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1  Introduction 

By 2024, it is estimated that the Covid-19 pandemic will have reduced economic output by $13.8 

trillion relative to pre-pandemic forecasts (International Monetary Fund 2022). Excess deaths 

during the pandemic are estimated at between 7 and 13 million (Economist 2022) while loss of 

future productivity and earnings from school disruption is estimated at between $10 trillion and 

$17 trillion (Azevedo et al. 2021). Previous pandemics also generated large losses: the 1918 flu 

killed 2% of the world’s population and reduced GDP by 6% (Barro, Ursúa, and Weng 2020); 

while the Black Death killed 30% of Europe’s population (Alfani 2022).  

Vaccines against Covid-19 were developed, approved, and distributed at record speed, 

sharply reducing both the economic and social losses. Yet many countries waited years for 

sufficient supply resulting in millions of deaths and trillions in economic damage that could have 

been averted. Estimates suggest that accelerating the capacity to produce 1.5 billion courses of 

vaccine annually by just three months would have had a social value of $1.3 trillion (Castillo et al. 

2021). This large social value eclipsed the revenue that pharmaceutical companies were earning 

from Covid-19 vaccines. The gap between private and social returns would likely lead companies 

to underinvest in the capability to produce pandemic vaccines both before and during pandemics 

relative to the social optimum without public policy to bolster that capability. 

This paper evaluates the economic case for public investments in the vaccine production 

capacity infrastructure to prepare for the next viral pandemic. We follow (and extend) Marani et 

al. (2021) who find a generalized Pareto distribution closely describes the frequency and intensity 

of pandemics from 1600 to the present. They keep constant the distribution of relative pandemic 

intensities while allowing the arrival rate of epidemics to vary over time in response to 

developments such as the invention of antibiotics or increased zoonotic spillover from climate 

change. We combine these projections with estimates of the economic costs of pandemics of 

different intensities from the economic literature (Barro, Ursúa, and Weng 2020; Keogh-Brown et 

al. 2009; Huber, Finelli, and Stevens 2018; United Nations Development Programme 2017; 

International Monetary Fund 2022), the value of lives lost, and losses from school closures 

(Azevedo et al. 2021). In total, we estimate that the world can expect to lose over $800 billion to 

future pandemics annually. To account for the uncertainties in predicting pandemics, we estimate 

pandemic losses under a range of scenarios: under the most optimistic scenarios expected losses 

are at least $400 billion annually, rising to $2 trillion annually under some plausible scenarios.  
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With these estimates of large expected losses in hand, we proceed to estimate the return to 

a combination of up-front and continuing investments that reduce the damage caused by 

pandemics. We evaluate the benefits of this approach against a counterfactual of investing in 

vaccine capacity at the maximum scale and speed that can be achieved once a pandemic starts. We 

find expanding production capacity for vaccines and supply-chain inputs so that there is sufficient 

production capacity to vaccinate 70% of the global population against a new virus within six 

months would generate expected net benefits of over $400 billion by cutting the time to complete 

that vaccination campaign by more than half. According to our model, the program would require 

an up-front investment on the order of $60 billion and $5 billion to be spent each year thereafter. 

These estimates account for the risk that vaccines might fail and that vaccine hesitancy might be 

high. 

Our analysis focuses on a global program since this would extend the benefits of 

accelerated and expanded capacity to the most people. However, full participation among all 

countries may not be achievable in equilibrium absent an international agreement. The reason is 

that advance investment by one country reduces its demand for in-pandemic capacity, generating 

positive spillovers for others, possibly leading to free riding. If countries fail to strike an 

international agreement, it is not an equilibrium for none of them to invest in advance. High-

income countries would reap large net benefits from going it alone and investing in advance 

capacity. For example, we calculate that if the United States alone undertook an advance-

investment program that enabled it to vaccinate 70% of its population within six months, this 

would generate an expected present value of $61 billion in benefits net of program costs, a gain of 

$47 billion ($141 per capita) over the counterfactual program. The benefits extend to middle- and 

low-income countries as well. For example, we calculate that an advance-investment program 

would provide Brazil net benefits of $57 per-capita.  

While our main focus is on preparatory investments in vaccine production capacity, the 

logic of our arguments extends to a broader set of investments that could mitigate pandemic harm 

including research, development and production of a universal coronavirus vaccine, development 

of broad-spectrum antivirals and new antibiotics and investments that would streamline vaccine 

approval during pandemics (such as the rules under which human challenge trials would be 

appropriate).  

Our paper builds on work in the scientific literature on the frequency of pandemics 
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including Marani et al. (2021), Carlson et al. (2021), and Bernstein et al. (2022) as well as an 

economics literature on the economic costs of specific past pandemics (cited above) and the 

expected costs of future pandemics (Fan et al. 2018; Nakamura et al. 2013, Keogh-Brown et al. 

2009, Martin and Pindyck 2015, Martin and Pindyck 2017, Jaimeson and Summers 2015) although 

our methods capture progress in the world’s ability to moderate the impact of pandemics. We 

expand on previous literature on the cost-effectiveness of pandemic preparedness including 

increased surveillance (Bernstein et al. 2022), research and development (Crank et al. 2019), 

vaccines including building up stockpiles (Meltzer, Cox, and Fukuda 1990; Prager, Wei, and Rose 

2017; Schoenbaum 1987), and all of the above (Yamey et al. 2017). Our model of the benefits of 

accelerating the pace of vaccination during a pandemic and the net benefits of investing in supply 

capacity draws on Castillo et al. (2021), Ahuja et al. (2021), and Athey et al. (2022). 

The paper is outlined as follows. Section 2 reviews and adapts analysis on the frequency 

and epidemics of varying intensities. After synthesizing estimates of various losses from 

epidemics, Section 3 derives a relationship between total losses and mortality intensity. Section 4 

describes a program to accelerate widespread vaccine availability by investing in pre-pandemic 

preparedness. Section 5 sets out the model for evaluates the program’s expected net benefits and 

Section 6 presents the results. Section 7 discusses whether international cooperation is needed to 

achieve these gains, and Section 8 concludes.  

2  Probability of Future Pandemics 

The analysis of the frequency of pandemics in history and of emerging trends by Marani et al. 

(2021) suggests that a pandemic of at least the magnitude of Covid-19 is a one in 138-year event. 

The authors document 476 significant epidemics since the year 1600, of which 271 have data on 

duration and deaths, forming the main basis of their estimations. Defining the intensity 𝑖𝑖 of an 

epidemic in a year to be the associated mortality expressed in terms of deaths per thousand 

population, The authors show that the distribution of epidemic intensity is well described by a 

generalized Pareto distribution having cumulative distribution function 

Φ0(𝑖𝑖) =

⎩
⎪
⎨

⎪
⎧𝛼𝛼 𝑖𝑖 = [0, 𝜇𝜇′)

1 − (1 − 𝛼𝛼) �1 +
𝜉𝜉(𝑖𝑖 − 𝜇𝜇)

𝜎𝜎
�
−1 𝜉𝜉⁄

𝑖𝑖 ∈ [𝜇𝜇′, 𝜇𝜇′′]

1 𝑖𝑖 ∈ [𝜇𝜇′′, 1000],

 (1) 
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where 𝜇𝜇 = 10−3 is the threshold below which epidemics are too small to leave a detectable record, 

𝛼𝛼 = 0.62 is the probability that the epidemic is below the threshold of detectability, and 𝜎𝜎 =

0.0113 and 𝜉𝜉 = 1.41 are shape parameters estimated by the authors via maximum likelihood. The 

complement to the cumulative distribution function, Φ�0(i) = 1 −Φ0(𝑖𝑖), sometimes called the 

exceedance probability, has the useful interpretation as the annual probability that an epidemic 

with at least intensity 𝑖𝑖 occurs.  

Marani et al. (2021) on do not provide guidance on how to extrapolate their estimates 

beyond the support of their data. Since we will be integrating over the distribution of pandemics 

of any conceivable size to compute expected pandemic losses, our approach requires such 

extrapolation. Our extrapolation strategy is embedded in equation (1). The support of the 

distribution has a natural upper bound at 1,000 deaths per thousand, since no more than the whole 

population can die out. It remains to specify the mass in the tail of the distribution between the 

highest intensity observed in their data and the natural upper bound of 1,000 deaths per thousand. 

Small changes in the mass of its fat tail can have a large influence on the expected value of a Pareto 

random variable, but extrapolation in this interval is challenging given the expanding confidence 

intervals there and the inevitably growing inaccuracy of the Pareto law as intensity approaches 

population size. We adopt a conservative approach to address this issue, capping the maximum 

epidemic intensity at the upper bound of the support of their data: 𝜇𝜇′′ = 5.7 deaths per thousand 

per year for the 1918 flu.1 We perform various sensitivity analyses for alternatives to the baseline 

distributions of pandemic risk. One of these doubles the upper bound on intensity to 𝜇𝜇′′ = 11.4.   

Starting with the basic distribution in (1), Marani et al. (2021) transform it in a way that 

maintains a constant distribution of relative intensities but allows the arrival rate of epidemics to 

vary over time. This approach allows them to exploit the long historical record to precisely estimate 

the distribution of relative intensities, overcoming the challenge that large pandemics are a “black 

swan” event, requiring a long time series to achieve a reasonable sample of them. The authors then 

use the frequency of recent pandemics to estimate the general arrival rate of any epidemic above 

a threshold size under modern conditions. Most pandemics within a given time band will be small 

but occur with enough frequency to provide a good estimate of an overall arrival rate, which can 

 
1 Our adjustment requires an atom of mass Φ�0(𝜇𝜇′′) to be added at 𝑖𝑖 = 𝜇𝜇′′. Marani et al. (2021) leave the distribution 
of intensity unspecified for 𝑖𝑖 < 𝜇𝜇′. The specification in equation (1) fills this gap in by adding an atom of mass 𝑎𝑎 at 
𝑖𝑖 = 0 and positing zero mass for 𝑖𝑖 ∈ (0, 𝜇𝜇′). 
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be extrapolated to pandemics of any size under the assumption that the historical distribution of 

relative intensities has remained constant.  

Formally, Marani et al. (2021) transform equation (1) via the metastatistical extreme value 

distribution (MEVD), averaging the distribution of the maximum order statistic from 𝑛𝑛𝑡𝑡 draws 

corresponding to the number of epidemics in year 𝑡𝑡. The resulting formula is  

Φ(𝑖𝑖) ≈
1
𝑤𝑤
�Φ0(𝑖𝑖)𝑛𝑛𝑡𝑡
𝑤𝑤

𝑡𝑡=1

, (2) 

where 𝑤𝑤 is the width of the window of years under consideration. Equation (2) has a particularly 

simple form if, following Marani et al. (2021), we take the window to be the most recent 20 years 

in their dataset, during which, according to their Supplementary Figure S1(a), there were 11 years 

without a detectable epidemic, six years with one, and three years with two. Substituting those 

data, (2) becomes 

Φ(𝑖𝑖) =
1

20
[11 +  6Φ0(𝑖𝑖) + 3Φ0(𝑖𝑖)2]. (3) 

The rate of epidemics over the last 20 years, which factors into Φ(𝑖𝑖) as we have just seen, 

turns out to be historically low, reflecting two opposing forces operating recently.2 Modern 

technology has allowed society to mitigate the death toll from pandemics. The invention of 

antibiotics sharply reduced the occurrence of the plague and other bacterial outbreaks. Better 

hospitals and medical care have also helped cut mortality. Working in the opposite direction, 

models of the effect of climate change on mammal movements suggest increasing zoonotic 

spillovers (the transmission of viruses and other parasites from animals to humans), increasing the 

frequency of future epidemics (Carlson et al. 2021).  

The use of the most recent 20 years of data for our baseline forecast allows it to reflect the 

current conditions. It is challenging to forecast how the balance of the contending forces will 

change, however; we simply assume that the current arrival rate will continue for the foreseeable 

future. To account for unknown changes in the arrival rate among other uncertainties inherent in 

forecasting future pandemics, we analyze the sensitivity of our estimates to changes in a variety of 

 
2 Previous estimates of the expected economic losses from future pandemics have tended to use a longer time horizon 
to estimate the intensity and frequency of pandemics, which may overestimate expected losses by underweighting 
progress made in combatting pandemics. This helps explain why our estimates are lower than Fan et al. (2018) despite 
their estimates covering losses from influenza epidemics alone. We also use different methods for valuing life. 
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assumptions and parameters. 

3  Social Losses in a Pandemic 

3.1  Approach 

Having estimated the arrival rate of pandemics of various intensities, we next need to pair that with 

estimates of the losses to society conditional on experiencing a pandemic of a given intensity to 

calculate expected harm from the next pandemic. The literature suggests that expected losses from 

epidemics are dominated by high-intensity pandemics that come along only rarely. In this section, 

we seek to refine existing estimates of the possibly nonlinear relationship between the intensity 𝑖𝑖 

of an epidemic (measured by relative mortality) and associated social losses.  

 Some of the literature focuses on a particular category of social loss, say just deaths or just 

the shortfall in economic output. (Fan et al. (2018) combine value of lives lost with falls in 

economic output while Keogh-Brown et al. (2009) also add losses due to school closures). Here, 

we seek a comprehensive measure that, in addition to these two categories, includes longer-term 

losses from the decline in human capital associated with closures of school and training programs. 

Our approach will be to use the best available information from the literature to map pandemic 

intensity into each category of loss and then sum the categories to obtain total losses to society. 

Our total measure will still be conservative since it will not include difficult-to-estimate categories 

such as the disutility of social distancing and pain and suffering from sickness.  

 Conditional on an epidemic of intensity 𝑖𝑖 arriving in year 𝑡𝑡, let 𝑀𝑀𝑀𝑀𝑡𝑡(𝑖𝑖) denote mortality 

losses from that pandemic, 𝑂𝑂𝑀𝑀𝑡𝑡(𝑖𝑖) denote economic-output losses, and 𝑀𝑀𝑀𝑀𝑡𝑡(𝑖𝑖) denote learning 

losses. Let 𝑀𝑀𝑀𝑀0(𝑖𝑖), 𝑂𝑂𝑀𝑀0(𝑖𝑖), and 𝑀𝑀𝑀𝑀0(𝑖𝑖) denote the analogous expressions for the base year 𝑡𝑡 = 0. 

We will discuss the estimation of each loss category in turn, starting with 𝑀𝑀𝑀𝑀𝑡𝑡(𝑖𝑖). 

3.2  Mortality Losses 

Mapping intensity 𝑖𝑖 into mortality losses 𝑀𝑀𝑀𝑀𝑡𝑡(𝑖𝑖) requires two steps. First, intensity 𝑖𝑖, which is a 

proportion, needs to be converted into expected deaths in year 𝑡𝑡, denoted 𝑑𝑑𝑡𝑡, which is a level. 

Second, we need to place a monetary value on death so it can be combined with dollar losses in 

other categories. Marani et al. (2021) define 𝑖𝑖 as deaths per 1,000 population, i.e., 𝑖𝑖 =

𝑑𝑑𝑡𝑡 (𝑁𝑁𝑡𝑡 1000⁄ )⁄ , where 𝑁𝑁𝑡𝑡 denotes population in year 𝑡𝑡. Inverting, 𝑑𝑑𝑡𝑡 = 𝑖𝑖𝑁𝑁𝑡𝑡 1000⁄ . To convert 𝑑𝑑𝑡𝑡 
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into a monetary value, we use the value of a disability adjusted life year (DALY) implicit in the 

World Health Organization (WHO) standard for cost-effective health interventions. As reported 

in Marseille et al. (2015), the WHO judges a health intervention in a country to be cost effective 

if the required spending per DALY saved is less than three times that country’s GDP per capita. 

Technically, DALYs lost equals the sum of years of life lost due to premature mortality (YLL) and 

years of health life lost due to disability (YLD). Continuing our focus on mortality rather than 

morbidity, we will just consider YLL as a source of lost DALYs and ignore YLD, continuing to 

recognize this entails that our social-loss measure will be conservative.  

To convert deaths into DALYs lost requires an estimate of YLL per death. The age profile 

of mortality varies considerably across diseases, leading to considerable variation in YLL per 

death. Table 1 lists five major recent pandemics for which we can obtain good estimates from the 

literature for the reported variables. As the table shows, the YLL estimate for Covid-19, 16.0, is 

much lower than that the 50.1 for the 1918 flu, reflecting the well-known facts that deaths were 

skewed toward the elderly for Covid-19 but toward the young for the 1918 flu. Our calculations 

use the average YLL across these five diseases, 29.4. Multiplying three times the $12,263 global 

GDP per capita in the base year (2021) times 29.4 YLL per death yields $1.08 million in the base 

year. We have 

𝑀𝑀𝑀𝑀0(𝑖𝑖) = �
$1.08 million ∙ 𝑁𝑁0

1000
� 𝑖𝑖. (4) 

Mortality losses 𝑀𝑀𝑀𝑀𝑡𝑡(𝑖𝑖) in year 𝑡𝑡 can be derived from 𝑀𝑀𝑀𝑀0(𝑖𝑖) under assumptions on global 

annual growth rates for GDP per capita and population. Assume GDP per capita grows at a 

constant rate 𝑦𝑦. Our calculations set 𝑦𝑦 = 1.6%, the long run global rate projected through 2060 by 

OECD (2022). Population growth is a more complex issue. If the current slowdown in population 

growth continues, the world will eventually experience population declines, though presumably 

these declines would slow before they lead the population to disappear. An additional complexity 

raised by a changing population is that it changes the nature of the optimal vaccine program. It is 

challenging enough to model the costs of a program targeting a fixed population let alone one that 

adjusts dynamically to a first growing and then shrinking population. We finesse these 

complexities by considering a fixed population 𝑁𝑁0 for the analysis. Our results will then apply to 

a program optimized for current citizens, understating that installing even more capacity to 

accommodate larger future generations would have positive option value. Under the preceding 



8 
 

assumptions and parameter values,  

𝑀𝑀𝑀𝑀𝑡𝑡(𝑖𝑖) = (1 + 𝑦𝑦)𝑡𝑡𝑀𝑀𝑀𝑀0(𝑖𝑖).  (5) 

3.3  Economic-output Losses 

Turn next to the estimation of economic-output losses 𝑂𝑂𝑀𝑀𝑡𝑡(𝑖𝑖) conditional on the arrival of an 

epidemic of intensity 𝑖𝑖 in the base year. We include in this category only short-run deviations in 

economic output from trend caused by pandemics, deliberately excluding longer-term losses such 

as reduction in future wages due to declines in human-capital, covered by a later calculation.  

Table 1 shows the five major pandemics over the previous century for which we could find 

a credible estimate of economic-output losses. All but one of the estimates come from studies in 

the literature that use deviations for trend GDP as the main determinant of economic losses.3,4 The 

last column puts all the economic-loss estimates quoted by the indicated studies on the same 

metric, an annual global loss in percentage terms, denoted ∆. The table also shows the estimate of 

intensity taken from Marani et al. (2021) in all cases except Covid-19, which is not in their data.   

 The five rows in Table 1 provide a sample that can be used to estimate the relationship 

between ∆ and 𝑖𝑖. Figure 1 plots those variables using log scales on the axes along with a regression 

line estimated via ordinary least squares to be  

ln∆ = 0.74
(0.56)

+ 0.46
(0.08)

ln 𝑖𝑖, (6) 

where standard errors are reported in parentheses below coefficient estimates. The regression’s fit 

is good, with 𝑅𝑅2 = 0.92.  

The regression can be paired with the distribution of pandemic intensity from equation (3) 

to compute expected annual economic output losses from pandemics in the base year:  

𝑂𝑂𝑀𝑀0(𝑖𝑖) = 𝑌𝑌0𝑁𝑁0
∆(𝑖𝑖)
100

, (7) 

where 𝑌𝑌𝑡𝑡 denotes per-capita GDP in year 𝑡𝑡, implying 𝑌𝑌0 is per-capita GDP in the base year. The 

function ∆(𝑖𝑖) = 2.09𝑖𝑖0.46 can be derived from regression (6) by exponentiating both sides.  

Dividing by 100 converts the percentage into a proportion. Multiplying by 𝑌𝑌0𝑁𝑁0, which equals 

 
3 The one exception is the estimate for Zika in United Nations Development Programme (2017). 
4 We have adjusted for the fact that some studies include the value of lives lost and others do not by taking out the 
value of lives lost from those that include it and adding it separately using our own valuation later in the calculation. 
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GDP in the base year, converts a proportional loss into a loss in levels. One can derive 𝑂𝑂𝑀𝑀𝑡𝑡(𝑖𝑖) from 

𝑂𝑂𝑀𝑀0(𝑖𝑖) by analogy to equation (5).  

3.4  Learning Losses 

The final category of losses we consider is 𝑀𝑀𝑀𝑀𝑡𝑡(𝑖𝑖), learning losses from the arrival of an epidemic 

of intensity 𝑖𝑖 in year 𝑡𝑡. Under the assumption that school disruption moves in line with the 

disruption to other economic behavior, we take 𝑀𝑀𝑀𝑀𝑡𝑡(𝑖𝑖) to be proportional to 𝑂𝑂𝑀𝑀𝑡𝑡(𝑖𝑖). We derive the 

proportionality constant by examining the ratio of economic-output losses and learning losses for 

Covid-19 for which we have good estimates of both loss categories. We take the conservative end 

of the World Bank’s estimated range for learning losses from Covid-19 at an aggregate $10 trillion 

in lifetime earnings in present value (Azevedo et al. 2021).5 For economic-output losses from 

Covid-19, we take the International Monetary Fund’s (2022) estimate of a $13.8 trillion shortfall 

relative to pre-pandemic forecasts due to the pandemic.6 Taking the ratio of the two estimates, we 

have  

𝑀𝑀𝑀𝑀𝑡𝑡(𝑖𝑖) =
10

13.8
𝑂𝑂𝑀𝑀𝑡𝑡(𝑖𝑖). (8) 

3.5  Total Losses 

Let 𝑇𝑇𝑀𝑀𝑡𝑡(𝑖𝑖) = 𝑀𝑀𝑀𝑀𝑡𝑡(𝑖𝑖) + 𝑂𝑂𝑀𝑀𝑡𝑡(𝑖𝑖) + 𝑀𝑀𝑀𝑀𝑡𝑡(𝑖𝑖) denote total social losses from all three categories 

conditional on an epidemic of intensity 𝑖𝑖 arriving in year 𝑡𝑡. For program evaluation, this 

conditional loss measure needs to be converted into an unconditional one reflecting the distribution 

of epidemic intensity estimated in Section 2 since the intensity of future pandemics is uncertain 

when advance investment is undertaken. We will build up to the unconditional loss measure we 

 
5 Azevedo et al. (2021) use the correlation between years of schooling and wages to calculate the return to an additional 
year of schooling and hence the cost of closed schools. If wages reflect the worker’s marginal product and private 
returns to education reflect social returns, then future wage losses will be a good measure of future GDP losses. While 
Mincer (1974) equations do not measure the causal effect of education on earnings, Duflo (2001) concludes that causal 
estimates of the income benefits of education are close to Mincer-regression estimates where the two can be compared. 
In a Spence (1973) model, education can be rewarded with higher wages even if it does not increase productivity, 
leading private returns to exceed social returns to education. Positive spillovers from education would lead social 
returns to exceed private returns. We proceed by assuming that Mincer regressions give an adequate estimate of the 
private returns to education and that social returns weakly exceed private returns on average. If social returns to 
education strictly exceed private returns on average, our measure of learning losses will be conservative. 
6 We take these loss estimates for Covid-19 losses as they are reported by our sources: not annualized figures but 
accumulated losses over a multiyear pandemic. Since both sources use this same accounting frame, taking the ratio of 
them produces the proper proportionality constant. 
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ultimately use in a series of steps.  

 A straightforward measure of unconditional losses is the present value of expected losses 

from the stream of pandemics into the future, 

𝑃𝑃𝑃𝑃(𝑇𝑇𝑀𝑀����) = ��
1

1 + 𝑟𝑟
�
𝑡𝑡+1

𝐸𝐸(𝑇𝑇𝑀𝑀𝑡𝑡(𝑖𝑖)),
∞

𝑡𝑡=0

 (9) 

where 𝑟𝑟 denotes the social discount factor, which we set at 𝑟𝑟 = 4% in the baseline scenario.7,8  

The factor 𝐸𝐸(𝑇𝑇𝑀𝑀𝑡𝑡(𝑖𝑖)) denotes expected pandemic losses in year 𝑡𝑡: 

𝐸𝐸(𝑇𝑇𝑀𝑀𝑡𝑡(𝑖𝑖)) = � 𝑇𝑇𝑀𝑀𝑡𝑡(𝑖𝑖) 𝑑𝑑Φ(𝑖𝑖).
∞

0

 (10) 

Table 2 reports a convenient rescaling of 𝑃𝑃𝑃𝑃(𝑇𝑇𝑀𝑀����), interpreted as expected annual pandemic 

losses. Formally, let 𝐴𝐴𝑃𝑃(𝑇𝑇𝑀𝑀����) denote the constant expected loss that if experienced in perpetuity 

would generate the present value in equation (9). One can show 

𝐴𝐴𝑃𝑃(𝑇𝑇𝑀𝑀����) = 𝑟𝑟𝑃𝑃𝑃𝑃(𝑇𝑇𝑀𝑀����) =
𝑟𝑟

𝑟𝑟 − 𝑦𝑦
𝐸𝐸(𝑇𝑇𝑀𝑀0(𝑖𝑖)) (11) 

Table 2 reports the expected annual pandemic losses in total, 𝐴𝐴𝑃𝑃(𝑇𝑇𝑀𝑀����), as well as for the 

component losses 𝐴𝐴𝑃𝑃(𝑀𝑀𝑀𝑀����), 𝐴𝐴𝑃𝑃(𝑂𝑂𝑀𝑀����), and 𝐴𝐴𝑃𝑃(𝑀𝑀𝑀𝑀���), defined analogously to 𝐴𝐴𝑃𝑃(𝑇𝑇𝑀𝑀����). In the baseline 

scenario, expected annual pandemic losses are 𝐴𝐴𝑃𝑃(𝑇𝑇𝑀𝑀����) = $808 billion annually. In other words, 

the world can expect to lose $808 billion every year to pandemics in the future. Mortality losses 

account for 62% of the total, followed by economic-output losses (22% of the total) and learning 

losses (16% of the total).   

3.6  Sensitivity of Pandemic Loss Estimates 

Subsequent rows in Table 2 analyze the sensitivity of the results to changes to parameters and 

changes to the assumptions behind the distribution of pandemic intensities. The first alternative 

scenario cuts the probability that a pandemic arrives in half, which cuts the expected loss estimates 

 
7 Gollier and Hammitt (2014) discuss the debate in the economic literature on the appropriate value to assume for the 
social discount factor 𝑟𝑟. Our baseline value 𝑟𝑟 = 4% is well within the range of the literature and if anything is 
conservative given that our model incorporates growth in GDP per capita and given that pandemics involve 
considerable uncertainty, both of which should scale up 𝑟𝑟, as the authors note.  
8 The 𝑡𝑡 + 1 exponent on the discount factor reflects the implicit assumption that surplus is realized at the end of the 
year.  
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in half. Total expected annual pandemic losses remain over $400 billion.  

 The next two alternative scenarios revisit the challenge of extrapolating the distribution of 

pandemic intensities outside of the data that Marani et al. (2021) used to estimate their power-law 

parameters. Mathematically, the estimated power law must break down for extreme intensities 𝑖𝑖 

approaching 1,000 (corresponding to the whole population dying off), but it is hard to know where 

beyond the domain of the data this breakdown occurs. In the baseline, we adopt the conservative 

approach of setting the truncation point 𝜇𝜇′′ on intensity at the highest intensity observed in the data 

(𝜇𝜇′′ = 5.7, for the 1918 flu). One alternative doubles that truncation point. Another alternative 

eliminates any truncation (below the die-off of the whole population, which is the natural 

maximum). Both alternatives assume the power law estimated by Marani et al. (2021) applies 

throughout their respective expanded range of intensities. Social losses are substantially higher 

with these relaxed caps. Doubling the truncation point increases 𝐴𝐴𝑃𝑃(𝑇𝑇𝑀𝑀����) to $944 billion. 

Eliminating truncation below the die-off of the whole population increases 𝐴𝐴𝑃𝑃(𝑇𝑇𝑀𝑀����) to over $2 

trillion.9  

Marani et al. (2021) measure an epidemic’s intensity by average annual deaths, preventing 

them from including continuing pandemics in their data. This entails the potentially important 

omission of HIV from their data, which prior to Covid-19 had killed more people than any other 

epidemic in every one of the past 20 years. Adding HIV turns a sparse series of epidemics over 

the past 20 years into one with consistent arrivals. The estimated arrival rate increases so much 

that 𝐴𝐴𝑃𝑃(𝑇𝑇𝑀𝑀����) increases to over $2 trillion. 

The last set of scenarios analyze the sensitivity of the loss estimates to changes to average 

YLL per death, growth rate of GDP per capita 𝑦𝑦, and social discount rate 𝑟𝑟. Perhaps the most 

consequential change is that 𝐴𝐴𝑃𝑃(𝑇𝑇𝑀𝑀����) increases to over $2.4 trillion when 𝑟𝑟 is reduced to 2%. 

Anyone who works with present values is familiar with the result that they can grow very large 

when the discount rate shrinks. Here, however, 𝐴𝐴𝑃𝑃(𝑇𝑇𝑀𝑀����) is not a present value of a stream of losses 

but an annualized loss. The annualized loss still grows very large because future losses weigh more 

heavily in the annualized figure, and future losses are higher since they reflect growing GDP per 

capita with time. 

 
9 The sensitivity analyses with respect to where the intensity distribution is truncated highlight the implications of a 
power-law distribution’s fat tails. Varying the truncation point for a normal distribution (which has thin tails) hardly 
matters if the truncation point is extremely high. With a power-law distribution, by contrast, varying a truncation point 
in an extreme range beyond the data can have a substantial effect on expected values. 
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Several broad observations about our baseline estimates can be drawn from the sensitivity 

analyses. First, they are robust. In no row does 𝐴𝐴𝑃𝑃(𝑇𝑇𝑀𝑀����) fall below $400 billion, which is still half 

of a substantial baseline. Second, our baseline estimates may be quite conservative. In filling in 

the seemingly minor details that the previous literature left to our discretion, we erred on the side 

of conservatism. However, the sensitivity analyses show that allowing pandemic intensity to 

extend beyond pandemics observed in the past and including HIV in the data used to estimate the 

arrival rate of recent epidemics has more than a minor effect on estimates of expected pandemic 

harm. 𝐴𝐴𝑃𝑃(𝑇𝑇𝑀𝑀����) can rise to over $2 trillion when just one of these elements is filled in with a less 

conservative assumption.  

3.7  Expected Losses from Next Pandemic 

Our criterion for program evaluation is more complicated than 𝑃𝑃𝑃𝑃(𝑇𝑇𝑀𝑀����) and 𝐴𝐴𝑃𝑃(𝑇𝑇𝑀𝑀����), so requires 

some discussion. The criterion involves the expected present value of social losses—not from the 

stream of all future pandemics—but just from the next significant epidemic. Denote this concept 

by 𝑃𝑃𝑃𝑃(𝑇𝑇𝑀𝑀𝑁𝑁������∗), where the 𝑁𝑁 suffix stands for next pandemic and the star superscript indicates that 

to qualify for the next significant pandemic, the epidemic must exceed some threshold intensity 

𝑖𝑖∗.  

As will be seen, using 𝑃𝑃𝑃𝑃(𝑇𝑇𝑀𝑀𝑁𝑁������∗) as the loss measure rather than 𝑃𝑃𝑃𝑃(𝑇𝑇𝑀𝑀����) or 𝐴𝐴𝑃𝑃(𝑇𝑇𝑀𝑀����) 

facilitates modeling the counterfactual program to which our proposed advance-investment 

program will be compared. We presume that this counterfactual policy would not roll out a global 

vaccination campaign for a minor epidemic but only one of significance. We also presume that at 

least some of the capacity that this program installs to mitigate harm from the next pandemic would 

be retained to use in pandemics after that. To absolve ourselves from having to guess how much 

capacity would be retained in the absence of a coordinated program to do that, we effectively cut 

the future off after the arrival of the next pandemic. We argue that that modeling device leads to a 

conservative evaluation of the benefits of our proposed advance-investment program since the 

proposed program generates more capacity in the next pandemic, leading to weakly more capacity 

available in epidemics after that.  

To derive an expression for 𝑃𝑃𝑃𝑃(𝑇𝑇𝑀𝑀𝑁𝑁������∗), let 𝜆𝜆𝑡𝑡(𝑖𝑖∗) denote the hazard of a significant 

epidemic, i.e., the probability that an epidemic of at least intensity 𝑖𝑖∗ arrives in year 𝑡𝑡 conditional 

on no epidemic of at least that intensity having arrived until then since base year 0. We have 
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𝜆𝜆𝑡𝑡(𝑖𝑖∗) = Φ(𝑖𝑖∗)𝑡𝑡[1 −Φ(𝑖𝑖∗)]. (12) 

Then 

𝑃𝑃𝑃𝑃(𝑇𝑇𝑀𝑀𝑁𝑁������∗) = ��
1

1 + 𝑟𝑟
�
𝑡𝑡+1

𝜆𝜆𝑡𝑡(𝑖𝑖∗)𝐸𝐸(𝑇𝑇𝑀𝑀𝑡𝑡(𝑖𝑖)|𝑖𝑖 ≥ 𝑖𝑖∗),
∞

𝑡𝑡=0

 (13) 

The last factor is the expectation of social losses from an epidemic of at least intensity 𝑖𝑖∗ certainly 

arriving in year 𝑡𝑡:  

𝐸𝐸(𝑇𝑇𝑀𝑀𝑡𝑡(𝑖𝑖)|𝑖𝑖 ≥ 𝑖𝑖∗) = �
𝑇𝑇𝑀𝑀𝑡𝑡(𝑖𝑖)

1 −Φ(𝑖𝑖∗)
𝑑𝑑Φ(𝑖𝑖).

∞

𝑖𝑖∗

 (14) 

The baseline scenario sets the threshold intensity 𝑖𝑖∗ for a significant pandemic to be half the 

intensity of Covid-19 or worse. 

To compare the related loss measures, in the baseline, the expected present value of losses 

from the whole stream of future pandemics is 𝑃𝑃𝑃𝑃(𝑇𝑇𝑀𝑀����) = $12.6 trillion. The expected present value 

of losses from next pandemic at least half as intense as Covid-19 is 𝑃𝑃𝑃𝑃(𝑇𝑇𝑀𝑀𝑁𝑁������∗) = $5.2 trillion. 

𝑃𝑃𝑃𝑃(𝑇𝑇𝑀𝑀𝑁𝑁������∗) is smaller than 𝑃𝑃𝑃𝑃(𝑇𝑇𝑀𝑀����) for two reasons: it omits losses from pandemics after the next 

one and omits losses from pandemics less intense than 𝑖𝑖∗. Despite those omissions, 𝑃𝑃𝑃𝑃(𝑇𝑇𝑀𝑀𝑁𝑁������∗) is 

more than 40% of 𝑃𝑃𝑃𝑃(𝑇𝑇𝑀𝑀����). While pandemics of that intensity only have a 2.6% chance of 

occurring in any given year according to estimates from Section 2, this still means that such a 

pandemic can be expected within the next 38 years. By definition, such a pandemic might only be 

half as intense as Covid-19; but it is also possible for it to be as or more intense than Covid-19, in 

which case it would wreak extreme losses. Such a severe pandemic would not be expected for 

years, but at the baseline social discount rate of 𝑟𝑟 = 4%, discounting does not lead the present 

value of those future losses to vanish. Neither 𝑃𝑃𝑃𝑃(𝑇𝑇𝑀𝑀����) and 𝑃𝑃𝑃𝑃(𝑇𝑇𝑀𝑀𝑁𝑁������∗) average over years, so are 

both at least an order of magnitude larger than 𝐴𝐴𝑃𝑃(𝑇𝑇𝑀𝑀����), which is an annual measure averaging 

over years.  

4  Conceptual Discussion of Advance Investment Program 

This section motivates and outlines a program of advance investment to accelerate the availability 

of vaccine capacity in a pandemic. The discussion in this section is conceptual; a formal model of 
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the program is deferred to Section 5.  

4.1  Program Motivation and Basic Design 

The estimates from the previous section suggest that significant pandemics are not so rare as to 

offset the enormous losses conditional on one occurring. The expected present value of social 

losses from the next pandemic at least half as intense as Covid-19 is $5.2 trillion in our baseline 

estimate and can be much higher in less conservative estimates. It is therefore important to evaluate 

the cost effectiveness of programs that could mitigate some of the enormous losses from the next 

significant pandemic.  

The experience from the Covid-19 pandemic highlights the potential benefits of investing 

in vaccine capacity. Vaccines were developed and deployed with unprecedented speed. The 

reduction in mortality bolstered countries’ confidence to reopen their economies, reducing 

economic-output losses. Yet the enormous social losses that still mounted each month beg the 

question of whether there was room to further accelerate vaccinations. There was roughly a two-

year lag between the date Covid-19 was detected and the production of enough vaccine to fully 

immunize 70% of the world’s population. Most of this lag was not the time required to discover 

or approve effective vaccines but rather the time needed to scale up production after approval. We 

therefore focus most of our attention in this paper on policies to accelerate production scale up. 

This focus is partially motivated by our belief that investing in accelerating vaccine production is 

one of the most cost-effective ways to prepare for future pandemics. This focus does not sacrifice 

much generality because the analysis of this specific investment program readily applies to other 

promising pandemic preparations, discussed in the conclusion.  

In their summary of work by Ahuja et al. (2020) and Castillo et al. (2021), Athey et al. 

(2022) explain how accelerating and expanding vaccine capacity can mitigate pandemic losses. 

The existence of long lags between when a facility starts to add production lines for a new vaccine 

and when those lines are producing at full capacity10 provide an opportunity for accelerating the 

availability of capacity. Presuming that every reasonable technological avenue for shortening the 

time to capacity availability would be exploited in a pandemic, there remains another possibility 

 
10 Production lines are technologically complex, requiring months to set up. Obtaining reasonable yields requires 
skilled technicians to learn by doing in a specific production facility. Each facility must receive independent regulatory 
approval. All these factors result in long lags before a facility can start producing and additional lags before production 
fully spins up. 
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for accelerating capacity, using a strategy that Athey et al. (2022) and others call “at-risk 

investment.” Production capacity can be expanded before regulatory approval, in parallel with 

clinical trials, rather than sequentially, after clinical trials have succeeded and regulatory approval 

gained. Ordinarily, this strategy would be socially wasteful. Vaccine programs exhibited a 70% 

failure rate in clinical trials over the past two decades (Lo, Siah, and Wong 2020). If the vaccine 

fails to be approved, any of the at-risk investment that is difficult to repurpose for other vaccines 

or uses is wasted. However, the benefit of speed in a pandemic may offset this high risk of wastage. 

Athey et al. (2022) calculate that if the capacity for Covid-19 vaccines available by April 2021 

were available three months earlier, that would have had a global benefit of $3 trillion.   

Not just early capacity but expanded capacity can also accelerate a vaccination program. 

To the extent that scarce supply is the limiting factor in vaccine distribution, and scarce capacity 

is the rate-limiting step in supply, doubling capacity can double the rate at which vaccine is rolled 

out to the population. 

There are limits to how much and how quickly capacity can be installed during a pandemic. 

Short-run supply curves for necessary inputs can be sharply upward sloping and may hit hard 

constraints. Supply curves tend to be more elastic and constraints more relaxed over the longer 

term. Thus, there are potential returns from investing in vaccine capacity in advance of the next 

pandemic rather than waiting until the pandemic arrives.  

Here we analyze a program that secures vaccine production capability before a new 

pathogen emerges. Up-front investment expands total general-purpose vaccine capacity. An 

annual fee is paid to reserve some of that vaccine capacity to be quickly switched to the production 

of a vaccine when a pandemic threat emerges. For concreteness, we will analyze a program that 

installs enough advance capacity that, when topped up with additional investment undertaken in a 

pandemic, ensures the world would have enough capacity to fully vaccinate 70% of the population 

in six months. We factor into our calculations the risk that not all targeted individuals may wish to 

be vaccinated and thus only a fraction of the benefit of that target coverage may be realized for 

this or other reasons. The quantitative targets matter less than the key qualitative point that the 

program we have in mind is ambitious, involving expansive capacity. To evaluate the benefit of 

this advance-investment program, we compare it—not to the absence of any vaccination—but to 

a counterfactual program that also runs a vaccination campaign against the next significant 

pandemic also employing the strategy of at-risk investing but run without the benefit of the extra 
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capacity coming from advance investment.  

4.2  Gap in Commercial Versus Social Incentives 

Commercial markets may not generate socially optimal investment in vaccine capacity on their 

own for several reasons. In the absence of a special program, commercial incentives for advance 

investment would presumably come from the promise of high returns from vaccine sales in the 

next pandemic, possibly decades in the future. However, social and political pressure to keep prices 

of vaccines low during a pandemic can create an enormous divergence between commercial and 

social returns to a vaccine. Covid-19 vaccines sold for between $6 and $40, much less than the 

$5,800 social value of a course of annual capacity in early 2021 as estimated by Castillo et al. 

(2021). Few incentives were provided for speed. Even a dose price much higher than $40, if it is 

fixed independent of delivery date, provides little incentive to supply those doses sooner rather 

than later. But getting a vaccine earlier can mitigate enormous social harm. Thus, we will analyze 

in effect a procurement program using government or donor-organization resources to procure 

more capacity in advance and reserve some for pandemic preparedness.  

4.3  Coordinated International Program 

Our analysis will focus on the sum of the costs and benefits if all countries took advance 

preparedness action. Below we discuss how positive spillovers from advance investment may lead 

to less-than-optimal investment particularly for smaller countries suggesting some benefits from 

coordination. However, if no other countries are making advanced investments, individual 

countries actually have stronger incentives to undertake advance investment unilaterally than what 

our computations show the average country has in the coordinated global program. Thus, our 

analysis of a coordinated global program provides a benchmark that is useful for several exercises, 

setting a goal for countries to coordinate on and showing that advance investment can be incentive 

compatible for countries acting alone if coordination fails. 

The positive spillovers from advance investment are in contrast to the often-expressed 

concern that investment in vaccine capacity has negative spillovers to other countries. Such 

concerns loom particularly large if one’s mental model is that vaccine production capability is 

fixed, constrained by the fixed supply of key inputs. However, one lesson from Covid-19 is that 

additional investments were able to expand total vaccine supply in a pandemic, and there is reason 
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to think that additional at-risk investment would have expanded it further and help in relaxing 

bottlenecks which would have had positive spillovers to others (Ahuja et al. 2021). As supply is 

even more elastic in the long than short run, negative spillovers are even less of a concern for pre-

pandemic investments proposed in this paper. Our analysis instead points to the possibility of 

positive spillovers: countries coming into the next pandemic with advance capacity will compete 

less hard for new capacity being installed, leaving more supplies for others. Once a country’s 

dedicated capacity has served its population (in the modeled program, taking six months), that 

capacity can be used to serve other countries. The latter effect is a positive externality from 

unilateral country investment that our analysis of a coordinated global program to achieve target 

coverage across all countries simultaneously will not pick up. Hence, our analysis should be 

regarded as a lower bound on internal and external benefits from a single country’s investment. 

4.4  Did Covid-19 Already Prepare the World? 

There are reasons to doubt that worldwide vaccine capacity is already at the socially efficient level 

as a result of investments undertaken in the Covid-19 pandemic. At its peak, the world was 

producing 580 million doses of mRNA Covid-19 vaccine per month. At that rate, it would take 

over a year and a half to produce enough vaccine to cover 70% of the world population with a full 

course of an mRNA vaccine. To reach this coverage in six months during the next pandemic would 

require an expansion of mRNA capacity. Instead, in response to the falling demand for Covid-19 

vaccines, some existing mRNA capacity is reportedly being shut down (Kay, Makol, and Paton 

2022). Our analysis will show that paying the owners of existing capacity an annual fee to keep 

their existing capacity in place and paying others to build new mRNA capacity would have a high 

expected return.  

The world has considerably more capacity for traditional than mRNA vaccines. However, 

some of the traditional vaccines that are regularly administered are of sufficiently high value that 

health authorities might not want facilities producing these to switch to pandemic vaccines even 

during a pandemic (during Covid-19 very few facilities producing childhood vaccines switched to 

producing Covid-19 vaccines). Thus, despite the larger production capacity for traditional 

vaccines, reaching the desired level of reserve capacity will require new capacity to be built.  

The mRNA technology is particularly useful for pandemic preparedness as it appears to be 

easier to scale rapidly than many other vaccine technologies. However, mRNA is still too new a 
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technology to know whether it can replace traditional vaccines for all diseases. There is no 

guarantee any single technology will provide the most effective vaccines for all viruses. Thus, the 

proposed program takes a portfolio approach, involving investing in capacity for several 

technologies to combat future pandemics.    

4.5  Further Design Features 

Contracts to ensure sufficient vaccine capacity was in place to vaccinate the world or an individual 

country for the next pandemic would need to guarantee that such capacity was functional and up 

to date. (During Covid-19 some reserve vaccine capacity failed.)11 Given the billions of dollars at 

stake, appropriate monitoring systems could be devised. One way a program could be designed 

would be to allow—indeed encourage—contracted reserve capacity to be used for the production 

of other vaccines. 

A program that contracts on advance capacity rather than contracting in advance on doses 

to be supplied in the next pandemic would generate positive spillovers to the world and better 

address a social planners desire for speed during a pandemic. As explained in Section 4.2, 

producers do not internalize the full social benefit of speed, and so may underinvest in capacity, 

fulfilling their supply obligations but more slowly than would be socially desirable. Contracts on 

doses may generate negative spillovers for other countries, pushing other countries down the queue 

waiting for scarce supplies. Contracts on capacity, on the other hand, can generate positive 

spillovers for other countries, increasing the rate at which the queue is served. 

 For concreteness, the program we evaluate will focus on advance vaccine capacity, but the 

logic applies to other advance preparations for the next pandemic. Consider advance investments 

in drug treatments. More research and development could lead to the discovery of new antivirals 

to mitigate harm in the next pandemic. Securing raw materials has been a constraint in scaling 

Paxlovid, an effective treatment for Covid-19, a constraint which interim supply-chain investments 

can relax in the next pandemic. Similar logic applies for investments increasing supply-chain 

resilience for other products such as personal protective equipment, testing equipment, and so 

forth. One reason for focusing on vaccines rather than drugs or these other products is that they 

 
11 Mole (2021) reports on the failure of Emergent BioSolutions to fulfill its reserve contracts to supply Johnson & 
Johnson vaccine because of cross-contamination problems.  
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are simpler to produce and easier to scale up than vaccines, so maintaining spare capacity for them 

is valuable, but not as valuable as for vaccines. 

5  Model 

This section formally models a program of advance investment in production capacity to accelerate 

vaccinations in the next pandemic.  

5.1  Setup 

Starting from base year 𝑡𝑡 = 0, the next epidemic of at least intensity 𝑖𝑖∗ arrives with hazard rate 

𝜆𝜆𝑡𝑡(𝑖𝑖∗) in year 𝑡𝑡, where 𝑖𝑖∗ is the minimum intensity evoking a global vaccine response. We consider 

two basic options for a coordinated global vaccine program: a program of advance preparatory 

investment or the status quo without. Distinguish variables associated with the status-quo program 

with a single prime and variables associated with the advance-preparation program with two 

primes. Omitted primes refer to a generic program option.  

Even in the status quo in the absence of advance preparations, if a significant epidemic 

arrives in year 𝑡𝑡, as we saw with the Covid-19 pandemic, the world will seek to obtain vaccines as 

quickly as possible. Conditional on the arrival of an epidemic, let 𝑥𝑥′ denote the capacity (measured 

in annual courses) for vaccines against that epidemic that the world can obtain without advance 

preparations. The model will allow more spending to buy more capacity, but disruptions to supply 

chains and limited input supplies will mean that no more capacity than 𝑥𝑥′ can be installed in the 

short span of an epidemic. The model takes 𝑥𝑥′ to be an exogenous parameter (𝑥𝑥′ = 4.5 billion 

annual courses).  

5.2  Role of Advance Investment 

Advance investment—undertaken when supply chains are more fluid and input supplies are more 

elastic—can generate more capacity. Indeed, we will suppose that the program specifies sufficient 

capacity be installed in advance to achieve an ambitious target of 70% coverage of the population 

within six months when combined with the maximum capacity that can be installed during an 

epidemic. Formally, letting 𝑥𝑥′′ denote the ultimate capacity available with advance investment, we 

have 𝑥𝑥′′ 2⁄ = 0.7𝑁𝑁0, where the left-hand side is multiplied by one half since 𝑥𝑥′′ is measured in 
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annual courses, but the target coverage is sought in half that time (six months). Since 𝑥𝑥′ =

4.5 billion < 15.7 billion = 1.4𝑁𝑁0, we have 𝑥𝑥′′ > 𝑥𝑥′.  

 

Remark 1. The fact that 𝑥𝑥′′ > 𝑥𝑥′ is the main advantage of advance investment in 

the model: without advance investment, the world simply cannot obtain the 

capacity it needs a vaccination campaign of the desired scale and speed.  

 

Let 𝑧𝑧′′ denote the amount of advance capacity that supports the higher capacity level 𝑥𝑥′′ 

desired during a pandemic. Rather than fully endogenizing 𝑧𝑧′′, we will take a more reduced-form 

approach, specifying an exogenous parameter 𝜃𝜃 measuring how much of the maximum possible 

investment 𝑥𝑥′ that the world could undertake during the pandemic the world saves itself from 

having to undertake then to attain the target 70% coverage in six months. When 𝜃𝜃 = 0, the world 

leaves itself the task of installing the entirety of 𝑥𝑥′ during the pandemic. When 𝜃𝜃 > 0, it leaves 

itself a smaller in-pandemic investment. Either way, the world achieves the target coverage with 

advance investment. But if 𝜃𝜃 > 0, more of this investment is undertaken earlier, when the cost of 

capacity installation is lower, as the later model of costs will make clear.  

 

Remark 2. The second advantage of advance investment, which emerges from the 

model when 𝜃𝜃 > 0, is that it can save on some of the cost of capacity installation.  

 

Formally, we have 𝑥𝑥′′ = 𝑥𝑥′ + (1 − 𝜃𝜃)𝑧𝑧′′. In the absence of advance investment, by definition, 

𝑧𝑧′ = 0.  

5.3  Vaccine Technology Platforms 

Vaccines use a variety of technology platforms including inactivated viruses, viral vectors, protein 

subunits, virus-like particles, and messenger RNA (mRNA). Whether any platform can produce a 

successful vaccine, and if so, which can be developed most quickly or generate the greatest 

efficacy, will likely vary from disease to disease and involve a considerable element of luck. The 

mRNA platform technology has some features that deserve special mention. It is a new technology, 

its first use in an approved vaccine coming with the Moderna and Pfizer vaccines in the Covid-19 

pandemic. It may ultimately be easier to scale since it circumvents the need to grow viruses in the 
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facility. Repurposing an mRNA vaccine production line from one disease to another may be a 

simple programming exercise. Since the production process for mRNA vaccines is so different 

from other platforms, it is likely to be difficult to quickly repurpose mRNA production lines to 

produce other vaccines and vice versa. Production lines for the other, traditional platforms are 

more likely to be fungible between each other.12 

For purposes of the model, we will collect the various vaccine technology platforms into 

two: 𝑣𝑣 ∈ {𝑚𝑚, 𝑜𝑜}, where 𝑣𝑣 = 𝑚𝑚 denotes the mRNA platform and 𝑣𝑣 = 𝑜𝑜 denotes other, traditional 

platforms. Each platform could contain many subtechnologies, and each subtechnology could 

contain several vaccine candidates. The model reflects the presence of multiple candidates within 

platform by allowing some repurposing of capacity dedicated to unsuccessful candidates for 

production of successful candidates within that same platform. Let 𝑧𝑧𝑚𝑚 and 𝑥𝑥𝑚𝑚 denote advance and 

ultimate global capacity installed for mRNA vaccines and 𝑧𝑧𝑜𝑜 and 𝑥𝑥𝑜𝑜 denote those capacities 

installed for other vaccines. Although the ratios could be endogenized, to simplify modeling we 

fix the ratio of existing and future vaccine capacity so that 1/3 is devoted to mRNA vaccines and 

the rest to traditional vaccines.  

Let 𝑝𝑝 denote the probability of that some vaccine is successfully approved as safe and 

effective for use against disease arising that year. Let 𝑝𝑝𝑚𝑚 denote the probability that only mRNA 

vaccines succeed, 𝑝𝑝𝑜𝑜 denote the probability that only vaccines using another platform are 

successful, and 𝑝𝑝𝑏𝑏 denote the probability that both vaccines using mRNA and those using other 

platforms are successful. Conditional on some vaccine succeeding, these are exhaustive and 

mutually exclusive events, implying 𝑝𝑝𝑚𝑚 + 𝑝𝑝𝑜𝑜 + 𝑝𝑝𝑏𝑏 = 𝑝𝑝.  

Reflecting the advantages of the at-risk investment strategy, allocating capacity to various 

vaccine candidates even before approval to reduce the lag in scaling up capacity for successful 

vaccines, we make the extreme assumption that all capacity is installed at risk for one vaccine 

candidate or another, and this is true for both capacity installed in advance of an epidemic and 

capacity installed after its arrival. Conditional on some mRNA vaccine succeeding, assume a 

fraction 𝑓𝑓𝑚𝑚 of the facilities were dedicated to successful mRNA candidates and can begin 

producing right away after approval date 𝜏𝜏𝐴𝐴. A fraction 𝑔𝑔𝑚𝑚 are dedicated to unsuccessful mRNA 

candidates but can be repurposed to produce successful mRNA candidates after a delay of τ𝑚𝑚. The 

 
12 The discussion has omitted the DNA technology, as it has yet to yield an approved vaccine. For modeling purposes, 
one could consider it as being combined into the mRNA technology category. 
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remaining fraction 1 − 𝑓𝑓𝑚𝑚 − 𝑔𝑔𝑚𝑚 of capacity cannot be repurposed and is therefore useless during 

the pandemic. Vaccines using other platforms are modeled similarly, with a fraction 𝑓𝑓𝑜𝑜 of capacity 

being immediately available upon approval at date 𝜏𝜏𝐴𝐴, fraction 𝑔𝑔𝑜𝑜 being available with a delay τ𝑜𝑜, 

and the remaining fraction useless. Note that capacity is not fungible between mRNA vaccines and 

other vaccines during the short epidemic span. 

Let 𝜏𝜏 ∈ [0,𝑇𝑇] index continuous time within the span of the epidemic (measured a finer 

scale—say days or months—than the yearly scale of epidemic arrival indexed by 𝑡𝑡). Production 

capacity totaled across all vaccines available at time 𝜏𝜏 under both platforms is  

𝑥𝑥(𝜏𝜏) =

⎩
⎨

⎧
0 𝜏𝜏 ∈ [0, 𝜏𝜏𝐴𝐴]
𝑠𝑠𝑚𝑚𝑥𝑥𝑚𝑚𝑓𝑓𝑚𝑚 + 𝑠𝑠𝑜𝑜𝑥𝑥𝑜𝑜𝑓𝑓𝑜𝑜 𝜏𝜏 ∈ (𝜏𝜏𝐴𝐴, 𝜏𝜏𝐴𝐴 + 𝜏𝜏𝑚𝑚]
𝑠𝑠𝑚𝑚𝑥𝑥𝑚𝑚(𝑓𝑓𝑚𝑚 + 𝑔𝑔𝑚𝑚) + 𝑠𝑠𝑜𝑜𝑥𝑥𝑜𝑜𝑓𝑓𝑜𝑜 𝜏𝜏 ∈ (𝜏𝜏𝐴𝐴 + 𝜏𝜏𝑚𝑚, 𝜏𝜏𝐴𝐴 + 𝜏𝜏𝑜𝑜]
𝑠𝑠𝑚𝑚𝑥𝑥𝑚𝑚(𝑓𝑓𝑚𝑚 + 𝑔𝑔𝑚𝑚) + 𝑠𝑠𝑜𝑜𝑥𝑥𝑜𝑜(𝑓𝑓𝑜𝑜 + 𝑔𝑔𝑜𝑜) 𝜏𝜏 ∈ (𝜏𝜏𝐴𝐴 + 𝜏𝜏𝑜𝑜 ,𝑇𝑇],

 (15) 

where 𝑇𝑇 is the duration of the epidemic and 𝑠𝑠𝑚𝑚 and 𝑠𝑠𝑜𝑜 are indicators for whether mRNA and other 

vaccines are successful, respectively. The total number of people vaccinated by time 𝜏𝜏∗ equals 

∫ 𝑥𝑥(𝜏𝜏)𝑑𝑑𝜏𝜏𝜏𝜏∗

0 . 

5.4  Vaccination Benefits  

We adopt the model (with some simplifications) of the benefits of vaccination that Castillo et al. 

(2021) used in their analysis of the Covid-19 pandemic. Vaccination mitigates the harm from the 

epidemic experienced by the population at time 𝜏𝜏 by the proportion ℎ(𝑥𝑥�(𝜏𝜏)), a function of the 

fraction 𝑥𝑥�(𝜏𝜏) = 𝑥𝑥(𝜏𝜏) 𝑃𝑃0⁄  of the world population that has been vaccinated. Following Castillo et 

al. (2021), assume ℎ is a continuous, concave, piecewise linear function such that ℎ(0) = 0 and 

ℎ(𝑥𝑥�(𝜏𝜏)) = 1 for 𝑥𝑥�(𝜏𝜏) > 0.7, which can be interpreted as the threshold for herd immunity, above 

which the epidemic is quelled and all harm relieved.13 The supplemental appendix to Castillo et 

al. (2021) details why this functional form is a good approximation for vaccination benefits during 

the Covid-19 pandemic. The function’s concavity reflects the larger benefits from initial courses 

administered to more vulnerable populations (such as frontline workers and the elderly in the case 

 
13 Based on data on the proportion of high-risk individuals and the differential burden of the disease on them versus 
others, Castillo et al. (2021) specify two additional kinks at 0.13 (the fraction of high-risk population) and 0.5, setting 
ℎ(0.13) = 0.395 and ℎ(0.5) = 0.816. 
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of Covid-19). Other diseases might have different demographic patterns, but benefits are still likely 

to be concave given any heterogeneity in harm across groups.  

We scale the harm mitigated by vaccines by 𝛾𝛾 ∈ [0,1] to allow for the possibility that some 

of the harm would have been mitigated by other measures such as improved treatments, better 

contact tracing, and so forth even without a vaccine. That 𝛾𝛾 < 1 might also reflect imperfect 

vaccine efficacy or unwillingness among a segment of the population to be vaccinated. Recalling 

the definition of  𝑃𝑃𝑃𝑃(𝑇𝑇𝑀𝑀𝑁𝑁������∗) as the expected present value of total social losses from the next 

pandemic evoking a vaccine response, the expected present value of vaccination benefits in the 

next pandemic equals 

𝛾𝛾𝑃𝑃𝑃𝑃(𝑇𝑇𝑀𝑀𝑁𝑁������∗)�ℎ(𝑥𝑥�(𝜏𝜏)) 𝑑𝑑𝜏𝜏
𝑇𝑇

0

. (16) 

The pandemic’s duration 𝑇𝑇 is endogenous, given by the implicit solution to  

�𝑥𝑥�(𝜏𝜏)𝑑𝑑𝜏𝜏
𝑇𝑇

0

= 0.7. (17) 

5.5  Vaccination Costs 

Consider global expenditures on one of the vaccine technologies, 𝑣𝑣 ∈ {𝑚𝑚, 𝑜𝑜}. There are four 

categories of expenditure for this technology. First, advance investment costs 𝑘𝑘𝑣𝑣 per course, for a 

total sunk expenditure of 𝑘𝑘𝑣𝑣𝑧𝑧𝑣𝑣. Second, this investment depreciates and needs to be replenished at 

rate 𝑑𝑑. We assume that during years without a pandemic, such capacity can be rented out to 

pharmaceutical firms for routine vaccine production to recapture a fraction 𝜙𝜙 of the yearly cost. 

The expected present value of the effective expenditures (net of rental income) from these two 

channels through the end of the next pandemic equals 

(1 − 𝜙𝜙) �𝑘𝑘𝑣𝑣𝑧𝑧𝑣𝑣 + ��
1

1 + 𝑟𝑟
�
𝑡𝑡+1

Φ(𝑖𝑖∗)𝑡𝑡𝑑𝑑𝑘𝑘𝑣𝑣𝑧𝑧𝑣𝑣

∞

𝑡𝑡=0

�. (18) 

 

A third category of vaccine expenditure is the cost of installing capacity during the 

pandemic needed to bridge the gap between the advance capacity 𝑧𝑧𝑣𝑣 and the capacity 𝑥𝑥𝑣𝑣 ultimately 
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used during the pandemic. Let 𝐾𝐾𝑣𝑣(𝑥𝑥𝑣𝑣 − 𝑧𝑧𝑣𝑣) denote the investment cost, specified following 

Castillo et al. (2021): 

𝐾𝐾𝑣𝑣(𝑞𝑞𝑣𝑣) = �
𝑘𝑘𝑣𝑣𝑞𝑞𝑣𝑣 𝑞𝑞𝑣𝑣 ≤ 𝛽𝛽

𝑘𝑘𝑣𝑣𝑞𝑞𝑣𝑣 �
1

1 + 𝜀𝜀
�𝜀𝜀 �

𝛽𝛽
𝑞𝑞
� + �

𝑞𝑞
𝛽𝛽
�
𝜀𝜀
�� 𝑞𝑞𝑣𝑣 > 𝛽𝛽, 

(19) 

where 𝑞𝑞𝑣𝑣 = 𝑥𝑥𝑣𝑣 − 𝑧𝑧𝑣𝑣. According to this specification, the marginal cost of capacity installed during 

a pandemic is the same 𝑘𝑘𝑣𝑣 as that installed in advance for levels of capacity below a kink point 𝛽𝛽 

(taken to be 100 million annual courses in the baseline); but above that kink point, 𝐾𝐾𝑣𝑣 exhibits 

decreasing returns to scale, which are more severe the higher is 𝜀𝜀 > 0. 

A fourth category of vaccine expenditure is the marginal cost of production 𝑐𝑐𝑉𝑉 per course 

administered during a pandemic. Since a target 70% of the population is assumed to be covered 

by the pandemic’s end under either program (albeit more slowly without advance investment), the 

expense from this threshold conditional on being in a pandemic is 

𝑐𝑐𝑣𝑣 �
𝑥𝑥𝑣𝑣
𝑥𝑥
�0.7𝑁𝑁0. (20) 

As the last two categories are only expended conditional on a pandemic, the expected present value 

of these expenditures equals  

��
1

1 + 𝑟𝑟
�
𝑡𝑡+1

𝜆𝜆(𝑖𝑖∗)𝑡𝑡 �𝐾𝐾𝑣𝑣(𝑥𝑥𝑣𝑣 − 𝑧𝑧𝑣𝑣) + 𝑐𝑐𝑣𝑣 �
𝑥𝑥𝑣𝑣
𝑥𝑥
� 0.7𝑁𝑁0�

∞

𝑡𝑡=0

. (21) 

 Combining the four categories of expenditures and substituting simplified expressions for 

infinite series, the expected present value of effective (net of rental income) program expenditures 

on vaccines using technology 𝑣𝑣 can be written 

(1 − 𝜙𝜙)𝑘𝑘𝑣𝑣𝑧𝑧𝑣𝑣 +
(1 − 𝜙𝜙)𝑑𝑑𝑘𝑘𝑣𝑣𝑧𝑧𝑣𝑣
𝑟𝑟 + 1 −Φ(𝑖𝑖∗)

+
1 −Φ(𝑖𝑖∗)

𝑟𝑟 + 1 −Φ(𝑖𝑖∗)
�𝐾𝐾𝑣𝑣(𝑥𝑥𝑣𝑣 − 𝑧𝑧𝑣𝑣) + 𝑐𝑐𝑣𝑣 �

𝑥𝑥𝑣𝑣
𝑥𝑥
� 0.7𝑁𝑁0�. (22) 

Total program expenditures can be found by summing (22) over the two technologies 𝑣𝑣 ∈ {𝑚𝑚, 𝑜𝑜}.  

This completes the specification of the model. Table 3 summarizes definitions of 

parameters used in the model and their baseline values.  
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6  Results for Program Evaluation 

Table 4 presents the baseline results for outcomes from the program of advance investment 

evaluated relative to a counterfactual program. Recall that the counterfactual we consider is 

relatively sophisticated: it also runs a vaccination campaign in the next significant pandemic, 

installs the maximum capacity supply constraints allow, and puts as much of that capacity as 

possible to work at-risk to reduce production delays. The only difference is that the counterfactual 

comes into the pandemic without the extra capacity installed in advance.  

In the baseline, the advance-investment program spends $60 billion up front to expand 

production capacity for vaccines and supply chain inputs, readying an extra 24 billion annual 

courses of advance capacity for the next pandemic above and beyond that needed to meet typical 

vaccination demands (we assume at least two doses are required for full vaccination, constituting 

a course). The advance program requires $5 billion to be spent each year to maintain capacity. 

Advance investment actually reduces expenditures that have to be made during the next pandemic 

by $32 billion program: less capacity is left to be installed during the pandemic, when the inelastic 

short-run supply entails quite high unit cost for capacity. Netting out rental income earned 

deploying the advance capacity for vaccines for other diseases between pandemics, the expected 

present value of the stream of expenditures through the next pandemic are $27 billion higher under 

the advance program. Compared to the counterfactual, the present value of gross benefits is $437 

billion higher under advance investment. (This is the expected present value of the additional social 

losses mitigated just in the next pandemic, not considering pandemics after that, saving us from 

having to model how much capacity remains available under alternative programs.) The gross 

benefits come from achieving the target 70% vaccination coverage about seven months earlier. 

The expected present value of program benefits net of costs is $409 billion higher under advance 

investment than the counterfactual.  

Table 5 shows the sensitivity of these results to selected assumptions and parameters. For 

space considerations, parameters that changed the results less than those displayed are omitted (see 

table notes for complete list). The net gain from advance investing relative to the counterfactual is 

always greater than $230 billion for any single parameter change considered, whether the 

probability of epidemic arrival is cut in half, the proportion of losses left to be mitigated by 

vaccines (so not already mitigated, say, by effective treatments) is reduced to 𝛾𝛾 = 0.3, the 

proportion of at-risk capacity assumed to be devoted to successful vaccines is reduced to 𝑓𝑓𝑚𝑚 =
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𝑓𝑓𝑜𝑜 = 0.2, YLL per death is reduced to 20, or the social discount rate is raised to 𝑟𝑟 = 0.06. The net 

gain from advance investment is large in any case and thus evidently robust.  

Some of the robustness exercises indicate how conservative some model assumptions are. 

If we allow the distribution of intensity to extend beyond the range of historically observed 

epidemics, expected net benefits from the advance program can be more than $1.4 trillion greater 

than the counterfactual. Reducing the social discount rate to 𝑟𝑟 = 0.02, a value commonly used in 

the literature for program evaluation, expected net benefits from the advance program are $692 

billion greater than the counterfactual.  

The baseline design of the advance program spends $60 billion up front to install 24 billion 

annual courses of capacity. Even larger up-front investments would be worthwhile. Investing $113 

billion up front to install 45 billion courses of annual capacity would increase the gain over the 

counterfactual program from $409 billion to $558 billion. Smaller up-front investments would 

have lower expected net benefits but would still be worthwhile. For example, an upfront 

investment of $30 billion to install 12 billion courses of annual capacity would generate net 

benefits of $426 billion in expected present value terms, $248 billion more than the counterfactual. 

7  International Versus National Programs 

Our analysis thus far has focused on a global program. This focus allows for convenient exposition, 

enabling us to report a single world number rather than a set of numbers for individual countries. 

A global program extends the net benefits from advance preparations, which we found to be very 

large, to the greatest number of individuals possible.  

Because advance investment in vaccine supply by one country generates positive 

externalities to other countries, advance investment is likely to be suboptimal unless countries 

strike a cooperative agreement. Countries investing in advance reduce their demand for in-

pandemic capacity, lowering the price for those who have engaged in advance investment and 

relaxing the constraint that at most capacity 𝑥𝑥′ can be installed in the short run. Technically, if all 

functions in the model were linear, there would be no spillovers between countries and thus no 

benefit from coordination. But the concavity of the benefit function and the convexity of the short-

run capacity cost function leads countries’ investments to be strategic substitutes.  

An unmodeled benefit of a cooperative international agreement is that could provide 

insurance against variation in the severity of the pandemic across countries. The model does not 
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allow for heterogeneity in intensity across countries, so leaves no role for such insurance. To 

address real-world heterogeneity across countries, both in the average intensity of the pandemic 

there and the timing of when the waves hit it, the international program could pool advance 

investment but then allocate vaccines based on the current case rate or death rate in individual 

countries.14 As with other forms of insurance, such a program carries a risk of moral hazard, i.e., 

that countries might take less stringent control measures knowing this will increase their vaccine 

supply. However, given the high costs of the pandemic even with vaccine access, moral hazard is 

unlikely to be a significant problem in this case.15  

Participating countries in an international program would have to agree on how program 

expenditures should be allocated among them. It might be natural to ask participating countries to 

pay into the program according to GDP and receive vaccines according to population (or number 

of high-risk individuals). However, such a mechanism would involve substantial redistribution 

from richer to poorer countries. There may be a limit to how much redistribution can be supported 

before it is no longer incentive compatible for high-income countries to participate.16 What that 

limit is may depend in part on the nature of the bargaining process, in particular whether 

negotiators commit to abandoning the whole agreement if pivotal countries do not participate or 

whether the agreement forges on without those countries. Perhaps paradoxically, countries are 

more likely to participate if they believe themselves to be pivotal, since declining to participate 

destroys the program they would otherwise free ride on. Making a country pivotal relaxes its 

incentive-compatibility constraint and allows the program to support more redistribution from it. 

If high-income countries do not believe themselves to be pivotal, it will be harder to engender the 

optimal level of their participation even in a program without any redistribution.  

 In the absence of an international agreement, if no other country engages in advance 

investment, individual countries would have strong unilateral incentives to be the one to do so. 

With few countries investing in advance, competition for capacity installed during the pandemic 

 
14 Even after the start of the pandemic, considerable uncertainty remains about both the relative severity and timing of 
waves in different parts of the world suggesting insurance even during a pandemic could be beneficial. For example, 
India’s mortality from Covid-19 was initially low, only to be badly hit by the Delta wave. 
15The perception that allocating vaccine based on local cases rewards bad performers might still undermine efforts to 
include insurance-type provisions in an international program. COVAX, a large, coordinated vaccine purchase 
mechanism for Covid-19 initially allocated vaccines without regard to cases, mortality rates, or even demand (proxied 
by utilization of previous shipments been utilized), possibly indicating the political challenges of building insurance 
into an international program. 
16 International discussions during the early stages of Covid-19 to develop a coordinated vaccine purchase arrangement 
across countries of very different income levels ran into some of these issues. 



28 
 

can be expected to be intense, leading to high capacity prices and capacity shortages. An individual 

country has an incentive to install capacity in advance to avoid this competition.  

For example, if the United States undertook an advance-investment program (proportional 

to the size of the global program analyzed above), we find that the program would generate an 

expected present value of $61 billion in benefits net of program costs, a gain of $47 billion ($141 

per capita) over the counterfactual program. Not just high-income countries but middle- and lower-

income countries could also benefit from unilateral advance investment. For Brazil, for example, 

we find that advance investment would generate an expected present value of $16 billion in net 

benefits over program costs, a gain of $12 billion ($57 per capita) over the counterfactual.17  

Investing countries could generate some revenue for themselves and social value for others 

by signing bilateral agreements with non-investing countries to use their facilities to produce 

vaccines for non-investing countries while the pandemic is severe there but not domestically. The 

investing country would retain priority over courses if the pandemic rises there but could benefit 

other countries meanwhile. 

8  Conclusion 

Pandemics are not so rare as to offset the enormous losses conditional on one occurring. 

Combining data on the probability distribution of epidemics of different severity and estimates of 

the relationship between epidemic severity (measured in deaths) and mortality, economic-output, 

and education losses from epidemics, we estimated that the world should expect pandemic losses 

to average over $800 billion every year going forward. Investments that reduce the cost of the next 

pandemic, even if they are relatively ambitious and expensive, can generate very high expected 

returns.  

Investing now in building the capacity to rapidly vaccinate a large percentage of the 

population against a new virus could dramatically reduce the cost of future pandemics. This is true 

even if one factors in a risk that vaccines will not work against the next virus, that there will be a 

high degree of vaccine hesitancy, and that an effective antiviral will reduce the benefit of a vaccine. 

Specifically, we show that $60 billion in upfront investment and $5 billion in annual expenditure 

 
17 Since our analysis of individual-country programs holds mortality losses per capita constant at the global average, 
the difference in benefits between the United States and Brazil is mainly driven by the greater economic-output losses 
suffered in the country with higher GDP per capita and are only partially offset by longer school closures observed in 
MICs and LICs. 
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would be sufficient to fund capacity to produce 24 billion vaccine courses per year and thus 

vaccinate 70% of the world’s population in six months in a pandemic. Under reasonable 

assumptions even larger capacity would have a high social return. 

 Instead of more being built, capacity for mRNA vaccines built up during the Covid-19 

pandemic is in the process of being converted to other uses. 

 While this paper has focused on the benefits of maintaining vaccine supply capacity, the 

expected large losses from future pandemics imply that other investments that reduce their costs 

are also likely to generate high returns. Perhaps most closely related to this paper is the discussion 

about the benefits of developing and stockpiling a universal coronavirus vaccine that would protect 

against a wide variety of coronaviruses including ones that are yet to emerge. A new World Bank 

fund (Financial Intermediary Fund for Pandemic Prevention) plans to invest in, among other 

things, increased surveillance for the emergence of new pathogens. Research and development 

into new mRNA vaccines would likely improve the efficacy of this still relatively new technology 

and understand which type of viruses it is best suited to combatting. Berry et al. (2020) have 

suggested that putting in place a framework for when human challenge trials could accelerate 

testing of new vaccines and save millions of lives in a future pandemic. Finally, while much of the 

analysis in this paper are specific to reducing the cost of future viral pandemics, multidrug resistant 

bacteria remain a threat. Development of new antibiotics to be kept in reserve for use only in 

combination therapy for multidrug resistant strains would reduce the probability of a highly 

damaging bacterial pandemic. Scaling up antibiotics tends to be easier, cheaper, and faster than 

scaling up vaccines, hence our focus on vaccines. A similar logic applies to the development of 

broad-spectrum antivirals. Given the large expected losses from future pandemics, investments in 

the development of broad-spectrum antivirals are likely to be highly cost effective even if there 

were no certainty they would work against the next pandemic. Further work on the speed of scale 

up would be needed to calculate optimal stockpiles or investment in production facilities.  
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Table 1  Mortality and Economic Losses from Selected Pandemics Over Last Century 
 
 Deaths  Economic losses 

Epidemic 
(date) 

 
Total deaths 
over pandemic 
(source) 

Mortality 
intensity (annual 
deaths per 
thousand people) 

YLL per death 
(source)  

Economic loss over 
pandemic 

Annual 
economic loss 
(% global 
GDP) 

       
1918 flu 
(1918–20) 

32.0 mil. 
(Marani et al. 
2021) 

5.7 × 101 50.1 
(Petersen et al. 
2020) 

 6% global GDP 
(Barro, Ursúa, and Weng 
2020) 

2.0 

       
SARS 
(2002–03) 

1,000 
(Marani et al. 
2021) 

1.2 × 10-4 27.3 
(Jia et al. 2009) 

 0.1% global GDP 
(Keogh-Brown and Smith 
2008)  

2.5 × 10-2 

       
Ebola 
(2014) 

11,325 
(Marani et al. 
2021) 

3.9 × 10-4 38.6 
(Helleringer 
and Noymer 
2015) 

 0.06% global GDP 
(Huber, Finelli, and Stevens 
2018) 

8.3 × 10-2 

       
Zika 
(2015–17) 

1,000 
(Marani et al. 
2021) 

4.5 × 10-5 15.0 
Puntasecca, 
King, and 
LeBeaud 2021) 

 0.05% Latin American and 
Caribbean GDP annually 
(UN Development 
Programme 2017) 

1.7 × 10-2 

       
Covid-19 
(2020-22) 

21.3 mil.  
(Economist 
2022) 

3.2 × 10-1 16.0 
(Pifarré i Arolas  
et al. 2021) 

 14.4% global GDP 
(IMF 2022) 

3.6 

 
 
Notes: For SARS and Zika, estimated deaths set to 1,000, the lower bound on observation threshold from Marani et al. 
(2021) power-law distribution. Years of lost life per death directly reported by indicated source for 1918 flu and Covid-19. 
For other diseases, entry computed by authors using average age at death reported by indicated source times life expectancy 
at that age from WHO (2022) for the relevant region and year of outbreak occurrence. YLL denotes years of lost life. 



35 
 

  

Table 2  Expected Annual Global Pandemic Losses 
 
 Expected annual pandemic losses (billion dollars) 

Scenario 
Mortality  
𝐴𝐴𝑃𝑃(𝑀𝑀𝑀𝑀����)) 

Economic output 
 𝐴𝐴𝑃𝑃(𝑂𝑂𝑀𝑀����) 

Learning  
 𝐴𝐴𝑃𝑃(𝑀𝑀𝑀𝑀���) 

Total  
 𝐴𝐴𝑃𝑃(𝑇𝑇𝑀𝑀����) 

     
Baseline  505 176 127 808 
     
Half probability of pandemic arrival 252 88 64 404 
     
Truncating intensity distribution     
     • Double upper truncation 633 180 130 944 
     • Remove upper truncation 1812 193 140 2144 
      
Add HIV to epidemic frequency data 1327 450 326 2103 
     
 YLL per death      
     • Reduce to 20  344 176 127 646 
     • Increase to 40 687 176 127 990 
     
GDP per capita growth rate     
     • Reduce to 𝑦𝑦 = 1.4%  466 162 117 746 
     • Increase to 𝑦𝑦 = 1.8% 551 192 139 881 
     
Social discount factor     
     • Reduce to 𝑟𝑟 = 2% 1515 527 382 2423 
     • Increase to 𝑟𝑟 = 6% 413 144 104 661 
     
 
Notes: Entries are expected annual global pandemic losses in each category and in total following equation (11) in 
billions of 2019 dollars. The baseline scenario in the first row of results assumes a distribution of pandemic intensity 
given by equation (3); truncates pandemic intensity at the level of the 1918 flu; uses the arrival rate calculated using the 
Marani et al. (2021) data, which excludes HIV; and sets the YLL per death at 29.4, social discount factor at 𝑟𝑟 = 4%, 
and GDP per capita growth rate at 𝑦𝑦 = 1.6%. Other scenarios change only the indicated feature from the baseline.  
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Table 3  Model Parameters 
 

Notation Definition Baseline value 

Range for  
sensitivity 
analysis 

    
 𝑦𝑦 GDP per capita growth rate 1.6% 1.4%–1.8% 
 𝑑𝑑 Depreciation rate 8% 6%–10% 
 𝑟𝑟 Social discount rate 4% 2%–6% 
 𝜙𝜙 Fraction advance investment recoverable via rental 0.7 0.5–0.9 
 𝜃𝜃 Reduction of pandemic-time investments 0.25 0–0.5 
 𝑘𝑘𝑚𝑚 Unit cost of mRNA capacity in advance $1.50 per annual course $0.75–$3.00 
 𝑘𝑘𝑜𝑜 Unit cost of traditional capacity in advance $3.00 per annual course  $1.50–$6.00 
 𝑐𝑐𝑚𝑚 Marginal cost of producing mRNA vaccines $6.00 per course $3.00–$12.00 
 𝑐𝑐𝑜𝑜 Marginal cost of producing other vaccines $3.00 per course $1.50–$6.00 
 𝜀𝜀 Decreasing returns to capacity installed during pandemic 1 0.75–1.25 
 𝑝𝑝𝑏𝑏  Probability both technologies successful 0.5  0.3–0.7 
 𝑝𝑝𝑚𝑚, 𝑝𝑝𝑜𝑜 Probability technology alone successful 0.15  0.1–0.2 
 𝑓𝑓𝑚𝑚, 𝑓𝑓𝑜𝑜 Fraction of at-risk capacity successful 0.3  0.2–0.4 
𝑔𝑔𝑚𝑚, 𝑔𝑔𝑜𝑜 Fraction of unsuccessful at-risk capacity repurposable 0.4  0.2–0.6 
 𝜏𝜏𝑚𝑚 Time to repurpose mRNA candidate 2 months 1–3 months 
 𝜏𝜏𝑜𝑜 Time to repurpose traditional candidate 6 months 3–9 months 
 𝛾𝛾 Fraction of remaining harm mitigated by vaccine 0.5  0.3–0.7 
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Table 4  Baseline Results for Program Outcomes 
 

 
Costs and benefits of program to undertake vaccination 
campaign in next significant pandemic (billion $) 

 
With advance 
investment 

Without advance 
investment Difference 

    
Current value of expenditures     
     • Initial advance investment  60 0 60 
     • Annual maintenance of advance capacity  5 0 5 
     • Additional expenditures in pandemic 22 53 -32 
    
    
Present value of program outcomes    
     • Expected program costs (net of rental income) 48 21 27 
     • Expected gross benefits  636 199 437 
     • Expected net benefits  587 178 409 
    
 
Notes: All entries are in billions of 2019 dollars rounded to the nearest billion. First set of rows report current 
value of expenditures in year undertaken. These are actual, not effective, expenditures, so do not net out rental 
income. Second set of rows report present values (from the perspective of the base year) of costs and benefits of 
program leading to vaccination campaign in next pandemic of at least half the intensity of Covid-19.    
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Table 5  Sensitivity of Program Outcomes to Changes in Selected Parameters 
 

 
Present value of expected net benefits of vaccination 
campaign in next significant pandemic (billion $) 

Scenario 
With advance 
investment 

Without advance 
investment Difference 

    
Baseline  587 178 409 
    
Half probability of pandemic arrival 380 122 259 
    
Truncating intensity distribution    
     • Double upper truncation 739 225 513 
     • Remove upper truncation 2,069 642 1,427 
    
Add HIV to epidemic frequency data 862 250 612 
    
  𝛾𝛾 (fraction of remaining harm mitigated by vaccine)    
     • Reduce to 0.3 333 98 235 
     • Increase to 0.7 842 258 584 
    
 YLL per death     
     • Reduce to 20  426 127 299 
     • Increase to 40  749 229 520 
         
 𝑓𝑓𝑚𝑚, 𝑓𝑓𝑜𝑜 (fraction of at-risk capacity successful)    
     • Reduce to 0.2 475 129 346 
     • Increase to 0.4 679 221 458 
    
𝑟𝑟 (social discount rate)    
     • Reduced to 0.02 992 300 692 
     • Increased to 0.06 414 126 288 
    
 
Notes: All entries are expected present values in billions of 2019 dollars. For space considerations, sensitivity analyses have 
been omitted for other parameters that had smaller effect on difference in program outcomes than those displayed, for 
example, for  𝑓𝑓𝑚𝑚 and 𝑓𝑓𝑜𝑜. Those parameters include 𝜀𝜀, 𝑦𝑦, 𝑑𝑑,  𝜙𝜙, and the pairs (𝑔𝑔𝑚𝑚,𝑔𝑔𝑜𝑜), (𝑘𝑘𝑚𝑚, 𝑘𝑘𝑜𝑜), and (𝜏𝜏𝑚𝑚, 𝜏𝜏𝑜𝑜), where the two 
elements of each pair are changed together. See Table 3 for the baseline values of those parameters and changes considered. 
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Figure 1.  Relationship Between Epidemic Intensity Economic Losses in Historical Pandemics.  

 
Notes: Data points from Table 1. Regression line given by equation (6). Log scales used for both axes. 
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