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1 Introduction

Ever since the onset of ESG (environmental, social, and governance) investing, academics, prac-

titioners, and policymakers have been trying to understand the relationship between ESG perfor-

mance and �nancial variables, particularly stock returns.1 An important problem obscuring this

relationship that the literature has not remedied so far is the problem of accurately measuring ESG

performance. Available measures of ESG performance � ESG ratings � are noisy. The average pair-

wise correlation of the ESG ratings in our sample is only 0.36.2 Berg, Kölbel, and Rigobon (2022)

show that the main source of this disagreement is di�erences in measurement, which suggests that

ESG attributes are measured imperfectly. Nonetheless, ESG ratings guide ESG fund investments

and link investor preferences to portfolio choices.3 Pastor, Stambaugh, and Taylor (2023) show that

ESG investors do indeed tilt their holdings towards �rms with high ESG ratings.

In this paper, we posit that ESG ratings su�er from measurement error and �nd strong support

for this hypothesis. We depart from the existing literature because we do not assume that ESG

ratings provide accurate measurements. Instead, we assume that they measure ESG performance

with noise. This creates a problem for standard regressions seeking to establish a relationship

between �nancial variables and ESG performance. As is well established in the literature, the

estimated coe�cients on regressors measured with noise are biased. We consistently �nd that

the estimates su�er from attenuation bias, i.e., the estimated coe�cient is biased towards zero.

To address this bias, we propose a noise-correction procedure to instrument a given ESG rating

agency's score with other rating agencies' scores, as in the classical errors-in-variables problem. We

conduct this analysis for stock returns and accounting pro�tability measures, relying on the seven

largest ESG rating agencies. The corrected estimates demonstrate that the e�ect of �rms' ESG

performance on stock returns is positive, in line with prior results, but substantially larger than

1A recent meta-study by Atz, Bruno, Liu, and Van Holt (2022) identi�es 1141 peer-reviewed academic papers
written between 2015 and 2020 that investigate the link between ESG and �nancial performance.

2The ESG rating agencies in our dataset include ISS ESG (majority stake owned by Deutsche Boerse), MSCI IVA
(owned by MSCI), RepRisk (independent), Re�nitiv (formerly known as Asset4), SP Global CSA (formerly known
as RobecoSAM), Sustainalytics (owned by Morningstar), Truvalue Labs (owned by FactSet), and Moody's (formerly
known as Vigeo-Eiris). See Section 2 for more details.

3For example, MSCI, the largest ESG rating provider by revenue (see https://www.opimas.com/research/742/

detail/) has more than 1700 clients worldwide (see https://www.msci.com/our-clients/corporates, accessed on
April 11, 2024).
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previously estimated: after correcting for attenuation bias, the median increase in the regression

coe�cients is a factor of 2.1. The results are similar when we use accounting pro�tability measures

as outcome variables. The attenuation bias is stable over di�erent time horizons over which we

measure returns. We estimate the noise-to-signal ratio for each ESG rating agency (some of which

are very large) and show in simulations that our noise-correction procedure outperforms alternative

noise-reducing approaches such as simple averages or principal component analysis.

We start with standard cross-sectional regressions of stock returns on ESG ratings, which have

been widely used in the literature. To tackle attenuation bias, we replace standard ordinary least

squares (OLS) regressions with two-stage least squares (2SLS) regressions. In the �rst stage of

the 2SLS estimation, we instrument the rating of one agency by the ratings of other agencies in

our sample. We document that the �rst stage is strong � each rating agency's ESG score is well

predicted by a combination of other rating agencies' scores. Our 2SLS regressions reveal that the

e�ect of ESG performance on stock returns is much stronger relative to those from the standard

regressions � nearly all coe�cients increase substantially in magnitude. This result is consistent

with the hypothesis that ESG ratings are measured with error and that the bias we see in the

standard regressions is indeed an attenuation bias.4 Furthermore, the statistical signi�cance of the

estimates from the 2SLS regressions is typically higher than from their OLS counterparts, so the

link between ESG performance and stock returns is stronger than previously documented.

Measurement error in ESG ratings can signi�cantly a�ect ESG portfolio construction. In a

long-short portfolio based on the �rst and �fth quintiles of the MSCI ratings, 46.2% of the stocks

in the �rst quintile are replaced by stocks in other quintiles after we instrument the rating using

our procedure.

Furthermore, the ratios of 2SLS and OLS coe�cients can be estimated for each rating agency,

and they provide a measure of the implied noise in the rating agency's score. We �nd that the

noise-to-signal ratio ranges from 23.7 to 98.5% across ESG raters.

4In Appendix A.1, we develop a theoretical model that establishes a linear relationship between ESG performance
and stock returns and shows that the noisier the measurement of ESG performance, the lower the sensitivity of
stock returns to ESG performance. Moreover, we show that the latter result implies that regression estimates of the
relationship between stock returns and noisy measures of ESG performance would be biased toward zero. The noisier
the measurement, the larger the bias.
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There is agreement in the literature that over our (short) sample period, green stocks outper-

formed brown, and our estimates are consistent with this �nding. We also �nd a positive relationship

between ESG performance and stock returns, albeit higher in magnitude. This is puzzling in light

of the theory that green stocks attract higher investor demand and, therefore, should have higher

prices and lower expected returns (Heinkel, Kraus, and Zechner, 2001; Pastor, Stambaugh, and Tay-

lor, 2021). The literature has attributed the outperformance to a strengthening of climate concerns

over the sample period and to in�ows into ESG funds, as in, e.g., van der Beck (2021); Pastor,

Stambaugh, and Taylor (2022); Karolyi, Wu, and Xiong (2023). We do not duplicate their perfor-

mance decomposition in this paper. Our point is orthogonal. Regardless of whether the sign of

the relationship is positive or negative, an OLS regression mismeasures the coe�cient because of

the noise in ESG ratings. Our 2SLS estimation approach recovers the true coe�cient under certain

assumptions. In future work, as the time dimension of our panel grows and realized returns become

more representative of expected returns, we expect the coe�cient to become negative.

While the leading application of our procedure is to the relationship between ESG performance

and stock returns, we also consider other outcome variables. The accounting literature has focused

on the e�ects of ESG performance on accounting measures of performance. We apply our procedure

to study how ESG performance a�ects the accounting pro�tability measures and demonstrate that

standard regressions in the literature su�er from attenuation bias, which our procedure corrects,

leading to a median increase in the coe�cients by a factor of 1.9. The estimated coe�cients are all

positive5 and their statistical signi�cance is higher than in the OLS regressions. Finally, we apply

our procedure to the E, S, and G components of ESG ratings, and our results are consistent with

what we �nd for aggregate ESG ratings, with a median expansion factor of 1.7.

How do we ensure that the ESG ratings are valid instrumental variables (IVs)? Although each

rating agency's ESG rating is well predicted by a combination of other ratings, this is insu�cient

to guarantee that ESG scores are valid instruments. While it is not possible to directly test for

instrument validity, we conduct overidentifying restrictions (OIR) tests to establish whether our

5In line with Lins, Servaes, and Tamayo (2017); Liang and Renneboog (2017); Cornett, Erhemjamts, and Tehranian
(2016)
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instruments are coherent with each other.6 The OIR test compares IV estimates from two models

with di�erent sets of instruments. If the instruments are valid, the two estimates must be the same.

What makes an ESG rating an invalid instrument? The exclusion restriction is likely to be

violated if ESG scores used as instruments are, for example, back�lled retroactively by a provider

or if the scores of one ESG rater are in�uenced by another. Another issue could be that measure-

ment errors are correlated across rating agencies because agencies use similar procedures or rely on

imputed data to arrive at the scores. The OIR tests diagnose these violations.

As we have seven ESG rating agencies in our sample, we can test multiple OIR. In our noise-

correction procedure, which we term 2SLS pruning, we choose the instruments by starting from the

largest possible set and pruning instruments one at a time until the model passes the Sargan-Hansen

test of OIR. The failure of the test indicates that the set of chosen instruments is not coherent,

which can happen when some instruments violate the exclusion restriction.

To provide further validation for our procedure, we follow Pancost and Schaller (2021) in arguing

theoretically that the attenuation bias, captured by the ratio between the 2SLS and OLS coe�cients,

should be invariant to the horizon over which stock returns are measured. We, therefore, estimate

the model for stock returns measured over months t + 1, t + 2, and t + 3 and �nd that the ratios

between the 2SLS and OLS coe�cients in these three tests are indeed statistically indistinguishable

from each other.

It is important to highlight that all raters' scores are valuable. Disregarding the scores of some

raters amounts to discarding valuable information about the imperfectly measured ESG attributes.

However, researchers may not have access to 7 di�erent ratings like we do. The minimum number of

alternative ratings required for our procedure is two. We demonstrate that our procedure performs

well even with only two alternative ratings, both empirically and in simulations.

We run simulations to compare our noise-correction procedure to common alternative approaches

such as a simple average or principal component analysis. The simulations show that our procedure

6Valid instruments are always coherent, but the reverse is not always true. The OIR test would classify invalid
instruments as coherent in a knife-edge case when the entire set of instruments su�ers from the exact same form of
misspeci�cation (Parente and Santos Silva, 2012).
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performs signi�cantly better than the alternatives. Suppose, for example, that one ESG rating is

noisier than another. A simple average ignores this information and puts equal weight on the two

ratings, which is not optimal. The principal component analysis is designed to explain observed

variance. It would, therefore, put the largest weight on the signal with the highest variance and

most likely the highest noise. An ideal approach should instead put the lowest weight on the noisiest

variable, which is what our procedure does. In additional simulations, we focus on potential model

misspeci�cations and �nd that the OIR test has signi�cant power in our setting.

Finally, we recognize that, in practice, ESG ratings are aggregates of multiple indicators (e.g.,

carbon emissions, labor practices, etc.), and raters choose di�erent sets of indicators in constructing

their scores. This means that we have fewer instruments than possible sources of noise. In simu-

lations, however, we show that our procedure still goes a long way in recovering the e�ect of ESG

performance on stock returns, i.e., the 2SLS estimates are much closer to the true coe�cient than

their OLS counterparts.

Our paper is related to several strands of literature. First, numerous studies have explored

the link between ESG performance and stock returns. However, the evidence is not conclusive;

studies report both higher stock returns for ESG performers (Edmans, 2011; Lins, Servaes, and

Tamayo, 2017; Albuquerque, Koskinen, and Zhang, 2019; Karolyi, Wu, and Xiong, 2023) as well

as lower stock returns (Chava, 2014; El Ghoul, Guedhami, Kwok, and Mishra, 2011; Bolton and

Kacperczyk, 2022). Pastor, Stambaugh, and Taylor (2022) stress the importance of distinguishing

between expected and realized stock returns, and argue that the expected stock returns of high

ESG performers are lower (see also van der Beck, 2021). While our model is fully consistent with

these studies, we add an important point that regardless of whether one focuses on expected or

realized returns, the noisy measurement will tend to attenuate the e�ect and develop a procedure

for correcting the attenuation bias.

Second, our analysis is related to the literature on measurement error, which is too vast to

summarize here. We rely on the classical errors-in-variables approach, and, following Pancost and

Schaller (2021), evaluate the robustness of this approach in our setting by changing the dependent

variable. Our approach is related to Gillen, Snowberg, and Yariv (2019) but adds a strategy to weed
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out incoherent instruments, which is valuable when more than one instrument is available. Future

research could examine measurement error consistent high-order moment estimators (Erickson and

Whited, 2010).

Finally, our paper is related to the literature on ESG rating divergence (Berg, Kölbel, and

Rigobon, 2022; Christensen, Hail, and Leuz, 2021; Christensen, Serafeim, and Sikochi, 2022). Two

recent papers that study the consequences of ESG rating divergence at the �rm level, Avramov,

Cheng, Lioui, and Tarelli (2022) and Gibson Brandon, Krueger, and Schmidt (2021), suggest that

uncertainty about ESG performance leads to a higher risk premium. Our perspective is di�erent.

We interpret ESG rating divergence as measurement error, which attenuates the true e�ect of ESG

performance on stock returns in standard regressions.

2 Data

2.1 ESG Ratings

We rely on seven di�erent ESG ratings: ISS's Numeric ESG Overall Rating, Moody's Global score,

MSCI's IVA Industry Weighted score, Re�nitiv's TRESG score, Sustainalytics' ESG Risk Rating,

S&P Global's ESG score (SPGlobal), and the Insight Score from Truvalue Labs (TVL). A detailed

overview of names and ownership is shown in Table A1.

In line with prior literature, di�erent ESG raters provide diverging ESG ratings. Table 1 shows

the pairwise correlations between the ESG scores. The correlations are all positive, ranging from

0.04 for the TVL-Sustainalytics pair to 0.75 for the Moody's-ISS pair. The divergence arises because

each ESG rating is generated by a unique methodology. Methodologies di�er due to di�erent ways

of measuring ESG attributes and di�erent ways of choosing and aggregating ESG attributes. Berg,

Kölbel, and Rigobon (2022) show that measurement is the main source of divergence, followed by

the choice (scope) and the aggregation (weights) of attributes.

ESG rating agencies resort to a variety of data sources for their assessment. A key challenge is

that there is only a limited amount of standardized and publicly available data about companies'

6
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ESG performance. Mainly, data comes from �ve distinct sources: (1) companies' own ESG reports,

(2) regulatory �lings, (3) the media, (4) questionnaires that rating agencies send to companies, and

(5) modeled data. These sources di�er along important dimensions, namely whether the information

is available to the public or not, who reports the information (the company itself or a third-party

observer), whether the disclosure is mandatory or voluntary, and whether it follows disclosure stan-

dards such as the Global Reporting Initiative (GRI) or the Sustainability Accounting Standards

Board (SASB). As a result, the indicators that ESG ratings are built upon are noisy.

ESG rating agencies determine which attributes should be evaluated as part of their scoring

procedure and how important they are relative to each other. The list of relevant attributes typi-

cally includes greenhouse gas emissions, product safety, or labor practices but can also include less

obvious attributes such as electromagnetic radiation, management of systemic risks, or whether top

management has monetary incentives to meet ESG targets. The weight of these attributes can also

di�er, and in many cases, weights are industry-speci�c and determined according to a proprietary

methodology. ESG raters attempt to aggregate ESG attributes in a way that is consistent with what

a representative ESG investor cares about.7 As a result, the way that ESG ratings are produced

implies that each of them o�ers a noisy measurement of some underlying true ESG performance,

which itself remains unobservable.

For example, at an individual indicator level (e.g., CO2 emissions), �true� means precisely the

actual CO2 emissions that occurred. The noise is the di�erence between what the rating agency uses

for CO2 emissions and the actual one. For ESG ratings, which are themselves weighted averages

of indicators, �true� means that the indicators are free of measurement error and that the weights

assigned to the indicators coincide with the weights that the representative ESG investor assigns to

individual ESG attributes.

7See McCahery, Sautner, and Starks (2016) for an analysis of the corporate governance preferences of di�erent
institutional investors.
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2.2 Financial Data

Financial data comes from Compustat's Capital IQ. Return is the stock return expressed in per-

centage points. Beta is the market beta estimated from monthly returns from month -60 to month

-1. Dividends are the dividends per share over the prior 12 months divided by price at the end of

the prior month. Market Value is the logarithm of the market value of equity at the end of the

prior month. Book-to-market is the logarithm of book equity minus the logarithm of market value

of equity at the end of the prior month. Asset Growth is the logarithm of growth in total assets

in the prior �scal year. ROA is the income before extraordinary items divided by average total

assets in the prior �scal year. Momentum is the return from month -12 to month -2.Volatility is

the monthly standard deviation, estimated from daily returns from month -12 to month -1. All

�nancial variables are winsorized at the 1% level. Flows is the ratio of fund �ows into ESG funds in

the Eurozone, the U.S., the U.K., and Japan according to Morningstar. The unit of measurement

is U.S. dollars.

2.3 Descriptives

Descriptive statistics are provided in Appendix Table A2. Re�nitiv, SPGlobal, Sustainalytics,

Truvalue Labs, as well as Moody's have a rating on a scale from 0 to 100, ISS from 1 to 4, and

MSCI from 0 to 10. We multiply Sustainalytics' scores by -1 and add 100 to align them with

the other ratings. A high rating signi�es a good performance, and a low rating signi�es a bad

performance.

The analysis is performed from January 2015 to December 2020, the starting point being deter-

mined by Sustainalytics' data, which starts in December 2014. We excluded the social score from

ISS (ISS-S) because they started o�ering their S sub-component at the end of 2017. The sample

consists of 1297 �rms and 70246 �rm-month observations.

The descriptive statistics of the �nancial variables in the U.S. are in line with Lewellen (2015)'s

large stocks sample. The average market value is 11.3 billion U.S. dollars. This skews the sample
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slightly towards larger �rms. A reason for this might be that ESG rating agencies have better

coverage for larger �rms.

Table 1. Pairwise correlations of ESG raters' scores. This table presents the pairwise correlations
of ESG ratings. We multiplied Sustainalytics' scores by -1 and added 100 so that a higher value corresponds to a
better ESG performance for all ratings. Pairwise correlations for E, S, and G subscores are shown in Appendix Table
A3.

ESG ISS Moody's MSCI Re�nitiv Sustainalytics SPGlobal TVL

ISS 1
Moody's 0.75 1
MSCI 0.49 0.50 1
Re�nitiv 0.64 0.67 0.40 1
Sustainalytics 0.22 0.23 0.29 0.22 1
SPGlobal 0.61 0.65 0.40 0.65 0.21 1
TVL 0.14 0.12 0.20 0.08 0.04 0.07 1

3 Errors-in-Variables and Stock Returns

In this section, we empirically address the problem of noise in ESG ratings. To do this, we examine

the impact of ESG measurement errors on the relationship between ESG performance and stock

returns. We depart from the rapidly growing literature on the impact of ESG on �nancial outcomes

in that we do not assume that ESG ratings provide accurate measurements. Instead, we assume

that they measure ESG performance with noise.

A simpli�ed asset pricing representation of stock returns and their relation to ESG performance

can be written as follows:

rk,t+1 = α+ β · Yk,t +Mk,t + ϵk,t, (1)

where rk,t+1 is the stock return between time t and t+1 for �rm k. Yk,t is the true ESG performance

at time t, Mk,t is an omitted variable that a�ects stock returns and may be correlated with ESG

performance, and ϵk,t are the mean zero innovations assumed to be orthogonal to all the regressors.

There are T time periods and K �rms. In vector notation, r := {r̃k,t+1, ∀k ∧ t + 1}, Y :=

{Ỹk,t, ∀k ∧ t}, M := {M̃k,t, ∀k ∧ t}, and ϵ := {ϵk,t, ∀k ∧ t}, where all vectors are KT × 1,

tilde indicates that a variable has been demeaned, and the symbol ∧ denotes �and.� In Section 4,
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in which we estimate the e�ects of ESG performance on stock returns, we will additionally control

for standard asset pricing characteristics.

The ESG performance Y can be correlated with the omitted variable M. The omitted variable

can be interpreted in many di�erent ways: (i) as unexpected capital �ows into ESG stocks, (ii)

as an investors' sentiment shift toward ESG stocks, or (iii) as shifts in management quality. The

presence of the omitted variable is important for interpreting the coe�cients. We limit ourselves

to addressing attenuation bias and design our empirical method to be robust to the presence of

omitted variable bias.

In the previous section, we argued that ESG ratings are noisy. Therefore, in our speci�cation

below we assume that ESG rating agencies produce an imperfect measurement of the true ESG

performance. Suppose that there are N ESG rating agencies indexed by i. The score of rating

agency i for �rm k is given by sk,t,i and this score contains measurement error (or noise), denoted

as ηk,t,i. Formally,

sk,t,i = Yk,t + ηk,t,i, i ∈ {1, . . . , N}. (2)

We assume the measurement error (ηk,t,i) is as in the classical errors-in-variables problem, that is,

orthogonal to (Y,M, ϵ). (A complete list of assumptions follows in Section 3.1). As before, we

demean and stack these observations into vectors si := {s̃k,t,i, ∀k ∧ t} and ηi := {ηk,t, ∀k ∧ t}.

While the true ESG performance is not observable in the data, ESG scores are. The reduced-

form of the structural model (1) that one can take to the data is as follows:

rk,t+1 = α+ β · sk,t,i + νk,t, (3)

where νk,t = Mk,t + ϵk,t − ηk,t,i · β. In other words, we have replaced the true ESG performance Yk,t

with an ESG score, which is a noisy version of Yk,t.

The coe�cient of interest is β, whose OLS estimate, derived in Appendix A.2.1, is given by

βOLS =
Y′Y

Y′Y + ηi
′ηi

·
[
β +

Y′M

Y′Y

]
. (4)
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It is easy to see that the OLS estimate of β is biased for two reasons. The �rst bias is the attenuation

bias, Y′Y/(Y′Y + ηi
′ηi), which occurs because of the measurement error in the regressor, while

the second bias is the omitted variable bias, Y′M/Y′Y.

We concentrate on the attenuation bias instead of the omitted variable bias for two reasons.

First, given the substantial disagreement of ESG scores across rating agencies, noise in ESG scores

is a �rst-order problem for regulators, asset managers, and investors. Second, the fact that there

are multiple ESG ratings that disagree, but are nonetheless correlated with each other, provides

a unique opportunity to address the attenuation bias that results from noisy measurement. If an

omitted variable bias is present, the interpretation of the coe�cient changes, but our procedure will

still tackle the attenuation bias.

One of the known approaches for tackling attenuation bias is to use alternative noisy measures

of the regressor as instruments. Consider again the reduced-form regression (3), in which the score

si of ESG rating agency i is a noisy measure of Y. We will use the scores of other ESG ratings

as instruments. In the empirical section, we will use several instruments, but here, for expositional

purposes, let us focus on one instrument sj, which is the score of �rm k at time t from rater j (for

j ̸= i).

For the moment, assume that sj is a valid instrument for si. We will discuss this assumption in

detail in Section 3.1 below. The IV estimate of β, derived in Appendix A.2.1, is then given by

βIV =

[
β +

Y′M

Y′Y

]
. (5)

It is instructive to compare the OLS and IV estimates (Equations (4) and (5)). Notice that the

omitted variable biases both the OLS estimate and the IV estimate in exactly the same manner.

Hence, to isolate the attenuation bias, we simply need to compute the ratio of the two estimates.

An implicit assumption behind the IV estimation is that the omitted variable bias does not a�ect

the measurement error (we formalize this in the next section in assumption (8)). The magnitude of
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the noise in the ESG score, which is used as a regressor, can then be estimated as

κi := 1− βOLS

βIV
= 1− Y′Y

Y′Y + ηi
′ηi

=
ηi

′ηi

Y′Y + ηi
′ηi

, (6)

where κi is the noise-to-signal ratio in the rater i's scores. In Section 4.2.1, we will compute the

noise-to-signal ratios and compare them across di�erent raters.

3.1 Identifying assumptions for the IV procedure

Under which conditions are ESG ratings valid instruments for each other? In a nutshell, we need

to assume that ESG ratings are related to each other only through Y and that their measurement

error is white noise. We now formally spell out the assumptions under which ESG ratings are valid

instruments for each other. We do so for the case in which there are multiple instruments.

As a baseline, we need the relevance assumption, i.e., that instruments are correlated with the

regressor. This assumption is easy to defend. In Section 2, we demonstrate that ESG rating scores

of di�erent agencies are positively correlated and that some of these correlations are relatively high.

In Section 4, we will show formally that we do not have a problem of weak instruments (see the

�rst-stage F-statistics in Tables 2�4).

Given relevance, we require three further assumptions regarding the measurement errors ηk,t,i.

First, the errors are classical, i.e., additive and orthogonal toY, as in the classical errors-in-variables

problem: 8

E[ηk,t,i|Yk,t] = 0, ∀i. (7)

Second, the error terms ηk,t,i are independent of both the stock cash-�ow innovations ϵk,t (not

captured by the �rm-level controls that we introduce later) and the omitted variable M, i.e.,

E[ηk,t,i · ϵk,t] = 0 and E[ηk,t,i ·Mk,t]= 0, ∀i. (8)

8In Appendix Figure A1, we plot the distributions of the ESG rating variables. We note that they are all close to
a binomial distribution. Even though the distributions are bounded, there is very little mass in the tails. This lends
support to the assumption that the errors are classical.
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Furthermore, when we introduce controlsXk,t in our baseline regression, we will assume that E[ηk,t,i·

Xk,t] = 0. These three assumptions are the exclusion restriction.

Third, we assume that all errors (ηk,t,i) are independent across rating agencies:

E[ηk,t,i · ηk,t,j ] = 0 ∀j ̸= i. (9)

This is the independence assumption.

Assumptions (7), (8), and (9) imply that the measurement error of each ESG rating is e�ectively

white noise. This is a strong assumption, and we review below some possibilities regarding how

it could be violated. While we cannot rule out those violations in principle, we can test for them

empirically using the Sargan-Hansen OIR test, as we explain in Section 3.2.

The most probable threat to our IV estimation is a violation of the independence assumption (9),

i.e., noise in ESG scores may be correlated across raters. This can occur if several rating agencies

use similar data and similar estimation procedures to arrive at their scores. Also, rating agencies

may rely on the same imputation method for missing data. As imputation always approximates the

missing true value with some error, this error would then be correlated across those ratings that

use the same procedure. It is also possible that the exclusion restriction (8) is violated. This can

occur when ESG rating agencies retroactively adapt their scores after observing past stock return

realizations (Berg, Fabisik, and Sautner, 2021). Another possibility is that errors are driven by

other �rm characteristics, such as size. However, Gibson Brandon, Krueger, and Schmidt (2021)

show that ESG rating divergence is very di�cult to explain with other �rm characteristics. Finally,

errors could be non-classical, causing a violation of assumption (7). This could occur when errors

are related to the true ESG performance in an asymmetric or non-linear fashion. For instance, it

could be that bad performance is easier to detect than good performance.

3.2 Testing the Coherence of Instruments

In our setting, we have several ESG rating agencies producing ratings that intend to capture a �rm's

true ESG performance. This implies that there are several rating agencies that could be used as
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instruments. When there are two or more instruments, it becomes possible to run overidentifying

restriction tests to check the coherence of the instruments.

The �rst step is to argue that di�erent ESG ratings can be used as both regressors and instru-

ments. This is a counter-intuitive implication of the errors-in-variables setting that is sometimes

missed in applied work. In many applications, the regressors and the instruments are not inter-

changeable. In the case of errors-in-variables, they are, as long as the instruments are valid. This is

because model misspeci�cation is not in the structural form but in the measurement of the variables.

Let us now show what happens to the OLS and IV estimates if assumptions (7), (8), and (9)

are violated. Suppose that the measurement error in the regressor si is correlated with the true

ESG performance, with the omitted variable, with the stock market innovations, and with the

measurement errors of another rating agency sj , which we use as an instrument. The OLS and the

IV estimates, derived in Appendix A.2.2, are given by:

βOLS =
β ·Y′Y +Y′M+ β ·Y′ηi +M′ηi + ϵ′ηi

Y′Y + ηi
′ηi +Y′ηi

, (10)

βIV =
β ·Y′Y +Y′M+ β ·Y′ηj +M′ηj + ϵ′ηj

Y′Y +Y′ηi +Y′ηj + ηi
′ηj

. (11)

where the term in purple is what causes attenuation bias in the OLS estimate, the terms in red are

the ones due to violation of the classical errors-in-variables (Equation (7)), the term in green is due

to the violation of the exclusion restriction (Equation (8)), and the term in blue corresponds to the

violation of the independence of the instruments (Equation (9)).9

The OIR test compares IV estimates from two models, with di�erent sets of instruments. If the

identifying assumptions (7), (8), and (9) hold, the two IV estimates should be the same. However,

when the identifying assumptions fail, the two IV estimates are di�erent from each other.10 We use

the Sargan-Hansen OIR test to probe the equality of the two di�erent IV estimates. The Sargan-

9See Appendix A.2.1 for the derivations.
10There is one knife-edge possibility that all the covariances are di�erent from zero but identical across the two

models.
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Hansen test uses the two instruments (or all the available instruments) simultaneously in the �rst-

stage regression and then compares the correlations between the instruments and the residuals from

the regression.

Unfortunately, the OIR test cannot diagnose which assumption is violated, i.e., it cannot de-

termine which of the covariances is di�erent from zero. Instead, we can speculate about this based

on economic arguments. However, the OIR test indicates which instruments cause violations, thus

allowing us to estimate the model with a subset of instruments for which the OIR test does not

reject the model.

3.3 Estimation Procedure

In our empirical implementation, we �nd that of the many instruments we have available, some are

coherent, and some are not. How do we choose, then, which instruments to include in the estimation?

Unfortunately, the Sargan-Hansen OIR test does not discern which instrument is valid. In essence,

it tests whether the coe�cients are di�erent from each other for each subset of instruments, but it

does not identify which coe�cient is correct. However, when the OIR test is not rejected, all the

subsets of instruments are coherent. Coherent here means that either all instruments in the set are

valid or they all have the same form of misspeci�cation, which is a knife-edge case.

Our procedure, which we term 2SLS pruning, starts with the full set of instruments and reduces

it if the OIR test is rejected. First, we select a rating agency whose scores we want to instrument,

i.e., the regressor. We then use all remaining rating agencies' scores as instruments, so the IV

estimator we have been discussing technically becomes a 2SLS estimator. Second, we estimate

speci�cation (3) using 2SLS and run the Sargan-Hansen OIR test. If the model passes the Sargan-

Hansen test, then all included instruments are coherent; otherwise, we exclude instruments, one at a

time, until the model passes the test. We report the included and excluded instruments. The 2SLS

pruning procedure identi�es the maximum number of coherent instruments for each ESG rating i,

i = 1, . . . , 7, and provides the 2SLS estimate of the e�ect of ESG performance i on stock returns.
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There are two concerns, however, regarding the 2SLS pruning procedure. First, it is unclear

whether the OIR tests have su�cient power in our application. The short answer is that they

have. We indeed �nd many rejections in our empirical implementation (Section 4). Additionally,

we evaluate the power of the OIR test in simulations (see Section 5) and con�rm that the test has

su�cient power to detect coherent instruments. Second, the 2SLS pruning procedure is a sequence of

OIR tests and the size should be adjusted to re�ect the fact that the tests are not independent. We

indeed estimate many OIR tests in this procedure. For example, when 6 ESG ratings are included

as instruments, we run only one OIR test. If the OIR test rejects that model, our next step is to

perform the OIR tests on 6 combinations of 5 instruments. If all of these 6 tests reject the model,

we consider 15 possible combinations of 4 instruments and therefore run 15 OIR tests and so forth

until a set of instruments passes the test. If our model passes the OIR tests, this is evidence that

instruments are coherent, implying that the OIR tests do not diagnose violations of our identifying

assumptions (7), (8), and (9).

To address the issue of serial testing, we select an increasing sequence of rejection thresholds,

namely 2.5%, 3.33%, 4.17%, 5%, and 5.83%.11 We have estimated even larger bands, and the results

are virtually identical. The reason why we increase the thresholds for the p-values is as follows. For

example, when we are testing all the combinations of 5 raters as instruments, we only proceed to

the case of 4 raters-combinations when we �nd a rejection in all the combinations of 5 raters. The

usual procedure that corrects for serial testing lowers the p-value thresholds when more testing is

performed because the testing purpose is to �nd at least one rejection. In contrast, our purpose is

to �nd no rejections, and hence we use an increasing sequence of rejection thresholds.

4 Empirical Results

In this section, we estimate the OLS regressions of stock returns on ESG ratings and contrast them

to 2SLS regressions, which use scores of other rating agencies as instruments.

11Note that we only have 5 thresholds as we need at least two instruments for the OIR test.
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4.1 Model Speci�cations

The OLS regression is

rk,t+h = α+ β · sk,t,i + cX ·Xk,t + νh,k,t, (12)

where sk,t,i denotes the ESG rating of �rm k, by rater i, in month t, h denotes the horizon, i.e.,

the number of months over which the returns are measured and all returns are observed at monthly

frequency. Following Lewellen (2015), the vector Xk,t includes stock-level controls consisting of

Beta, Dividends, Market Value, Book-to-market, Asset Growth, ROA, Momentum, and Volatility.

In addition, we control for ESG Flows. Xk,t also includes industry and month �xed e�ects.12 We

cluster standard errors by month and �rm.

As argued in Section 3, the OLS estimate of the e�ect of ESG performance on stock returns,

βOLS , su�ers from attenuation bias. To assess the signi�cance of the bias, we compare the OLS

estimates with their 2SLS counterparts. The �rst-stage regression uses ESG scores of other rating

agencies as instruments for a given rater's score and includes the same controls as in (12):

sk,t,i = c0 + π · Zk,t,i + c1 ·Xk,t + ηk,t, (13)

where Zk,t,i := {sj |∀(j ̸= i), sj is a valid instrument} are other rating agencies' scores that are

being used as instruments. Denote by ŝk,t,i the �tted value from the estimation of Equation (13).

Then the second stage regression is

rk,t+h = α+ β · ŝk,t,i + cX ·Xk,t + νh,k,t. (14)

Provided that our assumptions are satis�ed, we expect that |β2SLS | > |βOLS |. In the empirical

implementation, we partial out all the controls from returns and the ESG rating scores, allowing us

to use equations from Section 3 directly.

12We do not use �rm �xed e�ects because the frequency of most ESG ratings changes is annual, and we have a
very limited time series.
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4.2 Main Results

Table 2. Stock returns and ESG ratings.
This table reports estimates of β from the OLS regression (12) and the 2SLS regression (14). The �rst set of columns
shows OLS estimates. The second set of columns shows 2SLS estimates produced with the 2SLS pruning procedure as
described in Section 3.3. The check marks in the columns titled �Coherent IVs� indicate the selection of instruments
that pass the Sargan-Hansen OIR test. We cluster standard errors by month and �rm. All reported coe�cients and
standard errors are multiplied by 100. The regressions are run for each rater, whose names are reported in the column
�Rater�. The �rst panel presents results for a return horizon of one month, i.e., computed between t and t+ 1, while
ESG ratings are observed in month t. The second panel presents results for a horizon of two months and the third
for a horizon of 3 months. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

OLS 2SLS Pruning

Horizon Rater βOLS StdErr β2SLS StdErr β2SLS
βOLS

Coherent IVs F�test

IS MS Re SP Su TV Mo

1

ISS 0.009 0.005 * 0.026 0.008 *** 3.0 ! ! ! ! ! ! % 10429

MSCI 0.012 0.004 *** 0.024 0.008 *** 2.0 ! ! ! ! ! ! % 4792

Re�nitiv 0.007 0.004 * 0.021 0.007 *** 3.0 ! ! ! ! ! ! % 8598

SPGlobal 0.011 0.004 *** 0.019 0.007 *** 1.8 ! ! ! ! ! ! % 8822

Sustainalytics 0.023 0.006 *** 0.038 0.012 *** 1.6 ! ! ! ! ! ! % 4301

TVL 0.001 0.004 0.065 0.019 *** 95.1 ! ! ! ! ! ! % 497

Moody's -0.003 0.005 0.021 0.007 *** -7.0 ! ! ! ! ! ! ! 11841

2

ISS 0.009 0.005 * 0.024 0.008 *** 2.7 ! ! ! ! ! ! % 10253

MSCI 0.011 0.004 *** 0.024 0.008 *** 2.2 ! ! ! ! ! ! % 4715

Re�nitiv 0.007 0.004 * 0.020 0.007 *** 2.7 ! ! ! ! ! ! % 8448

SPGlobal 0.009 0.004 ** 0.019 0.007 *** 2.1 ! ! ! ! ! ! % 8696

Sustainalytics 0.024 0.006 *** 0.027 0.012 ** 1.1 ! ! ! ! ! ! ! 3707

TVL 0.001 0.004 0.062 0.019 *** 111.1 ! ! ! ! ! ! % 489

Moody's -0.001 0.005 0.020 0.007 *** -13.5 ! ! ! ! ! ! ! 11671

3

ISS 0.006 0.005 0.021 0.008 *** 3.5 ! ! ! ! ! ! % 10076

MSCI 0.012 0.004 *** 0.020 0.008 *** 1.8 ! ! ! ! ! ! % 4637

Re�nitiv 0.005 0.004 0.015 0.007 ** 2.9 ! ! ! ! % ! % 10197

SPGlobal 0.007 0.004 * 0.012 0.007 * 1.7 ! ! ! ! % ! % 10142

Sustainalytics 0.023 0.006 *** 0.023 0.012 * 1.0 ! ! ! ! ! ! ! 3652

TVL 0.002 0.004 0.064 0.020 *** 40.4 ! ! ! ! ! ! % 481

Moody's -0.003 0.005 0.017 0.007 ** -5.5 ! ! ! ! ! ! ! 11493

Median 2.1 8598

Our main �nding is that the 2SLS estimates are substantially larger than the OLS estimates.

Table 2 compares the OLS and 2SLS estimates for the e�ect of ESG ratings on stock returns for

various return horizons. Column β2SLS
βOLS

reports the expansion factor, which has a median of 2.1

across all speci�cations. Coe�cient magnitudes tend to double when implementing our estimation

procedure.
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The expansion is also very consistent. In nearly all speci�cations, the 2SLS coe�cient is larger

than the OLS coe�cient. The exception is Moody's, where the sign of the coe�cient �ips. However,

the OLS estimate for Moody's is not statistically di�erent from zero, while the 2SLS estimate is

signi�cant and in line with the coe�cients from other raters. Thus, considering the uncertainty in

the OLS point estimates, these cases may also be expansions. Finally, there is Sustainalytics over

a three-month horizon, where the two coe�cients are exactly the same.

The substantial and consistent expansion of the coe�cients strongly suggests the presence of an

attenuation bias in OLS regressions with ESG ratings. The 2SLS estimates also tend to have higher

statistical signi�cance. While the standard errors are, of course, larger for the 2SLS estimates,

also the coe�cients are substantially larger. The gain in coe�cient magnitude from correcting the

attenuation bias outweighs the e�ciency loss of the 2SLS estimator.

The second important observation is that there are instances in which an instrument is rejected

by the Sargan-Hansen OIR test. Table 2 shows accepted instruments as green check marks and

excluded instruments as red crosses. Most ESG ratings are accepted as instruments, suggesting

that the procedure is empirically feasible in many cases. Moody's ESG is rejected throughout as

an instrument with only two exceptions. Sustainalytics is rejected as an instrument in two cases.

While the OIR test does not provide a diagnosis of the reasons for rejection, based on our discussion

in Section 3.1, we believe that the most probable reason is that measurement errors are correlated

across rating agencies. In Section 5, we will provide evidence from simulations that show that, in

our application, the OIR test is quite sensitive to violations of our identifying assumptions (7), (8),

and (9).

The third observation is that, despite their low correlations with each other, ESG ratings are

strong instruments for each other. F-statistics in Table 2 have a median of 8598 and range from 497

to 11841. This demonstrates strong support for our relevance assumption. While some individual

scores could be very noisy, taken together, they work extremely well in predicting any given rater's

scores.
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Finally, we note that all of the signi�cant coe�cients, both from OLS and 2SLS, are positive.

Positive coe�cients are not what one would expect based on an equilibrium asset pricing model,

but they are consistent with empirical �ndings covering a similar period. For instance, Pastor,

Stambaugh, and Taylor (2022) and Karolyi, Wu, and Xiong (2023) also �nd positive returns for

high ESG stocks, attributing this to changes in climate concerns over the sample period, as well

as unexpected �ows into high ESG stocks. Over a longer time series, one would expect a negative

e�ect of ESG performance on stock returns to appear. We provide a model making this prediction

in Appendix A.1

4.2.1 Consistent expansion for di�erent return horizons

Running the analysis for stock returns at di�erent horizons provides a robustness check of our

approach (Pancost and Schaller, 2021).13 If the stock returns are computed at di�erent horizons,

one can argue that the variances of the innovations change, that the importance of the omitted

variable shifts, etc., but the noise in the ESG score remains the same. Therefore, the attenuation

bias should be the same regardless of the horizon over which the returns are computed. For a

detailed discussion, see Appendix A.2.3.

The ratios between 2SLS and OLS estimates in Table 2 are stable across horizons. Figure 1

provides a further illustration of that, relying on the noise-to-signal ratio κi, as de�ned in Equation

(6). Ratios from di�erent horizons are shown in di�erent colors, and the dots tend to be very close

to each other in most cases. These results provide evidence that attenuation bias is stable across

di�erent horizons over which the left-hand-side variable is measured.

The values plotted in Figure 1 can interpreted as the implied noise in ESG scores. When the

2SLS estimate is much larger than the OLS estimate, the noise-to-signal ratio of rater i, κi, tends

towards 1, indicating that the score is very noisy. This is the case for TVL, followed by ISS and

Re�nitiv. On the other end of the spectrum, we see MSCI, SPGlobal and Sustainalytics with

relatively low levels of implied noise. Note that ratios below zero and above 1 cannot be interpreted

as implied noise, and for this reason Moody's ESG is not shown in the plot.

13We thank Aaron Pancost for suggesting this test to us.
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Figure 1. Implied noise in ESG ratings. This �gure illustrates the implied noise for stock returns
measured over di�erent horizons (from time t to t+1 in red, from time t+1 to t+2 blue, and from time t+2 to t+3
in green). The vertical axis measures the noise-to-signal ratio κi, de�ned in Equation (6). Raters are sorted by the
median observation along the horizontal axis. Observations above one and below zero are not shown as there is no
economic interpretation. This results in an exclusion of one observation for Sustainalytics and all three observations
for Moody's ESG ratings.

One might hastily conclude that one should use only the scores with the lowest implied noise. We

caution against this conclusion. Disregarding scores of other raters amounts to discarding valuable

information about the unobservable ESG performance the ratings are trying to measure. Intuitively,

by combining di�erent ratings, and in particular ratings that rely on di�erent information sources

and contain di�erent sorts of noise, one can get the most precise signal about the unobservable ESG

performance. For example, the ESG rating by Truvalue Labs does not produce any signi�cant OLS

coe�cient in Table 2, yet it is never rejected as an instrument. At the same time, after instru-

menting with other ratings, the 2SLS coe�cients of TVL increase substantially and are consistently
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signi�cant. This may indicate that this rating contains substantial noise and yet conveys essential

information.14

4.3 Stock returns and E, S, and G components

The attenuation bias is also apparent for the E, S, and G components, as shown in Table 3. These

estimations are performed only for those raters that o�er E,S, and G components explicitly.15 The

median expansion factor is 1.7. For the E component, four out of �ve coe�cients expand as expected.

For the S component, two out of four coe�cients expand. For the G dimension, four out of �ve

coe�cients expand. We do not count Moody's-G as an expansion because the sign switches, and

both coe�cients are signi�cant. The results for the individual components provide reassurance that

the noise is not mainly a result of di�erent aggregation procedures in the sense that one rater puts

more weight on E and another on G. Instead, it suggests that the results are driven by measurement

noise also within the E, S, and G categories.

4.4 Accounting Variables as Outcome Variables

The attenuation bias is a general problem in the literature on ESG factors, a�ecting not only

regressions on stock returns but also many other outcome variables, such as accounting performance

and other measures of cash �ows.

The true coe�cients may be very di�erent for di�erent outcome variables, and there may also be

di�erent omitted variables. But as argued in section 3.1, the potential presence of an omitted variable

does not interfere with our correction for the attenuation bias as long as our assumptions hold. In

the following, we test the performance of our method by regressing ESG ratings on accounting

variables.

14This pattern could well be related to this ratings' unique methodology. Truvalue Labs employs a methodology
that relies strongly on computer algorithms to process large amounts of online information while strongly emphasizing
new information. It is the only rater in our study that has daily variations in their score. One could thus say that
the high variation comes at the expense of noise.

15We excluded ISS-S because they started o�ering their S sub-component at the end of 2017.
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Table 3. Stock returns and E, S, and G components.
This table reports estimates of β from the OLS regression (12) and the 2SLS regression (14). ESG ratings are observed
in month t, stock returns are computed between t and t+1. The �rst set of columns shows OLS estimates. The second
set of columns show 2SLS estimates produced with the 2SLS pruning procedure as described in Section 3.3. The
check marks in the columns titled �Coherent IVs� indicate the selection of instruments that passes the Sargan-Hansen
OIR test. We cluster standard errors by month and �rm. All reported coe�cients and standard errors are multiplied
by 100. The regressions are run for each rater, whose names are reported in the column �Rater�. The �rst set of rows
presents results for the E (environmental) component, the second panel for the S (social) component, and the third
panel for the G (governance) component. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

OLS 2SLS Pruning

Indicator Rater βOLS StdErr β2SLS StdErr β2SLS
βOLS

Coherent IVs Ftest

IS MS Re SP Mo

E

ISS-E 0.009 0.005 * 0.014 0.007 ** 1.6 ! ! ! ! ! 13342

MSCI-E 0.010 0.005 * 0.023 0.013 * 2.3 ! ! ! ! ! 3270

Re�nitiv-E 0.005 0.004 0.015 0.007 ** 2.7 ! ! ! ! ! 11976

SPGlobal-E 0.013 0.004 *** 0.010 0.006 0.7 ! ! ! ! ! 15061

Moody's-E 0.002 0.005 0.017 0.007 *** 8.9 ! ! ! ! ! 17004

MS Re SP Mo

S

MSCI-S 0.006 0.004 0.008 0.016 1.5 ! ! ! ! 1703

Re�nitiv-S 0.006 0.004 0.006 0.008 1.0 ! ! ! ! 12046

SPGlobal-S 0.009 0.004 ** 0.003 0.008 0.4 ! ! ! ! 11229

Moody's-S -0.003 0.005 0.018 0.008 ** -6.0 ! ! ! ! 13958

IS MS Re SP Mo

G

ISS-G 0.001 0.005 0.036 0.013 *** 30.1 ! ! ! ! % 3068

MSCI-G 0.009 0.004 ** 0.028 0.017 3.1 ! ! ! ! % 1584

Re�nitiv-G 0.005 0.004 0.029 0.012 ** 6.0 ! ! ! ! % 2317

SPGlobal-G 0.009 0.004 ** 0.015 0.012 1.7 ! ! ! ! % 3523

Moody's-G -0.011 0.005 * 0.024 0.011 ** -2.3 ! ! ! ! ! 5687

Median 1.7 8458

We again estimate the OLS speci�cation (12) and contrast it to the 2SLS speci�cation (13)�(14).

We consider return on equity (RoE) as an outcome variable. Unlike stock returns, this variable is

highly persistent. We, therefore, consider three alternative speci�cations of our model. The �rst

one mimics our earlier speci�cation using RoE as the outcome variable. The second one additionally

controls for the lag of the outcome variable. The third is an error-correction model: the outcome

variables are changes in RoE, and the regressors include lagged RoE as controls. The remaining

control variables are capital expenditures scaled by total assets, the natural logarithm of total assets,

and the long-term debt scaled by total assets. The limitation of the �rst one is a persistent outcome

variable, which may introduce a bias in the estimate of the coe�cient of interest. The second and

third speci�cations are two di�erent ways to address this. The reason we are presenting all three

speci�cations is to see how the estimates of the coe�cient of interest vary and, hence, infer how
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much the potential biases a�ect the di�erent estimates. Importantly, those biases should not a�ect

the ability of our method to correct the attenuation bias.

Table 4 shows the results for the outcome variable Return on Equity. We �nd that all coe�cients

expand except for two cases involving TVL. In the �rst case, the 2SLS estimate is not feasible, and

in the second case, the OLS estimate is non-signi�cantly negative and thus could also represent an

expansion. The median expansion factor is 1.9 across the estimations. We also consider alternative

outcome variables that proxy for cash �ows, such as Return on Assets (RoA) and Return on Sales

(RoS). The corresponding tables are shown in Appendix A.5, giving qualitatively the same result.

Figure A2 compares the noise-to-signal ratio across the accounting variables RoE, RoA, and RoS.

It is evident that across these very di�erent outcome variables, the attenuation bias is relatively

stable.
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Table 4. Return on Equity and ESG ratings.
This table reports estimates of β from the OLS regression (12) and the 2SLS regression (14) with Return on Equity
(RoE) as the outcome variable. The observation frequency is annual; ESG ratings are observed in year t − 1. The
�rst panel shows results for RoE observed in year t. In the second panel, the lagged variable RoE−1 is added as a
regressor. In the third panel, the dependent variable is switched to ∆RoE, which is RoEt − RoEt−1. The �rst set
of columns shows OLS estimates. The second set of columns shows 2SLS estimates produced with the 2SLS pruning
procedure as described in Section 3.3. The check marks in the columns titled �Coherent IVs� indicate the selection
of instruments that pass the Sargan-Hansen OIR test. We cluster standard errors by month and �rm. All reported
coe�cients and standard errors are multiplied by 100. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

OLS 2SLS Pruning

Model Rater Coe�s StdErr Coe�s StdErr β2SLS
βOLS

Coherent IVs Ftest

IS MS Re SP Su TV Mo

RoE

ISS 0.018 0.004 *** 0.032 0.006 *** 1.8 ! ! ! ! % ! ! 1999

MSCI 0.012 0.004 *** 0.043 0.008 *** 3.7 ! ! ! ! % ! ! 620

Re�nitiv 0.022 0.004 *** 0.027 0.005 *** 1.3 ! ! ! ! % ! ! 2139

SPGlobal 0.015 0.004 *** 0.033 0.006 *** 2.2 ! ! ! ! % ! ! 1949

Sustainalytics 0.030 0.004 *** 0.053 0.010 *** 1.8 ! ! ! ! ! ! ! 296
TVL 0.003 0.003 - -

Moody's 0.020 0.004 *** 0.033 0.006 *** 1.6 ! ! ! ! % ! ! 2751

RoE

inc.
RoE−1

ISS 0.014 0.004 *** 0.019 0.005 *** 1.4 ! ! ! ! % ! ! 1582

MSCI 0.008 0.003 ** 0.032 0.006 *** 4.2 ! ! ! ! ! ! ! 445

Re�nitiv 0.013 0.003 *** 0.017 0.004 *** 1.3 ! ! ! ! % ! ! 1670

SPGlobal 0.008 0.003 *** 0.023 0.005 *** 2.8 ! ! ! ! ! ! ! 1296

Sustainalytics 0.014 0.003 *** 0.033 0.008 *** 2.2 ! ! ! ! ! ! ! 235

TVL 0.001 0.002 0.056 0.015 *** 56.1 ! ! ! ! % ! ! 62

Moody's 0.012 0.003 *** 0.022 0.005 *** 1.8 ! ! ! ! % ! ! 2171

∆RoE

inc.
RoE−1

ISS 0.009 0.004 ** 0.014 0.006 ** 1.6 ! ! ! ! ! ! ! 1320

MSCI 0.007 0.003 ** 0.022 0.008 *** 3.3 ! ! ! ! ! ! ! 445

Re�nitiv 0.010 0.003 *** 0.012 0.005 ** 1.2 ! ! ! ! ! ! ! 1399

SPGlobal 0.006 0.003 * 0.016 0.005 *** 3.0 ! ! ! ! ! ! ! 1296

Sustainalytics 0.013 0.003 *** 0.026 0.009 *** 2.00 ! ! ! ! ! ! ! 235

TVL -0.002 0.003 0.043 0.017 ** -20.5 ! ! ! ! % ! ! 62

Moody's 0.008 0.004 ** 0.017 0.006 *** 2.0 ! ! ! ! ! ! ! 1829

Median 1.9 1302

4.5 Practical implications

4.5.1 2SLS Estimates with two Instruments

Our method relies on using information from several ESG ratings. Since obtaining access to ESG

ratings is costly16, many users of our method may not have access to seven di�erent ESG ratings.

Thus, in this section, we show how the method performs when fewer ratings are available.

16In contrast to credit ratings, which follow an issuer-pays model, ESG ratings commonly follow an investor-pays
model, meaning that the users of the ratings need to pay.
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The minimum is three ESG ratings so that one can serve as the focal regressor and the other

two as instruments. At least two instruments are needed to perform an OIR test. We attempt to

estimate 2SLS coe�cients for all possible sets of 2 instruments. With six ESG ratings to choose

from, there are 15 potential sets available.

Table 5 shows the coherent pairs of instruments. Many pairs fail the OIR test. However, at least

one pair of instruments passes for each rating. Sustainalytics, MSCI, and SPGlobal are the most

frequently accepted instruments in our application to stock returns. The sets that pass the OIR

test all yield β estimates larger than the OLS estimates, in line with the main results. A detailed

comparison is shown in Appendix Figure A3.

Table 5. Coherent pairs of instruments. This table presents an overview of which pairs of instruments
are identi�ed as coherent by the OIR test when the number of instruments is limited to two. It summarizes regressions
over horizons of one, two, and three months. The �rst column provides the regressor that is instrumented, the second
column provides the number of pairs that are coherent, i.e., pass the OIR test, and the following columns present the
number of times each rating is included in a pair as an instrument. The last line reports the share of pairs in which
instruments are included. Since each pair contains two instruments, the shares sum to 200%.

Regressor Coherent Pairs Instruments

ISS MSCI Re�nitiv SPGlobal Sustainalytics TVL Moody's

ISS 4 0 2 0 0 4 2 0
MSCI 7 0 0 2 3 7 2 0
Re�nitiv 4 0 2 0 0 4 2 0
SPGlobal 5 0 3 0 0 5 2 0
Sustainalytics 15 4 9 5 8 0 4 0
TVL 2 0 0 0 2 2 0 0
Moody's 34 9 15 9 12 15 8 0

Total 71 13 31 16 25 37 20 0
Share 18% 44% 23% 35% 52% 28% 0%

4.5.2 Impact on portfolio sorts

Is the di�erence between the original ratings and instrumented ratings economically meaningful?

Investors often rank �rms by ESG score to construct ESG portfolios, and many tests in the asset

pricing literature rely on portfolio sorts. We, therefore, sort stocks in quintiles based on the original

MSCI scores as well as on the instrumented scores and compare the resultant quintiles. In Figure

2, we look at the transitions between quintiles. The horizontal axis shows the quintiles for the

original ratings, and the vertical axis shows the quintiles for the instrumented ratings. The instru-
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mented ratings are markedly di�erent from the original ratings: Many �rms transition into di�erent

quintiles. For instance, the �fth quintile of the original ratings has an overlap of only 45.8% with

the instrumented ratings. The picture is similar for the �rst quintile, where the overlap is 46.2%.

Put di�erently, in a long-short portfolio based on the �rst and �fth quintiles, nearly half of the

stocks move to a di�erent quintile after instrumentation. Based on this, we recommend running

our procedure to obtain instrumented ratings before conducting standard portfolio sorts common

in empirical asset pricing.

Figure 2. Transition matrix for original MSCI vs. instrumented ratings. The �gure depicts
how �rms change ESG rating quintiles when ESG ratings are instrumented using the 2SLS pruning procedure,
combining data for all raters for the ESG dimension. The horizontal axis shows the quintiles for the original ratings,
and the vertical axis shows the quintiles for the instrumented ratings. Each row or column sums up to 100%, and
if both ratings were strictly the same, each diagonal element would equally sum up to 100%. The �rst cell at the
top-left, for example, indicates that 46.2% of the original ratings in the �rst quintile are still in the �rst quintile after
instrumentation, and the cell below indicates that 23.2% moved to the second quintile.
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5 Simulations

In this section, we present a series of simulations to test the robustness of our IV estimation strategy.

First, we compare the 2SLS procedure to alternative noise-reduction procedures that are frequently

used by practitioners: averaging the rating scores and using the principal component analysis. We

demonstrate that, in our application, the 2SLS procedure is superior to the other two. Second, we

show that the OIR test is highly sensitive to simulated violations of our identifying assumptions for

2SLS estimation, providing reassurance that the selection for valid instruments is robust. Third, we

explore the case of multiple noisy indicators to the point where there are more sources of noise than

instruments, as well as noise coming from measurement in indicators versus noise coming from the

aggregation of indicators. We can show that an IV estimation based on multiple instruments tends

to come close to the true coe�cients in all those settings.

5.1 2SLS versus Alternative Noise-Reduction Techniques

For the simulations, we generate 15,000 observations of stock returns and ESG performance from

the following structural model:

rk = β · Yk + ϵk, (15)

where k indexes observations. Yk is a normal random variable with a mean of 0 and a standard

deviation of 1. The coe�cient of interest is β, which we set equal to 0.5. We assume that there are

N rating agencies indexed by i, with scores modeled as in our preceding analysis:

sk,i = Yk + ηk,i. (16)

The focus is on rating sk,1, which is our �problematic� regressor, i.e., it is measured with noise.

For the remainder of this section, we suppress the subscript k for expositional clarity.

We perform two simulations. In the �rst, we generate N = 3 ratings and benchmark the 2SLS

procedure to two alternative noise-reduction approaches, simple averaging and principal component

analysis. Here, all instruments are valid, i.e., satisfy assumptions (7), (8), and (9). In the second
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simulation, we add an invalid instrument s4, whose errors η4 correlate with η1, thereby violating

assumption (9).

In each simulation, we compare several procedures. First, we run a simple OLS:

r = α+ β · s1 + ν. (17)

Second, one may conjecture that an index constructed as an average of the raters' scores would

be less noisy than each rating individually. We therefore construct a simple average of the rating

scores, savg = 1/N
∑N

i=1 si, and estimate the following regression:

r = αavg + βavg · savg + ε. (18)

Third, one may suggest using principal components analysis as a noise reduction procedure. We

therefore estimate the �rst principal component of the N rating agencies' scores, denoted as spc,

and estimate the following regression:

r = αpc + βpc · spc + ε. (19)

Finally, we perform our instrumental variable estimation and the corresponding OIR test, using

the ratings i = {2, . . . , N} as instruments for s1 in the �rst stage.

The �rst simulation varies ση1 , the variance of the noise in s1, from 0.25 to 10. The variance of

the noise for s2 and s3 is kept constant at a value of 4. For each value of ση1 , we perform the above

noise-reduction procedures and summarize the estimation results in Figure 3. Panel (a) plots the

estimate of β for the OLS, simple average, PCA, and 2SLS estimation methods. The 2SLS estimate,

shown in gray, is very close to the true β of 0.5 for any level of noise in s1. It varies from 0.518 to

0.537 over the range of simulated noise in s1. The OLS estimate displays attenuation bias, which, as

expected, increases with the level of noise in s1. The estimate based on the simple average is inferior

to OLS for low levels of noise. As the noise in s1 increases, it becomes advantageous to include
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Figure 3. Simulation 1: Comparison of OLS, 2SLS, simple average, and PCA.This �gure
compares the estimation approaches OLS, (17), simple average (18), principal component analysis (PCA) (19), and
our 2SLS procedure. Panel (a) shows how the coe�cient beta varies over di�erent levels of noise in rating s1. Panel (b)
shows the weights that di�erent estimation procedures put on the rating s1. All instruments are valid by construction.

scores of other raters. This is true even when the other scores are noisier than the regressor because

the error terms are independent. The estimate based on the �rst principal component is never

better than the simple average which is because the PCA �nds the linear combination of raters'

scores that maximizes the observed variance. This approach is quite useful when the variables are

measured correctly; however, if the variables are measured with noise, the noise becomes part of

the observed variance and a PCA puts greater weight on noisier ratings. This pattern is apparent

from Panel (b) of Figure 3. Simple average puts the same weight on all ratings, regardless of their

noisiness. Intuitively, one should put a lower weight on a noisier rating. This is, in fact, what our

2SLS procedure does, as noisier indicators have smaller coe�cient estimates in the �rst stage.

Our second simulation adds one instrument, s4, which is invalid by construction. Speci�cally, we

vary the correlation between η1 and η4 from -0.5 to 0.5. As a result, s1 and s4 are related not only

through Y but also through their errors. The standard deviations of the noise, σηi , i = 1, 2, 3, 4,

are set to be {3, 1, 1, 1}, respectively. This re�ects the case where the potential instruments are less

noisy than the regressor.17 Table 6 presents the results of this simulation.

17The qualitative results do not depend on the choice of the standard deviations of the noise, except in the case
where the noise on the regressor is exactly zero. The level of variance in the instruments changes the region where the
OIR is rejected. The general message, though, remains the same. First, when the noise in instruments is su�ciently
correlated, the OIR test is rejected; and second, when there is no rejection, even in the cases where the instruments
are invalid, the point estimates of the 2SLS are very close to the true coe�cient.
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Let us �rst concentrate on the row corresponding to the correlation of zero. For this row,

the assumptions of the classical errors-in-variables problem are satis�ed. As before, we see the

attenuation bias in the OLS estimation (17): an estimate of 0.060 instead of 0.5. The bias becomes

smaller if we use the simple average savg (18) as a regressor: the coe�cient increases to 0.307. Even

though the other three scores, s2, s3, and s4, contain less noise than s1, the resulting estimate is

still far from 0.5. The third column shows the estimates when we use the �rst principal component

spc (19) as the regressor. With 0.072, the estimate is nearly as biased as the OLS estimate. The

next two columns show the estimates from the 2SLS procedures, the �rst one including all available

instruments, Z = {s2, s3, s4}, the second one just two instruments, Z = {s2, s3}. Notice that both

estimates are very close to 0.5, as the correlation between errors is zero, and thus, all instruments

are valid. The last two columns show the p-values of the OIR tests for the 2SLS estimations, and

both models pass the test.

Let us now turn to the rows in Table 6 where the correlations between the errors η1 and η4

are di�erent from zero. The OLS estimate does not change, since s4 is not used in this regression.

The estimate of the coe�cient on the average savg in column (2), however, increases for negative

correlations and decreases for positive correlations. This is because negatively correlated errors

cancel each other out. As a result, the average is becoming less noisy, and the coe�cient is moving

slightly towards the true value of 0.5. The coe�cient on the �rst principal component in column (3)

varies because the change in the correlation of the scores implies small changes in the eigenvector.

However, all estimated coe�cients remain far from the true value of 0.5.

The estimates of the 2SLS regressions in column (4) highlight the outcome of our estimation

procedure for the case in which an invalid (and hence also incoherent) instrument is present. The

estimated coe�cient moves away quickly from the true value of 0.5. The coe�cients in column

(4) are close to 0.5 only when the correlation is between -0.1 and 0.1. The 2SLS estimates that

exclude s4 in column (5), however, recover the true coe�cient for any level of correlation. Most

importantly, the OIR test in column (6) shows that models with invalid instruments are rejected

with high reliability. The OIR tests in column (7) for the set of invalid instruments are never

rejected. Furthermore, cases where the OIR test is not rejected (even though the instruments are
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invalid) are instances in which the point estimates of the 2SLS procedure are very close to the true

coe�cient.

Table 6. Simulation 2: Estimates for the case where the measurement errors η1 and η4
are correlated. The true value of the coe�cient is 0.5. Columns (1)-(3) report the estimates from regressions
(17)�(19), respectively. 2SLS All reports the estimates with Z = {s2, s3, s4} and 2SLS Z reports the estimates
with only Z = {s2, s3}, i.e., the subset of valid instruments. OIR stands for the Sargan-Hansen OIR test, and the
corresponding column reports the p-values for the test.

Correlation of
η1 and η4

(1)
OLS

(2)
Average

(3)
PCA

(4)
2SLS All

(5)
2SLS Z

OIR All
(p-value)

OIR Z
(p-value)

-0.5 0.060 0.341 0.069 0.107 0.524 0.000 1.000
-0.4 0.060 0.334 0.071 0.177 0.524 0.000 1.000
-0.3 0.060 0.327 0.073 0.285 0.524 0.000 1.000
-0.2 0.060 0.320 0.075 0.422 0.524 0.000 1.000
-0.1 0.060 0.313 0.077 0.528 0.524 0.000 1.000

0 0.060 0.307 0.078 0.530 0.524 0.951 1.000

0.1 0.060 0.301 0.078 0.455 0.524 0.003 1.000
0.2 0.060 0.296 0.079 0.365 0.524 0.000 1.000
0.3 0.060 0.290 0.079 0.290 0.524 0.000 1.000
0.4 0.060 0.285 0.079 0.234 0.524 0.000 1.000
0.5 0.060 0.280 0.079 0.193 0.524 0.000 1.000

Figure 4 shows how the p-value from the OIR test evolves with the correlation between η1 and

η4. Notice that any correlation larger than 0.1, in absolute value, produces p-values below the

threshold. This simulation suggests that the OIR test has su�cient power to reject when an invalid

instrument is present.

This result gives us con�dence in the ability of our two procedures to select instruments. The

2SLS pruning procedure tends to accept a feasible set too soon. However, given how strong the

rejections are in the simulation, even if the size of the test changes (e.g., from 0.05 to 0.005), we are

likely to �nd a set of instruments that are valid.
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Figure 4. The power of the Sargan-Hansen OIR test. This �gure plots the 2SLS coe�cients from
columns (4) and (5) of Table 6 as functions of the correlation between measurement errors in the simulated ESG
ratings s1 and s4. The green line is the 2SLS estimate with valid instruments. The thick black line is the 2SLS
estimate when including invalid instruments. The thick red line is the p-value of the Sargan-Hansen OIR test when
invalid instruments are present, analogous to column (6) in Table 6. The thin red line represents the 0.05 p-value.

5.2 Aggregation of Many ESG Indicators

One potential criticism of our procedure is that ESG performance is a complicated aggregate, which

di�erent agencies de�ne in di�erent ways. For example, one agency may include water pollution

among the attributes it measures, and another agency may not. Would our procedure still recover

the true e�ect of ESG performance? This section presents a simulation that addresses this question.

As explained in detail in Appendix A.6, the rating agencies' scores are computed as a weighted

average of many indicators, corresponding to disaggregated ESG attributes (e.g., carbon emissions,

labor practices):

si =
∑

a∈{1,n}

wa,i · Ia,i, (20)

where i indexes ESG rating agencies, a indexes attributes that the agency considers, Ia,i is rater i's

measure of attribute a, and wa,i are the weights.
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The true value of Y is given by a similar construct,

Y =
∑

a∈{1,n}

w⋆
a · I⋆a ,

where I⋆a are the true values of the indicators and w⋆
a are the true weights�i.e., the weights that

the representative ESG investor assigns to individual indicators, which re�ect her preferences.

The measurement error of each rating agency can be decomposed as follows:

si = Y +
∑

a∈{1,n}

wa,i · (Ia,i − I⋆a)︸ ︷︷ ︸
ηIa,i

+
∑

a∈{1,n}

(wa,i − w⋆
a)︸ ︷︷ ︸

ηwa,i

·I⋆a

︸ ︷︷ ︸
ηYi

.

There are two sources of noise in this decomposition: the measurement error at the level of the

indicator,

Ia,i = I⋆a + ηIa,i , (21)

and the discrepancy in the weights,

wa,i = w⋆
a + ηwa,i . (22)

The validity of instruments requires orthogonality of ηIa,i and ηwa,i across rating agencies. The

measurement error in the aggregated rating, ηYi , parallels our ηi in Section 3 (see Equation (2)).

Appendix A.6 provides more detail.

Even under the above assumptions, it is unclear how our 2SLS procedure performs when there

are many sources of noise and a limited number of instruments. If there are 8 possible attributes,

then there are 8 sources of measurement error and 7 di�erent weights. Would our procedure that

relies on only 6 other raters' scores to use as instruments recover the true coe�cient?

There are two sources of noise in rating agencies' scores that serve as our instruments. First,

every individual attribute in (20) is measured with noise. For simplicity, in this simulation, we
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assume that measurement errors in each indicator have the same variance equal to 1. Second, each

rating agency measures only a subset of the attributes. Therefore, the scores from the rating agencies

that will be used as instruments present an incomplete picture of the true ESG performance. Such

incomplete coverage, which Berg, Kölbel, and Rigobon (2022) term di�erences in scope, is a source

of potential bias. Third, we assume that all agencies use equal weighting in their ESG scores. Hence,

our simulation explores the e�ects of two sources of noise present in the ratings: (i) the noise with

which individual indicators are measured and (ii) the noise resulting from the coverage problem.

We continue using the following structural model to simulate observations of stock returns:

rk = β · Yk + ϵk,

where k indexes observations, Yk = 1
n

∑
a∈{1,n} I

⋆
a,k, and β = 0.5. The corresponding reduced-form

model is

rk = α+ β · s1,k + νk. (23)

We again estimate Equation (23), �rst by OLS and then by 2SLS, using other rating agencies'

scores as instruments. We assume that there are 8 attributes and that these attributes are orthogonal

to each other. We further assume that the rating of interest, s1, includes all 8 attributes in its ESG

rating and that it measures each one with noise. We assume that only 5 other rating agencies' ESG

scores are available for use as instruments. As in our previous simulation, we generate 15,000 draws.

Errors with which each attribute is measured are classical and satisfy the identifying assumptions

spelled out in Appendix A.6. These assumptions imply that all instruments are valid.

The results of the simulation are presented in Table 7, which has the following structure. In

the �rst column, we report the coe�cient from our baseline OLS regression (17). In the remaining

columns, we present 2SLS estimates, in which we vary the number of instruments used in the �rst

stage from 1 to 5, labeled as IV1 to IV5. In rows, we vary the number of attributes. In the �rst

set of rows, the instruments cover only 1 of the possible 8 attributes, in the second set 2 of the

possible 8, and so on, until the last set of rows in which each instrument covers all the attributes.
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We randomly choose the subset of attributes that is covered by each rater, with replacement. The

rating is then computed as a simple average of the simulated indicators.

Table 7. Simulation 3: Fewer instruments than sources of noise. The true value of the coe�cient
is 0.5. In the �rst column, we report the coe�cient from our baseline OLS regression (17). In the remaining columns,
we present 2SLS estimates, in which we vary the number of instruments used in the �rst stage from 1 to 5, labeled as
IV1 to IV5. In rows, we vary the number of attributes covered by each rating. The rating s1 that we are instrumenting
covers all 8 attributes.

Number of Attributes
per Rating OLS IV1 IV2 IV3 IV4 IV5

1 Coe�cient 0.07 0.681 0.839 0.826 0.686 0.702
Std Error 0.031 0.28 0.21 0.186 0.171 0.169
1st stage F-stat 188 169 144 129 105

2 Coe�cient 0.07 0.797 0.804 0.786 0.757 0.687
Std Error 0.031 0.219 0.194 0.175 0.168 0.162
1st stage F-stat 310 198 164 133 114

3 Coe�cient 0.07 0.466 0.503 0.427 0.354 0.378
Std Error 0.031 0.209 0.179 0.168 0.157 0.145
1st stage F-stat 341 234 179 154 146

4 Coe�cient 0.07 0.814 0.641 0.639 0.621 0.63
Std Error 0.031 0.209 0.169 0.157 0.152 0.147
1st stage F-stat 342 264 205 165 140

5 Coe�cient 0.07 0.729 0.727 0.707 0.707 0.727
Std Error 0.031 0.179 0.166 0.15 0.144 0.139
1st stage F-stat 466 274 226 184 158

6 Coe�cient 0.07 0.405 0.452 0.437 0.492 0.46
Std Error 0.031 0.167 0.148 0.142 0.137 0.135
1st stage F-stat 540 347 254 206 170

7 Coe�cient 0.07 0.636 0.487 0.494 0.498 0.492
Std Error 0.031 0.173 0.151 0.144 0.137 0.134
1st stage F-stat 500 333 246 205 172

8 Coe�cient 0.07 0.645 0.448 0.477 0.451 0.488
Std Error 0.031 0.163 0.148 0.139 0.135 0.133
1st stage F-stat 569 348 265 210 175

Let us now discuss the �rst set of (three) rows presented in Table 7, in which each instrument

measures only one attribute. Notice that the OLS coe�cient is 0.07. The 2SLS coe�cient with one

instrument is 0.681 and 0.702 when 5 instruments are used. The second row in the set presents

the standard errors of the estimates. Notice that the precision of the estimates improves with the

number of instruments. The OLS coe�cient is statistically di�erent from zero and is statistically

smaller than 0.5 at the 1 percent signi�cance level. The coe�cients in IV1 to IV5 estimations are

consistently higher than their OLS counterpart and fairly close to the true parameter β = 0.5. The
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third row reports the F-statistic of the �rst stage, which indicates that the instruments still have

relevance, which is expected given that all the scores are correlated through the fundamental ESG

attributes. This indicates that in the extreme case where all instruments only cover each 1 of the 8

indicators that make up Y , a 2SLS approach alleviates attenuation bias, and comes fairly close to

the true parameter.

The simulations get even closer to the true parameter when the instruments contain more in-

formation about Y . We have also run OIR tests for all IV speci�cations that use two or more

instruments, and observed no rejections. This is not surprising. While our instruments have incom-

plete coverage, they are still valid by construction, irrespective of whether the noise comes from the

measurement of individual indicators or from an omitted fundamental.

In this section, we have studied a simulation in which ESG ratings include 8 possible attributes.

Estimation performed on more granular ratings, E, S, or G, or, better yet, at an individual indicator

level (measuring just one attribute) would reduce estimation error introduced by data aggregation.

Ideally, we would like to have a separate instrument for each individual indicator included in a

rating. Instead, we are using a weighted sum of indicators (e.g., an ESG score) as an instrument

for another weighted sum (e.g., an ESG score of another rater).

6 Limitations

Our empirical analysis is not free of limitations. First, our time series are short, and especially so

for stock return regressions. We can do very little about this problem because the rating agencies

to date have produced data for a relatively short time frame. Our estimation relies primarily on

cross-sectional variation because many rating agencies change their scores once a year at most,

which implies that in practice the time series is even shorter than the time span of our sample.

Second, many rating agencies are in the process of consolidation, which often involves revising

their procedures. Thus, some rating agencies back-�ll their past scores based on a revised procedure.

This is particularly problematic if the back-�ll is based on stock-relevant information. If point-in-
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time scores are not available, practitioners and applied work can use our procedure to diagnose this

problem, which will show up as a rejection of the OIR tests.

Finally, the ESG score could be capturing unobservable �rm characteristics. In our speci�cation

this corresponds to the omitted variable. As we have discussed before, the omitted variable has

no impact on our results regarding the attenuation bias. However, it does change the structural

interpretation of the coe�cient. A potential omitted variable could be management quality. Better

managers might be able to foster more collaborative work environments that result in less labor

mistreatment at the same time. This could impact both stock returns and ESG performance. Thus,

future research should look into disentangling management quality and ESG performance by adding

�rm �xed e�ects, for instance. Of course, though, this would require much longer time series than

are currently commercially available.

7 Conclusions

It is notoriously di�cult to measure the ESG performance of �rms. ESG rating agencies often

report di�erent estimates for the same attribute. We argue that noise in the estimates leads to a

signi�cant attenuation bias in the standard regressions that analyze the e�ects of ESG performance.

In this paper, we turn the problem of divergence to our advantage by exploiting the fact there

is information in observing multiple ESG ratings at once. We assume that each ESG rating mea-

sures ESG performance with noise. We propose an instrumental variable approach that uses the

information from several ESG ratings to reduce the bias from noisy measurement.

We show that coe�cients more than double when we apply our noise-correction procedure. We

run our estimation separately for the seven raters in our sample and across di�erent return horizons.

In most of these regressions, we observe an increase in the estimates. The median increase is a factor

of 2.1.

The practical takeaway of these results is that it is worthwhile to rely on several complementary

ESG ratings. While we �nd the scores of some rating agencies to be very noisy, it does not mean
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that they are uninformative. One illustrative example is Truvalue Labs. Our estimation procedure

shows that while these scores do not perform well as predictors of stock returns, they are nevertheless

valuable instruments that enhance the prediction of other scores.

One may be tempted to conclude from our results that one should use ESG scores containing

the least noise rather than scores of other raters. We caution against such an interpretation for

two reasons. First, the implied noise we compute is speci�c to our model and regression setup and

should not be overgeneralized. Second, our results show that coe�cients also increase substantially

for the least noisy ratings when instrumented with other ratings. In other words, relying on the

scores of several complementary ratings yields better results.

Our paper o�ers a practical solution to deal with the divergence of ESG ratings. Whenever

an ESG rating is used as a regressor, attenuation bias is likely to become a problem. If a second

ESG rating is available, it can be used as an instrument, which reduces the attenuation bias. In

this case, one must defend the assumption that the measurement error of the other ESG rating is

orthogonal. If more than one additional ESG rating is available, one can rely on the OIR test to

check the coherence of instruments. This 2SLS approach to noise reduction is superior to using the

averages of ESG scores or principal component analysis. And if noise is indeed a problem, it will

make the empirical results stronger.
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A Internet Appendix

A.1 Model

In this section, we present a simple, stylized model with traditional and ESG investors that highlights

the attenuation e�ect when ESG signals are noisy. Our focus is on a single ESG signal, measured

with noise. We will show that such measurement error leads to bias in a standard regression analysis

of the relationship between stock returns and ESG performance. The noisier the ESG signal, the

larger the bias.

We consider a two-period model, with t = 0, 1. Investment opportunities are represented by a

risky stock of a single �rm and a riskless bond, with the risk-free rate normalized to zero.18 The

stock is a claim to the cash �ow D ∼ N(D,σ2
D) per share, with D realized in period 1. The stock

is in �xed supply of θ shares and the riskless bond is in in�nite net supply. We denote the stock

price in period t by pt, where p1 = D.

There is a measure λ of ESG investors and 1− λ of traditional investors. Both types of agents

invest their funds into the stock and the bond. The ESG and traditional investors' portfolio allo-

cation to the stock is θi, where i = ESG, T , respectively. The period-1 wealth of the investors W i
1

is then W i
0 + θi(D − p0), where W i

0 is their initial wealth, i = ESG, T . ESG investors derive a

non-pecuniary bene�t Y per share from holding the stock, with Y ∼ N(Y , σ2
Y ) independent from

D. Their utility is exponential, U(W1, Y ) = −exp(−γ(W1 + θESGY )).19 We think of Y as an ESG

externality, generated by the �rm, which ESG investors internalize. The traditional investors have

utility U(W1) = −exp(−γW1) and do not internalize any ESG externalities. Investors' initial en-

dowments are in terms of shares of the stock and bond, and they choose their portfolios to maximize

their expected utilities.

18It is straightforward to extend the model to multiple risky stocks.
19Our approach to modeling ESG investors is similar to that of Pastor, Stambaugh, and Taylor (2021) and Friedman

and Heinle (2016).
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In period 0, investors receive noisy signals, sD and sY , about cash �ows and ESG bene�t, D

and Y , respectively:

sD = D + ηD, (24)

sY = Y + ηY , (25)

where ηi ∼ N(0, σ2
ηi), i = D,Y are independent of each other and independent of D and Y .

A.1.1 Portfolio Choice and Asset Prices

To solve for equilibrium, we �rst need to solve the inference problem of the investors. Exploiting

the joint normality of random variables in our economy, we arrive at the following lemma (all proofs

can be found in the Appendix A.1.2).

Lemma 1 The mean and variance of D, conditional on signal sD, are given by

E(D|sD) = D + β(sD −D) = D +
σ2
D

σ2
D + σ2

ηD

(sD −D), (26)

V ar(D|sD) = σ2
νD

=
σ2
Dσ

2
ηD

σ2
D + σ2

ηD

. (27)

The mean and variance of Y , conditional on signal sY , are as follows:

E(Y |sY ) = Y + β(sY − Y ) = Y +
σ2
Y

σ2
Y + σ2

ηY

(sY − Y ), (28)

V ar(Y |sY ) = σ2
ηY

=
σ2
Y σ

2
ηY

σ2
Y + σ2

ηY

. (29)

We are now able to solve for optimal portfolios of ESG and traditional investors. These portfolios

are given by
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Lemma 2 (Portfolio Choice) The investors portfolio demands are

θT =
1

γ

E(D|sD)− p0
V ar(D|sD)

, (30)

θESG =
1

γ

E(D|sD) + E(Y |sY )− p0
V ar(D|sD) + V ar(Y |sY )

. (31)

The traditional investors hold the standard mean-variance portfolio, which optimally trades o�

risk (the denominator) and expected return (the numerator). In contrast, ESG investors account

for ESG characteristics in their portfolio choice. The higher the stock's expected ESG bene�t Y ,

the more shares of it ESG investors are willing to include in their portfolio. However, since ESG

investors are risk-averse, the perceived risk of the stock is higher for them relative to traditional

investors. This additional risk is driven by the noise in ESG ratings�the higher this noise, the less

of the stock ESG investors are willing to hold (see the denominator of the portfolio demand in (31)).

The market clearing condition requires that investors' demand for the stock equals its supply,

i.e.,

λθESG + (1− λ)θT = θ. (32)

To solve for the equilibrium stock price, we substitute the optimal portfolios from Lemma 2 into

the market clearing condition (32). We report the resulting period-0 stock price in the following

proposition.

Proposition 1 (Asset Prices) The period-0 stock price is given by

p0 =D +
σ2
D

σ2
D + σ2

ηD

(sD −D) +Aλ
σ2
Dσ

2
ηD

σ2
D + σ2

ηD

[
Y +

σ2
Y

σ2
Y + σ2

ηY

(sY − Y )

]
(33)

−Aγθ
σ2
Dσ

2
ηD

σ2
D + σ2

ηD

[
σ2
Dσ

2
ηD

σ2
D + σ2

ηD

+
σ2
Y σ

2
ηY

σ2
Y + σ2

ηY

]
, (34)

where A =

[
σ2
Dσ2

ηD

σ2
D+σ2

ηD

+ (1− λ)
σ2
Y σ2

ηY

σ2
Y +σ2

ηY

]−1

.

The ESG performance Y does not a�ect fundamentals (i.e., the �rm's cash �ow D). However,

it does a�ect asset prices because there is a group of investors that care about it. A positive signal
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sY about the ESG performance Y boosts the stock price. Y can be interpreted as the true ESG

performance, and sY as what the ESG rating agencies measure � their scores.

Suppose that the stock is a green stock, which appeals to ESG investors, i.e., Y is positive and

su�ciently high. Then, relative to an economy with no ESG investors, the stock price will be higher,

re�ecting the additional bene�t to ESG investors from holding a green stock. The mass of ESG

investors λ is another important parameter. The higher the mass of ESG investors, the higher the

stock price.

Proposition 1 establishes a linear relationship between the ESG signal and stock returns. Let

us now examine a realized per-share return on the stock in period 0:

p0 − p−1 =D − S−1 +
σ2
D

σ2
D + σ2

ηD

(sD −D) +Aλ
σ2
Dσ

2
ηD

σ2
D + σ2

ηD

Y +
σ2
Y

σ2
Y + σ2

ηY︸ ︷︷ ︸
attenuation e�ect

(sY − Y )


−Aγθ

σ2
Dσ

2
ηD

σ2
D + σ2

ηD

[
σ2
Dσ

2
ηD

σ2
D + σ2

ηD

+
σ2
Y σ

2
ηY

σ2
Y + σ2

ηY

]
. (35)

We think about the constant p−1 as the value of the stock one period before ESG investors (un-

expectedly) arrived in the market. The realized returns on the stock depends on the magnitude

of (unanticipated) ESG investor in�ows, captured by λ, with the in�ows boosting returns of green

stocks. In contrast, stock returns of brown �rms (�rms with a su�ciently negative ESG bene�t Y )

fall.

We now present the expression for the expected per-share return on the stock.

E(D)− p0 =−
σ2
D

σ2
D + σ2

ηD

(sD −D)−Aλ
σ2
Dσ

2
ηD

σ2
D + σ2

ηD

Y +
σ2
Y

σ2
Y + σ2

ηY︸ ︷︷ ︸
attenuation e�ect

(sY − Y )


+Aγθ

σ2
Dσ

2
ηD

σ2
D + σ2

ηD

[
σ2
Dσ

2
ηD

σ2
D + σ2

ηD

+
σ2
Y σ

2
ηY

σ2
Y + σ2

ηY

]
. (36)

The higher the ESG signal sY , the lower the expected return on the stock. This is because in

our model the �rm's cash �ow D is �xed and therefore the more ESG investors push up the stock
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price in response to a high ESG signal, the lower the stock's expected return going forward. That

is, the e�ects of ESG on stock prices in our model manifest themselves entirely through the cost of

capital channel.20

Both the expected and realized returns depend on the noise in the ESG signal, σηY . The noisier

the signal sY , the lower its passthrough to stock returns. Put di�erently, noise in the signal creates

an attenuation e�ect (see the highlighted term in Equations (35) and (36)). In the limit of σηY → ∞,

the e�ect of sY on stock returns is fully attenuated. These observations will become important in

our empirical analysis, which uses data on ESG scores, which we interpret as noisy ESG signals.

The noise in the reported ESG scores is apparent from the discrepancies in measuring the same

ESG performance by di�erent ratings providers. In the next section, we treat this as a classical

errors-in-variables problem and propose a procedure that tackles the attenuation bias in standard

regressions of stock returns on noisy measures of ESG performance.

A.1.2 Proofs

Proof of Lemma 1. We start by showing (26)-(27). The conditional distribution of D given sD

is normal. The mean and the variance of that distribution can be computed by a linear regression

of D on sD:

D −D = βD(sD −D) + εD, (37)

where εD ∼ N(0, σ2
εD

) and is independent of sD. We need to determine βD.

The mean and variance of D conditional on signal sD are

E(D|sD) = D + βD(sD −D) (38)

V ar(D|sD) = σ2
εD

(39)

20We abstract away from the cash �ow risk channel by assuming that the stock's future cash �ow D is uncorrelated
with the ESG characteristic Y . However, it is entirely possible that �rms with low ESG performance are riskier than
their greener counterparts (e.g., regulation risk) and therefore their expected returns are higher.
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The regression coe�cient βD is given by the following standard expression:

βD =
Cov(D −D, sD −D)

V ar(sD −D)
=

(Cov(D −D,D −D + ηD)

V ar(D −D + ηD)
=

σ2
D

σ2
D + σ2

ηD

(40)

The variables D and ηD are independent. Taking variances on each side of (37), we have

V ar(D −D) = V ar(βD(sD −D) + εD) = β2
DV ar(sD −D) + σ2

εD
(41)

It is easy to see that

σ2
εD

= σ2
D −

(
σ2
D

σ2
D + σ2

ηD

)2

(σ2
D + σ2

ηD
) =

σ2
Dσ

2
ηD

σ2
D + σ2

ηD

(42)

Hence, the mean and variance of D, conditional on signal sD, are

E(D|sD) = D + β(sD −D) = D +
σ2
D

σ2
D + σ2

ηD

(sD −D) (43)

V ar(D|sD) = σ2
εD

=
σ2
Dσ

2
ηD

σ2
D + σ2

ηD

(44)

The derivation for the mean and variance of Y , conditional on signal sY , is analogous. In the

equations above, we need to replace D with Y and sD with sY . □

Proof of Lemma 2. An ESG-conscious investor chooses their portfolio θESG to maximize the

expected utility

E
(
− exp(−γ(W1 + θESGY ) |sD, sY

)
.

Substituting in their wealth in period 1, we arrive at

E
(
− exp(−γ(W0 + θESG(D − p) + θESGY ) |sD, sY

)
.

For a normally distributed random variable x, E(exp(x)) = exp
(
E(x) + 1

2V ar(x)
)
. Since D and Y

are independent, normally distributed random variables, we can show that the above objective is
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equivalent to the following mean-variance optimization:

max
θESG

θESG [(E(D |sD, sY )− p) + E(Y |sD, sY )]−
1

2
γ(θESG)2 [V ar(D |sD, sY ) + V ar(Y |sD, sY )] .

Solving for the portfolio choice θESG that maximizes the above objective, we arrive at (31).

To solve for the portfolio of traditional investors, we simply repeat the above derivations, setting

Y equal to zero. □

Proof of Proposition 1. Substituting in θESG and θT from Lemma 2 into market clearing

(32), we derive

p0 =AλV ar(D|sD)(E(D|sD) + E(Y |sY )) +A(1− λ)(V ar(D|sD) + V ar(Y |sY ))E(D|sD)

−AγθV ar(D|sD)(V ar(D|sD) + V ar(Y |sY ))

where

A = [λV ar(D|sD) + (1− λ)(V ar(D|sD) + V ar(Y |sY ))]−1 .

Substituting the expressions for the conditional moments from Lemmma 1, we have

p0 =Aλ
σ2
Dσ

2
ηD

σ2
D + σ2

ηD

(
Y +

σ2
Y

σ2
Y + σ2

ηY

(sY − Y ) +D +
σ2
D

σ2
D + σ2

ηD

(sD −D)

)

+A(1− λ)

(
σ2
Dσ

2
ηD

σ2
D + σ2

ηD

+
σ2
Y σ

2
ηY

σ2
Y + σ2

ηY

)(
D +

σ2
D

σ2
D + σ2

ηD

(sD −D)

)

−Aγθ
σ2
Dσ

2
ηD

σ2
D + σ2

ηD

[
σ2
Dσ

2
ηD

σ2
D + σ2

ηD

+
σ2
Y σ

2
ηY

σ2
Y + σ2

ηY

]
,

where

A =

[
σ2
Dσ

2
ηD

σ2
D + σ2

ηD

+ (1− λ)
σ2
Y σ

2
ηY

σ2
Y + σ2

ηY

]−1

.

Simplifying the above expression, we arrive at the statement in the proposition. □
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A.2 Derivation of Estimates

In this section, we derive the IV estimator and show how it resolves the attenuation bias of the OLS

estimator. For expositional simplicity, we use the asymptotic notation � i.e., we use var and cov

as opposed to the matrix notation X′X.

A.2.1 OLS and IV

Under the assumption that the controls are orthogonal to all RHS variables, the OLS estimate of β

in Equation (3) is given by

βOLS =
cov(rk,t+1, sk,t,i)

var(sk,t,i)
.

Using the structural Equations (1) and (2), the covariance between the stock returns and the ESG

score is

cov(rk,t+1, sk,t,i) = cov(βYk,t +Mk,t, Yk,t)

= βvar(Yk,t) + cov(Mk,t, Yk,t)

= βvar(Yk,t) + γvar(Mk,t).

The variance of the score is given by

var(sk,t,i) = var(Yk,t + ηk,t,i)

= var(Yk,t) + var(ηk,t,i).

The ratio of these two quantities is the OLS estimate:

βOLS =
β · var(Yk,t) + γ · var(Mk,t)

var(Yk,t) + var(ηk,t,i)

=
var(Yk,t)

var(Yk,t) + var(ηk,t,i)︸ ︷︷ ︸
Attenuation

·

β + γ
var(Mk,t)

var(Yk,t)︸ ︷︷ ︸
Omitted Variable

 .
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The sample equivalent of this estimate is in equation (4) in the main text.

The derivation of IV estimate is as follows: The structural equations of the instrumental variable

estimate are

βIV =
cov(rk,t+1, sk,t,j)

cov(sk,t,i, , sk,t,j)
,

rk,t+1 = α+ β · Yk,t +Mk,t + ϵk,t,

sk,t,i = Yk,t + ηk,t,i,

sk,t,j = Yk,t + ηk,t,j ,

where the score from the rating agency i is the regressor, while the score from the rating agency

j ̸= i is the instrument. The covariance between the stock returns and the ESG score used for the

instrumentation (sk,t,j) when the measurement errors are orthogonal to all controls and innovations

is as follows:

cov(rk,t+1, sk,t,j) =cov(βYk,t +Mk,t + ϵk,t, Yk,t + ηk,t,j)

=βvar(Yk,t) + cov(Mk,t, Yk,t)

=βvar(Yk,t) + γvar(Mk,t).

The covariance between the ESG score from rating i and the ESG score used for the instrumen-

tation (sk,t,j) is as follows:

cov(sk,t,i, sk,t,j) = cov(Yk,t + ηk,t,i, Yk,t + ηk,t,j)

= var(Yk,t).
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The IV estimate is then

βIV =
βvar(Yk,t) + γvar(Mk,t)

var(Yk,t)

=β + γ
var(Mk,t)

var(Yk,t)
.

The sample equivalent of this estimate is in equation (5) in the main text.

A.2.2 Biased and Inconsistent Estimates of OLS and IV

In this section, we derive the IV estimator, allowing for omitted variable bias. All variables are

assumed to have mean zero, we drop the constants and the controls to simplify the notation.

Including them in the derivation does not change the results. Under the assumption that the

controls are orthogonal to all RHS variables, the OLS estimate of β in Equation (3) is given by

βOLS =
cov(rk,t+1, sk,t,i)

var(sk,t,i)
,

rk,t+1 = α+ β · Yk,t +Mk,t + ϵk,t,

sk,t,i = Yk,t + ηk,t,i.

The covariance between the stock returns and the ESG score is

cov(rk,t+1, sk,t,i) = cov(βYk,t +Mk,t + ϵk,t, Yk,t + ηk,t,i)

= βvar(Yk,t) + cov(Mk,t, Yk,t) + βcov(Yk,t, ηk,t,i) + cov(Mk,t, ηk,t,i) + cov(ϵk,t, ηk,t,i)

= βvar(Yk,t) + γvar(Mk,t) + βcov(Yk,t, ηk,t,i) + cov(Mk,t, ηk,t,i) + cov(ϵk,t, ηk,t,i).

The variance of the score is given by

var(sk,t,i) = var(Yk,t + ηk,t,i)

= var(Yk,t) + var(ηk,t,i) + cov(Yk,t, ηk,t,i).
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The ratio of these two quantities is the OLS estimate:

βOLS =
βvar(Yk,t) + γvar(Mk,t) + βcov(Yk,t, ηk,t,i) + cov(Mk,t, ηk,t,i) + cov(ϵk,t, ηk,t,i)

var(Yk,t) + var(ηk,t,i) + cov(Yk,t, ηk,t,i)
. (45)

The structural equations of the instrumental variable estimate are

βIV =
cov(rk,t+1, sk,t,j)

cov(sk,t,i, , sk,t,j)
,

rk,t+1 = α+ β · Yk,t +Mk,t + ϵk,t,

sk,t,i = Yk,t + ηk,t,i,

sk,t,j = Yk,t + ηk,t,j ,

where the score from the rating agency i is the regressor, while the score from the rating agency

j ̸= i is the instrument. The covariance between the stock returns and the ESG score used for the

instrumentation (sk,t,j) is as follows:

cov(rk,t+1, sk,t,j) =cov(βYk,t +Mk,t + ϵk,t, Yk,t + ηk,t,j)

=βvar(Yk,t) + cov(Mk,t, Yk,t) + βcov(Yk,t, ηk,t,j)+

cov(Mk,t, ηk,t,j) + cov(ϵk,t, ηk,t,j)

=βvar(Yk,t) + γvar(Mk,t) + βcov(Yk,t, ηk,t,j) + cov(Mk,t, ηk,t,j) + cov(ϵk,t, ηk,t,j).

The covariance between the ESG score from rating i and the ESG score used for the instrumentation

(sk,t,j) is the following

cov(sk,t,i, sk,t,j) = cov(Yk,t + ηk,t,i, (Yk,t + ηk,t,j)

= var(Yk,t) + cov(Yk,t, ηk,t,j) + cov(Yk,t, ηk,t,i) + cov(ηk, t, i, ηk,t,j).

53

Electronic copy available at: https://ssrn.com/abstract=3941514



The IV estimate is then

βIV =
βvar(Yk,t) + γvar(Mk,t) + βcov(Yk,t, ηk,t,j) + cov(Mk,t, ηk,t,j) + cov(ϵk,t, ηk,t,j)

var(Yk,t) + cov(Yk,t, ηk,t,j) + cov(Yk,t, ηk,t,i) + cov(ηk,t,i, ηk,t,j)
. (46)

The sample equivalents of the OLS and IV estimates in (45)�(46) are in equations (10)�(11) in the

main text.

A.2.3 Attenuation Across Horizons

In this section, we derive the ratio between the OLS and the IV coe�cients and show that it is the

same for di�erent horizons of stock returns. Denote the (monthly) stock return from time t+ h− 1

to t+ h by rk,t+h, where h is the horizon over which the return is measured. The structural forms

of the relationship between stock returns rk,t+h, for each horizon h, and ESG performance are

rk,t+1 =α1 + β1 · Yk,t +M1,k,t + ϵ1,k,t,

rk,t+2 =α2 + β2 · Yk,t +M2,k,t + ϵ2,k,t,

...

rk,t+h =αh + βh · Yk,t +Mh,k,t + ϵh,k,t.

Even though we use the same ESG performance for each of the di�erent return horizons, we allow

for the omitted variable to change with the horizon. The reduced forms of the above structural

equations are

rk,t+1 =α1 + β1 · sk,t,i + ν1,k,t,

rk,t+2 =α2 + β2 · sk,t,i + ν2,k,t,

...

rk,t+h =αh + βh · sk,t,i + νh,k,t.
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The regressors are the same across speci�cations, and we allow the coe�cients, the errors, and

the omitted variable to have di�erent variances and covariances. This implies that the covariance

between the ESG score and the omitted variable is also likely to change.

The OLS and the IV estimates for any horizon h are given by

βOLS,h =

[
var(Yk,t)

var(Yk,t) + var(ηk,t,i)

] [
βh +

cov(Yk,t,Mh,k,t)

var(Yk,t)

]
, (47)

βIV,h =

[
βh +

cov(Yk,t,Mh,k,t)

var(Yk,t)

]
. (48)

It is entirely possible that βOLS,1 ̸= βOLS,h and that βIV,1 ̸= βIV,h. However, the ratios of the

IV and the OLS coe�cients (which are our estimates of the attenuation bias) are identical across

all horizons.

βOLS,1

βIV,1
=

βOLS,2

βIV,2
=

βOLS,h

βIV,h
=

[
var(Yk,t)

var(Yk,t) + var(ηk,t,i)

]
. (49)

Of course, if there is a misspeci�cation in the instruments, then the ratio will not remain the same

across the entire range of our left-hand-side variables. In the empirical implementation (Section 4),

we change the horizon over which the stock returns are measured and evaluate how stable the ratio

of the IV and the OLS coe�cients is.

A.3 Additional Figures

In this section, we present additional �gures that show the density plots of the ESG ratings in

our sample as well as �gures pertaining to the implied noise ratios based on the regressions with

accounting variables in Section 4.4 and to the estimations with only two instruments in Section

4.5.1.
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Figure A1. Distribution of ESG Scores. This �gure shows the distribution of �rms' ESG scores for
each of the seven ESG rating agencies in our sample.
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Figure A2. Implied noise in ESG ratings. This �gure illustrates the implied noise for the regressions in
which the outcome variables are accounting variables. The vertical axis measures the noise-to-signal ratio κi, de�ned
in Equation (6). Raters are sorted by the median observation along the horizontal axis. The smaller dots represent
the estimates of the noise-to-signal ratio κi for di�erent raters, with the estimates computed from regressions with
the outcome variables presented in the legend. As we use the ratios of the corresponding 2SLS and OLS coe�cients
in the estimation of each κi, we estimate the error bands for each ratio using the delta method. The large black dots
are the means of these estimates for each rating agency and the rectangle is computed using the standard deviation
of the mean. We use the simple assumption that the estimates are independent across the di�erent speci�cations.
The variance of the mean, therefore, is the mean of the individual estimated variances.

57

Electronic copy available at: https://ssrn.com/abstract=3941514



0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Maximum of 2 IVs in first stage: Horizon 1

E
st

im
at

es

IS
S

M
S

C
I

R
ef

in
iti

v

S
P

G
lo

ba
l

S
us

ta
in

al
yt

ic
s

T
V

L

M
oo

dy
's

0.
00

0.
05

0.
10

0.
15

0.
20

Maximum of 2 IVs in first stage: Horizon 2

E
st

im
at

es

IS
S

M
S

C
I

R
ef

in
iti

v

S
P

G
lo

ba
l

S
us

ta
in

al
yt

ic
s

T
V

L

M
oo

dy
's

0.
00

0.
05

0.
10

0.
15

0.
20

Maximum of 2 IVs in first stage: Horizon 3

E
st

im
at

es

IS
S

M
S

C
I

R
ef

in
iti

v

S
P

G
lo

ba
l

S
us

ta
in

al
yt

ic
s

T
V

L

M
oo

dy
's

Figure A3. Coe�cient estimates with two instruments. This �gure compares the baseline stock
return regression results from OLS (red dot) and 2SLS pruning (black dot) to the 2SLS estimates obtained with 2
instruments (green dots). The black bar is the 90% con�dence interval of the 2SLS estimate, the green bar envelops the
con�dence intervals of the 2SLS estimates with two instruments. For estimates with two instruments, all combinations
of instruments are attempted, but 2SLS estimates are only plotted when they pass the OIR test. The three graphs
show results separately for stock return horizons of one, two, and three months.
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A.4 Additional Tables

In this section, we provide additional tables clarifying names and ownership of included ESG raters,

descriptive statistics, and an overall summary of estimates.

Table A1. ESG Scores Overview. This table shows the names of the ESG raters, previous names,
ownership, and the exact name of the scores used in the analysis.

Rater Name Previous Name Owner Score Name

ISS Oekom Research ISS Inc Numeric ESG Overall Rating
Moody's Vigeo-Eiris Moody's Global Score
MSCI Innovest MSCI Inc. IVA Industry Weighted Score
Re�nitiv Asset4 London Stock Exchange Group TRESG Score
Sustainalytics � Morningstar ESG Risk Rating
SPGlobal RobecoSAM S&P Global ESG Score
Truvalue Labs � FactSet Insight Score
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Table A2. Descriptive Statistics. This table shows the descriptive statistics. We multiplied Sustainalytics's
ESG scores by -1 and added 100 so that a higher value corresponds to a better ESG performance for all ratings.
Return is the monthly returns in percentage, Beta is the market beta estimated from monthly returns from month -60
to month -1, Dividends are the dividends per share over the prior 12 months divided by price at the end of the prior
month, Market Value is the logarithm of the market value of equity at the end of the prior month, Book-to-market
is the logarithm of book equity minus the logarithm of market value of equity at the end of the prior month, Asset
Growth is the logarithm of growth in total assets in the prior �scal year, ROA is the income before extraordinary
items divided by average total assets in the prior �scal year, Momentum is the return from month -12 to month -2,
and Volatility is the monthly standard deviation, estimated from daily returns from month -12 to month -1. Flows
indicates the ratio of in�ows into ESG funds for a given region. The sample consists of 1297 �rms and 70246 �rm-
month observations. All �nancial variables are expressed in U.S. dollars and are winsorized at the 1% level. Mean

corresponds to the mean, StDev to the standard deviation, Min to the minimum, and Max to the maximum.

Mean StDev Min Max

ESG

ISS 1.84 0.41 1.01 3.28
Moody's 35.50 11.73 7.00 76.00
MSCI 5.58 2.23 0.00 10.00
Re�nitiv 56.49 18.86 1.58 92.97
Sustainalytics 73.98 9.46 29.47 94.00
SPGlobal 41.19 22.68 0.00 93.92
TVL 55.73 12.12 0.32 99.00

Environmental

ISS 1.81 0.49 1.00 3.46
Moody's 33.96 16.78 0.00 85.00
MSCI 5.74 2.17 0.00 10.00
Re�nitiv 53.59 26.95 0.00 98.53
SPGlobal 41.80 27.92 0.00 99.83

Social

Moody's 32.42 12.78 7.00 84.00
MSCI 4.69 1.68 0.00 10.00
Re�nitiv 57.00 22.70 0.68 98.64
SPGlobal 36.28 24.27 0.00 96.58

Governance

ISS 2.28 0.53 1.00 3.66
Moody's 41.83 12.88 5.00 82.00
MSCI 5.30 1.66 0.00 10.00
Re�nitiv 56.94 21.43 0.25 98.40
SPGlobal 45.18 20.96 0.00 96.35

Financial Variables

Return 0.89 8.63 -25.13 28.06
Beta 1.00 0.44 0.09 2.31
Dividends 0.02 0.02 0.00 0.12
Market Value 9.33 1.17 6.57 12.34
Book-to-market 2.20 3.58 -2.48 8.82
Asset Growth 0.06 0.15 -0.23 0.94
ROA 0.05 0.05 -0.12 0.24
Momentum 0.04 0.25 -0.59 0.77
Volatility 0.07 0.03 0.03 0.19
Flows Euro 0.20 0.03 0.17 0.26
Flows U.S. 0.01 0.00 0.01 0.01
Flows U.K. 0.08 0.03 0.07 0.12
Flows Japan 0.01 0.03 0.00 0.05
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Table A3. Pairwise correlations of ESG raters' scores. This table presents the pairwise correlations
of all four subsamples: ESG, E, S, and G. We multiplied Sustainalytics' scores by -1 and added 100 so that a higher
value corresponds to a better ESG performance for all ratings.

Environmental ISS Moody's MSCI Re�nitiv SPGlobal

ISS 1
Moody's 0.72 1
MSCI 0.26 0.34 1
Re�nitiv 0.63 0.68 0.22 1
SPGlobal 0.67 0.72 0.30 0.70 1

Social Moody's MSCI Re�nitiv SPGlobal

Moody's 1
MSCI 0.25 1
Re�nitiv 0.63 0.16 1
SPGlobal 0.63 0.19 0.58 1

Governance ISS Moody's MSCI Re�nitiv SPGlobal

ISS 1
Moody's 0.62 1
MSCI 0.36 0.48 1
Re�nitiv 0.28 0.34 0.19 1
SPGlobal 0.31 0.43 0.15 0.32 1

A.5 Alternative accounting variables

In this section, we present additional results from the regressions on accounting variables described

in Section 4.4.
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Table A4. Return on Assets and ESG Ratings. This table reports estimates of β from the OLS
regression (12) and the 2SLS regression (14). ESG ratings are observed in year t−1; RoA is observed in year t. In the
second panel, the lagged variable RoA−1 is included as a regressor. In the third panel, the only change relative to the
second panel is that the dependent variable is ∆RoA, which is RoAt −RoAt−1. The �rst set of columns shows OLS
estimates. The second set of columns shows 2SLS estimates produced with the 2SLS pruning procedure as described
in Section 3.3. The check marks in the columns titled �Coherent IVs� indicate the selection of instruments that pass
the Sargan-Hansen OIR test. We cluster standard errors by month and �rm. All reported coe�cients and standard
errors are multiplied by 100. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

OLS 2SLS Pruning
Model Rater Coe�s StdErr Coe�s StdErr Coherent IVs Ftest

IS MS Re SP Su TV Mo

RoA

ISS 0.007 0.001 *** 0.010 0.001 *** 1.5 ! ! % ! % ! ! 2317

MSCI 0.005 0.001 *** 0.018 0.002 *** 3.7 ! ! ! % % % % 1247

Re�nitiv 0.007 0.001 *** 0.010 0.001 *** 1.3 ! ! ! ! % ! % 2121

SPGlobal 0.005 0.001 *** 0.012 0.001 *** 2.2 ! ! ! ! % ! % 2067

Sustainalytics 0.012 0.001 *** 0.017 0.002 *** 1.8 % ! % ! ! ! ! 425
TVL 0.001 0.001 - -

Moody's 0.006 0.001 *** 0.013 0.001 *** 1.6 ! ! ! % % ! ! 2998

RoA

inc.
RoA−1

ISS 0.004 0.001 *** 0.004 0.001 *** 1.2 ! ! ! ! % ! ! 1568

MSCI 0.001 0.001 *** 0.009 0.001 *** 6.4 ! ! ! % ! ! % 595

Re�nitiv 0.003 0.001 *** 0.004 0.001 *** 1.1 % ! ! ! % ! ! 1926

SPGlobal 0.002 0.000 *** 0.005 0.001 *** 2.8 ! ! ! ! % ! ! 1513

Sustainalytics 0.003 0.001 *** 0.007 0.001 *** 2.0 % ! % ! ! ! ! 330

TVL 0.000 0.000 0.010 0.003 *** 84.7 % ! % ! % ! ! 93

Moody's 0.003 0.001 *** 0.006 0.001 *** 2.2 ! ! ! % % ! ! 2352

∆RoA

inc.
RoA−1

ISS 0.004 0.001 *** 0.004 0.001 *** 1.1 ! ! ! ! % ! ! 1568

MSCI 0.001 0.001 ** 0.007 0.001 *** 4.8 % ! ! ! % % ! 682

Re�nitiv 0.003 0.001 *** 0.004 0.001 *** 1.2 % ! ! ! % ! ! 1926

SPGlobal 0.002 0.000 *** 0.005 0.001 *** 2.4 % ! ! ! % ! ! 1720

Sustainalytics 0.003 0.001 *** 0.007 0.001 *** 2.3 % ! ! ! ! ! ! 270

TVL 0.000 0.000 0.010 0.003 *** -115.1 % ! % ! % ! ! 93

Moody's 0.003 0.001 *** 0.005 0.001 *** 1.6 % ! ! ! % ! ! 2236

Median 1.9 1568
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Table A5. Return on Sales and ESG ratings. This table reports estimates of β from the OLS
regression (12) and the 2SLS regression (14). ESG ratings are observed in year t−1; RoS is observed in year t. In the
second panel, the lagged variable RoS−1 is included as a regressor. In the third panel, the only change relative to the
second panel is that the dependent variable is ∆RoS, which is RoSt − RoSt−1. The �rst set of columns shows OLS
estimates. The second set of columns shows 2SLS estimates produced with the 2SLS pruning procedure as described
in Section 3.3. The check marks in the columns titled �Coherent IVs� indicate the selection of instruments that pass
the Sargan-Hansen OIR test. We cluster standard errors by month and �rm. All reported coe�cients and standard
errors are multiplied by 100. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

OLS 2SLS Pruning
Model Rater Coe�s StdErr Coe�s StdErr Coherent IVs Ftest

IS MS Re SP Su TV Mo

RoS

ISS 0.004 0.002 ** 0.005 0.003 * 1.1 ! ! ! ! % ! ! 1999

MSCI 0.004 0.002 ** 0.008 0.004 ** 2.1 ! ! ! ! % ! ! 620

Re�nitiv 0.002 0.002 0.005 0.002 ** 2.5 ! ! ! ! % ! ! 2139

SPGlobal 0.002 0.002 0.005 0.003 ** 3.4 ! ! ! ! % ! ! 1949

Sustainalytics 0.015 0.002 *** 0.008 0.004 * 0.6 ! ! ! ! ! ! ! 296

TVL 0.002 0.001 * 0.019 0.012 8.0 % % ! ! % ! ! 62

Moody's 0.003 0.002 * 0.005 0.003 * 1.5 ! ! ! ! % ! ! 2751

RoS

inc.
RoS−1

ISS 0.004 0.001 *** 0.003 0.002 * 0.8 ! ! ! ! ! ! ! 1325

MSCI 0.002 0.001 0.007 0.002 *** 4.0 ! ! ! ! ! ! ! 448

Re�nitiv 0.001 0.001 0.004 0.002 ** 2.7 ! ! ! ! ! ! ! 1409

SPGlobal 0.001 0.001 0.004 0.002 ** 4.5 ! ! ! ! ! ! ! 1303

Sustainalytics 0.004 0.001 *** 0.005 0.003 * 1.4 ! ! ! ! ! ! ! 241

TVL 0.001 0.001 0.014 0.006 ** 17.0 ! ! ! ! % ! ! 62

Moody's 0.002 0.001 * 0.004 0.002 ** 1.8 ! ! ! ! ! ! ! 1839

∆RoS

inc.
RoS−1

ISS 0.005 0.001 *** 0.005 0.002 *** 1.0 ! ! ! ! ! ! ! 1325

MSCI 0.002 0.001 0.009 0.002 *** 5.3 ! ! ! ! ! ! ! 448

Re�nitiv 0.003 0.001 ** 0.005 0.002 *** 1.9 ! ! ! ! ! ! ! 1409

SPGlobal 0.002 0.001 0.006 0.002 *** 3.5 ! ! ! ! ! ! ! 1303

Sustainalytics 0.004 0.001 *** 0.007 0.003 ** 1.7 ! ! ! ! ! ! ! 241

TVL 0.001 0.001 0.015 0.006 *** 17.2 ! ! ! ! % ! ! 62

Moody's 0.003 0.001 *** 0.006 0.002 *** 1.7 ! ! ! ! ! ! ! 1839

Median 2.1 1303
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A.6 Possible Sources of Noise in ESG Scores

In this section, we explore the implications of di�erences in measurement versus di�erences in

aggregation for our procedure. An ESG score produced by an ESG rating agency is an aggregate of

many indicators measuring a variety of attributes, some of which might be unrelated to each other

(such as CO2 emissions and labor practices). The ESG attribute Yt in our model is therefore an

aggregate of a multidimensional variable. In the following, we explain how to think about noise and

our noise-correction procedure in this context.

Assume that ESG rating agencies compute the scores as a weighted average of many indicators,

corresponding to disaggregated ESG attributes (e.g., CO2 emissions, labor practices):

st,i =
∑

a∈{1,n}

wa,i · Ia,t,i, (50)

where i indexes ESG rating agencies, a indexes attributes that the agency considers, Ia,t,i is a

measure of attribute a by rater i,21 and wa,i are the weights.

The true value of Yt is given by a similar construct,

Yt =
∑

a∈{1,n}

w⋆
a · I⋆a,t, (51)

where I⋆a,t are the true values of the indicators and w⋆
a are the true weights�i.e., the weights that

the representative ESG investor assigns to individual indicators, which re�ect her preferences or

social preferences.

At this stage, some discussion about these constructs might be useful. Suppose there are two

attributes that are important to investors: labor practices and CO2 emissions. For a given �rm, the

true values of labor treatment and CO2 emissions are denoted by I⋆a,t. As in our model, a rating

agency does not observe these true values; it only observes their proxies. For each agency i, those

proxies are the indicators Ia,t,i. For example, an indicator for labor practices could be constructed

based on labor turnover as reported by the �rm, or the number of complaints in labor courts. Both

21The indicators Ia,t,i are continuous variables. We normalize them so that they are measured on the same scale.
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indicators are correlated with the true value, but they are not identical to it. The di�erence is the

error term. For the case of CO2 emissions, the indicator could be constructed based on the self-

reported emissions (which could be noisy due to the self-reporting nature of this data), or industry

estimates (such a procedure is typically used to estimate real estate emissions), or imputed data

(e.g., a large fraction of emissions reported by Re�nitiv is imputed data). For the weights, investors

have preferences between labor treatment and emissions, represented by (w⋆
a, 1 − w⋆

a). The rating

agency does not observe these weights and needs to estimate them or use their own. The weights

a rating agency uses are not identical to the true weights and the di�erence is assumed to be a

random variable.

Under our assumptions, it is possible to decompose the measurement error of each rating agency

i as follows:

st,i = Yt +
∑

a∈{1,n}

wa,i · (Ia,t,i − I⋆a,t)︸ ︷︷ ︸
ηIa,t,i

+
∑

a∈{1,n}

(wa,i − w⋆
a)︸ ︷︷ ︸

ηwa,i

·I⋆a,t

︸ ︷︷ ︸
ηYt,i

. (52)

There are two sources of noise in this decomposition: the measurement error at the level of the

indicator,

Ia,t,i = I⋆a,t + ηIa,t,i , (53)

E[ηIa,t,i |I⋆a,t, w⋆
a] = 0, (54)

and the discrepancy in the weights:

wa,i = w⋆
a + ηwa,i , (55)

E[ηwa,i |I⋆a,t, w⋆
a] = 0. (56)

Equation (54) implies that the measurement error in each indicator is mean independent of the true

measure and the true weights. In other words, it implies that the di�erence in the indicators is

truly a measurement error. On the other hand, Equation (56) implies that the deviations of the

weights assigned by the rating agencies relative to the weights that describe the true preferences
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are orthogonal to the true indicators and the true weights themselves. In this case, the intuition is

that the di�erences in the weights are a mean zero random variable.

The above equations parallel our representation in (2). Additionally, we need to assume that

the errors are classical, which is satis�ed when the measurement error of the indicators, and the

deviations in the weights of the rating agency from the true weights are independent of the true

ESG attribute Y . Formally,

E

 ∑
a∈{1,n}

wa,i · (Ia,t,i − I⋆a,t) +
∑

a∈{1,n}

(wa,i − w⋆
a) · I⋆a,t

∣∣∣∣Yt
 = 0. (57)

Condition (57) is satis�ed if conditions (54) and (56) hold. We therefore now have two su�cient

conditions, (54) and (56), that play the same role as our classical errors-in-variables assumption (7)

in the main text.

For one rating agency's score to be a valid instrument for that of another rating agency, one

needs to impose two further moment restrictions: (i) the errors in each indicator (Equation (53)) and

each weight (Equation (55)) are independent across any two rating agencies (as in the independence

assumption (9) in the main text); and (ii) these errors are not correlated with the stock market

returns (as in the exclusion restriction (8) in the main text).

The discrepancy between the ESG ratings of two agencies can be decomposed as follows:

st,i − st,j =
∑

a∈{1,n}

(wa,i − wa,j) · Īa,t︸ ︷︷ ︸
Scope and Weight

+
∑

a∈{1,n}

w̄a · (Ia,t,i − Ia,t,j)︸ ︷︷ ︸
Measurement

, (58)

where

w̄a =
wa,i + wa,j

2

Īa,t =
Ia,t,i + Ia,t,j

2
.

The �rst term in (58) captures the weight and scope discrepancies highlighted in Berg, Kölbel, and

Rigobon (2022). A weight discrepancy occurs when rating agencies assign di�erent weights to the
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same attribute and the a scope discrepancy occurs when one of the agencies disregards a category,

assigning it a weight of zero. The second term in (58) is the discrepancy in measurement of the

same indicator.

The easiest way to develop an understanding of what the required moment conditions mean in

this setting is to study two special cases: pure measurement and pure weights di�erences.

Assume that the rating agencies only di�er in the measurement of the indicators, i.e., their

weights are identical to each other and identical to the true weights. In this case, the scores of

rating agencies i and j are given by

st,i = Yt +
∑

a∈{1,n}

w⋆
a · (Ia,t,i − I⋆a,t),

st,j = Yt +
∑

a∈{1,n}

w⋆
a · (Ia,t,j − I⋆a,t).

The two rating agencies' scores are correlated through Yt and we expect them to strongly predict

each other. This is our relevance assumption. Another assumption that we need is the independence

assumption, which requires that measurement errors are uncorrelated across the rating agencies (an

analog of (9)), i.e.,

E
[
(Ia,t,i − I⋆a,t) · (Ia,t,j − I⋆a,t)

]
= E

[
ηIa,t,i · ηIa,t,j

]
= 0, ∀i, j. (59)

This assumption is natural if the errors in the indicators are purely mistakes that are speci�c to

individual rating agencies. There are circumstances in which it can be violated. For example,

two rating agencies may use similar (possibly imputed) data and similar procedures to compute an

indicator. Because their models are based on similar principles, it is reasonable to conjecture that

the errors in the procedures of some agencies are correlated with each other. The second possible

source of failure of independence is that one rating agency's scores are in�uenced by the scores of

another, which makes their errors correlated. Both of these violations would be detected by the
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Sargan-Hansen OIR test (see Appendix A.7 for a detailed explanation of why correlated errors lead

to a rejection of the OIR test).

The second special case is when the measured indicators are all equal to the true indicators and

the discrepancy comes exclusively from weight di�erences. In this case, the scores of ESG rating

agencies i and j take a familiar form:

st,i = Yt +
∑

a∈{1,n}

(wa,i − w⋆
a) · I⋆a,t,

st,j = Yt +
∑

a∈{1,n}

(wa,j − w⋆
a) · I⋆a,t.

As in the previous case, the scores of the two rating agencies are trivially related to each other

through Yt, satisfying the relevance assumption. The main assumption we need to make here is

that weight deviations are independent across rating agencies (an analog of (9)), i.e.,

E [(wa,i − w⋆
a) · (wa,j − w⋆

a)] = E
[
ηwa,i · ηwa,j

]
= 0, ∀i, j. (60)

Again, this assumption is testable using the OIR test.

Most rating agencies not only measure individual attributes; they also, by providing a rating,

re�ect their preferences across those attributes. What matters the most to the rating agencies is

re�ected in the weights they use.This service from the rating agencies is important. Investors may

not have a detailed understanding of all ESG-related issues, nor the resources needed to achieve

such understanding. ESG rating agencies strive to understand these issues deeply; and the weights

they assign to individual attributes represent the preferences of many investors and individuals

they have interacted with. Their goal is to ascertain the weights of a representative ESG-conscious

investor, what we call w⋆
a's. It is quite likely that the assessment of these weights di�ers across

rating agencies. Being able to instrument for these di�erences is as important as the ability to

instrument for the measurement error at the individual attribute level.
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Our instrumental variable approach relies on the identifying assumptions presented in this section

(or in Equations (7), (8), and (9)) and there are instances in which their violations pose a threat

to our identi�cation. First, we are using a linear representation of ESG scores (Equation (50)).

Berg, Kölbel, and Rigobon (2022) show that a linear approximation performs very well in and out

of sample. However, if the aggregation rules are non-linear, the non-linearity implies a correlation

between the measurement error and the true underlying measure and hence conditions (9) and/or

(54) will be violated and the errors will not be classical.

The second potential problem is that two rating agencies have correlated errors. This can

occur in a range of scenarios, such as rating agencies using similar data sources and procedures, or

rating agencies relying on self-reported data that could have been manipulated by the �rms. If the

rating agencies impute indicators using similar data and similar models (as argued by Christensen,

Serafeim, and Sikochi, 2022), this is likely to result in the violation of the independence assumption

(equation (9) or (59)). This violation will be detected by the OIR test. Another possibility is when

�rms strategic behavior (greenwashing) will produce deviations that are common to the rating

agencies. For example, if rating agencies rely on self-reported data, and a �rm manipulates its

announcements, then the rating agencies share the error. However, as long as one rating agency

sees through the manipulation (or uses a methodology that does not rely on companies' disclosure),

the OIR test will detect the correlated instruments.

Finally, our instrumental variable approach may fail because the measurements are correlated

with the stock-return relevant cash-�ow innovations (ϵt). Therefore, when a rating agency looks at

the realized returns to determine the value of a particular indicator, or the weights of a particular

attribute, the instruments fail the exogeneity assumption. This violation will be detected by the

OIR test.

A.7 What if Errors are Correlated Across Raters?

In this section, we show that if a rater's score is in�uenced by the scores of another rater, leading

to a violation of (9), this is diagnosed by the OIR test. For concreteness, suppose that one rater
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simply follows another, that is,

sk,t,1 = Yk,t + ηk,t,1,

sk,t,2 = sk,t,1 + uk,t,

where uk,t is an error term. The second rater's score can be expressed as

sk,t,2 = Yk,t + ηk,t,1 + uk,t︸ ︷︷ ︸
=ηk,t,2

.

In this example, errors are correlated because E[ηk,t,1 · ηk,t,2] ̸= 0.

Recall our main structural equation: rk,t+1 = a+βYk,t+Mk,t+ ϵk,t, where ϵk,t is the error term.

This equation is equivalent to

rk,t+1 = a+ β(sk,t,1 − ηk,t,1) + νk,t = a+ βsk,t,1 + νk,t − β (ηk,t,2 − uk,t)︸ ︷︷ ︸
error

One can see immediately that s2 is not a valid instrument for s1 because it is correlated with

the error term. The OIR test, which checks speci�cally for the correlation of an instrument with

the error term, is going to diagnose this.

A similar argument applies to using s1 as an instrument for s2. The Sargan-Hansen test would

fail in this case as well.
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