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What is the maximum amount (possibly zero) of bonds that a government can rollover

forever without running primary budget surpluses? If the government can rollover a positive

amount of bonds forever, what is the optimal amount of bonds to rollover? Blanchard’s

(2019) presidential address to the American Economic Association spurred renewed scholarly

interest in these questions. Only a year later, global events brought these issues into the

public realm as governments around the world ran huge deficits to deal with the catastrophic

economic consequences of the covid-19 pandemic.

In the absence of uncertainty, the ability of the government to rollover bonds forever is

determined by the “r vs g” comparison, as it is colloquially known, where r is the net rate of

return on all assets, including government bonds, and g is the growth rate of the capital stock.

Specifically, if and only if r < g along a balanced growth path in a competitive economy,

government bonds can be rolled over forever and will shrink as a share of the economy

over time. Also, if and only if r < g, the economy suffers from a dynamically inefficient

overaccumulation of capital. That is, government bonds can be rolled over forever if and

only if the economy is dynamically inefficient.

In the presence of uncertainty, the link between dynamic inefficiency and the feasibility

of rolling over government bonds forever is more nuanced. Put simply, the rate of return on

capital is the rate of return relevant for assessing dynamic efficiency, but the riskfree interest

rate is the rate of return relevant for assessing whether the government can rollover its bonds

forever. Uncertainty breaks the equality of these two rates of return. As we will show,

in some dynamically efficient competitive economies with a constant growth rate g ≥ 0,

it is possible for the riskfree interest rate, rf , to be less than g, which makes permanent

rollover of government bonds feasible. This possibility of permanently rolling over debt

in a dynamically efficient economy does not exist in deterministic, dynamically efficient,

competitive economies.

Our principal findings in this paper result from both positive and normative analyses of

sustainable levels of the ratio of government bonds to the capital stock, which we define as

levels of this ratio that permit government bonds to be rolled over forever without any primary

surpluses. In our positive analysis, we find that if rf < g along a balanced growth path

without government bonds (which can be the case in some dynamically efficient economies,
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and must be the case in all dynamically inefficient economies), the maximum sustainable

level of the bond-capital ratio is strictly positive. Starting from zero government bonds,

increasing the amount of bonds reduces capital, thereby driving up the marginal product

of capital and the constellation of rates of return until, at the maximum sustainable bond-

capital ratio, rf = g.

Our normative analysis examines the optimal sustainable level of the bond-capital ratio,

specifically the sustainable level of this ratio that maximizes welfare, measured as the utility

of consumers in the steady state. We find that the marginal impact on welfare of an

increase in this ratio is positive along balanced growth paths with rf < g and is non-

negative along balanced growth paths with rf = g. Therefore, since the bond-capital

ratio is not sustainable for rf > g, the optimal sustainable level of the bond-capital ratio

equals its maximum sustainable value, which is attained when rf = g. At the optimal

level of the bond-capital ratio, government bonds play the dual role of (1) eliminating any

overaccumulation of capital that would occur if the bond-less economy were dynamically

inefficient and (2) providing safe assets to be held in the portfolios of risk-averse consumers.

When the bond-capital ratio is at its optimal level (rf = g), the economy is in the dynamically

efficient region. A marginal increase in the bond-capital ratio reduces capital and expected

aggregate consumption. Despite this reduction in expected aggregate consumption, the

benefit of increased risk sharing from debt issuance is large enough to prevent a reduction

in welfare.

The model in this paper is crafted so that along a balanced growth path, the capital stock

per unit of effective labor is constant but the rate of return on capital is stochastic. To

illustrate the mechanism in its simplest form, we preview the model in the case in which (1)

there is no labor-augmenting technical progress, so g = 0, and (2) the government wastes any

funds collected when it issues new bonds in excess of contemporaneous interest payments on

existing government bonds. The model has overlapping generations of a constant number

of people who live for two periods, earn labor income only in the first period of life, and

save some of their wage income to provide for consumption in the second period of life.

Output in each period is produced with labor and capital according to a Cobb-Douglas

production function without a productivity shock, which implies that wage income is non-
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stochastic. Consumers save a constant fraction of their wage income because they earn

non-asset income only in the first period and they have Epstein-Zin-Weil (Epstein and Zin

(1989) and Weil (1990)) preferences with an intertemporal elasticity of substitution equal to

one. Therefore, aggregate saving of the young consumers is non-stochastic, which makes

total assets, the sum of capital and government bonds non-stochastic.

The uncertainty in our model economy enters through a stochastic shock to the durability

of capital that makes the rate of capital depreciation, and hence the rate of return on

capital, stochastic. Bulow and Summers (1984), p. 25, argue that “capital risk,” which

they associate with the stochastic nature of depreciation, is far larger than “income risk,”

which they associate with the stochastic nature of the marginal product of capital. The

uncertainty about the rate of capital depreciation drives a wedge between the expected rate

of return on capital and the riskfree interest rate. However, in this simple form of the model,

the evolution of the capital stock, wage income, as well as the consumption and saving of the

young generation, are all invariant to the distribution and realizations of the durability shock.

Thus, there is a useful dichotomy in the equilibrium of the economy. We can determine

the equilibrium values of aggregate saving and the capital stock, without any consideration

of financial values and without any consideration of the realizations or the distribution of

the durability shocks.1 Despite the deterministic evolution of the capital stock, we show

that the rate of return on capital and hence the consumption of the old generation are risky

because the depreciation rate of capital is stochastic. The stochastic nature of consumption

when old implies that the pricing kernel is stochastic.

The simplicity of the model in the case described above has several useful features. Be-

cause wage income per unit of effective labor, and hence aggregate saving of young consumers

per unit of effective labor, are constant along a balanced growth path, there is no chance

that adverse shocks will reduce aggregate saving below the amount needed to absorb the

equilibrium amount of government bonds. Thus, government bonds are riskfree and the

riskfree interest rate is the appropriate market interest rate on these bonds.2 In the simple

1This dichotomy continues to hold if we relax the assumption (1) that g = 0, but it does not hold if we
relax assumption (2) that the government wastes any funds it receives when it issues new bonds in excess of
interest payments on existing government bonds.

2Bertocchi (1994) and Binswanger (2005) discuss the unsustainability of government bonds in economies
in which the capital stock evolves stochastically. Our model features a non-stochastic capital stock and
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case of the model described above, the equilibrium size of the capital stock is invariant to the

distribution of durability shocks. In our quantitative analysis, we illustrate that the maxi-

mum sustainable bond-capital ratio, which is the optimal value of this ratio, is an increasing

function of the variance of the durability shock. We also illustrate that the maximum sus-

tainable amount of government bonds is an increasing function of the coefficient of relative

risk aversion.

1 Literature Review

The celebrated Golden Rule of capital accumulation derived by Phelps (1961) characterizes

the capital stock per capita that maximizes consumption per capita along a deterministic

balanced growth path. If the rate of return on capital, r, equals the growth rate of the

economy, g, then consumption per capita is at the highest feasible level in the long run.

If the saving rate exceeds the rate consistent with the Golden Rule, then the capital stock

per capita exceeds the Golden Rule level so r < g and consumption per capita is less than

in the Golden Rule; that is, there is a dynamically inefficient overaccumulation of capital.

Diamond (1965) develops and analyzes an overlapping generations economy with optimizing

consumers and competitive firms and finds that if the optimal saving of young consumers is

sufficiently high, either because consumers are very patient or the wage share of total income

is very high, then capital per capita can exceed the Golden Rule level along a balanced growth

path and there is a dynamically inefficient overaccumulation of capital. However, if young

consumers use some of their saving to hold government bonds, they will hold a smaller

amount of capital in their portfolios, driving down the aggregate capital stock, possibly by

enough to eliminate any dynamically inefficient overaccumulation of capital.

Cass (1972) provides a complete characterization of dynamic inefficiency that does not

depend on consumers’ preferences. The Cass criterion simply asks whether it is feasible

to increase aggregate consumption at some date without having to reduce aggregate con-

sumption at some other date(s). In a deterministic steady state, the Cass condition is the

same as in Phelps and Diamond, that is, an economy is dynamically inefficient if and only if

avoids the unsustainability problem in Bertochhi and Binswanger.
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r < g. However, the general version of the Cass criterion also applies to economies outside

the steady state.

A government bond that is rolled over forever is often regarded as a bubble, which is

an asset with zero fundamental value that nevertheless has a positive market value. Tirole

(1985) develops a tight link between dynamic inefficiency and the feasibility of bubbles,

in his words “the existence of bubbles is conditioned by the efficiency of the bubbleless

equilibrium.” (Tirole (1985), p. 1076) In our context, a “bubbleless equilibrium” has zero

government bonds. Part (a) of Proposition 1 in Tirole (1985) states that if the economy

without any government bonds is dynamically efficient, then equilibrium in the economy

cannot contain bubbles. Tirole’s statement holds in deterministic economies where the

rates of return on capital and government bonds are equal. The introduction of government

bonds reduces capital, thereby increasing the common rate rates of return on government

bonds and capital. If the economy was dynamically efficient without government bonds,

then r > g initially and this increase in r induced by government bonds increases the excess

of r over g, which implies that government bonds cannot be rolled over forever.

In order for bubbles to be feasible in a deterministic dynamically efficient economy, there

must be a wedge between the rates of return on government bonds, rf , and on capital,

r. Specifically, r must exceed rf and the growth rate g must lie between rf and r. In

deterministic models, Farhi and Tirole (2011) and Martin and Ventura (2012) provide this

wedge by introducing a wedge between borrowing and lending rates for firms. Also in

a deterministic framework, Ball and Mankiw (2023) introduces monopoly power by firms,

which drives a wedge between the marginal product of capital, r, and the user cost of

capital, which is based on the interest rate on government bonds, rf . Aguiar et al. (2021)

also examine the role of monopoly power in driving a wedge between the rate of return on

capital and the interest rate on government bonds, but their analysis includes idiosyncratic

risk. Like Ball and Mankiw (2023), however, in their analysis the aggregate rate of return

of capital is not uncertain.3

3Amol and Luttmer (2022) also examines fiscal policies in economies with idiosyncratic uncertainty but
no aggregate uncertainty. The analysis in that paper does not include monopoly but is conducted in a two-
sector model with a capital goods sector and a consumption goods sector. As in Ball and Mankiw (2023)
and Aguiar et al. (2021), but unlike in our paper, the aggregate return to capital in Amol and Luttmer
(2022) is not random.
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The early literature on dynamic efficiency (Diamond (1965), Cass (1972)) focussed on

deterministic models. In those models, the conditions for dynamic efficiency are the same

as the conditions that rule out scope for Pareto improvements. However, the literature has

long recognized that the introduction of uncertainty can break the link between dynamic

efficiency and the conditions that rule out any scope for Pareto improvements4 or infinite

debt rollover.5 Roughly speaking, the sufficient condition for dynamic efficiency in Zilcha

(1991) is that the expected logarithmic return to capital exceeds the logarithmic growth rate

of the economy, whereas the sufficient condition for infinite debt rollover tests whether the

yield of a GDP-contingent, pure-discount bond converges to a negative number as maturity

approaches infinity.6 Typically, these conditions are stated in terms of endogenous quantities

(returns). The common approach in the literature stops short of fully solving the underlying

model and showing that in some dynamically efficient stochastic economies it is possible to

roll over debt forever.7 The model that we develop is designed to present a dynamically

efficient stochastic economy in which it is simple to verify that government bonds can be

rolled over forever.

Aggregate uncertainty drives a wedge between the riskfree rate, rf , and the rate of return

on capital, r. Abel, Mankiw, Summers, and Zeckhauser (1989), hereafter AMSZ, proves

that if the rate of return on capital is greater than the growth rate in all states and at all

times, then the economy is dynamically efficient; and since the rate of return on capital is

always greater than the growth rate, the riskfree rate is greater than the growth rate and

hence it is not feasible to rollover government bonds forever. Alternatively, AMSZ proves

that if the rate of return on capital is less than the growth rate in all states and at all times,

4See, e.g., Bertocchi (1991), Barbie et al. (2007), Binswanger (2005), Bloise and Reichlin (2023).
5See, e.g., Kocherlakota (2023a).
6A GDP-contingent, pure discount bond is a bond that makes a single payment at maturity, T , and

that payment is proportional to YT , which is output at time T . See Kocherlakota (2023a). The sufficient
conditions in Bloise and Reichlin (2023) for achieving Pareto improvements are closely related to the condition
in Kocherlakota (2023a).

7While, in principle, one could try to verify empirically that the conditions for dynamic efficiency and
the feasibility of infinite debt rollover are satisfied, in practice this approach faces challenges. The Zilcha
condition on dynamic efficiency requires knowledge of the returns to capital and aggregate growth rates (but
does not require any assumptions on marginal utilities in different economic states). However, testing the
condition for the feasibility of infinite debt rollover requires information about the valuation of a GDP-linked
payoff at infinite maturity. Because governments don’t issue GDP-linked bonds, and there are no markets
for GDP futures, the yields on long-term GDP-linked bonds can neither be observed, nor easily inferred from
existing securities without a model that describes marginal utilities.
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then the economy is dynamically inefficient; and since the rate of return on capital is always

lower than the growth rate of capital, the riskfree rate is less than the growth rate and it is

feasible to rollover government bonds forever. Thus, in the situations that can be declared

dynamically efficient or dynamically inefficient by the sufficient conditions in AMSZ, the

link between dynamic inefficiency and the feasibility of bubbles continues to hold. However,

the AMSZ conditions are not applicable in economies where the rate of return on capital is

sometimes greater than the growth rate and sometimes less than the growth rate.

Zilcha (1990, 1991) steps into the gap left by AMSZ and derives a characterization of

dynamic efficiency in stochastic economies in which the rate of return on capital can some-

times exceed and sometimes falls short of the growth rate, g, of the economy. Zilcha adapts

Cass’s definition of dynamic efficiency in a natural way to stochastic economies and derives

a remarkable condition for dynamic inefficiency when the economy grows at a constant rate,

g: E {ln (1 + r)} < ln (1 + g). Zilcha presents this condition as necessary and sufficient for

dynamic inefficiency. However, Rangazas and Russell (2005) and Barbie and Kaul (2009)

point out a subtle but important statistical issue that implies that the Zilcha condition is nec-

essary, but not sufficient, for dynamic inefficiency. Equivalently, E {ln (1 + r)} ≥ ln (1 + g)

is sufficient for dynamic efficiency. Recently, Bloise and Reichlin (2023, p. 640) presents a

sufficient condition for dynamic efficiency, which they refer to as “capital efficiency.” Their

sufficient condition states that if “capital is sufficiently productive with some probability,”

then capital is not overaccumulated.8

Blanchard and Weil (2001) presents four examples that debunk various simplistic views

about the relation between dynamic inefficiency and the feasibility of rolling over government

bonds forever. In particular, the third and fourth examples in that paper illustrate that

government bonds can be rolled over forever in some dynamically efficient economies. Those

two examples feature models of stochastic storage so that output is linear in the capital stock.

Without concavity in the capital stock, the issue of capital overaccumulation is moot.9 Barro

(2023) uses a model with stochastic depreciation as in our model, but specifies Yt = AKt,

8The condition is maxi minj
1+gij
Rij

< 1, where gij and Rij are, respectively, the growth rate of output and

the rate of return on capital, when the economy moves from state i to state j in a finite state space.
9Footnote 11 in Blanchard and Weil (2001) points out that these models could be extended to incorporate

concavity in the capital stock by specifying output to be Yt = Kα
t − δKt, where δ is a random variable, but

they do not work out the implications of this model.
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so that, as in Blanchard and Weil’s specification with simply stochastic storage, there is no

concavity in the capital stock.

Blanchard’s presidential address (Blanchard (2019)) is a far-ranging analysis of both

empirical and theoretical issues related to the rollover of government bonds. It carefully

documents that the recent situation with safe interest rates below growth rates is not unusual

in historical data. In simulations reminiscent of the eponymous deficit gamble in Ball,

Elmendorf, and Mankiw (1998), Blanchard finds that even if government bonds cannot be

rolled over forever, it is likely that they can be rolled over for many decades before investors

become unable, or unwilling, to buy newly issued government bonds.

Since Blanchard’s presidential address, at least three papers have appeared with simple

titles that involve comparisons of the rate of return and the growth rate. Cochrane (2021b),

simply titled “r < g,” is a forceful warning against the notion that when the riskfree interest

rate is lower than the growth rate, the government can rely on growing itself out of debt. An

attempted permanent rollover of bonds is bound to fail eventually, especially if government

deficits are large. “The constraint on public debt when r < g but g < m” (Reis (2021))

develops a model in which the interest rate on government bonds (r) is less than the growth

rate of the economy (g), opening the possibility that government bonds can be rolled over,

and yet the marginal product of capital (m) is greater than g so the economy is dynamically

efficient. That paper derives the fiscal capacity of the economy, which is a limit on the

ratio of government spending to the amount of bonds outstanding. Barro (2023), simply

titled “r Minus g,” provides data on (arithmetic) averages in each of 14 OECD countries of

rates of return on bonds and equities and growth rates of GDP per capita and consumption

per capita. However, the Zilcha criterion directly implies that for the purpose of assessing

dynamic efficiency, one must use the geometric means of rates of return and growth rates

rather than arithmetic means.

Two interesting questions – one positive and one normative – remain unanswered in the

papers described above. First, what is the maximum amount of government bonds that can

be rolled over forever? The fiscal capacity in Reis (2021) is related to this question but, as

mentioned above, fiscal capacity is the maximum ratio of government spending to the amount

of bonds outstanding, rather than the maximum ratio of the amount of government bonds
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outstanding to the capital stock that is the focus of our analysis. Second, what is the optimal

amount of bonds to rollover along a balanced growth path? Blanchard (2019), Falkenheim

(2022), Ball and Mankiw (2023), and Kocherlakota (2023b) provide interesting analyses and

discussions of the marginal impact of government bonds on welfare, where, as in our paper,

welfare is defined to be the level of utility of consumers along a balanced growth path.10

However, none of these four papers derives analytically the optimal sustainable amount of

government bonds in a dynamically efficient economy with aggregate shocks to the return

of capital.11 Angeletos et al. (2023) analyzes optimal debt issuance in a model where

the planner maximizes a discounted objective balancing distortionary effects of taxation,

seignorage, and improved risk sharing.

Kocherlakota (2023b) considers an economy where consumers face idiosyncratic “rare

disasters.” In the production-economy version of the model in Kocherlakota (2023b), the

returns to capital and bonds are equal, so that the conditions on infinite debt rollover

and dynamic inefficiency are identical. In our paper the return to capital and the return

on bonds are distinct because of aggregate uncertainty about the return on capital. This

difference in the rates of return allows the possibility that infinite debt rollover is possible in

a dynamically efficient economy. We show that if the riskfree interest rate on government

bonds is less than the growth rate of the economy, it is optimal to increase the quantity of debt

to the maximal sustainable amount. Although reducing capital in a dynamically efficient

economy reduces expected aggregate consumption, the additional risk sharing provided by

an increased amount of riskfree government bonds implies that, on net, it is optimal to

increase the amount of bonds to the maximum sustainable level.

Our result that the government can increase consumer welfare by issuing additional debt

10Aoki et al. (2014) show that in situations in which bubbles exist in equilibrium, welfare in the bubbly
equilibrium is higher than in the equilibrium without bubbles. However, it does not examine the marginal
impact on welfare of an increase in the size of the bubble.

11The working paper version (NBER WP 29138, August 2021) of Kocherlakota (2023b) concludes that
“as long as there is a public debt bubble (in this class of models), agents are better off in the long run if
the government changes its policy choices so as to increase the debt and deficit” (p. 20). Aiyagari and
McGrattan (1998) numerically computes the optimal value of government debt in a model with uninsurable
idiosyncratic risks, but no aggregate risks. It finds that the welfare loss resulting from the actual level of debt
in the US economy (at the time of that paper’s writing), rather than the optimal level of debt as computed
in their model, is small. Brumm and Hussmann (2023) numerically compute optimal debt in a variety of
models, including calibrated OLG models and models in which investors obtain “convenience yields.”
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whenever rf < g is consistent with the conditions that permit Pareto improvements in

Bertocchi (1991), Barbie et al. (2007) and more recently Bloise and Reichlin (2023), who show

that the condition permitting a Pareto improvement can hold in some economies without

dynamically inefficient overaccumulation of capital.12 Bloise and Reichlin provide diagnostics

to assess whether a given allocation of consumption is Pareto-optimal and whether that

allocation is dynamically inefficient in the sense of having overaccumulation of capital. Their

main finding implies that when rf < g, an allocation is not Pareto optimal, as long as the

planner is permitted to freely reallocate consumption across time and across people. While

this finding suggests that Pareto optimality requires increasing rf to a value at least as

high as g, they do not describe the implementation of such a Pareto improvement using

market instruments. By contrast, we focus on a particular market instrument, namely, non-

contingent government bonds that can be rolled over forever without primary surpluses, as a

means to increase the riskfree rate. In order to conduct this analysis, we have to analyze the

general equilibrium effects of an increase in the amount of government bonds on allocations

of consumption, portfolio allocations, and asset returns. We also characterize the level of

government bonds (relative to the capital stock) that achieves the optimal balanced growth

path.

Finally, in addition to the positive and normative questions that share a common answer,

our paper also offers fresh insights about the intertemporal government budget constraint.

It is typical in discussions of the sustainability of fiscal policy (O’Connell and Zeldes (1988),

Wilcox (1989), and Bohn (1995)), the pricing of government bonds (Jiang et al. (2019)), and

the fiscal theory of the price level (Cochrane (2021a)) to assume that the value of government

debt equals the expected present value of the sum of primary government surpluses over the

infinite future, for an appropriate path of discount rates over time. This budget constraint is

often described as a transversality condition or, more accurately, as a No Ponzi Game (NPG)

condition. In our paper, the NPG condition is violated by design.13 The NPG condition is

12Since in our model the risk free rate is constant along a balanced-growth path, the results in Bloise and
Reichlin (2023) imply that if rf < g then there is scope for a Pareto improvement.

13As shown in Santos and Woodford (1997), in an economy in which the present value of the stream of
present and future aggregate consumption is infinite, there is room for the NPG condition to fail. Neverthe-
less, even though the NPG condition fails in our model when rf < g, thereby enabling permanent rollover
of government debt, the market value of the existing capital stock is finite, because it is the valuation of the
stream of profits to the remaining portion of a depreciating capital stock that approaches zero over time.
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often invoked to rule out the possibility of rolling over debt forever. While the NPG arises

naturally in some contexts, we examine situations in which permanent rollover of debt is

both feasible and optimal, and the NPG condition need not, and does not, hold. Contrary

to the literature in which the value of government debt equals the sum of present values of

future primary surpluses, in our model, the value of government debt is positive even though

all future primary government surpluses are non-positive.

2 A Graphical Preview of the Main Results

The model developed and analyzed in this paper has the convenient property that the capital

stock per unit of effective labor is constant along a balanced growth path, which implies that

the expected net rate of return on capital, r, is constant. It is convenient to focus on

the expected adjusted gross rate of return on capital, R ≡ 1+r
1+g

, where g is the constant

growth rate of capital along a balanced growth path. For the graphical preview in this

section (and only in this preview), the adjusted gross rate of return on capital, R, has a

symmetric two-point distribution with mean R. Specifically, Pr
{
R = RH ≡ R + σ

}
= 1

2
=

Pr
{
R = RL ≡ R− σ

}
.

Figure 1 shows the possible adjusted gross rates of return on capital along a balanced

growth path, with RH on the horizontal axis and RL on the vertical axis. In the absence

of shocks to the rate of return on capital, RH = RL so the locus of possible pairs (RH , RL)

is the 45-degree line labeled “Certainty: RH = RL = Rf ,” which passes through the origin.

The area above and to the left of the 45-degree line is grayed out because RH ≥ RL by

definition.

At Point F on the certainty line, 1+r
1+g

= RH = RL = 1, so that r = g, which is the Golden

Rule. As shown by Phelps (1961), along balanced growth paths with r = g, the economy

attains the maximum possible consumption per capita. Along the segment of the certainty

line to the southwest of Point F, r < g, which implies, as shown by Phelps (1961) and Dia-

mond (1965), that the economy has overaccumulated capital, in the sense that it is possible

to increase aggregate consumption today without having to reduce aggregate consumption

at any future date. This situation is described as dynamic inefficiency. Alternatively, along

11



Figure 1: A Graphical Summary of Dynamic Efficiency and Feasibility of Debt Rollover
when ζ = 0, γ = 1, and B = 0.

the segment of the certainty line to the northeast of Point F, r > g, which implies that the

economy is dynamically efficient in the following sense: it is impossible to increase aggregate

consumption at any time without decreasing aggregate consumption at some other time. In

a world of certainty, all assets have the same rate of return and, in particular, the riskfree

interest rate on bonds, rf , equals the rate of return on capital, r. When rf and g are both

constant, government bonds can be rolled over forever, if and only if rf < g so the economy

is dynamically inefficient.

Now consider the situation in which σ, the standard deviation of R, is positive so that

(RH , RL) lies in one of the five regions below the 45-degree line. In two of these regions, the

AMSZ criterion that compares r with g gives a decisive assessment of dynamic efficiency. In
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Region A, labelled “AMSZ-inefficient,” both RH and RL are less than one so r < g for both

possible values of R. Therefore, the AMSZ criterion implies that the economy is dynamically

inefficient. Furthermore, since RL < RH < 1, the adjusted gross riskfree interest rate, Rf ,

which satisfies RL ≤ Rf ≤ RH , is always less than one. In this case, rf < g, so that a

dollar of government debt that is rolled over at the riskfree interest rate will shrink over time

toward zero.

In Region B, labelled “AMSZ-efficient,” both RH and RL are greater than one so the

net rate of return on capital is always greater than the growth rate. Therefore, the AMSZ

criterion implies that the economy is dynamically efficient. Furthermore, since 1 < RL <

RH , the adjusted gross riskfree interest rate, which satisfies RL ≤ Rf ≤ RH , is always greater

than one. That is, rf > g and it is impossible to rollover government bonds, without primary

surpluses, at the riskfree rate forever.

The AMSZ criteria are silent about Regions C, D, and E, where the adjusted gross rate

of return on capital, R, is sometimes greater than one and sometimes smaller than one.

Zilcha (1991) states that a balanced growth path is dynamically inefficient if and only if

E {lnR} < 0, though, as discussed in the introduction, this condition is necessary, but not

sufficient, for dynamic inefficiency. In the symmetric two-point distribution in Figure 1,

E {lnR} = 1
2
(lnRH + lnRL) =

1
2
lnRHRL, so the locus of points for which E {lnR} = 0 is

simply the rectangular hyperbola RL = R−1
H , which is the downward-sloping curve originating

at Point F and labelled E {lnR} = 0. In Region C, RLRH < 1 and hence E {lnR} < 0

so we label Region C as “Z-inefficient,” to indicate that points in this region satisfy Zilcha’s

necessary condition for dynamic inefficiency. By contrast, in Regions D and E, RLRH > 1

and hence E {lnR} > 0 so the economy is dynamically efficient according to the Zilcha

criterion; thus, we label Regions D and E as “Z-efficient.” Finally, we note that along the

curve where E {lnR} = 0, Zilcha’s necessary condition for dynamic inefficiency, E {lnR} <

0, is violated, so dynamic efficiency prevails on this curve.

The government can rollover its bonds forever if rf ≤ g, equivalently, if Rf ≤ 1. The

higher of the two downward-sloping curves through Point F is the locus of (RH , RL) for

which Rf = 1. For points above this curve (Regions B and D), Rf > 1 and permanent

rollover of government bonds is not feasible. For points below the Rf = 1 curve (Regions
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A, C, and E), Rf < 1 and permanent rollover of government bonds, without any primary

surpluses, is feasible. Region E is of particular interest because, as we show in this paper,

it contains dynamically efficient economies (since it lies above the E {lnR} = 0 locus) in

which government bonds can be rolled over forever without primary surpluses (since it lies

below the Rf = 1 locus). Such a situation is impossible in deterministic economies.14

Now consider the impact of introducing and increasing the amount of riskfree government

bonds. Suppose that Point G represents the balanced growth path in an economy without

government bonds. Since it is located in Region A, this balanced growth path is dynamically

inefficient and government bonds can be rolled over forever. As we will show in the main

part of the paper, the introduction of government bonds reduces capital and drives up R,

the expected rate of return on capital, which increases RH and RL by the same amount that

R increases. That is, the introduction of government bonds is represented by movement to

the northeast along the dashed line through point G with slope equal to one. Consider the

introduction of a quantity of government bonds that moves the balanced growth path to Point

H on the curve labeled E {lnR} = 0. Since the economy is Z-efficient along (and above) this

curve, the movement from Point G to Point H eliminates the Z-inefficient overaccumulation

of capital.

Next consider introduction of a greater amount of government bonds that moves the

balanced growth path to Point J. Note that an even larger increase in government bonds

is not feasible without primary surpluses (which we rule out) because such points to the

northeast of Point J have Rf > 1, equivalently, rf > g.

Now we address the normative question: which point along the dashed line between

Points H and J maximizes utility per capita along a balanced growth path? As we prove in

Proposition 6, utility per capita is strictly increasing as we steadily move along the dashed

14Points in Region C satisfy Zilcha’s necessary condition for dynamic inefficiency. Bloise and Reichlin
(2023, p. 640), “argue that capital is not overaccumulated whenever ρ̂ < 1, where ρ̂ is maxi minj

1+gij
Rij

< 1,

where gij and Rij are, respectively, the growth rate of output and the rate of return on capital, when the
economy moves from state i to state j in a finite state space. Their example 4.1, stated in the notation of this
paper, is RL < 1 < RH and gij = 0, which corresponds to the union of Regions C, D, and E in Figure 1. In
this case, “ρ̂ = min{1/RL, 1/RH} < 1, thus ruling out capital overaccumulation.” Hence, although Region
C is “Z-inefficient,” it is characterized by a dynamically efficient accumulation of capital according to the
Bloise-Reichlin criterion. Thus, using the Bloise-Reichlin criterion expands the set of dynamically efficient
economies (relative to the Zilcha criterion) in which permanent rollover of government bonds is feasible.
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line from Point H to Point J. Indeed, when the economy reaches Point J, the impact on

utility per capita of additional government bonds remains non-negative. Since any further

increase in government bonds is infeasible without budget surpluses, Point J represents the

utility-maximizing amount of government bonds. This result implies that to maximize

utility per capita along a balanced growth path, the amount of government bonds must

exceed the amount of bonds needed to eliminate dynamic inefficiency. Even though Z-

inefficiency has been eliminated by moving to point H, there is still scope to increase utility

along a balanced growth path by increasing the amount of government bonds and thereby

decreasing the capital stock to the point at which Rf is driven to equal one (at point J).

3 Deterministic Capital Stock with Risky Returns

We now introduce the formal model. We begin with production, saving, and investment in

this section, and turn to portfolio allocation and asset pricing in Section 4.

Aggregate output at time t, Yt, is produced by competitive firms using capital, Kt, and

effective labor, GtN , where G ≡ 1 + g ≥ 1 is the gross growth rate of labor-augmenting

productivity and N is the constant number of young consumers in each time period. The

production function is Yt = F (Kt, G
tN) = (GtN)

1−α
Kα

t , where 0 < α < 1, and it is

convenient to write the production function in intensive form as

yt = kα
t , (1)

where yt ≡ Yt

GtN
and kt ≡ Kt

GtN
. Capital depreciates at the rate 0 ≤ δ − εt ≤ 1 per

period, where the durability shock εt is an i.i.d., non-degenerate random variable with mean

zero, so δ > 0 is the expected depreciation rate in each period. The durability shock is

the only source of uncertainty in the model; the production function, Yt = F (Kt, G
tN), is

deterministic. Online Appendix B shows that our model with a deterministic production

function is isomorphic to a particular model that has shocks in the production function.

The economy is populated by people who live for two periods. In period t, N people are

born and each of these people inelastically supplies Gt units of effective labor, earns wage
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income Wt = (1− α) (Gt)
1−α

Kα
t N

−α = (1− α)Gtkα
t and receives a lump-sum transfer, τt.

To focus on the impact of government borrowing, we simplify other aspects of fiscal

policy. Specifically, we assume that the government does not purchase goods or services and

that all taxes and transfers are lump-sum. Let Bt be the amount of one-period government

bonds outstanding at the beginning of period t, which are held by the old generation of

consumers at time t. These bonds were bought at the end of the preceding period, when

the currently-old consumers were young. Government budget accounting implies

Bt+1 = (1 + rf,t)Bt +Dt, (2)

where Dt is the primary government budget deficit during period t and rf,t is the riskfree

interest rate on government bonds bought at the end of period t− 1 and maturing in period

t. Define gB,t to be the growth rate of government bonds from the end of period t − 1,

when the amount of government bonds equals Bt, to the end of period t, when the amount

of government bonds equals Bt+1, so Bt+1 = (1 + gB,t)Bt and equation (2) can be rewritten

as

(gB,t − rf,t)Bt = Dt. (3)

When the primary deficit, Dt, is positive, the government acquires funds to pay for the

primary deficit by issuing additional bonds in excess of the interest payments on existing

bonds, which is a form of seignorage. The government uses its seignorage to pay for lump-

sum transfer payments to young consumers or to pay for wasteful government purchases, or

some mix of the two. In period t, total transfers to the N young consumers are Nτt = ζDt,

where 0 ≤ ζ ≤ 1 is the share of the primary deficit that is used to make transfer payments

to young consumers and (1− ζ)Dt is spent wastefully.
15 Therefore, the lump-sum transfer

received by each young consumer in period t, is τt = ζ Dt

N
, where Dt is given by equation (3),

15If, instead of wasting (1− ζ)Dt, the government purchases public goods that enter utility functions
additively separably from consumption when young and when old, such purchases would not affect the
equilibrium values of consumption, saving, or rates of return. However, any utility associated with public
goods would need to be considered when analyzing the impact of government bonds on welfare in Section 6.
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so

τt = ζ (gB,t − rf,t)
Bt

N
. (4)

Young consumers in period t each consume cyt and save st = Wt+ τt− cyt . The aggregate

saving of the young generation, St ≡ Nst, is used to purchase assets, At+1 = Kt+1 + Bt+1,

consisting of capital, Kt+1, and one-period riskfree government bonds, Bt+1. Thus, the

aggregate capital stock in period t+ 1 is

Kt+1 = At+1 −Bt+1 = St −Bt+1. (5)

The rate of return on capital purchased at the end of period t and used in period t+1 is

rt+1 = αkα−1
t+1 − δ + εt+1, (6)

which comprises the marginal product of capital in the production function in equation (1),

α (Gt+1N)
1−α

Kα−1
t+1 = αkα−1

t+1 , less the depreciation rate, δ − εt+1.

At the end of period t, young consumers hold a fraction, λt+1, of their portfolios in riskfree

government bonds with interest rate, rf,t+1, and the remaining fraction, 1 − λt+1, in risky

capital with rate of return rt+1. In the following period, when these consumers are old, they

do not work. The generation of old consumers in period t+1 uses the gross return on total

assets, (1 + ra,t+1)At+1, to pay for its consumption, Ncot+1, where

ra,t+1 ≡ λt+1rf,t+1 + (1− λt+1) rt+1 (7)

is the rate of return on total assets.

Each person born in period t has an Epstein-Zin-Weil utility function with intertemporal

elasticity of substitution (IES) equal to one. We use the specification for a consumer who
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lives for two periods that is used in the second example in Blanchard and Weil (2001)16

Ut = (1− β) ln cyt + β ln

([
Et

{(
cot+1

)1−γ
}] 1

1−γ

)
, where γ > 0. (8)

To ensure a non-negative rate of time preference, we assume that β ≤ 1
2
.

To solve the consumption/saving problem, use st = Wt+ τt− cyt and cot+1 = (1 + ra,t+1) st

in equation (8) to write the consumption/saving problem as

max
st

(1− β) ln (Wt + τt − st) + β ln st +
β

1− γ
lnEt

{
(1 + ra,t+1)

1−γ} . (9)

The joint impact of IES = 1 and the assumption that consumers do not earn wage income

or receive transfers in the second period of life is that the optimal value of st is independent

of ra,t+1. The solution to the maximization problem in equation (9) is

st = β (Wt + τt) , (10)

which implies

cyt = (1− β) (Wt + τt) (11)

and

cot+1 = (1 + ra,t+1) β (Wt + τt) . (12)

Aggregate saving in period t is St = Nst = Nβ (Wt + τt) = β (NWt +Nτt) = β[(1− α)Yt+

ζ (gB,t − rf,t)Bt]. Therefore, equation (5) implies that the aggregate capital stock in period

16If γ = 1, we treat the utility function in equation (8) as Ut = (1− β) ln cyt +βEt

{
ln cot+1

}
. Brumm et al.

(2021) extend the two-period version of Epstein-Zin-Weil preferences used in Blanchard and Weil (2001),
Blanchard (2019), and in this paper, so that the planner treats the uncertainty of the consumption of future
young consumers in the same way that the consumers themselves treat uncertainty about consumption when
old. In our model, the dynamic path of capital, hence wage income, hence consumption of the young, are
all deterministic and therefore the planner’s preferences used in Brumm et al. (2021) imply the same welfare
criterion as we use.
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t+ 1 is

Kt+1 = St −Bt+1 = β [(1− α)Yt + ζ (gB,t − rf,t)Bt]−Bt+1. (13)

Divide both sides of equation (13) by Gt+1N , define the bond-capital ratio, Bt ≡ Bt

Kt
, and

rearrange the resulting equation to obtain

kt+1 = G−1β [(1− α) kα
t + ζ (gB,t − rf,t)Btkt]− Bt+1kt+1. (14)

From this point onward, we focus on balanced growth paths along which Kt, Yt, and Bt

all grow at rate g ≥ 0, so that gB,t, kt ≡ Kt

GtN
, yt ≡ Yt

GtN
, bt ≡ Bt

GtN
and Bt ≡ Bt

Kt
are all

constant, with values g, k, y, b, and B, respectively. Also, since the durability shock is i.i.d.,

the riskfree interest rate is constant and equal to rf . Throughout, we use the notational

convention that variables without time subscripts represent constant values along balanced

growth paths.

Equation (14) implies that along a balanced growth path, the marginal product of capital

is

αkα−1 =
α

(1− α) β
[(1 + B)G− βζ (g − rf )B] . (15)

Remarkably, the ratio of capital to effective labor, k, in equation (15) is constant despite

the shocks to the durability of capital. In the case with ζ = 0, the marginal product

of capital along a balanced growth path is invariant to the distribution of the durability

shock. However, if ζ ̸= 0, then the marginal product of capital in equation (15) depends

on the riskfree interest rate, which, as we will see below, depends on the distribution of the

durability shock.

Despite the fact that kt is constant along a balanced growth path, the rate of return on

capital is stochastic. Use equation (6), which implies that the rate of return on capital along

a balanced growth path is r = αkα−1 − δ + ε (where ε is the random durability shock), and
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equation (15) to obtain

r =
α

(1− α) β
[(1 + B)G− βζ (g − rf )B]− δ + ε. (16)

It will be convenient to use the ratios of the gross rates of return to the gross growth

rate, G. Specifically, along a balanced growth path, R ≡ 1+r
G

is the “adjusted gross rate of

return” on capital, Rf ≡ 1+rf
G

is the “adjusted gross riskfree interest rate” and Ra ≡ 1+ra
G

=

λRf + (1− λ)R.

Use G−1 (g − rf ) = G−1 (1 + g − (1 + rf )) = 1−Rf and equation (16) to obtain

R ≡ 1 + r

G
= R +G−1ε, (17)

where

R = R (B, Rf ) ≡
α

(1− α) β
[1 + B − βζ (1−Rf )B] + (1− δ)G−1, (18)

is the expected “adjusted gross rate of return on capital” along a balanced growth path.

Note that
∂R(B,Rf)

∂B = α
(1−α)β

[1− βζ + βζRf ] > 0 because 0 < β ≤ 1
2
and 0 ≤ ζ ≤ 1; also

∂R(B,Rf)
∂Rf

= α
1−α

ζB ≥ 0.

4 Portfolio Allocation and Asset Pricing

Young consumers choose portfolios consisting of riskfree government bonds and risky capital.

Formally, the optimal share of riskfree government bonds in a young consumer’s portfolio is

λt+1 = argmax
λt+1

β

1− γ
lnEt

{
(Ra,t+1)

1−γ} , (19)

where, as discussed earlier, Ra,t+1 = λt+1Rf,t+1 + (1 − λt+1)Rt+1. The first-order condition

associated with this maximization problem along a balanced growth path is

E
{
(λRf + (1− λ)R)−γ (Rf −R)

}
= 0. (20)
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Viewing Rf and the distribution of R as given, equation (20) determines the optimal

value of λ. Alternatively, viewing λ and the distribution of R as given, equation (20) can

be viewed as a financial market equilibrium condition that determines Rf as a function of

the equilibrium value of λ and the distribution of R. In a financial market equilibrium

with a given value of B ≡ B
K
, the share of the aggregate portfolio that is held in riskfree

government bonds is λ = B
K+B

= B
1+B and the adjusted gross rate of return on total assets is

Ra = Rf +
1

1+B (R−Rf ).

Lemma 1 For any distribution of R > 0, Rf =
Et{R1−γ

a }
Et{R−γ

a } .

Since Ra = Rf + 1
1+B (R−Rf ), equations (17), (18), and (20) imply that for a given

value of B, the equilibrium value of Rf satisfies

f (B, Rf ) ≡ E

{(
Rf +

1

1 + B
[
R (B, Rf ) +G−1ε−Rf

])−γ (
R (B, Rf ) +G−1ε−Rf

)}
= 0.

(21)

To analyze the general equilibrium relationship between B and Rf , it is useful to know the

signs of the partial derivatives of f (B, Rf ) with respect to B and Rf . As shown in Appendix

A, it is straightforward to prove the following lemma.

Lemma 2
∂f(B,Rf)

∂B > 0.

The sign of
∂f(B,Rf)

∂Rf
is more nuanced. To analyze the sign of

∂f(B,Rf)
∂Rf

, we define Rinf , as

the infimum of the adjusted gross risky rate of return on capital, R, over all possible values

of B ≥ 0 and ε.

Definition 1 Rinf ≡ infB≥0,ε R, which equals α
(1−α)β

+ (1− δ + inf ε)G−1 > 0.

Along a balanced growth path, government bonds can be rolled over forever if and only

if Rf ≤ 1, so we focus our attention only on situations with Rf ≤ 1. Provided that the

distribution of ε is non-degenerate, the absence of arbitrage opportunities implies Rinf < Rf .

The following lemma presents a sufficient condition for
∂f(B,Rf)

∂Rf
< 0.
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Lemma 3 If Rf ≤ 1 and γ < Λ ≡ 1− ζβ
1−βζ

(1−Rinf)

1+ α
1−α

ζ
1

1−Rinf
, then

∂f(B,Rf)
∂Rf

< 0.

Five comments are in order. First, the upper bound Λ in this lemma is a function

only of the parameters of the model. Second, since 0 ≤ ζ ≤ 1, β ≤ 1
2
, and Rinf > 0, the

upper bound, Λ, is positive. Third, the condition on γ in Lemma 3 is a sufficient, but not

necessary, condition, so
∂f(B,Rf)

∂Rf
< 0 for a larger set of values of γ than specified in this

lemma. Fourth, if the conditions in Lemma 3 hold, so that
∂f(B,Rf)

∂Rf
< 0 for all Rf ∈ (0, 1],

then for any given B, there is at most one value of Rf ∈ (0, 1] for which f (B, Rf ) = 0; if

such a value Rf exists, we denote it as Rf (B). In particular, if f (0, 1) < 0, then Rf (0) < 1;

if f (0, 1) = 0, then Rf (0) = 1; and if f (0, 1) > 0, then Rf (0) > 1, in which case there is no

value of B ≥ 0 for which Rf (B) = 1.17 Fifth, in the case in which ζ = 0, the upper bound

on γ becomes particularly simple: Λ = 1
1−Rinf

.

The following proposition is a direct consequence of Lemmas 2 and 3.

Proposition 1 Whenever Rf ≤ 1 and if γ < Λ, then Rf is an increasing function of B,

which we denote as Rf (B).

With the exception of Proposition 3, all propositions that follow assume that R′
f (B) > 0

whenever Rf ≤ 1. Proposition 1 provides a sufficient condition for this assumption to be

true, namely, γ < Λ. Since this condition is sufficient, but not necessary, for the results of

these later propositions, they potentially apply to a larger set of economies than the set of

economies for which γ < Λ.

The fiscal authority can directly control the normalized value of government bonds out-

standing, bt ≡ Bt

Gt , which is constant along a balanced growth path. However, along a

balanced growth path, we express the marginal product of capital in equation (15) and asset

returns in equations (18) and Proposition 1 as functions of the bond-capital ratio, B, and

we will treat B as a choice variable of the fiscal authority.18

17Note that f (0, 0) = E
{
R1−γ

}
> 0 and that f (0, x) is continuous in x. Therefore, since

∂f(B,Rf )
∂Rf

< 0

for Rf ∈ (0, 1], we can deduce that if f (0, 1) ≤ 0, there is a unique Rf ∈ (0, 1] such that f (0, Rf ) = 0.

Alternatively, since
∂f(B,Rf )

∂Rf
< 0 for all Rf ∈ (0, 1], if f (0, 1) > 0, there is no value of Rf ∈ (0, 1] for which

f (B, Rf ) = 0 for any positive value of B. That is, if f (0, 1) > 0, then the equilibrium value of Rf must
exceed one.

18To find the value of b that corresponds to a chosen value of B, first use f (B, Rf ) = 0 from equation (21)
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The following proposition shows that when R′
f (B) > 0, an increase in B reduces the value

of k along a balanced growth path.

Proposition 2 If R′
f (B) > 0, then along a balanced growth path, dk

dB < 0.

5 Dynamic Efficiency and the Feasibility of Rollover

The link between dynamic inefficiency and the feasibility of rollover is particularly stark in

deterministic economies because Rf , the adjusted gross riskfree interest rate equals R, the

adjusted gross rate of return on capital. If Rf = R < 1, then the economy is dynamically

inefficient and, since Rf < 1, government bonds can be rolled over forever; alternatively,

if Rf = R > 1, then the economy is dynamically efficient and, since Rf > 1, government

bonds cannot be rolled over forever.19 However, in stochastic economies, Rf and R generally

differ since R is stochastic. In such economies, there are parameter configurations for which

E {lnR} > 0, indicating that the economy is dynamically efficient and nevertheless, Rf ≤ 1

so that at least a small amount of government bonds can be rolled over forever.

As we show in Section 6, the situation with Rf = 1 is particularly interesting. The

following proposition presents a class of economies with dynamically efficient balanced growth

paths along which Rf = 1 so that government bonds can be rolled over forever.

Proposition 3 Assume that the distribution of ε is non-degenerate and that (1− δ + εinf)G
−1 ≥

0. Also, assume that ζ = 0, γ = 1, and 1
2
< α

(1−α)β
< 1− (1− δ)G−1. Then for some B > 0

there is a balanced growth with Rf = 1 and E {lnR} > 0 so that the economy is dynamically

efficient.

The purpose of Proposition 3 is to provide a completely specified example of a dynamically

efficient economy in which Rf = 1 so that government bonds can be rolled over forever

without primary surpluses. The assumptions that γ = 1 and ζ = 0 are not necessary for

to express Rf as a function of B, as in Proposition 1. Then use the values of B and Rf along with equation
(15) to determine the value of k associated with the given value of B. Finally, use the values of k and B to
compute the normalized amount of bonds outstanding along a balanced growth path as b = Bk.

19In the borderline case in which Rf = R = 1, the economy is dynamically efficient and yet government
bonds can be rolled over forever. This departure from the association between dynamic inefficiency and the
feasibility of rolling over government bonds forever in deterministic economies is a knife-edge case.
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this finding. The quantitative application in Section 7 presents examples, for various values

of γ different than 1, and values of ζ equal to 0 and 1, of dynamically efficient balanced

growth paths in which government bonds can be rolled over forever.

6 Maximum and Optimal Amounts of Sustainable Gov-

ernment Debt

In this section, we analyze two questions about sustainable levels of government debt. First

we address a positive question: what is the maximum sustainable value of B along a balanced

growth path? Then we address a normative question: what is the sustainable value of B

that maximizes utility along a balanced growth path? Remarkably, we find that utility

along a balanced growth path is maximized by the maximum sustainable value of B.

Definition 2 A constant value of B along a balanced growth path is sustainable if govern-

ment debt can be rolled over forever at the riskfree interest rate without any primary budget

surpluses in the future. Define Bmax as the maximum sustainable value of B.

Remark 1 Along a balanced growth path with constant Rf , a constant value of B is sus-

tainable if and only if Rf ≤ 1.

Proposition 4 If R′
f (B) > 0 whenever Rf (B) ≤ 1, then

1. if Rf (0) ≥ 1, then Bmax = 0.

2. if Rf (0) < 1, then

(a) Bmax is the unique root of Rf (B) = 1; equivalently, f(Bmax, 1) = 0

(b) Bmax ≤ B̂ ≡ max
{
0, (1−α)β

α
− 1
}

is finite

(c) B is sustainable if and only if 0 ≤ B ≤ Bmax.

Corollary 1 If R′
f (B) > 0 whenever Rf (B) ≤ 1, then Bmax is invariant to ζ.

24



The parameter ζ appears only in the transfers to young consumers. Along a balanced

growth path the normalized value of transfers is τ = τt
Gt = ζ (g − rf )

B
GtN

= ζ (g − rf )Bk.

Proposition 4 implies that either Bmax = 0 or g − rf = 0. In either case, transfers are zero,

and hence ζ is irrelevant when B = Bmax.
20

Proposition 4 shows that if Bmax > 0, then Rf = 1 when B = Bmax. The following

proposition states that if none of the seignorage revenue is wasted (ζ = 1), then a marginal

increase in B reduces expected aggregate consumption.

Proposition 5 Assume that ζ = 1 and suppose that R′
f (B) > 0 whenever Rf (B) ≤ 1.

Along a balanced growth path with Rf = 1, we have dE{c}
dB

< 0, where E{c} is the expected

value of normalized aggregate consumption per effective unit of labor, (Cy
t + Co

t )/G
t.

Proposition 5 implies that in the left neighborhood of B = Bmax, a marginal increase in

B reduces expected aggregate consumption (in the absence of waste). Nevertheless, as we

show in the remainder of this section, an increase in B increases welfare whenever B < Bmax.

As in Blanchard (2019), Falkenheim (2022), Ball and Mankiw (2023) and Kocherlakota

(2023b), our measure of welfare is the utility of consumers along a balanced growth path.

Definition 3 Define ut ≡ Ut − t lnG, which is constant along a balanced growth path. The

optimal sustainable value of B along any balanced growth path is arg max
B∈[0,Bmax]

u(B) .

To evaluate utility along a balanced growth path for a given value of B, define w ≡ Wt

Gt =

(1− α) kα and use the expression for Ut in equation (8) along a balanced growth path to

obtain21

u(B) = lnw + ln

(
1 +

τt
Wt

)
+

β

1− γ
lnE

{
R1−γ

a

}
+ constant. (22)

The following definition will be useful in analyzing the impact of a change in the bond-

capital ratio, B, on u (B).
20Note that f(B, Rf ) in equation (21) depends on ζ only through R in equation (18). When Rf = 1,

R(B, Rf ) is invariant to ζ and hence f(B, Rf ) is invariant to ζ.
21Substitute cyt = (1− β) (Wt + τt) and cot+1 = (1 + ra,t+1)β (Wt + τt) into equation (8) to obtain Ut =

lnWt+ln
(
1 + τt

Wt

)
+ β

1−γ lnEt

{
(1 + ra,t+1)

1−γ
}
+constant. Subtract lnGt from both sides of the resulting

equation and use u = Ut − lnGt and lnw = lnWt − lnGt to obtain equation (22).
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Definition 4 Ω ≡ [1 + B + βζ (Rf − 1)B]G.

To interpret Ω, note that equation (15) can be rewritten22 as αkα−1 = α
(1−α)β

Ω , which

implies that Ω is proportional to the marginal product of capital, αkα−1.

Proposition 6 Assume that R′
f (B) > 0 whenever Rf ≤ 1. If Rf ≤ 1, then

u′(B) = 1

Ω
(+)

1

Rf
(+)


(1−Rf )

(
1− βζ

B
1 + B

)
︸ ︷︷ ︸

(+)

 α

1− α

dΩ

dB︸ ︷︷ ︸
(+)

+ BGβ
dRf

dB︸ ︷︷ ︸
+


+

1

1 + B
βζGRf︸ ︷︷ ︸
(+)

(1−Rf ) + (1− ζ)BRfGβ
dRf

dB︸ ︷︷ ︸
(+)


.

Therefore, if Rf ≤ 1, then u′(B) ≥ 0 with strict inequality unless Rf = 1 and (1− ζ)B = 0.

As shown in Lemma 8 in Appendix A, an increase in B has opposing effects on lnw

and β
1−γ

lnEt {R1−γ
a }. An increase in B decreases the capital stock, thereby reducing lnw

but increasing the marginal product of capital, which increases rates of return and hence

increases β
1−γ

lnEt {R1−γ
a }. Despite these opposing effects, whenever Rf ≤ 1, the impact of

an increase in B on utility is non-negative, as stated in Proposition 6.

Corollary 2 below, which follows from Proposition 6, provides a simple expression for

u′ (B) in the case with ζ = 0. This expression allows us to show how the opposing effects of

a decrease in the wage and an increase in the rate of return on capital are related through

the factor price frontier in a way that the utility-increasing effect of the increase in rates of

return dominates the utility-decreasing effect of the reduction in the wage.

Corollary 2 Assume that R′
f (B) > 0 whenever Rf ≤ 1. If ζ = 0 and Rf ≤ 1, then

u′(B) = β

1 + B
1

Rf

[
(1−Rf )

α

(1− α) β
+ BdRf

dB

]
≥ 0,

with strict inequality unless Rf = 1 and B = 0.

22Use the fact that g − rf = (1 + g)− (1 + rf ) = G−GRf = G (1−Rf ).
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Corollary 2 is proved formally in Appendix A. Here we provide a heuristic derivation

of u′ (B) to illustrate how the welfare-decreasing impact of the decrease in wage income is

dominated by the welfare-increasing impact of the increase in rates of return on capital and

bonds, when ζ = 0 and Rf ≤ 1. To demonstrate that the main features of u′(B) do not

depend on Epstein-Zin-Weil utility with IES equal to one, here we consider an additively

separable two-period utility function u = uy (cy) + E {uo (co)}, where, for i = y, o, the

utility function ui (ci) is strictly increasing and strictly concave with limci→0 u
i′ (ci) = ∞

and limci→∞ ui′ (ci) = 0. For simplicity, we also assume for the purposes of this heuristic

derivation that G = 1.

The heuristic derivation proceeds in the three steps. First, for an individual consumer

who has optimally chosen to consume cy when young and co when old, the envelope theorem

implies that the impact on utility of a change in B equals the change in utility if the consumer

reduces cy by the amount of lost wage income in the first period and increases co by the

additional return on the K
N

units of capital and B
N

units of bonds held in the second period.

That is,

u′(B) = uy′ (cy)
dW

dB
+ E {uo′ (co)}

(
K

N

dR

dB
+

B

N

dRf

dB

)
, (23)

where, in addition to the envelope theorem, we have used the fact that K
N

dR
dB + B

N

dRf

dB is

non-stochastic in our model.

Second, use the factor-price frontier, N dFN

dK
+K dFK

dK
= 0, which implies dW

dB = −K
N

dR
dB , to

obtain23

u′(B) = −uy′ (cy)
K

N

dR

dB
+ E {uo′ (co)} K

N

dR

dB
+ E {uo′ (co)} B

N

dRf

dB
. (24)

Interestingly, the first and second terms on the right hand side of equation (24) are both

proportional to K
N

dR
dB , though the first term is multiplied by −uy′ (cy) < 0 while the second

term is multiplied by E {uo′ (co)} > 0.

23Since G = 1 and F (K,N) is homogeneous of degree one in K and N , Euler’s theorem implies NFN +
KFK = F . Differentiating this equation with respect to K yields N dFN

dK + K dFK

dK = 0. Use FN = W ,

R = FK + 1 − δ + ε, and hence dR
dK = dFK

dK to obtain dW
dK = −K

N
dR
dK , and finally the chain rule to obtain

dW
dB = dW

dK
dK
dB = −K

N
dR
dK

dK
dB = −K

N
dR
dB .
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Third, to see which of the first two terms in equation (24) is dominant, use the first-order

condition for the optimal intertemporal allocation of consumption, along with the fact that

Rf is not stochastic, to obtain uy′ (cy) = RfE {uo′ (co)}, which implies

u′(B) = uy′ (cy)

[(
1

Rf

− 1

)
K

N

dR

dB
+

1

Rf

B

N

dRf

dB

]
. (25)

In situations in which government bonds can be rolled over forever, that is, when Rf ≤ 1,

we have
(

1
Rf

− 1
)

K
N

dR
dB ≥ 0, because E {uo′ (co)} ≥ uy′ (cy) implies that the change in wage

income in the first period, dW
dB = −K

N
dR
dB , reduces u by no more than the equal-sized increase

in income accruing to initial capital in the second period, K
N

dR
dB , increases u.

To express equation (25) in a form similar to the expression in Corollary 2, use (1) G = 1,

which implies k = K
N
, and (2) dR

dB = α
(1−α)β

(from equations (17) and (18) with ζ = 0), to

obtain24

u′(B) = uy′ (cy) k
1

Rf

[
(1−Rf )

α

(1− α) β
+ BdRf

dB

]
. (26)

If the time separable utility function is logarithmic, specifically uy (cy) = (1− β) ln cy

and uo (co) = β ln co, so that IES = 1, the expression for u′(B) in equation (26) is identical

to the expression in Corollary 2, which was derived for Epstein-Zin-Weil preferences with

IES = 1.25

Proposition 7 If R′
f (B) > 0 whenever Rf (B) ≤ 1, then arg max

B∈[0,Bmax]
u(B) equals Bmax,

that is, utility per effective unit of labor along a balanced growth path is maximized by the

maximum sustainable value of B.
24Equation (26) states that the sign of u′ (B) depends on Rf , but not on R. In contrast, Blanchard (2019)

shows that the sign of the impact of an increase in debt on welfare depends on both the riskfree rate and
the risky rate of return on capital. This difference arises because in our model, the effect of a change in
the capital stock on the marginal product of capital (the second derivative of the production function with
respect to K) is non-stochastic. In addition to making the sign of u′ (B) depend only on the sign of 1−Rf ,
this feature allows us to derive exact expressions for the marginal impact on welfare of an increase in B,
without relying on approximations.

25To prove this statement, it suffices to prove that β
1+B = uy′ (cy) k = 1−β

cy k. Since ζ = 0 and G = 1,

cy = (1− β)w and hence 1−β
cy = 1

w ; also βNw = K + B = (1 + B)K, which implies βw = (1 + B) k and

hence k = βw
1+B . Therefore, 1−β

cy k = 1
w

βw
1+B = β

1+B , which, as stated at the beginning of this footnote, suffices
to prove the statement.
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Since the proof of Proposition 7 is both simple and instructive, we present it here. If

Rf (0) ≥ 1, then Bmax = 0 and the closed interval [0,Bmax] is a singleton so argmax[0,Bmax] u(B)

equals Bmax = 0. Alternatively, if Rf (0) < 1, then Bmax > 0 and Statement 2c of Proposi-

tion 4 implies all B in [0,Bmax] are sustainable. Proposition 6 implies that u′(B) > 0 for all

B ∈ [0,Bmax), so argmaxB∈[0,Bmax] u(B) is a corner solution with B = Bmax.

At the corner solution, where B = Bmax, we have Rf = 1 and therefore when ζ = 1,

Proposition 5 implies dE{c}
dB < 0. This observation highlights an important difference between

deterministic economies and stochastic economies. In deterministic economies, government

bonds can be rolled over forever without primary surpluses only if the economy is dynamically

inefficient, so the reduction of capital induced by an increase in government bonds actually

increases aggregate consumption. However, in stochastic economies, government bonds can

be rolled over forever without primary surpluses in some dynamically efficient economies. In

those cases, the decrease in capital reduces expected aggregate consumption, which would

decrease welfare. But the additional risk sharing enabled by an increase in government

bonds increases welfare. Remarkably, the increase in welfare resulting from increased risk

sharing offsets the decrease in welfare from reduced expected aggregate consumption when

B = Bmax. Therefore, the marginal impact on welfare of an increase in government bonds is

zero if ζ = 1; however, as discussed immediately below, if 0 ≤ ζ < 1, so that the government

wastes some of its seignorage revenue, the marginal impact on welfare is positive.

Corollary 1, which states that Bmax is invariant to ζ, implies that the main result of the

paper, Proposition 7, does not depend on whether the government uses its seignorage to

make transfers to young consumers or simply wastes these resources. However, the value

of ζ determines whether u′ (Bmax) is positive or zero. Specifically, Proposition 6 implies

that if Bmax > 0, then u′ (Bmax) = 1
Ω
(1− ζ)BmaxGβ

dRf

dB , which is positive if 0 ≤ ζ < 1

and is zero if ζ = 1. Recall that in period t the amount of seignorage is (g − rf )Bt

and that a fraction 1 − ζ of this seignorage is wasted by the government. Therefore26,

κ (B) ≡ (1− ζ) [1−Rf (B)]BGk is the amount of seignorage wasted per unit of effective

labor along a balanced growth path. Differentiating κ (B) with respect to B and evalu-

26Dividing the wasted resources (1− ζ) (g − rf )Bt = (1− ζ)G (1−Rf )Bt by the effective units of labor
GtN and using B = Bt

Kt
, the amount wasted resources per unit of effective labor along a balanced growth

path is κ (B) ≡ (1− ζ) [1−Rf (B)]BGk.
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ating this derivative at B = Bmax (where Rf = 1) yields κ′ (B) = − (1− ζ)BmaxGk
dRf

dB ,

so u′ (Bmax) = β
Ωk

[−κ′ (B)]. Therefore, for B in the neighborhood just below Bmax, the

(approximate) marginal utility associated with an increase in B, u′ (Bmax), is proportional

to the reduction in waste associated with an increase in Bmax,
β
Ωk

[−κ (B)]. Provided that

0 ≤ ζ < 1, both the marginal utility, u′ (Bmax), and the reduction in waste, −κ′ (B), are

positive. However, if ζ = 1, there is no waste of resources and both u′ (Bmax) and κ′ (Bmax)

equal zero. Regardless of the presence of waste (0 ≤ ζ < 1) or the absence of waste (ζ = 1),

the optimal sustainable value of B is Bmax.

7 Quantitative Application

In this section, we provide a quantitative illustration of (a) Bmax, which is the maximum

sustainable value of B as well as the welfare-maximizing value of B, and (b) the value of B ,

denoted B∗, for which E {lnR} = 0. Any value of B greater than or equal to B∗ will lead to

a dynamically efficient balanced growth path.

We set the capital share α equal to 0.33. We interpret a “period” as 30 years and set

β = 0.353, so that the annualized discount factor,
(

β
1−β

)1/30
, is 0.98 per year, which implies

an annual discount rate of 2% per year. We assume that labor-augmenting productivity

grows at the rate of 1% per year, so G = 1.35. For risk aversion we consider γ = 1, 3, 8,

and 10. Finally, we model the durability shock, ε, as a lognormal variable minus a constant,

and choose the parameters so that when the ratio of government bonds to the capital stock,

B, equals 0.5, E {(1 + r)} = E {GR} matches a target value of (1 +m)30, where m = 0.03

is an annualized rate of return on unlevered equity and sd {(1 + r)} = sd {GR} matches a

target value of s
√
30, where s is an annualized standard deviation of the rate of return on

unlevered equity. Further details of the calibration, including a discussion of the implied

mean and standard deviation of the rate of return on levered equity, are contained in Online

Appendix C.

Tables 1 and 2 report for ζ = 0 and ζ = 1, respectively, Bmax and B∗. In both tables,

some of the cells for low values of s are blank. In the section of each table that reports Bmax,

a blank indicates that Rf > 1 for all nonnegative values of B; thus, there is no positive value
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ζ = 0

Bmax B∗

γ = 1 γ = 3 γ = 8 γ = 10 γ = 1 γ = 3 γ = 8 γ = 10
s = 0.02
s = 0.04 0.042 0.062
s = 0.06 0.026 0.122 0.150
s = 0.08 0.075 0.193 0.224
s = 0.10 0.017 0.120 0.252 0.285
s = 0.12 0.043 0.162 0.301 0.334
s = 0.14 0.068 0.199 0.342 0.374 0.013 0.013 0.013 0.013
s = 0.16 0.091 0.232 0.376 0.408 0.031 0.031 0.031 0.031
s = 0.18 0.113 0.261 0.405 0.435 0.049 0.049 0.049 0.049
s = 0.20 0.133 0.286 0.429 0.459 0.066 0.066 0.066 0.066
s = 0.22 0.152 0.309 0.450 0.478 0.083 0.083 0.083 0.083

Table 1: Bmax is the maximum sustainable, as well as optimal, value of B. B∗ is the value
of B for which E {lnR} = 0. γ denotes risk aversion, and s is the annualized standard
deviation of the return on capital in an economy with B = 0.5. ζ is set to zero.

ζ = 1

Bmax B∗

γ = 1 γ = 3 γ = 8 γ = 10 γ = 1 γ = 3 γ = 8 γ = 10
s = 0.02
s = 0.04 0.042 0.062
s = 0.06 0.026 0.122 0.150
s = 0.08 0.075 0.193 0.224
s = 0.10 0.017 0.120 0.252 0.285
s = 0.12 0.043 0.162 0.301 0.334
s = 0.14 0.068 0.199 0.342 0.374 0.013 0.015 0.018 0.018
s = 0.16 0.091 0.232 0.376 0.408 0.032 0.037 0.043 0.044
s = 0.18 0.113 0.261 0.405 0.435 0.051 0.059 0.068 0.069
s = 0.20 0.133 0.286 0.429 0.459 0.069 0.080 0.091 0.092
s = 0.22 0.152 0.309 0.450 0.478 0.087 0.100 0.112 0.114

Table 2: Bmax is the maximum sustainable, as well as optimal, value of B. B∗ is the value
of B for which E {lnR} = 0. γ denotes risk aversion, and s is the annualized standard
deviation of the return on capital in an economy with B = 0.5. ζ is set to one.
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of B that can be rolled over forever. In the section of each table that reports B∗, a blank

indicates that E {lnR} > 0 so the economy is dynamically efficient for all non-negative values

of B. In all cases in which B∗ > 0,Bmax > B∗. For values of B in the interval [B∗,Bmax], the

economy is dynamically efficient and Rf ≤ 1 so that government bonds can be rolled over

forever. Both tables show that as risk aversion increases, there is a significant gap between

Bmax and B∗, so there is a non-trivial set of parameter values for which government bonds

can be rolled over forever in dynamically efficient economies. For instance, in Table 1 when

γ = 10 and s = 0.22, B∗ = 0.083, while Bmax = 0.478. Therefore, for any value of B between

0.083 and 0.478, the balanced growth path is dynamically efficient (because B exceeds 0.083)

and Rf < 1 (because B is less than 0.478) so government bonds can be rolled over forever.

To interpret the magnitude of the values of B in Tables 1 and 2, recall that empirically

the level of government debt is often expressed as a multiple of GDP, while the values of B

are expressed as multiples of the capital stock. For an economy in which the capital-output

ratio is 2, the debt-GDP ratio is twice as high as the debt-capital ratio, B. In such an

economy, the values of B in Tables 1 and 2, which range from 0 to 0.478, correspond to

debt-GDP ratios ranging from 0 to 0.956.

Comparison of Tables 1 and 2 shows the impact of ζ. Overall, the tables show that

the impact of ζ on B∗ is quantitatively small and, as stated in Corollary 1, ζ is completely

irrelevant for the determination of Bmax, which is the welfare-maximizing sustainable value

of B.

Now we look at the tables in more detail. First consider Bmax, which is both the

maximum and the optimal sustainable value of B. Since Rf = 1 when B = Bmax, the transfer

to young consumers, ζ (g − rf )Bk = ζ (1−Rf )GBk, equals zero and hence the expected

adjusted gross rate of return on capital in equation (18) becomes R = α
(1−α)β

(1 + B) +

(1− δ)G−1, which is independent of risk aversion, γ, and the volatility parameter, s. An

increase in γ or an increase in s increases the risk premium on capital relative to the riskfree

rate. With an unchanged R, the increased risk premium implies that Rf falls. To maintain

Rf = 1, the value of B must increase to reduce capital, thereby increasing R and Rf .

Therefore, moving rightward in each row in the Bmax section of each table, γ increases and

hence the maximum sustainable B increases; similarly, moving down each column in this
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section of these tables, s increases and the maximum sustainable B increases. As implied

by Corollary 1, the sections of Tables 1 and 2 that present Bmax are identical to each other.

Now, consider B∗, which is characterized by E
{
ln(R + ε)

}
= 0. In Table 1, ζ = 0, so

that the transfer to young consumers, ζ (g − rf )Bk, is zero. Hence, as discussed above,

equation (18) implies that R = α
(1−α)β

(1 + B) + (1− δ)G−1, which is independent of γ and

s. Therefore, E
{
ln(R + ε)

}
is independent of γ, so B∗ is independent of γ for given s.

By contrast, although an increase in s also has no effect on R, it reduces E
{
ln(R + ε)

}
because ln (·) is a strictly concave function. In order to restore E

{
ln(R + ε)

}
= 0 when s is

increased, R must increase, so B must increase to reduce capital and increase the marginal

product of capital. This effect is illustrated in Table 1 by the increasing values of B∗ as one

goes down each column in the section of the table devoted to B∗.

In Table 2, where ζ = 1, equation (18) implies that R = α
(1−α)β

[1 + B + β (Rf − 1)B] +

(1− δ)G−1. Thus, with ζ = 1, R is an increasing function of Rf , which is a decreasing

function of γ and s, since both a higher coefficient of relative risk aversion, γ, and higher

volatility, s, lead consumers to seek safety in riskfree government bonds, thereby driving Rf

downward. Thus, for a given value of s, an increase in γ reduces Rf and hence reduces

R, so to maintain E
{
ln(R + ε)

}
= 0, B must increase to increase R. Alternatively, for

given values of γ, an increase in s reduces E
{
ln(R + ε)

}
through two channels. First,

the concavity of ln (·) implies that for given R, an increase in s reduces E
{
ln(R + ε)

}
.

Second, as discussed above, an increase in s reduces Rf and hence reduces R. To maintain

E
{
ln(R + ε)

}
= 0, B must increase to increase R. Finally, note that the nonzero entries for

B∗ in Table 2 are higher than in Table 1 because the positive transfers to consumers when

ζ = 1 in Table 2 increase saving, thereby increasing the capacity of saving to absorb bonds

without driving the capital stock low enough to increase E
{
ln(R + ε)

}
above zero.

8 Concluding Remarks

In this paper, we develop an overlapping-generations model to analyze sustainable levels of

the ratio of government bonds to the capital stock that can be maintained forever without

any future primary government surpluses. To make the analysis easily tractable, the model
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confines exogenous shocks to the depreciation rate of capital, which is additively separable

from the production function so the labor income of young consumers is non-stochastic

(though Online Appendix B shows that this model is isomorphic to a model with shocks

to the production function). In addition, since (1) consumers have Epstein-Zin-Weil utility

functions over their two-period lifetimes with the intertemporal elasticity of substitution set

equal to one, and (2) consumers earn labor income (and possibly receive transfers) only

in the first period of life, aggregate saving of young consumers is a constant fraction of

their income in the first period of life, and hence the evolution of aggregate asset holdings,

comprising capital and government bonds, is non-stochastic. Nevertheless, the rate of return

on capital is stochastic because it includes the stochastic depreciation rate. Along a balanced

growth path, aggregate wage income, the aggregate capital stock, and the aggregate amount

of government bonds outstanding all grow at rate g, which is the constant rate of labor-

augmenting productivity growth. Therefore, the balanced growth path features constant

values of aggregate capital per unit of effective labor, the bond-capital ratio, the riskfree

interest rate, and the expected rate of return on capital. Provided that the net riskfree

interest rate, rf , is less than or equal to g along a balanced growth path, the bond-capital

ratio is sustainable.

Our model is designed so that both rf and g are constant along a balanced growth path.

Because we are interested in sustainable bond-capital ratios along a balanced growth path,

we confine attention to balanced growth paths that feature rf ≤ g. Along such paths, the

government can roll over its bonds forever without primary budget surpluses and without

the bond-capital ratio increasing. There is no chance that young consumers will be unwilling

or unable to purchase the bonds that the government issues to rollover its debt, so there is no

chance of default on government bonds. Therefore, the market interest rate on government

bonds equals the riskfree interest rate. In addition, when rf ≤ g, the value of government

bonds at a given point in time is not the expected present value of future primary surpluses;

along balanced growth paths with rf ≤ g, the value of outstanding government bonds is

positive and yet all future primary deficits, which equal (g−rf )Bt at time t, are non-negative

and hence all future primary surpluses are non-positive.

This paper has two major findings—one positive and one normative. We focus on levels
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of the bond-capital ratio that can be sustained forever without any future primary surpluses.

The positive finding is that the maximum sustainable bond-capital ratio along a balanced

growth path is attained when rf = g. Given that both rf and g are constant along balanced

growth paths, this finding is not surprising. However, the normative finding is surprising

(to us, at least). The sustainable bond-capital ratio that maximizes utility along a balanced

growth path is the maximum sustainable value of this ratio, that is, the ratio that attains

rf = g. Briefly, an increase in the amount of bonds outstanding reduces capital, which

reduces aggregate wage income and increases the marginal product of capital and hence

increases the rate of return on capital. The reduction in wage income reduces welfare and

the increase in the rate of return on capital increases welfare. It follows from the factor-price

frontier that the reduction in wage income equals the increase in income accruing to initial

capital. Whenever rf ≤ g, the welfare-increasing impact of the increased rate of return on

capital, which occurs in the second period of life, dominates the welfare-decreasing impact

of the reduction in wage income, which occurs during the first period of life. Thus, starting

from a balanced growth path with rf < g, an increase in the bond-capital ratio leads to a

different balanced growth path with a higher level of welfare. Focusing on long-run welfare

along balanced growth paths, it is optimal to increase the bond-capital ratio, and thereby

increase rf , until rf = g, at which point the bond-capital ratio equals its maximal sustainable

level.

We designed the model to have both constant rf and g along balanced growth paths so

that the assessment of the sustainability of a given bond-capital ratio would be as straightfor-

ward as possible. But what if, for instance, the growth rate of labor-augmenting productivity,

g, were random. In particular, what if Rf ≡ 1+rf
1+g

were random, sometimes greater than

one and sometimes less than one? Then there might be some realization paths with Rf

persistently greater than one, so that the stock of government bonds eventually exceeds the

amount that young households would or could purchase. In such a framework, the notion of

sustainability is more nuanced (which is why we designed the model to include constant rf

and g). We leave it as an open question how to characterize sustainability in that framework,

and, in particular, how to characterize an appropriate notion of maximal borrowing. If there

is some suitable notion of maximal borrowing, does the normative result, that the optimal
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government borrowing policy is the same as the maximal borrowing policy, generalize beyond

the model in this paper? This generalization of the primary normative result would likely

hold if, as in the current paper, whenever rf < g, the welfare-increasing effect of an increased

rate of return to capital exceeds the welfare-reducing effect of a reduced wage income for

any sustainable borrowing policy.
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A Proofs

Proof of Lemma 1. The first-order condition for λ in equation (20) implies 0 =Et

{
(1−λ)(R−Rf)
(λRf+(1−λ)R)

γ

}
= Et

{
λRf+(1−λ)R−Rf

(λRf+(1−λ)R)
γ

}
= Et

{
Ra−Rf

Rγ
a

}
= Et {R1−γ

a } − RfEt {R−γ
a }, which implies Rf =

Et{R1−γ
a }

Et{R−γ
a } .

To prove Lemmas 2 and 3, which are used to prove Proposition 1, we present the following

two new Lemmas and a new corollary.

Lemma 4 If Rf ≤ 1, then B
(
Rf

E{R−γ−1
a }

E{R−γ
a } − 1

)
≤ 1−Rinf .

Proof of Lemma 4. Assume that Rf ≤ 1. Define A ≡ E{R−γ−1
a }

E{R−γ
a } =

[
E{R−γ

a }
E{R−γ−1

a }

]−1

=[
E

{
R−γ−1

a

E{R−γ−1
a }Ra

}]−1

, soA−1 = E

{
R−γ−1

a

E{R−γ−1
a }Ra

}
is a weighted average of Ra and hence ex-

ceeds infε Ra =
B

1+BRf +
1

1+BRinf . Therefore, A < 1
B

1+BRf+
1

1+BRinf
and RfA <

Rf
B

1+BRf+
1

1+BRinf
,

which is increasing in Rf . Since Rf ≤ 1, we have RfA < 1
B

1+B+ 1
1+BRinf

= 1+B
B+Rinf

. Therefore,

B
(
Rf

E{R−γ−1
a }

E{R−γ
a } − 1

)
= B (RfA− 1) ≤ B

(
1+B

B+Rinf
− 1
)
= B

(
1−Rinf

B+Rinf

)
= B

B+Rinf
(1−Rinf) ≤

1−Rinf .

Lemma 5 Suppose x > 0 is a non-degenerate random variable with finite moments. Define

Z ≡ [E {x−γ}]2 − E {x−γ−1}E {x1−γ}. Then Z < 0.

Proof of Lemma 5. Rewrite Z as Z = E {x−γ}E {x−γ−1}
(

E{x−γ}
E{x−γ−1} −

E{x1−γ}
E{x−γ}

)
Observe

that Z has the same sign as
E{x−γ−1x}
E{x−γ−1} − E{x−γx}

E{x−γ} , which we write as E {g (x)x}−E {h (x)x},
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where g (x) ≡ x−γ−1

E{x−γ−1} and h (x) ≡ x−γ

E{x−γ} . Observe that E {g (x)} = 1 = E {h (x)}

and g(x)
h(x)

=
E{x−γ}
E{x−γ−1}

1
x
= A 1

x
, so g (x) = A 1

x
h (x) where A ≡ E{x−γ}

E{x−γ−1} > 0, which implies

g (x) ⋛ h (x) as x ⪋ A. Therefore, E {g (x)x} −E {h (x)x} =
∫∞
0

[g (x)− h (x)]xdF (x) =∫∞
0

[g (x)− h (x)] (x− A) dF (x) =
∫ A

0
[g (x)− h (x)] (x− A) dF (x) +∫∞

A
[g (x)− h (x)] (x− A) dF (x) < 0.

We present, without proof, the following corollary to Lemma 1, which follows immediately

from Lemma 5.

Corollary 3 E {R−γ
a } −RfE {R−γ−1

a } = 1

E{R−γ
a }

[
(E {R−γ

a })2 − E {R1−γ
a } {R−γ−1

a }
]
< 0.

Proof of Lemma 2. Partially differentiate

f (B, Rf ) ≡ E

{(
Rf +

1

1 + B
[
R (B, Rf ) +G−1ε−Rf

])−γ (
R (B, Rf ) +G−1ε−Rf

)}

in equation (21) with respect to B, and use R = R (B, Rf ) + G−1ε and Ra = Rf +
1

1+B

[
R (B, Rf ) +G−1ε−Rf

]
to obtain

∂f (B, Rf )

∂B
= −γ

−1

(1 + B)2
E
{
R−γ−1

a (R−Rf )
2}− γ

1

1 + B
E

{
R−γ−1

a

(
∂R (B, Rf )

∂B

)
(R−Rf )

}
+ E

{
R−γ

a

∂R (B, Rf )

∂B

}
.

Now use the fact that
∂R(B,Rf)

∂B = α
(1−α)β

[1− βζ + βζRf ] is non-stochastic to obtain
∂f(B,Rf)

∂B

= γ 1
(1+B)2E

{
R−γ−1

a (R−Rf )
2}+ ∂R(B,Rf)

∂B

[
−γE

{
R−γ−1

a
1

1+B (R−Rf )
}
+ E {R−γ

a }
]
and use

Ra −Rf = 1
1+B (R−Rf ) to obtain

∂f(B,Rf)
∂B = γ

(1+B)2E
{
R−γ−1

a (R−Rf )
2}

+
∂R(B,Rf)

∂B [−γE {R−γ−1
a (Ra −Rf )}+ E {R−γ

a }] =
γ

(1+B)2E
{
R−γ−1

a (R−Rf )
2} +

∂R(B,Rf)
∂B [−γ [E {R−γ

a } −RfE {R−γ−1
a }] + E {R−γ

a }] > 0,

where the inequality follows from
∂R(B,Rf)

∂B = α
(1−α)β

[1− βζ + βζRf ] > 0 and Corollary 3.

Proof of Lemma 3. Partially differentiate

f (B, Rf ) ≡ E
{(

Rf +
1

1+B

[
R (B, Rf ) +G−1ε−Rf

])−γ (
R (B, Rf ) +G−1ε−Rf

)}
in equa-

tion (21) with respect toRf , and useR = R (B, Rf )+G−1ε andRa = Rf+
1

1+B

[
R (B, Rf ) +G−1ε−Rf

]
to obtain

∂f(B,Rf)
∂Rf

=−γE

{
R−γ−1

a

(
1 + 1

1+B

[
∂R(B,Rf)

∂Rf
− 1

])
(R−Rf )

}
+E

{
R−γ

a

(
∂R(B,Rf)

∂Rf
− 1

)}
.

Now use
∂R(B,Rf)

∂Rf
= α

1−α
ζB to obtain

∂f(B,Rf)
∂Rf

=−γE
{
R−γ−1

a

(
1 + 1

1+B

[
α

1−α
ζB − 1

])
(R−Rf )

}
+
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E {R−γ
a }

(
α

1−α
ζB − 1

)
=−γ B

1+B

(
1 + α

1−α
ζ
)
E {R−γ−1

a (R−Rf )}+E {R−γ
a }

(
α

1−α
ζB − 1

)
. Now

use the fact Ra = Rf+
1

1+B (R−Rf ) to replace
1

1+B (R−Rf ) with Ra−Rf to obtain
∂f(B,Rf)

∂Rf

= −γB
(
1 + α

1−α
ζ
)
E {R−γ−1

a (Ra −Rf )}+ E {R−γ
a }

(
α

1−α
ζB − 1

)
= −γB

(
1 + α

1−α
ζ
)
[E {R−γ

a } −RfE {R−γ−1
a }] + E {R−γ

a }
(

α
1−α

ζB − 1
)
. To prove that

∂f(B,Rf)
∂Rf

< 0, it suffices to prove that −γB
(
1 + α

1−α
ζ
)
[E {R−γ

a } −RfE {R−γ−1
a }]

+ E {R−γ
a }

(
α

1−α
ζB − 1

)
< 0, or, equivalently, γB

(
1 + α

1−α
ζ
) [RfE{R−γ−1

a }
E{R−γ

a } − 1

]
< 1 −

α
1−α

ζB. Corollary 3 implies Rf
E{R−γ−1

a }
E{R−γ

a } −1 > 0, which, together with Lemma 4, implies 0 ≤

B
(
Rf

E{R−γ−1
a }

E{R−γ
a } − 1

)
≤ 1−Rinf since B ≥ 0. Therefore, γ

(
1 + α

1−α
ζ
)
B
(
Rf

E{R−γ−1
a }

E{R−γ
a } − 1

)
≤

γ
(
1 + α

1−α
ζ
)
(1−Rinf), so it suffices to the prove γ

(
1 + α

1−α
ζ
)
(1−Rinf) ≤ 1 − α

1−α
ζB, or,

equivalently,

γ <
1− α

1−α
ζB

1 + α
1−α

ζ

1

1−Rinf

. (A.1)

The absence of arbitrage opportunities impliesRf ≥ α
(1−α)β

[1 + B − βζ (1−Rf )B]+(1− δ + εmin)G
−1

= Rinf +
α

(1−α)β
[1− βζ (1−Rf )]B ≥ Rinf +

α
(1−α)β

(1− βζ)B, so we know that if Rf ≤ 1,

then Rinf+
α

(1−α)β
(1− βζ)B ≤ 1, which implies α

(1−α)β
(1− βζ)B ≤ 1−Rinf , or, equivalently,

since βζ < 1, α
1−α

ζB ≤ βζ
1−βζ

(1−Rinf). Therefore, 1− α
1−α

ζB ≥ 1− βζ
1−βζ

(1−Rinf), so the

condition in equation (A.1) will be satisfied if

γ <
1− βζ

1−βζ
(1−Rinf)

1 + α
1−α

ζ

1

1−Rinf

. (A.2)

Proof of Proposition 2. Use the definition of R (B, Rf ) in equation (18) and the statements

immediately following equation (18) that
∂R(B,Rf)

∂B > 0 and
∂R(B,Rf)

∂Rf
= α

(1−α)β
βζB ≥ 0

to obtain
dR(B,Rf)

dB =
∂R(B,Rf)

∂B +
∂R(B,Rf)

∂Rf
R′

f (B), which is positive if R′
f (B) > 0. Since

R (B, Rf ) = 1+r
G

and r = αkα−1 − δ + ε, we have that k is decreasing in R and hence is

decreasing in B.
To prepare for the proof of Proposition 3, we introduce and prove the following two

lemmas.

Lemma 6 Assume that the distribution of ε is non-degenerate and that (1− δ + εinf)G
−1 ≥

0. If Rf = 1, then
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1. B̂ ≡ max
{
0, (1−α)β

α
(1−Rinf)

}
≤ max

{
0, (1−α)β

α
− 1
}

2. Rinf +
α

(1−α)β
B̂ = max {Rinf , 1} ≥ 1

3. B ≤ B̂.

Proof of Lemma 6. Recall that Rinf ≡ infB≥0,ε R = α
(1−α)β

+ (1− δ + εinf)G
−1, so

Rinf ≥
α

(1− α) β
. (A.3)

Since Rf = 1, equations (17) and (18) imply that R = α
(1−α)β

(1 + B) + (1− δ + ε)G−1 ≥
α

(1−α)β
(1 + B) + (1− δ + εinf)G

−1 = Rinf +
α

(1−α)β
B, with strict inequality if ε > εinf , which

we summarize as

R ≥ Rinf +
α

(1− α) β
B, with strict inequality of ε > εinf . (A.4)

Since Rf = 1 and the distribution of ε is non-degenerate, the absence of arbitrage opportu-

nities implies that

Rinf < 1. (A.5)

Statement 1: Equation (A.3) implies B̂ ≡ max
{
0, (1−α)β

α
(1−Rinf)

}
≤ max

{
0, (1−α)β

α

(
1− α

(1−α)β

)}
= max

{
0, (1−α)β

α
− 1
}
. Statement 2: Rinf +

α
(1−α)β

B̂ =

Rinf +
α

(1−α)β
max

{
0, (1−α)β

α
(1−Rinf)

}
= Rinf + max {0, 1−Rinf} = max {Rinf , 1} ≥ 1.

Statement 3: Assume, contrary to what is to be proved, that B > B̂. Then equation

(A.4) implies R > Rinf +
α

(1−α)β
B̂ so Statement 2 implies R > 1, which contradicts Rinf < 1

in equation (A.5).

Lemma 7 Assume that the distribution of ε is non-degenerate and that (1− δ + εinf)G
−1 ≥

0. If Rf = 1 and α
(1−α)β

≥ 1
2
then

1. B ≤ R for all ε, with strict inequality for ε > εinf

2. Let x ≡ lnR. Then f (x) ≡ 1+B
B+exp(x)

is convex in x, with strict convexity when ε > εinf .

Proof of Lemma 7. Statement 1: Equation (A.4) in the proof of Lemma 6 implies B−R

≤ B−
(
Rinf +

α
(1−α)β

B
)
=
(
1− α

(1−α)β

)
B −Rinf , where the inequality is strict if ε > εinf . It
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suffices to prove that
(
1− α

(1−α)β

)
B − Rinf ≤ 0. Equations (A.3) and (A.5) in the proof of

Lemma 6 imply that α
(1−α)β

< 1, so Statement 3 of Lemma 6 implies
(
1− α

(1−α)β

)
B −Rinf ≤(

1− α
(1−α)β

)
B̂ −Rinf = B̂ −

(
α

(1−α)β
B̂ +Rinf

)
≤ B̂− 1 ≤ 0, where the final inequality follows

from Statement 2 of Lemma 6. It suffices to prove that B̂ ≤ 1, which follows from Statement

1 of Lemma 6 and the assumption α
(1−α)β

≥ 1
2
, so that max

{
0, (1−α)β

α
− 1
}
≤ 1.

Statement 2: Differentiate f (x) ≡ 1+B
B+exp(x)

with respect to x twice to obtain f ′ (x) =

− 1+B
[B+exp(x)]2

exp (x) and f ′′ (x) = 2 1+B
[B+exp(x)]3

[exp (x)]2− 1+B
[B+exp(x)]2

exp (x) = (2 exp (x)− [B + exp (x)])×
1+B

[B+exp(x)]3
exp (x). Therefore, since x ≡ lnR, f ′′ (x) has the same sign as exp (x) − B =

R− B ≥ 0, where the inequality follows from Statement 1 and is strict for ε > εinf . There-

fore, f ′′ (x) ≥ 0, with strict inequality if ε > εinf .

Proof of Proposition 3. First, we prove that there is some value of B between 0 and B∗

for which Rf = 1.

If B = 0, equation (18) when ζ = 0 implies that R = α
(1−α)β

+ (1− δ)G−1 < 1, where

the inequality follows from the assumption that α
(1−α)β

< 1− (1− δ)G−1. Since consumers

are risk averse and capital has a non-degenerate risk, Rf < R < 1 when B = 0. In

general, for any non-negative value of B, R = R + G−1ε = α
(1−α)β

(1 + B) + (1− δ)G−1 +

G−1ε ≥ α
(1−α)β

(1 + B) for all realizations of ε. Therefore, if B = B∗, where B∗ is such

that α
(1−α)β

(1 + B∗) = 1, then R ≥ 1 for all realizations of R and hence no-arbitrage implies

Rf ≥ 1. Therefore, there is some value of B between 0 and B∗ for which Rf = 1.

Now suppose that we have the value of B for which Rf = 1. Since Rf = 1 and γ = 1,

Lemma 1 directly implies that E {R−1
a } = 1, which, using Ra = 1

1+B (BRf +R) along with

Rf = 1, implies E
{

1+B
B+R

}
= 1. Using f (x) ≡ 1+B

B+exp(x)
defined in Statement 2 of Lemma

7 where x ≡ lnR, we have E {f (x)} = 1. Since the distribution of ε is non-degenerate

and f (x) is convex, with strict convexity for ε > εinf , we have 1 = E {f (x)} ≥ f (E (x)) =
1+B

B+exp(E{x}) =
1+B

B+exp(E{lnR}) . Therefore, exp (E {lnR}) > 1 and hence E {lnR} > 0.

Proof of Proposition 4. Let B1 be an arbitrary non-negative value of B for which

Rf (B) > 1 and let B2 be the smallest value of B greater than B1 for which Rf (B) = 1.

Therefore, R′
f (B2) ≤ 0 and Rf (B2) ≤ 1, which contradicts the assumption that R′

f (B) > 0

whenever Rf (B) ≤ 1. Therefore, Rf (B) > 1 for all B ≥ B1. We will use this result to prove

the statements in this proposition. Statement 1: First, if Rf (0) > 1, then Rf (B) > 1 for

all positive B, so all positive values of B are unsustainable. If Rf (0) = 1, then Rf (ε) > 1

in a positive neighborhood of ε = 0, and therefore, Rf > 1 for all positive B, so all positive

values of B are unsustainable. Therefore, if Rf (0) ≥ 1, then Bmax = 0. Statement 2a:
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Assume that Rf (0) < 1. Let B0 > 0 be the smallest positive B for which Rf (B) = 1, so B0

is sustainable. Using the result above in this proof for all values of B > B0, Rf (B) > 1, and

hence these values of B are unsustainable. Therefore, Bmax is the unique root of Rf (B) = 1.

Statement 2b: Statements 1 and 3 of Lemma 6 imply Bmax ≤ B̂ ≤ max
{
0, (1−α)β

α
− 1
}
.

Statement 2c: Since there is a unique value of B for which Rf (B) = 1, we have Rf (B) < 1

for 0 ≤ B ≤ Bmax and all of these values of B are sustainable; Rf (B) > 1 for all B > Bmax

and these values are unsustainable, so B is sustainable if and only if 0 ≤ B ≤ Bmax.

Proof of Proposition 5. Along a balanced growth path, expected gross investment is

(g + E {δt})Kt. With a linearly homogeneous production function, Yt = F (Kt, G
tN) =

GtNFN+KtFK , so expected aggregate consumption is E {Ct} = GtNFN+KtFK−(g + E {δt})Kt

(there are no purchases of goods by the government). Therefore, the impact of a marginal

change in Kt on E {Ct} is dE{Ct}
dK

= GtN dFN

dK
+ Kt

dFK

dK
+ FK − (g + E {δt}). The fac-

tor price frontier (see footnote 23) implies GtN dFN

dK
+ Kt

dFK

dK
= 0. Therefore, dE{Ct}

dK
=

FK − E {δt} − g = E {rt} − g > rf − g = 0, where rt ≡ FK − δt is the rate of return on

capital, risk aversion implies E {rt} > rf , and along the optimal balanced growth path with

positive government debt, B = Bmax and rf = g.

Lemma 8 Under the assumptions of Proposition 6,

1. Ω > 0 and dΩ
dB = G

[
1 + βζ (Rf − 1) + βζB dRf

dB

]
2. d lnw

dB = A1 ≡ − α
1−α

1
Ω

dΩ
dB < 0

3. d
dB

(
β

1−γ lnE
{
R1−γ

a

})
= A2 +A3, where A2 ≡ β B

1+B
1
Rf

dRf

dB > 0 and A3 ≡ 1
1+B

1
Rf

α
1−αG

−1 dΩ
dB > 0

4. d
dB ln

(
1 + τt

wt

)
= A4 +A5, where A4 ≡ βζG

Ω
1

1+B (1−Rf ) and A5 ≡ −βζG
Ω B dRf

dB < 0

Proof of Lemma 8. Proof of Statement 1: Since Rf ≥ 0, B ≥ 0, β < 1 and ζ ≤ 1, we

have Ω ≡ [1 + B + βζ (Rf − 1)B]G ≥ [1 + (1− βζ)B]G ≥ G > 0. Differentiating Ω with

respect to B yields dΩ
dB = G

[
1 + βζ (Rf − 1) + βζB dRf

dB

]
≥ (1− βζ)G+ βζBGdRf

dB > 0.

Proof of Statement 2: (1) Since w = (1− α) kα, we have dw
dk

= αw
k
and hence 1

w
dw
dk

=

α 1
k
; (2) equation (15) implies ka−1 = 1

(1−α)β
[(1 + B)G− βζ (g − rf )B] = 1

(1−α)β
Ω, so k =(

1
(1−α)β

Ω
) 1

α−1
and hence dk

dB = − 1
1−α

k 1
Ω

dΩ
dB . Therefore, d lnw

dB = 1
w

dw
dk

dk
dB = − α

1−α
1
Ω

dΩ
dB .

Proof of Statement 3: Use Ra ≡ λRf + (1− λ)R to obtain d
dB

(
β

1−γ
lnE {R1−γ

a }
)

=

β
1−γ

1

Et{R1−γ
a } (1− γ)E

{
R−γ

a

(
λ

dRf

dB + (1− λ) dR
dB

)}
, where we have used the envelope theo-

rem to ignore E
{
R−γ

a

(
dλ
dBRf − dλ

dBR
)}

= 0. Use the following: (1)
dRf

dB is non-random;

44



(2) equations (17) and (18) imply dR
dB = α

(1−α)β

(
1 + βζ (Rf − 1) + βζB dRf

dB

)
= α

(1−α)β
G−1 dΩ

dB ,

which is non-random; (3) Lemma 1, which implies
E{R−γ

a }
E{R1−γ

a } = 1
Rf

; and (4) λ = B
1+B to obtain

d
dB

(
β

1−γ
lnE {R1−γ

a }
)
= β 1

Rf

(
B

1+B
dRf

dB + 1
1+B

dR
dB

)
= β B

1+B
1
Rf

dRf

dB + 1
1+B

1
Rf

α
1−α

G−1 dΩ
dB .

Proof of Statement 4: Along a balanced growth path, τt
wt

= βNτt
βNwt

=
βζ(g−rf)Bt

βNwt
=

Gβζ(1−Rf)Bt

βNwt
=

Gβζ(1−Rf)Bt

βN(wt+τt)
βN(wt+τt)

βNwt
=

βζ(1−Rf)Bt+1

Kt+1+Bt+1

(
1 + τt

wt

)
= βζ (1−Rf )

B
1+B

(
1 + τt

wt

)
.

Define Xt ≡ 1 + τt
wt
, so along a balanced growth path we have X − 1 = βζ (1−Rf )

B
1+BX,

which impliesX =
[
1− βζ (1−Rf )

B
1+B

]−1
=
(

1
1+B

)−1
[1 + B − βζ (1−Rf )B]−1 = (1 + B) (G−1Ω)

−1

= G (1 + B) Ω−1. Therefore, lnX = lnG+ln (1 + B)− lnΩ. Now differentiate lnX with re-

spect to B to obtain d lnX
dB = 1

1+B−
1
Ω

dΩ
dB = 1

Ω

(
1

1+BΩ− dΩ
dB

)
= βζG

Ω

(
(Rf − 1) B

1+B − (Rf − 1)− B dRf

dB

)
= βζG

Ω

(
(1−Rf )

1
1+B − B dRf

dB

)
.

Proof of Proposition 6. Differentiate the expression for u (B) in equation (22) to obtain

u′(B) = d
dB lnw + d

dB ln
(
1 + τt

Wt

)
+ β

1−γ
d
dB lnE {R1−γ

a }, which, using the definitions of Ai for

i ∈ {1, 2, 3, 4, 5} in Lemma 8 can be written as
∑5

i=1Ai. However, it is convenient to group

the Ai in three sets as follows u′(B) = (A1 + A3) + (A2 + A5) + A4.

A1 + A3=− α
1−α

1
Ω

dΩ
dB + 1

1+B
1
Rf

α
1−α

G−1 dΩ
dB = 1

Ω
1
Rf

(
−Rf +

1
1+BΩG

−1
)

α
1−α

dΩ
dB

= 1
Ω

1
Rf

(
−Rf +

1
1+B [1 + B + βζ (Rf − 1)B]

)
α

1−α
dΩ
dB=

1
Ω

1
Rf

(
−Rf + 1 + βζ (Rf − 1) B

1+B

)
α

1−α
dΩ
dB

= 1
Ω

1
Rf

(1−Rf )
(
1− βζ B

1+B

)
α

1−α
dΩ
dB .

A2 + A5=β B
1+B

1
Rf

dRf

dB − βζG
Ω

B dRf

dB = 1
Ω

1
Rf

(
1

1+BG
−1Ω− ζRf

)
βGB dRf

dB

= 1
Ω

1
Rf

(
1 + (Rf − 1) βζ B

1+B − ζRf

)
βGB dRf

dB = 1
Ω

1
Rf

[
(1−Rf )

(
1− βζ B

1+B

)
+ (1− ζ)Rf

]
βGB dRf

dB .

A1+A3+A2+A5=
1
Ω

1
Rf

[
(1−Rf )

(
1− βζ B

1+B

)
α

1−α
dΩ
dB

]
+ 1

Ω
1
Rf

[
(1−Rf )

(
1− βζ B

1+B

)
βGB dRf

dB +

(1− ζ)RfβGB dRf

dB

]
= 1

Ω
1
Rf

[
(1−Rf )

(
1− βζ B

1+B

) (
α

1−α
dΩ
dB + βGB dRf

dB

)
+ (1− ζ)RfβGB dRf

dB

]
.

Therefore,

u′(B) = (A1 + A3) + (A2 + A5) + A4 = 1
Ω

1
Rf

[
(1−Rf )

(
1− βζ B

1+B

) (
α

1−α
dΩ
dB + βGB dRf

dB

)
+(1− ζ)RfβGB dRf

dB

]
+ βζG

Ω
1
Rf

1
1+BRf (1−Rf ) =

1
Ω

1
Rf

{
(1−Rf )

[(
1− βζ B

1+B

) (
α

1−α
dΩ
dB + βGB dRf

dB

)
+ 1

1+BβζGRf

]
+ (1− ζ)RfβGB dRf

dB

}
.

Proof of Corollary 2. If ζ = 0, then Ω = (1 + B)G, so dΩ
dB = G and the expression for u′ (B)

in Proposition 6 becomes u′(B) = 1
(1+B)G

1
Rf

[
(1−Rf )

(
α

1−α
G+ BGβ

dRf

dB

)
+ BRfGβ

dRf

dB

]
=

β
1+B

1
Rf

[
(1−Rf )

α
(1−α)β

+ B dRf

dB

]
.

Proof of Proposition 7. See the discussion in the text.
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Online Appendix

B Isomorphic Formulation with Stochastic Output

The model used throughout the main text of the paper–which we will call the baseline model–

was designed so that the aggregate capital stock, Kt, evolves deterministically and grows at

a constant rate, g, along any balanced growth path. As we show in Section 4, the riskfree

interest rate, rf , is also constant along any balanced growth path, so the feasibility of rolling

over government debt depends only on the sign of rf − g. In addition, aggregate output,

Yt, evolves non-stochastically in the baseline model. In this appendix, we develop a class

of models that are isomorphic to the baseline model in the sense that the evolution of Kt,

as well as the evolution of rates of return, including the riskfree interest rate, are identical

to those in the baseline model. Nevertheless, except for the baseline model, Yt evolves

stochastically for all models in this isomorphic class. We choose to focus on the baseline

model throughout the main text of the paper for expositional simplicity, recognizing that

the non-stochastic evolution of Yt is not at all essential to our findings.

Consider a class of models in which the production function is

Yt =
(
GtN

)1−α
Kα

t + η1,tKt =
(
kα−1
t + η1,t

)
Kt, (B.1)

where η1,t is an i.i.d. random productivity shock with a mean that can be positive, zero, or

negative. Because aggregate wage income, (1− α) (GtN)
1−α

Kα
t , is deterministic, aggregate

saving of the young and the evolution of Kt are deterministic and identical to those in the

baseline model.

In this class of models, the depreciation rate of capital is δ − η2,t, where η2,t is an i.i.d

random variable with arbitrary correlation with η1,t, and 0 ≤ δ − η2,t ≤ 1. In addition,

assume that E {η1,t + η2,t} = 0. The (net) rate of return on capital is the marginal product

of capital, αkα−1
t + η1,t, minus the depreciation rate, δ − η2,t,

rt = αkα−1
t − δ + (η1,t + η2,t) . (B.2)

This class of isomorphic models is defined by η1,t + η2,t = εt. Therefore, equation (B.2)

can be rewritten as

rt = αkα−1
t − δ + εt, (B.3)
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which is identical to equation (6) with E {εt} = 0. As a consequence, the riskfree rate, rf,t,

is identical to that in the baseline model. Thus, all of the models in this class of models are

isomorphic to the baseline model in the sense that Kt and all rates of return in all periods are

identical to their values in the baseline model. Therefore, our major findings about rolling

over government debt do not depend on output being deterministic.

C Calibration

Our focus is on the quantitative value of Bmax. Corollary 1 states that Bmax is invariant to

ζ, so, without loss of generality, we set ζ = 0.

Assume that a period equals 30 years. Since R ≡ 1+r
G

is the adjusted gross rate of

return on capital, 1 + r = G × R is the gross rate of return on capital (not adjusted for

growth). Calibrate the distribution of the durability shock so that along a balanced growth

path E {1 + r} = G × E {R} = (1 +m)30 where m is the target annual net rate of return

on capital; the standard deviation of r, which is equal to the standard deviation of G×R,

is set equal to its target s
√
30, where s is the target annual standard deviation of the rate

of return on capital.

We specify the distribution of the durability shock so that

G−1ε = exp (z)−R0 (C.1)

where z is N (µ, σ2), and R0 is obtained by setting B = 0 in equation (18). From equations

(17) and (18), the risky rate of return on capital along a balanced growth path is R =
α

(1−α)β
(1 + B)+ (1− δ)G−1 +G−1ε =

[
R0 +

α
(1−α)β

B
]
+
[
exp (z)−R0

]
, so

R =
α

(1− α) β
B + exp (z) . (C.2)

We choose the parameters µ and σ2 so that the mean of the risky rate equals the target rate,

which is m on an annual basis, so

E {1 + r} = G× E {R} = G× E

{
α

(1− α) β
B + exp (z)

}
= (1 +m)30 . (C.3)

Setting the standard deviation of the risky rate, 1 + r, which is G
√
V ar {exp (z)}, equal to
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the target standard deviation, s
√
30, implies

G
√

V ar {exp (z)} = s
√
30. (C.4)

Use V ar {(exp(z)} = (exp(σ2)−1) exp(2µ+σ2) = (exp(σ2)−1)
[
exp(µ+ 1

2
σ2)
]2

= (exp(σ2)−
1) [E {exp (z)}]2 to rewrite equation (C.4) as

G× E {exp (z)}
√

(exp(σ2)− 1) = s
√
30. (C.5)

From equation (C.3)

G× E {exp (z)} = (1 +m)30 −G
α

(1− α) β
B, (C.6)

so equation (C.5) implies

√
(exp(σ2)− 1) =

s
√
30

(1 +m)30 −G α
(1−α)β

B
, (C.7)

which can be rewritten as

exp(
1

2
σ2) =

√√√√1 + 30

(
s

(1 +m)30 −G α
(1−α)β

B

)2

. (C.8)

Substitute exp (µ)× exp(1
2
σ2) for E {exp (z)} in equation (C.6) to obtain

G× exp (µ)× exp(
1

2
σ2) = (1 +m)30 −G

α

(1− α) β
B, (C.9)

so

exp (µ) =
G−1 (1 +m)30 − α

(1−α)β
B

exp(1
2
σ2)

=
G−1 (1 +m)30 − α

(1−α)β
B√

1 + 30

(
s

(1+m)30−G α
(1−α)β

B

)2
. (C.10)

The mean, m, and standard deviation, s, of the rate of return on capital are expressed

on an annual basis. To compare these values to familiar values for the mean and standard

deviation of annual stock returns, we must take account of the fact thatm and s are moments
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of unlevered rates of return, and the moments of stock returns are levered returns. Let rA,

rAL , and rAf be rates of return on unlevered equity, levered equity and riskfree assets, all

expressed at annual rates (hence the superscript A). They are related to each other by

rA = D
D+E

rAf + E
D+E

rAL = D/E
1+D/E

rAf + 1
1+D/E

rAL , where D is the debt owed by the private

owners of capital and E is the equity of these owners. Assume that D equals 45% of D+E.

Therefore, rA = 0.45rAf + 0.55rAL . Hence, if E
{
rA
}
= 3% per year and rAf = 0.6% per year,

then E
{
rAL
}
= 4.96% per year. Also, sd

{
rA
}
= 0.55sd

{
rAL
}
, sd

{
rAL
}
= 1

0.55
sd
{
rA
}
, so if

sd
{
rA
}
= 0.12, then sd

{
rAL
}
= 0.218.

Remark 2 If the value of µ in equation (C.10) positive, then the economy with B = 0 is

dynamically efficient and hence the economy is dynamically efficient for any positive B also.

To prove this remark, note that equation (C.2) implies that R0 = exp (z). Since R is

an increasing function of B, we have R ≥ R0 = exp (z) and hence E {lnR} ≥ E {lnR0} =

E {z} = µ > 0 for any B ≥ 0.
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