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1 Introduction

Professions play a key role in determining the division of labor and the returns to skilled work (Abbott

2014). In selecting and training future members, professional groups may both restrict the supply of

professionals and impact their quality. Professional groups may also act as special interest groups for their

members, lobbying policymakers and negotiating with payers. Large differences in pay between professional

groups may, therefore, reflect differences in worker productivity or rents from restricted supply or privileged

arrangements (Freidson 1974; Shapiro 1986).

Evidence comparing the productivity of distinct classes of professionals performing overlapping tasks

remains scant. Professional groups, by nature, act to exclude outsiders from their “jurisdictions” (Abbott

2014). While the medical profession provides a well-documented case study of historical exclusion, it now

provides an opportunity for study. Recent decades have witnessed an increased demand for health care

outstripping the supply of physicians and the rise of NPs seeking to perform some of the same tasks that

physicians do. The number of NPs has reached about one-third of the number of physicians in the US

(Bureau of Labor Statistics 2021a; 2021b), and various states have responded to the shortfall in physicians by

liberalizing NP “scope of practice” to perform tasks traditionally performed by physicians (e.g., McMichael

and Markowitz 2022). While policy discussions of NPs have largely highlighted their role in primary care,

NPs practice in a wide range of areas. Around one-third of NPs work in primary care; the remaining work

in various specialty settings.1

In this paper, we exploit a quasi-experiment in the Veterans Health Administration (VHA) to study the

productivity of NPs versus physicians. In December 2016, the VHA granted full practice authority to NPs,

allowing them to practice without physician supervision. We leverage quasi-experimental variation in the

availability of physician and NP providers in the emergency department (ED). Nationwide, the share of

ED visits seen by NPs has reached 13 percent in 2019 (Cairns and Kang 2022); 4 percent of NPs work in

emergency care, close to the share of physicians specializing in emergency medicine.2 In a sample of 1.1

million ED visits, our approach compares patients arriving at the same ED and during similar times (i.e.,

the year, month, day of the week, and hour of the day) that differ in the number of NPs on duty. We show

that the number of on-duty physicians declines with the number of on-duty NPs, and the number of NPs on

duty strongly predicts whether an arriving patient will be assigned to an NP versus a physician. Under the

plausible assumption that patients arrive quasi-randomly within cells of ED stations and time categories, this

1. See Measure 3.2 of Milbank Memorial Fund (2024) and Table 5-2 of Health Resources and Services Administration (2010).
2. According to the National Sample Survey of Registered Nurses (NSSRN 2022), 4 percent of NPs work in emergency care;

according to the Association of American Medical Colleges (AAMC 2021), 5 percent of physicians specialize in emergency
medicine.
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instrumental variables (IV) design allows us to study the effect of NPs on patient resource utilization and

health outcomes.

The results show that, on average, NPs use more resources and achieve less favorable health outcomes

than physicians in the ED setting. On average, NPs increase patient length of stay by 11 percent and raise

the cost of ED care by 7 percent. While we do not find statistically significant effects on inpatient admission

and 30-day mortality in the overall sample, we find that NPs raise 30-day preventable hospitalizations by 20

percent compared to the mean. In contrast to our IV estimates, ordinary least squares (OLS) estimates for

the benchmark outcomes of length of stay and ED costs are negative in sign, consistent with the descriptive

evidence that NPs treat healthier patients than physicians do.

Under various analytical lenses, we uncovermechanisms behind and responses to the average productivity

difference between NPs and physicians in the ED. First, we find suggestive evidence that experience matters:

The NP-physician gap in some outcomes narrows among providers who have seen more prior patients, both

in general and for the diagnosis in question. This indicates that differences in training may play some role

in the productivity differences between NPs and physicians. Second, we document differences in clinical

decision-making. Compared to physicians, NPs are likelier to obtain external information from radiology

tests and formal consults. NPs also exhibit prescription patterns consistent with responses to lower skill

(Chan, Gentzkow, and Yu 2022): Relative to physicians, NPs are less likely to prescribe opioids, which have

higher health risks if incorrectly prescribed, but they are more likely to prescribe antibiotics, which have

higher health risks if incorrectly not prescribed. However, these differences in treatment decisions may not

be suboptimal if they reduce costly diagnostic and prescription errors. Third, we examine heterogeneity in

the NP-physician gap by patient condition complexity and severity. The NP-physician gap in patient length

of stay, ED cost, and the probability of inpatient admission is smaller for patients with fewer comorbidities

and lower severity. Finally, case assignment seems to respond to NPs’ relative disadvantage in treating

complex cases and absolute disadvantage: On average, NPs are assigned healthier patients of those available

for assignment; NPs are also assigned a (modestly) smaller share of patients when the ED is less busy.

The heterogeneity of our results by case complexity and severity complements the earlier literature on

the productivity of NPs relative to physicians. Most of the previous studies focus on the primary care

setting. With the caveat that those studies feature small samples with possibly underpowered estimates or

empirical identifications restricted in causal interpretations, our results of smaller NP-physician performance

differences in the ED for less complex and less severe cases may align with the earlier literature that indicates

a limited performance gap between NPs and physicians in primary care, providing a policy-relevant message
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that suggests roles for both the NP and physician professions in health care delivery.3

Weundertake several analyses to assess the validity of our IVquasi-experiment. We show that, conditional

on the baseline controls, a broad range of patient characteristics that predict outcomes is well balanced across

values of our instrument. Relatedly, our IV estimates are remarkably stable, regardless of the inclusion of a

wide set of patient covariates; in contrast, OLS estimates under the full set of covariates are less than half

the magnitude (but still opposite-signed relative to IV estimates) of those when only baseline covariates are

included. We also assess the validity of the exclusion restriction, that the number of NPs on duty is not

correlated with other factors that could drive care delivery or patient outcomes. Specifically, we show that

our instrument is conditionally unrelated to the characteristics of on-duty physicians and NPs. We further

examine potential spillovers between NPs and physicians and find no evidence suggesting such spillovers.4

Finally, we show that our results are robust to controlling for a series of other factors that may vary with the

instrument, including the total level of available staff, patient volume, and patient wait time.

We perform counterfactual analyses to understand the magnitude of the average NP-physician produc-

tivity difference, relative to differences between physician and NP wages. We find that compared to the

counterfactual scenario of no NPs, allocating one quarter of ED patients to NPs increases non-wage spend-

ing by $197 million per year to the VHA. Accounting for lower NP wages that are half that of physicians’

wages, it again implies a net cost of $129 million per year. However, the cost implications of NPs decline

with case complexity. Based on IV estimates, using NPs to staff the least-complex quarter of cases (based

on Elixhauser comorbidities) results in net spending that is only about one-fifth of the amount for assigning

a quarter of cases at the average complexity.

Finally, we examine variation in productivity across providers within the professional classes of NPs

and physicians. To arrive at provider-specific measures of productivity, we estimate a just-identified IV

3. An older medical literature has raised the question of the performance of NPs relative to physicians, but the generally small
numbers of providers and other features of these earlier studies limit inference on systematic differences between the two classes of
providers. See Laurant et al. (2005) for a systematic review of this literature. The literature features small randomized trials with
null results, sometimes comparing a single-digit number of physicians with a single-digit number of NPs. The studies tend to focus
on primary care settings and usually have short follow-up times that may be insufficient to detect meaningful effects. According to
Laurant et al. (2005), the null findings of this literature “should be viewed with caution given that only one study was powered to
assess equivalence of care, many studies had methodological limitations, and patient follow-up was generally 12 months or less.”
Some recent studies leverage larger-scale data, yet patient selection between NPs and physicians limits the causal inference (e.g.,
Perloff, DesRoches, and Buerhaus 2016; Lutfiyya et al. 2017; Liu et al. 2020). Notably, using a quasi-experimental design, Currie
and Zhang (2021) find that non-physician providers (NPs and physician assistants combined) may perform similarly to or better than
physicians in primary care in the VHA. Yet the paper’s study period is mostly before the VHA implementation of NP full practice
authority and before physician assistants were allowed to practice independently in the VHA, thus, non-physician providers mostly
practiced under physicians’ supervision or oversight.
4. Specifically, we examine whether NP presence may affect physician performance. E.g., NPs asking physicians for assistance

could slow down physicians. We thus examine whether physicians’ treatment outcomes change with the presence of NPs; we find no
such evidence. We also examine whether on-duty physician quality impacts NP performance; we find that the outcomes of patients
treated by NPs are unrelated to the value-added or experience of the physicians on duty.
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model, in which we instrument patient assignment to specific providers by indicators for on-duty providers.

Using a method developed by Efron (2016) and adapted by Kline, Rose, and Walters (2022), we deconvolve

the estimates of provider-specific productivity into underlying productivity distributions for each of the two

professional classes. We find strikingly wide variation in productivity within professions and substantial

overlap between the productivity distributions of NPs and physicians. The probability that a randomly

chosen NP is more productive than a randomly chosen physician can be as large as 38 percent. Within each

professional class, the productivity distribution implies a greater medical spending of around $900,000 per

year under a provider at the 25th percentile of productivity than under a provider at the 75th percentile—about

three times the mean annual spending difference between NPs and physicians. That is, despite the stark

differences in training and selection, there is sizable productivity overlap between NPs and physicians. While

training and selection are relatively uniform within professions, productivity variation within professions is

even larger than that between professions.

We extend our distributional analysis of productivity to examine the complexity of cases assigned to and

the wages paid to individual providers. While productivity differences are much larger within each profession

than the average difference between NPs and physicians, within each profession, a provider’s productivity

shows a limited relationship with her wages or the complexity of her assigned cases. This starkly contrasts

with differences in case assignment and wages between NPs and physicians: EDs assign noticeably less

complex cases to NPs—enough to reverse OLS estimates for key outcomes relative to the corresponding IV

estimates—and pay NPs half the wages of physicians. In other words, a provider’s productivity is far from

a sufficient statistic explaining her pay or determining her case assignment; professional class is a much

stronger predictor of both wages and assigned case complexity.

Our findings contribute to several strands of literature. First, given the dramatic rise in the supply of NPs

to meet the growing demand for health care, policy debates have arisen around the NP provision of care. A

recent body of research has examined the impacts of liberalizing state “scope of practice laws” for NPs.5 By

design, these papers study the general-equilibrium impacts of both allowing NPs greater scope to practice

and increasing the supply of providers; results will depend on how labor is reallocated between professions.

Our study sheds light on the effect of assigning patients to NPs versus physicians. The widely heterogeneous

complexity and severity of cases in our setting also provide a broader picture of the productivity of NPs and

physicians. The heterogeneity of our results by patient type suggests returns to optimal case assignment for

5. The findings of this literature are varied and somewhat mixed. Perry (2009), Kleiner et al. (2016) and Dillender et al. (2022)
find that these laws affect NP earnings. Stange (2014) finds a minimal impact of greater NP supply on utilization, access, or prices
but perhaps a moderate impact on primary care utilization. Yet Traczynski and Udalova (2018) find increases in utilization and
some evidence of increased quality, and Alexander and Schnell (2019) find evidence of better access and outcomes in mental health.
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NPs. Also, the substantial overlap between the productivity distributions of NPs and physicians, even in the

ED, may generate important policy implications supporting the use of NPs in less complex settings.

Strikingly, we find that productivity variation within the NP and physician professions is much larger

than the average productivity difference between the two professions. This finding puts the prior literature

on practice variation (e.g., Epstein and Nicholson 2009; Gowrisankaran, Joiner, and Léger 2023) in context:

In our setting, the interquartile range in productivity within professions is several-fold larger than the overall

productivity difference between two professions with starkly different selection and training processes.

In contrast to the assignment of cases between NPs and physicians, in which less-complex cases are, on

average, assigned to NPs, we find essentially no matching between case complexity and provider productivity

within professions. This suggests substantial informational and organizational barriers to such “skill-task

matching” within professions, though professional boundaries may provide a mechanism for this matching

between professions (Acemoglu and Autor 2011).

Second, our research relates to the widespread practice of occupational licensing, affecting about a third

of all jobs in the US (Kleiner and Krueger 2013). The existing literature suggests that occupational licensing

increases the earnings of licensed workers (Kleiner and Krueger 2013; Kleiner et al. 2016; Farronato et

al. 2020) but provides little evidence on whether higher earnings arise from restricting the supply of workers

or from improving the quality of their work in modern settings (see Farronato et al. 2020 for a review).6

Studies in this literature compare workers within professions (along the margin of occupational licensing),

while ours compares two competing professions with important differences beyond licensing.

A third related literature is concerned with worker human capital and productivity. These issues have

received growing attention in health care (e.g., Doyle, Ewer, and Wagner 2010; Currie and MacLeod

2017; 2020; Chen 2021; Chan, Gentzkow, and Yu 2022) and more broadly (e.g., Gennaioli et al. 2013;

Chetty, Friedman, and Rockoff 2014). Our study contributes to this literature by comparing the productivity

of distinct professional classes with starkly different selection and training. In the rich ED setting, we

also uncover key mechanisms connecting productivity to human capital along dimensions of experience,

information-gathering, decision-making, and case complexity. Our results suggest that professional selection

and training may give rise to important productivity implications, though these implications may be small

relative to the variation within professions.

Fourth, a broad set of questions concerns the distribution ofwealth in society across occupations and strata

6. Two studies of an earlier, unregulated environment of midwifery, near the beginning of the 20th century, demonstrate
meaningful reductions in maternal and infant mortality with the initial implementation of occupational licensing (Lazuka 2018;
Anderson et al. 2020). In the education literature, Carrell and West (2010) find that (mostly tenure-track) professors with doctorate
degrees produce better long-term student outcomes than (mostly adjunct) professors without such degrees.
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of educational attainment. In recent decades, societies have witnessed an increased concentration of wealth

in occupations associated with high human capital (Smith et al. 2019). Training to reach the highest levels

of income has become increasingly competitive among the upper class, while the middle and lower classes

are increasingly left behind, characterizing a “meritocracy trap” (Markovits 2020). Interestingly, our results

suggest a productivity difference between professions at least as large as their wage difference, at least in our

resource-intensive and information-dependent settingwithin health care. Yet, the lack of relationship between

worker-specific productivity and wages within professions suggests frictions in observing or contracting by

actual productivity across similar workers (e.g., Acemoglu and Pischke 1998). Entering a profession may

represent a costly and imperfect way for workers to distinguish themselves.

The remainder of this paper is organized as follows. Section 2 describes the institutional setting and the

data. Section 3 describes our empirical approach and provides evidence for its validity. Section 4 presents

the average productivity difference between NPs and physicians and evidence on mechanisms and responses.

Section 5 presents analyses on policy-relevant counterfactual scenarios. Section 6 reports distributions of

productivity, case assignment, and wages within professions. Section 7 concludes.

2 Background and Data

2.1 NPs and Physicians in the US

To understand the physician and NP professions in the US, it is instructive to consider their distinct origins in

the American context. According to the landmark work by Starr (1982), “among the professions, medicine

is both the paradigmatic and the exceptional case: paradigmatic in the sense that other professions emulate

its example; exceptional in that none have been able to achieve its singular degree of economic power and

cultural authority.” Aided by scientific advances and demographic shifts, the US medical profession in

the early twentieth century captured authority by standardizing education and licensing toward a scientific

orientation, in the process excluding a large swath of practitioners (Brown 1979; Larson 1979).7

In contrast to the scientific orientation of the medical profession, the driving force behind the nursing

profession was to install (female) staff in hospitals to improve hygiene and cleanliness (Ashley 1976). NPs

emerged from the nursing tradition in the 1960s, in the setting of increased specialization in medicine,

worsening access to care, and new federal funding from Medicare and Medicaid to increase the training

of providers (Fairman 2009; Hallett 2016). Over the next few decades, pressures to contain costs and

7. Much of this transformation centered around the Flexner (1910) Report, which strongly advocated for a scientific orientation
of medical education and the exclusion of alternative practices (Beck 2004). Following the report, more than half of medical schools
closed or consolidated (Patel and Rushefsky 2004).
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increase throughput further expanded the boundaries of NP practice in a variety of settings (e.g., primary

care, emergency care) (Fairman 2009; Kleinpell, Cook, and Padden 2018). While NPs have historically

focused on the provision of primary care which is still the largest area employing NPs, NPs now work in

various specialty settings. Only around one-third of NPs worked in primary care between 2016 and 2021,

approximately the share of physicians working in primary care (Milbank Memorial Fund 2024). Anecdotal

evidence suggests that some of the same pressures that have lured physicians into specialty care have also

begun to take hold among NPs (Andrews and Beard 2024).

Present-day NPs and physicians remain starkly different regarding training and income, despite per-

forming overlapping tasks in many settings. Admission rates to medical schools are only about one-tenth

admission rates to graduate nursing programs,8 and the number of years of training for physicians is around

twice that for NPs.9 Undergoing a highly selective process and long training periods, physicians comprise the

most common profession in the top percentile of the income distribution (Gottlieb et al. 2020); the income

of NPs is roughly half that of physicians (Bureau of Labor Statistics 2021a; 2021b).

2.2 VHA and ED Setting

In December 2016, the VHA granted full practice authority to NPs. The policy enables NPs to practice

without requiring physician supervision at VHA facilities. NPs can treat patients as independently as

physicians, regardless of state restrictions that would otherwise limit NPs’ practice authority.10

Several features make the ED a setting well suited to studying provider productivity. First, each patient

visit is generally assigned to a single ED provider. Such independence allows us to attribute patient outcomes

to individual ED providers. Second, patient flow in the ED is highly unpredictable, while provider schedules

are typically set well in advance. Variation in NP availability is thus unrelated to the set of patients arriving.

Third, the ED is an important setting using the NP workforce. Across the nation in 2019, 13 percent of ED

visits were seen by NPs (Cairns and Kang 2022).11 In the VHA, the share of ED visits seen by NPs has

increased to 11 percent in 2019—about half the share of visits seen by NPs in primary care at around 20

8. We searched https://www.petersons.com/graduate-schools.aspx for admission rates to graduate nursing programs and to
medical schools in the following universities with both graduate nursing programs and medical schools: Columbia University, Duke
University, Emory University, Johns Hopkins University, the University of North Carolina, the University of Pennsylvania, and the
University of Washington. Admission rates ranged from 25 to 63 percent for graduate nursing programs and from 3 to 7 percent for
medical schools.
9. According to AAMC (2020), physicians must complete a four-year undergraduate degree, a four-year Doctor of Medicine

degree, and three to seven years of residency training. Some physicians further undergo one to three years of fellowship training after
residency. According to the American Association of Nurse Practitioners (AANP 2020), NPs must complete a four-year Bachelor
of Science in Nursing degree and may choose between one to two years in a Master of Science in Nursing degree or three to four
years in a Doctor of Nursing Practice degree. There is no residency or fellowship training requirement for NPs.
10. As of 2021, about half of the states in the US had not granted NPs full practice authority (AANP 2021).
11. About 6 percent of ED visits nationwide were seen by NPs without physicians; 7 percent were seen by NPs with physicians.

7

https://www.petersons.com/graduate-schools.aspx


percent in the VHA (Morgan et al. 2012).12 Nationwide, around 4 percent of NPs practice in emergency

care, close to the share of physicians specializing in emergency medicine at 5 percent (AAMC 2021; NSSRN

2022). Fourth, patients present at the ED with a wide spectrum of conditions, ranging in complexity and

severity, which provides an opportunity to investigate productivity across a range of tasks.

In Appendix Table A.1, we report the characteristics of NPs and physicians working at the VHA and

non-VHAEDs. NPs in VHAEDs are representative of their non-VHA counterparts in female share (about 80

percent), while they appear to be more experienced (as indicated by age, 51 versus 43 years old). Among ED

physicians, those practicing at the VHA are slightly more likely to be female than those outside of the VHA

(34 versus 27 percent), but the two groups have a similar average age (48 versus 46 years old). Appendix

Table A.1 also compares NPs practicing at the ED and the overall NP workforce, showing that ED NPs are

representative of the NP workforce in age and gender.

2.3 Data

We use administrative health records from the VHA, the largest integrated health care system in the US,

serving more than nine million veterans. For each ED visit, the data record the type of provider treating the

patient (i.e., NP or physician), resource utilization, and patient outcomes (e.g., length of stay, mortality). The

data also contain detailed information on patient characteristics (e.g., demographics, comorbidities, and vital

signs) and provider characteristics (e.g., birthdate, gender). The large sample size, as well as the availability

of detailed information (e.g., time stamps for measuring ED length of stay, and provider orders), enable a

comprehensive analysis of NP- and physician-provided care. Finally, we access detailed payroll records for

providers to impute wages.

Sample Construction. We restrict our analysis sample in the following ways. First, we restrict the sample

to ED visits between January 2017 and January 2020, i.e., after full practice authority was granted to NPs at

the VHA and before the onset of the COVID pandemic in the US. Second, we include only cases arriving

during the daytime (8 a.m. to 6 p.m.) because the data show that few NPs take evening or night shifts.13

Third, we focus on visits to VHA EDs using NPs to treat patients and in months after the ED adopted the full

practice authority policy. Though the VHA granted full practice authority to NPs at all VHA facilities, local

facilities varied in when they adopted the policy and whether they used NPs in the ED.14 Fourth, to examine

12. We estimate the share of ED visits seen by NPs from the VHA data, which is described in the following section.
13. One possible explanation is that, since patient volumes on average are much lower in the evening/night than in the daytime
(e.g., the average number of cases arriving per hour is 3.6 between 8 a.m. and 6 p.m. versus only 0.9 outside of 8 a.m.-6 p.m.), EDs
in our sample often staff only one provider per shift in the evening/night. Our interview with VHA ED leadership revealed that EDs
are required to have at least one physician on duty at all times.
14. We define a VHA ED as having granted full practice authority to NPs and using NPs in a month if it has at least 15 cases
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a single margin between NPs and physicians, we exclude EDs that used non-physician providers other than

NPs (mainly physician assistants).15 Finally, we drop a small number of cases with missing age or gender

or aged under 20 or above 99 years old. Appendix Table A.2 reports the sample size at each step. The final

sample contains 1.1 million cases, over 44 EDs.16

Outcome Variables. Tomeasure medical resource use, we include two primary outcomes that are frequently

used in the ED setting: (i) the patient length of stay (i.e., the time between patient assignment to the provider

and patient discharge) and (ii) the cost of care during the ED visit (excluding costs due to a resulting hospital

admission, measured separately next).17 We also include hospital admission, a resource-intensive option

that indicates the provider’s decision to admit the patient for inpatient care. To measure the quality of care,

we examine two prominent patient outcomes: We use linked death records to construct indicators of patient

30-day mortality and use linked inpatient data to construct indicators of 30-day preventable hospitalization

as defined by Agency for Healthcare Research and Quality (2021).18 We exclude from 30-day preventable

hospitalization the inpatient admissions immediately following the ED visit, as they reflect the hospital

admission decision described above.

In examining mechanisms behind the effect of NPs, we include the following sets of outcomes: (i)

whether the provider orders consults (which are typically from specialists outside of the ED); (ii) whether the

provider orders CT scans and X-rays, two primary diagnostics in the ED; and (iii) prescriptions of opioids

and antibiotics—two major classes of drugs whose clinical indications for appropriate use are often unclear

and may require skill to discern (e.g., Fleming-Dutra et al. 2016; Neuman, Bateman, and Wunsch 2019).

Descriptive Statistics. Table 1 summarizes the characteristics of the cases included in our analysis. In

addition to demographics, we measure patient comorbidities as Elixhauser indices (Elixhauser et al. 1998),

which are 31 indicators for comorbidities (e.g., cancer, diabetes) based on patient medical histories in the

prior 365 days. We also report the average length of stay, average ED spending (inflation-adjusted to 2020

treated by NPs in the month. The sample size changes only slightly when we use alternative thresholds: e.g., the sample size is 1.13
and 1.10 million when using a threshold of 10 and 20, respectively, compared to 1.12 million based on a threshold of 15.
15. In addition, unlike NPs, physician assistants had not been allowed to practice independently at the VHA as of 2022 nor in any
state as of mid-2019. In Section 4.7, we expand the sample to cases in all EDs that use NPs despite the use of physician assistants but
exclude cases in ED-day cells with physician assistants to focus on the margin between NPs and physicians. This analysis expands
the sample from 1.1 million cases across 44 EDs seen by 1,348 physicians and 156 NPs in our baseline analysis to 2.2 million cases
across 110 EDs seen by 3,499 physicians and 491 NPs. We find similar results in this expanded sample.
16. Appendix Table A.3 shows that EDs included in our sample are a representative set of all VHA EDs, as measured by ED,
provider, and patient characteristics. The EDs in our sample include those in large metropolitan areas (e.g., New York City, Los
Angeles, the Bay Area) as well as those in smaller areas (e.g., Detroit, Michigan; Madison, Wisconsin).
17. For length of stay, we use detailed time-stamped data on patient assignment and discharge. For the cost of ED care, we use
cost accounting by the VHA, which measures resource utilization in each ED visit.
18. Specifically, preventable hospitalizations are defined by the well-set algorithm developed by Agency for Healthcare Re-
search and Quality (2021), which include hospital admissions due to an established set of potentially preventable conditions, e.g.,
hospitalizations due to diabetes with complications, heart failure, and hypertension.
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dollars), and 30-day preventable hospitalization rate. Column 1 shows the characteristics of the overall

sample. Columns 2 and 3 compare cases treated by NPs with those treated by physicians. Along several

dimensions, cases treated by NPs are healthier than those treated by physicians: Cases treated by NPs are

younger (60.7 versus 62.5 years old), have fewer Elixhauser comorbidities (3.2 versus 3.7), and have fewer

outpatient visits and fewer inpatient stays in the prior 365 days (5.7 versus 6.4 outpatient visits and 0.4 versus

0.7 inpatient stays). Consistent with selection, cases treated by NPs appear to have better outcomes: They

have a shorter average length of stay (120 versus 175 minutes), a lower average ED cost ($813 versus $978),

and a lower 30-day preventable hospitalization rate (0.8 versus 1.4 percentage points).

3 Empirical Strategy

An ideal experiment to assess the effect of being treated by NPs would randomly assign cases to NPs and

physicians. Lacking random assignment, we use a quasi-experimental approach: We leverage plausibly

exogenous variation in the availability of NPs on duty to instrument for whether an NP or a physician treats

a case. In this section, we begin by describing our instrumental variables (IV) approach. We then show

evidence supporting the validity of our identification strategy.

3.1 Specification

Our empirical specification is a two-stage least squares (2SLS) model that takes the following form:

𝑦𝑖 = 𝛿NP𝑖 + T𝑖𝜂 + X𝑖𝛽 + 𝜀𝑖 , (1)

NP𝑖 = 𝜆𝑍𝑖 + T𝑖𝜁 + X𝑖𝛾 + 𝑣𝑖 , (2)

where 𝑖 denotes a case, 𝑦𝑖 is the outcome of interest, and NP𝑖 indicates whether case 𝑖 is treated by an NP.

We use 𝑍𝑖 to denote the instrument, i.e., the number of NPs on duty between 8 a.m. and 6 p.m. (our analysis

time window) at the ED on the day that case 𝑖 visits.19 The parameter of interest is 𝛿, which represents a local

average treatment effect (LATE)—the average causal effect among cases that would have been assigned to a

19. Since the data do not include direct information on provider scheduling, we measure 𝑍𝑖 as the number of NPs treating cases
during the analysis time window in the ED-day cell of case 𝑖’s visit. We count an NP as on duty if she is observed treating at least
two cases between 8 a.m. and 6 p.m. in the ED-day cell. The main analysis includes the index case in calculating 𝑍𝑖 . In Section 4.7,
we show the robustness of our estimates to alternative instruments, including (i) one that includes NPs with only one case in a shift,
(ii) one that leaves out the index case in defining whether an NP is on duty, (iii) one based on the (leave-out) share of patients treated
by NPs, and (iv) an indicator for any NP on duty. We choose the number of NPs instead of the share of workers who are NPs as our
baseline instrument because the latter is conceptually more sensitive to the measure of overall staffing (in its denominator), which
depends on the unobservable object of the number of NPs who would be equivalent, on average, to one physician. We consider this
issue in greater depth in Section 4.6.
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different class of provider under a different number of NPs on duty.

The vector T𝑖 encodes interactions between indicators for the ED and indicators for time categories

of the patient’s arrival. Specifically, T𝑖 contains ED-by-year, ED-by-month, ED-by-day-of-the-week, and

ED-by-hour-of-the-day indicators. We condition on T𝑖 to allow for the sorting of NPs across shift types (e.g.,

weekdays versus weekends) and EDs, where patient characteristics and ED conditions may be systematically

different. Controlling for ED-by-time-category indicators captures these potential systematic differences.20

As robustness checks, our specification also includes a vector of patient covariatesX𝑖 , including indicators

for five-year age bins, marital status, gender, and race (white, Black, and Asian/Pacific Islander, with other

racial categories omitted as the reference group); indicators for 31 Elixhauser comorbidities; prior health

care use (the number of outpatient visits and the number of inpatient stays in VHA facilities in the prior 365

days); vital signs (pulse, respiratory rate, blood oxygen level, pain level, body temperature, an indicator for

fever, systolic blood pressure, and diastolic blood pressure); and indicators for the three-digit ICD-10 code

of the primary diagnosis of the visit.21 For each patient covariate with missing values, we add an indicator

for missing values and replace the missing values with zero. Finally, 𝜀𝑖 and 𝑣𝑖 are error terms. We cluster

standard errors by provider. We also consider alternative clustering approaches in Section 4.7.

3.2 Identification

To interpret 𝛿 as the LATE of being treated by NPs, our IV approach requires four identifying assumptions:

relevance, conditional independence, exclusion, and monotonicity. In this section, we summarize empirical

evidence supporting the validity of the identifying assumptions.

Relevance. Figure 1 shows the first stage of our IV model, controlling for the baseline controls T𝑖 . Panel A

shows that the number of physicians on duty declines linearly with the number of NPs on duty. Consequently,

Panel B shows that patient probability of being treated by an NP increases with the number of NPs on duty:

One more NP on duty increases patient probability of being treated by NPs by 18.6 percent. The increase is

highly significant (with an F-statistic of 149.2, even conditioning on T𝑖) and is close to linear.

To provide context, Appendix Figure A.1 presents a histogram of the number of NPs on duty across

ED-day cells. The figure reveals a fair spread in the number of NPs on duty: 38.1, 47.2, and 11.3 percent

20. While fixed effects for ED-by-hour-of-the-day interactions are not necessary to condition on to yield quasi-random variation
in the instrument (since the instrument varies at the day instead of hour level), we include them for statistical precision of estimates.
This inclusion does not meaningfully affect the statistical significance of our results.
21. Since our study period is from January 2017 to January 2020, disease diagnoses are all coded in ICD-10 in the data. A
potential question is whether the three-digit diagnoses are endogenous to being treated by NPs. Yet, as shown below in Section 4,
our estimates are remarkably stable regardless of whether we control for three-digit diagnosis indicators. In Appendix A.1, we also
show that NPs and physicians are similar in their coding of three-digit diagnoses.
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of ED-days have zero, one, and two NP(s) on duty, respectively; 3.4 percent of ED-days have more than two

NPs on duty. An important question is what drives the variation in the number of NPs on duty. As shown in

Appendix Figure A.2, NPs are less likely to work on weekends: 77 percent of weekday ED-day cells versus

24 percent of weekend ED-day cells have NPs on duty. However, conditional on the day of the week and

other time categories (year and month), we still observe large variation in the number of NPs on duty within

EDs across days (standard deviation of 0.49).

Interviews and surveys with VHA ED providers and administrators point to sources of random variation

in scheduling:22 As EDs have long open hours (typically 24/7), EDs rotate providers on duty. Providers’ on-

duty schedules are generally set months in advance, restricting the possibility of arranging on-duty providers

based on specific conditions in the ED on the day of occurrence, e.g., patient volumes or diseases of the

patients arriving. Each ED has a staffing model that pre-specifies the staffing level for each type of shift

defined by the time categories (matching T𝑖) to meet patient care needs predicted by the time categories.

In general, conditional on the ED and T𝑖 , there is no systematic variation in the characteristics of the staff

scheduled to be on duty.23 It is also extremely rare that EDs call in providers who are not scheduled to be on

duty to care for patients.

In the empirical evidence below, we show that patient characteristics, as well as on-duty physicians’

and on-duty NPs’ characteristics, are well balanced across the number of NPs on duty (conditional on T𝑖),

consistent with quasi-random variation in the instrument. Otherwise, e.g., if the variation is driven by patient

or staffing shocks, we would observe systematic changes in patient and/or on-duty physicians’ and NPs’

characteristics with the instrument.

In Appendix Figure A.3, we decompose the variation of NP staffing. The figure shows that T𝑖 explains

around 70 percent of the variation in NP staffing, consistent with the notion that NP availability varies

across EDs and time categories. Conditional on T𝑖 , the wide range of factors that include arriving patients’

characteristics, on-duty physicians’ and on-duty NPs’ characteristics, and a series of other factors that may

vary across days, e.g., patient volumes, have virtually no explanatory power for the number of NPs on duty,

further supporting quasi-random variation in NP staffing conditional on T𝑖 .

Conditional Independence. For our instrument to be valid, the number of NPs on duty must be uncorrelated

with patient potential outcomes, conditional on the baseline controls T𝑖 . The institutional features described

22. We spoke with eight ED physicians and NPs about scheduling; we also distributed a survey to VHA ED administrators about
scheduling and received responses from VHA ED administrators in seven states.
23. Per our interviews and surveys with ED providers and administrators, while there may be revisions to on-duty schedules,
revisions are infrequent. Further, revisions, if any, are mostly for providers’ unexpected personal reasons (e.g., unanticipated family
events) that are arguably unrelated to the patients arriving or other conditions at the ED and are typically done in advance of the
shifts, making revisions plausibly exogenous. In revisions, EDs generally preserve the level of staffing.
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above support the conditional independence assumption. Further, two sets of empirical evidence provide

strong support for this assumption. First, we show that patient observed characteristics are well balanced

across the instrument, conditional onT𝑖 . As shown in Figure 2, patient average characteristics are remarkably

stable across the instrument, conditioning on T𝑖 . The coefficients are far from being statistically significant

and are negligible in magnitude relative to the sample mean. For completeness, Appendix Figure A.4 reports

similar balance tests using each of the various patient characteristics included inX𝑖 as the dependent variable.

Despite the fact that these characteristics are strong predictors of patient outcomes (F-statistics around 100

for joint significance, even controlling for T𝑖 , see Appendix Figure A.5), there is little significant relationship

between our instrument and the broad range of patient characteristics, conditional on T𝑖 .

As a second set of empirical evidence, we examine the stability of our IV estimates under different sets

of controls for patient covariates. Specifically, we divide observable patient characteristics into eight groups

and estimate separate regressions that control for each of the 28 = 256 different combinations of patient

covariates. We show in the empirical results below that controlling for any combination of patient covariates

results in virtually no change in our IV estimates of the NP effect. Following the logic of Altonji, Elder,

and Taber (2005), this evidence implies limited selection bias due to either observed or unobserved patient

characteristics that predict patient outcomes. In sum, conditional on T𝑖 , there appears to be little relationship

between NP availability and patient characteristics.

Exclusion. While conditional independence supports a causal interpretation of the reduced-form effect,

interpreting the IV estimates as identifying the causal effect of being treated by NPs requires an exclusion

restriction. That is, the number ofNPs on duty impacts patient outcomes only through the patient’s probability

of being treated byNPs, not through any other channels. After discussing our main results, we present a series

of empirical evidence supporting the validity of the exclusion restriction. We first show that characteristics

of both on-duty physicians and on-duty NPs are well balanced across the number of NPs on duty conditional

on T𝑖 , consistent with quasi-random variation in the instrument as well as our IV estimates unlikely being

driven by different sets of physicians or NPs available across days. Second, we find no evidence of spillovers

that NP presence influences physician performance. Third, we investigate a series of alternative explanations,

finding no evidence indicating a violation of the exclusion restriction.

Monotonicity. In the presence of heterogeneous treatment effects, we need to assume monotonicity to

interpret IV estimates as a LATE, i.e., the average causal effect among cases induced by the instrument into

being treated by NPs. In our setting, monotonicity requires that cases treated by NPs on days with fewer NPs

on duty would also be treated by NPs on days with more NPs, and vice versa.
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We examine a testable implication of the monotonicity assumption: The instrument and the probability

of being treated by NPs should be positively correlated for any subsample defined by patient characteristics.

We test this implication in Appendix Figure A.6, where we split the sample by patient characteristics and

estimate the first-stage effect separately for each subsample. In particular, we divide the sample by patient

age, marital status, gender, race, number of Elixhauser comorbidities, and predicted 30-day mortality.24

Appendix Figure A.6 shows that for all subsamples, the first-stage estimates are positive and statistically

different from zero, consistent with the validity of the monotonicity assumption.25

4 Empirical Results

In this section, we present our empirical results. We start by showing the effect of NPs on resource use and

patient outcomes. We find that relative to physicians, on average, NPs use more medical resources (longer

lengths of stay and higher spending) and exhibit less favorable patient outcomes (higher 30-day preventable

hospitalization rates). Next, we examine mechanisms and responses related to the productivity difference

between NPs and physicians. First, we show that experience may play a role in the NP-physician gap in

some outcomes. Second, we find NP responses to lower skill in clinical decision-making, in calling on

external resources and setting prescription thresholds. Third, we find that the NP effects on lengths of stay

and spending during the ED visit are smaller for less complex and less severe cases. Fourth, we show patient

allocation between NPs and physicians responding toward optimality in the sense of skill-task matching in

organizations. Finally, we characterize compliers, present evidence supporting the exclusion restriction, and

show a series of additional robustness checks.

4.1 Length of Stay and Cost

As summary measures of resource use, we start by examining the effect of NPs on patient length of stay and

cost of care during the ED visit. Figure 3 shows the reduced-form effect of the instrument (i.e., the number

of NPs on duty) against patient log length of stay and log cost of the ED visit, controlling for our baseline

controls, T𝑖 . Log length of stay and log cost increase significantly with the instrument. As a comparison,

we also plot in the figure patient predicted log length of stay and predicted log cost, both of which are well

24. Predicted 30-day mortality is generated from a linear regression of actual 30-day mortality on the full set of patient character-
istics X𝑖 in Equations (1) and (2).
25. An interesting pattern in Appendix Figure A.6 is that the first-stage estimates appear to be larger for healthier patients: younger
patients, those with fewer Elixhauser comorbidities, and those with a lower predicted 30-day mortality. This pattern reflects that
compliers are more heavily concentrated among healthy patients. In Section 4.5, we compute the characteristics of compliers and
never-takers. We find consistent evidence that compliers are healthier than the overall sample, while never-takers are riskier.
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balanced across the instrument.26

Table 2 reports the OLS and IV estimates of the effect of NPs on patient log length of stay and log

cost of the ED visit, along with the reduced-form coefficients. All regressions control for the full set of

controls described in Section 3.1. The OLS estimates (Columns 1 and 4) show that cases treated by NPs

have significantly shorter lengths of stay and lower costs, which could reflect NPs treating healthier cases

than physicians, at least in terms of observable characteristics in Table 1. Exploiting quasi-random variation

in the patient probability of being treated by NPs, the IV estimates (Columns 3 and 6) show that NPs raise

patient medical resource use in the ED visit: On average, cases quasi-randomly assigned to NPs have lengths

of stay that are 11 percent longer and ED costs that are 7 percent higher. Given sample means, the NP effects

equal an 18-minute increase in the length of stay and a $66 increase in the cost per ED visit.

Figure 4 examines the robustness of ourOLS and IV estimates to the inclusion of different combinations of

patient controls. Specifically, we divide patient covariates into eight subsets: (i) five-year age-bin indicators;

(ii) marital status; (iii) gender; (iv) race indicators; (v) dummies for 31 Elixhauser comorbidities; (vi) vital

signs; (vii) prior health care use; and (viii) indicators for the three-digit primary diagnosis of the visit. We

then estimate separate regressions that control for each of the 28 = 256 different combinations of patient

covariates for each outcome for both OLS and IV estimations. Figure 4 shows the range of the coefficients

across specifications with different patient controls. Each 𝑛 on the 𝑥-axis reports the number of covariate

subsets included. For each 𝑛, we plot the maximum, mean, and minimum of the estimated coefficients for

the effect of NPs using all possible combinations with 𝑛 (out of eight) subsets of patient covariates.

Figure 4 shows a stark divergence between the OLS and IV estimates. The OLS estimates are negative

and decline sizably in magnitude with the addition of patient controls. For example, in the OLS results,

conditioning only on baseline controls (i.e., T𝑖), we find that cases treated by NPs have 30 percent lower

costs than cases treated by physicians. When we add the full set of patient controls, the difference attenuates

to 10 percent. The lower health risks of cases treated by NPs (Table 1) and the sensitivity of the OLS

estimates to patient controls suggest selection bias due to unobservable patient characteristics. In contrast,

the IV estimates are remarkably robust to controlling for any combination of patient covariates: Despite any

controls, the IV estimates for the effect of NPs on length of stay and cost remain stable at 11 and 7 percent,

respectively. Following the logic of Altonji, Elder, and Taber (2005), the stability of the IV estimates implies

limited scope for selection on either observable or unobservable patient characteristics that predict potential

outcomes, further supporting the validity of our instrument.27

26. We form these predictions using linear regressions of actual outcomes on the full set of patient covariates X𝑖 .
27. Another possible explanation for the divergence between the OLS and IV estimates is heterogeneity in treatment effects, since
OLS reports the average effect among the analysis sample, while IV reports the average effect among compliers (i.e., cases on the
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4.2 Hospital Admission and Patient Outcomes

Having examined resource use in the ED, we next assess NP effects on hospital admission and downstream

patient outcomes, in Table 3. In the overall sample, we do not find significant NP effects on hospital

admission or 30-day mortality, though Section 4.3 finds that NPs increase admission for severe cases.28

We find a significant NP effect on patient 30-day preventable hospitalization: Compared to physicians,

NPs raise the 30-day preventable hospitalization rate by 0.25 percentage points, which is equivalent to a 20

percent increase relative to the mean. Appendix Figure A.7 plots actual and predicted outcomes against the

instrument for the three outcomes in this subsection; Appendix Figure A.8 shows that the IV estimates for

these three outcomes are remarkably robust to the inclusion of 28 = 256 different sets of patient controls.

Taken together, the results suggest that NPs and physicians, on average, operate on different production

functions: NPs on average use more inputs (longer lengths of stay and higher costs) and achieve less favorable

patient outcomes (higher 30-day preventable hospitalization rates). This suggests that, comparing NPs and

physicians as two professional classes, NPs, on average, exhibit lower productivity than physicians. This

evidence may not imply that we can cut back on care for NPs. Higher intensity of care may be allocatively

efficient for NPs, since both high and low production functions can exhibit positive returns to inputs (Chandra

and Staiger 2007; Silver 2021; Chan, Gentzkow, and Yu 2022). However, we note that our estimated average

productivity difference between NPs and physicians may be specific to the ED, which features on average

more complex cases than settings such as primary care. Yet despite the relative complexity of cases in the

ED and the stark differences in training between NPs and physicians, we do not find significant mortality

effects of NPs for the average complier. In addition, we find substantial overlap between the productivity

distributions of NPs and physicians, as shown below.

margin of being treated by NPs). To explore this possibility, we follow the procedure by Bhuller et al. (2020) and reweight the
analysis sample to match the sample of compliers using predicted 30-day mortality, i.e., a composite index of all patient observables.
The OLS estimates with the reweighting still differ in sign from the IV estimates, suggesting that the difference between the OLS
and IV estimates cannot be accounted for by heterogeneity in NP effects, at least not by heterogeneous effects across observables.
28. The IV estimate for 30-day mortality is statistically insignificant but relatively imprecise, and we do not rule out meaningful
declines or increases at the bounds of the confidence interval. The 30-day mortality of the overall sample is low at 1.25 percentage
points, potentially making the IV estimate for mortality effects noisy. With more frequent outcomes, the IV estimate may be more
precise. In Section 4.3.3, when focusing on a type of patients with high mortality—those with a sepsis diagnosis (30-day mortality:
11.5 percentage points)—the estimate shows a marginally significant NP-driven increase in mortality (IV point estimate: 24.5
percentage points, p-value: 0.106). However, we note that sepsis is a very severe condition and that for less severe cases, we do not
find significant or marginally significant NP effects on increasing mortality. A related question is why cases with severe conditions
such as sepsis are assigned to NPs. While the data show a reduced probability of being assigned to NPs among riskier patients,
the probability remains positive. A possible explanation is that triage providers may misevaluate severity (Chan and Gruber 2020)
and assign to NPs cases that should have been assigned to physicians. Another possible explanation is that when physicians are
occupied with earlier cases, assigning severe cases to available NPs could be more efficient than delaying care.
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4.3 Mechanisms and Responses

This section examines mechanisms and responses related to the average productivity difference between NPs

and physicians. First, we show that experience may play a role in the NP-physician gap in some (though not

all) outcomes. Second, we find NP-physician differences in clinical decision-making, in calling on external

resources and setting prescription thresholds. Third, we show that the NP effect on resource use outcomes

is smaller for less complex and less severe cases. Finally, we find patient assignment responses toward

optimality in the sense of skill-task matching.

4.3.1 Provider Experience

First, we ask whether experience affects the magnitude of the performance difference between NPs and

physicians. The professions of NPs and physicians entail stark differences in the training that new members

undergo and in the selectivity of choosing new members. Whether physicians are more productive than NPs

because of training or innate ability has important policy relevance. While it is difficult to disentangle these

two mechanisms, the extent to which the NP-physician performance gap varies with experience may shed

suggestive light on this question. If NPs could be made more productive with more extensive training, we

may see that the gap narrows with experience. On the other hand, if the gap derives from innate ability, we

may see that the gap persists or even widens with experience.

We form measures of both general and specific experience. We measure general experience as the

number of cases the provider has treated since the start of the study period to the day before the current case’s

visit. We measure specific experience as the number of cases with a condition (measured by the three-digit

primary diagnosis) the same as the current case the provider has treated since the start of the study period to

the day before the current case’s visit. For ease of interpretation, we standardize both general and specific

experience to have a mean of zero and a standard deviation of one for NPs and physicians separately.

Our empirical model takes the following form:

𝑦𝑖 = 𝛿1NP𝑖 × Experience𝑖 + 𝛿2NP𝑖 + 𝛿3Experience𝑖 + T𝑖𝜂 + X𝑖𝛽 + 𝜀𝑖 . (3)

Experience𝑖 denotes standardized experience within each provider type.29 We instrument for NP𝑖 and

NP𝑖 × Experience𝑖 using 𝑍𝑖 (i.e., the number of NPs on duty) and 𝑍𝑖 × Experience𝑖 .

We find that, for some outcomes, experience predicts a smaller NP-physician performance gap. Panel

29. A one-standard-deviation increase in specific experience equals 108 and 107 cases for NPs and physicians, respectively. A
one-standard-deviation increase in general experience equals 1,855 and 1,258 cases for NPs and physicians, respectively.
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A of Table 4 examines the role of specific experience. For length of stay, Column 1 indicates that a

one-standard-deviation increase in specific experience among NPs and physicians is associated with a 5.8

percent decline in the performance gap, reducing the gap at the mean experience levels by about half. The

NP-physician gap in costs similarly declines with specific experience. Panel B shows that increasing general

experience by one standard deviation in both NPs and physicians is associated with a 10 percent decline in

the NP-physician gap in length of stay. Unlike length of stay and cost, the NP-physician gap in the 30-day

preventable hospitalization rate remains stable despite the level of general or specific experience, indicating

that experience may not fully eliminate the NP-physician performance difference.

We examine alternative measures of experience to address measurement concerns. One concern is that,

since we do not observe cases seen by providers since the start of their careers, our measures of experience

are imperfect representations of experience. To mitigate this concern, we restrict the sample to cases visiting

after 2017, so that our experience measures have at least a one-year look-back window. We also measure

experience based on cases seen in the prior year (i.e., 365 days before the index day), so that the estimates

precisely represent heterogeneity by prior-year experience.30 As the effect of experience may decay with

time (e.g., Benkard 2000), recent experience could be more important than experience gained in the relatively

distant past. A second concern is that the number of cases a provider has seen may capture speed, which may

affect productivity independent of experience (e.g., faster providers accumulate more cases and discharge

patients earlier). To examine this concern, we include an alternative (general) experience measure—the

number of days a provider has worked since the start of our study period to the day before the current case’s

visit—which is independent of speed. Appendix Tables A.4 to A.6 show that our estimates are qualitatively

similar under these alternative measurements.31 Overall, the results suggest that the NP-physician gap in

some (though not all) outcomes may narrow with experience, instead of being persistent.

4.3.2 Clinical Decision-Making

Next, we examine clinical decision-making that may respond to the differences in human capital, specifically,

diagnostic skill. Providers with lower diagnostic skill may draw on more external resources, such as consults

and diagnostic tests. They may also adjust treatment thresholds for decisions with asymmetric costs between

type I and type II errors (Chan, Gentzkow, and Yu 2022). These could be optimal responses to skill

30. Specifically, we measure general experience as the number of cases the provider treated in the proceeding 365 days; we
measure specific experience as the number of cases with the same three-digit primary diagnosis as the current case the provider
treated in the proceeding 365 days. We exclude from this estimation cases visiting in the first year of our analysis since we cannot
fully observe their providers’ experience in the proceeding 365 days.
31. We do not include age as a measure of general experience in this heterogeneity analysis because NPs often practice as registered
nurses for varying years before becoming an NP, thus, unlike for physicians, age is a noisy measure of experience for NPs.
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differences; they could also increase the cost of care, manifesting in productivity differences.

Informational Resources. Columns 1-3 of Table 5 report the effect of NPs on the use of informational

resources, using the 2SLS estimation in Equations (1) and (2). Column 1 shows that, relative to physicians,

NPs are more likely to use consults: NPs increase consults by 2.6 percentage points, or 11 percent of the

sample mean. Columns 2 and 3 show that, relative to physicians, NPs are more likely to order CT scans and

X-rays, the two primary diagnostics in the ED setting. NPs increase CT scan and X-ray ordering by 1.2 and

2.0 percentage points, respectively, or 8.3 and 6.9 percent of the respective sample means.

These results suggest NPs are likelier to collect resource-intensive information from external sources than

physicians. This could directly increase lengths of stay and medical costs, since consults and diagnostics take

time and resources. On the other hand, consults and diagnostics allow lower-skilled providers to improve

decision-making by incorporating information from other experts and, thus, may not be suboptimal. These

findingsmay also suggest that NPs seek inputs from other experts when needed, evenwhen they are allowed to

practice independently, which may be reassuring to the policy debate on granting NPs full practice authority.

Prescription Thresholds and Outcomes. Next, we evaluate skill from the lens of thresholds for prescriptions

with asymmetric costs. Specifically, as shown by Chan, Gentzkow, and Yu (2022), provider skill may

correlate with treatment thresholds when the costs of false-positive (type I) and false-negative (type II) errors

are asymmetric. Compared to higher-skilled providers, lower-skilled providers may (optimally) adjust their

treatment thresholds in the face of less information. Specifically, providers with less information may more

frequently opt for treatment when false negatives (not treating when a case should have been treated) are

costlier than false positives (treating when a case should not have been treated); conversely, lower-skilled

providers may less frequently opt for treatment when false positives are costlier than false negatives. Despite

more frequent prescriptions, lower-skilled providers may nonetheless incur more false negatives; similarly,

they may still incur more false positives with fewer prescriptions.

We choose two important prescriptions with different asymmetries in the costs of type I and type II

errors—opioids and antibiotics—and examine prescription thresholds and downstream outcomes. For both

of these prescriptions, the clinical indications for appropriate use are often unclear and require clinical

judgment.32 We estimate the NP-physician difference in prescriptions and downstream outcomes using the

2SLS model in Equations (1) and (2). Column 4 of Table 5 shows that, for opioids, which have higher false-

positive costs—e.g., addiction and overdose among patients who should not have received opioids compared

to continued pain among patients who should have received them—NPs lower opioid prescriptions by 1.8

percentage points, or 20 percent of the mean. For antibiotics, which have higher false-negative costs—

32. See, e.g., Fleming-Dutra et al. (2016), Huang et al. (2018), Butler et al. (2019), and Neuman, Bateman, and Wunsch (2019).
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e.g., non-treatment of a potentially life-threatening infection compared to antibiotic resistance—NPs raise

antibiotic prescriptions by 4.0 percentage points, 6.3 percent of the mean.33 Yet, as Appendix Table A.7

shows, compared to those treated by physicians, patients treated by NPs are likelier to incur return visits with

infection despite higher antibiotic prescribing, and they obtain similar rates of subsequent opioid use disorder

despite lower opioid prescribing. (However, we note the possibility that these results may be specific to the

ED, a relatively skill-demanding work setting.)

4.3.3 Case Complexity and Severity

In this section, we exploit the wide variety of cases that arrive at the ED to examine heterogeneity in the

effects of NPs by case complexity and severity. Following Imbens and Rubin (1997), we estimate complier

potential outcomes under NPs and under physicians. Specifically, we estimate complier potential outcomes

under NPs using the following IV regression:

𝑦𝑖 · NP𝑖 =
𝐺∑︁
𝑔=1

1(Group𝑖 = 𝑔)
[
𝛿𝑔NP𝑖 + 𝜆𝑔

]
+ T𝑖𝜂 + X𝑖𝛽 + 𝜀𝑖 , (4)

where 𝑦𝑖 · NP𝑖 is the interaction between patient outcome and the indicator for being treated by an NP,

1(Group𝑖 = 𝑔) is an indicator for case 𝑖 belonging to group 𝑔 ∈ {1, . . . , 𝐺} characterizing complexity

or severity. As a natural extension of our main IV model, we instrument for the interactions between{
1(Group𝑖 = 𝑔)

}𝐺
𝑔=1 and NP𝑖 by interacting

{
1(Group𝑖 = 𝑔)

}𝐺
𝑔=1 with 𝑍𝑖 , where 𝑍𝑖 is the number of NPs on

duty. We estimate complier potential outcomes under physicians using an IV regression similar to Equation

(4) but with a dependent variable of 𝑦𝑖 · (NP𝑖 − 1).

We consider two partitions of cases. First, we divide cases into quartiles by their number of Elixhauser

comorbidities and refer to higher quartiles as more complex cases. Second, we divide cases by whether

condition severity measured by 30-day mortality of the three-digit primary diagnosis is equal to or above

the 95th percentile of the sample. The 30-day mortality for this top-severity group is 8.6 percentage points

against 1.2 percentage points for the whole sample. Included in this group are cases with relatively severe

conditions, such as heart failure and acute kidney failure, potentially more challenging to manage.34

33. Since opioids apply to a wide range of conditions, we include all patients in examining opioid prescriptions. As antibiotics
generally only apply to patients with infections, we restrict the sample to patients with respiratory or genitourinary system infections,
i.e., two common types of infections.
34. Appendix Table A.8 summarizes the 10 most common three-digit primary diagnoses in this group. The largest diagnosis
category is heart failure, followed by acute kidney failure. The top 10 diagnoses also include acute myocardial infarction, a form of
sepsis, and a form of respiratory failure. The 30-day mortality rates range between 5 and 17 percentage points. While the data show
a reduced probability of NP assignment among riskier patients, the probability remains positive (the share of patients assigned to
NPs among patients whose condition severity is below and at least as high as the 95th percentile of the sample are, respectively, 0.24
and 0.11). Possible reasons that severe cases are assigned to NPs, as described earlier, may be: (i) Triage providers may misevaluate
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We find the NP effect on lengths of stay and medical costs is smaller when cases are less complex and

less severe, as shown in Figure 5. For example, for cases in the lowest complexity quartile, NPs increase

their length of stay by about 5 percent; for cases in the highest complexity quartile, NPs increase their length

of stay by around 25 percent. For cases with a condition severity at least as high as the 95th percentile, we

find an NP effect that doubles the length of stay. Table 6 summarizes the heterogeneous NP effects.35 The

table further examines four severe conditions: stroke, acute myocardial infarction, sepsis, and heart failure.

We find smaller NP effects among cases without these severe conditions compared to those with them.

We do not find decreasing NP effects on 30-day preventable hospitalization with case complexity or

severity (Column 5 of Table 6). If NPs are less skilled at treating more complex or more severe cases, they

may obtain worse outcomes for these cases. On the other hand, as NPs increase their intensity of care by a

larger extent for these cases, the higher incremental care may reduce preventable hospitalizations. As shown

in Panel A of Table 6, NPs increase lengths of stay and medical costs for cases in the highest complexity

quartile by 28 percent and 12 percent, respectively, without a significant effect on the 30-day preventable

hospitalization rate of these cases. For cases in the lower complexity quartiles, NPs reveal a smaller-

magnitude and sometimes insignificant effect on lengths of stay and medical costs, yet NPs significantly

raise the 30-day preventable hospitalization rate of these cases. For cases with severity at or above the 95th

percentile, Panel B of Table 6 shows an increased admission rate of 26 percentage points with NPs, and there

is a decline of three percentage points in the 30-day preventable hospitalization rate among these cases.

4.4 Patient Assignment

Finally, we examine patient assignment between NPs and physicians. On the whole, the evidence on

case heterogeneity in Section 4.3.3 suggests a comparative disadvantage for NPs in treating complex and

severe cases. We do not find a set of cases in which NPs outperform physicians, suggesting that NPs

also appear to be at an absolute disadvantage in the ED setting. These stylized facts imply a qualitatively

optimal assignment of patients to NP versus physician provider classes, in the sense of skill-task matching

in organizations (Acemoglu and Autor 2011): Of patients available, NPs should receive the healthier ones,

and NPs should receive fewer patients when physicians are more available. Some recent studies suggest that

optimal worker-job matching may not hold in practice (e.g., Adhvaryu, Kala, and Nyshadham 2022; Minni

2023). Yet empirical patient allocation between NPs and physicians consistent with the direction of optimal

patient severity (Chan and Gruber 2020) and assign severe cases to NPs; (ii) when physicians are occupied with earlier cases, it may
be more efficient to assign severe cases to available NPs than delaying care. Appendix Table A.9 reports the mean outcomes for
each group of cases in the heterogeneity analysis.
35. Results in this table are estimated using Equation (4) with patient outcome 𝑦𝑖 as the dependent variable. By construction, this
dependent variable is the difference between the dependent variables used to estimate potential outcomes: 𝑦𝑖 = 𝑦𝑖 ·NP𝑖−𝑦𝑖 ·(NP𝑖−1)).
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assignments could augment the efficiency of using NPs.

Appendix Figure A.9 provides descriptive insight into patient assignment by exploiting variation in NP

staffing and variation in patient arrivals, conditional on our baseline controls. Panels A-C show that NPs

overall are assigned healthier cases, consistent with Table 1. The average complexity and severity of cases

assigned to NPs, as measured by patient age, comorbidities, and predicted 30-day mortality, increase with

NP staffing despite the average complexity and severity of all cases remaining stable. The pattern suggests an

assignment process in which the first cases assigned to NPs have the lowest health risks; when more NPs (and

fewer physicians) are available, cases incrementally assigned to NPs are riskier compared to those initially

assigned to NPs but are still relatively healthy among the remaining cases to be assigned.36 Panel D of the

figure assesses the probability that a patient is assigned to an NP as a function of ED busyness measured

by the number of other patients arriving in the analysis time window (i.e., 8 a.m. to 6 p.m.) of the ED-day

cell. We find a small but clear trend in which patients are more likely to be assigned to NPs when the ED is

busier, consistent with the efficiency of assigning fewer patients to NPs when physicians are less occupied.37

Taken together, the empirical patient allocation between NPs and physicians is consistent with the direction

of optimal skill-task matching in organizations, which may augment the efficiency of using NPs.

4.5 Complier Characteristics

Our IV estimates represent the LATE, i.e., the average causal effect among complier cases quasi-randomly

assigned to NPs versus physicians due to the instrument. To better understand this LATE, we examine

complier characteristics following the approach developed by Abadie (2003), as described in Appendix A.2.

Appendix Table A.11 reports the results. Consistent with NPs treating less severe cases, compliers are

healthier than the average case. Compared to the average case, compliers are younger, have fewer Elixhauser

comorbidities, have fewer inpatient stays in the prior year, and exhibit lower predicted mortality. Appendix

Table A.11 also examines characteristics of never-takers (of NPs), following an approach from Dahl, Kostøl,

and Mogstad (2014) that we detail in Appendix A.2. In line with the notion that NPs treat healthier cases

than physicians, never-takers are riskier than the average case, and both are riskier than compliers. (Our

setting contains no always-takers since patients cannot be assigned to NPs on days with no NPs.)

36. As a result, cases left for physicians become riskier with more NPs. A potential question is whether the increased risk of cases
assigned to physicians on days with more NPs affects physicians’ performance, violating an exclusion restriction. To assess this
concern, Appendix Table A.10 controls for multiple measures of the average health risk (age, comorbidities, and predicted 30-day
mortality) of cases assigned to physicians in the ED-day cell. The results show that our IV estimates are highly robust.
37. This relationship is qualitatively the same when further conditioning on the number of NPs and the number of physicians
staffing the ED on that day. A related question is whether the increasing NP assignment with ED busyness may affect the estimated
NP effects. In contrast to OLS, a correlation between NP assignment and busyness per se would not affect estimates from our IV
approach. In Section 4.6, we also show that our IV estimates are highly robust to controlling for the number of patients arriving.
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4.6 Exclusion Restriction

As discussed in Section 3.2, interpreting the IV estimates as the causal effect of being treated by NPs requires

the number of NPs on duty to affect patient outcomes only through the patient probability of being treated by

NPs, not through any other channels. In this section, we present evidence supporting the exclusion restriction.

We first show that the characteristics of both on-duty physicians and on-duty NPs are well balanced across the

number of NPs on duty. Second, we assess and find little support for the possibility of productivity spillovers

that NP presence influences physician performance in our setting. Third, we examine a range of factors that

may vary across days including patient volume, staffing level, and wait time and consider patient-physician

gender concordance, finding no evidence to suggest these factors are driving our IV estimates.

Balance in Provider Characteristics. To start, we investigate whether on-duty physicians are similar

across days with different numbers of NPs. If such a balance does not hold, our IV estimates could

be driven by compositional changes of physicians. Figure 6 reports the balance for various physician

characteristics. Specifically, we consider an ED-day level analysis that asks whether on-duty physicians’

average characteristics (weighted by the number of cases treated by each physician) are independent of the

number of NPs on duty, conditional on ED-by-year, ED-by-month, and ED-by-day-of-the-week indicators.38

We examine three sets of physician characteristics: (i) demographics of age and gender; (ii) measures

of physician “value-added,” reflecting physician risk-adjusted impact on patient 30-day mortality; and (iii)

measures of physician “practice style,” reflecting a physician’s risk-adjusted average input choices in terms

of length of stay and ED costs (see Appendix A.3 for construction details). Figure 6 shows that each of these

physician characteristics is well balanced across the instrument, conditional on the baseline controls.

We similarly examine whether NP characteristics are systematically different across days with differing

numbers of NPs on duty. If such systematic variation exists, our baseline IV strategy may not be able to

disentangle the effect of being treated by NPs from that due to the potentially different quality of NPs across

days.39 Following Figure 6, Figure 7 shows that an analogous set of NP characteristics are well balanced

across days with different numbers of NPs, conditional on baseline controls.

38. The empirical specification takes the form 𝑦 𝑗𝑑 = 𝜆̃𝑍 𝑗𝑑 + T̃ 𝑗𝑑𝜂 + 𝜀 𝑗𝑑 , where 𝑦 𝑗𝑑 is the average characteristics of physicians
on duty at ED 𝑗 on day 𝑑 (weighted by the number of cases treated by each physician), 𝑍 𝑗𝑑 is the number of NPs on duty, and
T̃ 𝑗𝑑 includes ED-by-year, ED-by-month, and ED-by-day-of-the-week indicators. We cluster standard errors by ED. Since our main
sample has only 44 EDs, a potential question is whether the estimated standard errors are biased given the relatively small number
of clusters. While there is currently no clear-cut definition of “small”, if anything, such a potential issue would bias us toward
rejecting the null hypothesis of physician balance across the instrument (Bertrand, Duflo, and Mullainathan 2004; Cameron and
Miller 2015). Nonetheless, as a robustness check, we apply the correction for the small number of clusters using Wild cluster
bootstrap as suggested by Cameron and Miller (2015); we find no meaningful change in the standard error estimates.
39. This concern applies to our baseline IV strategy since it uses variation in the number of NPs in addition to whether there is an
NP on duty. In Section 4.7, we include alternative estimations using variation in the extensive margin of whether there is any NP
on duty and restricting the sample to days with zero or only one NP on duty; results are virtually unchanged.
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The balance in on-duty physicians’ and on-duty NPs’ characteristics across the instrument also supports

quasi-random variation in the instrument, as with the balance in patient characteristics. Otherwise (e.g., the

variation is driven by patient or staffing shocks), we would observe systematic changes in these characteristics

with NP staffing.

Assessing Productivity Spillovers. We then consider the possibility of spillovers between NPs and physi-

cians. NP presence may influence physician performance: For example, if NPs ask physicians in the ED for

assistance, they may slow down physicians. Alternatively, a change in peers from days without any NP to

days with NPs may influence physician performance as, e.g., physicians may come under different degrees

of peer pressure that motivate them to work differently (Chan 2016; Silver 2021).

However, we find little empirical evidence to suggest meaningful spillovers between NPs and physicians.

First, if NPs ask physicians for assistance, we may expect the outcomes of patients treated by NPs to depend

on the quality of physicians on duty. Using value-added measures described in Appendix A.3 and experience

measured by age, we find no such relationship in Appendix Table A.12. Second, with spillovers—either

through assistance or peer pressure, or any other channels by which NP staffing may affect physician

performance—outcomes for patients treated by physicians could change with the presence of NPs. Directly

regressing outcomes of patients treated by physicians on the NP presence suffers from patient selection

since physicians are allocated riskier cases on days with NPs (as healthier cases are assigned to NPs). To

circumvent this issue, we look at cases arriving between 5 and 8 a.m., i.e., patients who arrive before the

typical start of NP shifts so that they are unlikely to be assigned to NPs, but whose stay overlaps with

NP shifts so that their physicians could be subject to spillover effects from NPs.40 As shown in Panel A,

Appendix Table A.13, we find no evidence of spillovers from NP presence on physicians’ patients overall.

In Panel B, we focus on days with high workloads, when NP spillovers may be more detectable, and again

find no evidence of spillovers in this subsample.41

Robustness to Additional Factors. Finally, we show the robustness of our IV estimates to factors that may

vary across days, including the total number of cases arriving, the total number of physician equivalents on

duty, and patient wait times (the time between arrival at the ED and assignment to a treating provider). We

control for the total number of physician equivalents on duty to mitigate the concern that the effective level of

40. To restrict further the possibility of patient selection between NPs and physicians, we exclude patients arriving between 5 and
8 a.m. in ED-day cells with any patient assigned to NPs. As shown in Columns 1 and 2 of Appendix Table A.13, patient health
risks are balanced between days with and without NPs in this analysis sample.
41. A potential question is whether the increased average health risk of patients assigned to physicians on days with NPs affects
physicians’ overall performance, violating an exclusion restriction. To assess this concern, as described in footnote 36, Appendix
Table A.10 controls for multiple measures of the average health risk (age, number of Elixhauser comorbidities, and predicted 30-day
mortality) of patients assigned to physicians in the ED-day cell. The results show that our IV estimates are remarkably stable,
suggesting that the different sets of patients assigned to physicians on days with NPs are unlikely to affect our IV estimates.
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providers may vary across days with different numbers of NPs on duty.42 Turning to wait time, since patient

wait time is potentially endogenous (healthier cases could be assigned a lower priority and thus wait longer),

we instrument for wait time using the average wait time of cases visiting on the same day at the same ED as

the index case. While potentially important, the factors listed above do not affect our estimates: Appendix

Table A.14 and Appendix Figure A.10 show that our IV estimates are robust to considering these factors.

We also ask if the estimated NP effect is driven by patient-provider gender mismatch since the vast

majority of patients are male (91 percent), physicians are primarily male (74 percent), and NPs are mostly

female (79 percent). Appendix Table A.15 explores this possibility by asking whether the effect of NPs

varies by whether the patient’s and provider’s genders match. The results show little heterogeneity.

4.7 Additional Robustness Checks

Appendix Tables A.16-A.20 report additional robustness checks. Appendix Table A.16 shows that our

findings are stable with alternative standard error clustering approaches: clustering by ED-day or two-way

clustering by ED-day and provider. Panels A and B of Appendix Table A.17 show the robustness of our

estimates to, respectively, an alternative count of on-duty NPs that includes any NP with at least one case

(instead of at least two cases as in our baseline IV) in the analysis time window of an ED-day cell and another

count that leaves out the index case in measuring on-duty NPs. In Appendix Table A.17, Panels C-D, we

construct two alternative instruments: the share of cases in the ED-day cell treated by NPs (leaving out the

index case) and an indicator for any NPs on duty; we show the results are stable. Appendix Table A.18

shows that our results remain similar when looking at the margin between days with no versus only one NP

on duty. Appendix Table A.19 shows that our results for hospital admissions in the ED visit and 30-day

42. As described in Section 3.2, each ED generally pre-arranges staffing based on time categories (matching T𝑖). Conditional
on T𝑖 , it is plausible that the ED maintains a consistent level of total effective staffing despite NP availability, lending credence to
our baseline IV estimates. The coefficient in Panel A of Figure 1 being less than one in magnitude potentially represents balanced
total effective staffing across days with differing NP availability, since one NP seems insufficient to substitute for one physician
given that NPs take longer to discharge patients but do not handle more patients simultaneously. For further robustness checks, we
control for physician equivalents on duty, calculated as the sum of the number of on-duty physicians and the number of on-duty NPs
multiplied by the substitution rate between NPs and physicians. Since we do not know how many physician equivalents an average
NP represents, we assume a series of substitution rates—0.25, 0.5, 0.75, and 1, assuming that one NP substitutes for 0.25, 0.5, 0.75,
and 1 physician, respectively. When the assumed substitution rate is higher than the actual rate, the IV estimates will be biased by
lower staffing, leading to underestimated IV estimates for log length of stay and ED cost when lower staffing rushes providers to
shorten patient visits and reduce treatments (e.g., Silver (2021) shows that when ED physicians are rushed, they discharge patients
early and reduce treatments). Conversely, if the assumed substitution rate is lower than the actual rate, the IV estimates will be
confounded by higher staffing, potentially leading to overestimated NP effects on log length of stay and ED cost. The more the
assumed substitution rate is above (below) the actual rate, the smaller (larger) the estimates will be relative to the truth. Similarly,
if lower (higher) staffing worsens (improves) patient treatment outcomes, e.g., mortality, we would see decreased IV estimates for
mortality with lower assumed substitution rates. Since the interval [0.25, 1] plausibly covers the true substitution rate, we consider
this robustness test a bounding approach. Appendix Figure A.10 reports the results. Though the IV estimates modestly change with
the substitution rate as discussed above, the estimates are qualitatively similar to our baseline IV estimates.
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preventable hospitalizations are robust to considering hospital stays outside of the VHA.43 Appendix Table

A.20 expands the sample to all 110 VHA EDs that use NPs—doubling the number of cases and tripling the

number of providers in our sample—and shows the results are similar.44

5 Counterfactual Scenarios

In this section, we consider two counterfactual policy scenarios that quantify the average NP-physician

productivity difference in financial terms. First, we consider the cost implications of substituting physicians

with NPs. Second, we consider augmenting the existing supply of physicians with NPs.

We first perform a simple calculation of the cost of assigning 25 percent of all cases in VHA EDs to NPs

instead of physicians—approximately the share of cases treated by NPs in our sample, which consists of EDs

that are early adopters of NPs under full practice authority. Using the 2SLS specification in Section 3.1, we

estimate the effect of NPs on log total spending per case, where total spending is the sum of the three main

cost components investigated in Section 4: the cost of ED care, hospital admission, and 30-day preventable

hospitalization.45 Assuming that the effects of NPs across all EDs are similar to those in our sample, we

multiply the extra spending per case associated with NPs by the total number of cases in the 25 percent set.

We find an extra cost of $197 million per year for the VHA.46 This figure is 2.6 times the yearly NP wage

costs that the VHA would encounter to assign 25 percent of its ED cases to NPs.47

We then incorporate potential savings from the lower wages of NPs, which are only half those of the

average physician (Bureau of Labor Statistics 2021a; 2021b). If two NPs substitute for one physician, there

43. Since a share of patients has health insurance coverage in addition to the VHA’s (mainly Medicare), we report robustness
checks that include hospital stays outside of the VHA for patients who enroll in both the VHA and traditional Medicare. Note that
this is likely an upper-bound estimate of the possible bias for our sample since patients without non-VHA health insurance are much
less likely to have hospital stays outside of the VHA. Regardless, the estimates are stable.
44. As described in Section 2.3, to focus on a single margin between NPs and physicians, our main analysis focuses on EDs that
use only NPs and physicians; in Appendix Table A.20, we include all VHA EDs that use NPs regardless of using physician assistants
(but exclude cases in ED-day cells with physician assistants).
45. To calculate the cost of hospital admissions and 30-day preventable hospitalizations, we apply the cost estimate of $19,220
per VHA hospital stay, on the basis of the average length of stay per hospitalization at the VHA and costs per VHA inpatient day
reported by the VHA’s Health Economics Resource Center (2021).
46. As this estimation focuses on preventable hospitalization effects within 30 days of the ED visit, the extra cost estimated can be
viewed as that within the 30 days of the ED visit. The NP impact on total spending per case may be larger when we consider costs
further downstream. The 95 percent confidence interval of the extra cost in this counterfactual is [-$16 million, $411 million]. The
relatively wide range of the confidence interval mainly derives from hospital admissions. As shown in Tables 2 and 3, the NP effects
on ED costs and 30-day preventable hospitalizations are much more precise. In this counterfactual and Section 6 below, we take
the societal perspective and view extra medical spending as costs. While this may reflect the perspective of a vertically integrated
delivery system like the VHA, other hospitals in the US may not fully internalize the societal cost of hiring lower-productivity
workers, as they may be reimbursed for extra utilization and may not bear the cost of downstream outcomes.
47. For this estimation, we divide the total number of cases in the 25 percent set by the average caseload of NPs in our sample,
finding that 654 NPs would be needed for treating 25 percent of VHA’s ED cases annually. We then multiply the number of NPs
needed with the NP wage reported by Bureau of Labor Statistics (2021a), yielding a total wage estimate of $74.9 million per year.
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may be no wage saving when substituting physicians with NPs. For a conservative estimate, we consider the

scenario where one NP may substitute for one physician. Under this scenario, we also arrive at net costs,

$129 million per year, for assigning 25 percent of VHA ED cases to NPs.48

Using LATEs, this analysis assesses counterfactual outcomes for compliers, likely to encompass the 25

percent of cases assigned to NPs. Yet we also consider a counterfactual scenario where EDs assign the least

complex 25 percent of cases (by the number of Elixhauser comorbidities) to NPs. Applying the estimates

for the lowest complexity quartile cases in Table 6, we find a lower extra medical cost of $97 million per year

to the VHA. This cost can be reduced to $29 million per year by lower NP wages when an NP can substitute

for one physician, only about one-fifth of the net cost ($129 million per year) in the counterfactual above.

Despite possible extra spending, our findings do not imply that NPs are inefficient to use. When physician

capacity is limited, hiring NPs to augment provider supply and reduce wait times may, nevertheless, be

necessary and efficiency-improving. To examine this concept, in Appendix A.4 we consider the trade-

off between reducing wait times and increasing resource use with additional NPs. As overcrowding is a

significant issue in the ED, wait time has been an important object of attention for policymakers and ED

management alike (e.g., Institute of Medicine 2006; American College of Emergency Physicians 2016). We

find that roughly nine-tenths of the additional spending to reduce wait time by hiring NPs come from the

increased medical resource use associated with NPs, while only one-tenth comes from additional NP wage

costs. However, the extra medical cost decreases with case complexity: It declines by about one-third among

the lowest complexity quartile cases compared to the average case.

6 Productivity within Professions

Up to this point, we have focused on estimating the average productivity difference between the professional

classes of NPs and physicians. In this section, motivated by growing evidence of productivity variation

across providers (within professions), we measure the distribution of productivity within each profession and

ask how this intra-professional variation in productivity compares to the difference in productivity between

professions, in the case of NPs versus physicians.49 We find productivity variation within each profession

48. We use the physician and NP wages reported in Bureau of Labor Statistics (2021a; 2021b) for nationally representative wages.
Since the Bureau of Labor Statistics does not provide separate wage estimates for NPs in the ED, we apply the wages of the average
physicians and the average NPs. Using instead the wage estimates in the VHA data for NPs and physicians in the ED, we arrive at
similar net costs, $109 million per year.
49. Doyle, Ewer, andWagner (2010) show differences in resource utilization decisions among physician trainees, potentially driven
by human capital. Abaluck et al. (2016) documents variation in physician testing thresholds in the context of pulmonary embolism,
and Silver (2021) examines returns to time spent on patients by ED physicians and variation in the physicians’ productivity. Currie
and MacLeod (2017) and Currie and MacLeod (2020) show physician skill variation in the contexts of C-section and depression
treatments, respectively. Chan, Gentzkow, and Yu (2022) demonstrate important variation in diagnostic skill among radiologists.
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several-fold larger than the productivity difference between the two professions. This leads to substantial

overlap between the productivity distributions of NPs and physicians: A large share of NPs perform even

better than the average physician. Using the detailed administrative data of the VHA, we also evaluate the

extent to which productivity within each profession relates to cases assigned and wages paid to individual

providers, finding limited relationships.

6.1 Distribution of Productivity

We first examine the distribution of productivity within each profession. We operationalize this examination

by focusing on a measure of the total cost per case. Specifically, for each case, we aggregate the three main

components of resource utilization investigated in Section 4, the same components we considered in Section

5: the cost of ED care, hospital admission, and 30-day preventable hospitalization.50 We then estimate

provider effects on the log of this measure of the total cost of each case, with higher effects indicating

lower productivity. In practice, hospitals may not fully internalize the societal cost of using higher-spending

workers, as extra care utilization could be higher revenues to hospitals. In this paper, we take the societal

perspective: We view extra spending as costs and define higher spending effects as lower productivity.

To account for the provider-specific selection of patients in estimating provider spending effects, we use

a just-identified IV model that instruments for indicators for treating providers with indicators for providers

on duty in the ED-day cell of the patient’s visit, leveraging the quasi-random variation in on-duty providers

(conditional on T𝑖). The model also controls for the baseline control vector T𝑖 and for robustness checks

controls for patient characteristics X𝑖 , as our baseline IV model in Equations (1) and (2). Appendix A.5.1

provides details of the empirical specification and shows that the instruments (i.e., the indicators for on-

duty providers) are strongly predictive of the treating providers but are independent of arriving patients’

characteristics conditional on T𝑖 , supporting the validity of these instruments.

Appendix Table A.21 reports estimates of the variance of provider effects on the log total cost of the

ED visit defined above. Using a split-sample approach to account for finite-sample estimation error, we find

a variance of 0.045 for physicians and 0.048 for NPs (see Appendix A.5.2 for details of the split-sample

approach). These estimates suggest large variation in provider effects: A one-standard-deviation costlier

physician and NP increase the total cost of the ED visit by 21 and 22 percent per case, respectively, which

are about three times the average NP effect of 6.7 percent on the total cost per case from the 2SLS model

in Equations (1) and (2). That is, the productivity variation within each professional class is much larger

than the productivity difference between the two classes. Related to the wide variation in provider effects

50. We multiply the latter two components by the average cost of a hospital stay, $19,220.
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within each professional class, Appendix Figure A.11 shows that the NP effect varies considerably across

EDs (details in Appendix A.6). Accounting for sampling error, the standard deviation of the ED-specific NP

effect for each outcome is similar in magnitude to the average NP effect reported in Section 4.51

We next investigate the full distributions of provider effects on the log total cost per case, applying a

non-parametric empirical Bayes deconvolution approach adapted by Kline, Rose, and Walters (2022) from

Efron (2016). This approach extracts a flexible empirical Bayes prior distribution of population provider

effects, using the estimated provider effects and their standard errors from the just-identified IV model

described above. Specifically, the procedure first yields a distribution of provider 𝑧-scores (the ratio between

each provider effect and its standard error); it then derives the estimate of the distribution of provider effects

based on the density function of 𝑧-scores. Appendix A.5.3 describes details of the estimation. We apply

this procedure separately for NPs and physicians and ensure that the difference between the means of the

deconvolved distributions for NPs and physicians equals the NP effect from the 2SLS model in Equations

(1) and (2).52

Panel A of Figure 8 displays the deconvolved density of provider effects. For interpretation, we convert

provider effects on log total spending per case on the x-axis to annual spending (not including provider

wages) by incorporating the empirical distribution of log total spending per case and the average number of

cases a provider treats per year (see Appendix A.5.3 for details of the conversion). Within each professional

class, the productivity distribution implies greater non-wage spending of about $910,000 and $870,000 per

year under a provider at the 25th percentile of productivity than under a provider at the 75th percentile for

NPs and physicians, respectively—both of which are as high as about three times the mean annual non-wage

spending difference between NPs and physicians.

Finally, using the deconvolved density of NP and physician effects on log total spending per case, we

estimate the probability that a randomly drawn NP is costlier than a randomly drawn physician (Appendix

A.5.3 provides details of the estimation). We find the probability that a randomly drawn NP is costlier than a

randomly drawn physician, in terms of the effect on the total spending of the ED visit defined above, is only

62 percent. Put differently, the probability that a randomly drawn NP is less costly than a randomly drawn

physician is as high as 38 percent. This statistic remains large when we adjust the deconvolved productivity

51. Consistent with the results in Section 4, we find that provider productivity is correlated with professional class. Within
professions, we find no significant correlation between provider productivity and provider observable characteristics (age, gender,
whether born in the US, whether received medical training in the US (for physicians only), and whether have a doctoral degree (for
NPs only)). This pattern is consistent with the education literature, which suggests that teacher value-added is not strongly predicted
by observables (e.g., Jackson, Rockoff, and Staiger 2014). Yet we do not exclude the possibility that provider productivity may be
more predictable with a richer set of characteristics.
52. The average difference in total spending per case based on the 2SLS model and the difference between the means of the NP
and physician effects from the just-identified IV model weighted by the number of cases seen by each provider are close: 6.7 versus
7.2 percent.
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distributions to account for possible differences in treatment effects between the overall population and

compliers: When assuming the average treatment effect is as large as that among the highest complexity

quartile patients (i.e., twice the LATE estimate), the probability that NPs are less costly remains large at 28

percent.

Taken together, the findings in this section suggest a nuanced role of professions in determining the

productivity of workers. Despite the stark differences in training and the relative complexity of cases in the

ED setting, there is still substantial overlap between the productivity distributions of NPs and physicians and

a large share of NPs who may perform even better than the average physician. Therefore, despite the average

productivity difference between the two professions, our findings do not necessarily imply inefficiency in

using NPs: Not only could NPs provide valuable labor supply for health care, the large productivity overlap

between NPs and physicians also suggests scope for efficiency gains beyond organizing work solely around

professional lines. In addition, the large productivity overlap between NPs and physicians, even in the ED

setting, may shed positive light on the use of NPs in less complex settings (e.g., primary care).

6.2 Relationship with Case Assignment and Wages

Next, we evaluate the distribution of assigned patient risks and paid wages across providers within each

professional class. In Panel B of Figure 8, we show the average patient risks, measured by predicted 30-day

mortality, across providers in each professional class. While there is considerable overlap in the supports of

the distributions for NPs and physicians, the difference in means between the two distributions is clear. In

Panel C of Figure 8, we plot the distributions of annual wages across providers.53 The panel shows substantial

wage variation within each profession: The gaps between the 10th and 90th percentiles of annual wages are

about $48,000 and $117,000 for NPs and physicians, respectively. Despite the large wage variation within

each profession, there is virtually no overlap in the wage distributions between the two professions.

In Appendix Figure A.12, we present the receiver operating characteristic (ROC) curves of provider

productivity, case assignments, andwage payments as characteristics that may distinguishNPs and physicians

(details in Appendix A.5.4). The area under the curve (AUC) values are 0.62, 0.75, and 0.99 for productivity,

case assignments, and wage payments, respectively. Put differently, assigned patient risks are more predictive

of professional class than productivity is; yearly wages are extremely predictive of professional class.

Productivity, which exhibits the largest overlap between the distributions of NPs and physicians as shown in

53. For each provider, we access detailed payment records of the full-time equivalents and wages for each pay period between the
years 2011 to 2020, inclusive. We convert these data to annualized provider wages by (i) inflation-adjusting payments in any year
to corresponding payments in 2020 dollars, (ii) computing a per-hour wage by dividing the sum of (inflation-adjusted) payments by
the sum of work hours across all pay periods, where each pay period covers two weeks, and (iii) multiplying this figure by 26 pay
periods and 80 hours per pay period (the number of hours in a full-time-equivalent pay period).
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Figure 8, has the poorest performance in classifying providers.

Finally, given the potential for large efficiency gains under policies using provider-specific productivity,

we explore how our measure of provider productivity (i.e., the reverse of provider effects on the log total

spending per case) relates to assigned patient risks and wages paid to each provider. To account for sampling

error, we compute the empirical Bayes posterior mean for each provider’s effect on log total spending per

case (details in Appendix A.5.5). In contrast to the clear gradient between the professional classes of

NPs and physicians, we find that provider productivity within each professional class has little bearing on

the average predicted 30-day mortality of cases assigned to each provider (Panel A of Appendix Figure

A.13).54 Similarly, we find that, within each professional class, a provider’s productivity shows little positive

relationship with her wages (Panel B of Appendix Figure A.13).55 Taken together, the evidence indicates

that organizations make little use of provider productivity within each professional class when assigning

cases or setting wages for providers.

7 Conclusion

Professionals perform some of the most important tasks across a variety of economic sectors. In turn,

professional groups play a central role in determining the division of professional labor, the selection and

training of future members, and the economic returns to working as a professional. However, very little is

known empirically about productivity differences between distinct professions performing overlapping tasks

and how they compare to within-profession productivity variation, largely because professions exclude other

groups from providing tasks within their “jurisdictions” (Abbott 2014).

In this paper, we exploit a unique opportunity to study two starkly different classes of professionals—

nurse practitioners (NPs) and physicians. Our empirical setting allows us to study the quasi-experimental

assignment of ED patients to NPs versus physicians in the Veterans Health Administration (VHA) in the

setting of a directive granting full practice authority to NPs. We use the quasi-random arrival of patients at

the ED between times that may differ in the availability of NPs on shift, which drives the probability of being

treated by an NP versus a physician. In the ED setting, compared to physicians, on average, NPs use more

resources (longer lengths of stay and higher spending) and achieve less favorable patient outcomes (higher

54. In an analysis that divides cases into low- versus high-risk by whether predicted 30-day mortality is below versus above
the sample median and separately identifies provider effects on low- and high-risk patients, we find that the gap in spending
effects between low- and high-productivity providers is greater for riskier patients. This implies that assigning riskier patients to
higher-productivity providers could be efficient.
55. For NPs, though Panel B of Appendix Figure A.13 shows a relationship between wages and productivity, the relationship is
small in magnitude and only marginally significant. The relationship is also opposite-signed: NPs with higher effects on spending,
i.e., NPs who are lower-productivity, are paid higher wages.
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30-day preventable hospitalization).

We further examine behavioral mechanisms and responses to productivity in our setting. We show

that experience may play a role in the NP-physician performance gap. We find clinical decision-making in

response to skill differences: NPs are likelier to call on external information, and they shift their prescribing

decisions to avoid costly errors. We also find that the productivity gap between NPs and physicians lessens

when cases are less complex and less severe. In response, NPs receive healthier cases and take on a smaller

share of the caseload when the ED is less constrained to meet demand. While we find in the ED that,

on average, the resource cost implied by the lower productivity of NPs versus physicians outweighs salary

savings from hiring NPs instead of physicians, this cost declines when NPs are assigned healthier patients.

These patterns suggest returns to training, decision support, and optimal case assignment for NPs.

Strikingly, we find productivity variation within each profession several-fold larger than the difference

between the two professions. This leads to substantial overlap between the productivity distributions of

NPs and physicians, such that a large share of NPs outperform the average physician. These findings imply

that professional class is, at best, a coarse indicator of productivity. While NPs and physicians receive

qualitatively different patient risks and starkly different wages, within each profession, tasks and wages bear

limited relationships with worker productivity. The large productivity overlap between the two professions

suggests that organizing work solely around professional lines may forego large gains in efficiency.

Considered together, our findings paint a nuanced picture of the role of professions in determining and

revealing the productivity, tasks, and wages of workers. Intensive professional selection and training may

imply average productivity differences between professional classes that justify sizable wage differences in

industries such as health carewhereworker judgmentsmay influence the utilization of considerable resources.

Nevertheless, professional institutions are likely more effective at separating wages and organizing tasks

between professions than at standardizing productivity within professions. These relationships may derive

from frictions in observing or acting on productivity in the labor marketplace (Acemoglu and Pischke 1998),

where professions may provide a function of certifying membership and organizing labor. Professional

membership may sometimes be exclusive, as in the case of physicians, but it may nonetheless be a highly

imperfect proxy for productivity. When organizations cannot observe or act on individual productivity, they

may need to rely on second-best policies that adhere to professional lines to improve efficiency. However, if

individual productivity could be better ascertained and utilized, there may be scope for even larger efficiency

gains for workplaces moving beyond professional class.
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Figure 1: First Stage
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Notes: This figure represents a graphical illustration of the first-stage estimation. Panel A shows a binned scatter
plot of the number of physicians on duty versus the number of NPs on duty. Panel B shows a binned scatter plot
of whether the case is treated by an NP versus the number of NPs on duty. To construct these binned scatter
plots, we first residualize both the y-axis and x-axis variables with respect to the baseline control vector (i.e.,
ED-by-year, ED-by-month, ED-by-day-of-the-week, and ED-by-hour-of-the-day indicators) and then add means
back for ease of interpretation. The coefficients report the estimated slope of the best-fit line between the y-axis and
x-axis variables (conditional on the baseline control vector), with standard errors clustered by provider reported in
parentheses.

41



Figure 2: Balance in Patient Characteristics
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Notes: This figure shows balance in patient characteristics across the number of NPs on duty, conditional on the
baseline controls (i.e., ED-by-year, ED-by-month, ED-by-day-of-the-week, and ED-by-hour-of-the-day indicators).
To construct these binned scatter plots, we first residualize both the y-axis and x-axis variables with respect to the
baseline controls and then add means back for ease of interpretation. The middle number on the y-axis of each
panel reports the mean of the sample; the top and bottom numbers report the mean plus and minus a half standard
deviation, respectively (except for Panel C which caps the top number at 100 since the mean plus a half standard
deviation is beyond the maximum possible). The coefficients report the estimated slope of the best-fit line between
the y-axis and x-axis variables (conditional on the baseline controls), with standard errors clustered by provider
reported in parentheses. Each panel also reports p-values for the coefficient estimates. For readability of the
coefficients, Panels B, C, and D scale up the dependent variable by 100. Predicted 30-day mortality is generated
from a linear regression of actual 30-day mortality on patient characteristics X𝑖 in Equations (1) and (2), including
demographics, comorbidities, prior health care use, vital signs, and three-digit primary diagnosis indicators.
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Figure 3: Reduced-Form and Balance
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Notes: This figure shows binned scatter plots of patient actual and predicted outcomes on the y-axis versus the
number of NPs on duty on the x-axis, controlling for the baseline control vector (i.e., ED-by-year, ED-by-month,
ED-by-day-of-the-week, and ED-by-hour-of-the-day indicators). Panel A reports results for log length of stay;
Panel B reports results for log cost of the ED visit. The solid circles and lines represent patient actual outcomes.
The hollow circles and dashed lines represent patient predicted outcomes generated based on patient characteristics
X𝑖 included in Equations (1) and (2), including patient demographics, comorbidities, prior health care use, vital
signs, and three-digit primary diagnosis indicators. The reduced-form coefficients are estimated using Equation
(2), with patient actual outcomes as the dependent variable; the balance-test coefficients are estimated by regressing
patient predicted outcomes on the number of NPs on duty, conditional on the baseline control vector. Standard
errors clustered by provider are reported in parentheses.
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Figure 4: Stability of OLS and IV Estimates
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Notes: This figure shows the robustness of our OLS and IV estimates to the inclusion of different sets of patient
controls. We divide patient observable characteristics into eight subsets: (i) five-year age-bin indicators; (ii) marital
status; (iii) gender; (iv) race indicators; (v) indicators for 31 Elixhauser comorbidities; (vi) vital signs; (vii) prior
health care use; and (viii) indicators for three-digit patient primary diagnosis of the visit. We then run separate
regressions that control for each of the 28 = 256 different combinations of patient covariates for each outcome.
Each 𝑛 on the 𝑥-axis indicates the number of covariate subsets included. For each 𝑛, we plot the maximum, mean,
and minimum of the estimated coefficients for the effect of NPs using all possible combinations with 𝑛 (out of
eight) subsets of patient covariates. The connected triangles and circles show the mean of the estimated coefficients
from OLS and IV regressions, respectively. The dashed lines connect the maximum and minimum of the estimated
IV coefficients. The dotted lines connect the maximum and minimum of the estimated OLS coefficients. The
coefficients at the bottom of each panel show the IV and OLS estimates with the full set of patient controls, with
standard errors clustered by provider reported in parentheses. Panel A reports results for log length of stay. Panel
B reports results for log cost of the ED visit.
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Figure 5: Heterogeneous Effects by Case Complexity and Severity
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Notes: This figure shows heterogeneous effects of NPs by case complexity and severity. Panels A, C, and E
divide cases into quartiles by their total number of Elixhauser comorbidities, with higher quartiles indicating more
complex cases. Panels B, D, and F divide cases by whether condition severity measured by 30-day mortality of
cases with the same three-digit primary diagnosis is equal to or above the 95th percentile of the sample. The
solid and dashed lines show complier potential outcomes if they were treated by NPs and physicians, respectively.
We estimate complier potential outcomes under NPs by the IV regression in Equation (4). We estimate complier
potential outcomes under physicians by an IV regression similar to Equation (4) but with a dependent variable of
𝑦𝑖 × (NP𝑖 − 1), i.e., the interaction between patient outcome and the indicator for being treated by an NP minus
one. Panels A-B, C-D, and E-F report results for log length of stay, log ED cost, and inpatient admission in the ED
visit, respectively.
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Figure 6: Balance in Physician Characteristics
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Notes: These panels are graphical representations of the balance-test regression at the ED-day level of physician average characteristics (weighted by the
number of cases treated by each physician) on the number of NPs on duty, conditional on ED-by-year, ED-by-month, and ED-by-day-of-the-week indicators.
Coefficients from the regressions are reported in each panel, along with standard errors (shown in parentheses) and p-values. To construct the binned scatter
plots, we first residualize both the y-axis variable (average characteristics of physicians on duty) and the x-axis variable (the number of NPs on duty) with respect
to ED-by-year, ED-by-month, and ED-by-day-of-the-week indicators, and then add means back to aid in interpretation. The middle number on the y-axis of
each panel reports the mean of the sample; the top and bottom numbers report the mean plus and minus a half standard deviation, respectively. The physician
characteristics reported in Panels A-E are, respectively, age, gender, value-added, practice style in terms of patient log length of stay, and practice style in terms
of patient log cost of the ED visit. Construction details of value-added and practice style are described in Appendix A.3.
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Figure 7: Balance in NP Characteristics
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Notes: These panels are graphical representations of the balance-test regression at the ED-day level of NP average characteristics (weighted by the number
of cases treated by each NP) on the number of NPs on duty, conditional on ED-by-year, ED-by-month, and ED-by-day-of-the-week indicators. Coefficients
from the regressions are reported in each panel, along with standard errors (shown in parentheses) and p-values. To construct the binned scatter plots, we first
residualize both the y-axis variable (average characteristics of NPs on duty) and the x-axis variable (the number of NPs on duty) with respect to ED-by-year,
ED-by-month, and ED-by-day-of-the-week indicators, and then add means back to aid in interpretation. The middle number on the y-axis of each panel reports
the mean of the sample; the top and bottom numbers report the mean plus and minus a half standard deviation, respectively. The NP characteristics reported in
Panels A-E are, respectively, age, gender, value-added, practice style in terms of patient log length of stay, and practice style in terms of patient log cost of the
ED visit. Construction details of value-added and practice style are described in Appendix A.3.
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Figure 8: Distribution of Provider Productivity, Patient Assignments, and Wages

A. Effects on Medical Spending
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Notes: Panel A reports the deconvolved distributions of provider effects on log total spending per case, with the
provider effects on log total spending per case converted to total annual spending on the x-axis. See Appendix A.5.3
for details of the estimation. The solid and dashed lines show the deconvolved distributions for NPs and physicians,
respectively. Panel B plots histograms of average predicted 30-day mortality of patients assigned to each provider.
Predicted 30-day mortality is winsorized at the value of 5 percentage points. Panel C plots histograms of provider
wages observed in the VHA data (inflation-adjusted to the year 2020). Wages are winsorized at the value of
$450,000. In Panels B and C, the white and gray bins show results for NPs and physicians, respectively.
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Table 1: Characteristics of Baseline Sample

All
Treated by
NP

Treated by
physician p-value

Age 62.05 60.72 62.46 0.00
[15.80] [15.87] [15.75]

Married 0.424 0.424 0.424 0.80
[0.494] [0.494] [0.494]

Male 0.905 0.904 0.906 0.00
[0.293] [0.295] [0.292]

Black 0.270 0.271 0.270 0.12
[0.444] [0.445] [0.444]

White 0.708 0.705 0.709 0.00
[0.455] [0.456] [0.454]

Asian/Pacific Islander 0.021 0.021 0.020 0.04
[0.142] [0.144] [0.142]

Outpatient visits in prior year 6.242 5.658 6.423 0.00
[7.284] [6.361] [7.538]

Inpatient stays in prior year 0.612 0.431 0.668 0.00
[1.543] [1.249] [1.620]

Elixhauser comorbidity count 3.599 3.190 3.726 0.00
[3.018] [2.772] [3.079]

Length of stay (minutes) 162.09 119.53 175.29 0.00
[172.48] [131.28] [181.38]

ED cost ($, inflation-adjusted to 2020) 939 813 978 0.00
[1,331] [1,010] [1,413]

Inpatient admission (%) 16.62 7.87 19.34 0.00
[37.23] [26.92] [39.50]

30-day preventable hospitalization (%) 1.23 0.75 1.39 0.00
[11.04] [8.60] [11.69]

30-day mortality (%) 1.25 0.63 1.44 0.00
[11.10] [7.91] [11.91]

Observations 1,118,836 264,789 854,047

Notes: Column 1 shows average characteristics of all cases in our analysis sample. Columns 2 and 3 show average
characteristics of cases treated by NPs and physicians in the sample, respectively. Standard deviations are reported in
brackets; p-values of t-tests for the equivalence of means between cases treated by NPs and by physicians are shown in
the last column.
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Table 2: Effect of NPs on Length of Stay and ED Cost

Log length of stay Log ED cost

OLS
Reduced
form IV OLS

Reduced
form IV

(1) (2) (3) (4) (5) (6)
NP assignment -0.168 0.110 -0.101 0.070

(0.034) (0.045) (0.023) (0.030)
Number of NPs 0.020 0.013

(0.008) (0.005)

Full controls Yes Yes Yes Yes Yes Yes
Mean dep. var. 4.608 4.608 4.608 6.483 6.483 6.483
S.D. dep. var. 1.161 1.161 1.161 0.878 0.878 0.878
Observations 1,110,798 1,110,798 1,110,798 1,108,961 1,108,961 1,108,961

Notes: This table shows OLS, reduced-form, and IV estimates of the effect of NPs on patient log length of stay and log
cost of the ED visit. Columns 1 and 4 report the OLS estimates; Columns 2 and 5 report the reduced-form estimates;
Columns 3 and 6 report the IV estimates. Sample sizes are smaller than that reported in Column 1 of Table 1 due to
missing outcomes for a small number of cases. The set of full controls includes ED-by-year, ED-by-month, ED-by-day-
of-the-week, and ED-by-hour-of-the-day indicators and patient characteristics that include five-year age-bin indicators,
marital status, gender, race indicators (white, Black, and Asian/Pacific Islanders, with other racial categories omitted as
the reference group), indicators for 31 Elixhauser comorbidities, prior health care use (the number of outpatient visits
and the number of inpatient stays in VHA facilities in the prior 365 days), vital signs, and indicators for three-digit
ICD-10 code of patient primary diagnosis of the visit. Standard errors clustered by provider are shown in parentheses.
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Table 3: Effect of NPs on Additional Outcomes

Dependent variable

Admission
30-day
mortality

30-day
prevent. hosp.

(1) (2) (3)
Reduced form 0.019 -0.021 0.047

(0.108) (0.021) (0.021)
IV estimate 0.103 -0.116 0.252

(0.585) (0.115) (0.120)

Full controls Yes Yes Yes
Mean dep. var. 16.625 1.247 1.234
S.D. dep. var. 37.230 11.099 11.041
Observations 1,118,836 1,118,836 1,118,836

Notes: This table shows reduced-form and IV estimates of the effect of NPs on various outcomes. Inpatient admission
is an indicator for whether the patient is admitted to the hospital in the ED visit; 30-day mortality indicates whether
the patient dies within 30 days of the ED visit; 30-day preventable hospitalization is defined as having any preventable
hospitalization in the 30 days after the ED visit. All estimations include the full set of controls described in the notes
to Table 2. Standard errors clustered by provider are shown in parentheses.
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Table 4: Heterogeneous Effects by Provider Experience (Standardized)

Dependent variable

Log length
of stay

Log ED
cost Admission

30-day
mortality

30-day
prevent.
hosp.

(1) (2) (3) (4) (5)
Panel A: Provider specific experience
NP assignment 0.101 0.072 0.092 -0.115 0.255

(0.044) (0.030) (0.579) (0.116) (0.121)
NP assignment × experience -0.058 -0.042 -0.504 -0.001 0.016

(0.025) (0.019) (0.331) (0.041) (0.030)
Experience -0.001 0.006 0.238 -0.001 -0.016

(0.006) (0.010) (0.314) (0.018) (0.014)

Panel B: Provider general experience
NP assignment 0.086 0.062 0.089 -0.100 0.255

(0.043) (0.029) (0.608) (0.116) (0.121)
NP assignment × experience -0.103 -0.035 0.340 0.088 0.043

(0.056) (0.033) (1.048) (0.093) (0.068)
Experience -0.036 -0.013 -0.719 -0.012 -0.048

(0.015) (0.011) (0.221) (0.023) (0.025)

Full controls Yes Yes Yes Yes Yes
Mean dep. var. 4.608 6.483 16.625 1.247 1.234
S.D. dep. var. 1.161 0.878 37.230 11.099 11.041
Observations 1,110,798 1,108,961 1,118,836 1,118,836 1,118,836

Notes: Panel A shows heterogeneous effects of NPs by provider-specific experience in the case’s condition, measured
as the number of cases with the same three-digit primary diagnosis as the current case the provider has treated since
the start of the study period to the day before the current case’s visit. Panel B shows heterogeneous effects of NPs by
provider general experience, measured as the number of cases (regardless of their diagnoses) the provider has treated
since the start of the study period to the day before the current case’s visit. For ease of interpretation, both specific
and general measures of experience are standardized to have a mean of zero and a standard deviation of one for NPs
and physicians separately. The outcome variables in Columns 1-5 are, respectively, log length of stay, log cost of the
ED visit, hospital admission in the ED visit, 30-day mortality, and 30-day preventable hospitalization. All estimations
include the full set of controls described in the notes to Table 2. Standard errors clustered by provider are shown in
parentheses.
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Table 5: Clinical Decision-Making

Dependent variable
Consult CT X-ray Opioid Antibiotic
(1) (2) (3) (4) (5)

NP assignment 0.026 0.012 0.020 -0.018 0.040
(0.009) (0.007) (0.009) (0.006) (0.022)

Full controls Yes Yes Yes Yes Yes
Mean dep. var. 0.226 0.145 0.291 0.088 0.639
S.D. dep. var. 0.418 0.352 0.454 0.283 0.480
Observations 1,118,836 1,118,836 1,118,836 1,118,836 123,395

Notes: This table shows IV estimates of the effect of NPs on various measures of clinical decision-making. The
outcomes in Columns 1-5 are whether the patient receives in the ED visit formal consults, CT scans, X-rays, opioid
prescriptions, and antibiotic prescriptions, respectively. Since antibiotics generally only apply to patients with infec-
tions, Column 5 restricts the sample to patients with respiratory or genitourinary system infections, two common types
of infections. All estimations include the full set of controls described in the notes to Table 2. Standard errors clustered
by provider are shown in parentheses.
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Table 6: Heterogeneous Effects by Patient Characteristics

Dependent variable

Log length
of stay

Log ED
cost Admission

30-day
mortality

30-day
prevent.
hosp.

(1) (2) (3) (4) (5)
Panel A: Elixhauser comorbidity count
1st quartile 0.042 0.028 -0.077 -0.147 0.555

(0.045) (0.032) (0.636) (0.120) (0.119)
2nd quartile 0.063 0.071 0.291 -0.041 0.438

(0.044) (0.030) (0.642) (0.126) (0.132)
3rd quartile 0.117 0.082 -0.245 -0.099 0.250

(0.048) (0.031) (0.761) (0.178) (0.186)
4th quartile 0.281 0.122 0.435 -0.203 -0.513

(0.066) (0.041) (1.476) (0.340) (0.347)

Panel B: Diagnosis predicted 30-day mortality
< 95th percentile 0.080 0.064 -0.768 -0.077 0.361

(0.044) (0.029) (0.573) (0.110) (0.118)
≥ 95th percentile 0.988 0.247 26.140 -1.253 -2.989

(0.239) (0.115) (7.829) (2.127) (1.492)

Panel C: Diagnosis category
Stroke 1.863 0.651 72.609 3.373 -0.062

(0.677) (0.311) (31.758) (6.038) (2.379)
AMI 0.806 1.780 123.007 -11.517 -3.219

(0.562) (0.655) (62.695) (9.684) (7.593)
Sepsis 1.480 0.095 44.880 24.533 11.117

(0.609) (0.329) (24.114) (15.169) (7.961)
Heart failure 1.125 0.088 20.263 1.262 -11.469

(0.292) (0.177) (8.921) (3.011) (5.265)
Other 0.097 0.067 -0.343 -0.147 0.332

(0.045) (0.029) (0.578) (0.112) (0.122)

Full controls Yes Yes Yes Yes Yes
Mean dep. var. 4.608 6.483 16.625 1.247 1.234
S.D. dep. var. 1.161 0.878 37.230 11.099 11.041
Observations 1,110,798 1,108,961 1,118,836 1,118,836 1,118,836

Notes: This table shows heterogeneous effects of NPs by patient characteristics (details in Section 4.3.3). Panel A
divides cases into quartiles by their total number of Elixhauser comorbidities, with higher quartiles indicating more
complex cases. Panel B divides cases by whether condition severity measured by 30-day mortality of cases with the
same three-digit primary diagnosis is equal to or above the 95th percentile of the sample. Panel C divides cases by
their condition. The outcomes in Columns 1-5 are, respectively, log length of stay, log cost of the ED visit, hospital
admission in the ED visit, 30-day mortality, and 30-day preventable hospitalization. All estimations include the full
set of controls described in the notes to Table 2. Standard errors clustered by provider are shown in parentheses.
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Online Appendix

A.1 Diagnosis Coding: NPs versus Physicians

In this appendix, we explore whether NPs and physicians are significantly different in reporting three-digit
ICD-10 diagnoses. All diagnoses in our data are coded in ICD-10 within our study period from January
2017 to January 2020. As OLS estimation is likely to be confounded by patient selection, we leverage
IV regressions that instrument for whether a case is treated by an NP using the number of NPs on duty.
Specifically, we first create indicators for each of the 836 different three-digit ICD-10 primary diagnoses
in our data (including one for the missing category). Then for each diagnosis indicator, we run a separate
2SLS regression as follows to estimate whether NPs and physicians are significantly different in reporting
the diagnosis:

𝑦𝑖 = 𝛿NP𝑖 + T𝑖𝜂 + 𝜀𝑖 , (A.1)

NP𝑖 = 𝜆𝑍𝑖 + T𝑖𝜁 + 𝑣𝑖 , (A.2)

where, similar to Equations (1) and (2), NP𝑖 indicates whether case 𝑖 is treated by an NP and 𝑍𝑖 denotes the
instrument (i.e., the number of NPs on duty between 8 a.m. and 6 p.m., our analysis time window, at the ED
on the day case 𝑖 visits). T𝑖 are ED-by-year, ED-by-month, ED-by-day-of-the-week, and ED-by-hour-of-the-
day indicators. The coefficient of interest is 𝛿. As with the main specification, we cluster standard errors by
provider.
Panel A of Appendix Figure A.14 plots the distribution of t-statistics for the estimated 𝛿 coefficients

from the 836 separate regressions that use each three-digit diagnosis indicator as the outcome variable. The
share of t-statistics indicating a p-value below or equal to 0.05 is only 0.07, close to the null hypothesis
of no differential three-digit diagnosis coding between NPs and physicians (i.e., share 0.05 of t-statistics
indicating a p-value below or equal to 0.05). Both the Shapiro-Wilk normality test and the test for normality
on the basis of skewness and kurtosis suggest that we cannot reject the null hypothesis that the t-statistics
are normally distributed, at least at the 10% level. Panel B of Appendix Figure A.14 further plots t-statistics
against the prevalence of the three-digit diagnosis among physicians, showing that NPs are not more likely
to report diagnoses that are more (or less) common.1

The pattern of similar three-digit diagnosis coding between NPs and physicians could arise for the
relatively straightforward cases that are compliers. Additional consults and diagnostics (Section 4.3.2) may
also aid NPs to reach the same three-digit diagnosis as physicians. Perhaps also worth noting, VHA ED
providers’ reimbursements are independent of patient diagnoses, and NPs and physicians are unlikely to have
differential financial incentives in diagnosis coding.

1. We measure the prevalence of the diagnosis as the share of cases with the diagnosis among cases treated by physicians on days
without any NP, to restrict potential influences of patient sorting between NPs and physicians.
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A.2 Characterizing Compliers and Never-Takers

This appendix describes the estimation of characteristics of compliers and never-takers. Following the
approach developed by Abadie (2003), we characterize compliers by 𝛿 estimated through the 2SLS model
specified in Equations (A.1) and (A.2), replacing the outcome variable 𝑦𝑖 with 𝑥𝑖 × NP𝑖 , i.e., the interaction
between each patient characteristic 𝑥𝑖 and the indicator for being treated by an NP. Results are discussed in
Section 4.5 and shown in Columns 2-3 of Appendix Table A.11.
To estimate the characteristics of never-takers, we follow a method by Dahl, Kostøl, and Mogstad (2014).

We first collapse the data to the ED-day level. We then residualize the share of cases treated by NPs by
ED-by-year, ED-by-month, and ED-by-day-of-the-week indicators. We define never-takers as cases treated
by physicians in ED-day cells with the residual share of cases treated by NPs at least as high as the 90th
percentile of ED-days with at least one case treated by NPs. There are no always-takers in our setting since
patients cannot be assigned to NPs on days without any NPs on duty.
Column 4 of Appendix Table A.11 reports the average characteristics of never-takers. For each charac-

teristic, we compute the mean of never-takers as well as the ratio between the mean and the overall sample
mean. We estimate standard errors for the means by bootstrap, blocking observations by provider with 500
replications. In line with the notion that NPs treat healthier cases than physicians do, Appendix Table A.11
shows that never-takers are the riskiest, followed by the overall sample, and finally, compliers. For example,
the total number of Elixhauser comorbidities among never-takers, the overall sample, and compliers are,
respectively, 4.0, 3.6, and 3.3; the average predicted 30-day mortality among these three types of cases are,
respectively, 1.7, 1.2, and 0.9 percentage points.

A.3 Provider Value-Added and Practice-Style Measures

This appendix describes our construction of measures of provider value-added and practice styles, used
to examine the exclusion restriction in Section 4.6. We consider physician value-added as a measure of
risk-adjusted mortality outcomes and form these measures using leave-out data. Specifically, for physician
𝑝 on day 𝑑, we measure

𝐴𝑝,𝑑 =

∑
𝑖∈I𝑝 1(𝑑 (𝑖) ≠ 𝑑, 𝑍𝑖 = 0)𝑌𝑖∑
𝑖∈I𝑝 1(𝑑 (𝑖) ≠ 𝑑, 𝑍𝑖 = 0)

, (A.3)

where 𝑌𝑖 is risk-adjusted 30-day mortality, or the difference between patient actual and predicted 30-day
mortality. To deal with possible finite-sample bias, we leave out cases visiting on day 𝑑.2 We also leave out
cases visiting on days with any NPs on duty, to mitigate the concern on patient sorting between NPs and
physicians.
Still, since cases are not experimentally assigned among physicians, 𝐴𝑝,𝑑 may reflect both a physician’s

effect on patient outcomes and systematic patient-physician sorting under imperfect risk adjustment. As one
way to assess the degree of such potential biases, we investigate the robustness of physician value-added

2. Specifically, there may be ED-day level shocks that are correlated with both the number of NPs on duty and the set of patients
treated by a specific physician; these shocks can be influential in estimations with a finite sample.
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estimates to patient predicted mortality constructed based on different risk adjusters, analogous to the test
of student sorting biases in the teacher value-added literature (e.g., Chetty, Friedman, and Rockoff 2014). If
patient sorting is important, the estimated physician value-added will change meaningfully with the addition
of risk adjusters. Otherwise, our estimates should remain stable. Appendix Figure A.15 shows that physician
value-added estimates are stable regardless of patient risk adjusters. We compare physician value-added
measures constructed using (i) themost parsimonious set of risk adjusters that includes only age-bin and three-
digit primary diagnosis indicators, (ii) the less parsimonious set that adds non-age demographics (gender,
race, and marital status), and (iii) the set that further adds dummies for 31 Elixhauser comorbidities, with
the baseline physician value-added constructed using the full set of patient covariates (i.e., demographics,
Elixhauser comorbidities, prior health care use, vital signs, and three-digit diagnosis indicators). The
correlations between measures (i)–(iii) and the baseline measure are all above 0.99. Note that these risk
adjusters are important predictors of patient 30-day mortality: They alone explain 7 percent of the variation
in 30-day mortality, with an F-statistic of 88 for joint significance.
We consider physician practice styles as measures of physician-chosen inputs to care. Specifically, we

define practice style measures by Equation (A.3), but instead set 𝑌𝑖 as the difference between patient actual
and predicted log length of stay or log cost of the ED visit. As with value-added, we show the robustness of
practice style estimates to different patient risk adjusters in Appendix Figure A.15.
We construct similar measures of value-added and practice style for NPs. As with physicians, we show

the robustness of these estimates to different patient risk adjusters. Appendix Figure A.15 shows that NP
valued-added and practice-style estimates are highly stable among those constructed using (i) the most
parsimonious set of risk adjusters that includes only age-bin and three-digit primary diagnosis indicators,
(ii) the less parsimonious set that adds non-age demographics (gender, race, and marital status), (iii) the set
that additionally includes dummies for 31 Elixhauser comorbidities, and (iv) the full set that further adds
detailed controls for prior health care use and vital signs upon arrival at the ED.

A.4 Augmenting Provider Supply with NPs

In this appendix, we ask, holding fixed the number of cases arriving and the number of physicians on duty,
how additional NPs may affect patient wait time and downstream outcomes:

𝑦𝑖 =

𝑁∑︁
𝑛=0

𝛿𝑛 × 1(𝑍𝑖 = 𝑛) + 𝑁𝑐
𝑖 𝛾1 + 𝑁

𝑝

𝑖
𝛾2 + T𝑖𝜂 + X𝑖𝛽 + 𝜀𝑖 . (A.4)

1(𝑍𝑖 = 𝑛) is an indicator for 𝑛 ∈ {0, . . . , 4} NPs being on duty at the ED on the day case 𝑖 visits.3 𝑁𝑐
𝑖
and

𝑁
𝑝

𝑖
are, respectively, the number of cases arriving and the number of physicians on duty at the ED on the

day case 𝑖 visits. We apply Equation (A.4) to the following outcomes: (i) wait time (the time between arrival
at the ED and assignment to a provider); (ii) length of stay (the time between assignment to a provider and
discharge from the ED); and (iii) log total spending of the ED visit, which is the sum of the cost of ED care,

3. The maximum 𝑛 is 6, but only a small share (0.8 percent) of ED-days has 5 or 6 NPs on duty (Appendix Figure A.1). We thus
group 𝑛 = 5 or 6 with 𝑛 = 4.
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hospital admission in the ED visit, and 30-day preventable hospitalization.
Appendix Figure A.16 presents the estimated trade-off based on Equation (A.4). Panel A shows the

trade-off between wait time and length of stay. Each dot plots a pair of 𝛿𝑛 with the estimated 𝛿𝑛 for wait
time on the y-axis and the estimated 𝛿𝑛 for length of stay on the x-axis. Panel B similarly plots the trade-off
between wait time and total spending per case (we convert the estimated 𝛿𝑛 for log total spending to spending
per case).
As implied in Figure A.16, decreasing wait time by 30 minutes per case by hiring additional NPs

increases length of stay by 10 minutes per case (Panel A) and increases total medical spending by $436 per
case, not including the cost of additional NP wages (Panel B; inflation-adjusted to 2020 dollars).4 Including
the wage costs of additional NPs brings this figure to about $480 per case.5 That is, roughly nine-tenths of
the additional spending to reduce wait time by hiring NPs come from the lower productivity of NPs, while
only one-tenth comes from additional NP wage costs.
However, the cost of reducing wait time by hiring additional NPs declines with case complexity. As

implied in Appendix Figure A.17, among the lowest complexity quartile cases, reducing wait time by 30
minutes per case by hiring additional NPs increases total medical spending by about $280 per case (not
including the wage cost of additional NPs). Though reducing wait time by 30 minutes increases length of
stay by a slightly higher magnitude for the lowest complexity quartile cases than for the average case (12
versus 10 minutes per case), the difference is not statistically significant.

A.5 Distribution of Provider Effects on Total Spending

In this appendix, we estimate the distribution of provider effects on log total spending associated with the
ED visit. We start by identifying provider effects using a just-identified IV model. Next, we estimate the
variance of provider effects, using a split-sample approach to account for the bias due to sampling error
in the estimated provider effects. We then apply an Empirical Bayes deconvolution method, adapted by
Kline, Rose, and Walters (2022) from Efron (2016), to recover the underlying population distribution of
provider effects. We present the receiver operating characteristic (ROC) curves of provider productivity,
case assignments, and wage payments as characteristics that may distinguish NPs and physicians. Finally, we
assess the extent to which provider productivity relates to cases assigned and wages paid across individual
providers.

A.5.1 Estimating Provider Effects

We generate a measure of total spending associated with each ED visit, which is the sum of the three
main components of costs examined in Section 4: ED costs, hospital admission, and 30-day preventable
hospitalization (we multiply the latter two components by the average cost of a hospital stay, $19,220).

4. Figure A.16 shows that a 33-minute decline in wait time increases length of stay by 11 minutes and total spending by $472
per case (comparing the first and last dots in each panel). We rescale the tradeoff to a 30-minute decline in wait time for ease of
interpretation.
5. For this wage cost estimation, we divide the yearly NP wage by the average number of cases per ED-year, and then multiply

this figure by the number of additional NPs required.
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We then estimate provider effects on total spending associated with the ED visit. To mitigate the effect
of extreme values, we take the log of the medical spending. To account for the possibility that the treating
provider is endogenous, we instrument for indicators for treating providers with indicators for on-duty
providers in the ED-day cell of the patient’s visit. The empirical specification is a just-identified 2SLS model
as follows:

𝑦𝑖 =
∑︁
𝑗

𝜃 𝑗1{ 𝑗 (𝑖)= 𝑗 } + T𝑖𝜂 + X𝑖𝛽 + 𝜀𝑖 , (A.5)

1{ 𝑗 (𝑖)= 𝑗 } =
∑︁
𝑗

𝜆 𝑗1{ 𝑗∈I𝑖 } + T𝑖𝜁 + X𝑖𝛾 + 𝑣𝑖 , (A.6)

where 1{ 𝑗 (𝑖)= 𝑗 } is an indicator for whether case 𝑖 is treated by provider 𝑗 , and 1{ 𝑗∈I𝑖 } is an indicator for
whether provider 𝑗 is on duty in the ED-day cell of case 𝑖’s visit with I𝑖 representing the set of providers on
duty in the ED-day cell. The coefficients of interest are 𝜃 𝑗 , representing provider effects. Since 𝜃 𝑗 is only
identified relative to one another for providers within the same ED, we make the natural normalization that
the case-weighted mean of 𝜃 𝑗 is zero within each ED, using linear constraints in the 2SLS estimation to yield
valid standard errors.6

The F-statistics for the joint significance of on-duty provider indicators in the first-stage regressions,
i.e., Equation (A.6), have shares of 0.99 and 0.68 above 10 and 100, respectively, suggesting that provider
availability is strongly predictive of the treating provider.7 Appendix Figure A.18 shows that patient
characteristics are well balanced across the average characteristics (age, gender, and practice style) of on-
duty providers, conditional on the baseline controls T𝑖 .8 In addition, the F-statistics for the joint significance
of on-duty provider indicators from regressions of patient predicted log length of stay and predicted log cost
of the ED visit on on-duty provider indicators conditioning on T𝑖 , are 2.4 and 2.1, respectively. These are
much smaller than the corresponding F-statistics using the actual log length of stay and log cost of the ED
visit as the outcome—which are 10.3 and 9.9, respectively. These results make plausible the assumption
that the set of on-duty providers is conditionally independent of the set of patients arriving, supporting the
validity of our instruments.

A.5.2 Estimating Variance of Provider Effects

We estimate the variance of provider effects, within each professional class, on log total spending associated
with the ED visit. The estimated provider effects 𝜃 𝑗 from Appendix A.5.1 yield a case-weighted variance

6. We also normalize provider effects to have a case-weighted mean of 0 within ED-provider types. We find the results are very
similar: For the (split-sample) variance of provider effects reported below in Appendix A.5.2, the standard deviation of NP effects
with normalization by ED and by ED-provider type are 0.22 and 0.19, respectively; the standard deviation of physician effects
remains stable at 0.21. For the probability that a randomly selected NP incurs lower spending than a randomly selected physician
(Appendix A.5.3), the number changes slightly from 38 percent to 35 percent.
7. Since 1{ 𝑗 (𝑖)= 𝑗 } is always zero for patients outside of the ED a provider practices, we report F-statistics from the first stage

regression in Equation (A.6) using observations in each ED separately.
8. We compute case-weighted average characteristics of on-duty providers, with the index case left out. For practice style

examined in this balance test, to deal with the concern on patient sorting between NPs and physicians, we use provider effects on
patient log length of stay and log cost of the visit estimated by the 2SLS model in Equations (A.5) and (A.6).
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of 0.054 for NPs, and 0.064 for physicians (see Appendix Table A.21).9 However, these estimates are
upward biased, due to sampling error resulting from the fact that provider effects are estimated on a finite
sample. To account for such biases, we leverage a split-sample approach, resembling that employed in earlier
studies (e.g., Silver 2021). Specifically, we randomly split a provider’s patients within each day into two
approximately equal-sized partitions. We then estimate the 2SLS model in Equations (A.5) and (A.6) using
each partition separately, yielding two fixed effect estimates for each provider 𝜃 𝑗 ,𝑎 and 𝜃 𝑗 ,𝑏. Suppressing the
𝑗 subscript for simplicity, we have

𝜃𝑞 = 𝜃 + 𝑒𝑞, 𝑞 ∈ {𝑎, 𝑏},

where 𝑞 indicates partitions, and 𝑒𝑞 is partition-specific sampling error, such that Cov(𝜃, 𝑒𝑏) = Cov(𝑒𝑎, 𝜃) =
0. The random split of patients for each provider-day makes plausible the assumption that 𝑒𝑎 and 𝑒𝑏 are
uncorrelated, i.e., Cov(𝑒𝑎, 𝑒𝑏) = 0. We therefore can compute the variance of provider effects as the
covariance of 𝜃𝑎 and 𝜃𝑏:

Cov(𝜃𝑎, 𝜃𝑏) = Cov(𝜃 + 𝑒𝑎, 𝜃 + 𝑒𝑏)

= Cov(𝜃, 𝜃) + Cov(𝜃, 𝑒𝑏) + Cov(𝑒𝑎, 𝜃) + Cov(𝑒𝑎, 𝑒𝑏)

= Var(𝜃).

We perform this calculation for NPs and physicians separately.
Appendix Table A.21 reports the case-weighted variance of provider effects from the split-sample

approach. The variance for physicians is estimated to be 0.045, about 70 percent of the calculated variance
without accounting for the bias due to sampling error. The variance from the split-sample approach suggests
that on average, a one-standard-deviation costlier physician raises medical spending by 21 percent per case.
For NPs, the split-sample variance estimate is 0.048, suggesting that a one-standard-deviation costlier NP
raises spending by 22 percent per case.

A.5.3 The Population Distribution of Provider Effects

We now estimate the distribution of provider effects by applying a non-parametric empirical Bayes decon-
volution approach adapted by Kline, Rose, and Walters (2022) from Efron (2016). This approach extracts a
flexible estimate of the distribution of population provider effects using provider effects 𝜃 𝑗 and their standard
errors 𝑠 𝑗 estimated in Equations (A.5) and (A.6). Assuming provider 𝑧-scores 𝑧 𝑗 = 𝜃 𝑗/𝑠 𝑗 are distributed as

𝑧 𝑗 |𝑐 𝑗 ∼ N(𝑐 𝑗 , 1), 𝑐 𝑗 ∼ 𝐺𝑐,

where 𝑐 𝑗 = 𝜃 𝑗/𝑠 𝑗 (i.e., the population analogue of 𝑧 𝑗), the procedure first applies the Efron (2016) decon-
volution procedure to yield a distribution of provider 𝑧-scores 𝐺̂𝑐 with density function 𝑔̂𝑐 (·). The Efron
(2016) procedure estimates 𝐺̂𝑐 by maximum likelihood of parameters that represent coefficients on a set of
splines, with a regularization parameter to tamp down excursions from a flat prior.

9. Since provider effects are normalized to have a mean of 0 in each ED, the variance is interpretable as the within-ED variance
of provider effects.
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Next, assuming that 𝑠 𝑗 is independent of 𝑐 𝑗 , we can derive an estimate of the distribution of provider
effects 𝐹̂, with density function 𝑓 (·) for each value 𝜃:

𝑓 (𝜃) = 1
𝐽

𝐽∑︁
𝑗=1

1
𝑠 𝑗
𝑔̂𝑐 (𝜃/𝑠 𝑗). (A.7)

Following Kline, Rose, andWalters (2022), we assess the independence of 𝑧 𝑗 and 𝑠 𝑗 by reporting regressions
of 𝑧 𝑗 on 𝑠 𝑗 . To account for possible correlated estimation errors in 𝑧 𝑗 and 𝑠 𝑗 , we also present split-sample
versions of these regressions that randomly split cases for each provider into two approximately equal-sized
partitions and regress z-scores from one partition on standard errors from the other partition. The results are
reported in Appendix Table A.22, which show no significant relationship between 𝑧 𝑗 and 𝑠 𝑗 , suggesting that
independence between 𝑧-scores and standard errors is plausible.
We apply the empirical Bayes deconvolution estimator to NPs and physicians separately.10 As in Kline,

Rose, andWalters (2022), we calibrate the regularization parameter in the maximum likelihood estimation so
that the variance of the deconvolved distribution of provider effects matches the corresponding split-sample
variance estimates reported in Appendix Table A.21. We demean both the physician and NP distributions
to have a mean of zero, and then shift the distribution of NPs to the right by 0.067, where 0.067 is the 2SLS
estimate of the NP effect on the log total spending associated with the ED visit obtained by Equations (1)
and (2). Panel A of Figure 8 displays the deconvolved density of provider effects for NPs and physicians. For
interpretation, we rescale provider effects on log total spending per case on the x-axis into annual spending,
as follows: (i) estimating the empirical distribution of log total spending per case, where the log spending is
residualized with respect to ED and provider fixed effects, with means added back; (ii) for each provider effect
from the deconvolution, adding the provider effect to the spending distribution in (i); (iii) exponentiating the
individual values of the distribution in (ii) and integrating over the distribution to calculate the mean total
spending per case for each provider effect; and (iv) multiplying the mean in (iii) for each provider effect by
the average number of cases a provider sees per year observed in the data.
Finally, using the deconvolved density of NP and physician effects on log total spending per ED case, we

estimate the probability that a randomly drawn NP is costlier than a randomly drawn physician by

Pr
(
𝜃 𝑗 > 𝜃 𝑗′

�� 𝑗 ∈ J𝑁𝑃, 𝑗
′ ∈ J𝑀𝐷

)
=

∫ 1

0
𝐹̂𝑀𝐷 (𝜃)𝑑𝐹̂𝑁𝑃 (𝜃), (A.8)

where 𝐹̂𝑀𝐷 (𝑥) and 𝐹̂𝑁𝑃 (𝑥) are the deconvolved cumulative density functions of physician effects and NP
effects, respectively, and J𝑀𝐷 and J𝑁𝑃 are the sets of providers who are physicians and NPs, respectively.
We find the probability that a randomly drawn NP is costlier than a randomly drawn physician, in terms of the
total spending associated with the ED visit defined above, is 62 percent. Put differently, the probability that
a randomly drawn NP is less costly than a randomly drawn physician is as high as 38 percent. This statistic
remains large when we adjust the deconvolved productivity distributions to account for possible differences
in treatment effects between the overall population and compliers: When assuming the average treatment

10. To restrict the inclusion of noisy 𝛿 𝑗 , our deconvolution excludes providers with less than 150 cases. We set the support of
provider effects to [𝛿5 − 𝑆𝐷, 𝛿95 + 𝑆𝐷], where 𝛿5, 𝛿95, and 𝑆𝐷 are, respectively, the 5th percentile, 95th percentile, and standard
deviation of estimated NP and physician effects for the NP and physician deconvolution, respectively.
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effect is as large as that among the highest complexity quartile patients which is twice the LATE estimate
(0.136 versus 0.067), the probability that NPs are less costly remains large at 28 percent.

A.5.4 ROC Curve Representation

The probability in Equation (A.8) is equivalent to the area under the curve (AUC) of an ROC curve. The
ROC curve displays the performance of an exercise classifying providers by a certain characteristic. In
the case of provider effects on log total spending, the AUC of 0.62 indicates relatively poor performance in
classifying providers as NPs versus physicians depending on their (true) provider effects from their respective
deconvolved distribution.
We construct ROC curves based on respective provider characteristics of productivity, the riskiness of

assigned patients (measured by predicted 30-day mortality), and wages, where we consider physicians as the
“positive” class and NPs as the “negative” class. For each characteristic of productivity, assigned patient
predicted mortality, and wages, a provider with a higher value of the characteristic is more likely to be a
physician (i.e., in the positive class). We define productivity as the additive inverse of the provider effect on
log total spending per ED visit: 𝜇 𝑗 = −𝜃 𝑗 . For a given characteristic 𝑥, we plot the ROC curve with 1− 𝐹̂𝑥

𝑀𝐷

(i.e., the true positive rate) on the y-axis and 1 − 𝐹̂𝑥
𝑁𝑃
(i.e., the false positive rate) on the x-axis, where 𝐹̂𝑥

𝑀𝐷

and 𝐹̂𝑥
𝑁𝑃
are the empirical cumulative distribution functions of 𝑥 among NPs and physicians, respectively.

For productivity, we use the deconvolved distributions previously described in Appendix A.5.3, noting that
𝐹̂
𝜇

𝑀𝐷
= 1− 𝐹̂ 𝜃

𝑀𝐷
and 𝐹̂𝜇

𝑁𝑃
= 1− 𝐹̂ 𝜃

𝑁𝑃
. Since we observe actual patient assignments and provider wages, we

do not estimate the risks of assigned patients and provider wage payments in a regression framework or apply
deconvolution to obtain a population prior distribution. Rather, we simply apply the empirical cumulative
distribution functions of the average predicted 30-day mortality of patients assigned to each provider and
each provider’s annualized full-time-equivalent (“yearly”) wage (inflation-adjusted to 2020 dollars).
We show the ROC curves in Appendix Figure A.12. As mentioned above, the AUC based on productivity

is 0.62. The AUC based on assigned patient risks and wage payments are 0.75 and 0.99, respectively. Taken
together, assigned patient risks are qualitatively more predictive of professional class than productivity is;
yearly wages are extremely predictive of professional class.

A.5.5 Case Assignments and Wage Payments versus Productivity

Separately for NPs and physicians, we assess the extent to which case assignments and wages relate to
individual provider productivity. As before, wemeasure productivity as provider effects on log total spending
per ED visit, with higher provider effects indicating lower productivity. The empirical specification takes
the following form:

𝑦 𝑗 = 𝛼𝜃 𝑗 + L 𝑗𝜋 + 𝜀 𝑗 , (A.9)

where 𝑦 𝑗 is the average risks (measured by predicted 30-day mortality) of cases assigned to provider 𝑗 or
yearly wage of provider 𝑗 (inflation-adjusted to 2020 dollars). L 𝑗 is a vector of ED indicators since provider
effects are only identified relative to one another within EDs. Since provider effects 𝜃 𝑗 is estimated with
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noise, we calculate empirical Bayes posteriors of provider effects as Kline, Rose, and Walters (2022):

𝜃 𝑗 = 𝑠 𝑗 ×
∫
𝑥𝜑(𝑧 𝑗 − 𝑥)𝑔̂𝑐 (𝑥)𝑑𝑥∫
𝜑(𝑧 𝑗 − 𝑥)𝑔̂𝑐 (𝑥)𝑑𝑥

, (A.10)

where 𝜑 denotes the standard normal density.

A.6 ED-Specific NP Effects

In this appendix, we estimate heterogeneity in the ED-specific NP effect. In separate 2SLS regressions for
each ED ℓ, we estimate the NP effect using only cases at that ED:

𝑦𝑖 = 𝛿ℓNP𝑖 + t𝑖𝜂ℓ + X𝑖𝛽ℓ + 𝜀𝑖 ,

NP𝑖 = 𝜆ℓ𝑍𝑖 + t𝑖𝜁ℓ + X𝑖𝛾ℓ + 𝑣𝑖 ,

where t𝑖 is a vector of indicators for patient arrival year, month, day of the week, and hour of the day.
In Appendix Figure A.11, we plot the distribution of 𝛿ℓ for all EDs in our sample. We also plot the

empirical Bayes posterior mean 𝛿ℓ for each ED, calculated as

𝛿ℓ = 𝑤ℓ𝛿ℓ + (1 − 𝑤ℓ)𝛿. (A.11)

The shrinkage factor is given by 𝑤ℓ = 𝜋̂2

𝑠2
ℓ
+ 𝜋̂2 , where 𝜋̂

2 and 𝑠2
ℓ
are, respectively, the variance of the prior

distribution of 𝛿ℓ and the variance of the sampling error for each 𝛿ℓ . We calculate 𝑠2ℓ as the square of the
standard error of 𝛿ℓ . We calculate 𝜋̂2 as the difference between the case-weighted variance of 𝛿ℓ and the
case-weighted mean of 𝑠2

ℓ
. Finally, 𝛿 is the overall IV estimate of the NP effect in Equations (1) and (2),

which is reported in Section 4.
The gray bins in Appendix Figure A.11 plot the empirical Bayes posterior mean 𝛿ℓ for each ED in our

sample.11 The distribution of posteriors is more compressed than that of the raw estimates of ED-specific
effects, reflecting shrinkage due to sampling error in the raw estimates. The results show a fair amount of
heterogeneity. Nonetheless, most EDs exhibit positive effects of NPs on raising patient length of stay, cost
of the ED visit, and 30-day preventable hospitalization rate.

11. The figure reports results for all EDs in our main analysis sample for log length of stay and log cost (in total 44 such EDs).
For 30-day preventable hospitalization, since it is relatively uncommon (occurs in less than 2 percent of the sample), the estimates
are relatively imprecise when using observations from a specific ED; we thus include only EDs with at least 25,000 cases in the
analysis sample (in total 20 such EDs).
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Figure A.1: Number of NPs on Duty
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Notes: This figure shows the histogram of the number of NPs on duty in an ED-day cell. The unit of observation
is at the ED-day level.
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Figure A.2: Number of NPs on Duty by Month and Day of the Week

A. By Month
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Notes: This figure plots the share of ED-day cells with different numbers of NPs on duty in each month (Panel A)
and each day of the week (Panel B). Each color of the stacked bars represents a different number of NPs on duty,
with the lightest color at the bottom representing ED-day cells with the lowest number of NPs on duty (i.e., zero)
and the darkest color at the top representing ED-day cells with the highest number of NPs on duty (i.e., more than
three). Since only a small share of ED-day cells have more than three NPs on duty, this figure groups ED-day cells
with more than three NPs to the group “>3”.
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Figure A.3: Standard Deviation of Number of NPs on Duty and NP Assignment
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Notes: This figure shows standard deviations of the number of NPs on duty (solid dots) and whether the patient is
assigned to NPs (hollow dots). The first dot shows the raw standard deviations without residualizing the number of
on-duty NPs or NP assignment by any factors. The second through the last dots show the standard deviations of the
residualized number of on-duty NPs and the residualized NP assignment. The following factors are added to the
residualization stepwise (cumulatively) from the second to the last dot: (i) ED-by-year indicators; (ii) ED-by-month
indicators; (iii) ED-by-day-of-the-week indicators; (iv) ED-by-hour-of-the-day indicators; (v) patient covariatesX𝑖

in the main specification in Equations (1) and (2); (vi) patient volume in the ED-day cell; (vii) average wait time of
patients in the ED-day cell (leaving out the index patient); and (viii) average characteristics of on-duty physicians
(age, gender, value-added, and practice style; see Appendix A.3 for the construction of value-added and practice
style). Average characteristics of on-duty NPs are not included in the residualization because by definition these
characteristics are missing for the 38 percent of ED-day cells without any NPs on duty.
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Figure A.4: Balance in Patient Characteristics
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Fever x 10

-.01 0 .01
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Notes: This figure shows estimated coefficients and 95% confidence intervals from regressions of each patient
characteristic listed on the y-axis on the number of NPs on duty, controlling for the baseline control vector (i.e., ED-
by-year, ED-by-month, ED-by-day-of-the-week, and ED-by-hour-of-the-day indicators). For improved readability,
a few coefficients (and their confidence intervals) are scaled up and down by, e.g., 10, as shown by “× 10” and “/ 10”
on the y-axis, respectively. At the bottom of the figure, we report the F-statistic from the joint F-test for all patient
characteristics in a reverse regression with the number of NPs on duty as the dependent variable, conditioning on
the baseline control vector. Standard errors are clustered by provider.
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Figure A.5: Predicting Log Length of Stay and Log ED Cost
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Notes: This figure shows estimated coefficients and 95% confidence intervals from regressions of patient log
length of stay (Panel A) and log cost of the ED visit (Panel B) on patient characteristics, controlling for the baseline
control vector (i.e., ED-by-year, ED-by-month, ED-by-day-of-the-week, and ED-by-hour-of-the-day indicators).
For improved readability, a few coefficients (and their confidence intervals) are scaled up by 10, as shown by “×
10” on the y-axis. The bottom of each panel reports the F-statistic from the joint F-test of all patient characteristics,
conditioning on the baseline control vector. Standard errors are clustered by provider.
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Figure A.6: Monotonicity Test

A. By Age

0
.1

.2
.3

.4

Tr
ea

te
d 

by
 N

P

0 .5 1 1.5 2

Number of NPs

Below median Above median

Coefficient for below-median = 0.196 (0.016)
Coefficient for above-median = 0.175 (0.015)

B. By Married

0
.1

.2
.3

.4

Tr
ea

te
d 

by
 N

P

0 .5 1 1.5 2

Number of NPs

Not Married Married

Coefficient for not married = 0.182 (0.015)
Coefficient for married = 0.191 (0.016)

C. By Gender

0
.1

.2
.3

.4

Tr
ea

te
d 

by
 N

P

0 .5 1 1.5 2

Number of NPs

Female Male

Coefficient for female = 0.196 (0.017)
Coefficient for male = 0.185 (0.015)

D. By Black Race

0
.1

.2
.3

.4

Tr
ea

te
d 

by
 N

P

0 .5 1 1.5 2

Number of NPs

Non-black Black

Coefficient for non-black = 0.188 (0.016)
Coefficient for black = 0.182 (0.019)

E. By Elixhauser Comorbidity Count

0
.1

.2
.3

.4
.5

Tr
ea

te
d 

by
 N

P

0 .5 1 1.5 2

Number of NPs

Below median Above median

Coefficient for below-median = 0.200 (0.016)
Coefficient for above-median = 0.167 (0.015)

F. By Predicted 30-Day Mortality

0
.1

.2
.3

.4
.5

Tr
ea

te
d 

by
 N

P

0 .5 1 1.5 2

Number of NPs

Below median Above median

Coefficient for below-median = 0.208 (0.016)
Coefficient for above-median = 0.164 (0.015)

Notes: This figure shows the first-stage regression for cases of different characteristics. Panels A-F split the
sample by, respectively, age (above versus below the median of the sample), marital status, gender, race (Black
versus non-Black), total number of Elixhauser comorbidities (above versus below the median of the sample), and
predicted 30-day mortality (above versus below the median of the sample). Predicted 30-day mortality is generated
from a linear regression of actual 30-day mortality on patient characteristics X𝑖 included in Equations (1) and (2),
including patient demographics, comorbidities, prior health care use, vital signs, and three-digit primary diagnosis
indicators. To construct these binned scatter plots, we residualize both the y-axis and x-axis variables with respect
to the baseline control vector (i.e., ED-by-year, ED-by-month, ED-by-day-of-the-week, and ED-by-hour-of-the-
day indicators) within each subsample and then add means back. The coefficients report the first-stage estimates
for each subset of patients conditional on the baseline control vector, with standard errors clustered by provider
reported in parentheses.
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Figure A.7: Reduced-Form and Balance
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Notes: This figure shows binned scatter plots of patient actual and predicted outcomes on the y-axis versus the
number of NPs on duty on the x-axis, controlling for the baseline control vector (i.e., ED-by-year, ED-by-month,
ED-by-day-of-the-week, and ED-by-hour-of-the-day indicators). Panels A, B, and C report results for hospital
admission in the ED visit, 30-day mortality, and 30-day preventable hospitalization, respectively. The solid circles
and lines represent patient actual outcomes. The hollow circles and dashed lines represent patient predicted
outcomes generated based on patient characteristics X𝑖 included in Equations (1) and (2), including patient
demographics, comorbidities, prior health care use, vital signs, and three-digit primary diagnosis indicators. The
reduced-form coefficients are estimated using Equation (2), with patient actual outcomes as the dependent variable;
the balance-test coefficients are estimated by regressing patient predicted outcomes on the number of NPs on duty,
conditional on the baseline control vector. Standard errors clustered by provider are reported in parentheses.
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Figure A.8: Stability of OLS and IV Estimates
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Notes: This figure shows the robustness of our OLS and IV estimates to the inclusion of different sets of patient
controls. We divide patient observable characteristics into eight subsets: (i) five-year age-bin indicators; (ii) marital
status; (iii) gender; (iv) race indicators; (v) indicators for 31 Elixhauser comorbidities; (vi) vital signs; (vii) prior
health care use; and (viii) indicators for three-digit patient primary diagnosis of the visit. We then run separate
regressions that control for each of the 28 = 256 different combinations of patient covariates for each outcome.
Each 𝑛 on the 𝑥-axis indicates the number of covariate subsets included. For each 𝑛, we plot the maximum, mean,
and minimum of the estimated coefficients for the effect of NPs using all possible combinations with 𝑛 (out of
eight) subsets of patient covariates. The connected triangles and circles show the mean of the estimated coefficients
from OLS and IV regressions, respectively. The dashed lines connect the maximum and minimum of the estimated
IV coefficients. The dotted lines connect the maximum and minimum of the estimated OLS coefficients. The
coefficients at the bottom of each panel show the IV and OLS estimates with the full set of patient controls, with
standard errors reported in parentheses. Panels A, B, and C report results for hospital admission in the ED visit,
30-day mortality, and 30-day preventable hospitalization, respectively.

A.18



Figure A.9: Patient Assignment
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Notes: Panels A-C report patient characteristics (age, total number of Elixhauser comorbidities, and predicted 30-
day mortality, respectively) on the y-axis against the number of NPs on duty on the x-axis. The unit of observation
is at the case level. Both the y-axis and x-axis variables are residualized with respect to the baseline control vector
(ED-by-year, ED-by-month, ED-by-day-of-the-week, and ED-by-hour-of-the-day indicators), with sample means
added back to aid in interpretation. The circles, triangles, and squares show binned scatter plots for all cases, cases
treated by physicians, and cases treated by NPs, respectively. Panel D plots whether the case is treated by NPs
against the number of cases arriving in the analysis time window (i.e., 8 a.m. to 6 p.m.) of the ED-day cell of the
case’s visit. Both the y-axis and x-axis variables are residualized with respect to the baseline control vector, with
means added back.
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Figure A.10: Controlling for Physician Equivalents
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Notes: This figure reports IV estimates along with 95% confidence intervals based on Equations (1) and (2), with
an added control for physician equivalents. Physician equivalents are calculated as the sum of the number of
on-duty physicians and the number of on-duty NPs multiplied by the assumed substitution rate between NPs and
physicians, which ranges between 0.25 and 1. See footnote 42 for further details. The coefficients in each panel
report the IV estimates assuming that one NP substitutes for 0.25, 0.5, 0.75, and 1 physician, respectively.
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Figure A.11: ED-Specific Estimates of NP Effect
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Notes: This figure reports the distribution of ED-specific IV estimates of the NP effect. Panels A, B, and C report
results for the NP effect on log length of stay, log cost of the ED visit, and 30-day preventable hospitalization,
respectively. The white bins show the histogram of ED-specific IV estimates without any adjustment to account for
estimation noise. The gray bins show the histogram of ED-specific IV estimates with empirical Bayes adjustments
(see details in Appendix A.6). The dashed lines show the standard normal density with a variance of the prior
distribution of ED-specific IV estimates for each outcome.
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Figure A.12: Receiver Operating Characteristic (ROC) Curves
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Notes: This figure displays the ROC curves for provider productivity (in the solid line), predicted 30-day mortality
of cases assigned to the provider (in the dot-dashed line), and provider wages (in the dashed line). The dotted line
plots the 45-degree line. Physicians are defined as the “positive” class and NPs are defined as the “negative” class.
The ROC curves are computed based on the distributions displayed in Figure 8. See Appendix A.5.4 for details.
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Figure A.13: Case Assignment and Wage Payment versus Productivity
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Notes: Panel A shows binned scatter plots of average risks (measured by predicted 30-day mortality) of cases
assigned to a provider on the y-axis versus posterior mean provider effects on log total cost per ED visit on the
x-axis. Panel B shows binned scatter plots of provider yearly wage on the y-axis versus posterior mean provider
effects on log total cost per ED visit on the x-axis. Both the y-axis and x-axis variables are residualized with
respect to ED indicators, with means added back for ease of interpretation. Wages are inflation-adjusted to the year
2020. Coefficients from regressions of wages on posterior mean provider effects controlling for ED indicators are
reported, with standard errors clustered by ED shown in parentheses. The hollow circles report results for NPs;
the solid circles report results for physicians. See more details in Appendix A.5.5.
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Figure A.14: Diagnosis Coding: NPs versus Physicians
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Notes: Panel A plots the distribution of the t-statistics on whether NPs and physicians are significantly different
in diagnosis coding from 836 separate regressions that use each three-digit diagnosis indicator as the outcome
variable. The distribution is estimated using an Epanechnikov kernel with the optimal bandwidth and shown in the
solid line. For comparison, the standard normal density is plotted in the dashed line. Panel B shows binned scatter
plots of the t-statistics against the prevalence of the diagnosis (measured as the share of cases with the diagnosis
among cases treated by physicians on days without any NPs, to restrict the influence of patient sorting between
NPs and physicians). The coefficient from the regression of the t-statistics on prevalence is reported at the bottom
of the panel, along with its standard error (shown in parentheses) and p-value.
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Figure A.15: Stability of Provider Value-Added and Practice Style with Varying Patient Covariates
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E. Practice Style: LogEDCost (Physicians)
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F. Practice Style: Log ED Cost (NPs)
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Notes: This figure shows the stability of provider value-added and practice style estimated using alternative patient
covariates. Appendix A.3 provides details. The x-axis reports provider value-added/practice style constructed
using the full set of patient covariates, including demographics (five-year age-bin indicators, marital status, gender,
and race indicators), indicators for 31 Elixhauser comorbidities, prior health care use (the number of outpatient
visits and the number of inpatient stays in VHA facilities in the prior 365 days), vital signs, and indicators for the
three-digit primary diagnosis of the visit. The y-axis reports provider value-added/practice style constructed using
alternative sets of patient covariates: parsimonious set 1 that includes demographics, three-digit primary diagnosis
indicators, and 31 Elixhauser comorbidities; parsimonious set 2 that includes demographics and three-digit primary
diagnosis indicators; parsimonious set 3 that includes five-year age-bin and three-digit primary diagnosis indicators.
Valued-added and practice style constructed using parsimonious sets 1-3 are shown in squares, circles, and “+”,
respectively, which largely overlap. Correlations 1-3 report correlations of value-added/practice style estimated
using the full set of patient covariates with those using parsimonious sets 1-3, respectively. The solid lines show
the 45-degree line. Panels A, C, and E report results for physicians. Panels B, D, and F report results for NPs.
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Figure A.16: Wait Time versus Length of Stay and Total Spending
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Notes: This figure shows changes in patient average wait time and total spending with incremental numbers of NPs
on duty, conditional on the number of physicians on duty, the number of cases arriving, and the controls included in
the main specification (see details in Appendix A.4). Panel A presents the trade-off between wait time and length
of stay. Panel B presents the trade-off between wait time and total spending of the ED visit, measured as the sum
of the cost of ED care, hospital admission in the ED visit, and 30-day preventable hospitalization. The solid lines
show the quadratic fit estimated on the plotted points.
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Figure A.17: Wait Time versus Length of Stay and Total Spending: Lowest Complexity Quartile
Cases
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Notes: This figure shows, for cases of the lowest complexity quartile, changes in patient average wait time and
total spending with incremental numbers of NPs on duty, conditional on the number of physicians on duty, the
number of cases arriving, and the controls included in the main specification (see details in Appendix A.4). Panel
A presents the trade-off between wait time and length of stay. Panel B presents the trade-off between wait time and
total spending of the ED visit, measured as the sum of the cost of ED care, hospital admission in the ED visit, and
30-day preventable hospitalization. The solid lines show the quadratic fit estimated on the plotted points.
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Figure A.18: Balance of Patient Characteristics across On-Duty Provider Characteristics

Age/20
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Congestive heart failure
Cardiac arrhythmias

Valvular disease
Pulmonary circulation disorders

Peripheral vascular disorder
Hypertension, uncomplicated

Hypertension, complicated
Paralysis

Other neurological disorders
Chronic pulmonary disease

Diabetes, uncomplicated
Diabetes, complicated

Hypothyroidsm
Renal failure

Liver disease
Peptic ulcer disease

AIDS/HIV
Lymphoma

Metastatic cancer
Tumor without metastatis

Rheumatoid arthritis
Coagulopathy

Obesity
Weight loss

Fluid and electrolyte disorders
Blood loss anemia
Deficiency anemia

Alcohol abuse
Drug abuse
Psychoses
Depression

# outpatient visits in prior year/20
# inpatient stays in prior year/10

Normal systolic pressure
Normal diastolic pressure

Normal pulse rate
Normal pulse oximetry
Normal respiration rate

Normal temperature
Pain/10

Fever

-.0005 0 .0005 .001

F-statistic: 1.21

Provider Age

-.0001 0 .0001 .0002

F-statistic: 1.26

Female Provider

-.02 -.01 0 .01 .02 .03

F-statistic: 1.13

Practice Style: Log LOS

-.04 -.02 0 .02 .04

F-statistic: 1.37

Practice Style: Log ED Cost

Notes: This figure shows estimated coefficients and 95% confidence intervals from regressions of each patient characteristic listed on the y-axis on average
characteristics of providers on duty in the ED-day cell of the patient’s visit, controlling for baseline controls (i.e., ED-by-year, ED-by-month, ED-by-day-of-the-
week, and ED-by-hour-of-the-day indicators). All average on-duty provider characteristics are case-weighted, with the index case left out. The average on-duty
provider characteristics in Panels A-D are, respectively, age, female, practice style in terms of patient log length of stay, and practice style in terms of patient
log cost of care at the ED. For readability, a few coefficients (and their confidence intervals) are scaled down by 10 and 20, as shown by “/10” and “/20” on the
y-axis, respectively. The bottom of each panel reports the F-statistic from the joint F-test for all patient characteristics in a reverse regression with the average
on-duty provider characteristic as the dependent variable, conditioning on the baseline controls. Standard errors are clustered by provider.
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Table A.1: Characteristics of NPs and Physicians at VHA and Non-VHA

VHA (ED) Non-VHA (ED) Non-VHA (all)

Panel A. NPs
Female (%) 81.4 79.1 90.0
Age 51.3 42.9 44.8

Panel B. Physicians
Female (%) 34.0 27.3 31.0
Age 48.1 45.8 50.4

Notes: Panel A reports summary statistics for NPs; Panel B reports summary statistics for physicians. Column 1 reports
summary statistics for NPs/physicians working at the ED in our analysis sample. Column 2 reports summary statistics
for NPs/physicians working at the ED observed in the 20 percent Medicare data (with age and gender information
obtained from theMedicare Data on Provider Practice and Specialty (MD-PPAS)). To provide a description of providers
outside of the ED, Column 3 reports characteristics of all NPs/physicians (regardless of working at the ED or not)
observed in the 20 percent Medicare data. VHA ED NPs’ and physicians’ mean age and female share reported in
Column 1 are slightly different from those reported in Figures 6 and 7 because Figures 6 and 7 weight means by the
number of ED-day cells a provider works and patient volume.
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Table A.2: Selection of Baseline Sample

Providers
Sample step Description Cases NPs Physicians EDs
1. Build sample of ED
cases from January 1,
2017, to January 31,
2020.

We restrict the sample to cases after the VHA
directive granting NPs full practice authority in
December 2016 and before COVID pandemic in
the US.

7,886,164 547 5,749 146

2. Include only cases
visiting during daytime.

Empirically NPs do not work outside of the
hours of 8 a.m. to 6 p.m. We drop cases visiting
outside of the hours of 8 a.m. to 6 p.m. to focus
on cases that could be assigned to an NP.

5,766,296 539 5,665 145

3. Restrict EDs to those
with NPs, in months with
full practice authority.

We restrict the sample to EDs where NPs work.
We restrict to months in which these EDs have
granted NPs full practice authority.

3,597,347 521 3,781 111

4. Restrict EDs to those
in which NPs and
physicians are the only
providers.

To focus attention on the margin between NPs
and physicians and hold the population of cases
seen by an NP or physician fixed, we drop EDs
that use other provider types, mainly physician
assistants.

1,119,396 156 1,348 44

5. Drop cases with
missing demographics or
extreme ages.

We drop cases with missing age or gender, or
age above 99 or below 20.

1,118,836 156 1,348 44

Notes: This table reports changes in the sample size when applying each of the listed sample restrictions. Columns 3-6 report, respectively, the number of cases,
NPs, physicians, and EDs remaining at each step.
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Table A.3: EDs Included in Main Analysis versus All VHA EDs

Included All
Panel A: ED characteristics
Daily census 30.69 36.06

(17.58) (21.34)
Urban location 0.86 0.87

(0.35) (0.34)
Panel B: Provider Characteristics
Physician mean age 52.218 50.962

(11.288) (10.979)
Share physicians female 0.286 0.326

(0.452) (0.469)
NP mean age 51.245 50.915

(8.940) (9.352)
Share NPs female 0.803 0.752

(0.398) (0.432)
Panel C: Patient characteristics
Age 61.987 61.770

(15.857) (15.828)
Married 0.416 0.432

(0.493) (0.495)
Male 0.905 0.901

(0.294) (0.299)
Black 0.275 0.272

(0.447) (0.445)
White 0.704 0.709

(0.456) (0.454)
Asian/Pacific Islander 0.020 0.018

(0.140) (0.133)
Outpatient visits in prior year 6.409 6.552

(7.697) (7.717)
Inpatient stays in prior year 0.643 0.689

(1.612) (1.684)
Elixhauser comorbidity count 3.626 3.705

(3.035) (3.100)
Predicted 30-day mortality (%) 1.200 1.229

(2.753) (2.782)

Notes: Columns 1 and 2 report characteristics of EDs that are included in our main analysis sample and of all VHA
EDs, respectively. Panel A reports characteristics of the EDs, including daily census in the analysis time window (i.e.,
8 a.m. to 6 p.m.) and urban location. Panel B reports characteristics of the physicians and NPs practicing in the EDs.
Panel C reports characteristics of patients seen in the EDs. The standard deviation of each characteristic is reported
in brackets. Patient and provider characteristics in the included EDs, i.e., Column 1, are slightly different from those
reported in Table 1 and Figures 6 and 7 because Column 1 includes observations in the ED in all months between
January 2017 and January 2020 regardless of whether the ED had adopted full practice authority for NPs in the month.
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Table A.4: Heterogeneous Effects by Provider Experience (Standardized, Cases in 2018-)

Dependent variable

Log length
of stay

Log ED
cost Admission

30-day
mortality

30-day
prevent.
hosp.

(1) (2) (3) (4) (5)
Panel A: Provider specific experience
NP assignment 0.081 0.077 -0.268 -0.222 0.335

(0.046) (0.032) (0.646) (0.142) (0.149)
NP assignment × experience -0.060 -0.050 -0.677 0.011 -0.012

(0.025) (0.021) (0.308) (0.044) (0.033)
Experience -0.006 0.004 0.204 -0.008 -0.018

(0.005) (0.009) (0.303) (0.017) (0.012)

Panel B: Provider general experience
NP assignment 0.104 0.089 -0.356 -0.238 0.347

(0.048) (0.034) (0.700) (0.146) (0.152)
NP assignment × experience -0.130 -0.069 0.249 0.108 -0.029

(0.067) (0.040) (1.337) (0.114) (0.077)
Experience -0.034 -0.009 -0.721 -0.017 -0.039

(0.015) (0.011) (0.230) (0.024) (0.025)

Full controls Yes Yes Yes Yes Yes
Mean dep. var. 4.637 6.529 16.304 1.251 1.226
S.D. dep. var. 1.133 0.887 36.940 11.114 11.005
Observations 742,968 741,027 747,510 747,510 747,510

Notes: This table reports heterogeneous effects of NPs by provider experience using cases visiting in 2018 or after.
Panel A shows heterogeneity by provider specific experience in the case’s condition, measured as the number of cases
with the same three-digit primary diagnosis as the current case the provider has treated since the start of the study
period to the day before the current case’s visit. Panel B shows heterogeneity by provider general experience, measured
as the number of cases (despite conditions) the provider has treated since the start of the study period to the day before
the current case’s visit. For ease of interpretation, both specific and general experience are standardized to have a
mean of zero and a standard deviation of one for NPs and physicians separately. The outcome variables in Columns
1-5 are, respectively, log length of stay, log cost of the ED visit, hospital admission in the ED visit, 30-day mortality,
and 30-day preventable hospitalization. All estimations include the full set of controls described in the notes to Table
2. Standard errors clustered by provider are shown in parentheses.
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Table A.5: Heterogeneous Effects by Provider Experience (Standardized, Prior-Year)

Dependent variable

Log length
of stay

Log ED
cost Admission

30-day
mortality

30-day
prevent.
hosp.

(1) (2) (3) (4) (5)
Panel A: Provider specific experience
NP assignment 0.078 0.074 -0.295 -0.221 0.333

(0.046) (0.031) (0.641) (0.141) (0.148)
NP assignment × experience -0.053 -0.055 -0.646 0.016 -0.017

(0.027) (0.023) (0.307) (0.049) (0.035)
Experience -0.009 0.009 0.260 -0.012 -0.012

(0.006) (0.011) (0.327) (0.018) (0.014)

Panel B: Provider general experience
NP assignment 0.089 0.081 -0.331 -0.222 0.350

(0.046) (0.033) (0.662) (0.143) (0.150)
NP assignment × experience -0.120 -0.063 -0.142 0.040 -0.117

(0.088) (0.044) (1.162) (0.091) (0.085)
Experience -0.040 -0.002 -0.732 -0.008 -0.008

(0.017) (0.012) (0.235) (0.026) (0.026)

Full controls Yes Yes Yes Yes Yes
Mean dep. var. 4.637 6.529 16.304 1.251 1.226
S.D. dep. var. 1.133 0.887 36.940 11.114 11.005
Observations 742,968 741,027 747,510 747,510 747,510

Notes: This table reports heterogeneous effects of NPs by provider experience in the prior year. Panel A shows
heterogeneity by provider specific experience in the case’s condition, measured as the number of cases with the same
three-digit primary diagnosis as the current case the provider has treated in the 365 days prior to the day of the current
case’s visit. Panel B shows heterogeneity by provider general experience, measured as the number of cases (despite
conditions) the provider has treated in the 365 days prior to the day of the current case’s visit. The sample is restricted
to cases visiting in 2018 or after, to allow for at least a one-year look-back window for measuring experience in the
prior 365 days. For ease of interpretation, both specific and general experience are standardized to have a mean of
zero and a standard deviation of one for NPs and physicians separately. The outcome variables in Columns 1-5 are,
respectively, log length of stay, log cost of the ED visit, hospital admission in the ED visit, 30-day mortality, and 30-day
preventable hospitalization. All estimations include the full set of controls described in the notes to Table 2. Standard
errors clustered by provider are shown in parentheses.
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Table A.6: Heterogeneous Effects by Provider Experience (Standardized, Days)

Dependent variable

Log length
of stay

Log ED
cost Admission

30-day
mortality

30-day
prevent.
hosp.

(1) (2) (3) (4) (5)
NP assignment 0.105 0.065 0.225 -0.100 0.263

(0.045) (0.029) (0.623) (0.117) (0.123)
NP assignment × experience -0.031 -0.036 1.098 0.126 0.101

(0.068) (0.037) (1.157) (0.111) (0.080)
Experience -0.015 -0.002 -0.403 -0.022 -0.053

(0.014) (0.009) (0.227) (0.024) (0.026)

Full controls Yes Yes Yes Yes Yes
Mean dep. var. 4.608 6.483 16.625 1.247 1.234
S.D. dep. var. 1.161 0.878 37.230 11.099 11.041
Observations 1,110,798 1,108,961 1,118,836 1,118,836 1,118,836

Notes: This table reports heterogeneous effects of NPs by provider general experience measured by the number of
days the provider has worked since the start of the study period to the day before the current case’s visit. For ease of
interpretation, the experience measure is standardized to have a mean of zero and a standard deviation of one for NPs
and physicians separately. The outcome variables in Columns 1-5 are, respectively, log length of stay, log cost of the
ED visit, hospital admission in the ED visit, 30-day mortality, and 30-day preventable hospitalization. All estimations
include the full set of controls described in the notes to Table 2. Standard errors clustered by provider are shown in
parentheses.
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Table A.7: Opioid Use Disorder and Return Visit with Infection

Dependent variable
Opioid use disorder Infection return visit

30-day 180-day 30-day 180-day
(1) (2) (3) (4)

NP assignment -0.0005 -0.0000 0.0142 0.0225
(0.0015) (0.0019) (0.0068) (0.0100)

Full control Yes Yes Yes Yes
Mean dep. var. 0.022 0.037 0.068 0.187
S.D. dep. var. 0.146 0.190 0.251 0.390
Observations 1,118,836 1,118,836 123,395 123,395

Notes: Columns 1 and 2 report the IV estimates of the effect of NPs on the probability of opioid use disorder in 30 days
and 180 days after the index ED visit, respectively. Columns 3 and 4 report the IV estimates of the effect of NPs on the
probability of return visits with infection in 30 days and 180 days after the index ED visit, respectively. Columns 3 and
4 restrict the sample to patients with respiratory or genitourinary system infections, following the sample restriction
for the antibiotic prescription analysis in Table 5. All estimations include the full set of controls described in the notes
to Table 2. Standard errors clustered by provider are shown in parentheses.
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Table A.8: Ten Most Common High-Mortality Diagnoses

ICD code Description 30-day
mortality
(%)

Cases Share

I50 Heart failure 5.56 12,637 0.221
N17 Acute kidney failure 6.47 4,278 0.075
R41 Other symptoms and signs involving

cognitive functions and awareness
7.59 3,872 0.068

D64 Other anemias 5.01 3,634 0.064
I21 Acute myocardial infarction 7.50 3,162 0.055
A41 Other sepsis 11.51 2,754 0.048
J15 Bacterial pneumonia, not elsewhere

classified
5.12 2,715 0.047

J96 Respiratory failure, not elsewhere
classified

12.99 2,548 0.045

F03 Unspecified dementia 5.40 1,427 0.025
R62 Lack of expected normal physiological

development in childhood and adults
16.55 1,033 0.018

Notes: This table summarizes the 10 most common three-digit diagnosis codes in the group of diagnoses with a
30-day mortality rate equal to or above the 95th percentile of the sample. The columns report, from the leftmost to the
rightmost, the three-digit ICD-10 code, description of the code, 30-day mortality rate of cases with the diagnosis code,
number of cases in the analysis sample with the diagnosis code, and share of cases with the diagnosis code among all
cases with a three-digit diagnosis whose 30-day mortality is equal to or above the 95th percentile of the sample.
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Table A.9: Outcomes of Subgroups of Patients

Log length
of stay

Log ED
cost Admission

30-day
mortality

30-day
prevent.
hosp.

Panel A: Elixhauser comorbidity count
1st quartile 4.393 6.321 8.297 0.406 0.249

[1.145] [0.871] [27.583] [6.359] [4.981]
2nd quartile 4.517 6.424 12.526 0.705 0.538

[1.155] [0.879] [33.101] [8.364] [7.317]
3rd quartile 4.664 6.531 18.448 1.188 1.155

[1.158] [0.875] [38.787] [10.833] [10.683]
4th quartile 4.944 6.720 30.717 3.062 3.448

[1.110] [0.832] [46.132] [17.227] [18.245]

Panel B: Diagnosis predicted 30-day mortality
< 95th percentile 4.563 6.452 14.157 0.853 1.038

[1.159] [0.876] [34.861] [9.195] [10.138]
≥ 95th percentile 5.452 7.059 62.423 8.572 4.869

[0.818] [0.707] [48.433] [27.995] [21.522]

Panel C: Diagnosis category
Stroke 5.365 7.209 55.926 2.638 0.606

[1.027] [0.707] [49.658] [16.031] [7.760]
AMI 5.181 7.275 57.527 7.495 3.479

[0.968] [0.929] [49.438] [26.336] [18.327]
Sepsis 5.724 7.260 89.587 11.526 2.442

[0.715] [0.632] [30.548] [31.939] [15.437]
Heart failure 5.501 7.050 66.072 5.534 13.382

[0.708] [0.566] [47.348] [22.866] [34.047]
Other 4.592 6.470 15.659 1.150 1.084

[1.160] [0.877] [36.341] [10.662] [10.353]

Notes: This table shows the mean outcomes of each group of patients examined in Table 6. Standard deviations are
reported in brackets. Panel A divides cases into quartiles by their total number of Elixhauser comorbidities, with higher
quartiles indicating more complex cases. Panel B divides cases by whether condition severity measured by 30-day
mortality of cases with the same three-digit ICD-10 primary diagnosis is equal to or above the 95th percentile of the
sample. Panel C divides cases by their condition. The outcomes in Columns 1-5 are, respectively, log length of stay,
log cost of the ED visit, hospital admission in the ED visit, 30-day mortality, and 30-day preventable hospitalization.
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Table A.10: Robustness to Controlling for Average Risks of Patients Assigned to Physicians

Dependent variable

Log length
of stay

Log ED
cost Admission

30-day
mortality

30-day
prevent.
hosp.

(1) (2) (3) (4) (5)
Panel A: Baseline
NP assignment 0.110 0.070 0.103 -0.116 0.252

(0.045) (0.030) (0.585) (0.115) (0.120)

Panel B: Control for age
NP assignment 0.107 0.070 0.101 -0.125 0.254

(0.045) (0.030) (0.590) (0.116) (0.122)

Panel C: Control for Elixhauser comorbidity count
NP assignment 0.106 0.069 0.117 -0.136 0.238

(0.045) (0.030) (0.592) (0.116) (0.122)

Panel D: Control for predicted 30-day mortality
NP assignment 0.100 0.068 0.191 -0.114 0.258

(0.044) (0.030) (0.596) (0.117) (0.124)

Full controls Yes Yes Yes Yes Yes
Mean dep. var. 4.608 6.483 16.625 1.247 1.234
S.D. dep. var. 1.161 0.878 37.230 11.099 11.041
Observations 1,110,798 1,108,961 1,118,836 1,118,836 1,118,836

Notes: This table shows the robustness of the estimates to controlling for the average health risks of cases (age, total
number of Elixhauser comorbidities, and predicted 30-day mortality in Panels B, C, and D, respectively) assigned to
physicians in the ED-day cell (leaving out the index case). For comparison, Panel A repeats our baseline estimates
reported in Tables 2 and 3. The outcomes in Columns 1-5 are, respectively, log length of stay, log cost of the ED
visit, hospital admission in the ED visit, 30-day mortality, and 30-day preventable hospitalization. All estimations
include the full set of controls described in the notes to Table 2. Standard errors clustered by provider are reported in
parentheses.
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Table A.11: Complier and Never-Taker Characteristics

All Compliers Never-takers
Mean Mean Ratio Mean Ratio

Age 62.05 61.11 0.98 63.69 1.03
(0.15) (0.31) [0.98 - 0.99] (0.17) [1.02 - 1.03]

Married 0.424 0.424 1.00 0.436 1.03
(0.004) (0.008) [0.97 - 1.04] (0.007) [1.00 - 1.06]

Male 0.905 0.905 1.00 0.917 1.01
(0.002) (0.003) [0.99 - 1.01] (0.002) [1.01 - 1.02]

Black 0.270 0.262 0.97 0.228 0.84
(0.011) (0.019) [0.83 - 1.11] (0.015) [0.73 - 0.95]

White 0.708 0.716 1.01 0.756 1.07
(0.011) (0.019) [0.96 - 1.06] (0.015) [1.03 - 1.11]

Asian/Pacific Islander 0.021 0.020 0.95 0.013 0.65
(0.001) (0.002) [0.74 - 1.15] (0.001) [0.55 - 0.76]

Outpatient visits in prior year 6.242 5.824 0.93 6.537 1.05
(0.080) (0.129) [0.89 - 0.97] (0.110) [1.01 - 1.08]

Inpatient stays in prior year 0.612 0.490 0.80 0.695 1.14
(0.014) (0.029) [0.71 - 0.89] (0.026) [1.05 - 1.22]

Elixhauser comorbidity count 3.599 3.324 0.92 3.965 1.10
(0.030) (0.066) [0.89 - 0.96] (0.041) [1.08 - 1.12]

Predicted 30-day mortality (%) 1.247 0.902 0.72 1.697 1.36
(0.032) (0.067) [0.62 - 0.83] (0.049) [1.28 - 1.44]

Notes: This table reports average characteristics for the overall sample, compliers, and never-takers. Complier
characteristics are estimated by 2SLS regressions replacing the outcome variable 𝑦𝑖 with 𝑥𝑖 ×NP𝑖 , i.e., the interaction
between patient characteristic and the indicator for being treated by an NP, controlling for the baseline control vector
(i.e., ED-by-year, ED-by-month, ED-by-day-of-the-week, and ED-by-hour-of-the-day indicators). Standard errors
clustered by provider are reported in parentheses. Never-takers are defined as cases treated by physicians in ED-day
cells with the residual share of cases treated by NPs at least as high as the 90th percentile of ED-days with at least one
case treated by NPs. Residual shares are constructed by first collapsing the data to ED-days and then residualizing the
share of cases treated by NPs by ED-by-year, ED-by-month, and ED-by-day-of-the-week indicators. Standard errors
for the overall sample and never-takers are estimated by bootstrap, using 500 replications and blocking observations
by provider. For each characteristic, the table reports the mean as well as the ratio between this mean and the overall
sample mean. 95% confidence intervals of each ratio are shown in brackets. Predicted 30-day mortality is generated
from a linear regression of actual 30-day mortality on patient characteristics X𝑖 included in Equations (1) and (2),
including patient demographics, comorbidities, prior health care use, vital signs, and three-digit primary diagnosis
indicators.
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Table A.12: On-Duty Physician Value-Added and Experience and Outcomes of Patients Treated by NPs

Dependent variable
Elixhauser
comorbidity
count

Predicted
30-day
mortality

Log length
of stay

Log ED
cost Admission

30-day
mortality

30-day
prevent.
hosp.

(1) (2) (3) (4) (5) (6) (7)
Panel A
Physician value-added -0.006 -0.021 -0.010 -0.005 -0.245 -0.005 -0.023

(0.013) (0.014) (0.008) (0.005) (0.199) (0.075) (0.044)
Panel B
Physician experience/100 -0.050 -0.100 0.000 -0.030 1.050 0.327 -0.103

(0.087) (0.072) (0.051) (0.044) (0.801) (0.224) (0.244)

Controls Baseline Baseline Full Full Full Full Full
Mean dep. var. 3.128 0.728 4.302 6.298 7.726 0.633 0.719
S.D. dep. var. 2.711 2.115 1.083 0.870 26.700 7.929 8.446
Observations 147,936 147,936 146,948 146,935 147,936 147,936 147,936

Notes: This table shows the balance in outcomes for cases treated by NPs across the average value-added of physicians on duty (Panel A) and across the average
experience (measured by age) of physicians on duty (Panel B). The coefficients in Panel B are scaled up by 100 for readability. See Appendix A.3 for construction
details of physician value-added. The outcomes in Columns 1-7 are, respectively, total number of Elixhauser comorbidities, predicted 30-day mortality, log length
of stay, log cost of the ED visit, hospital admission in the ED visit, 30-day mortality, and 30-day preventable hospitalization. The sample is restricted to patients
treated by NPs on days with one NP on duty and at least one physician on duty. Since Columns 1-2 examine the balance in patient characteristics, the set of controls
includes only the baseline control vector (i.e., ED-by-year, ED-by-month, ED-by-day-of-the-week, and ED-by-hour-of-the-day indicators). The set of full controls
in Columns 3-7 is detailed in the notes to Table 2. Standard errors clustered by provider are reported in parentheses.
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Table A.13: NP Presence and Outcomes of Patients Treated by Physicians

Dependent variable
Elixhauser
comorbidity
count

Predicted
30-day
mortality

Log length
of stay

Log ED
cost Admission

30-day
mortality

30-day
prevent.
hosp.

(1) (2) (3) (4) (5) (6) (7)
Panel A: Baseline results
NPs on duty 0.012 -0.013 -0.002 0.001 0.358 -0.022 -0.116

(0.032) (0.029) (0.012) (0.007) (0.303) (0.098) (0.117)

Panel B: By tercile of case count in ED-day cell
NPs on duty
× Bottom two terciles 0.027 0.017 0.027 0.009 0.386 0.023 -0.084

(0.043) (0.038) (0.016) (0.010) (0.402) (0.142) (0.162)
× Top tercile 0.002 -0.035 -0.017 -0.004 0.340 -0.053 -0.134

(0.039) (0.034) (0.014) (0.009) (0.383) (0.114) (0.146)

Controls Baseline Baseline Full Full Full Full Full
Mean dep. var. 3.535 1.070 4.545 6.486 15.386 1.051 1.324
S.D. dep. var. 2.996 2.758 1.276 0.836 36.081 10.200 11.432
Observations 68,863 68,863 68,214 68,208 68,863 68,863 68,863

Notes: This table shows the balance in outcomes of patients treated by physicians against the presence of NPs. The sample is restricted to patients arriving between 5
and 8 a.m. in ED-day cells with all patients arriving between 5 and 8 a.m. being assigned to physicians. Panel A shows baseline results. The empirical specification
takes the form 𝑦𝑖 = 𝛾1(𝑍𝑖 > 0) + T𝑖𝜂 + X𝑖𝛽 + 𝜀𝑖 , where 1(𝑍𝑖 > 0) is an indicator for whether there are NPs on duty during 8 a.m.-12 p.m of the ED-day cell of
the patient’s visit. Panel B shows heterogeneous effects by whether the total number of cases in the ED-day cell is in the top tercile of all ED-days. The empirical
specification takes the form 𝑦𝑖 =

∑𝐺
𝑔=1 1(Group𝑖 = 𝑔)

[
𝛾𝑔1(𝑍𝑖 > 0) + 𝜆𝑔

]
+ T𝑖𝜂 + X𝑖𝛽 + 𝜀𝑖 , where 1(Group𝑖 = 𝑔) is an indicator for whether the ED-day cell

has a number of cases arriving between 5 and 8 a.m. in the top or bottom two tercile(s) of all ED-days. The outcomes in Columns 1-7 are, respectively, total
number of Elixhauser comorbidities, predicted 30-day mortality, log length of stay, log cost of the ED visit, hospital admission in the ED visit, 30-day mortality,
and 30-day preventable hospitalization. Since Columns 1-2 examine balance in patient characteristics, the set of controls includes only the baseline control vector
(i.e., ED-by-year, ED-by-month, ED-by-day-of-the-week, and ED-by-hour-of-the-day indicators). The set of full controls in Columns 3-7 is detailed in the notes to
Table 2. Standard errors clustered by provider are reported in parentheses.

A
.41



Table A.14: Robustness to Additional Controls

Dependent variable

Log length
of stay

Log ED
cost Admission

30-day
mortality

30-day
prevent.
hosp.

(1) (2) (3) (4) (5)
Panel A: Baseline
NP assignment 0.110 0.070 0.103 -0.116 0.252

(0.045) (0.030) (0.585) (0.115) (0.120)

Panel B: Control for patient volume (linear controls)
NP assignment 0.097 0.077 0.376 -0.105 0.244

(0.045) (0.030) (0.595) (0.115) (0.118)

Panel C: Control for patient volume (linear splines)
NP assignment 0.095 0.078 0.381 -0.101 0.245

(0.045) (0.030) (0.595) (0.115) (0.118)

Panel D: Control for patient volume (restricted cubic splines)
NP assignment 0.096 0.078 0.377 -0.101 0.245

(0.045) (0.030) (0.595) (0.115) (0.118)

Panel E: Control for patient volume (fixed effects)
NP assignment 0.097 0.078 0.383 -0.100 0.241

(0.045) (0.030) (0.595) (0.115) (0.118)

Panel F: Control for wait time
NP assignment 0.109 0.069 0.317 -0.074 0.250

(0.045) (0.030) (0.594) (0.124) (0.121)

Full controls Yes Yes Yes Yes Yes
Mean dep. var. 4.608 6.483 16.625 1.247 1.234
S.D. dep. var. 1.161 0.878 37.230 11.099 11.041
Observations 1,110,798 1,108,961 1,118,836 1,118,836 1,118,836

Notes: Panel A repeats the baseline results in Tables 2 and 3. Panels B, C, D, and E add controls for patient volume
in the analysis time window (8 a.m. to 6 p.m.) of the ED-day cell of the patient’s visit, with patient volume controlled
linearly, as linear splines, as restricted cubic splines, and as fixed effects for five-case bins, respectively. Panel F adds a
control for patient wait time. As wait time is potentially endogenous (healthier cases may be assigned a lower priority
and hence wait longer), we add an instrument for wait time: the average wait time of other cases in the ED-day cell.
The outcomes in Columns 1-5 are, respectively, log length of stay, log cost of the ED visit, hospital admission in the
ED visit, 30-day mortality, and 30-day preventable hospitalization. All estimations include the full set of controls
described under Table 2. Standard errors clustered by provider are reported in parentheses.
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Table A.15: Patient-Provider Gender Match

Dependent variable
Elixhauser
comorbidity
count

Predicted
30-day
mortality

Log length
of stay

Log ED
cost Admission

30-day
mortality

30-day
prevent.
hosp.

(1) (2) (3) (4) (5) (6) (7)
Female NP × male patient 0.007 -0.065 0.027 -0.012 0.355 0.062 -0.058

(0.103) (0.100) (0.017) (0.015) (0.593) (0.085) (0.093)
Female NP 0.029 0.062 0.006 0.191 1.327 0.027 -0.015

(0.153) (0.153) (0.133) (0.081) (1.886) (0.091) (0.091)
Male patient 0.743 0.745 -0.051 -0.016 0.262 0.042 0.103

(0.092) (0.092) (0.014) (0.013) (0.508) (0.080) (0.078)

Controls Baseline Baseline Full Full Full Full Full
Mean dep. var. 3.190 0.743 4.304 6.341 7.866 0.630 0.745
S.D. dep. var. 2.772 2.145 1.137 0.856 26.921 7.910 8.598
Observations 264,772 264,772 262,960 263,045 264,772 264,772 264,772

Notes: This table examines whether NPs treat patients of the opposite gender differently compared to the same gender. We restrict the sample to patients treated
by NPs, and regress each outcome on the interaction between the indicator for female NPs and the indicator for male patients, the indicator for female NPs, and
the indicator for male patients. Columns 1-2 examine the balance in patient characteristics and add controls for the baseline control vector (i.e., ED-by-year,
ED-by-month, ED-by-day-of-the-week, and ED-by-hour-of-the-day indicators). Columns 3-7 add the full set of controls described in the notes to Table 2. The
outcomes in Columns 1-7 are, respectively, total number of Elixhauser comorbidities, predicted 30-day mortality, log length of stay, log cost of the ED visit, hospital
admission in the ED visit, 30-day mortality, and 30-day preventable hospitalization. Standard errors clustered by provider are reported in parentheses.
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Table A.16: Alternative Standard Error Clustering

Dependent variable

Log length
of stay

Log ED
cost Admission

30-day
mortality

30-day
prevent.
hosp.

(1) (2) (3) (4) (5)
Panel A: Clustering by provider
NP assignment 0.110 0.070 0.103 -0.116 0.252

(0.045) (0.030) (0.585) (0.115) (0.120)

Panel B: Clustering by ED-day
NP assignment 0.110 0.070 0.103 -0.116 0.252

(0.015) (0.010) (0.348) (0.113) (0.112)

Panel C: Two-way clustering by ED-day and provider
NP assignment 0.110 0.070 0.103 -0.116 0.252

(0.045) (0.030) (0.581) (0.113) (0.119)

Full controls Yes Yes Yes Yes Yes
Mean dep. var. 4.608 6.483 16.625 1.247 1.234
S.D. dep. var. 1.161 0.878 37.230 11.099 11.041
Observations 1,110,798 1,108,961 1,118,836 1,118,836 1,118,836

Notes: This table reports the robustness of our estimates to alternative standard error clustering approaches. Panel
A repeats our baseline estimates that cluster standard errors by provider. Panel B clusters standard errors by ED-day.
Panel C clusters standard errors using two-way clustering by ED-day and provider. The outcomes in Columns 1-5
are, respectively, log length of stay, log cost of the ED visit, hospital admission in the ED visit, 30-day mortality, and
30-day preventable hospitalization. All estimations include the full set of controls described in the notes to Table 2.
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Table A.17: Alternative Instruments

Dependent variable

Log length
of stay

Log ED
cost Admission

30-day
mortality

30-day
prevent.
hosp.

(1) (2) (3) (4) (5)
Panel A: Baseline
NP assignment 0.110 0.070 0.103 -0.116 0.252

(0.045) (0.030) (0.585) (0.115) (0.120)

Panel B: Include NPs with only one case
NP assignment 0.102 0.076 -0.011 -0.127 0.285

(0.045) (0.030) (0.594) (0.116) (0.125)

Panel C: Leave out the index case
NP assignment 0.123 0.074 0.198 -0.110 0.260

(0.046) (0.031) (0.605) (0.121) (0.126)

Panel D: Leave-out share of cases treated by NPs
NP assignment 0.117 0.069 0.926 -0.033 0.208

(0.052) (0.032) (0.628) (0.118) (0.121)

Panel E: Indicator for any NP on duty
NP assignment 0.108 0.080 0.185 -0.048 0.211

(0.049) (0.030) (0.643) (0.121) (0.130)

Full controls Yes Yes Yes Yes Yes
Mean dep. var. 4.608 6.483 16.625 1.247 1.234
S.D. dep. var. 1.161 0.878 37.230 11.099 11.041
Observations 1,110,798 1,108,961 1,118,836 1,118,836 1,118,836

Notes: Panel A repeats the baseline results in Tables 2 and 3. Panel B reports results using an alternative measure of
the number of NPs on duty as the instrument, which includes NPs with only one case in the analysis time window of
an ED-day cell. Panel C reports results leaving out the index case in measuring the number of NPs on duty. Panel
D uses the share of cases treated by NPs in the ED-day cell (leaving out the index case in calculating the share) as
the instrument. Panel E uses an indicator for any NP on duty as the instrument. The outcomes in Columns 1-5 are,
respectively, log length of stay, log cost of the ED visit, hospital admission in the ED visit, 30-day mortality, and 30-day
preventable hospitalization. All estimations include the full set of controls described in the notes to Table 2. Standard
errors clustered by provider are shown in parentheses.
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Table A.18: Sample Restricted to ED-Days with Zero or One NP

Dependent variable

Log length
of stay

Log ED
cost Admission

30-day
mortality

30-day
prevent.
hosp.

(1) (2) (3) (4) (5)
NP assignment 0.109 0.084 0.146 -0.042 0.219

(0.052) (0.032) (0.686) (0.128) (0.140)

Full controls Yes Yes Yes Yes Yes
Mean dep. var. 4.594 6.445 16.301 1.241 1.235
S.D. dep. var. 1.147 0.887 36.937 11.069 11.045
Observations 862,416 860,798 868,930 868,930 868,930

Notes: This table shows results using only patients in ED-day cells with zero or one NP on duty. The outcomes in
Columns 1-5 are, respectively, log length of stay, log cost of the ED visit, hospital admission in the ED visit, 30-day
mortality, and 30-day preventable hospitalization. All estimations include the full set of controls described in the notes
to Table 2. Standard errors clustered by provider are shown in parentheses.
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Table A.19: Including Hospital Admissions and Preventable Hospitalizations Outside VHA

Dependent variable
Admission 30-day prevent. hosp.

VHA only VHA+Medicare VHA only VHA+Medicare
(1) (2) (3) (4)

NP assignment 0.806 0.806 0.485 0.371
(0.798) (0.794) (0.205) (0.222)

Full controls Yes Yes Yes Yes
Mean dep. var. 20.054 20.267 1.704 2.166
S.D. dep. var. 40.040 40.199 12.941 14.556
Observations 545,791 545,791 543,253 543,253

Notes: This table shows the robustness of our results to including hospital admissions and 30-day preventable
hospitalizations outside of the VHA by examining patients who enroll in both the VHA and traditional Medicare. The
VHA provides linked Medicare claims for beneficiaries who are traditional Medicare enrollees. Columns 1 and 2 show
the robustness of results for hospital admissions during the ED visit. Column 1 measures only hospital admissions in
the VHA; Column 2 adds hospital admissions in theMedicare claims. To obtain full observation of hospital admissions
in non-VHA hospitals, Columns 1 and 2 restrict the sample to patients who enroll in traditional Medicare in the month
of the ED visit. Columns 3 and 4 show the robustness of results for 30-day preventable hospitalizations. Column 3
measures 30-day preventable hospitalizations in the VHA; Column 4 adds 30-day preventable hospitalizations in the
Medicare claims. To obtain full observation of 30-day preventable hospitalizations in non-VHA hospitals, Columns 3
and 4 restrict the sample to patients who enroll in traditional Medicare in both the month of the ED visit and the month
that follows. All estimations include the full set of controls described in the notes to Table 2. Standard errors clustered
by provider are shown in parentheses.
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Table A.20: Including All EDs Using NPs

Dependent variable

Log length
of stay

Log ED
cost Admission

30-day
mortality

30-day
prevent.
hosp.

(1) (2) (3) (4) (5)
NP assignment 0.107 0.047 -0.266 -0.087 0.141

(0.030) (0.018) (0.393) (0.076) (0.083)

Full controls Yes Yes Yes Yes Yes
Mean dep. var. 4.600 6.522 17.127 1.216 1.268
S.D. dep. var. 1.151 0.869 37.674 10.958 11.190
Observations 2,167,104 2,166,520 2,184,032 2,184,032 2,184,032

Notes: This table shows the results that include cases in all VHA EDs that use NPs regardless of whether the ED uses
physician assistants (but exclude cases in ED-day cells with physician assistants to focus on the margin between NPs
and physicians). This table expands the analysis sample from 1.1 million cases across 44 EDs in our main analysis to
2.2 million cases across 110 EDs. The outcomes in Columns 1-5 are, respectively, log length of stay, log cost of the
ED visit, hospital admission in the ED visit, 30-day mortality, and 30-day preventable hospitalization. All estimations
include the full set of controls described in the notes to Table 2. Standard errors clustered by provider are shown in
parentheses.
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Table A.21: Variance of Provider Effects on Medical Spending

NPs Physicians
Basic estimates 0.0537 0.0643
Split-sample estimates 0.0476 0.0445

Notes: This table reports variance of provider effects on log total spending of the ED visit. Total spending of the
ED visit is computed as the sum of the three main cost components: the cost of care at the ED, hospital admission,
and 30-day preventable hospitalization (we multiply the latter two components by the average cost of a hospital stay,
$19,220). Row 1 reports variance of provider effects 𝜃 𝑗 estimated using Equations (A.5) and (A.6). To account
for biases due to estimation noise in 𝜃 𝑗 , Row 2 reports variance estimated using a split-sample approach (details in
Appendix A.5.2). Column 1 reports variance for NPs. Column 2 reports variance for physicians.
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Table A.22: Relationship Between 𝑧-scores and Standard Errors

Dependent variable: provider z-score
(1) (2) (3) (4)

Provider std. error 0.166 0.203 -0.456 0.085
(0.434) (0.348) (0.385) (0.471)

Estimation sample Full Full Split Split
Provider group NPs Physicians NPs Physicians
Mean dep. var. 0.018 -0.137 0.071 -0.056
S.D. dep. var. 1.332 1.681 1.227 1.537
Mean std. error 0.307 0.226 0.283 0.202
S.D. std. error 0.515 0.206 0.365 0.124
Providers 75 644 64 474
Observations 75 644 128 948

Notes: This table reports coefficients from regressions of provider-specific 𝑧-scores on associated standard errors.
Columns 1 and 2 report results using 𝑧-scores and standard errors estimated based on the full sample. Columns 3 and
4 randomly split cases for each provider into two approximately equal-sized partitions and regress z-scores from one
partition on standard errors from the other partition, stacking the two partitions in the regressions. Columns 1 and 3
report results for NPs. Columns 2 and 4 report results for physicians. Standard errors clustered by ED are reported
in parentheses. The number of unique providers in Columns 1 and 2 is smaller than those reported in Section 2.3
because our deconvolution includes only providers with at least 150 cases (to restrict the inclusion of noisy provider
effect estimates). Columns 3 and 4 have smaller numbers of providers than those in Columns 1 and 2, respectively,
because Columns 3 and 4 further drop providers with fewer than 150 cases in each split sample.
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