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What is the maximum amount (possibly zero) of bonds that a government can rollover
forever without running primary budget surpluses? If the government can rollover a positive
amount of bonds forever, what is the optimal amount of bonds to rollover? Blanchard’s
(2019) presidential address to the American Economic Association spurred renewed scholarly
interest in these questions. Only a year later, global events brought these issues into the
public realm as governments around the world ran huge deficits to deal with the catastrophic
economic consequences of the covid-19 pandemic.

In the absence of uncertainty, the ability of the government to rollover bonds forever is
determined by the “r vs ¢g” comparison, as it is colloquially known, where r is the net rate of
return on all assets, including government bonds, and g is the growth rate of the capital stock.
Specifically, if and only if » < ¢ along a balanced growth path in a competitive economy,
government bonds can be rolled over forever and will shrink as a share of the economy
over time. Also, if and only if r < g, the economy suffers from a dynamically inefficient
overaccumulation of capital. That is, government bonds can be rolled over forever if and
only if the economy is dynamically inefficient.

In the presence of uncertainty, the link between dynamic inefficiency and the feasibility
of rolling over government bonds forever is more nuanced. Put simply, the rate of return on
capital is the rate of return relevant for assessing dynamic efficiency, but the riskfree interest
rate is the rate of return relevant for assessing whether the government can rollover its bonds
forever. Uncertainty breaks the equality of these two rates of return. As we will show,
in some dynamically efficient competitive economies with a constant growth rate g > 0,
it is possible for the riskfree interest rate, r¢, to be less than g, which makes permanent
rollover of government bonds feasible. This possibility of permanently rolling over debt
in a dynamically efficient economy does not exist in deterministic, dynamically efficient,
competitive economies.

Our principal findings in this paper result from both positive and normative analyses of
sustainable levels of the ratio of government bonds to the capital stock, which we define as
levels of this ratio that permit government bonds to be rolled over forever without any primary
surpluses. In our positive analysis, we find that if r; < g along a balanced growth path

without government bonds (which can be the case in some dynamically efficient economies,



and must be the case in all dynamically inefficient economies), the maximum sustainable
level of the bond-capital ratio is strictly positive. Starting from zero government bonds,
increasing the amount of bonds reduces capital, thereby driving up the marginal product
of capital and the constellation of rates of return until, at the maximum sustainable bond-
capital ratio, ry = g.

Our normative analysis examines the optimal sustainable level of the bond-capital ratio,
specifically the sustainable level of this ratio that maximizes welfare, measured as the utility
of consumers in the steady state. =~ We find that the marginal impact on welfare of an
increase in this ratio is positive along balanced growth paths with r; < ¢ and is non-
negative along balanced growth paths with r; = ¢g.  Therefore, since the bond-capital
ratio is not sustainable for r; > ¢, the optimal sustainable level of the bond-capital ratio
equals its maximum sustainable value, which is attained when r; = g. At the optimal
level of the bond-capital ratio, government bonds play the dual role of (1) eliminating any
overaccumulation of capital that would occur if the bond-less economy were dynamically
inefficient and (2) providing safe assets to be held in the portfolios of risk-averse consumers.
When the bond-capital ratio is at its optimal level (r; = g), the economy is in the dynamically
efficient region. A marginal increase in the bond-capital ratio reduces capital and expected
aggregate consumption. Despite this reduction in expected aggregate consumption, the
benefit of increased risk sharing from debt issuance is large enough to prevent a reduction
in welfare.

The model in this paper is crafted so that along a balanced growth path, the capital stock
per unit of effective labor is constant but the rate of return on capital is stochastic. To
illustrate the mechanism in its simplest form, we preview the model in the case in which (1)
there is no labor-augmenting technical progress, so g = 0, and (2) the government wastes any
funds collected when it issues new bonds in excess of contemporaneous interest payments on
existing government bonds. The model has overlapping generations of a constant number
of people who live for two periods, earn labor income only in the first period of life, and
save some of their wage income to provide for consumption in the second period of life.
Output in each period is produced with labor and capital according to a Cobb-Douglas

production function without a productivity shock, which implies that wage income is non-



stochastic. ~Consumers save a constant fraction of their wage income because they earn
non-asset income only in the first period and they have Epstein-Zin-Weil (Epstein and Zin
(1989) and Weil (1990)) preferences with an intertemporal elasticity of substitution equal to
one. Therefore, aggregate saving of the young consumers is non-stochastic, which makes
total assets, the sum of capital and government bonds non-stochastic.

The uncertainty in our model economy enters through a stochastic shock to the durability
of capital that makes the rate of capital depreciation, and hence the rate of return on
capital, stochastic. Bulow and Summers (1984), p. 25, argue that “capital risk,” which
they associate with the stochastic nature of depreciation, is far larger than “income risk,”
which they associate with the stochastic nature of the marginal product of capital. The
uncertainty about the rate of capital depreciation drives a wedge between the expected rate
of return on capital and the riskfree interest rate. However, in this simple form of the model,
the evolution of the capital stock, wage income, as well as the consumption and saving of the
young generation, are all invariant to the distribution and realizations of the durability shock.
Thus, there is a useful dichotomy in the equilibrium of the economy. We can determine
the equilibrium values of aggregate saving and the capital stock, without any consideration
of financial values and without any consideration of the realizations or the distribution of
the durability shocks.! Despite the deterministic evolution of the capital stock, we show
that the rate of return on capital and hence the consumption of the old generation are risky
because the depreciation rate of capital is stochastic. The stochastic nature of consumption
when old implies that the pricing kernel is stochastic.

The simplicity of the model in the case described above has several useful features. Be-
cause wage income per unit of effective labor, and hence aggregate saving of young consumers
per unit of effective labor, are constant along a balanced growth path, there is no chance
that adverse shocks will reduce aggregate saving below the amount needed to absorb the
equilibrium amount of government bonds. Thus, government bonds are riskfree and the

riskfree interest rate is the appropriate market interest rate on these bonds.? In the simple

!This dichotomy continues to hold if we relax the assumption (1) that g = 0, but it does not hold if we
relax assumption (2) that the government wastes any funds it receives when it issues new bonds in excess of
interest payments on existing government bonds.

ZBertocchi (1994) and Binswanger (2005) discuss the unsustainability of government bonds in economies
in which the capital stock evolves stochastically. Our model features a non-stochastic capital stock and



case of the model described above, the equilibrium size of the capital stock is invariant to the
distribution of durability shocks. In our quantitative analysis, we illustrate that the maxi-
mum sustainable bond-capital ratio, which is the optimal value of this ratio, is an increasing
function of the variance of the durability shock. We also illustrate that the maximum sus-
tainable amount of government bonds is an increasing function of the coefficient of relative

risk aversion.

1 Literature Review

The celebrated Golden Rule of capital accumulation derived by Phelps (1961) characterizes
the capital stock per capita that maximizes consumption per capita along a deterministic
balanced growth path. If the rate of return on capital, r, equals the growth rate of the
economy, ¢, then consumption per capita is at the highest feasible level in the long run.
If the saving rate exceeds the rate consistent with the Golden Rule, then the capital stock
per capita exceeds the Golden Rule level so r < g and consumption per capita is less than
in the Golden Rule; that is, there is a dynamically inefficient overaccumulation of capital.
Diamond (1965) develops and analyzes an overlapping generations economy with optimizing
consumers and competitive firms and finds that if the optimal saving of young consumers is
sufficiently high, either because consumers are very patient or the wage share of total income
is very high, then capital per capita can exceed the Golden Rule level along a balanced growth
path and there is a dynamically inefficient overaccumulation of capital. However, if young
consumers use some of their saving to hold government bonds, they will hold a smaller
amount of capital in their portfolios, driving down the aggregate capital stock, possibly by
enough to eliminate any dynamically inefficient overaccumulation of capital.

Cass (1972) provides a complete characterization of dynamic inefficiency that does not
depend on consumers’ preferences. The Cass criterion simply asks whether it is feasible
to increase aggregate consumption at some date without having to reduce aggregate con-
sumption at some other date(s). In a deterministic steady state, the Cass condition is the

same as in Phelps and Diamond, that is, an economy is dynamically inefficient if and only if

avoids the unsustainability problem in Bertochhi and Binswanger.



r < g. However, the general version of the Cass criterion also applies to economies outside
the steady state.

A government bond that is rolled over forever is often regarded as a bubble, which is
an asset with zero fundamental value that nevertheless has a positive market value. Tirole
(1985) develops a tight link between dynamic inefficiency and the feasibility of bubbles,
in his words “the existence of bubbles is conditioned by the efficiency of the bubbleless
equilibrium.” (Tirole (1985), p. 1076) In our context, a “bubbleless equilibrium” has zero
government bonds. Part (a) of Proposition 1 in Tirole (1985) states that if the economy
without any government bonds is dynamically efficient, then equilibrium in the economy
cannot contain bubbles. Tirole’s statement holds in deterministic economies where the
rates of return on capital and government bonds are equal. The introduction of government
bonds reduces capital, thereby increasing the common rate rates of return on government
bonds and capital. If the economy was dynamically efficient without government bonds,
then r > ¢ initially and this increase in r induced by government bonds increases the excess
of r over g, which implies that government bonds cannot be rolled over forever.

In order for bubbles to be feasible in a deterministic dynamically efficient economy, there
must be a wedge between the rates of return on government bonds, r, and on capital,
r. Specifically, r must exceed ry and the growth rate g must lie between ry and r. In
deterministic models, Farhi and Tirole (2011) and Martin and Ventura (2012) provide this
wedge by introducing a wedge between borrowing and lending rates for firms. Also in
a deterministic framework, Ball and Mankiw (2023) introduces monopoly power by firms,
which drives a wedge between the marginal product of capital, r, and the user cost of
capital, which is based on the interest rate on government bonds, 7. Aguiar et al. (2021)
also examine the role of monopoly power in driving a wedge between the rate of return on
capital and the interest rate on government bonds, but their analysis includes idiosyncratic
risk. Like Ball and Mankiw (2023), however, in their analysis the aggregate rate of return

of capital is not uncertain.?

3Amol and Luttmer (2022) also examines fiscal policies in economies with idiosyncratic uncertainty but
no aggregate uncertainty. The analysis in that paper does not include monopoly but is conducted in a two-
sector model with a capital goods sector and a consumption goods sector. As in Ball and Mankiw (2023)
and Aguiar et al. (2021), but unlike in our paper, the aggregate return to capital in Amol and Luttmer
(2022) is not random.



The early literature on dynamic efficiency (Diamond (1965), Cass (1972)) focussed on
deterministic models. In those models, the conditions for dynamic efficiency are the same
as the conditions that rule out scope for Pareto improvements. However, the literature has
long recognized that the introduction of uncertainty can break the link between dynamic
efficiency and the conditions that rule out any scope for Pareto improvements?* or infinite

® Roughly speaking, the sufficient condition for dynamic efficiency in Zilcha

debt rollover.
(1991) is that the expected logarithmic return to capital exceeds the logarithmic growth rate
of the economy, whereas the sufficient condition for infinite debt rollover tests whether the
yield of a GDP-contingent, pure-discount bond converges to a negative number as maturity
approaches infinity.® Typically, these conditions are stated in terms of endogenous quantities
(returns). The common approach in the literature stops short of fully solving the underlying
model and showing that in some dynamically efficient stochastic economies it is possible to

7 The model that we develop is designed to present a dynamically

roll over debt forever.
efficient stochastic economy in which it is simple to verify that government bonds can be
rolled over forever.

Aggregate uncertainty drives a wedge between the riskfree rate, 7, and the rate of return
on capital, . Abel, Mankiw, Summers, and Zeckhauser (1989), hereafter AMSZ, proves
that if the rate of return on capital is greater than the growth rate in all states and at all
times, then the economy is dynamically efficient; and since the rate of return on capital is
always greater than the growth rate, the riskfree rate is greater than the growth rate and

hence it is not feasible to rollover government bonds forever. Alternatively, AMSZ proves

that if the rate of return on capital is less than the growth rate in all states and at all times,

4See, e.g., Bertocchi (1991), Barbie et al. (2007), Binswanger (2005), Bloise and Reichlin (2023).

°See, e.g., Kocherlakota (2023a).

6A GDP-contingent, pure discount bond is a bond that makes a single payment at maturity, T, and
that payment is proportional to Y7, which is output at time T. See Kocherlakota (2023a). The sufficient
conditions in Bloise and Reichlin (2023) for achieving Pareto improvements are closely related to the condition
in Kocherlakota (2023a).

"While, in principle, one could try to verify empirically that the conditions for dynamic efficiency and
the feasibility of infinite debt rollover are satisfied, in practice this approach faces challenges. The Zilcha
condition on dynamic efficiency requires knowledge of the returns to capital and aggregate growth rates (but
does not require any assumptions on marginal utilities in different economic states). However, testing the
condition for the feasibility of infinite debt rollover requires information about the valuation of a GDP-linked
payoff at infinite maturity. Because governments don’t issue GDP-linked bonds, and there are no markets
for GDP futures, the yields on long-term GDP-linked bonds can neither be observed, nor easily inferred from
existing securities without a model that describes marginal utilities.



then the economy is dynamically inefficient; and since the rate of return on capital is always
lower than the growth rate of capital, the riskfree rate is less than the growth rate and it is
feasible to rollover government bonds forever. Thus, in the situations that can be declared
dynamically efficient or dynamically inefficient by the sufficient conditions in AMSZ, the
link between dynamic inefficiency and the feasibility of bubbles continues to hold. However,
the AMSZ conditions are not applicable in economies where the rate of return on capital is
sometimes greater than the growth rate and sometimes less than the growth rate.

Zilcha (1990, 1991) steps into the gap left by AMSZ and derives a characterization of
dynamic efficiency in stochastic economies in which the rate of return on capital can some-
times exceed and sometimes falls short of the growth rate, g, of the economy. Zilcha adapts
Cass’s definition of dynamic efficiency in a natural way to stochastic economies and derives
a remarkable condition for dynamic inefficiency when the economy grows at a constant rate,
g: E{ln(1+7r)} <lIn(1+ g). Zilcha presents this condition as necessary and sufficient for
dynamic inefficiency. However, Rangazas and Russell (2005) and Barbie and Kaul (2009)
point out a subtle but important statistical issue that implies that the Zilcha condition is nec-
essary, but not sufficient, for dynamic inefficiency. Equivalently, F {In (1 +r)} > In (1 + g)
is sufficient for dynamic efficiency. Recently, Bloise and Reichlin (2023, p. 640) presents a
sufficient condition for dynamic efficiency, which they refer to as “capital efficiency.” Their
sufficient condition states that if “capital is sufficiently productive with some probability,”
then capital is not overaccumulated.®

Blanchard and Weil (2001) presents four examples that debunk various simplistic views
about the relation between dynamic inefficiency and the feasibility of rolling over government
bonds forever. In particular, the third and fourth examples in that paper illustrate that
government bonds can be rolled over forever in some dynamically efficient economies. Those
two examples feature models of stochastic storage so that output is linear in the capital stock.
Without concavity in the capital stock, the issue of capital overaccumulation is moot.? Barro

(2023) uses a model with stochastic depreciation as in our model, but specifies Y; = AKj,

1495
Ri]‘
the rate of return on capital, when the economy moves from state ¢ to state j in a finite state space.
9Footnote 11 in Blanchard and Weil (2001) points out that these models could be extended to incorporate
concavity in the capital stock by specifying output to be Y; = K* — § Ky, where § is a random variable, but

they do not work out the implications of this model.

8The condition is max; min; < 1, where g;; and R;; are, respectively, the growth rate of output and



so that, as in Blanchard and Weil’s specification with simply stochastic storage, there is no
concavity in the capital stock.

Blanchard’s presidential address (Blanchard (2019)) is a far-ranging analysis of both
empirical and theoretical issues related to the rollover of government bonds. It carefully
documents that the recent situation with safe interest rates below growth rates is not unusual
in historical data. In simulations reminiscent of the eponymous deficit gamble in Ball,
Elmendorf, and Mankiw (1998), Blanchard finds that even if government bonds cannot be
rolled over forever, it is likely that they can be rolled over for many decades before investors
become unable, or unwilling, to buy newly issued government bonds.

Since Blanchard’s presidential address, at least three papers have appeared with simple
titles that involve comparisons of the rate of return and the growth rate. Cochrane (2021b),

)

simply titled “r < g,” is a forceful warning against the notion that when the riskfree interest
rate is lower than the growth rate, the government can rely on growing itself out of debt. An
attempted permanent rollover of bonds is bound to fail eventually, especially if government
deficits are large. “The constraint on public debt when r < g but g < m” (Reis (2021))
develops a model in which the interest rate on government bonds (r) is less than the growth
rate of the economy (g), opening the possibility that government bonds can be rolled over,
and yet the marginal product of capital (m) is greater than g so the economy is dynamically
efficient. That paper derives the fiscal capacity of the economy, which is a limit on the
ratio of government spending to the amount of bonds outstanding. Barro (2023), simply
titled “r Minus g,” provides data on (arithmetic) averages in each of 14 OECD countries of
rates of return on bonds and equities and growth rates of GDP per capita and consumption
per capita. However, the Zilcha criterion directly implies that for the purpose of assessing
dynamic efficiency, one must use the geometric means of rates of return and growth rates
rather than arithmetic means.

Two interesting questions — one positive and one normative — remain unanswered in the
papers described above. First, what is the mazimum amount of government bonds that can
be rolled over forever? The fiscal capacity in Reis (2021) is related to this question but, as
mentioned above, fiscal capacity is the maximum ratio of government spending to the amount

of bonds outstanding, rather than the maximum ratio of the amount of government bonds



outstanding to the capital stock that is the focus of our analysis. Second, what is the optimal
amount of bonds to rollover along a balanced growth path? Blanchard (2019), Falkenheim
(2022), Ball and Mankiw (2023), and Kocherlakota (2023b) provide interesting analyses and
discussions of the marginal impact of government bonds on welfare, where, as in our paper,
welfare is defined to be the level of utility of consumers along a balanced growth path.'?
However, none of these four papers derives analytically the optimal sustainable amount of
government bonds in a dynamically efficient economy with aggregate shocks to the return
of capital.!’  Angeletos et al. (2023) analyzes optimal debt issuance in a model where
the planner maximizes a discounted objective balancing distortionary effects of taxation,
seignorage, and improved risk sharing.

Kocherlakota (2023b) considers an economy where consumers face idiosyncratic “rare
disasters.” In the production-economy version of the model in Kocherlakota (2023b), the
returns to capital and bonds are equal, so that the conditions on infinite debt rollover
and dynamic inefficiency are identical. In our paper the return to capital and the return
on bonds are distinct because of aggregate uncertainty about the return on capital. This
difference in the rates of return allows the possibility that infinite debt rollover is possible in
a dynamically efficient economy. We show that if the riskfree interest rate on government
bonds is less than the growth rate of the economy, it is optimal to increase the quantity of debt
to the maximal sustainable amount. Although reducing capital in a dynamically efficient
economy reduces expected aggregate consumption, the additional risk sharing provided by
an increased amount of riskfree government bonds implies that, on net, it is optimal to
increase the amount of bonds to the maximum sustainable level.

Our result that the government can increase consumer welfare by issuing additional debt

10Aoki et al. (2014) show that in situations in which bubbles exist in equilibrium, welfare in the bubbly
equilibrium is higher than in the equilibrium without bubbles. However, it does not examine the marginal
impact on welfare of an increase in the size of the bubble.

UThe working paper version (NBER WP 29138, August 2021) of Kocherlakota (2023b) concludes that
“as long as there is a public debt bubble (in this class of models), agents are better off in the long run if
the government changes its policy choices so as to increase the debt and deficit” (p. 20). Aiyagari and
McGrattan (1998) numerically computes the optimal value of government debt in a model with uninsurable
idiosyncratic risks, but no aggregate risks. It finds that the welfare loss resulting from the actual level of debt
in the US economy (at the time of that paper’s writing), rather than the optimal level of debt as computed
in their model, is small. Brumm and Hussmann (2023) numerically compute optimal debt in a variety of
models, including calibrated OLG models and models in which investors obtain “convenience yields.”



whenever 7y < ¢ is consistent with the conditions that permit Pareto improvements in
Bertocchi (1991), Barbie et al. (2007) and more recently Bloise and Reichlin (2023), who show
that the condition permitting a Pareto improvement can hold in some economies without

1.12 Bloise and Reichlin provide diagnostics

dynamically inefficient overaccumulation of capita
to assess whether a given allocation of consumption is Pareto-optimal and whether that
allocation is dynamically inefficient in the sense of having overaccumulation of capital. Their
main finding implies that when r; < g, an allocation is not Pareto optimal, as long as the
planner is permitted to freely reallocate consumption across time and across people. While
this finding suggests that Pareto optimality requires increasing ry to a value at least as
high as ¢, they do not describe the implementation of such a Pareto improvement using
market instruments. By contrast, we focus on a particular market instrument, namely, non-
contingent government bonds that can be rolled over forever without primary surpluses, as a
means to increase the riskfree rate. In order to conduct this analysis, we have to analyze the
general equilibrium effects of an increase in the amount of government bonds on allocations
of consumption, portfolio allocations, and asset returns. We also characterize the level of
government bonds (relative to the capital stock) that achieves the optimal balanced growth
path.

Finally, in addition to the positive and normative questions that share a common answer,
our paper also offers fresh insights about the intertemporal government budget constraint.
It is typical in discussions of the sustainability of fiscal policy (O’Connell and Zeldes (1988),
Wilcox (1989), and Bohn (1995)), the pricing of government bonds (Jiang et al. (2019)), and
the fiscal theory of the price level (Cochrane (2021a)) to assume that the value of government
debt equals the expected present value of the sum of primary government surpluses over the
infinite future, for an appropriate path of discount rates over time. This budget constraint is
often described as a transversality condition or, more accurately, as a No Ponzi Game (NPG)

condition. In our paper, the NPG condition is violated by design.'® The NPG condition is

12Gince in our model the risk free rate is constant along a balanced-growth path, the results in Bloise and
Reichlin (2023) imply that if r; < g then there is scope for a Pareto improvement.

13As shown in Santos and Woodford (1997), in an economy in which the present value of the stream of
present and future aggregate consumption is infinite, there is room for the NPG condition to fail. Neverthe-
less, even though the NPG condition fails in our model when ry < g, thereby enabling permanent rollover
of government debt, the market value of the existing capital stock is finite, because it is the valuation of the
stream of profits to the remaining portion of a depreciating capital stock that approaches zero over time.

10



often invoked to rule out the possibility of rolling over debt forever. While the NPG arises
naturally in some contexts, we examine situations in which permanent rollover of debt is
both feasible and optimal, and the NPG condition need not, and does not, hold. Contrary
to the literature in which the value of government debt equals the sum of present values of
future primary surpluses, in our model, the value of government debt is positive even though

all future primary government surpluses are non-positive.

2 A Graphical Preview of the Main Results

The model developed and analyzed in this paper has the convenient property that the capital
stock per unit of effective labor is constant along a balanced growth path, which implies that

the expected net rate of return on capital, 7, is constant. It is convenient to focus on

the expected adjusted gross rate of return on capital, R = }iz, where g is the constant
growth rate of capital along a balanced growth path. For the graphical preview in this
section (and only in this preview), the adjusted gross rate of return on capital, R, has a
symmetric two-point distribution with mean R. Specifically, Pr {R =Ry =R+ J} = % =
Pr{R:RL ER—O‘}.

Figure 1 shows the possible adjusted gross rates of return on capital along a balanced
growth path, with Ry on the horizontal axis and R; on the vertical axis. In the absence
of shocks to the rate of return on capital, Ry = Ry so the locus of possible pairs (Ry, Ry)
is the 45-degree line labeled “Certainty: Ry = R = Ry,” which passes through the origin.
The area above and to the left of the 45-degree line is grayed out because Ry > Ry by

definition.

At Point F on the certainty line, iiz = Ry = R, = 1, so that » = ¢, which is the Golden

Rule. As shown by Phelps (1961), along balanced growth paths with » = g, the economy
attains the maximum possible consumption per capita. Along the segment of the certainty
line to the southwest of Point F, r < g, which implies, as shown by Phelps (1961) and Dia-
mond (1965), that the economy has overaccumulated capital, in the sense that it is possible
to increase aggregate consumption today without having to reduce aggregate consumption

at any future date. This situation is described as dynamic inefficiency. Alternatively, along
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Certainty: Ry = Rp = Ry

Rr

Z-efficient
Permanent rollover not
feasible

Z-efficient  pgppapnent

rollover
feasible

Z-inefficient

Permanent rollover
feasible

Figure 1: A Graphical Summary of Dynamic Efficiency and Feasibility of Debt Rollover
when ( =0, vy=1, and B =0.

the segment of the certainty line to the northeast of Point F, » > g, which implies that the
economy is dynamically efficient in the following sense: it is impossible to increase aggregate
consumption at any time without decreasing aggregate consumption at some other time. In
a world of certainty, all assets have the same rate of return and, in particular, the riskfree
interest rate on bonds, rf, equals the rate of return on capital, r. When 7 and g are both
constant, government bonds can be rolled over forever, if and only if r; < g so the economy
is dynamically inefficient.

Now consider the situation in which o, the standard deviation of R, is positive so that
(R, Rp) lies in one of the five regions below the 45-degree line. In two of these regions, the

AMSZ criterion that compares r with g gives a decisive assessment of dynamic efficiency. In

12



Region A, labelled “AMSZ-inefficient,” both Ry and Ry, are less than one so r < g for both
possible values of R. Therefore, the AMSZ criterion implies that the economy is dynamically
inefficient. Furthermore, since R;, < Ry < 1, the adjusted gross riskfree interest rate, Ry,
which satisfies R, < Ry < Ry, is always less than one. In this case, ry < g, so that a
dollar of government debt that is rolled over at the riskfree interest rate will shrink over time
toward zero.

In Region B, labelled “AMSZ-efficient,” both Ry and R; are greater than one so the
net rate of return on capital is always greater than the growth rate. Therefore, the AMSZ
criterion implies that the economy is dynamically efficient. Furthermore, since 1 < R <
Ry, the adjusted gross riskfree interest rate, which satisfies R;, < Ry < Ry, is always greater
than one. That is, 7y > g and it is impossible to rollover government bonds, without primary
surpluses, at the riskfree rate forever.

The AMSZ criteria are silent about Regions C, D, and E, where the adjusted gross rate
of return on capital, R, is sometimes greater than one and sometimes smaller than one.
Zilcha (1991) states that a balanced growth path is dynamically inefficient if and only if
E{In R} < 0, though, as discussed in the introduction, this condition is necessary, but not
sufficient, for dynamic inefficiency. In the symmetric two-point distribution in Figure 1,
E{lnR} = % (nRy +InRy) = %ln Ry Ry, so the locus of points for which £ {ln R} = 0 is
simply the rectangular hyperbola R, = R}, which is the downward-sloping curve originating
at Point F and labelled E {ln R} = 0. In Region C, R,Ry < 1 and hence E{InR} < 0
so we label Region C as “Z-inefficient,” to indicate that points in this region satisfy Zilcha’s
necessary condition for dynamic inefficiency. By contrast, in Regions D and E, R, Ry > 1
and hence E{ln R} > 0 so the economy is dynamically efficient according to the Zilcha
criterion; thus, we label Regions D and E as “Z-efficient.” Finally, we note that along the
curve where E {In R} = 0, Zilcha’s necessary condition for dynamic inefficiency, F {In R} <
0, is violated, so dynamic efficiency prevails on this curve.

The government can rollover its bonds forever if 7y < g, equivalently, if Ry < 1. The
higher of the two downward-sloping curves through Point F is the locus of (Ry, Ry) for
which Ry = 1. For points above this curve (Regions B and D), Ry > 1 and permanent

rollover of government bonds is not feasible. For points below the R; = 1 curve (Regions
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A, C, and E), Ry < 1 and permanent rollover of government bonds, without any primary
surpluses, is feasible. Region E is of particular interest because, as we show in this paper,
it contains dynamically efficient economies (since it lies above the E {ln R} = 0 locus) in
which government bonds can be rolled over forever without primary surpluses (since it lies
below the R; =1 locus). Such a situation is impossible in deterministic economies.'*

Now consider the impact of introducing and increasing the amount of riskfree government
bonds. Suppose that Point G represents the balanced growth path in an economy without
government bonds. Since it is located in Region A, this balanced growth path is dynamically
inefficient and government bonds can be rolled over forever. As we will show in the main
part of the paper, the introduction of government bonds reduces capital and drives up R,
the expected rate of return on capital, which increases Ry and R by the same amount that
R increases. That is, the introduction of government bonds is represented by movement to
the northeast along the dashed line through point G with slope equal to one. Consider the
introduction of a quantity of government bonds that moves the balanced growth path to Point
H on the curve labeled E {In R} = 0. Since the economy is Z-efficient along (and above) this
curve, the movement from Point G to Point H eliminates the Z-inefficient overaccumulation
of capital.

Next consider introduction of a greater amount of government bonds that moves the
balanced growth path to Point J. Note that an even larger increase in government bonds
is not feasible without primary surpluses (which we rule out) because such points to the
northeast of Point J have Ry > 1, equivalently, rf > g.

Now we address the normative question: which point along the dashed line between
Points H and J maximizes utility per capita along a balanced growth path? As we prove in

Proposition 6, utility per capita is strictly increasing as we steadily move along the dashed

1Points in Region C satisfy Zilcha's necessary condition for dynamic inefficiency. Bloise and Reichlin
(2023, p. 640), “argue that capital is not overaccumulated whenever p < 1, where p is max; min; 1;_9?]' <1,
ij

where g;; and R;; are, respectively, the growth rate of output and the rate of return on capital, when the
economy moves from state i to state j in a finite state space. Their example 4.1, stated in the notation of this
paper, is Ry, <1 < Ry and g;; = 0, which corresponds to the union of Regions C, D, and E in Figure 1. In
this case, “p = min{l/Ry,1/Rg} < 1, thus ruling out capital overaccumulation.” Hence, although Region
C is “Z-inefficient,” it is characterized by a dynamically efficient accumulation of capital according to the
Bloise-Reichlin criterion. Thus, using the Bloise-Reichlin criterion expands the set of dynamically efficient
economies (relative to the Zilcha criterion) in which permanent rollover of government bonds is feasible.
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line from Point H to Point J. Indeed, when the economy reaches Point J, the impact on
utility per capita of additional government bonds remains non-negative. Since any further
increase in government bonds is infeasible without budget surpluses, Point J represents the
utility-maximizing amount of government bonds. This result implies that to maximize
utility per capita along a balanced growth path, the amount of government bonds must
exceed the amount of bonds needed to eliminate dynamic inefficiency. Even though Z-
inefficiency has been eliminated by moving to point H, there is still scope to increase utility
along a balanced growth path by increasing the amount of government bonds and thereby

decreasing the capital stock to the point at which Ry is driven to equal one (at point J).

3 Deterministic Capital Stock with Risky Returns

We now introduce the formal model. We begin with production, saving, and investment in
this section, and turn to portfolio allocation and asset pricing in Section 4.

Aggregate output at time ¢, Y;, is produced by competitive firms using capital, K;, and
effective labor, G* N, where G = 1 + g > 1 is the gross growth rate of labor-augmenting
productivity and N is the constant number of young consumers in each time period. The
production function is ¥; = F (K, GIN) = (G'N)'"* K2, where 0 < o < 1, and it is

convenient to write the production function in intensive form as

Yt = k?7 (1)

where y;, = C;f—tN and k; = G{f(_;V Capital depreciates at the rate 0 < § — & < 1 per
period, where the durability shock ¢, is an i.i.d., non-degenerate random variable with mean
zero, so 0 > 0 is the expected depreciation rate in each period. The durability shock is
the only source of uncertainty in the model; the production function, Y; = F(K;, G'N), is
deterministic. Online Appendix B shows that our model with a deterministic production
function is isomorphic to a particular model that has shocks in the production function.

The economy is populated by people who live for two periods. In period ¢, N people are

born and each of these people inelastically supplies G* units of effective labor, earns wage
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income W, = (1 —a) (G K2N~* = (1 — ) G’k and receives a lump-sum transfer, 7.
To focus on the impact of government borrowing, we simplify other aspects of fiscal
policy. Specifically, we assume that the government does not purchase goods or services and
that all taxes and transfers are lump-sum. Let B; be the amount of one-period government
bonds outstanding at the beginning of period ¢, which are held by the old generation of
consumers at time t. These bonds were bought at the end of the preceding period, when

the currently-old consumers were young. Government budget accounting implies
Bt+1 = (1 + Tf’t) Bt + Dt, (2)

where D, is the primary government budget deficit during period ¢ and 7, is the riskfree
interest rate on government bonds bought at the end of period ¢ — 1 and maturing in period
t. Define gp; to be the growth rate of government bonds from the end of period ¢ — 1,
when the amount of government bonds equals By, to the end of period ¢, when the amount
of government bonds equals By;1, so By = (1 + gp.) B, and equation (2) can be rewritten

as

(98,4 — 754) Br = Dy. (3)

When the primary deficit, Dy, is positive, the government acquires funds to pay for the
primary deficit by issuing additional bonds in excess of the interest payments on existing
bonds, which is a form of seignorage. The government uses its seignorage to pay for lump-
sum transfer payments to young consumers or to pay for wasteful government purchases, or
some mix of the two. In period ¢, total transfers to the N young consumers are N7, = (D,
where 0 < ¢ <1 is the share of the primary deficit that is used to make transfer payments
to young consumers and (1 — ¢) Dy is spent wastefully.'> Therefore, the lump-sum transfer

received by each young consumer in period ¢, is 7, = ¢ %, where D; is given by equation (3),

157f instead of wasting (1 — ) Dy, the government purchases public goods that enter utility functions
additively separably from consumption when young and when old, such purchases would not affect the
equilibrium values of consumption, saving, or rates of return. However, any utility associated with public
goods would need to be considered when analyzing the impact of government bonds on welfare in Section 6.
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SO

By
Ty = g(gB,t - ngs) W (4)

Young consumers in period ¢ each consume ¢ and save s; = Wy +7; —¢/. The aggregate
saving of the young generation, S; = Ns;, is used to purchase assets, A1 = Ki1 + By,
consisting of capital, K1, and one-period riskfree government bonds, B;.;. Thus, the

aggregate capital stock in period ¢ + 1 is
Kipn = Ay — Bipr = St — By (5)
The rate of return on capital purchased at the end of period ¢t and used in period ¢+ 1 is
repr = okt — 8+ e, (6)

which comprises the marginal product of capital in the production function in equation (1),
a (GHIN)T Kool = akr!, less the depreciation rate, § — &;4;.

At the end of period ¢, young consumers hold a fraction, A\;, 1, of their portfolios in riskfree
government bonds with interest rate, 7441, and the remaining fraction, 1 — A;11, in risky
capital with rate of return r,,1. In the following period, when these consumers are old, they
do not work. The generation of old consumers in period ¢+ 1 uses the gross return on total

assets, (1 4 7q¢+1) Ai41, to pay for its consumption, N¢f, |, where

Tatr1 = Mp1Tpee1 + (1 — X)) T (7)

is the rate of return on total assets.
Each person born in period ¢ has an Epstein-Zin-Weil utility function with intertemporal

elasticity of substitution (I ES) equal to one. We use the specification for a consumer who
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lives for two periods that is used in the second example in Blanchard and Weil (2001)!°
U=(1-p8)Inc! + BIn ([Et {(Cgﬂ)lw}] M) , where v > 0. (8)

To ensure a non-negative rate of time preference, we assume that § < %
To solve the consumption/saving problem, use s, = Wy +7, — ¢/ and ¢}, ; = (1 + 74441) 5

in equation (8) to write the consumption/saving problem as

max (1 — B)In (Wi + 7 — s¢) + Blns; + InE; {(1+ Ta7t+1)1_7} . (9)

St 1—’7

The joint impact of IES = 1 and the assumption that consumers do not earn wage income
or receive transfers in the second period of life is that the optimal value of s; is independent

of r4411. The solution to the maximization problem in equation (9) is

se=0 Wi+ 1), (10)
which implies

i =1=p8)(Witm) (11)
and

1 =L+ 7au1) B(We+ 7). (12)

Aggregate saving in period tis Sy = Ns; = NG (Wi + 1) = B (NW + N7) = B[(1 — a) Yi+
C (gt —rse) By]. Therefore, equation (5) implies that the aggregate capital stock in period

16]f v = 1, we treat the utility function in equation (8) as Uy = (1 — ) Inc{ + SE; {Incy,, }. Brumm et al.
(2021) extend the two-period version of Epstein-Zin-Weil preferences used in Blanchard and Weil (2001),
Blanchard (2019), and in this paper, so that the planner treats the uncertainty of the consumption of future
young consumers in the same way that the consumers themselves treat uncertainty about consumption when
old. In our model, the dynamic path of capital, hence wage income, hence consumption of the young, are
all deterministic and therefore the planner’s preferences used in Brumm et al. (2021) imply the same welfare
criterion as we use.
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t+11is
Ky = Sy — By = B [(1 - CY) Y, +¢ (gB,t - 7"f,t) Bt] — By (13)

Divide both sides of equation (13) by G**' N, define the bond-capital ratio, B; = %, and

rearrange the resulting equation to obtain

ktJrl = Gilﬂ [(1 — CY) k‘? + C (937,5 - T'f’t) Btkt] — Bt+1kt+1- (14)

From this point onward, we focus on balanced growth paths along which K, Y;, and B,

all grow at rate g > 0, so that gp,, ki = Glf—fv, Yy = C};—tN, by = Gf—;, and B; = % are all
constant, with values g, k, y, b, and B, respectively. Also, since the durability shock is i.i.d.,
the riskfree interest rate is constant and equal to 7y. Throughout, we use the notational
convention that variables without time subscripts represent constant values along balanced
growth paths.

Equation (14) implies that along a balanced growth path, the marginal product of capital
is

Oék’a_lZm[(lJrB)G—ﬁC(g—rf)B]- (15)

Remarkably, the ratio of capital to effective labor, k, in equation (15) is constant despite
the shocks to the durability of capital. In the case with ( = 0, the marginal product
of capital along a balanced growth path is invariant to the distribution of the durability
shock. However, if ( # 0, then the marginal product of capital in equation (15) depends
on the riskfree interest rate, which, as we will see below, depends on the distribution of the
durability shock.

Despite the fact that k; is constant along a balanced growth path, the rate of return on
capital is stochastic. Use equation (6), which implies that the rate of return on capital along

a balanced growth path is 7 = ak®™! — § + & (where ¢ is the random durability shock), and
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equation (15) to obtain

T:O——aw[(1+B)G_/BC(g_Tf)B]_5+€ <16)

It will be convenient to use the ratios of the gross rates of return to the gross growth

rate, G. Specifically, along a balanced growth path, R = 1% is the “adjusted gross rate of
return” on capital, Ry = H% is the “adjusted gross riskfree interest rate” and R, = % =
AR;+(1—-XN)R.
Use Gl (g—r;) =G ' (14+9g—(1+47) =1— R; and equation (16) to obtain
14+r — 1
R= e =R+G ‘g (17)
where
F:E(B,Rf)zﬁ[1+8—6((1—Rf)B]+(1—5)G_1, (18)
-«
is the expected “adjusted gross rate of return on capital” along a balanced growth path.
Note that aR(gl;Rf) = T [1 — B¢+ BCRy] > 0 because 0 < < 5 and 0 < ¢ < 1; also
aE(B,Rf) o
or; = 1aB 2 0.

4 Portfolio Allocation and Asset Pricing

Young consumers choose portfolios consisting of riskfree government bonds and risky capital.

Formally, the optimal share of riskfree government bonds in a young consumer’s portfolio is

In By {(Ras1)' 77}, (19)

Ai11 = argmax
Ai+1 1 — y

where, as discussed earlier, R,;11 = AMy1Rpr1 + (1 — A1) Rig1. The first-order condition

associated with this maximization problem along a balanced growth path is

E{(AR;+(1—=XNR) 7 (R;y—R)} =0. (20)
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Viewing Ry and the distribution of R as given, equation (20) determines the optimal
value of \. Alternatively, viewing A and the distribution of R as given, equation (20) can
be viewed as a financial market equilibrium condition that determines Ry as a function of
the equilibrium value of A\ and the distribution of R. In a financial market equilibrium

with a given value of B = K, the share of the aggregate portfolio that is held in riskfree

B B

-5 — 135 and the adjusted gross rate of return on total assets is

government bonds is A =

R, —Rf+1+B(R—Rf).

o E{Rs}
Lemma 1 For any distribution of R > 0, Ry = ———=+".

B {R."}

Since R, = Ry + (R — Ry), equations (17), (18), and (20) imply that for a given

1+B

value of B, the equilibrium value of Ry satisfies

J(B.R)=E { (Rf b [ROB R +G e - Rf])w (R(B.Ry)+G e — Rf)} 0.

(21)

To analyze the general equilibrium relationship between B and Ry, it is useful to know the
signs of the partial derivatives of f (B, Ry) with respect to B and Ry. As shown in Appendix

A, it is straightforward to prove the following lemma.

of (B,Ry
Lemma 2 f<aB /) > 0.
. 8f(B,Rf) . . 8f(B,Rf)
The sign of R, 1S more nuanced. To analyze the sign of —om; o We define Ry, as

the infimum of the adjusted gross risky rate of return on capital, R, over all possible values

of B>0 and e.
Definition 1 R;,; = infg>o . R, which equals )ﬁ +(1—-4§6+infe) G > 0.

Along a balanced growth path, government bonds can be rolled over forever if and only
if Ry <1, so we focus our attention only on situations with Ry < 1. Provided that the

distribution of ¢ is non-degenerate, the absence of arbitrage opportunities implies R < Ry.

of(B,Ry)
R < 0.

The following lemma presents a sufficient condition for
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8f(B,Rf)

then oF;

< 0.

. 1—%(1—&“) 1
Lemma 3 If Ry <1 and vy < A = T2 ¢ 1 fm

Five comments are in order. First, the upper bound A in this lemma is a function
only of the parameters of the model. Second, since 0 < ( <1, 8 < %, and Riy,¢ > 0, the

upper bound, A, is positive. Third, the condition on v in Lemma 3 is a sufficient, but not

of(B,Ry)

oy < 0 for a larger set of values of v than specified in this

af(B,
lemma. Fourth, if the conditions in Lemma 3 hold, so that ngff)

then for any given B, there is at most one value of Ry € (0, 1] for which f (B, Ry) = 0; if

necessary, condition, so

< 0 for all R; € (0,1],

such a value Ry exists, we denote it as Ry (B). In particular, if f(0,1) < 0, then R (0) < 1;
if f(0,1) =0, then Rf(0) = 1; and if f(0,1) > 0, then R, (0) > 1, in which case there is no

value of B > 0for which R, (B) = 1.7 Fifth, in the case in which ¢ = 0, the upper bound

1
1—Ring

on v becomes particularly simple: A =

The following proposition is a direct consequence of Lemmas 2 and 3.

Proposition 1 Whenever Ry < 1 and if v < A, then Ry is an increasing function of B,
which we denote as Ry (B).

With the exception of Proposition 3, all propositions that follow assume that R}(B) >0
whenever Ry < 1. Proposition 1 provides a sufficient condition for this assumption to be
true, namely, 7 < A. Since this condition is sufficient, but not necessary, for the results of
these later propositions, they potentially apply to a larger set of economies than the set of
economies for which v < A.

The fiscal authority can directly control the normalized value of government bonds out-
standing, b, = %, which is constant along a balanced growth path. However, along a
balanced growth path, we express the marginal product of capital in equation (15) and asset
returns in equations (18) and Proposition 1 as functions of the bond-capital ratio, B, and

we will treat B as a choice variable of the fiscal authority.!'®

"Note that f(0,0) = E{R'™} > 0 and that f (0,) is continuous in x. Therefore, since %R’ff) <0
for Ry € (0,1], we can deduce that if f(0,1) < 0, there is a unique R; € (0,1] such that f (0, Rf) = 0.
Alternatively, since %’f” < 0for all Ry e (0,1],if f(0,1) > 0, there is no value of Ry € (0,1] for which
f(B,Ry) = 0 for any positive value of B. That is, if f(0,1) > 0, then the equilibrium value of Ry must
exceed one.

18To find the value of b that corresponds to a chosen value of B, first use f (B, Rf) = 0 from equation (21)
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The following proposition shows that when R';(B) > 0, an increase in B reduces the value

of k along a balanced growth path.

Proposition 2 If R} (B) > 0, then along a balanced growth path, ar < 0.

5 Dynamic Efficiency and the Feasibility of Rollover

The link between dynamic inefficiency and the feasibility of rollover is particularly stark in
deterministic economies because Ry, the adjusted gross riskfree interest rate equals R, the
adjusted gross rate of return on capital. If Ry = R < 1, then the economy is dynamically
inefficient and, since Ry < 1, government bonds can be rolled over forever; alternatively,
it Rf = R > 1, then the economy is dynamically efficient and, since Ry > 1, government
bonds cannot be rolled over forever.'® However, in stochastic economies, R; and R generally
differ since R is stochastic. In such economies, there are parameter configurations for which
E{In R} > 0, indicating that the economy is dynamically efficient and nevertheless, Ry <1
so that at least a small amount of government bonds can be rolled over forever.

As we show in Section 6, the situation with R; = 1 is particularly interesting. The
following proposition presents a class of economies with dynamically efficient balanced growth

paths along which Ry = 1 so that government bonds can be rolled over forever.

Proposition 3 Assume that the distribution of € is non-degenerate and that (1 — & + ) G4 >
0. Also, assume that ( =0,y =1, and § < (1:#)5 <1—(1-06)Gt. Then for some B >0
there is a balanced growth with Ry =1 and E {In R} > 0 so that the economy is dynamically

efficient.

The purpose of Proposition 3 is to provide a completely specified example of a dynamically
efficient economy in which Ry = 1 so that government bonds can be rolled over forever

without primary surpluses. The assumptions that v = 1 and { = 0 are not necessary for

to express R as a function of B, as in Proposition 1. Then use the values of B and Ry along with equation
(15) to determine the value of k associated with the given value of B. Finally, use the values of k and B to
compute the normalized amount of bonds outstanding along a balanced growth path as b = Bk.

Tn the borderline case in which Ry = R = 1, the economy is dynamically efficient and yet government
bonds can be rolled over forever. This departure from the association between dynamic inefficiency and the
feasibility of rolling over government bonds forever in deterministic economies is a knife-edge case.
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this finding. The quantitative application in Section 7 presents examples, for various values
of v different than 1, and values of ( equal to 0 and 1, of dynamically efficient balanced

growth paths in which government bonds can be rolled over forever.

6 Maximum and Optimal Amounts of Sustainable Gov-

ernment Debt

In this section, we analyze two questions about sustainable levels of government debt. First
we address a positive question: what is the maximum sustainable value of B along a balanced
growth path? Then we address a normative question: what is the sustainable value of B
that maximizes utility along a balanced growth path? Remarkably, we find that utility

along a balanced growth path is maximized by the maximum sustainable value of B.

Definition 2 A constant value of B along a balanced growth path is sustainable if govern-
ment debt can be rolled over forever at the riskfree interest rate without any primary budget

surpluses in the future. Define Bpax as the maximum sustainable value of B.

Remark 1 Along a balanced growth path with constant Ry, a constant value of B is sus-

tainable if and only if Ry < 1.

Proposition 4 If R} (B) > 0 whenever Ry (B) <1, then
1. if Ry (0) > 1, then Byax = 0.
2. if Ry (0) < 1, then

a) Bnax 15 the unique root of Ry (B) = 1; equivalently, f(Bmax,1) =0
f
(b) Buax < B= max{(), % — 1} is finite

(c) B is sustainable if and only if 0 < B < Biax-

Corollary 1 If R} (B) > 0 whenever Ry (B) < 1, then Buax is invariant to (.
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The parameter ( appears only in the transfers to young consumers. Along a balanced
growth path the normalized value of transfers is 7 = Z& = ( (9 —ry) g2y = ( (9 — ry) Bk.
Proposition 4 implies that either By,x = 0 or g — 7y = 0. In either case, transfers are zero,
and hence ( is irrelevant when B = Bpax. 2"

Proposition 4 shows that if Byax > 0, then Ry = 1 when B = Bpax. The following

proposition states that if none of the seignorage revenue is wasted (¢ = 1), then a marginal

increase in B reduces expected aggregate consumption.

Proposition 5 Assume that ¢ = 1 and suppose that R (B) > 0 whenever Ry (B) < 1.

dE{c}
dB

Along a balanced growth path with Ry = 1, we have < 0, where E{c} is the expected

value of normalized aggregate consumption per effective unit of labor, (CY + C?)/G".

Proposition 5 implies that in the left neighborhood of B = B,,.,, a marginal increase in
B reduces expected aggregate consumption (in the absence of waste). Nevertheless, as we
show in the remainder of this section, an increase in B increases welfare whenever B < By .x.
As in Blanchard (2019), Falkenheim (2022), Ball and Mankiw (2023) and Kocherlakota

(2023b), our measure of welfare is the utility of consumers along a balanced growth path.

Definition 3 Define uy = U, — tIn G, which is constant along a balanced growth path. The

optimal sustainable value of B along any balanced growth path is argB I[n%x | u(B) .
e 07 mazxr

To evaluate utility along a balanced growth path for a given value of B, define w = % =

(1 — ) k* and use the expression for U; in equation (8) along a balanced growth path to

obtain?!

uB)=Inw+In(1+ ) 4 b InE {R.™"} + constant. (22)
Wy L=~

The following definition will be useful in analyzing the impact of a change in the bond-

capital ratio, B, on u (B).

_ ?°Note that f(B,Ry) in equation (21) depends on ¢ only through R in equation (18). When Ry = 1,
R(B, Ry) is invariant to ¢ and hence f(B, Ry) is invariant to .
ZSubstitute ¢f = (1 —B) (Wi + 1) and ¢, = (1 +744+1) B (Wi +7¢) into equation (8) to obtain U =

In Wy +1In (1 + V%) + % In E; {(1 + ra’t“)l*V} +constant. Subtract In G* from both sides of the resulting

equation and use u = U; — In G* and Inw = In W; — In G* to obtain equation (22).
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Definition 4 Q = [1+ B+ 8¢ (Ry — 1) B|G.

To interpret €2, note that equation (15) can be rewritten?? as ak®™! = w52, which

implies that © is proportional to the marginal product of capital, ak®!.

Proposition 6 Assume that R (B) > 0 whenever Ry < 1. If Ry <1, then

B o do dR;

1— - ke ikl

( Rf)( 6€1+B) —aaB " P9R

, 11 \ — s\ ——— ~—
u(B)= 5 & (+) +) "

ES IS 1 dR;

(+) +1_|_—85CGRJ‘ (I1-Ryp)+(1-¢) BRfGﬁﬁ
(+)

i (+) + i

Therefore, if Ry < 1, then v'(B) > 0 with strict inequality unless Ry =1 and (1 — {) B = 0.

As shown in Lemma 8 in Appendix A, an increase in B has opposing effects on Inw
and % In B, {R}™}. An increase in B decreases the capital stock, thereby reducing Inw
but increasing the marginal product of capital, which increases rates of return and hence
increases & In B, {R}™}. Despite these opposing effects, whenever R; < 1, the impact of
an increase in B on utility is non-negative, as stated in Proposition 6.

Corollary 2 below, which follows from Proposition 6, provides a simple expression for
u’' (B) in the case with ( = 0. This expression allows us to show how the opposing effects of
a decrease in the wage and an increase in the rate of return on capital are related through
the factor price frontier in a way that the utility-increasing effect of the increase in rates of

return dominates the utility-decreasing effect of the reduction in the wage.

Corollary 2 Assume that R (B) > 0 whenever Ry < 1. If ( =0 and Ry <1, then

g1 Q@ dRy
=2 —la- + >
1+ B Ry ( Rf)(l—a)ﬂ BdlS’ 20,

u'(B)

with strict inequality unless Ry =1 and B = 0.

22Use the fact that g —rf = (1+¢9) — (1 +7f) = G — GRy = G (1 — Ry).

26



Corollary 2 is proved formally in Appendix A. Here we provide a heuristic derivation
of u' (B) to illustrate how the welfare-decreasing impact of the decrease in wage income is
dominated by the welfare-increasing impact of the increase in rates of return on capital and
bonds, when ¢ = 0 and Ry < 1. To demonstrate that the main features of «/() do not
depend on Epstein-Zin-Weil utility with IES equal to one, here we consider an additively
separable two-period utility function u = ¥ (¢¥) + E {u®(c°)}, where, for i = y,o0, the
utility function u’(¢') is strictly increasing and strictly concave with limg_ou” (¢') = oo
and limgi_,. u” (¢') = 0. For simplicity, we also assume for the purposes of this heuristic
derivation that G = 1.

The heuristic derivation proceeds in the three steps. First, for an individual consumer
who has optimally chosen to consume ¢ when young and ¢® when old, the envelope theorem
implies that the impact on utility of a change in B equals the change in utility if the consumer
reduces ¢Y by the amount of lost wage income in the first period and increases ¢” by the
additional return on the % units of capital and % units of bonds held in the second period.

That is,

aw

KdR BdR
/ — y! y\ E o/ o o __f 2
0(B) =" (@) g + B @) (355 ) (23)
where, in addition to the envelope theorem, we have used the fact that %% + %ddﬂ is
non-stochastic in our model.
Second, use the factor-price frontier, N Cf—KN + K dd% = 0, which implies % = —%%, to
obtain?3
K dR K dR BdR
/ — _ y/ yy -~ E o/ (o} o E o/ (] __f 24
W(B) = —u () T+ B ()} 3+ B L ()} £ (24)

Interestingly, the first and second terms on the right hand side of equation (24) are both

proportional to %%, though the first term is multiplied by —u¥’ (¢¥) < 0 while the second

term is multiplied by E {u® (¢°)} > 0.

2Since G = 1 and F (K, N) is homogeneous of degree one in K and N, Euler’s theorem implies N Fy +

KFix = F. Differentiating this equation with respect to K yields N dj;év + K % =0. Use Fy =W,

R =Fg+1—0§+ ¢, and hence % = ddLI? to obtain % = —%%, and finally the chain rule to obtain
aw _ dWdK _ K dRJIK _ _KdR
dB T dKdB —  NdKdB ~ ~ NdB®
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Third, to see which of the first two terms in equation (24) is dominant, use the first-order
condition for the optimal intertemporal allocation of consumption, along with the fact that

Ry is not stochastic, to obtain u¥ (¢¥) = RyE {u” (¢°)}, which implies

u%B):Zﬁ%éﬂ[< 1 l)l(dR 1 BdR;

SR 2
R, )NdB R;N dB (25)

In situations in which government bonds can be rolled over forever, that is, when Ry <1,

we have (Rif — 1) %% > 0, because E{u” (c°)} > u¥' (¢¥) implies that the change in wage

income in the first period, % = —%%, reduces u by no more than the equal-sized increase
in income accruing to initial capital in the second period, %%, increases u.

To express equation (25) in a form similar to the expression in Corollary 2, use (1) G = 1,

which implies k = £, and (2) 4 = s (from equations (17) and (18) with ¢ = 0), to
obtain?*
1 a dR
"(B) =u () k— |(1- R B\ 26
W(B) = o () b | (1= R) = + B (26)

If the time separable utility function is logarithmic, specifically w? (¢¥) = (1 — ) In¢¥
and u® (¢®) = flnc?, so that IES = 1, the expression for «/(B) in equation (26) is identical
to the expression in Corollary 2, which was derived for Epstein-Zin-Weil preferences with

IES =12

Proposition 7 If R} (B) > 0 whenever Ry (B) < 1, then arg - max w(B) equals Buax,

) maz]

that s, utility per effective unit of labor along a balanced growth path is mazximized by the

maximum sustainable value of B.

24 Equation (26) states that the sign of v’ (B) depends on Ry, but not on R. In contrast, Blanchard (2019)
shows that the sign of the impact of an increase in debt on welfare depends on both the riskfree rate and
the risky rate of return on capital. This difference arises because in our model, the effect of a change in
the capital stock on the marginal product of capital (the second derivative of the production function with
respect to K) is non-stochastic. In addition to making the sign of «’ (B) depend only on the sign of 1 — Ry,
this feature allows us to derive exact expressions for the marginal impact on welfare of an increase in B,
without relying on approximations.

2To prove this statement, it suffices to prove that HLB =¥ (V) k = 52k, Since ( = 0 and G = 1,

¥ = (1 - pB)w and hence lc_—f = 1. also BNw = K + B = (1+ B) K, which implies fw = (1+ B) k and
hence k = ﬁ_—wg. Therefore, 1;/3/6 = i 1/?:1)3 = H_LW
to prove the statement.

which, as stated at the beginning of this footnote, suffices
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Since the proof of Proposition 7 is both simple and instructive, we present it here. If
ju(B)
equals Bpax = 0. Alternatively, if Ry (0) < 1, then By, > 0 and Statement 2c of Proposi-

max

Ry (0) > 1, then By = 0 and the closed interval [0, By is a singleton so arg maxo 5

tion 4 implies all B in [0, Byax] are sustainable. Proposition 6 implies that u/(8) > 0 for all
B € [0, Biax), S0 arg maxge|o,s,,.,] 4(B) is a corner solution with B = Byax.

At the corner solution, where B = By,ax, we have Ry = 1 and therefore when ¢ = 1,
Proposition 5 implies % < 0. This observation highlights an important difference between
deterministic economies and stochastic economies. In deterministic economies, government
bonds can be rolled over forever without primary surpluses only if the economy is dynamically
inefficient, so the reduction of capital induced by an increase in government bonds actually
increases aggregate consumption. However, in stochastic economies, government bonds can
be rolled over forever without primary surpluses in some dynamically efficient economies. In
those cases, the decrease in capital reduces expected aggregate consumption, which would
decrease welfare. But the additional risk sharing enabled by an increase in government
bonds increases welfare. Remarkably, the increase in welfare resulting from increased risk
sharing offsets the decrease in welfare from reduced expected aggregate consumption when
B = Bpax- Therefore, the marginal impact on welfare of an increase in government bonds is
zero if ( = 1; however, as discussed immediately below, if 0 < { < 1, so that the government
wastes some of its seignorage revenue, the marginal impact on welfare is positive.

Corollary 1, which states that By, is invariant to (, implies that the main result of the
paper, Proposition 7, does not depend on whether the government uses its seignorage to
make transfers to young consumers or simply wastes these resources. However, the value

of ¢ determines whether ' (Byayx) is positive or zero. Specifically, Proposition 6 implies

that if Bpax > 0, then o (Bpax) = %(1 — () BmaXGﬁ%, which is positive if 0 < ¢ < 1
and is zero if ¢ = 1. Recall that in period ¢ the amount of seignorage is (¢ —ry) By
and that a fraction 1 — ¢ of this seignorage is wasted by the government. Therefore?®,
k(B) = (1-¢)[1 — Ry (B)] BGE is the amount of seignorage wasted per unit of effective

labor along a balanced growth path. Differentiating x (B) with respect to B and evalu-

26Dividing the wasted resources (1 —¢) (g —rf) By = (1 — () G (1 — Ry) B; by the effective units of labor
G!N and using B = %, the amount wasted resources per unit of effective labor along a balanced growth

path is x (B) = (1 — ¢) [1 — Ry (B)] BGk.
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ating this derivative at B = Byax (where Ry = 1) yields &' (B) = — (1 —() Bmakadd%v

50 U (Bax) = % [—x"(B)]. Therefore, for B in the neighborhood just below By, the
(approximate) marginal utility associated with an increase in B, u' (Bnax), is proportional
to the reduction in waste associated with an increase in Buax, & [~ (B)]. Provided that
0 < ¢ < 1, both the marginal utility, « (Buax), and the reduction in waste, —x' (B), are
positive. However, if ( = 1, there is no waste of resources and both «' (Bax) and &' (Bpax)

equal zero. Regardless of the presence of waste (0 < ¢ < 1) or the absence of waste ({ = 1),

the optimal sustainable value of B is B.x.

7 Quantitative Application

In this section, we provide a quantitative illustration of (a) Byax, which is the maximum
sustainable value of B as well as the welfare-maximizing value of B, and (b) the value of B ,
denoted B*, for which E {In R} = 0. Any value of B greater than or equal to B* will lead to
a dynamically efficient balanced growth path.

We set the capital share o equal to 0.33. We interpret a “period” as 30 years and set
£ = 0.353, so that the annualized discount factor, (%)1/30, is 0.98 per year, which implies
an annual discount rate of 2% per year. We assume that labor-augmenting productivity
grows at the rate of 1% per year, so G = 1.35. For risk aversion we consider v = 1, 3,8,
and 10. Finally, we model the durability shock, ¢, as a lognormal variable minus a constant,
and choose the parameters so that when the ratio of government bonds to the capital stock,
B, equals 0.5, E{(1+4r)} = E{GR} matches a target value of (14 m)*, where m = 0.03
is an annualized rate of return on unlevered equity and sd {(1 +r)} = sd {GR} matches a
target value of 3\/%, where s is an annualized standard deviation of the rate of return on
unlevered equity. Further details of the calibration, including a discussion of the implied
mean and standard deviation of the rate of return on levered equity, are contained in Online
Appendix C.

Tables 1 and 2 report for ( = 0 and ( = 1, respectively, B,,.. and B*. In both tables,
some of the cells for low values of s are blank. In the section of each table that reports B4z,

a blank indicates that Ry > 1 for all nonnegative values of B; thus, there is no positive value

30



¢=0

s =0.02
s =0.04
s =0.06
s =0.08
s =0.10
s =0.12
s=20.14
s =0.16
s =0.18
s =0.20
s =0.22

Binax B*
y=1 ~v=3 =8 =10 y=1 ~v=3 =8 ~v=10
0.042 0.062
0.026 0.122 0.150
0.075 0.193 0.224
0.017 0.120 0.252 0.285
0.043 0.162 0.301 0.334
0.068 0.199 0.342 0.374 0.013 0.013 0.013 0.013
0.091 0.232 0.376 0.408 0.031 0.031 0.031 0.031
0.113 0.261 0.405 0.435 0.049 0.049 0.049 0.049
0.133 0.286 0.429 0.459 0.066 0.066 0.066 0.066
0.152 0.309 0.450 0.478 0.083 0.083 0.083 0.083

Table 1: Bpax is the maximum sustainable, as well as optimal, value of B. B* is the value
of B for which E{ln R} = 0. ~ denotes risk aversion, and s is the annualized standard
deviation of the return on capital in an economy with B = 0.5. ( is set to zero.

(=1
Binax B*

v=1 y=3 =8 =10 v=1 y=3 =8 =10
s =10.02
s =0.04 0.042 0.062
s = 0.06 0.026 0.122 0.150
s = 0.08 0.075 0.193 0.224
s =0.10 0.017 0.120 0.252 0.285
s =0.12 0.043 0.162 0.301 0.334
s=10.14 0.068 0.199 0.342 0.374 0.013 0.015 0.018 0.018
s =0.16 0.091 0.232 0.376 0.408 0.032 0.037 0.043 0.044
s =0.18 0.113 0.261 0.405 0.435 0.051 0.059 0.068 0.069
s =0.20 0.133 0.286 0.429 0.459 0.069 0.080 0.091 0.092
s =0.22 0.152 0.309 0.450 0.478 0.087 0.100 0.112 0.114

Table 2: Bay is the maximum sustainable, as well as optimal, value of B. B* is the value
of B for which E{ln R} = 0. ~ denotes risk aversion, and s is the annualized standard
deviation of the return on capital in an economy with B = 0.5. ( is set to one.
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of B that can be rolled over forever. In the section of each table that reports B*, a blank
indicates that E {In R} > 0 so the economy is dynamically efficient for all non-negative values
of B. In all cases in which B* > 0, Byax > B*. For values of B in the interval [B*, Byax], the
economy is dynamically efficient and Ry < 1 so that government bonds can be rolled over
forever. Both tables show that as risk aversion increases, there is a significant gap between
B.: and B*, so there is a non-trivial set of parameter values for which government bonds
can be rolled over forever in dynamically efficient economies. For instance, in Table 1 when
v =10 and s = 0.22, B* = 0.083, while B,,,, = 0.478. Therefore, for any value of B between
0.083 and 0.478, the balanced growth path is dynamically efficient (because B exceeds 0.083)
and Ry < 1 (because B is less than 0.478) so government bonds can be rolled over forever.

To interpret the magnitude of the values of B in Tables 1 and 2, recall that empirically
the level of government debt is often expressed as a multiple of GDP, while the values of B
are expressed as multiples of the capital stock. For an economy in which the capital-output
ratio is 2, the debt-GDP ratio is twice as high as the debt-capital ratio, B. In such an
economy, the values of B in Tables 1 and 2, which range from 0 to 0.478, correspond to
debt-GDP ratios ranging from 0 to 0.956.

Comparison of Tables 1 and 2 shows the impact of (. Overall, the tables show that
the impact of ( on B* is quantitatively small and, as stated in Corollary 1, { is completely
irrelevant for the determination of B,,,,, which is the welfare-maximizing sustainable value
of B.

Now we look at the tables in more detail. First consider B,,,,, which is both the
maximum and the optimal sustainable value of B. Since R; = 1 when B = B4, the transfer
to young consumers, ¢ (g —ry) Bk = ( (1 — Ry) GBk, equals zero and hence the expected
adjusted gross rate of return on capital in equation (18) becomes R = ﬁ (1+B) +
(1 —6) G, which is independent of risk aversion, v, and the volatility parameter, s. An
increase in 7y or an increase in s increases the risk premium on capital relative to the riskfree
rate. With an unchanged R, the increased risk premium implies that Ry falls. To maintain
Ry = 1, the value of B must increase to reduce capital, thereby increasing R and Ry.
Therefore, moving rightward in each row in the B,,,, section of each table, v increases and

hence the maximum sustainable B increases; similarly, moving down each column in this
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section of these tables, s increases and the maximum sustainable B increases. As implied
by Corollary 1, the sections of Tables 1 and 2 that present B,,,, are identical to each other.

Now, consider B*, which is characterized by E {ln(ﬁ + 5)} = 0. In Table 1, { =0, so
that the transfer to young consumers, ¢ (g —ry¢) Bk, is zero. Hence, as discussed above,
equation (18) implies that R = o 1+ B)+(1-9) G™', which is independent of vy and
s. Therefore, F {1n(§—|— 5)} is independent of v, so B* is independent of ~ for given s.
By contrast, although an increase in s also has no effect on R, it reduces E {ln(ﬁ+ 5)}
because In (+) is a strictly concave function. In order to restore E {In(R + )} = 0 when s is
increased, R must increase, so B must increase to reduce capital and increase the marginal
product of capital. This effect is illustrated in Table 1 by the increasing values of B* as one
goes down each column in the section of the table devoted to B*.

In Table 2, where ¢ = 1, equation (18) implies that R = o L+ B+ B8(Ry—1)B] +
(1 —-0)G~'. Thus, with ¢ = 1, R is an increasing function of Ry, which is a decreasing
function of v and s, since both a higher coefficient of relative risk aversion, 7, and higher
volatility, s, lead consumers to seek safety in riskfree government bonds, thereby driving R
downward. Thus, for a given value of s, an increase in 7 reduces R; and hence reduces
R, so to maintain F {ln(}_%—k 5)} = 0, B must increase to increase R. Alternatively, for
given values of 7, an increase in s reduces F {ln(ﬁ%— 5)} through two channels. First,
the concavity of In(-) implies that for given R, an increase in s reduces E {In(R+¢)}.
Second, as discussed above, an increase in s reduces 2y and hence reduces R. To maintain
E {ln(}_% + 6)} = 0, B must increase to increase R. Finally, note that the nonzero entries for
B* in Table 2 are higher than in Table 1 because the positive transfers to consumers when
¢ = 1 in Table 2 increase saving, thereby increasing the capacity of saving to absorb bonds

without driving the capital stock low enough to increase £ {ln(ﬁ + 6)} above zero.

8 Concluding Remarks

In this paper, we develop an overlapping-generations model to analyze sustainable levels of
the ratio of government bonds to the capital stock that can be maintained forever without

any future primary government surpluses. To make the analysis easily tractable, the model
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confines exogenous shocks to the depreciation rate of capital, which is additively separable
from the production function so the labor income of young consumers is non-stochastic
(though Online Appendix B shows that this model is isomorphic to a model with shocks
to the production function). In addition, since (1) consumers have Epstein-Zin-Weil utility
functions over their two-period lifetimes with the intertemporal elasticity of substitution set
equal to one, and (2) consumers earn labor income (and possibly receive transfers) only
in the first period of life, aggregate saving of young consumers is a constant fraction of
their income in the first period of life, and hence the evolution of aggregate asset holdings,
comprising capital and government bonds, is non-stochastic. Nevertheless, the rate of return
on capital is stochastic because it includes the stochastic depreciation rate. Along a balanced
growth path, aggregate wage income, the aggregate capital stock, and the aggregate amount
of government bonds outstanding all grow at rate g, which is the constant rate of labor-
augmenting productivity growth. Therefore, the balanced growth path features constant
values of aggregate capital per unit of effective labor, the bond-capital ratio, the riskfree
interest rate, and the expected rate of return on capital. Provided that the net riskfree
interest rate, r¢, is less than or equal to g along a balanced growth path, the bond-capital
ratio is sustainable.

Our model is designed so that both r; and g are constant along a balanced growth path.
Because we are interested in sustainable bond-capital ratios along a balanced growth path,
we confine attention to balanced growth paths that feature r; < g. Along such paths, the
government can roll over its bonds forever without primary budget surpluses and without
the bond-capital ratio increasing. There is no chance that young consumers will be unwilling
or unable to purchase the bonds that the government issues to rollover its debt, so there is no
chance of default on government bonds. Therefore, the market interest rate on government
bonds equals the riskfree interest rate. In addition, when r; < g, the value of government
bonds at a given point in time is not the expected present value of future primary surpluses;
along balanced growth paths with r; < ¢, the value of outstanding government bonds is
positive and yet all future primary deficits, which equal (¢—7;)B; at time ¢, are non-negative
and hence all future primary surpluses are non-positive.

This paper has two major findings—one positive and one normative. We focus on levels
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of the bond-capital ratio that can be sustained forever without any future primary surpluses.
The positive finding is that the maximum sustainable bond-capital ratio along a balanced
growth path is attained when r; = g. Given that both r; and g are constant along balanced
growth paths, this finding is not surprising. However, the normative finding is surprising
(to us, at least). The sustainable bond-capital ratio that maximizes utility along a balanced
growth path is the maximum sustainable value of this ratio, that is, the ratio that attains
ry = g. DBriefly, an increase in the amount of bonds outstanding reduces capital, which
reduces aggregate wage income and increases the marginal product of capital and hence
increases the rate of return on capital. The reduction in wage income reduces welfare and
the increase in the rate of return on capital increases welfare. It follows from the factor-price
frontier that the reduction in wage income equals the increase in income accruing to initial
capital. Whenever r; < g, the welfare-increasing impact of the increased rate of return on
capital, which occurs in the second period of life, dominates the welfare-decreasing impact
of the reduction in wage income, which occurs during the first period of life. Thus, starting
from a balanced growth path with r¢ < g, an increase in the bond-capital ratio leads to a
different balanced growth path with a higher level of welfare. Focusing on long-run welfare
along balanced growth paths, it is optimal to increase the bond-capital ratio, and thereby
increase ¢, until r; = g, at which point the bond-capital ratio equals its maximal sustainable
level.

We designed the model to have both constant r; and g along balanced growth paths so
that the assessment of the sustainability of a given bond-capital ratio would be as straightfor-
ward as possible. But what if, for instance, the growth rate of labor-augmenting productivity,
g, were random. In particular, what if Ry = lfrTrgf were random, sometimes greater than
one and sometimes less than one? Then there might be some realization paths with Ry
persistently greater than one, so that the stock of government bonds eventually exceeds the
amount that young households would or could purchase. In such a framework, the notion of
sustainability is more nuanced (which is why we designed the model to include constant ¢
and g). We leave it as an open question how to characterize sustainability in that framework,
and, in particular, how to characterize an appropriate notion of maximal borrowing. If there

is some suitable notion of maximal borrowing, does the normative result, that the optimal
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government borrowing policy is the same as the maximal borrowing policy, generalize beyond
the model in this paper? This generalization of the primary normative result would likely
hold if, as in the current paper, whenever 7y < g, the welfare-increasing effect of an increased
rate of return to capital exceeds the welfare-reducing effect of a reduced wage income for

any sustainable borrowing policy.
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A Proofs
(1-X)(R-Ry) }

Proof of Lemma 1. The first-order condition for A in equation (20) implies 0 = E; { (R
e

AR;+(1-\)R—R R.—R _ _ e
= Et{W} = Et{ o f} = E,{R!} — RyE,{R;"}, which implies R; =

Et{Rzlz_’y} |

B R}

To prove Lemmas 2 and 3, which are used to prove Proposition 1, we present the following

two new Lemmas and a new corollary.

E{R,"™

Lemma 4 If Ry <1, then B (Rf% 1) < 1— Rins.

E{R,"} E{R,""'}

~1
{ { E{RR 77 11} H SO ATl=F {E{RR 77 11} } is a weighted average of R, and hence ex-

—y—1 — —1
Proof of Lemma 4. Assume that Ry < 1. Define A = E{Ra—,} = [E{R—a}} =

. LT S
ceeds inf, R, = 1+8Rf + 1+BR1nf. Therefore, A < -y and Ry A < -y
which is increasing in Ry. Since Ry < 1, we have Ry A < 1+B+11+13Rmf = ijfnf. Therefore,
p{rR."""} 148 1-Ry, B
. <Rf E{R,"} > B B(RfA -=B <B+Rinf N 1> =B (BJFRinff) = BB (1 — Ring) <
L — Ryt n

Lemma 5 Suppose x > 0 is a non-degenerate random variable with finite moments. Define
= [E{z "} — E{z '} E{z"""}. Then Z < 0.

E{x_'y} E{ml_’V}
E{z——1} - E{z—7}

Proof of Lemma 5. Rewrite Z as Z = E{z 7} E{z77"'} ( ) Observe

that Z has the same sign as E{m_jifc} — E{z_jx}, which we write as E{g (z)x}—FE{h(z)x},
E{z—7—1} E{z—7}
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where g (x) = Ef;;_ll} and h(z) = =2=~. Observe that E{g(z)} = 1 = E{h(2)}

E{z 7}
and % = Jf{iﬁ}i = Al so g(x) = ALh(x) where A = % > 0, which implies
g()zh()asa:;A. Therefore, E{g (z)z} — E{h(z)z} = [;" [g h(x)]zdF (z) =
I3 19 (@) = h(@)] (x = A)dF (2) = [ [g (x) = h(2)] (x = A)dF (2) +
[ lg (@) = h(2)] (x — A)dF (z) < 0. ]

We present, without proof, the following corollary to Lemma 1, which follows immediately

from Lemma 5.

Corollary 3 E{R;7} — R;E{R;7"'} = [(E {R,7})’ — E{RL"}{R; ”‘1}] <0.

E{I;;"’}

Proof of Lemma 2. Partially differentiate

F(B.R)=E { <Rf e [RB.R) + G Rf}y (R(B.Ry)+G'e— Rf)}

in equation (21) with respect to B, and use R = R(B,Rf) + G~ '¢ and R, = Ry +

15 R (B, Rf) + G~'e — Ry] to obtain
af (Bva> -1 1 2 1 1 8?(6, Rf)
- E{R7(R—R)?) —y—pdp (2220 g R
OB 7(1—{—8)2 { a ( f)} 714‘8 a OB ( f)
_OR (B, Ry)
EXR T———= 5.
" { 0B }
Now use the fact that 8§(§éRf) = (1%)5 [1> — B¢ + BCRy] is non-stochastic to obtain 8f(§’BRf)
OR(B,R L
_7(14-6 E{R " (R—R ) } Tf [_’}/E{R K 1+B(R Rf }+E{R 7}} and use
Ry~ Ry = 15 (R — Ry) to obtain Z0) s EARSTH(R - R’}
+8R(§—Rf>[ VE{R, (R~ Rp)) + B{R,)] =
OR(B,R
e RS (R =Ry} + + PR |y (B (R} ~ RE(R, ]+ E{R;Y] > 0
where the inequality follows from on (sl;Rf) = T [1 — B¢ + BCRy] > 0 and Corollary 3. m

Proof of Lemma 3. Partially differentiate

f(B,Ry) = E{(Rf + 18 [R(B,Ry) + G e — Rf})ﬂ (R(B,Ry) + G e — Rf)} in equa-
tion (21) with respect to Ry, and use R = R (B, Rf)+G e and R, = Ri+115 [R (B, Ry) + G™'e — Ry]
to obtain %}é?) =—FE {Ra71 (1 + IJ%B {8Rgl;ff) — 1}) (R — Rf)}+E {R (% — 1) }

Now use E’Egi’ff) — (B3 to obtain 8’”2‘2?” = E{R; (1+ 125 [{%¢(B—1]) (R~ Ry) }+

1+B
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E{R;} (125¢B—1) = =% (14 12%¢) E{R," " (R — Ry)}+E{R,"} (1%¢B —1). Now
use the fact R, = R;+ 135 (R — Ry) to replace -5 (R — Ry) with R,— Ry to obtain E}BT;%,:)
= B (14 2 E{R," (R, — Rp)} + E{R,"} (+2(B — 1)

= —B (14 2¢) [E{R,"} — RyE{R, 7_1}] + E{R;7} (2(B—1). To prove that

8f§9£;Rf) < 0, it suffices to prove that —yB (1 + = ) [E {R;V} _ RfE {R—fy—l}]

+ E{R;"} (ECB — 1) < 0, or, equivalently, v (1 + ﬁ() {Rig:v} } 1} <1-

12=CB. Corollary 3 implies R PR} —1 > 0, which, together with Lemma 4, implies 0 <
f E{R ’Y}

E{R;"! E{R;"!
B (Rf é{R 7}} — 1) < 1—Ryy¢ since B > 0. Therefore, ~ (1 + 1% )B (Rf E{R 7}} — 1)

y (1 + EC) (1 — Ring), so it suffices to the prove ~ (1 + &C) (1= Ring) <1 —172(B, or,

equivalently,

1-2(B 1
< . Al
! 1+ _C - mf ( )
The absence of arbitrage opportunities implies Rf Y [1 +B—6¢(1—Ry)Bl+(1 — 6+ emin) G
= Rt + 7555 1 = BC(1 = Rp)| B = Rine + %55 (1 ﬁ() , so we know that if Ry < 1,
then Rine+ 7555 (1—p5¢ ) B < 1, which 1mp11es B s (1=pO)B<1- Rmf, or, equivalently,
since ¢ < 1, 12=(B < 1764 (1 — Ring)- Therefore l-%(B>1- BC (1 — Rint), so the
condition in equation (A.1) will be satisfied if
1— 21— Rw) 1
¢ in
< . A2
! T+ 1250 1= R 2
m
Proof of Proposition 2. Use the definition of R (B, R;) in equation (18) and the statements
immediately following equation (18) that @ > 0 and 8R<B Rf) = (ko‘a)ﬁﬁCB >0
to obtain dR(Z;.Rf) = 8R(§[’3Rf> + BR(B Rf)R’ (B), which is positive if R, (B) > 0. Since

R(B,Ry) = ﬁ and r = ak* ! — 5 + e, we have that k is decreasing in R and hence is
decreasing in B. n
To prepare for the proof of Proposition 3, we introduce and prove the following two

lemmas.

Lemma 6 Assume that the distribution of € is non-degenerate and that (1 — § + &) Gt >
0. If Ry =1, then
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~

1. B = max {0, % (1- Rinf)} < max {O, _(1—;)5 - 1}
2. Rins + (1 B max { Ry, 1} > 1

3. B<B.

Proof of Lemma 6. Recall that Ry, = infg>o. R = m +(1—0+em) G s0

(6%
Rinf >

= Tyt (A.3)

Since Ry = 1, equations (17) and (18) imply that R = B 1+B)+(1-6+¢)G ! >
= (1 +B)+ (1 =0+ &) G = Ring + (1_0%3, Wlth strlct inequality if € > &j,¢, which
we summarize as

R > Ry + B, with strict inequality of € > ejp¢. (A.4)

(1-a)p

Since Ry = 1 and the distribution of ¢ is non-degenerate, the absence of arbitrage opportu-

nities implies that

R < 1. (A5)
Statement  1: Equation (A.3) implies B = max {O, M (1-— Rinf)}
< max {O (- 0‘) (1 - a)5>} = max {O,% — 1}. Statement 2: R + 1 B =
Rt + o3 max{O (1 ;) (1-— Rinf)} = Ryt + max{0,1 — Ryys} = max{Rinf, 1} > 1.
Statement 3: Assume, contrary to what is to be proved, that B > B. Then equation
(A.4) implies R > Ry —|— B so Statement 2 implies R > 1, which contradicts R, < 1
in equation (A.5). |

Lemma 7 Assume that the distribution of € is non-degenerate and that (1 — § + &jut) G 1>

0. If Ry =1 andﬁZ%then

1. B < R for all e, with strict inequality for € > ¢

2. Letx=InR. Then f(z) = B:;f(z) s convex in x, with strict convexity when € > €.

Proof of Lemma 7. Statement 1: Equation (A.4) in the proof of Lemma 6 implies B — R
< B- (Rinf + Ojﬁb’) = (1 (1—a> B — Ri.s, where the inequality is strict if € > gy, It
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suffices to prove that (1—%) B — Rins < 0. Equations (A.3) and (A.5) in the proof of

1

Lemma 6 imply that ) < 1, so Statement 3 of Lemma 6 implies ( —ﬁ) B — Ry <
<1 = a) 5) B— R = E <m8 + Rmf> < B-1 < 0, where the final inequality follows
from Statement 2 of Lemma 6. It suffices to prove that B< 1, which follows from Statement

1 of Lemma 6 and the assumption i e > %, so that max {0, % — 1} <1

=B
Statement 2: Differentiate f (z) = B+1e+§(x) with respect to = twice to obtain f’(z) =
2
— BremE €XP (v) and " (z) = 250 [exp (2)]"— iz exp (v) = (2exp (z) — [B + exp (2)]) x
148

Brexp@® P (x). Therefore, since x = In R, f” (z) has the same sign as exp (z) — B =
R — B > 0, where the inequality follows from Statement 1 and is strict for € > €;,¢. There-
fore, " (x) > 0, with strict inequality if € > €j,¢. [
Proof of Proposition 3. First, we prove that there is some value of B between 0 and B*
for which Ry = 1.

If B =0, equation (18) when ¢ = 0 implies that R = %)ﬁ + (1 -96)G™t < 1, where
the inequality follows from the assumption that Tap ) <1—-(1-6)Gt. Since consumers
are risk averse and capital has a non-degenerate risk, Ry < R < 1 when B = 0. In
general, for any non-negative value of B, R = R+ G ' = m 1+B)+(1-0)G !+
G le > ﬁ (1+ B) for all realizations of . Therefore, if B = B*, where B* is such
that 753 (14 B*) =1, then R > 1 for all realizations of R and hence no-arbitrage implies
Ry > 1. Therefore, there is some value of B between 0 and B* for which Ry = 1.

Now suppose that we have the value of B for which Ry = 1. Since Ry =1 and v = 1,
Lemma 1 directly implies that F {R;'} = 1, which, using R, = 1+B (BR; + R) along with
Ry =1, implies £ {%} = 1. Using f(z) = 3 :;I[f(x) defined in Statement 2 of Lemma
7 where x = In R, we have E{f ()} = 1. Since the distribution of ¢ is non-degenerate
and f (z) is convex, with strict convexity for € > ej¢, we have 1 = E{f ()} > f(E (z)) =
e +e}};(g{x}) 7 +ex;&%ﬂ 7. Lherefore, exp (£ {In R}) > 1 and hence £ {In R} > 0. m
Proof of Proposition 4. Let B; be an arbitrary non-negative value of B for which
R¢(B) > 1 and let By be the smallest value of B greater than B; for which R, (B) = 1.
Therefore, R (Bz) < 0 and Ry (Bz) < 1, which contradicts the assumption that R’ (B) >0
whenever Ry (B) < 1. Therefore, Ry (B) > 1 for all B > B;. We will use this result to prove
the statements in this proposition. Statement 1: First, if R;(0) > 1, then Ry (B) > 1 for

all positive B, so all positive values of B are unsustainable. If R;(0) =1, then Ry () > 1

in a positive neighborhood of ¢ = 0, and therefore, Ry > 1 for all positive B, so all positive
values of B are unsustainable. Therefore, if Ry (0) > 1, then Bp.x = 0. Statement 2a:
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Assume that Ry (0) < 1. Let By > 0 be the smallest positive B for which Ry (B) = 1, so By
is sustainable. Using the result above in this proof for all values of B > By, R;(B) > 1, and
hence these values of B are unsustainable. Therefore, By is the unique root of Ry (B) = 1.
Statement 2b: Statements 1 and 3 of Lemma 6 imply B, < B < max{O, % — 1}.
Statement 2c: Since there is a unique value of B for which Ry (B) = 1, we have Ry (B) < 1
for 0 < B < Bpax and all of these values of B are sustainable; Ry (B) > 1 for all B > Byax
and these values are unsustainable, so B is sustainable if and only if 0 < B < Bjax. [
Proof of Proposition 5. Along a balanced growth path, expected gross investment is
(9+ E{&}) K;. With a linearly homogeneous production function, Y; = F (K;,G'N) =

G'N Fnx+K, Fk, so expected aggregate consumption is F {C,} = G*NFy+K;Fx—(g+ E{0,}) K,

(there are no purchases of goods by the government). Therefore, the impact of a marginal
change in K; on E{C;} is M = GINEY + K25 4 Fre — (9g+ E{6}). The fac-
tor price frontier (see footnote 23) implies G*N ar =+ thF & = 0. Therefore, % =
Fx —E{6} —g=FE{n}—g>ryp—g=0, where re = Fx — 6; is the rate of return on
capital, risk aversion implies E {r;} > r;, and along the optimal balanced growth path with

positive government debt, B = By, and 1y = g. [ ]
Lemma 8 Under the assumptions of Proposition 6,

1. Q>0and%:G[1+5C( Ry —1) + BB

dlnw a 1dQ
2. Al “1—aQdB <0
3. d‘é( lnE{R1 7}) = Ay + Az, where Ay EﬂH_—B L de >0 and A3 = H_—BR—f—G 1d9 >O

4o st (14 20) = Ay + As, where Ag = 568 Ly (1= Ry) and A5 = ~2EBYE <0

Proof of Lemma 8. Proof of Statement 1: Since Ry > 0, B> 0, 8 <1 and ¢ <1, we
have Q = 1+ B+ B¢ (Ry — 1) B]G > [1+ (1 — B¢) B]|G > G > 0. Differentiating Q with
respect to B yields 22 = G [1 +BC(Ry — 1) + ﬁchRf} (1—BC)G + BCBGEL - o,

Proof of Statement 2: (1) Since w = (1 — «) k%, we have ‘Cil—l]‘; = a¥% and hence ifl_lg —
az; (2) equation (15) implies k%1 = e a)ﬁ (1+B)G = B¢(g—rs)B] = 1_100597 w0 k —
1
_1_ )t dk _ 1 7.1dQ dlnw _ 1dwdk _ o 1d0
<(1—a)6Q> and hence g% = —7—kg555. Therefore, “75* = -2 9% = — 22O

Proof of Statement 3: Use R, = AR; + (1 — A) R to obtain % <1%/ lnE{R}I_“’}> =
&m (1—-vFE {R;7 (A% +(1=2X) Z—g) }, where we have used the envelope theo-

rem to ignore E {R;V (%Rf — %R)} = 0. Use the following: (1) % is non-random;
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(2) equations (17) and (18) imply 4 = (=T (1 + B¢ (Ry —1) + 5@3%) da
4) A

which is non-random; (3) Lemma 1, which implies — {{R1 % = RL and ( =3 +B to obtain
1— B_dR 1 dR) _ p_B 1 dR 1 1 _a ~—1d0
iB ( InE{R, ”}) (H—B B m%) = BiiBn; a5 T ER 10
Proof of Statement 4: Along a balanced growth path, = = BB]]\Z’; = BC(Z;]Z)B'E =
GBC(1-Rp)B:  GBC(1-Rys)Bt BN (wi4r) _ BC(1-Ry)Biya B -
ﬁN’wt - BN(’wt-i-Tt) 6Ntwt © o= Kt+1+Bt+1 <1 + > - ﬁC (1 - Rf) _B (1 _'_ w—i) :
Define X; =1+ ;—ft, so along a balanced growth path we have X —1 = 3¢ (1 — Ry) 1fBX,

which implies X = [1 — 8¢ (1 — Ry) H%]‘l = (1%3)_1 1+B—-pC(1—R)B ' =1+B) (G Q)"
=G (1+B)Q'. Therefore, In X =InG+In (1 + B)—InQ. Now differentiate In X with re-
spect to B to obtain 44X = g4 — 4 (150 — 8) = %5 ((Ry — 1) %5 — (Ry — 1) - B )
dR
= %2 (00— Ry) s~ B -
Proof of Proposition 6. Differentiate the expression for u (B) in equation (22) to obtain
u'(B) = &Inhw+ Ln (1 + I;,—tt) + &% In £ {R!~7}, which, using the definitions of A; for
i€{1,2,3,4,5} in Lemma 8 can be written as Z?Zl A;. However, it is convenient to group
the A; in three sets as follows u/(B) = (A4; + Ag) + (As + A5) + Ay
At A= 5B t mEr 10 B = an, (CR+ 0EQ6GTY) 1255
=57, (—Br+ o5 [L+ B+ BC(Ry — )BD ﬁ%zéz«%( Rp+1+BC(Ry —1) 175) 12535
=aw; (1= Rp) (1= 6075) 125 5
dR G rpdR dR
A el 4 - A% = o (im0 - ) s
dR dR
=67, (1+ (Ry — 1) B¢ilg — (Ry) BGBGE =47 [(1— Ry) (1 - 64“1%3) (1— ) Ry] BGB G-
d
At A 0 ) (1= ) 5, iy [0 ) (1 ) o
dR dR dR
(1= Q) RpBGBYSE | =5 [(1 = Ry) (1= B¢:55) (12 5 + BGBYE ) + (1= Q) RypGBYE
Therefore,

W'(B) = (Ar+ As) + (Ao + As) + Ay = G- [(1 — Ry) (1 —8¢55) (f“a 9+ BGBde)

+ (1= Q) RyBGB G| + %€ TRy (1 - Ry) =

{0 R [(1- 5ce8) (288 + AGB2) + giccny] + (10 RyAGE .
Proof of Corollary 2. If { =0, then Q = (1+ B) G, so 2 = G and the expression for v’ (B)
in Proposition 6 becomes u'(B) = (1+1B)GR [(1 — Ry) ( G+ BG@de> + BR GBde] =

dR
TEL [( —Ry) a5 + B f}

Proof of Proposﬂzlon 7. See the discussion in the text.
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Online Appendix

B Isomorphic Formulation with Stochastic Output

The model used throughout the main text of the paper—which we will call the baseline model—
was designed so that the aggregate capital stock, K;, evolves deterministically and grows at
a constant rate, g, along any balanced growth path. As we show in Section 4, the riskfree
interest rate, 7y, is also constant along any balanced growth path, so the feasibility of rolling
over government debt depends only on the sign of 7y — ¢g. In addition, aggregate output,
Y}, evolves non-stochastically in the baseline model. In this appendix, we develop a class
of models that are isomorphic to the baseline model in the sense that the evolution of Kj,
as well as the evolution of rates of return, including the riskfree interest rate, are identical
to those in the baseline model. Nevertheless, except for the baseline model, Y; evolves
stochastically for all models in this isomorphic class. We choose to focus on the baseline
model throughout the main text of the paper for expositional simplicity, recognizing that
the non-stochastic evolution of Y; is not at all essential to our findings.

Consider a class of models in which the production function is
11—« a a—
Y, = (G'N) " KY + K= (k1 40 K, (B.1)

where 7, is an i.i.d. random productivity shock with a mean that can be positive, zero, or
negative. Because aggregate wage income, (1 — ) (G*N )1_a K}, is deterministic, aggregate
saving of the young and the evolution of K, are deterministic and identical to those in the
baseline model.

In this class of models, the depreciation rate of capital is & — 724, where 1, is an i.i.d
random variable with arbitrary correlation with 7,4, and 0 < ¢ —ny; < 1. In addition,
assume that £ {n;; +n2:} = 0. The (net) rate of return on capital is the marginal product

of capital, aky " + 1,4, minus the depreciation rate, § — 1.,
T =k — 5+ (N + 2y) - (B.2)

This class of isomorphic models is defined by 7, + 72, = ;. Therefore, equation (B.2)

can be rewritten as

Ty =kt =6+ ey, (B.3)

46



which is identical to equation (6) with E {e;} = 0. As a consequence, the riskfree rate, ry,,
is identical to that in the baseline model. Thus, all of the models in this class of models are
isomorphic to the baseline model in the sense that K; and all rates of return in all periods are
identical to their values in the baseline model. Therefore, our major findings about rolling

over government debt do not depend on output being deterministic.

C Calibration

Our focus is on the quantitative value of B,... Corollary 1 states that B,.x is invariant to
¢, so, without loss of generality, we set ¢ = 0.

Assume that a period equals 30 years. Since R = %” is the adjusted gross rate of
return on capital, 1 + 7 = G X R is the gross rate of return on capital (not adjusted for
growth). Calibrate the distribution of the durability shock so that along a balanced growth
path E{1+7r} = G x E{R} = (1+m)* where m is the target annual net rate of return
on capital; the standard deviation of r, which is equal to the standard deviation of G x R,
is set equal to its target s1/30, where s is the target annual standard deviation of the rate
of return on capital.

We specify the distribution of the durability shock so that

G~ 'e =exp(2) — Ry (C.1)

where z is N (u1,0?), and Ry is obtained by setting B = 0 in equation (18). From equations
(17) and (18), the risky rate of return on capital along a balanced growth path is R =
T (L+B)+(1-0)GT +G e = Eo—i—ﬁb’] + [exp (z) — Ry, so

R= mlg + exp (Z) . (02)

We choose the parameters i and o2 so that the mean of the risky rate equals the target rate,

which is m on an annual basis, so

E{l4+r} = GxE{R} :GxE{ B+exp(2)}:(1+m)30. (C.3)

(1-a)p

Setting the standard deviation of the risky rate, 1 + r, which is G/Var {exp (2)}, equal to
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the target standard deviation, s1/30, implies

G/ Var{exp (z)} = sv/30. (C4)

Use Var {(exp(2)} = (exp(e?) — 1) exp(2u+02) = (exp(0?)— 1) [exp( + 30%)]* = (exp(0?) -
1) [E {exp (2)}]° to rewrite equation (C.4) as

G x E{exp (2)} /(exp(c?) — 1) = sv/30. (C.5)
From equation (C.3)

Gx B{ep @)} = (1+m)" -G s

so equation (C.5) implies

e sV
(exp(o ) - 1) - (1 +m)30 _ Gm[}ﬂ (C7)

which can be rewritten as

2
1, s
exp(=0°) = 4|1+ 30 ) C.8
p(577) ((1 +m)® — G—(laa)ﬁb’) (C8)

Substitute exp (1) x exp(30?) for E {exp (2)} in equation (C.6) to obtain

L oo 30 o
G x exp (p) x exp(2a )= (14+m) G—(l — o) BB’ (C.9)
SO
G (1+m)* — 2B G (1+m)» — 2B
exp (1) = ( ) ()™ _ ( ) (1-o)p (C.10)

exp(30?) 2

The mean, m, and standard deviation, s, of the rate of return on capital are expressed
on an annual basis. To compare these values to familiar values for the mean and standard

deviation of annual stock returns, we must take account of the fact that m and s are moments
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of unlevered rates of return, and the moments of stock returns are levered returns. Let 74,
r4, and 7’;‘ be rates of return on unlevered equity, levered equity and riskfree assets, all
expressed at annual rates (hence the superscript A). They are related to each other by
rd = DLiET? + DLJFETE‘ = %r? + ﬁrﬁ, where D is the debt owed by the private
owners of capital and F is the equity of these owners. Assume that D equals 45% of D + E.
Therefore, r4 = 0.457‘}4 +0.5577. Hence, if F {TA} = 3% per year and r;ﬁ‘ = 0.6% per year,
then F {Tf} = 4.96% per year. Also, sd {rA} = 0.55sd{rf}, sd {rf} = Lsd{r“‘}, so if

0.55
sd {r*} =0.12, then sd {r{!} = 0.218.

Remark 2 If the value of p in equation (C.10) positive, then the economy with B = 0 is

dynamically efficient and hence the economy is dynamically efficient for any positive B also.

To prove this remark, note that equation (C.2) implies that Ry = exp(z). Since R is
an increasing function of B, we have R > Ry = exp(z) and hence E{lnR} > E{ln Ry} =
E{z} =p >0 for any B > 0.
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