across

treatments.
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Specific instructions - SP and SR treatments
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Specific instructions - DP and DR treatments
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A.3 Matching problem example

We provide here an example for a matching problem for each of the treatments. In each

treatment the subject was introduced to the problem, and then interacted with a treatment

interface, and then got learned the match outcome as well as the realization of priority

scores in all schools.

For each participant we randomized the order of the matching problems. The order

of appearance of schools was also randomized for each subject in each round. Last, we

randomized (at the subject level) whether the Value column will be shown to the left or

right of the Threshold column.

matching problem example

B Alternative Measures

We consider in this analysis three different measures: NSF, costly NSF, and dynamically

observable NSF (DO NSF). Online Appendix C considers total earnings as an additional
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matching problem interface and results - SP&SR treatments
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matching problem interface and results - DP treatment
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matching problem interface and results - DR treatment
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relevant measure. Figure B.1 illustrates how measures are related to each other across

treatments.

Figure B.1: Measures across treatments

Costly NSF behavior only considers outcomes and provides a crude measure across

treatments. Total earnings extend this measure by considering how costly a given NSF

behavior was. Dynamically observable (DO) NSF behavior takes the chosen strategy in a

static treatment and asks what would have been the observed behavior under a dynamic

implementation. For example, the ROL 21345 in the SP treatment would be seen under

the DP treatment as a sequence of applications (conditional on rejections) of school 2, then

school 1, then school 3, etc. We now explain how we created predictions for each of these

measures.

B.1 Ex-ante predictions

Calculating these alternative measures ex-post is rather immediate: we use the realized

priority scores to determine the highest-value school that was attainable and whether a

ROL, implemented as a strategy, would have appeared SF-consistent under a dynamic

implementation with identical realized priority scores.

Generating ex-ante predictions is slightly more complicated, so we provide some details

here. First, we predict no NSF behavior in the DR treatment, which immediately results

in a prediction of zero percent costly NSF behavior. To calculate the aggregate predicted

share of costly NSF for the other three treatments, we first calculate the probability that

each NSF ROL (or strategy defined by a ROL under the DP treatment) will be costly, i.e.,

for each ROL, we calculate the probability that the student’s final match has a lower value

than the highest-value attainable school.

The algorithm we applied to generate the ex-ante predictions for a given ROL l is as
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follows:

1. For the highest-ranked school, calculate the probability of matching under l (in this

case, the probability of exceeding the threshold) multiplied by the probability of

exceeding the threshold in at least one higher value school (if one exists).

2. For the next highest-ranked school, calculate the probability of matching under l,

multiplied by the probability of exceeding the threshold in at least one higher value

school that was not ranked higher on the ROL l (if one exists).

3. Repeat step 2 until the ROL is exhausted.

4. Sum the probabilities to get the probability of ROL l being costly.

We then calculated for each λ ∈ [1,10] (with 0.1 intervals) the optimal ROL and used

our previously estimated distribution of loss-aversion Dreyfuss et al. (2022) (see Online

Appendix D) to create aggregate predictions. In particular, we get the probability of

observing each ROL and multiply it by the probability of this ROL being costly.

For dynamically observable (DO) NSF behavior, the following two claims hold:

Claim 1. Under the SP treatment, all predicted NSF ROLs are also dynamically observable.

Claim 2. Under the SR treatment, all predicted dynamically observable NSF ROLs are costly.

We refer the curious reader to Meisner and von Wangenheim (2021), Proposition 1.

The claims follow directly from their characterization.
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C Additional Analyses

C.1 Unpooled Samples

Figure C.1: Non-straightforward (NSF) behavior: Unpooled Samples
(a) Cornell BSL
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(b) IPMM
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Notes: Empirical NSF shares for Cornell BSL (Panel (a)) and IPMM (Panel (b)) Samples. Error bars: standard
errors from a regression of NSF behavior on problem type, clustering at the individual level. p-values: Wald
tests.
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C.2 First vs. Last Five Rounds

Figure C.2: Non-straightforward (NSF) behavior: First vs. Last Five Rounds
(a) Rounds 1–5
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(b) Rounds 6–10
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Notes: Empirical NSF shares for first (panel (a)) and last (panel (b)) five rounds. Error bars: standard errors
from a regression of NSF behavior on problem type, clustering at the individual level. p-values: Wald tests.
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C.3 Individual Behavior

Figure C.3: Pairwise correlations in NSF across the ten problems
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Notes: Each cell shows the correlation in NSF behavior (as a dummy variable) for a given pair of problems.
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C.4 Regressions

Table C.1: The effect of interface and experience on NSF

Dependent Variable: NSF

Variables
(Intercept) 0.17 0.10 0.05 0.01 0.03

(0.02) (0.02) (0.02) (0.02) (0.03)
SP 0.11 0.11 0.11 0.11 0.11

(0.04) (0.04) (0.04) (0.04) (0.04)
SR 0.19 0.19 0.19 0.19 0.19

(0.04) (0.04) (0.04) (0.04) (0.04)
DP 0.14 0.14 0.14 0.14

(0.04) (0.04) (0.04) (0.04)
Weak 0.13 0.13 0.13 0.11

(0.02) (0.02) (0.02) (0.02)
Medium 0.08 0.08 0.08 0.06

(0.01) (0.01) (0.01) (0.01)
English 0.12 0.12 0.11

(0.03) (0.03) (0.03)
First 5 rounds 0.09 0.09

(0.01) (0.01)
Values first -0.02

(0.03)

Fit statistics
Observations 5,000 5,000 5,000 5,000 4,010
R2 0.03 0.05 0.06 0.07 0.08
Adjusted R2 0.03 0.04 0.06 0.07 0.07

Notes: DR is treated as baseline, and is omitted. Standard errors (clustered at the subject level) in
parenthesis. “Values first” is a dummy variable denoting the order of “Value” and “Threshold” columns in
the user interface (see Figure 1). It was not recorded in DP due to a data-logging bug.
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Table C.2: NSF behavior by treatment

Dependent Variable: NSF
Matching Problems: Weak Medium Strong Weak and Medium All

(Intercept) 0.19 0.16 0.16 0.17 0.17
(0.02) (0.02) (0.02) (0.02) (0.02)

SP 0.14 0.15 0.04 0.14 0.11
(0.05) (0.04) (0.04) (0.04) (0.04)

SR 0.29 0.22 0.06 0.25 0.19
(0.05) (0.04) (0.04) (0.04) (0.04)

DP 0.21 0.17 0.03 0.19 0.14
(0.05) (0.04) (0.04) (0.04) (0.04)

Fit statistics
Observations 1,500 2,000 1,500 3,500 5,000
R2 0.06 0.04 0.00 0.05 0.03
Adjusted R2 0.06 0.04 0.00 0.05 0.03

SP = SR= DP = 0
p-value 0.00 0.00 0.32 0.00 0.00

Notes: DR is treated as baseline, and is omitted. Standard errors (clustered at the subject level) in
parenthesis.

Table C.3: NSF: difference-in-difference specification

Dependent Variable: NSF
Matching Problems: Weak Medium Strong Weak and Medium All

(Intercept) 0.33 0.30 0.20 0.31 0.28
(0.04) (0.04) (0.03) (0.04) (0.03)

Dynamic 0.07 0.03 -0.01 0.04 0.03
(0.06) (0.06) (0.05) (0.06) (0.05)

Receiving 0.15 0.07 0.02 0.11 0.08
(0.06) (0.06) (0.05) (0.06) (0.05)

Dynamic × Receiving -0.36 -0.25 -0.05 -0.29 -0.22
(0.08) (0.07) (0.06) (0.07) (0.06)

Fit statistics
Observations 1,500 2,000 1,500 3,500 5,000
R2 0.06 0.04 0.00 0.05 0.03
Adjusted R2 0.06 0.04 0.00 0.05 0.03

Notes: Standard errors (clustered at the subject level) in parenthesis.
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Table C.4: Costly NSF behavior by treatment

Dependent Variable: Costly NSF
Matching Problems: Weak Medium Strong Weak and Medium All

(Intercept) 0.11 0.06 0.07 0.08 0.08
(0.01) (0.01) (0.01) (0.01) (0.01)

SP -0.05 0.02 0.02 -0.01 -0.00
(0.02) (0.02) (0.02) (0.02) (0.02)

SR -0.01 0.07 0.01 0.04 0.03
(0.02) (0.02) (0.03) (0.02) (0.02)

DP 0.01 0.07 0.05 0.05 0.05
(0.03) (0.03) (0.03) (0.02) (0.02)

Fit statistics
Observations 1,500 2,000 1,500 3,500 5,000
R2 0.00 0.01 0.00 0.01 0.00
Adjusted R2 0.00 0.01 0.00 0.01 0.00

SP = SR= DP = 0
p-value 0.05 0.01 0.35 0.03 0.07

Notes: DR is treated as baseline, and is omitted. Standard errors (clustered at the subject level) in
parenthesis.

Table C.5: Costly NSF: difference-in-difference specification

Dependent Variable: Costly NSF
Matching Problems: Weak Medium Strong Weak and Medium All

(Intercept) 0.06 0.08 0.09 0.07 0.08
(0.02) (0.02) (0.02) (0.01) (0.01)

Dynamic 0.06 0.06 0.03 0.06 0.05
(0.03) (0.03) (0.03) (0.03) (0.02)

Receiving 0.04 0.05 -0.01 0.05 0.03
(0.02) (0.03) (0.03) (0.02) (0.02)

Dynamic × Receiving -0.05 -0.13 -0.05 -0.09 -0.08
(0.04) (0.04) (0.04) (0.03) (0.03)

Fit statistics
Observations 1,500 2,000 1,500 3,500 5,000
R2 0.00 0.01 0.00 0.01 0.00
Adjusted R2 0.00 0.01 0.00 0.01 0.00

Notes: Standard errors (clustered at the subject level) in parenthesis.
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C.5 Total Earnings

Figure C.4: Total Payoff ($)
(a) Theoretical Predictions: Classical & EBRD Preferences

0.69

1.03

1.21

0.66

1.02

0.69

1.03

1.21

0.66

1.02

0.69

1.03

1.21

0.65

1.02

0.69

1.03

1.21

SP SR DP DR

Weak Medium Strong Weak Medium Strong Weak Medium Strong Weak Medium Strong

1.0

1.5

P
ay

of
f (

$)

Classical prefs.
EBRD prefs.

(b) Results

0.66

1.00

1.17p < 0.001

p < 0.001

p < 0.001

0.65

0.98

1.16p < 0.001

p < 0.001

p < 0.001

0.64

0.96

1.14p < 0.001

p < 0.001

p < 0.001

0.64

0.99

1.17p < 0.001

p < 0.001

p < 0.001

SP SR DP DR

Weak
(N=297)

Medium
(N=396)

Strong
(N=297)

Weak
(N=297)

Medium
(N=396)

Strong
(N=297)

Weak
(N=297)

Medium
(N=396)

Strong
(N=297)

Weak
(N=609)

Medium
(N=812)

Strong
(N=609)

1.0

1.5

P
ay

of
f (

$)

Empirical
share

Notes: Panel (a): Predicted payoff by treatment and problem type under classical preferences (downwards
triangle) and EBRD preferences (upwards triangle). Panel (b): average (empirically observed) payoff,
excluding participation fee. In order to compare earnings across samples, we use the same exchange rate of
$4 = 1NIS as was used to translate school values. Error bars: standard errors from a regression of earnings
on problem type, clustering at the individual level. p-values: Wald tests.

D Parameters for the Experiment and Logit Predictions

When choosing the parameters for our experiment, our goal was to construct matching

problems that generate high-powered tests for the EBRD model’s predictions, both within

and across-treatments. In addition, as explained in Online Appendix E, we originally

planned to use the data from the static treatments to estimate a discrete-choice logit model

and test EBRD against a λ= 1 benchmark. Therefore, when choosing our parameters we

maximized the separation between the predictions of classical (reference-independent)

random-utility logit and an EBRD random-utility model.

As we explain in Online Appendix E, we opted for a more transparent test that simply
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compares the EBRD model with our previously estimated distribution of λ to classical

preferences (with no noise). To rule out logit as a potential explanation of our findings (as

we discuss in Section 3.6 in the main text) we show below (Section D.2) that a classical

(λ= 1) random-utility model predicts higher NSF shares in medium- and strong-student

problems compared to weak-student problems, for a wide range of parameters, whereas in

our data we find the opposite (a finding consistent with the EBRD-model’s predictions).

D.1 Search Algorithms

In this section we explain the procedures we used in choosing the five monetary values and

thresholds (equivalently, admission probabilities) in each of our ten matching problems

(the chosen parameters are listed in Table 2).

We used six different search algorithms, each optimizing a different objective. In each

of the six algorithms, we first randomly sample 1,000 candidate matching problems, where

each problem is composed of a threshold and a value for each of the five schools. Then,

for each problem we calculate the EBRD-predicted behavior under the static variants (see

Section 2) for every loss-aversion parameter λ over a grid [1,10] (grid step = 0.1). We then

aggregate behavior to generate aggregated predictions assuming a population distribution

of λ based on Dreyfuss et al. (2022). Finally, we choose the optimal problem(s) (out of the

1,000 candidate problems), according to various criteria we explain below.

A set of parameters for each matching problem contains five school values and five

admission probabilities. We used the following sampling restrictions:

• School values are drawn uniformly (without replacement) from the set {0.25, 0.5,

0.75, 1, 1.25, 1.5}.

• The probability of admission to the lowest value school is one.

• The rest of the probabilities of admission are drawn uniformly (without replacement)

from {0.05, 0.1,...,0.9, 0.95}, except in algorithms 3-5 (in which the probability for

the highest value school is fixed at 0.2, 0.25, and 0.3, respectively).

• Probabilities are assigned to schools’ values so that a higher value school will always

have a lower admission probability.

In algorithms 1–5, our predictions (for both classical preferences and EBRD) include

errors drawn from an Extreme Value Type I distribution added to each alternative (i.e.,
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Figure D.1
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Notes: Population distribution of loss aversion, based on Dreyfuss et al. (2022).

each ROL). This allows us to directly calculate predicted ROL shares, for each λ value. We

use a scaling parameter x = 1
300 that effectively controls the variance of the error term.44

We chose this value because it seemed to generate predictions consistent with data from

previous works. Below we show the predictions for a range of scaling-parameters values.

For EBRD predictions, we integrated the predicted shares using a distribution based on

past estimates (Dreyfuss et al., 2022). The distribution we used is presented in Figure D.1.

D.1.1 Algorithm 1 (matching problems #1–2)

In this algorithm, the criteria is based on NSF behavior which cannot be explained by

classical preferences (λ= 1) with errors. We wanted to capture how different the predicted

ROL distribution under λ= 1 is from the the one predicted assuming our λ distribution. To

44Denote the utility of subject i from a strategy l by u(λi , l). Then the probability of this subject choosing

ROL l is πλi
(l) =

exp
(
u(λi ,l)

x

)
∑
k∈L

exp
(
u(λi ,k)

x

) , where x is a scaling parameter that sets the variance of the noise term. πa(l)

is calculated by integrating πλi
over λ using our population distribution distribution of λ.
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do that, we use the sum of absolute deviations across ROLs to measure the distance between

the predictions under λ= 1 and the aggregate predictions under our λ distribution.

Denote ROL l’s probability of play (equivalently, predicted share) under λ = 1 by

π1(l). Similarly, denote the aggregate probability of play (/predicted share) under our

distribution of loss aversion by πa(l). Our measure is given by:

∑
l∈L
|π1(l)−πa(l)|

where L contains all ROLs that induce different payoff distributions (i.e., the ROLs 1235

and 12354 are treated as one ROL since they induce identical payoff distributions). Figure

D.2 shows an example of predicted distributions, for six different loss-aversion parameters.

Figure D.2
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Error = 1 / 300

Notes: Predicted distribution of ROLs in matching problem #1 for error=1/300 and various λ’s, binning
together non-12345 ROLs are binned together by the two top-ranked schools, with “xxx” representing the
rest of the ROL.

As Figure D.2 shows, with our scaling parameter, under λ= 1, the predicted share of

12345 is 0.95, and the remaining 0.05 is predicted to be 21xxx (e.g., 21345). Naturally,

as λ increases, the predicted NSF share increases. As mentioned above, we chose a scale
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parameter 1
300 to create predictions that seemed calibrationally reasonable, given prior

empirical evidence.

We then created, for each model (λ= 1 and λ distributed according to our distribution),

predictions for each of the randomly drawn 1000 matching problems. Finally, we chose

the two matching problems that had the highest predicted sum of absolute deviations.45

D.1.2 Algorithm 2 (matching problem #3)

This algorithm is identical to Algorithm 1, with one important difference: when calculating

the predicted sum of absolute deviations, we sum only over ROLs that rank school 3 on

top (e.g., 32145). Denote L3 ⊂ L as the set of ROLs for which 3 is ranked on top; then, our

measure is given by:

∑
l∈L3

|π1(l)−πa(l)|.

Since these ROLs are rarely predicted for λ = 1,46 this effectively maximizes the

predicted share of ROLs that rank school 3 on top under EBRD. This created another

problem-specific EBRD prediction, which we used as an additional test of the model (see

Section 3.3).

D.1.3 Algorithms 3–5 (matching problems #4–7)

These algorithms are identical to Algorithm 1, with one important difference: We kept

the probability of admission to the highest value school fixed at 0.2,0.25, or 0.3, for each

Algorithm 3, 4, 5, respectively. The criterion is the same.

The reason we wanted to include problems with a higher probability of admission to

the highest value school was twofold: First, we wanted to include problems such that under

DR, subjects will often face the highest value school (while maintaining a moderately

high predicted NSF share under the non-DR treatments). In other words, we wanted

to give subjects opportunities to exhibit behavior consistent with ROLs such as 21345

under DR. With q1 ∈ [0.2,0.3], the chance of receiving an offer from school 1 in DR is

45The two matching problems selected using this algorithm had lowest possible probability of admission
to the highest value school (0.05), consistent with Proposition 2. This proposition shows that the probability
of admission to the highest value school, q1, is directly related to the threshold of λ for which SF is no longer
the optimal strategy, and consequently a low q1 creates a markedly different predicted ROL distribution
under λ= 1 relative to the predictions under our loss-aversion distribution.

46This is true not only under our specific scaling parameter: below we show that these ROLs are rarely
predicted for a wide range of scaling parameters.
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non-negligible, yet NSF is still predicted (in the non-DR treatments) for subjects with

λ > λ ∈ [4.13,5.08] (see Proposition 2). Second, as an additional test of the theory, we

wanted to create an intermediate level of predicted NSF share that will be lower than the

one predicted in problems #1–3, yet nonnegligible. Effectively, this generated three main

levels of predicted NSF, corresponding to our three different problem types composing

our main within-treatment test of the model (Section 3.2).

D.1.4 Algorithms 6 (matching problems #8–10)

This algorithm chose problems with the lowest EBRD-predicted NSF share (without added

noise). As expected, the chosen matching problems have high (0.6–0.65) admission

probability to the highest value school, which resulted in a zero-predicted NSF share

under our distribution of λ.

D.2 Logit vs. EBRD

The following figures show the choice probability under λ = 1 and a range of scaling

parameters, for the ten problems. It is straightforward to see that in all of them, predicted

NSF shares are higher in medium- and strong-student problems (problems #1–3 and #4–7,

respectively) than in weak-student problems (#8–10).
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Notes: Predicted distribution of ROLs in matching problem #1 and #2 for λ= 1 and various error terms,
binning together non-12345 ROLs are binned together by the two top-ranked schools, with “xxx”
representing the rest of the ROL.
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Notes: Predicted distribution of ROLs in matching problem #3 and #4 for λ= 1 and various error terms,
binning together non-12345 ROLs are binned together by the two top-ranked schools, with “xxx”
representing the rest of the ROL.
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Notes: Predicted distribution of ROLs in matching problem #5 and #6 for λ= 1 and various error terms,
binning together non-12345 ROLs are binned together by the two top-ranked schools, with “xxx”
representing the rest of the ROL.
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Lambda = 1

Notes: Predicted distribution of ROLs in matching problem #7 and #8 for λ= 1 and various error terms,
binning together non-12345 ROLs are binned together by the two top-ranked schools, with “xxx”
representing the rest of the ROL.
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Notes: Predicted distribution of ROLs in matching problem #9 and #10 for λ= 1 and various error terms,
binning together non-12345 ROLs are binned together by the two top-ranked schools, with “xxx”
representing the rest of the ROL.
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E Main Text vs. Preregistration

We preregistered each experiment before running it. Both preregistrations contain our

main between- and within-treatment predictions, and we collected the preregistered

number of observations. However, the main-text analysis sometimes deviates from what

we preregistered, both in content and in emphasis. In doing so, we follow the guidelines

in Banerjee et al. (2020), who warn against strict adherence to pre-specified plans or the

discounting of non-prespecified work. Instead, our main goal is to understand and explain

our findings as best we can, and we therefore omit some of the preregistered analyses, and,

in addition, include analyses that have not been preregistered. For completeness, in this

appendix we highlight and explain these differences.

E.1 Preregistration #1: Cornell BSL

We submitted this preregistration before collecting any data (except small-scale pilot

sessions). Below we highlight the main differences between our main-text analysis and this

preregistration. We note that the updated analysis plan in preregistration #2 (discussed

below) addresses many of the issues we are about to discuss, and is therefore much closer

to our main-text analysis.

E.1.1 Between-treatments analysis:

In the preregistration, we emphasize costly and DO NSF as the more relevant measures

for cross-treatment comparisons. In doing so, we overlooked the fact that we optimized

our experiment to detect differences in NSF, and not in DO or costly NSF. We provide

those comparisons in Section 3.5 in the main text, and highlight the fact that indeed, the

EBRD-predicted differences in costly NSF (between DR and the other three treatments)

and DO NSF (between DR and SR) are small. As we explain there, these smaller predicted

differences, coupled with the presence of noise and NSF behavior not easily explained

by loss aversion or classical preferences, make it impossible to detect cross-treatment

differences in these measures.

Moreover, as we explain in our (non-preregistered) analysis in Section 3.4 in the main

text, our findings suggest that using plain NSF behavior to compare between DR and

the other three treatments likely does not suffer from the mechanical bias that initially

worried us, and NSF likely provides relevant cross-treatment comparisons.

In addition, the preregistration includes a diff-in-diff specification that is meant to
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separately identify the effect of dynamic vs. static implementations relative to the ef-

fect of proposing vs. receiving implementation. We include this analysis in Online Ap-

pendix C. Table C.5’s column 4 there shows a result consistent with our preregistered

hypothesis: Using observations from the seven weak- and medium-student problems

(as preregistered) where costly NSF is the dependent variable, the coefficient of interest

on Dynamic×Receiving is large and statistically strong with the predicted negative sign

(−0.09; SE = 0.03).47 However, as discussed above, the main-text Figure 6 panel (b) implies

a more nuanced and complicated relationship between the theory and the results for

costly NSF (see the discussion above, and our discussion of Figure 6 in the main text).

We therefore decided to place this diff-in-diff specification in the Online Appendix—in

spite of it providing strong results, supportive of our hypotheses!—and include the more

informative Figure 6 in the main text instead.

E.1.2 Within-treatment analysis:

The proposed analysis in the preregistration mentions the use of alternative measures

(costly, DO, and payoff-relevant NSF), in addition to NSF, when comparing across problem

types within each treatment. We do so in Section 3.5 in the main text. As explained

above, given the patterns of unexplained NSF behavior we observe, these measures are

less informative also within treatments.

E.1.3 Using NSF types:

We originally planned to estimate the distribution of loss aversion and test the model fit by

estimating a mixed logit model with Maximum Simulated Likelihood. To help with identi-

fication and precision, we chose the parameters of the experiment to create variation in the

EBRD-predicted behavior across problems (based on a previously estimated population

distribution of loss aversion). Moreover, we chose those parameters to make the predicted

variation as distinct as possible from the variation predicted by (classical-preferences)

logit. See Online Appendix D for further details on the process of choosing the parameters

for the experiment. In the end, we opted for what we view as a cleaner and more trans-

parent test of the theory against classical preferences: a zero-degrees-of-freedom test that

compares the model’s predictions (based on the same previously estimated distribution,

with no noise in decision making) to our empirical findings.

47As expected, using the same specification with NSF as the dependent variable, the coefficient of interest
is even larger, with the same sign (−0.29; SE = 0.07).
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E.2 Preregistration #2: IPMM

We preregistered this experiment after preliminary analysis of the data from the Cornell

BSL pool (N = 196), and prior to collecting any data from the IPMM (N = 304). This

preregistration is much closer to our main-text analysis than our original preregistration.

In particular, in this preregistration, we explicitly mention the low-power issue when

using measures such as costly and DO NSF, and hence we place much greater emphasis

on NSF. In addition, while this preregistration still mentions the possibility of estimating

the discrete-choice mixed-logit model, we also explicitly discuss our ROL-types analysis,

which we discuss in Section 3.3 in the main text.
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