We are grateful to Alyce Adams, Anna Aizer, Michelle Andrasik, Arthur Applbaum, David Autor, John Beshears, Sally Bock, Emily Breza, Amitabh Chandra, Niteesh Choudhry, Katherine Coffman, David Costanzo, Amy Finkelstein, Christopher Hucks-Ortiz, Damon Jones, Rem Koning, Lisa Larrimore Ouellette, Corinne Low, Elisa Macchi, Kyle Myers, Nathan Nunn, Gautam Rao, Andrei Shleifer, Stefanie Stantcheva, Adi Sunderam, and seminar participants from MIT, Stanford, Beth Israel Deaconess Hospital, Massachusetts General Hospital, Brookings Institute, Warwick, Stockholm School of Economics, Rutgers, San Diego State, Georgia State, Vanderbilt, BU, UCSD, Yale, University of Chicago, ICSSI 2022, EAAMO 2022, and the U.S. Food and Drug Administration, for helpful comments. Nick Shankar, Lukas Leister, Anne Fogarty, Emma Ronzetti, Xingyou Ye, and Zahra Thabet provided exceptional research assistance. We thank Harlan Krumholz, Joseph Ross, John Welsh and Research!America for sharing data and Michele Andrasik, Sally Bock, David Costanzo, and Christopher Hucks-Ortiz from the Fred Hutchinson Cancer Center for sharing experiences and expertise. The study is approved by the IRB at Harvard University (IRB21-1384 and IRB22-0017) and registered at the AEA RCT Registry (AEARCTR-0008957 and AEARCTR-0008959). We gratefully acknowledge financial support from the National Science Foundation under Grant No. DGE-1656518, the Knight Hennessy Scholars Program and the MacArthur Foundation. The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications.

© 2022 by Marcella Alsan, Maya Durvasula, Harsh Gupta, Joshua Schwartzstein, and Heidi L. Williams. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.
ABSTRACT

This article examines the consequences and causes of low enrollment of Black patients in clinical trials. We develop a simple model of similarity-based extrapolation that predicts that evidence is more relevant for decision-making by physicians and patients when it is more representative of the group that is being treated. This generates the key result that the perceived benefit of a medicine for a group depends not only on the average benefit from a trial, but also on the share of patients from that group who were enrolled in the trial. In survey experiments, we find that physicians who care for Black patients are more willing to prescribe drugs tested in representative samples, an effect substantial enough to close observed gaps in the prescribing rates of new medicines. Black patients update more on drug efficacy when the sample that the drug is tested on is more representative, reducing Black-White patient gaps in beliefs about whether the drug will work as described. Despite these benefits of representative data, our framework predicts that those who have benefited more from past medical breakthroughs are less costly to enroll in the present, leading to persistence in who is represented in the evidence base.
As a physician caring for patients in an urban safety-net setting and wanting to provide the best evidence-based preventive care... I would spend as much time on the science as I devoted to reinforcing with patients why they should still trust these guidelines and the process, despite the unrepresentative populations in the evidence base.

I Introduction

Innovation does not benefit everyone equally (Aghion et al. 2019; Jones and Kim 2018; Kline et al. 2019). Research investments skew towards developing technologies appropriate for more profitable groups (Cutler, Meara and Richards-Shubik 2012; Jaravel 2019; Kremer and Glennerster 2004; Michelman and Msall 2021), and diffusion often occurs faster among the well-connected or well-educated (Agha and Molitor 2018; Foster and Rosenzweig 2010; Glied and Lleras-Muney 2008; Hamilton et al. 2021; Papageorge 2016; Skinner and Staiger 2005, 2015). In this article, we explore a third dimension of innovation and inequality. We ask whether the low enrollment of certain groups in the R&D process (Koning, Samila and Ferguson 2021) creates gaps in how much group members use those technologies. Put differently, does how a technology is developed affect who adopts it?

Our context is new drug approval in the United States, where information on drug safety and efficacy – generated from clinical trials on human subjects – must be submitted to the U.S. Food and Drug Administration (FDA) before the drug can be sold. Racial inequality in both the production of clinical evidence and the eventual diffusion of products is commonplace (Ding and Glied 2022; Elhussein et al. 2022a,b; Jung and Feldman 2017; McCoy et al. 2019; Wang et al. 2007). As Figure I documents, Black patients are consistently underrepresented in clinical trials relative to their share in the U.S. population (Panels (a) and (b)) and are similarly underrepresented in prescriptions for newly approved medications (Panels (c) and (d)). The median clinical trial includes only five percent Black participants – less than half the population share of Black Americans.\(^1\)

\(^1\) Representation generally requires a benchmark. Throughout this article, we use the two pragmatic and most commonly used benchmarks in the literature: disease burden and population share. Census population is the implied metric in this plot, but we note that Black patients are often even more underrepresented relative to their disease burden (Green et al. 2022). Black underrepresentation has been stable over a longer time series than plotted in Panel (a) (Appendix Figure B1) and across ClinicalTrials.gov and FDA Drug Trials Snapshots data sets (Appendix Figure B2). In contrast, the participation of female patients – another group that has been historically excluded from clinical trials – has been increasing over time and in recent trials is comparable to the female population (see Appendix Figure B3). However, there are several conditions where women remain underrepresented in trials (Gupta 2022; Sosinsky et al. 2022; Feldman et al. 2019; Steinberg et al. 2021). There are other demographic groups (*e.g.*, Hispanic) that are underrepresented in medical research. We focus on Black Americans, in particular, for several reasons, including the history of racial discrimination and relatively low life expectancy (Arias et al. 2022). See Section VI.1 for additional detail.

\(^2\) We plot prescribing rates of new drugs per 1000 individuals in each racial group in Appendix Figure B4.

\(^3\) The median pivotal trial for a newly FDA-approved drug in 2021 included 4.5 percent Black participants while the median pivotal trial for a newly FDA-approved drug between 2015–2021 included 3.0 percent Black participants (see Figure I Panel (a)).
Figure I: Racial Inequality in the Development and Distribution of New Drugs

Notes: Panel (a) plots the median enrollee percentage by race (Black and White) for pivotal clinical trials, studies that support new drug applications to the FDA, over time. Panel (b) plots the cumulative probability of enrollee percentage for pivotal clinical trials by race. Panel (c) plots the median new drug prescription percentage by race in each year relative to its approval. Panel (d) plots the cumulative probability of new drug prescription percentage by race. In all figures, dashed connected dot (red) lines report shares for Black individuals and solid connected dot (blue) lines report shares for White individuals. Straight lines in Panels (a) and (c) plot population shares by race in the U.S. as reported in the 2020 Census (Black population share is 13.6 percent and non-Hispanic White population share is 59.3 percent; (U.S. Census Bureau 2021)). Data for Panels (a) and (b) are drawn from the FDA Drug Trials Snapshots data, and data for Panels (c) and (d) are from the Medical Expenditure Panel Survey (Agency for Healthcare Research and Quality 2022). See Data Appendix for further details.
Firms and regulators have faced pressure to address racial diversity in clinical trials in recent years, yet its complex causes have posed challenges for policymakers. These challenges include differential access to health care and academic research centers (Chandra and Skinner 2003; George, Duran and Norris 2014). They also include mistrust of medical research grounded in contemporaneous (e.g., Roberts 2012; Hoffman et al. 2016) and historical (e.g., Alsan and Wanamaker 2018; Eli, Logan and Miloucheva 2019) discrimination by the health care system and more widely (see Darity, Mullen and Slaughter 2022 and Logan and Myers Jr. 2022).

Although gaps in trial enrollment are well-documented, the consequences, if any, have not been rigorously studied. Two natural questions emerge: First, does representative data matter to physicians and patients? Second, if so, why are such data not (endogenously) supplied by the market? To address the first question, we conduct two survey experiments designed to understand physician and patient reactions to trial evidence. To address the second question, we turn to a theoretical framework that sheds light on how underrepresentation may persist, even if representative data leads to higher drug demand, and identifies potential levers for policy intervention, which we then assess in the context of case studies.

Our framework models how physicians and patients interpret the evidence that supports new technologies when making decisions about whether to adopt them. Through their instruction in evidence-based medicine (EBM), physicians are trained to consider whether a new product would work similarly well in their patients as those in its trial. Inspired by this process and the role reasoning by similarity and analogy plays in belief formation (e.g., Gilboa and Schmeidler 1995; Mullainathan, Schwartzstein and Shleifer 2008; Bordalo, Gennaioli and Shleifer 2020; Bordalo et al. 2022; Malmendier and Veldkamp 2022), we develop a model of similarity-based extrapolation. We assume that people update more readily from evidence when their patients (in the case of doctors) or people like them (in the case of patients) have more in common with the experimental sample. Our framework incorporates this assumption in a simple way: it assumes doctors and their patients have in mind a model where a given group characteristic (e.g., race) could be correlated with drug efficacy and update model parameters using Bayes’ rule. A key result of our framework is that – conditional on trial data – the perceived benefit of a drug will be increasing not only in the average reported efficacy, but also increasing at a decreasing rate in the share of one’s own group in the trial.

These predictions imply that a profit-maximizing firm could increase sales by recruiting a more representative sample. However, the trade-off in doing so is cost – our framework suggests that a history of underrepresentation in (voluntary) research leads Black patients to anticipate lower benefits of trial enrollment, making recruitment more costly. With the status quo recruitment infrastructure, firms enroll the lowest cost individuals – perpetuating doubt about whether trial findings extrapolate to other groups and generating a cycle of underrepresentation.

To empirically assess whether representation affects clinical decisions and health behavior, we designed and conducted two survey experiments among patients and physicians. After completing a short module
eliciting patient panel characteristics, physicians viewed profiles of diabetes drugs, including the drug’s mechanism of action and the design of the supporting clinical trials. For each profile, the share of Black trial subjects and average drug efficacy in trials were cross-randomized from distributions of values collected in a comprehensive search of clinical literature. In order to have sufficient variation in both sample demographics and efficacy within the mechanism of action of a given drug, the drugs shown were hypothetical – but were based on recently developed drugs to treat diabetes. After viewing each profile, physicians were asked to indicate their intent to prescribe the drug to patients in their care.

A separate experiment was designed for patients since they must fill and adhere to a prescription in order for health gains to be realized. We recruited 275 patients with diagnosed hypertension who identified as either White or Black. We then assessed their interest in a novel therapy to treat hypertension that had been tested in two sites with varying shares of Black participants. Other product characteristics, including drug efficacy in lowering blood pressure, were held constant.

We find that physicians are more willing to prescribe drugs tested on representative samples. A one standard deviation increase in the share of Black trial participants increases physician prescribing intention for a given drug by 0.11 standard deviation units. The magnitude of this effect on prescribing is medically meaningful and equivalent to roughly half the standardized effect of the drug’s efficacy. It also correlates strongly with donation behavior to campaigns aimed at boosting trial participation for underrepresented minority communities measured a few weeks after the initial intervention. In pre-specified heterogeneity analyses, we find that the effect of increasing Black representation in a clinical trial sample on prescribing intention is close to zero for doctors who do not routinely see Black patients and rises steeply in the share of a physician’s own patients who are Black.

Similarly, in our patient experiment, when Black respondents were presented with a representative trial, they viewed the drug in question as significantly more relevant for their own blood pressure control and were 20 percentage points more likely to state that the drug will work as well for them as it was shown to work in the trial. In contrast and consistent with the model’s prediction of diminishing returns to representation, we do not find significant effects associated with trial composition for White patients. The combination of physician and patient results suggest doctors are broadly acting as agents for their patients.

Survey experiments are important tools for uncovering peoples’ mental models and perceptions (Stantcheva 2022a,b), but are also subject to critiques, such as experimenter demand and social desirability bias. Our experiments were designed to mitigate such concerns. First, we used neutral recruitment materials stating our aim was broadly to understand views on medical research, copying language from a non-profit dedicated to the same whenever feasible. Second, we recruited both White and Black patients. If the response to sample representation was solely due to social desirability, we might expect

4 We informed physicians that the drugs were hypothetical so they would not try to prescribe them after the experiment.

5 Only 11.5 percent of physicians and 7.1 percent of patients attrited after consent and this was not differential across arms.
to find similar effects for both groups (we do not). Third, survey responses correlate with actual donation behavior in a follow-up study.

A related concern is that our experiment may have informed patients and doctors about something that they did not already know about – *i.e.*, the composition of clinical trials. If so, our results might overstate the degree to which trial representation influences treatment choices. To better understand baseline knowledge in our study populations, we reviewed literature on how doctors evaluate trials and obtained data on patients’ knowledge regarding medical research. Physicians trained at accredited medical colleges in the U.S. are explicitly taught to consider the applicability of trial findings to their own patients. A typical question from EBM training is: “Are the participants in the study similar enough to my patient?” (Masic, Miokovic and Muhamedagic 2008).

In our survey, 72 percent of physicians reported that they have been asked by patients whether a new medicine will “work in people like me.” Data from the non-profit Research!America reveal that Black and White respondents are aware of clinical trials (80 percent and 88 percent, respectively). However, Black respondents are less likely to believe science benefits them and less likely to consent if invited to participate in clinical trials than White respondents. Two additional pieces of qualitative evidence suggest trial representation is taken into account by (at least some) doctors and patients: one comes from stakeholder quotes compiled in the writing of a recent National Academies of Science Engineering and Medicine report (NASEM 2022) and another comes from the association between more representative clinical trials and higher prescribing rates for new drugs among Black patients (see Section VI.1 and Appendix Table D2).

Turning to mechanisms, we find that doctors – and to a greater extent, patients – lack confidence in extrapolating from samples that are not representative of them or their patients. This is true of both Black patients (when extrapolating across racial groups) and White patients (when extrapolating across countries). One question is whether this hesitancy to extrapolate, especially among doctors, is a mistake. It’s a difficult question to answer for several reasons. First, precisely because representation is so low, clinical trials offer limited direct evidence on this question. The best evidence we could find on the frequency of racial heterogeneity in pivotal trials is from Green et al. (2022), who show that out of 290 new drug approvals in the FDA Drug Trials Snapshots data, approximately 80 percent did not report treatment effects for Black patients separately. Among those that did, 91.4 percent and 98.1 percent found no difference in benefits and side effects, respectively. Second, because the mechanism of action of medications (*i.e.*, a drug’s pharmacodynamics) are often incompletely specified, it is difficult to provide assurances that the findings will extrapolate across patients with different characteristics without trial evidence. Third, there is a strong relationship between social class and race in the U.S. that could affect pharmacokinetics, or how the drug is metabolized. Indeed, in our experiments, respondents cited the possibility of biological, socioeconomic, and environmental differences that could alter drug performance as rationales for their lack of confidence. Fourth, even if physicians believe findings

6Emphasis added.
do extrapolate, they might internalize patients’ lack of confidence for a variety of reasons (Ellis and McGuire 1986), including that it might impact patient adherence. Our qualitative findings from doctors explaining why they care about representation include concerns regarding treatment effect heterogeneity and concern for patients’ views.

Importantly, we find increasing the representativeness of medical research can reduce health gradients. Physicians treating Black patients are considerably less willing to prescribe drugs approved on the basis of unrepresentative trials – at all levels of drug efficacy – as compared to physicians who treat White patients, mirroring the racial prescription gap observed in the Medical Expenditure Panel Survey (see Panels (c) and (d) of Figure I). When clinical trial samples are more representative of Black patients, however, this gap disappears. The difference between the share of Black and White patients who believe that the drug will work as well for them as it did in clinical trials is also eliminated when respondents are shown results generated from more representative data. These findings suggest that policies that increase representation in the evidence base for new technologies could narrow gaps in their adoption.7

Although such policies may take many forms, we discuss case studies of successful investments in what we call inclusive infrastructure, which our framework suggests could break the cycle of underrepresentation. We document considerable variation in trial representation across diseases and contrast two especially different cases: cancer and HIV/AIDS. Although research into both diseases is supported by large, coordinated networks with substantial federal investment, Black patients are well-represented in HIV/AIDS trials and poorly represented in cancer trials, relative to both population share and disease burden benchmarks. To understand the origins of these differences, we draw on interviews with clinical trials networks, qualitative research, and administrative data. We highlight two key features that differentiated HIV/AIDS trials: engagement with priority population communities from protocol design to recruitment, and site selection in and around safety net hospitals. These differences may explain both its more representative evidence base and, more suggestively, its higher diffusion rates of new products.8

Related Literature

Our work contributes to a growing literature that seeks to understand the role of innovation in creating or exacerbating health inequality. Previous studies have focused on how endogenous (demand-pull) investment can affect the composition of resulting technologies. Most closely related is Cutler, Meara

7We find a reduction in health disparities, despite not providing information on subgroup-specific treatment effects. As our model makes clear, if people start with a model that places positive probability on race mattering for treatment effects, then this is consistent with Bayesian reasoning (or similarity-based extrapolation more broadly): seeing a greater share of one’s own race in the trial makes it more likely that the trial results will apply to them. This suggests trials that represent the target population are beneficial for reducing health disparities, even when they are insufficiently powered to detect racial differences.

8Our discussion regarding the location of clinical trial study sites is related to the issue of site selection bias defined in Alcott (2015) as well as to a larger literature on the positive selection of study participants. In the context of clinical trials, Basu and Gujral (2020) model how selection creates a wedge between average treatment effects in the trial and marginal treatment effects for non-participants (i.e., efficacy vs. effectiveness). Positive selection is also important when computing cost-effectiveness for certain preventive health recommendations, see Einav et al. (2020), Kowalski (2022), and Oster (2020).
and Richards-Shubik (2012), who find that allocation of NIH grant funding disproportionately flows towards majority groups when physicians “treat what they see,” widening health gradients in settings where disease burden differs across groups. Michelman and Msall (2021) highlight the harm from regulatory restrictions on female participation in early-stage clinical trials, which dampens patent activity for female-specific conditions. Other scholarship focuses attention on how product characteristics affect diffusion. Papageorge (2016) develops a dynamic structural model of demand for medical treatment when patients trade-off health and work experience, illustrating how side effects associated with HIV medication could affect treatment decisions among employed persons. Hamilton et al. (2021) extend this model, describing more generally how patient preferences exert a demand externality, tilting innovation towards less efficacious drugs and lowering overall experimentation.

We build on these important contributions by developing and testing an alternative link between innovation and inequality: we ask whether unequal representation in the R&D process can induce inequality directly by making it more difficult for people to extrapolate from the data to their situation.

Our project is facilitated by the growing use of survey experiments in economics, which allows researchers to unpack reasoning and uncover viewpoints on pressing issues that might otherwise be difficult to credibly observe (Bordalo et al. 2016, 2019, 2022; Alesina, Miano and Stantcheva 2022; Elías, Lacetera and Macis 2019; Haaland, Roth and Wohlfart 2022; Kuziemko et al. 2015; Kesselheim et al. 2012; Stantcheva 2022). It also connects to research seeking to understand how end-users of evidence, such as policymakers (e.g., Hjort et al. 2021) or (in our case) physicians and patients, value different facets of the data-generating process.

The remainder of this paper proceeds as follows. Section II provides background information on clinical trials and relevant history. In Section III, we formalize how representative clinical trials may matter to patients and physicians. Section IV describes our two experiments. Section V presents our experimental results. We conclude by drawing lessons from case studies of successful efforts to improve representation in medical research.

II Background

This section discusses the institutional context of clinical research, including trial financing and costs, the regulatory review process, and factors that shape enrollment. We also describe how doctors and patients learn about new drugs and trial results. The features highlighted below are then incorporated into our framework. Appendix G provides additional details.
II.1 Clinical Trials Landscape

II.1.1 The Drug Development Process

Before a new drug may be marketed in the United States, the FDA must deem it to be both safe and effective. Sponsors seeking to obtain FDA approval typically conduct clinical trials – randomized evaluations of the new drug relative to a placebo or current standard of care (National Institutes of Health 2017). Data drawn from ClinicalTrials.gov, the largest global registry of clinical trials, suggest that private firms are the most frequent single primary sponsor of clinical trials (36 percent), an order of magnitude more frequent than U.S. federal agencies (3 percent).\footnote{See also Ehrhardt, Appel and Meinert (2015) for evidence of relative importance of industry sponsorship. We collected data on clinical trials that study products approved for sale in the United States, which are regulated by U.S. agencies. See Appendix H.1.1 for details on data.} The remainder of clinical trials are sponsored by academic institutions, hospitals, and non-profit organizations.\footnote{These institutions are flagged as “Other” in ClinicalTrials.gov. We reviewed institutions in this set to confirm that our interpretation of “Other” was correct.}

The drug approval process begins when sponsors identify a promising lead compound – the core component of what will become a drug. Sponsors typically file initial patent applications on the drug just prior to beginning Phase I clinical trials.\footnote{We verify this using data drawn from the U.S. Federal Register. In nearly all cases, core patents are filed just before the beginning of clinical testing. See Budish, Roin and Williams (2015) for a discussion on the timing of initial patent filing.} When firms begin clinical testing, they also file investigational new drug (IND) applications, which draw on data from pre-clinical testing. Patent terms are twenty years long, though firms may receive other forms of market exclusivity that can extend effective patent life.

Drug sponsors must complete three stages of clinical testing before applying for marketing approval. Phase I trials are intended to establish safety, determine appropriate dosages, and identify side effects. Phase II and III trials test efficacy, monitor safety, and compare the product to existing alternatives. Whereas Phase I trials often recruit a small number of healthy volunteers, Phase II and III trials recruit from the target patient population and may enroll thousands of people. Drug approval hinges on so-called “pivotal” trials, which are typically Phase III trials that aim to demonstrate efficacy.

II.1.2 The Cost of Clinical Trials

Clinical research is expensive. Recent estimates suggest that the median cost of a pivotal clinical trial providing evidence of efficacy to the FDA is about $19 million (Moore et al. 2018).\footnote{This estimate reported in Moore et al. (2018) draws on proprietary data and estimates the costs of pivotal trials associated with new drugs approved by the FDA in 2015 and 2016. Note that both smaller and larger estimates of trial cost have been reported in academic literature. For example, DiMasia, Grabowski and Hansen (2016) estimated the median cost of a Phase III trial as $200 million.} Industry reports suggest the most expensive step of the clinical trial process is the recruitment of patient participants in Phases II and III (Sertkaya et al. 2014). Accrual rates – the speed with which a trial can recruit eligible patients – are cited as the most common reason for trial delays and, in some cases, failure. Slower
accrual rates can lengthen clinical trial periods and erode patent life (Budish, Roin and Williams 2015). Thus, trial sponsors aim to identify and enroll patients as quickly as possible, often contracting with third parties that specialize in clinical trial enrollment, and sometimes moving operations overseas where recruitment costs tend to be lower (Qiao, Alexander and Moore 2019).

The cost – in terms of both money and time – of enrolling a new patient in a trial also varies across demographic groups. To the best of our knowledge, there are no publicly available estimates of trial recruitment costs.\footnote{For one discussion, see Barel, Bomen, and Morten (2021).} Two proxies do, however, provide some quantitative information on the size of these cost differences. First, consider the case of Moderna and one of the highest-stakes clinical trials in recent history: its first-generation SARS-CoV-2 vaccine. In September 2020, the company announced that enrollment was going to be slowed for the explicit purpose of improving representation of patients from racial and ethnic minorities in the trial. Moderna’s stock price fell eight percent upon the announcement (Appendix Figure B5) (Tirrell and Miller 2020). A second illustration is the cost of recruiting experimental subjects for online surveys. In Appendix Figure B6, we plot price quotes for U.S.-based respondents that we received for our own study from three large survey firms. All three firms quoted higher prices to recruit Black respondents as compared to White respondents – with prices ranging from 4 to 130 percent more to recruit a Black respondent. We endogenize these cost differences and explore their effects in our conceptual framework (Section III).

II.1.3 Enrollment Patterns and Barriers to Participation

The higher cost of recruiting Black Americans may play a role in explaining the trial enrollment patterns described in Figure I. Black Americans make up just five percent of trial enrollees in the median clinical trial – far less than the 13.6 percent of the U.S. population that they comprise (U.S. Census Bureau 2021). This level has remained flat since data collection efforts began (Appendix Figure B1). Based on the Research!America survey data, Black Americans are less likely to have confidence in research institutions, to believe science is beneficial for them or to enroll in clinical trials (Table I).\footnote{Note that these gaps are relatively constant when we control for income, education, and political affiliation (see Appendix Table C1). Though we also note that conditioning on many characteristics may not always be appropriate when quantifying racial gaps (see Appendix A.1).} These findings mirror those of our own survey data: an analysis of open-text responses reveals that Black patients are more likely to cite trust, privacy and racism as reasons not to enroll whereas White patients cite logistical barriers and co-morbidities (Appendix Figure B7).

II.1.4 Clinical Trials Data

Upon successful completion of the three phases of clinical trials, sponsors submit new drug applications (NDA) to the FDA. Based on these data, the FDA determines whether the drug will be approved for sale in the U.S. and for which specific indications. Currently, the FDA only requires that a drug

\footnote{For one discussion, see Barel, Bomen, and Morten (2021).}

\footnote{Note that these gaps are relatively constant when we control for income, education, and political affiliation (see Appendix Table C1). Though we also note that conditioning on many characteristics may not always be appropriate when quantifying racial gaps (see Appendix A.1).}
Table I: Views on Science and Clinical Trials Among U.S. Respondents

<table>
<thead>
<tr>
<th></th>
<th>Black Respondents (1)</th>
<th>White Respondents (2)</th>
<th>Difference (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confidence in Research Institutions</td>
<td>2.829</td>
<td>3.082</td>
<td>-0.253***</td>
</tr>
<tr>
<td>Heard of Clinical Trial</td>
<td>0.796</td>
<td>0.875</td>
<td>-0.079***</td>
</tr>
<tr>
<td>Would Enroll in Clinical Trial if Doctor Recommends</td>
<td>0.783</td>
<td>0.837</td>
<td>-0.054***</td>
</tr>
<tr>
<td>Trust Not Reason for Lack of Enrollment</td>
<td>0.432</td>
<td>0.536</td>
<td>-0.104***</td>
</tr>
<tr>
<td>Science is Beneficial</td>
<td>0.284</td>
<td>0.383</td>
<td>-0.099***</td>
</tr>
<tr>
<td>Would Get FDA-Approved Vaccine</td>
<td>2.907</td>
<td>3.069</td>
<td>-0.163</td>
</tr>
<tr>
<td>Kling-Liebman-Katz (KLK) Index</td>
<td>0.926</td>
<td>1.152</td>
<td>-0.226***</td>
</tr>
</tbody>
</table>

Notes: Table reports the survey responses among Black and White U.S.-based individuals across a number of questions regarding science. Data are from national survey conducted by the non-profit Research!America across several years. **Heard of Clinical Trial**, **Trust**, and **Science is Beneficial** are dichotomous variables. Other variables are on an ordinal scale. See Data Appendix for details on variable construction. Standard deviations are in parentheses. *, **, *** refer to statistical significance at the 10, 5, and 1 percent level, respectively.

is proven efficacious for the “target population,” which in practice translates into patients with the targeted condition. Most trials are therefore powered to detect a mean difference in the primary endpoint between treatment and control groups, and not to detect subgroup-specific treatment effects, which are uncommonly reported (Green et al. 2022). The most common statistic reported in abstracts and quoted in advertisements is therefore a drug’s average treatment effect, as demonstrated in the trial. Demographic characteristics of the sample are typically provided in the first table (the balance table) of journal articles or in the short description of the study population in drug advertisements.15

II.1.5 The Market for New Drugs

Although analogous approval processes occur worldwide, approval in the U.S. market is critical for pharmaceutical firms since it has an outsized role in the industry: U.S. sales were projected to account for nearly 50 percent of the $1.2 trillion in global pharmaceutical revenues earned in 2020 (IQVIA 2015) and a disproportionate share of pharmaceutical net income (Goldman and Lakdawalla 2018; Ledley et al. 2020). The U.S. is an important market since it currently lacks price controls other countries use to

15Sample size and measures of statistical significance and precision are also reported in abstracts. We reviewed publications associated with ~500 clinical trials, including 341 referenced in Welsh et al. (2018) and ~150 trials associated with products approved for sale in the U.S., published between 2015 and 2020. In nearly all cases, average effects of interventions were reported in the abstracts. Nearly all trials included some demographic information in a balance table, and approximately 50 percent reported race.
curtail spending and is permissive with respect to marketing. Given these features of the market, the framework in Section III focuses on firms choosing recruitment strategies to maximize profit, and we model demand for new drugs from the perspective of consumers situated within the U.S.

II.2 Demand for New Drugs in the U.S.

II.2.1 How Physicians Learn about New Drugs

RCTs are considered the gold standard for causal inference in medicine and have been since their popularization by the British Medical Research Council and subsequent adoption by the FDA in 1962 (Cochrane 1972). EBM is a step-by-step process that facilitates the “reasonable use of modern best evidence in making decisions about the care of individual patients” (Martí-Carvajal 2020, p.1). EBM’s five steps aim to integrate clinical experience, patient values and research findings (Blanco et al. 2014).

After physicians complete their formal training, trial information is often accessed via multiple sources including ClinicalTrials.gov, academic journals, society or national practice guidelines, pharmaceutical representatives, medical conferences, and, more informally, via online and in-person social networks.

To maintain an active medical license, many primary care doctors participate in continuing medical education (CME).

II.2.2 How Patients Learn about New Drugs

Patients learn about new drugs mainly through their physicians and via advertisements. The U.S. is one of two countries that allows firms to market medications directly to patients. Between 2016 and 2018, firms spent $17.8 billion on direct-to-consumer advertising (DTCA) associated with 553 unique drugs (U.S. Government Accountability Office 2021).

16 The steps include: a) problem definition; b) search for wanted sources of information; c) critical evaluation of the information; d) application of information to the patient; and e) efficacy evaluation of this application on patient. It is in this penultimate step – application of the information to the particular patient – that the specific question is asked: “Are the participants in the study similar enough to my patients?” (Masic, Miokovic and Muhamedagic 2008, p.222).

17 ClinicalTrials.gov is widely used as a source of information. As of April 2019, the website received more than 215 million page views per month and 145,000 unique visitors daily. See their website for additional details. Between 2014 and 2018, drug and medical device companies spent roughly $2 billion on physician payments, including speaking and consulting, meals, and travel (Ornstein, Weber and Jones 2019).

18 Family practice and internal medicine physicians participate in CME as required by their state board on an annual basis (Federation of State Medical Boards 2022). In addition, the American Board of Internal Medicine requires physicians to earn 100 “maintenance of certification” points each year and pass an exam (American Board of Internal Medicine 2022). Similar guidelines exist for the American Academy of Family Physicians (American Academy of Family Physicians 2022).

19 The U.S. and New Zealand are the only two countries that allow DTCA that includes explicit claims about the product (Schwartz and Woloshin 2019). This targeting can be very precise based on search history and sometimes includes links to clinical information.
are also key in disseminating information about new drugs – lists of trials and summaries of evidence exist for nearly all major categories of disease. Data from Research!America show that 80 percent of Black respondents and 88 percent of White respondents had heard of clinical trials (Table I).

Even if patients are aware of trials, they may not know precise details about their composition. However, individuals who have been historically excluded may nevertheless intuit such patterns, contributing to the more pessimistic views on science and research observed in Table I. We document in our survey of primary care physicians that 72 percent report having ever been asked by their patients about whether a new medication will “work in people like me.” The share of physicians asked this question on a regular basis is higher among those that treat Black patients (Appendix Figure B8). Our theoretical framework considers beliefs and behavior of U.S.-based patient-physician dyads with access to information on average treatment effects and demographics from trials – we then report results from experimentally manipulating these two features of trials in Section IV.

III Organizing Framework

The framework presented below serves three purposes. First, it formalizes how representation in the trial process affects perceived benefits of new drugs for patients and their doctors, yielding predictions we can then test experimentally. Second, it deepens understanding of why underrepresentation of Black patients is an equilibrium outcome, requiring us to move beyond experimental predictions and model the costs and benefits to firms conducting clinical trials. Third, it clarifies why patterns of underrepresentation have been so persistent, identifying an intertemporal externality associated with history.

III.1 Physicians and Patients

Physicians and patients use clinical trial information to understand the benefits of a new treatment and participation in clinical research. Both agents are important end-users of clinical trial information: physicians are the gatekeepers of prescriptions, whereas patients’ adherence behavior determines whether prescribed drugs will have the intended salubrious effect. To abstract from strategic interactions between physicians and patients and instead focus on the core issues surrounding consequences and causes of low representation, we make two assumptions that guarantee that a doctor’s decision of whether to prescribe a treatment (or recommend trial participation) aligns with a patient’s decision to adhere to the prescription (or participate in the trial). First, we follow the standard assumption that everyone shares a common prior. Second, we assume doctors are agents for patients and share their objective function.\footnote{These assumptions simplify the presentation of the model, but it will be clear that the intuitions that arise from the model do not hinge on them.}
III.1.1 Physician and Patient Beliefs

The assessments of patient-doctor dyad i are influenced by the current and historical trial data, which are in turn influenced by the current firm’s recruitment strategy and historic recruitment strategies of all firms (see Section III.2). Suppose the benefits to treatment for the patient in dyad i equal $b_i \in \{0, \tilde{b}\}$ for $\tilde{b} > 0$, where benefits are measured relative to not getting treatment. That is, the treatment either doesn’t work ($b_i = 0$) or works ($b_i = \tilde{b}$), and \tilde{b} parameterizes the stakes of the disease-treatment combination. The likelihood that the treatment works for a patient with characteristics x_i is given by $\theta(x_i) \equiv \Pr(b_i = \tilde{b}|x_i) \in [0,1]$. Overall, then, the perceived benefit of treatment, \hat{b}_i, is:

$$\hat{b}_i = \tilde{b} \times \mathbb{E}_i[\theta(x_i) \mid \text{trial data}],$$

where $\mathbb{E}_i[\cdot]$ is the expectation of dyad i on whether the treatment will work and this expectation is conditioned on data available at the time of the decision. The assumption that everyone applies the same model of inference allows us to simplify the presentation of the model in two ways. First, the expectation operator is identical across all dyads and we can write $\mathbb{E}_i[\cdot]$ as $\mathbb{E}[\cdot]$. Second, the perceived benefit of treatment \hat{b}_i only depends on i through i’s characteristics x_i (i.e., it is not heterogeneous conditional on x_i), so whenever it does not cause confusion we will write \hat{b}_i as a function of x_i and the available data h: $\hat{b}_i = \tilde{b}(x_i; h)$.

To focus attention on racial inequality and simplify the exposition, assume x_i is uni-dimensional and in $\{0, 1\}$, where $x_i = 0$ corresponds to “White” and $x_i = 1$ to “Black”. As noted above, clinical trials rarely report subgroup analyses. Instead, data from a given trial $t \in \{1, \ldots, T\}$ consist of the combination of the average reported efficacy and fraction of Black participants, (\bar{b}_t, \bar{x}_t). Average efficacy is defined as $\bar{b}_t \equiv \bar{b}_t \times k_t/N_t$, where \bar{b}_t denotes the benefits of the treatment if successful, k_t the number of trial participants for whom the treatment was in fact successful, and N_t the number of trial participants.21

The fraction of Black trial participants simply equals $\sum_j x_j/N_t$, where the summation is taken over the trial participants. The complete history of trial data h equals $h^{T-1} = (\bar{b}_t, \bar{x}_t)_{t=1}^{T-1}$ before treatment $t = T$’s trial is run and equals $h^T = (\bar{b}_T, \bar{x}_T)_{t=1}^{T-1}$ after. Our focus will be on beliefs about this treatment $t = T$ and, when it does not cause confusion, will omit the t subscript when referring to it.

The key assumption underlying patients’ and doctors’ model of inference $\hat{b}(-)$ is that, in assessing the likelihood of treatment success for patients with characteristics x_i, they extrapolate more from data on patients with those characteristics than from data on patients with different characteristics. For patients, this could reflect learning from similarity, central to a wide variety of evidence-backed frameworks in psychology and economics.22 For doctors, this is consistent with evidence-based medicine (see...

21For simplicity, we abstract from the need for a control group and also assume \hat{b}_i is known to the firm ahead of the trial, while k_i is stochastic and revealed by the trial.

22Such learning includes case-based learning (Gilboa and Schmeidler 1995), analogical reasoning (Jehiel 2005; Mullainathan, Schwartzstein and Shleifer 2008), associative learning (Bordalo, Gennaioli and Shleifer 2020; Mullainathan 2002), reinforcement learning (Daw 2014), and the idea that information from similar sources “resonates” more than information from dissimilar sources (Malmendier and Veldkamp 2022).
Section II.2.1). Formally, people form beliefs about $\theta(x_i)$ and hence $\hat{b}(x_i; h)$ by attaching probability m to characteristic x_i mattering.\(^{23}\) We then have

$$
\hat{b}(x_i; h) = m \times (\hat{b} \times \mathbb{E}[\theta(x_i)|h, x_i \text{ matters}]) + (1 - m) \times (\hat{b} \times \mathbb{E}[\theta(x_i)|h, x_i \text{ doesn’t matter}]).
$$

To generate simple closed-form expressions for the above expectations, we assume priors over θ are in the Beta family. If $\theta(x_i)$ is distributed according to Beta distributions prior to the trial data for treatment T, with parameters $(\alpha(x_i; h^T - 1), \beta(x_i; h^T - 1))$ conditional on x_i mattering and parameters $(\alpha(h^T - 1), \beta(h^T - 1))$ conditional on x_i not mattering, then:

$$
\hat{b}(x_i; h^T - 1) = m \times \left(\hat{b} \times \frac{\alpha(x_i; h^T - 1)}{\alpha(x_i; h^T - 1) + \beta(x_i; h^T - 1)} \right) \quad \text{posterior estimate of } b \text{ conditional on } x_i \text{ mattering}
$$

$$
+ (1 - m) \times \left(\hat{b} \times \frac{\alpha(h^T - 1)}{\alpha(h^T - 1) + \beta(h^T - 1)} \right) \quad \text{posterior estimate of } b \text{ conditional on } x_i \text{ not mattering}
$$

We set initial conditions for these parameters such that $\alpha(x_i, h^0) = \beta(x_i, h^0) = \alpha(h^0) = \beta(h^0)$ (i.e., in the absence of trial data agents assess the likelihood of treatment success as 0.5).

If clinical trial data are available, people form priors on the efficacy of novel treatments under investigation (more on this below), and update their beliefs once trial data on those treatments become available. We assume people attribute fraction $\hat{x}_T(x_i)$ of the overall number k_T of successes reported in the trial to study participants with x_i, where $\hat{x}_T(x_i)$ equals the fraction of trial participants with characteristics x_i.\(^{24}\)

Given this assumption, they then update their beliefs from trial data on treatment T according to Bayesian updating (see Appendix F.1 for precise equations).\(^{25}\)

\(^{23}\)In the case that x_i matters, they believe $\theta(x_i = 0)$ is statistically independent of $\theta(x_i = 1)$, so evidence on whether the treatment works on people with $x_i = 0$ does not speak to whether it works on people with $x_i = 1$ and vice-versa. In the case that x_i doesn’t matter, they believe $\theta(x_i = 0)$ equals $\theta(x_i = 1)$. We simplify by assuming that m is fixed over time – i.e., that people don’t update their beliefs about m.

\(^{24}\)Recall, the FDA does not require (and trials are therefore not powered to report) treatment efficacy conditional on x_i. The assumption that successes attributable to participants with x_i scale with their proportion in the trial is a conservative assumption on how people “fill in” missing data as it rules out physician- or patient-assumed heterogeneous trial efficacy as the mechanism deriving our predictions. Relaxing this assumption would increase the importance of representation in our model.

\(^{25}\)As is standard, people end up placing some weight on the prior (given by $\alpha/(\alpha + \beta)$) and some on the empirical success probability in the trial (k/N).
Proposition 1. Supposing \(m > 0 \) is fixed and average trial efficacy \(\left(\frac{k T}{N_T} \right) \) exceeds prior-belief ratios \(\alpha \left(\frac{x_i}{h^{T-1}} \right) \) and \(\beta \left(\frac{x_i}{h^{T-1}} \right) \), then:

1. \(\frac{\partial \hat{b}(x_i; h^T)}{\partial k^T} > 0 \): the perceived benefit of a treatment to a patient is increasing in efficacy, as measured within the clinical trial.

2. \(\frac{\partial \hat{b}(x_i; h^T)}{\partial \bar{\bar{x}}^T(x_i)} > 0 \): the perceived benefit of a treatment to a patient is increasing in the representation of patients with similar characteristics in the clinical trial.

3. \(\frac{\partial^2 \hat{b}(x_i; h^T)}{\partial \bar{\bar{x}}^T(x_i)^2} < 0 \): the degree to which increasing representation in a clinical trial positively impacts perceived benefits for group members is decreasing in the group’s existing trial representation.

The intuition is straightforward: when a treatment works better than expected in the trial, people update their beliefs upwards on treatment efficacy. But the degree to which they update depends on the (effective) sample size of the trial. Given that people place positive probability on characteristic \(x_i \) mattering, the effective sample for patients with characteristics \(x_i \) is increasing in their trial representation. Diminishing returns to representation follows from diminishing returns to sample size in (e.g., Bayesian) models of updating.

We assume posteriors from the most similar previous treatment become the prior for a novel drug. That is, letting the most similar past treatment to \(T \) come in period \(Z < T \), \(\alpha(x_i; h^{T-1}) = \alpha(x_i; h^Z) \), \(\beta(x_i; h^{T-1}) = \beta(x_i; h^Z) \), \(\alpha(h^{T-1}) = \alpha(h^Z) \), and \(\beta(h^{T-1}) = \beta(h^Z) \). Given this assumption, even when all groups begin with the same prior beliefs on efficacy at the beginning of time (in period 0), the underrepresentation of a given group will lead to a divergence in the perceived benefit of treatment over time. This divergence has important implications for behavior, described next.

III.1.2 Patient and Doctor Behavior

Suppose that a patient with characteristics \(x_i \) participates in a trial for treatment \(T \) when she is invited to participate and

\[
\hat{b}(x_i; h^{T-1}) - n^{trial} + \epsilon^{trial}_T \geq 0,
\]

where \(n^{trial} \) equals the non-price costs of participating in the trial (or convincing a patient to do so) and \(\epsilon^{trial}_T \) is a stochastic shock that is i.i.d. across \(i \) according to a cumulative distribution function \(F_{\epsilon}(\cdot) \).

26Proofs can be found in the Appendix Section F.3.
27For a numerical example, see Appendix F.5.
28Similar treatments could, for example, refer to treatments in the same category (drug class), or potentially all treatments for the same disease.
29Our analysis would be unchanged qualitatively if people’s priors were constructed as a weighted average of their posteriors regarding previous treatments, with more similar treatments receiving larger weights, or if priors were constructed through a simulation mechanism akin to that modeled by Bordalo et al. (2022).
30See Appendix F.5 for an example of this divergence.
Similarly, after a successful trial, a patient is treated for treatment T when indicated and

$$\hat{b}(x_i; h^T) - n_T - p_T + \varepsilon_{iT} \geq 0,$$

where n_T refers to the non-price costs of prescribing or adhering to treatment T, p_T is the price (i.e., copay) for T, and ε_{iT} is a stochastic shock that is i.i.d. across i according to $F_{\varepsilon}(\cdot)$. Let

$$d(x_i; h^{T-1}) = \Pr(-\varepsilon_{iT}^{trial} \leq \hat{b}(x_i; h^{T-1}) - n_T^{trial})$$

be the likelihood that a patient with characteristic x_i participates in a trial when invited. Similarly, let

$$d(x_i; h^T) = \Pr(-\varepsilon_{iT} \leq \hat{b}(x_i; h^T) - n_T - p_T)$$

be the likelihood a patient with characteristic x_i is treated for treatment T when the treatment is indicated.

Corollary 1. Given Proposition 1, a patient’s demand to participate in a given trial (or a physician’s decision to recommend a trial) is increasing in the degree to which patients who shared their (their patients’) characteristics were represented in previous trials Z for which the average trial efficacy exceeded prior-belief ratios. Formally, for such trials Z,

$$\frac{\partial d(x_i; h^{T-1})}{\partial \bar{x}_Z(x_i)} > 0.$$

This result implies that a failure to represent groups in a trial today creates an intertemporal externality, as it becomes more difficult to recruit those groups in a trial tomorrow. Such less-represented group members perceive limited benefits from novel treatments relative to members of more-represented groups.

Appendix F.2 formalizes two additional results on how beliefs impact behavior. First, Corollary 3 shows that the comparative statics Proposition 1 establishes for beliefs also hold for behavior: the demand for a new medication is increasing in the efficacy observed in the clinical trial and the representation of patients with similar characteristics in the clinical trial, with diminishing returns to the latter.31 Second, Corollary 4 shows how historical and contemporaneous underrepresentation of Black patients in clinical trials creates a gap in the perceived benefits and demand for novel drugs between White and Black patients, where White patients have higher perceived benefits and demand relative to Black patients. It goes on to show how increasing Black representation in clinical trials closes these gaps. But this begs a question that requires analyzing the decisions of pharmaceutical firms: Why do these gaps persist?

31The last result on diminishing returns requires mild regularity conditions on $F_{\varepsilon}(\cdot)$.

16
III.2 Pharmaceutical Firms

Pharmaceutical firms choose a trial-recruitment strategy \(r \) in compact space \(R \) to maximize profit

\[
\Pi_r = s_r \times v_r - c_r,
\]

where \(s_r \in [0, 1] \) is the success probability of the trial, \(v_r \geq 0 \) is the value of a successful trial to the firm, and \(c_r \geq 0 \) is the cost to the firm of running the trial. Both the value and cost to the firm of recruitment strategy \(r \) depend on patients’ and doctors’ assessments of the benefits of treatment, which in turn influence trial-participation and treatment decisions.

III.2.1 The Value and Cost to the Firm of Increasing Trial Representation

The behavior of physicians and patients described in Section III.1 influences firms’ recruitment decisions. Suppose firms have access to a status-quo technology for recruiting patients to clinical trials, which firms use to invite Black and White patients to participate in the trial in proportions \(\bar{x}_T^a \) and \((1 - \bar{x}_T^a) \), respectively. The actual trial representation of these groups under the status quo, \(\bar{x}_T^a \) and \((1 - \bar{x}_T^a) \), generally differs from the invited proportions – and this may vary by \(x_i \) (i.e., there may be differences in accrual rates across groups.)

Proposition 2. Let \(d(x_i; h^{T-1}) = \Pr\left(-e^{\text{trial}}_{iT} \leq \hat{b}(x_i; h^{T-1}) - n^{\text{trial}}_{iT}\right) \) be the likelihood a patient with characteristic \(x_i \) participates in a trial when invited. Then, the share of Black trial participants under the status quo recruitment technology is given by:

\[
\bar{x}_T^a = \frac{d(x_i = 1; h^{T-1}) \times \bar{x}_T^a}{d(x_i = 1; h^{T-1}) \times \bar{x}_T^a + d(x_i = 0; h^{T-1}) \times (1 - \bar{x}_T^a)}.
\]

Corollary 2. Proposition 2 implies that Black trial representation will be lower than its invited representation under the status quo technology when the demand for trial participation of Black patients falls below that of White patients. Formally, \(\bar{x}_T^a < \bar{x}_T^a \) when \(d(x_i = 1; h^{T-1}) < d(x_i = 0; h^{T-1}) \).

Under the status quo technology, a racial gap in perceived treatment benefits increases the racial gap in trial participation. Firms could choose to incur a cost to increase Black representation from its level under the status quo, and there would be value to them doing so: due to diminishing returns to representation (Proposition 1), it could increase demand among Black patients and their doctors without much harm to White patients or their doctors. That is, there’s value to firms investing in inclusive infrastructure, a term we develop and provide concrete examples of in Section VI. However, the trade-off involved with increasing participation of historically underrepresented groups is that investing in such infrastructure is costly. Specifically, we assume it requires a fixed cost \(f > 0 \) and, due to the mechanism highlighted in Corollary 2, the returns to such investment are not completely internalized by any given firm: It increases perceived benefits for all similar treatments in the future, including those developed by
Thus, firms underinvest in such technology relative to what is socially optimal. The externality a firm’s current recruitment decisions have on other firms’ future recruitment costs enables a cycle of underrepresentation.

III.3 The Cycle of Underrepresentation

Proposition 3. Suppose the most similar treatment Z to T outperformed patients’ prior expectations. When the fixed costs f to deviating from the status-quo recruitment technology to inclusive infrastructure are sufficiently large, then underrepresentation of Black patients in the historical trial leads to further underrepresentation of Black patients in the current trial:

$$\frac{\partial \bar{x}_T}{\partial \bar{x}_Z} > 0.$$

This result flows from the externality described above and illustrated with a numerical example in Model Appendix Section F.5.

Together, Propositions 1–3 describe a cycle of underrepresentation: (1) Trials in the past have not been representative of Black patients. (2) The lack of representation decreases the perceived benefits of treatments for Black patients and physicians who treat them. (3) The aforementioned (i.e., 1 and 2) make it more costly for firms to actively increase trial representation. (4) Trials today are not representative for Black patients. (5) And the cycle continues. Table II summarizes our theoretical predictions and how they connect to our empirical results, which we turn to next.

32 Firms may also be able to free-ride on investments made in inclusive infrastructure by the public sector or other firms (reducing fixed-costs f), which is an additional channel by which firms wouldn’t fully internalize the social benefits of such investments.

33 See Model Appendix Section F.4 for details.

34 While Proposition 3 suggests that Black representation could get worse over time in a cycle of underrepresentation, it abstracts from policy efforts to improve representation (see Appendix G.1). We view the proposition as identifying a force that pushes against such policy efforts.
Table II: Summary of Theoretical Predictions and Empirical Results

<table>
<thead>
<tr>
<th>Theory</th>
<th>Predictions</th>
<th>Exhibits</th>
<th>Result Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prop. 1.1; Cor. 3.1</td>
<td>Perceived benefits and demand for a new medication are increasing in trial-reported efficacy.</td>
<td>Table III</td>
<td>A 1 sd increase in efficacy increases physician prescribing intention by 0.28 sd.</td>
</tr>
</tbody>
</table>
| Prop. 1.2; Cor. 3.2 | Perceived benefits and demand for a new medication are increasing in representation of similar patients in clinical trials. | Table III | • For physicians, a 1 sd increase in representation increases prescribing intention by 0.11 sd.
• For Black patients, being assigned to the representative treatment increases self-reported relevance for their own care (“relevance”) and the likelihood that their posterior on efficacy is within a small neighborhood of the reported clinical-trial results (“loading on the signal”) 0.78 sd and 19.9 pp, respectively. |
| Prop. 1.3; Cor. 3.3 | Diminishing returns to representation. | Figure II(d); Table III | • For Physicians treating White Patients (“PWP”), we fail to reject the null hypothesis that a decrease in White representation (from existing high levels) does not change prescribing intention.
• For White patients, we fail to reject the null hypothesis that a decrease in White representation (from existing high levels) does not change relevance or loading on the signal. |
| Cor. 4 | • There are White-Black gaps in perceived benefits and demand for a new medication.
• Increasing Black representation in clinical trials narrows these gaps. | Figure III; Figure IV; Figure V | • PWP have a mean prescribing intention of 6.46 while PBP who are exposed to non-representative trials have a mean prescribing intention of 4.90. The prescribing intention of PBP who are exposed to representative trials increases to 6.26 and is statistically indistinguishable from that of PWP.
• Black patients who are shown the low representation trial are 26 pp less likely to load on the signal than White patients. Black patients shown the representative trials are only 5 pp less likely to load on the signal than White patients and this difference is statistically indistinguishable from 0. |
| Prop. 2; Cor. 2 | Groups that were historically underrepresented have a lower propensity to participate in trials today than historically well-represented groups. | Table I | Black respondents are 9.9 pp less likely to perceive science as beneficial, 7.9 pp less likely to have heard of clinical trials and 5.4 pp less willing to participate in clinical trials when recommended by a doctor. |
| Prop. 3 | In the absence of government regulation or other public-policy intervention, low representation of Black patients in clinical trials is a persistent equilibrium outcome. | Figure I(a); Section VI.1 | • Black participation in pivotal trials remains low at a median of five percent over time.
• In contrast to cancer trials, HIV/AIDS trials are associated with higher percent Black representation and greater prescribing of new therapies. |

Notes: Formatting of the exhibits indicate the type of evidence: *causal evidence; descriptive evidence; suggestive evidence.*
IV Experimental Design

IV.1 Experimental Design

To test several of these predictions, we conducted two survey experiments – one with a sample of primary care physicians, and one with a sample of patients. The experiments differed in important ways reflective of the different subject pools. Physicians, who are familiar with evaluating new medications as part of their practice, were asked to rate several hypothetical drugs. In each drug profile, the racial composition of the trial and efficacy were cross-randomized. Drug efficacy was used as a “numeraire” since it is widely considered the most important characteristic of a new medication. Prescribing intention and relevance for own patients for each medication were assessed. When surveying patients, a simpler exercise was presented: respondents were shown trial evidence associated with a single actual drug. Primary outcomes for patients included beliefs on the drug’s efficacy, relevance for own health, and willingness to “ask their doctor” about the new medication. We describe the experiments immediately below and discuss common critiques of survey experiments as well as how we endeavored to overcome them in Subsections V.2.4 and V.2.5, respectively.

IV.1.1 Physician Survey Experiment

We recruited physicians who met the following criteria: (i) actively practicing in primary care, (ii) practicing in an outpatient setting, and (iii) holding either an MD or DO. We worked with a licensed vendor of the American Medical Association’s (AMA) physician masterfile to identify and contact eligible physicians. We verified that survey respondents met all three criteria with a set of screening questions at the outset of the experiment. We pre-specified that the representativeness of the trial sample could interact positively with the demographic composition of the physician’s patient panel. Thus, to ensure suitable variation in the panel, we split zip codes into deciles by Black population, weighting each zip code by its total population, and requested that half of all physician contacts be pulled from the top decile, one-quarter from the bottom decile (these two deciles account for 15 percent of all primary care physicians), and one-quarter from the remaining deciles. This sampling approach was motivated by the fact that the distribution of Black patients across geographies and providers tends to be highly concentrated (Bach et al. 2004; Chandra, Frakes and Malani 2017).

35 Appendix Figure B9 depicts the flow of the physician and patient surveys.
36 We used hypothetical drugs instead of real drugs since there were not nearly enough real-world trials to experimentally include a range of Black patients and carefully titrated mechanisms of action and efficacy. Such an approach of using hypothetical drugs was followed by Kesselheim et al. (2012) to measure the influence of the source of clinical trial funding on the prescribing behavior of doctors.
37 This language was chosen intentionally to mirror standard DTCA in the U.S., one of the primary contexts in which patients engage, unassisted by a physician, with medical information.
38 We excluded hospitalists from our sample.
39 We determine zip code rank using 5-year zip code-level population estimates reported in the 2019 American Community Survey.
We sent each physician a personalized email (to their professional email address) inviting them to participate in a study. The email originated from a Harvard email account. We embedded a message as email text, which noted that the purpose of the study was to collect physician views on clinical trials research, that the study had received IRB approval, that their data would be securely stored, and that the study was not funded by industry but rather for academic purposes (see Appendix Exhibit E1). The letter explained that the physician respondents would be asked to rate eight hypothetical drugs and would be compensated $100 for their participation.\footnote{40}

Although the vignettes were hypothetical, the drugs were based on recently developed therapies to treat diabetes. We chose to focus on diabetes because it is a common condition that is typically managed by primary care providers, and several new therapies with novel mechanisms of action have recently been developed (American Diabetes Association 2020). Additionally, there are no established guidelines or biomedical findings that would justify differential treatment on the basis of race or ethnicity (Golden et al. 2012).

After confirming eligibility and answering questions about their practice, physicians were shown eight unique drug profiles. Profiles were selected randomly without replacement (\textit{i.e.}, physicians never saw an exact duplicate) and drug names were selected from 15 alternatives.\footnote{41} At the top of each profile, we listed the generic name of a hypothetical drug, which we developed by following standard naming conventions (\textit{e.g.}, suffixes and prefixes) that convey information about a drug’s type. Profiles also included the drug’s mechanism of action, the study type, sample size, and sample demographics (see Appendix Exhibit E2 for an example of a profile and Appendix Exhibit E3 for a table listing the hypothetical drugs shown to participants). Profiles were randomly assigned an efficacy value ranging uniformly from a 0.5–2.0 percent average reduction in A1c, conforming to typical values of FDA-approved oral antiglycemics (Wexler 2022; Nathan et al. 2009), and a percent Black of trial subjects value ranging from 0–35 percent, with lower values oversampled as trial diversity is typically low (Knepper and McLeod 2018; Dornsife et al. 2019).\footnote{42} Note that only efficacy and percent Black varied across the profile, with all else held fixed.\footnote{43} In each case, the trial type was listed as a double-blind active comparator trial and the sample size was fixed at 1,500 participants.\footnote{44}

40 We piloted this survey with $75 honoraria but raised compensation to increase yield. The only meaningful deviation from our pre-analysis plan was that we planned to recruit 1000 hypertensive patients, but it proved difficult to find that many who met both our demographic and medical criteria (Banerjee et al. 2020).

41 There were 8,640 unique profiles: 15 hypothetical drugs multiplied by 16 possible efficacy values (0.5–2.0 percent reductions in A1c in 0.1 percent increments) multiplied by 36 possible values of percent Black of trial subjects (0–35 percent in 1 percent increments).

42 Values of percent Black ranging from 0-4 percent were sampled with probability 0.33, values ranging from 5–14 percent were sampled with probability 0.34, and values ranging from 15–35 percent were sampled with probability 0.33.

43 Appendix Table C2 demonstrates that both the mean and the range of representation and efficacy values assigned to physicians are uncorrelated with a host of physician individual and patient panel characteristics.

44 Statistics on breakdown by sex were not provided in the drug profile. Although sex is an important characteristic, introducing this information would require respondents to weigh a variable that clearly influences pharmacokinetics and pharmacodynamics (see, for example, the NIH’s “sex as a biological variable” https://www.nih.gov/news-events/videos/considering-sex-biological-variable-clinical-trials). Moreover, the policy issue of underrepresentation of women in trials is not as acute (see Appendix Figure B3).
After viewing each profile, physicians were asked to rate how relevant the findings from the trial were for their patients (akin to the EBM step) and how likely they would be to prescribe the drug for patients with poorly controlled diabetes in their care. Both outcomes were on a scale from 0 to 10. After reviewing all drug profiles, respondents were asked about their confidence in extrapolating trial findings across demographic groups or geographies. In the final survey section, we asked questions about risk aversion, time preference, and altruism and posed open-text questions used in sentiment analyses.

We sent a follow-up survey to physicians one to three weeks after they initially completed the survey. In the follow-up survey, we allocated $5 to each physician and asked how they would like to divide the amount between two real-world campaigns supporting recruitment efforts for clinical trials (see Appendix Exhibit E6). The first campaign aimed to boost trial participation among the American public at large, while the second campaign aimed to boost trial participation for underrepresented minority communities.

IV.1.2 Patient Survey Experiment

Patients were recruited from Lucid, an online survey platform frequently used in social science research and marketing. Respondents were told that the survey was designed to solicit their views on health care and to understand the factors that affect their interest in health research. Eligibility criteria for passing the screening questions included: (1) self-reported non-Hispanic White or non-Hispanic Black race/ethnicity, (2) at least age 35, and (3) endorsement of a diagnosis of high blood pressure (alone or comorbid with other conditions). To verify that respondents had, in fact, been diagnosed previously with hypertension, they were asked to enter their latest systolic and diastolic blood pressure readings in an open-text field. Any respondent entering nonsensical values for blood pressure was deemed ineligible. We focused on high blood pressure instead of diabetes because a larger share of adults in the U.S. suffer from hypertension (45 percent) than diabetes (15 percent), thus facilitating recruitment (Ostchega et al. 2020; Center for Disease Control and Prevention 2021). We introduced consequentiality by explicitly encouraging patients to answer truthfully, and noting their responses would be used to generate a personalized report they could download and share with their primary care provider. Approximately 42 percent of patient respondents downloaded the personalized report.

We did not assume patients were familiar with clinical trials, so began the experimental module by providing basic details about the process. Before randomization, we told respondents that new medications to treat blood pressure are studied by researchers all the time. We noted these new

45 The exact question wording shown to physicians and a link to the survey can be found in Appendix Exhibit E5.
46 Both campaigns were run by a non-profit, the Center for Information and Study on Clinical Research Participation (CISCRP).
47 More information on this platform in the Data Appendix.
48 By declining to provide a range of values or a dropdown menu, we screened out any individuals who were unfamiliar with the scales for either measurement and thus less likely to carry the diagnosis.
49 A link to the questionnaire is found in Appendix Exhibit E7.
therapies typically aim to improve blood pressure control, reduce complexity, or decrease side effects from medication. We added that new medications may not be an improvement over previous therapies, and thus must be tested before they are widely available. Patients were then shown details about a new medication: a combination antihypertensive medication. We asked each patient whether they had heard of the new drug before (95 percent had not) and what they anticipated the effect of the medication would be on their systolic blood pressure (in units of millimeters of mercury [mmHg]).

Patients were then provided with findings from an actual clinical trial. We randomly assigned respondents to see trial data from studies that enrolled different shares of Black patients. The medication we presented was tested in two separate locations: in one setting, the percent Black in the trial was less than one percent – approximately one-third of trials in the ClinicalTrials.gov database meet such a criterium – and in the second, the percent Black in the trial was 15 percent. Efficacy was strong and comparable in both settings, lowering systolic blood pressure by about 15 mmHg.50 We thus randomized only the percent Black in the trial, holding efficacy and all other parameters of the trial constant.

After being shown information on the drug’s efficacy and the randomized racial composition of the study, in text and graphic form, patient respondents were again asked to provide their beliefs about the drug’s efficacy. Additionally, respondents reported how relevant the findings of the trial were to patients like them and whether they would be interested in “asking their doctor” about the medication.51 We also asked patients the same question we had posed to doctors about extrapolating from trials generically. If patients indicated that they were not confident in extrapolating, we asked them to indicate their rationale.

In the final sections of the survey, we inquired about trust, risk aversion, altruism, and time preferences. We also asked respondents to describe their current primary health care provider and current regimen for blood pressure management medication adherence. We concluded with open-text questions and a reference to learn more about clinical trials.

V Experimental Data and Results

V.1 Sample Characteristics

We invited 12,192 physicians to participate in the study.52 Amongst those who passed the screening questions, 87 percent completed the survey (137 physicians); completion rates did not vary significantly

50To hold efficacy precisely constant across trials, we reported to participants that treated subjects in their assigned trial saw their systolic blood pressure drop significantly compared to subjects in the control group, and then stated that across similar studies the average drop in systolic blood pressure among participants taking the medication was about 15 mmHg.

51The exact question wording shown to patients and a link to the survey can be found in Appendix Exhibit E8.

52In total, 4.7 percent of emails bounced and 1.8 percent of those invited started the survey. Our click-through rate of 1.8 percent was considerably higher than the 0.25–0.5 percent quoted to us by vendors as typical for email marketing campaigns (Richardson, Dominowska and Ragno 2007; Kanich et al. 2009).
across strata. Potential respondents were most commonly screened out if they were not practicing primary care physicians, or if they were hospitalists (i.e., not outpatient providers). On nearly all dimensions, the characteristics of physicians in our sample are comparable to those of physicians in the same zip code strata in the AMA Masterfile (see Appendix Table C3), with the following exceptions: sample physicians from the top Black share decile stratum tend to be older and from higher ranked medical schools, and physicians in other zip codes tend to have a higher share White population and a lower share Hispanic population.\(^{53}\)

We recruited 275 patients diagnosed with hypertension: 139 Black and 136 White respondents. Respondents are comparable to individuals with hypertension in the Medical Expenditure Panel Survey; in Appendix Table C5, we document that Black respondents in our survey are broadly similar to Black MEPS respondents by age, sex, geography, income, and insurance status, although they have slightly higher levels of college education (Blewett et al. 2019). White survey respondents exhibited similar sex, geography, and insurance characteristics to White MEPS respondents, though were slightly older and less educated than those in the MEPS data.\(^{54}\) There was no significant imbalance or differential attrition across arms for either survey (see Appendix Tables C2, C7, C8, and C9).

\section*{V.2 Estimation and Results}

To test whether increasing representation of Black patients (which we refer to simply as “representation”) in trials affects how physicians view study results and make prescribing decisions, we estimate the following equation:

\[Y_{jk} = \alpha_0 + \alpha_1 \text{Representation}_{jk} + \alpha_2 \text{Efficacy}_{jk} + \rho_k + \mu_j + \sigma_{jk} + \varepsilon_{jk}, \] (2)

where \(j \) denotes a drug and \(k \) denotes a unique physician respondent, \(Y_{jk} \) denotes our primary outcomes of interest, relevance for one’s own patients, and willingness to prescribe. Representation is the share of patients in a given trial who are Black. Efficacy captures the percentage point drop in measured hemoglobin A1c. Both efficacy and representation were cross-randomized in each profile. Our pre-specified main estimating equation includes physician fixed effects (\(\rho_k \)), drug mechanism fixed effects (\(\mu_j \)), and indicators for the order in which profiles were shown (\(\sigma_{jk} \)), though we also present results without any controls. The outcome and randomized attributes are standardized. Standard errors are clustered at the physician level. We also pre-specified heterogeneity, interacting trial demographics with those of the doctor’s panel, hypothesizing that if representation mattered to doctors, it would matter more for those that treat Black patients.

\(^{53}\)Approximately 60 percent of the physicians who completed the initial survey responded to the follow-up email. The physicians who responded to the follow-up survey were comparable to those who did not respond to the follow-up survey (see Appendix Table C4).

\(^{54}\)Our main results are robust to including person weights derived from a nationally representative survey, the Medical Expenditure Panel Survey (Appendix Table C6).
To test whether the racial composition of clinical trials affects patient beliefs and behavior, we estimate for patient i of race r the following:

$$ Y_{i(r)} = \beta_0 + \beta_1 \mathbf{1}_{i(r)}^{\text{Representative}} + X_{i(r)}' \Omega + \epsilon_{i(r)}, $$

(3)

where the indicator variable captures the difference between receiving the information that the percent Black of trial participants was 15 percent versus less than 1 percent. Recall that efficacy was held fixed, and all respondents saw the same drug. We estimate Equation 3 separately by patient race for three outcomes: relevance, efficacy beliefs, and asking one’s doctor. Relevance (of the drug for oneself) is transformed from a Likert scale (0 to 10) to standard deviation units. Loading on Signal is an indicator equal to one if patients’ beliefs about personal efficacy are within 1 mmHg of the reported treatment effect in the trial.\(^{55}\) Ask Doctor is an indicator variable equal to one if patients indicate a desire to talk to their doctor about the drug.

V.2.1 Main Findings

Table III presents our main results for both experiments: Panel (a) reports findings for physicians and Panel (b) for patients. Panel (a) Columns (1) and (2) include only the randomized components of drug profiles. A one standard deviation increase in the reported efficacy of the drug – a reduction in A1c of roughly 0.44 percentage points – increases relevance and willingness to prescribe a medication by 0.165 and 0.229 standard deviation units, respectively. Conditional on the drug’s efficacy, a one standard deviation increase in percent Black – about a 10 percentage point increase in Black trial participants – increases relevance for patients by 0.163 standard deviation units and willingness to prescribe the drug by 0.179 standard deviation units. Columns (3) and (4) present our main specification (Equation 2). We find representation affects both relevance and intent to prescribe, increasing both by approximately 0.11 standard deviation units.

The p-values displayed in the bottom rows of these last two columns indicate that – although we reject that the coefficients on representation and efficacy are equal – we cannot reject that representation has about half the effect of efficacy. In other words, physicians are approximately half as responsive to who was in the trial as they are to how well the drug works. The results in Columns (5) and (6) – in which we include interaction terms between experimentally-manipulated measures of representation and efficacy with each physician’s Black patient share – are key in understanding our results: the effect of increased Black representation on prescribing behavior is attributable to doctors that treat at least some Black patients. We observe no comparable (significant) interaction between doctors’ patient demographics and

\(^{55}\)Non-standardized outcomes and continuous updating outcomes yield similar results, which are gathered in the Appendix Table C10. Note that our approach deviated from many tests of Bayesian updating in that we did not vary the signal on drug efficacy (Hjort et al. 2021; Jensen 2010; Roth and Wohlfart 2020). Rather, the intervention informed patient respondents of a distinct feature of the data-generating process – the composition of the sample – that our framework predicts influences the weight they place on the signal in assessing how much the drug would personally benefit them. Our focus is then on this weight, as measured by whether patients’ posterior beliefs were within 1 mm Hg of the reported signal.
efficacy.

In Table III, characteristics of the physician’s patient panel enter linearly. Figure II explores these relationships nonparametrically by interacting quartiles of patient percent Black with the treatment and plotting the total effect (main effect + interaction). Panel (a) shows the results for efficacy, demonstrating a relatively constant effect on relevance and prescribing across the percentage Black of patients. By contrast, in Panel (b) representation has a nearly linear and upward-sloping relationship: the higher percentage Black in a doctors’ patient panel, the more they respond to the inclusion of Black patients in the trial. Note that this line naturally begins at zero over the domain we test: there is simply a null effect (not a strong negative effect) of increasing Black representation among physicians who care mostly for White patients.

To provide further assurance that it is indeed specifically the racial composition of the panel that is driving the heterogeneity, Appendix Figure B10 presents an omnibus test, in which physician-specific representation coefficients are regressed on panel demographic characteristics. A significant association exists only between the magnitude of the coefficient and the panel percent Black, with no strong relationship between representation and percent female, Hispanic, foreign-born, or senior citizen. Moreover, there is no significant relationship between physician-specific efficacy coefficients and percent Black, nor between the other demographic categories.56

We next turn to findings from patients in Panel (b) of Table III. Recall that in this specification (Equation 3), the treatment is an indicator variable. We split the sample by patient race, with findings from Black patients displayed in the odd columns and results from White patients shown in the even columns and a \textit{p}-value of the difference between the two samples in the bottom even rows. Column (1) reports that Black patients with hypertension assess clinical trials with 15 percent Black participants as 0.781 standard deviation units more relevant than trials with less than 1 percent Black participants – holding drug name, mechanism, and reported efficacy constant. This result is statistically significant at the 1 percent level. Column (3) indicates that these higher assessments translate into a positive but statistically insignificant willingness to ask their physician about the medication. Column (5) reports that the representative arm is associated with a 19.9 percentage point increase in believing the drug would perform as well on oneself as in the trial. The results from White patients with hypertension are mixed in sign and never statistically significant (Columns 2, 4, and 6).

Results from our patient sample are also broadly consistent with the model’s prediction of diminishing returns to representation: representation matters for Black hypertensive patients, and does not (over the domain tested) for White patients, similar to what we find for prescribing intentions in Figure II. Taken together, the results suggest physicians are acting as good agents for their patients – combining the evidence on efficacy while also taking patient views into account (Ellis and McGuire 1986; Barnato

56Appendix Figure B11 demonstrates few associations between physician-specific responses to representative trials and their background characteristics.
Table III: Physician and Patient Experimental Results on Effects of Increasing Representation

Panel A: Primary Care Physicians

<table>
<thead>
<tr>
<th></th>
<th>Relevance</th>
<th>Prescribing</th>
<th>Relevance</th>
<th>Prescribing</th>
<th>Relevance</th>
<th>Prescribing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Controls</td>
<td>Main Specification</td>
<td>Share Black Interactions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Representation</td>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.163*** 0.179*** 0.109*** 0.107***)</td>
<td>(0.039) (0.036) (0.029) (0.029)</td>
<td>(0.038 0.038)</td>
<td>(0.039) (0.039)</td>
<td>(0.007)</td>
</tr>
<tr>
<td></td>
<td>Efficacy</td>
<td>(0.165*** 0.229*** 0.189*** 0.281***)</td>
<td>(0.038) (0.039) (0.029) (0.032)</td>
<td>(0.036)</td>
<td>(0.043)</td>
<td>0.179*** 0.285***</td>
</tr>
<tr>
<td></td>
<td>Representation \times Patient Percent Black</td>
<td>0.004*** 0.004***</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>0.001</td>
<td>-0.001</td>
</tr>
<tr>
<td></td>
<td>Efficacy \times Patient Percent Black</td>
<td>0.001</td>
<td>-0.001</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td></td>
</tr>
</tbody>
</table>

\[p\text{-value: Representation=Efficacy} \quad 0.057^* \quad <0.001^{***} \]
\[p\text{-value: Representation} = \frac{1}{2}(\text{Efficacy}) \quad 0.655 \quad 0.314 \]

Doctor FEs | No | No | Yes | Yes | Yes | Yes | Yes | Yes
Profile Order FEs | No | No | Yes | Yes | Yes | Yes | Yes | Yes
Rx Mechanism FEs | No | No | Yes | Yes | Yes | Yes | Yes | Yes
Observations | 1,096 | 1,096 | 1,096 | 1,096 | 1,096 | 1,096 | 1,096 | 1,096

Panel B: Patients

<table>
<thead>
<tr>
<th></th>
<th>Relevance</th>
<th>Ask Doctor</th>
<th>Loading on Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Black Patients</td>
<td>White Patients</td>
<td>Black Patients</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Representative Treatment</td>
<td>0.781***</td>
<td>0.172</td>
<td>0.021</td>
</tr>
<tr>
<td></td>
<td>(0.167)</td>
<td>(0.159)</td>
<td>(0.077)</td>
</tr>
</tbody>
</table>

\[p\text{-value: Black Patients=White Patients} \quad 0.008^{***} \quad 0.893 \quad 0.030^{**} \]

Control Mean | -0.26 | -0.23 | 0.70 | 0.70 | 0.33 | 0.59 |
Observations | 139 | 136 | 139 | 136 | 139 | 136 |

Notes: Panel (a) reports OLS estimates for the outcomes of Relevance and Prescribing Intention on the sample of primary care physician respondents. Representation refers to the randomized percent Black in the trial unless otherwise indicated. Efficacy refers to the randomized percentage point drop in A1c. Prescribing Intention, Representation and Efficacy are standardized to a mean of 0 and a standard deviation of 1. Columns (3) and (4) report results from the main specification (Equation 2). Columns (5) and (6) interact Representation with the reported percent of patients that are Black in the physician’s panel, the main effect is included but not reported. 137 physicians participated in the experiment each assessing eight oral antiglycemic medications. Standard errors clustered at the physician level are in parentheses. 137 physicians participated in the experiment each assessing eight oral antiglycemic medications. Standard errors clustered at the physician level are in parentheses. Panel (b) reports OLS estimates from Equation 3 on the sample of patient respondents. Relevance refers to relevance for own care and is standardized to a mean of zero and standard deviation of one. Loading on Signal is an indicator equal to one if the respondent’s posterior was within 1 mmHg of the signal (i.e., between 14 and 16) and zero otherwise. Robust standard errors are in parentheses. *, **, *** refer to statistical significance at the 10, 5, and 1 percent level, respectively.
Figure II: Heterogeneity Among Physicians by Racial Composition of Patient Panel

Notes: Figure plots OLS estimates for two outcomes – Relevance (Panels (a) and (c)) and Prescribing Intention (Panels (b) and (d)) – from specifications estimated with interaction terms between each quartile of patient percent Black and either Representation or Efficacy. Fixed effects are residualized before estimating Equation 2. Figure plots the linear combination of the main effect and the interaction with each quartile; quartile one is defined as the reference. Robust standard errors are clustered at the physician level. 95 percent confidence intervals are displayed.

Lastly, we turn to heterogeneity in the patient results in Table IV. Given prior research on the legacy
of discrimination and the importance of trust (Alsan and Wanamaker 2018; Alsan, Garrick and Graziani 2019; Greenwood et al. 2020; Gruber and Frakes 2022), we investigated whether the effects of our intervention would interact with expectations of others’ trustworthiness. We measured this using the General Social Survey’s question on general trust: “Generally speaking, you would say that: ‘Most people can be trusted’ or ‘Most people cannot be trusted’ ” (Glaeser et al. 2000; Fehr 2009; Sapienza, Toldra and Zingales 2013; Smith et al. 2021) and saturated our treatment variable. Overall, fewer Black respondents (45 percent) than White respondents (60 percent) answer that most people can be trusted. Column (3) demonstrates that the interaction between being treated and expected trustworthiness has a sizeable effect on the willingness to ask a doctor about the drug. Put differently, even if Black patients believe findings are relevant and update in the expected direction on efficacy (Columns (1) and (5)), there may still be a barrier from inquiring about the medication from their primary care physician if they do not anticipate that others merit their trust.

Table IV: Heterogeneity Among Patients by Expectation of Trustworthiness

<table>
<thead>
<tr>
<th></th>
<th>Relevance</th>
<th>Ask Doctor</th>
<th>Load on Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Black Patients</td>
<td>White Patients</td>
<td>Black Patients</td>
</tr>
<tr>
<td>Treatment x (Expt. Trust.=1)</td>
<td>1.049***</td>
<td>0.190</td>
<td>0.291***</td>
</tr>
<tr>
<td></td>
<td>(0.236)</td>
<td>(0.209)</td>
<td>(0.104)</td>
</tr>
<tr>
<td>Treatment x (Expt. Trust.=0)</td>
<td>0.562**</td>
<td>0.141</td>
<td>-0.211*</td>
</tr>
<tr>
<td></td>
<td>(0.235)</td>
<td>(0.249)</td>
<td>(0.108)</td>
</tr>
<tr>
<td>Expt. Trust.</td>
<td>-0.276</td>
<td>0.060</td>
<td>-0.142</td>
</tr>
<tr>
<td></td>
<td>(0.269)</td>
<td>(0.245)</td>
<td>(0.115)</td>
</tr>
<tr>
<td>p-value: Expt. Trust. 1=0</td>
<td>0.146</td>
<td>0.880</td>
<td>0.001***</td>
</tr>
<tr>
<td>Observations</td>
<td>139</td>
<td>136</td>
<td>139</td>
</tr>
</tbody>
</table>

Notes: Table reports the OLS estimates for the outcome of Relevance, Ask Doctor, and Load on Signal on the interaction with trust and the main effect for Black and White patients. Expectation of Trustworthiness represents the patients’ response to the question, “Generally speaking, you would say that: ‘Most people can be trusted’ or ‘Most people cannot be trusted.’” p-value: Expt. Trust. 1=0 reports the p-value of the test between the coefficients of an indicator for treatment group (1 or 0) interacted with the expectation of trustworthiness. Relevance is standardized to a mean of 0 and standard deviation of 1. Load on Signal and Ask Doctor are binary. Columns (1), (3), and (5) report the estimates for Black patients, and Columns (2), (4), and (6) report the estimates for White patients. Robust standard errors are in parentheses. *, **, *** refer to statistical significance at the 10, 5, and 1 percent level, respectively.

V.2.2 Representation and Inequality

We next assess whether increased racial representation in clinical trials can close gaps similar to those documented in Figure I. Figure III documents that – when the share Black of the trial is low – a gap emerges between Black and White patients shown identical information on drug efficacy. Black
hypertensive patients’ views on how much the drug will lower their blood pressure are within 1 mm of the range of the reported clinical effect 33 percent of the time, compared to almost 60 percent of the time for White hypertensive patients. This difference is large and statistically significant. When the trial is more inclusive of Black patients, however, this gap closes. While the change for Black patients is dramatic, the effect on White patients is negligible. This result is also observed when plotting the distributions of prior and posterior views on drug efficacy – the latter under the different interventions. Before the information treatment, the prior distributions for Black and White patients are indistinguishable (see Figure IV, K-S test p-value = 0.960). Regardless of the trial arm they are assigned, White patients update vigorously on trial results, reporting an efficacy for their own health that is similar to the study finding. In contrast, Black patients map efficacy into effectiveness for own health much more readily when the sample is more representative (K-S test p-value 0.026).

Figure III: Loading on Signal by Race and Treatment Status

![Figure III: Loading on Signal by Race and Treatment Status](image)

Notes: Figure plots the share of respondents who “Load on Signal” – whose posteriors are within 1 mmHg of the report drug efficacy in our intervention (15 mmHg) – by race and treatment group. *Load on Signal* is an indicator variable that takes a value of one if the respondent’s posterior was between 14 and 16, and zero otherwise. The x–axis reports values for two groups of respondents: non-representative trials with <1 percent Black patients and representative trials with 15 percent Black patients. Results are plotted separately by respondent race. 95 percent confidence intervals are included.
Figure IV: Prior and Posterior Beliefs by Patient Race and Trial Representation

Panel A. Prior Beliefs

Panel B. Posterior Beliefs

Notes: Figure plots the prior and posterior distribution of beliefs about the perceived efficacy of the new antihypertensive medication for the patient’s own condition by respondent’s race and assigned treatment status (trial shown is either non-representative or representative). The signal on efficacy shown to patients (15 mmHg) is displayed as a black vertical line and was revealed to patients following elicitation of priors. A Kolmogorov-Smirnov test fails to reject the null that the priors are identical across race (p-value=0.960). For Black patients, Kolmogorov-Smirnov test rejects the null that the posteriors are identical across arms (p-value=0.026). For White patients, Kolmogorov-Smirnov test fails to reject the null that the posteriors are identical across arms (p-value=0.789).

Our results can be visualized by examining the gaps in prescribing intention across physicians who treat different categories of patients. We divide the sample of physicians into two groups: physicians who treat Black patients (PBP) and physicians who treat White patients (PWP). We define these categories by using the reported characteristics of each physician’s reported panel and whether they treat above or below the sample median for the relevant racial group.

Figure V plots prescribing intention across the physician types. Efficacy, as measured by A1c reduction,
is shown on the x-axis and the mean prescribing intention for each efficacy bin is plotted on the y-axis. The upward-sloping line indicates that physicians serving all types of patients are more likely to prescribe medications that were randomly assigned higher rates of efficacy. If a trial has less than 5 percent Black representation (the current median share of Black participation in clinical trials) prescribing intention of physicians treating more Black patients lies below that of physicians treating White patients at every efficacy level. However, when trials become more representative, this gap is erased.

Figure V: Physician Prescribing Intention by Patient Composition and Trial Representation

![Graph showing physician prescribing intention by patient composition and trial representation]

Notes: Figure plots the relationship between Efficacy and Prescribing Intention (on a 0-10 scale) by patient composition and percent Black of trial subjects in the profiles shown to physicians. PBP (Physicians treating Black Patients) denotes physicians who report above the median percent Black patients in their patient panel. PWP (Physicians treating White patients) is defined similarly with respect to White patients. NR indicates non-representative (<5 percent Black in trials) whereas R indicates representative (>= 5 percent Black in trial). Note that 5 percent is the median percent Black in clinical trials (see Figure I).

V.2.3 Understanding Mechanisms: Extrapolation

Why does representation matter? The model in Section III.1.1 captures the idea that extrapolation from trial data is facilitated by the similarity between patient characteristics and the trial sample. We probe that assumption by asking physicians and patients how confident they are that a drug found to be safe and effective in a study of White patients would be safe and effective for Black patients. Confidence is measured on a scale of 0 to 3 ranging from “Not confident at all” to “High confidence.” As such a question is likely to be less informative for White patients, who are typically well-represented in clinical trial evidence, we also asked respondents about how confident they are about the effectiveness of a
drug approved on the basis of evidence generated entirely outside of the United States. Such a scenario mirrors a recent trend in the “offshoring” of clinical trials (Petryna 2009).

For all respondents who were not highly confident about extrapolating – which turns out to be the vast majority – we sought to understand the rationale for their beliefs. In particular, we asked why they believed a drug on one sample would not perform equally well in another. Our multiple choice responses included worries that the drug would not work the same due to biological factors, socioeconomic and environmental factors, trust in the trial or other. Respondents who selected “other” provided open-text answers.

Results are reported in Table V. Panel (a) presents views from Black patients and doctors who treat them regarding extrapolating across race. Panel (b) presents views from White patients and doctors who treat them regarding confidence in extrapolating across geography. Each cell demonstrates the percentage of respondents who fall into that category. We find three broad patterns. First, few people fall into the highest confidence category for this exercise: ranging from 7.0 percent among PBP to 15.4 percent among PWP. Second, patients are less confident extrapolating on average than physicians: the mean level of confidence for Black and White patients is 1.0 (std. dev. 0.97) and 1.3 (std. dev. 0.91), respectively. For physicians treating these groups, the values are 1.72 (std. dev. 0.65) and 1.91 (std. dev. 0.65), respectively. In both instances, confidence among White patients and their doctors (Panel b) is slightly higher than their counterparts in Panel (a). Third, when providing a rationale for why a drug might work differently across samples, a nontrivial share select biological factors, though the most commonly chosen answer was socioeconomic and environmental factors.

Several doctors selected “other” and their open-text responses are reproduced in Appendix Table D1. When discussing extrapolation across race, doctors mention external validity, skepticism with results not obtained from representative samples, or a normative desire for the inclusion of diverse populations. With respect to foreign trial data, similar concerns were raised, though physicians also wondered about standards for studies performed abroad. One respondent noted that ease of extrapolation depends on where the study took place, stating: “It would depend upon the country. I would expect Western European and Canadian trials to be similar to my particular patient population.”
Table V: Extrapolation from Clinical Trial Data among Physicians and Patients

Panel A: Black Patients and Their Physicians (PBP)

<table>
<thead>
<tr>
<th>White to Black Patients</th>
<th>Confidence</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Not at All</td>
<td>Some</td>
</tr>
<tr>
<td>Black Patients</td>
<td>39.6%</td>
<td>28.1%</td>
</tr>
<tr>
<td>PBP</td>
<td>3.5%</td>
<td>28.1%</td>
</tr>
</tbody>
</table>

Panel B: White Patients and Their Physicians (PWP)

<table>
<thead>
<tr>
<th>Offshored to U.S. Patients</th>
<th>Confidence</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Not at All</td>
<td>Some</td>
</tr>
<tr>
<td>White Patients</td>
<td>21.3%</td>
<td>36.8%</td>
</tr>
<tr>
<td>PWP</td>
<td>1.5%</td>
<td>21.5%</td>
</tr>
</tbody>
</table>

Notes: Table reports clinical trial data extrapolation confidence and rationale among patients and physicians. Panel (a) reports confidence in extrapolation across race among Black Patients and PBP. Panel (b) reports confidence in extrapolation across geography among White Patients and PWP. Columns (1)–(4) report the percentage of respondents at each confidence level. If a respondent did not select “High” confidence in extrapolation, they were asked to provide a rationale. Column (5) reports the percentage of respondents who cite perceived biol. factors as the rationale for not having “High” confidence in extrapolation. Column (6) reports the percentage of respondents who cite perceived social and envir. factors as the rationale for not having “High” confidence in extrapolation. For each subgroup (Black Patients, White Patients, PBP, PWP), Appendix Table C11 reports confidence and rationale for both extrapolation questions (race and geography). PBP (Physicians treating Black patients) denotes physicians who report above the median percent Black patients in their patient panel. PWP (Physicians treating White patients) is defined similarly with respect to White patients.

V.2.4 Threats to Internal Validity

Concerns with survey responses as outcomes include social desirability or experimenter demand effects. As mentioned above, we added consequentiality to both the physician (i.e., reporting findings on trial preferences to federal agencies) and patient (i.e., personalized reports to be shared with their doctors) experiments. The majority of physicians and nearly half of all patient respondents requested access to these reports, suggesting they were indeed of value to participants. For the patient survey, all respondents had been diagnosed with hypertension and thus had limited incentives to distort responses to information about a new drug of potential health benefit for their specific condition. Our results on subsamples of respondents who asked for the reports are similar to those reported above (see Appendix Tables C12 and C6 for experimental results from physicians and patients, respectively).

The second key feature that reduces concerns about social desirability or experimenter demand effects is that we pre-specified heterogeneity by the race of the patient and the type of provider (those that treat more vs. fewer Black patients). If social desirability was playing a large role, patterns might be similar across Black and White patient respondents and across doctors treating all types of patients. In terms of

57Appendix Tables C4 and C13 show that patients and doctors who downloaded or requested the report are statistically similar to other respondents.
experimenter demand, the patients were only shown one trial so it would have been difficult for them to discern the rationale for the study. Indeed, a word cloud of responses to the open-ended question “What do you think this study was about?” shows only limited references to race or diversity (see Appendix Figure B12) with the dominant response being “Blood Pressure.” Similarly, our physician survey closely resembled the demographic information presented in biomedical publications and regulatory publications (e.g., the FDA Drug Trial Snapshots database).

We follow Kuziemko et al. (2015) and Elías, Lacetera and Macis (2019), who use donations and petitions to validate survey responses and ask physicians to make a decision about a donation in a follow-up survey. Our follow-up donation survey finds that the amount physicians allocate to the enrollment campaign targeting underrepresented minorities is strongly and significantly associated with physician-specific coefficients on representation (Table VI) and not with physician-specific responsiveness to efficacy. As the donation question was fielded to physicians as a follow-up question released 1–3 weeks after they completed the survey experiment, the results also suggest that our findings are unlikely to be driven by experimenter demand.

Table VI: Association Between Physician-Specific Coefficients and Trial Donations

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient on Representation</td>
<td>1.279***</td>
<td>1.229***</td>
</tr>
<tr>
<td></td>
<td>(0.449)</td>
<td>(0.436)</td>
</tr>
<tr>
<td>Coefficient on Efficacy</td>
<td>0.199</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.621)</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>3.534</td>
<td>3.485</td>
</tr>
<tr>
<td>Observations</td>
<td>82</td>
<td>82</td>
</tr>
</tbody>
</table>

Notes: Table reports OLS estimates from a regression of physician-specific coefficients for representation and efficacy on dollars donated to a campaign to increase the representativeness of clinical trials. Physicians were asked to indicate, out of a possible $5, how many dollars they would like the research team to donate to a campaign that advocates for increases in clinical trial representation versus a campaign that advocates for increases in participation in clinical trials more generally. Observations are at the physician level. Robust standard errors are in parentheses. *, **, *** refer to statistical significance at the 10, 5, and 1 percent level, respectively.

58We sent a follow-up survey after at least a week, in order to allow for some time between the actual survey and the donation question. There are few differences between our original sample and the sample of physicians who respond to the follow-up survey, with the exception of race. Physicians who reply to the donation question are more likely to be White than non-White (Appendix Table C4).
V.2.5 Threats to External Validity

There are several potential and interrelated concerns related to mapping our survey results to real-world behavior. First is the potential issue that we prime people to think about something obviously bad, which might impact their survey responses. Second is the possibility that we induce patients to construct beliefs on-the-fly about something (clinical trials) they are not well informed about. Third is that even if people do know about clinical trials, features of trials may not alter real-world prescribing or medication adherence decisions.

Regarding the notion that we used an obviously negative prime (underrepresentation) for Black respondents, this presumes that ex-ante we had access to our ex-post results. Recall that our null hypothesis was that representation did not matter, which is precisely what we can now reject. Thus, we view our design as making underrepresentation – a widely known aspect of medical research – especially salient in the context of the survey experiment. We also ask an open-text question immediately after the intervention for our patient respondents about the rationale for their responses; sentiment analysis reported in Table C15 indicates no significant difference in positive affect across race groups. Further, the time spent on the survey does not differ across those groups.

Of course, if patients are unaware of clinical trials and our surveys elicit responses that do not map onto real behaviors, our findings are less relevant. However, data from Research!America and our own follow-up survey indicate that patients are, in fact, aware of clinical trials and that Black patients believe that they are not well represented in trial samples. Returning to the Research!America data in Table I, Column (1) indicates that on average, 80 percent of Black respondents report that they have heard of clinical trials.

Regarding whether this information matters in practice, we document that it affects prescribing intention and updating. In the real world, we do see skepticism of research institutions and FDA-approved technologies (even those yet to be developed) among Black respondents in Table I. Qualitative comments from physicians in our study, as well as those attributed to a recent NASEM report, also suggest representation plays a role in how doctors practice medicine (see Appendix Tables D1 and D2 and Appendix Figure B13).

V.2.6 Robustness

We probe the robustness of our findings for physicians in Appendix Table C12. Columns (1) and (2) indicate that we obtain similar results when we use non-standardized versions of the outcomes. We replicate our main findings with standardized prescribing as the outcome in Column (3) and show that our findings are largely unchanged when restricting the sample to physicians who answer our follow-up donation question (Column 4) or among those who request a copy of our report to NIH and NASEM (Column 5). Column (6) shows findings on representation are not sensitive to the addition of controls.
selected using double-selection LASSO linear regression (Chernozhukov et al. 2018).59

Additional results from our physician sample are presented in Appendix Table C14. Column (1) reports our main results from Equation 2, while Column (2) assesses whether representation and efficacy are substitutes or complements by adding an interaction term; we find no evidence of either.60 Columns (4)–(6) indicate that our finding of substantial heterogeneity by Black patient representation in one’s panel is insensitive to varying definitions of physicians who treat Black patients. Our finding of a strong interaction between representation and reported patient percent Black (from Table III and replicated in Column (3)) is robust to dichotomizing patient percent Black at the median as well as to defining physicians treating Black patients using zip code-level statistics obtained from the U.S. Census Bureau. In Appendix Figure B15, we present further tests of robustness, including results from alternative specifications and on the sample of observations with at least one efficacy duplicate, and show that our finding of a significant coefficient on representation withstands all these tests.

We report robustness checks for our patient experiment in Appendix Table C6. Panel (a) demonstrates that results across our three outcomes are unchanged when we restrict to patients who requested the personalized report we offered, whereas Panel (b) shows that our findings are robust to weighting patients using person weights obtained from the Medical Expenditure Panel Survey. Panel (c) indicates that our results are robust to including LASSO-selected controls.

VI Discussion and Conclusion

VI.1 Case Studies

Recall that Section III detailed a key feature that helps to explain the current lack of representation in medical evidence: “missing” investments in inclusive infrastructure, which arise when no firm fully internalizes the benefits of developing inclusive recruitment systems. Here, we combine quantitative and qualitative evidence, including interviews with experts in trial design, to tighten the links between our theoretical and empirical findings and real-world practice.

Figure VI Panel (a) plots the median percent Black in pivotal trials across the most common diseases or conditions in the United States.61 Black patients are underrepresented relative to their population share across most conditions, and underrepresented relative to disease burden as well (see Appendix Figure B16), though there is significant variation across conditions. In Panel (b), we document that

59We also find that the order of profiles presented to physicians does not substantially impact their responsiveness to the treatment (Appendix Figure B14)

60See Appendix A.2 for additional discussion.

61All diseases or conditions presented except HIV/AIDS are among the ten leading causes of death in the United States (Heron 2021). We did not include unintentional injuries and suicide as there are few pharmaceuticals intended to prevent/treat such deaths.
higher representation of Black patients in clinical trials is associated with higher outpatient prescriptions of new drugs to Black Americans across various conditions.

Figure VI: Trial Representation by Condition and Association with New Drug Prescribing

Notes: Panel (a) plots the median share of Black patients in trials across HIV/AIDS and the ten leading causes of death (excluding unintentional injuries and suicide) in the United States (Heron 2021). Data on trial composition are from ClinicalTrials.gov. Panel (b) plots the correlation between the prescription rate of new medications to Black Americans and the median percent Black in pivotal trials. We construct the prescription rate as the percentage of newly marketed drugs (on the market for five or fewer years) received by Black Americans in each major condition category. In Panel (b), the y-axis value of Cancer includes outpatient cancer supportive therapies. CLRD, Diabetes, Heart, Kidney, and Flu/PNA indicate Chronic Lower Respiratory Diseases, Diabetes Mellitus, Diseases of Heart, Kidney Diseases, and Influenza and Pneumonia, respectively. Prescription data are from the Medical Expenditure Panel Survey. Observations associated with cancer and HIV/AIDS are denoted with diamonds (purple). See Data Appendix for details.

Next, we focus on cancer and HIV/AIDS (purple diamonds in Figure VI Panel b), which are instructive to compare for several reasons. Both disease areas benefit from decades of federal investments into research networks across the U.S. by the National Cancer Institute (NCI) and National Institute of Allergy and Infectious Diseases (NIAID), respectively. Federal investments into these networks are comparable, totaling $6.54 billion into NCI and $6.05 billion into NIAID in 2021 (Congressional Research Service 2022). Yet these networks have different origins, which shed light on differences in contemporary outcomes. While investment in cancer research was driven by top-down investments into academic medical centers, including the National Cancer Act of 1971 (Mukherjee 2010), HIV/AIDS research has been defined by active community involvement that fundamentally influences protocol design and recruitment methods. Interviews with the HIV Vaccine Trial Network (HVTN) highlighted a key resulting difference: in contrast to cancer, HIV/AIDS research sites have historically been selected in conversation with community partners and thus are not limited to large academic medical centers.

Table VII substantiates these anecdotes and makes clear how site selection shapes trial composition.

62There are 131 dedicated research centers that co-organize trials for cancer, and 108 co-organize trials for HIV/AIDS. Although the majority of HIV/AIDS funding is allocated via NIAID, the NCI also includes budgets for HIV/AIDS research.

63See Epstein (1996) for an excellent discussion of how activists shaped NIH-sponsored research and affected the development of clinical trials.
Amongst U.S.-based trial sites listed in the ClinicalTrials.gov database, sites that enroll for HIV/AIDS are approximately 12 (16) percentage points more likely to be located at a safety net hospital than sites that recruit for cancer (ADRD). Unsurprisingly, the demographic characteristics of the trial sites also differ. Appendix Tables C17 and C18 report information on the demographics of HIV/AIDS, cancer, and ADRD research centers at the Hospital Service Area (HSA) level for all clinical trials and for specific networks. Trial sites recruiting for cancer have, on average, a 10.6 percentage point higher share of non-Hispanic White population and a 3.0 percentage point higher share of those with private health insurance than trial sites recruiting for HIV/AIDS.64

Table VII: Trial Sites and Safety Net Hospitals

<table>
<thead>
<tr>
<th></th>
<th>DSH Index (1)</th>
<th></th>
<th>UCMP Care (2)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV/AIDS (Cancer Comparison)</td>
<td>0.116***</td>
<td>0.017***</td>
<td>0.008</td>
<td>0.007</td>
</tr>
<tr>
<td>HIV/AIDS (ADRD Comparison)</td>
<td>0.162***</td>
<td>0.050***</td>
<td>0.12</td>
<td>0.010</td>
</tr>
<tr>
<td>Constant</td>
<td>0.471</td>
<td>0.425</td>
<td>0.175</td>
<td>0.142</td>
</tr>
<tr>
<td>Observations</td>
<td>189,164</td>
<td>6,674</td>
<td>175,329</td>
<td>5,902</td>
</tr>
</tbody>
</table>

Notes: Table reports OLS estimates from a regression of an indicator for whether a trial site is at a safety net hospital (SNH). Each observation represents a specific site associated with a unique clinical trial and the data are limited to Cancer, HIV/AIDS, and ADRD trials. Following Popescu et al. (2019), we define a SNH as a hospital in the top quartile within the state it is located in either receiving a disproportionate share of funding from Medicaid or uncompensated care. In Columns (1) and (2), we use the Disproportionate Share Hospital (DSH) Index to define a SNH. In Columns (3) and (4), we use the cost of uncompensated care (as a percentage of total operating expenses). HIV/AIDS (Cancer Comparison) is an indicator variable equal to one if a trial site studies HIV/AIDS and zero if a trial site studies cancer. HIV/AIDS (ADRD Comparison) is an indicator variable equal to one if a trial site studies HIV/AIDS and zero if a trial site studies ADRD. Trial site information is drawn from ClinicalTrials.gov. See Data Appendix H.1.1 and H.3.8 for details. Robust standard errors are in parentheses. *, **, *** refer to statistical significance at the 10, 5, and 1 percent level, respectively.

Site selection is just one part of the R&D process – protocol development is another important step and also differs across conditions. Since 1990, The Division of AIDS (DAIDS) at the National Institute of Allergy and Infectious Disease (NIAID) has required that trial protocols include explicit community engagement plans, developed in conjunction with standing community advisory boards (CAB) (Strauss et al. 2001).65 The CAB meets regularly with trial investigators and consults on proposed protocols. Our discussion with HVTN leadership suggests DAIDS requirements have important spillover effects: although firms are not obligated to comply, industry sponsors often engage with communities in order to benefit from existing recruitment networks.

64Appendix Figure B17 demonstrates a strong correlation between trial site zip code share Black and share Black in a trial. See Appendix Section G.1 for information on recent cancer and ADRD initiatives to diversify site selection. We outline efforts to compensate patients for participation as well as improve the quality of hospitals that serve Black patients in Appendix Section G.1 (see also Chandra, Kakani and Sacarny 2020 for evidence of recent quality improvement in hospitals).

65Although some institutions maintain a CAB for cancer trials, the CAB requirement at DAIDS is unique (National Institute of Allergy and Infectious Diseases 2022).
The stark differences in trial composition for cancer and HIV/AIDS highlight the extent to which active, large-scale investments in inclusive infrastructure, in addition to incentives, can be important for improving health equity. Figure VI Panel (b) demonstrates a positive relationship between better representation in trials and prescribing rates. This descriptive finding is robust to dropping HIV/AIDS, (see Appendix Figure B18), though the main takeaway from this section is that HIV/AIDS is an “outlier” on many dimensions and therefore a potentially useful template for industry and regulators.

VI.2 Concluding Comments

This article investigates the causes and consequences of routine exclusion from the R&D process. Motivated by persistent, large disparities in both clinical trial participation and health outcomes, our empirical focus is on the underrepresentation of Black Americans in medical research. A theoretical model of similarity-based extrapolation clarifies the extent to which this exclusion shapes both patient and physician beliefs and behaviors. Black patients, and the physicians who treat them, find trial evidence less relevant for their care, and are less likely to prescribe medications, when experimental samples are not representative. However, when the evidence base is more racially representative, these updating and prescribing gaps close.

66 Another way HIV/AIDS is unique is Ryan White Care Act funding (see Dillender 2022). Title I funds cities and Title II funds states, a portion of which must go to the AIDS Drug Assistance Programs, which in turn, may have pull incentives on innovation as per Acemoglu et al. (2006), Finkelstein (2004), and Acemoglu and Linn (2004).
References

