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ABSTRACT

Vaccines influence the course of pandemics both directly, by protecting the vaccinated, and 
indirectly, by reducing transmission to the unvaccinated, a key externality. Estimating direct 
effects is challenging because of selective vaccine take-up; estimating indirect effects also poses 
difficulty as it requires exogenous variation in peer vaccination status. We overcome these 
challenges using unique microdata from Indiana together with a natural experiment. To identify 
direct effects, we use federal age-based vaccine eligibility rules by which seventh graders were 
eligible in Fall 2021 but sixth graders and younger were not. To identify indirect effects, we 
compare sixth graders in middle schools (whose older schoolmates are vaccine eligible) to sixth 
graders in elementary schools (whose schoolmates are ineligible). This variation in difference-in-
differences designs leads to large estimates of direct effects: vaccination reduces COVID-19 
incidence by 80 percent. But our estimates of indirect effects are small and statistically 
insignificant: despite a 20 percentage point increase in vaccination rates across all grades, we find 
essentially no difference in COVID-19 incidence between sixth graders in middle schools and 
sixth graders in elementary schools. A complementary identification strategy also finds small 
indirect effects from vaccinated grade-mates. This evidence from real-world settings matches 
clinical evidence forCOVID-19 vaccines’ benefits for the vaccinated, and provides new evidence 
that clinical trials were unable to examine, on indirect effects. Prior work on the influenza and 
pertussis vaccines has found substantial externalities, thus our findings suggest that prior 
evidence on one disease and its vaccine need not generalize to others.
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1 Introduction

Effective vaccines reduce infection and illness among people who are vaccinated, a direct effect that helps

control pandemics. Some vaccines also have indirect effects, reducing transmission to unvaccinated peo-

ple. These spillovers are a textbook example of positive externalities (Gruber, 2005), possibly justifying

interventions such as mandates and subsidies.

Direct and indirect effects are difficult to ascertain. Randomized Clinical Trials can establish the ex-

istence of direct effects. But the direct effects measured in trials may differ in real world settings. Clini-

cal trial populations are not necessarily representative of the population, in terms of demographics (e.g.

Hall (1999)), expected benefits (Chan and Hamilton, 2006; Malani, 2008), or study site (Allcott, 2015).

Blinded clinical trials do not capture behavioral responses such as increased risk taking that may offset the

health benefits of an imperfect vaccine in the field (Chan et al., 2016). Finally, viral variants that evade the

immune response of the vaccine may reduce effectiveness. Furthermore, clinical trials are not designed to

detect indirect effects and evidence on direct effects is not necessarily informative about indirect effects

since some vaccines prevent illness or hospitalization without preventing viral replication (Baker et al.,

2019; Werner et al., 2013).

In this paper, we provide quasi-experimental field evidence on the direct and indirect effects of the

COVID-19 vaccines, using data from Indiana. Our identification strategy focuses on adolescents, a group

with low vaccine take-up for whom information on direct and indirect effects is therefore important.

We find large direct effects of the vaccines—an 80 percent reduction in COVID-19 incidence during the

height of the Delta wave—with no detectable adverse effects. However, we also find the vaccines do not

produce meaningful indirect effects. That is, exogenous variation in peer vaccination does not reduce

infection risk among unvaccinated adolescents.

Our research design takes advantage of the federal age-based roll out of vaccine eligibility, along with

variation in peer vaccination induced by assignment to elementary versus middle school. Children aged

12-16 became vaccine eligible in May 2021, but children 5-11 were not eligible until November 2021. To

identify direct effects of the vaccine, we compare students who became eligible in May to slightly younger

1



students who were ineligible until November. To identify indirect effects, we compare sixth graders in

middle schools to those in elementary schools. During our study, sixth graders were themselves mostly in-

eligible for the vaccine, as were younger students. However, in middle schools, older students became vac-

cine eligible in May 2021. Sixth graders in middle schools therefore are exposed to a higher peer vaccination

rate than the sixth graders in elementary schools. This comparison identifies cross-grade spillovers. We

also study within-grade spillovers in a complementary design that looks at peer eligibility among children

who are themselves unlikely to be vaccinated. In each design we estimate vaccine effects in a difference-

in-differences framework, comparing fall 2021 and fall 2020. We use data containing the near-universe of

COVID-19 vaccination records and polymerase chain reaction (PCR)-based COVID-19 tests in Indiana,

as well as linked medical records for a large segment of the state population. The data include date of

birth and residential location (zip code and census tract), allowing us to infer school type.

We begin by showing the safety and efficacy of vaccination in the context of Delta wave. Early vaccine

eligibility increases vaccination rates by 27 percentage points and reduces COVID-19 incidence by 0.4

percentage points, for an implied vaccine effectiveness of about 80 percent. Since our post-treatment

period includes August-December 2021, this shows the original vaccine formulations remained effective

against the Delta wave. Vaccine eligibility has no effect on non-COVID emergency room visits, suggesting

adverse side effects of the vaccine are rare.

Despite clear direct effects of vaccines among older students who became eligible earlier, we find no

indirect benefits of unvaccinated students who go to school with vaccine-eligible peers. In Fall 2020, be-

fore vaccines were available, we find that elementary and middle school sixth graders have nearly iden-

tical COVID-19 incidence, suggesting little confounding. A year later, as COVID-19 cases rose dur-

ing the Delta wave, middle school sixth graders attended schools with an overall vaccination rate of 25

percent, versus less than 5 percent for elementary school sixth graders. Yet we continue to see nearly

identical COVID-19 rates among sixth graders in middle and elementary schools. Going to school with

more vaccine-eligible peers did not have a protective effect on unvaccinated sixth graders; our point esti-

mates imply these students actually experienced a statistically insignificant 0.2 percentage point increase
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in COVID incidence.

While our primary analysis focuses on cross-grade spillovers, we also examine within-grade spillovers

by studying students with unvaccinated parents. This group is unlikely to be vaccinated when eligible, so

age-based eligibility mainly induces variation in peer vaccination rather than own vaccination. Compar-

ing older and younger students with unvaccinated parents, we find being eligible sooner has no impact

on COVID incidence. Because the older students experience a 20 percentage point increase in peer vac-

cination rate but a small increase in own vaccination, this implies again that peer vaccination has at most

small indirect effects in this context.

Overall we find that increasing school-wide or grade-wide vaccination rates from roughly five per-

cent to 25 percent does not reduce transmission to the unvaccinated, despite clear protections for the

vaccinated. Analyses of the most-vaccinated schools indicate that further, marginal increases in the vac-

cination rate are also unlikely to generate large spillovers. This finding differs from studies of influenza

and pertussis vaccines, which found meaningful spillovers from similarly-sized vaccination shocks across

more distant peer groups (Ward, 2014; Carpenter and Lawler, 2019; White, 2021).

One potential explanation for low spillovers is offsetting risk-taking among the unvaccinated, a Peltz-

man (1975) effect. We find no impact of schoolmate vaccination on own vaccination, however, suggesting

no risk compensating on this margin. Another potential explanation is that baseline vaccination rates are

too low for a 20 percentage point increase in vaccination to generate important indirect effects. Simula-

tions from a simple epidemiological model show that a 20 percentage point increase in vaccination would

produce large indirect effects, assuming vaccines prevent transmission even starting from a low vaccina-

tion rate, unless the disease is highly infectious (Goodkin-Gold et al. (2020) present similar results). Thus

while we that raising the vaccination rate from 5 percent to 25 percent does not generate indirect effects,

a larger increase in vaccinations might.

Our study contributes to atheliterature investigating health externalities of vaccines. Ward (2014)

and White (2021) find that influenza vaccinations among the non-elderly and among healthcare workers

generate large health effects among the elderly. Carpenter and Lawler (2019) find that TDap booster
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mandates for middle school students reduce pertusis incidence among 0-4 year-olds. We complement

these papers by examining the COVID-19 vaccines.

We also contribute to the literature on pandemic mitigation policy. Much work has focused on

the mobility (i.e. Gupta et al. (2021); Cronin and Evans (2021)) and economic consequences of non-

pharmaceutical interventions (i.e Chetty et al. (2020); Kong and Prinz (2020); Goolsbee and Syverson

(2021); Alexander and Karger (2021)). Our work is closest to research investigating health consequences

of policy interventions, such as masking (e.g. Abaluck et al. (2021); Ginther and Zambrana (2021)), col-

lege campus closure policy (e.g.Andersen et al. (2022)) and shelter-in-place orders (for example Dave et al.

(2021); Berry et al. (2021); Friedson et al. (2021)). Especially relevant, Acton et al. (2022) show that college

vaccine mandates reduce local COVID incidence and mortality, even among people too old to be college

students. We complement their work. They show that vaccine mandates are an effective public health

tool in a high take-up environment. We show that direct effects are large, but indirect effects small, in an

environment with relatively low vaccine take-up.

2 Background and research designs

2.1 Vaccines can prevent illness without preventing infection

Clinical trials establish the in-sample effect of vaccines on illness, hospitalization, and death, but they

do not test whether the vaccines reduce transmission. Preventing transmission requires “sterilizing im-

munity," meaning that the vaccine prevents the virus from entering cells and replicating itself in the vac-

cinated individual. Most vaccines do not produce complete sterilizing immunity (Caddy, 2021). For

example, the rotavirus vaccine and the Hepatitis B vaccine protect against illness without conferring ster-

ilizing immunity; the smallpox and measles vaccines do produce sterilizing immunity (Baker et al., 2019;

Werner et al., 2013). Thus, even vaccines highly effective against disease need not prevent circulation.

The reasons for this are complicated and contextual. For example, viruses may circulate by colonizing

nasal passages without body-wide infection, and some vaccines may be less effective at preventing such
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local colonization (Bleier et al., 2021). Some partially vaccinated patients in the Moderna trial appear to

have experienced such localized infections (Creech, 2022). In practice, the degree of sterilizing immunity

may depend on multiple factors: recently vaccinated people are likely less transmissive, and vaccines are

likely less effective in preventing transmission of variants than of the original virus for which they were

designed.

2.2 Own vaccine eligibility, peer vaccination, and school mitigation

Twelve to fifteen year-olds became eligible for the Pfizer-BioNTech COVID-19 vaccine on May 12, 2021.

Five to eleven year-olds became eligible six months later, November 3, 2021. Consequently, at the start

of the 2021-22 school year, sixth grade and younger students were not yet eligible for vaccines, but sev-

enth grade and older students were eligible. In Indiana, sixth graders can attend both elementary schools

and middle schools.1 Thus at the start of Fall 2021, sixth graders attending elementary schools were sur-

rounded by younger peers who were not vaccine eligible, while those attending middle schools were sur-

rounded by older peers who were eligible. We identify indirect, cross-grade effects by comparing differ-

ences in COVID-19 test rates between sixth graders in elementary and middle schools, in Fall 2021 and

Fall 2020.

Peer vaccination likely matters most if schooling occurs in person with relatively little mitigation, es-

pecially remote learning. Indiana had a high level of in person schooling by Fall 2021. Mobility around

schools was 68% of Fall 2019 levels during Fall 2020; 70% of schools were fully open, 6% hybrid, and

16% were fully online (COVID-19 School Data Hub, 2022; Halloran et al., 2021). By Fall 2021, almost all

schools were open in person with even fewer hybrid options. Indiana maintained a state-wide school mask

mandate through the 2020/2021 school year. During Fall 2021, school districts had discretion over imple-

menting mask mandates, though schools with mandates were not required to quarantine asymptomatic

close contacts. We find that neither mask mandates nor in-person learning is a meaningful confounder

in our context (Appendix F.)
1See Appendix Table A.1 for the exact distribution of grades served by “middle" and “elementary" schools.
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2.3 Three research designs

Direct effects: We identify the effects of vaccines on the vaccinated using date-of-birth based eligibility

criteria. We select as the treatment group people born in the six month period ending on May 12, 2009,

all of whom became eligible on May 12, 2021. The control group consists of people born in the six month

period beginning November 3, 2009, roughly six months after the last treatment group birthday. Every-

one in the control group became eligible on November 3, 2021. We chose these ranges to obtain treatment

and control groups that differ sharply in eligibility date but remain relatively similar in age at a given time;

results are robust to other ranges. In practice, these date-of-birth ranges mean that our treatment group

is drawn from the 2020-21 sixth grade class, which rises to seventh grade in the 2021-22; the control group

comes from 2020-21 fifth grade class, which rises to sixth grade in 2021-22. We adjust for cohort-specific

differences (including age effects) using 2020 data, when neither group was eligible for the vaccine. We

measure own effects using a difference-in-difference design where the post period begins in June 2021,

with the following regression:

yit = β0 + β1treati + β4postt + β3treati · postt + ϵit. (1)

The outcome yit is an indicator for vaccination status, positive COVID status, or non-COVID-19 emer-

gency department visit (a measure of adverse event) for person i in month t. We implement the models

using a balanced panel of person-month level data, and we cluster standard errors on the individual. We

also estimate instrumental variables models for the effect of vaccination, instrumenting for vaccination

using the interaction treati · postt. The second stage equation is

yit = γ0 + γ1treati + γ2postt + γ3 ̂vaccinatedit + νit. (2)

γ3 gives the percentage point effect of vaccination on outcome yit for compliers. In Appendix B we show

how to translate this to an estimate of the more familiar vaccine effectiveness.

Within-grade indirect effects: Our “direct effects" design compares older and younger students,
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who differ not only in their own vaccine eligibility but also in their grademates’ eligibility. Thus in prin-

ciple β3 in Equation 1 reflects both own effects and grade-level spillovers. Put differently, the exclusion

restriction in our IV analysis says that the only reason for a differential trend in infection among seventh

graders, relative to sixth graders, is own vaccination status. However, if the vaccine has indirect effects

then peer vaccination status could also affect own infection rates.

To measure within-grade spillovers, we re-estimate Equation 1 and 2, but limiting to subsamples with

low first stages (as in Angrist et al. (2010)). Specifically, we stratify on parental vaccination (as of April

30, prior to child eligibility). Because the take-up rate is low for students with unvaccinated parents,

any treatment effect must be due to indirect effects.2 Parental vaccination status is likely correlated with

infection risk. Our DID strategy controls for this by using younger students with unvaccinated parents

as a control group.

Cross-grade spillover effects: Our design to estimate within-grade spillovers conditions on parental

vaccination status, identifying spillovers for a select sub-population who may differ in overall cautious-

ness. A complementary design avoids this problem and more cleanly isolates exogenous variation in peer

vaccination, conditional on own vaccination. Specifically, we compare sixth graders in middle and ele-

mentary schools to isolate exogenous variation in the schoolmate vaccination rates.

We estimate the reduced form effect of exposure to vaccine-eligible peers using the difference-in-

differences regression in Equation 1 and student-month level data. In these models, treatment means

attending an elementary school and control means attending a middle school. (We exclude a small num-

ber of schools serving both older and younger grades.) The pre-period is Fall 2020 and the post period

is Fall 2021. We cluster standard errors at the school level. The difference-in-difference model adjusts

for time-invariant differences between middle and elementary schools, as well as for common trends in

incidence and vaccination that could arise because pandemic waves and time-varying eligibility.

The regression estimates the effect of having vaccine-eligible schoolmates on COVID-19 incidence, a

kind of intent-to-treat effect. We do not translate this into a treatment-on-the-treated “effect of vaccinated
2In practice the first stage is low but not zero, and the reduced form is small and insignificant. This evidence is consistent

with the exclusion restriction: if exclusion failed, we would expect infection effects even absent a large first stage.
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peers" because such effects are inherently non-linear in the peer vaccination rate; the marginal benefit of

peer vaccination rises then falls (see Appendix E and Goodkin-Gold et al. (2020)). However, the reduced

form provides a test of the null hypothesis of no effect of vaccinated peers: if there are infection-reducing

spillovers from vaccinated peers, we should estimate a negative effect of having more vaccine-eligible peers.

2.4 Should we expect within-school spillovers?

Our spillover designs leverage variation in vaccine eligibility within a students’ school and school-grade.

We therefore learn the effect of an increase in the school-wide or grade-wide vaccination rate on own

COVID incidence, which we interpret as a measure of the indirect effect of the vaccine. This interpre-

tation requires that disease transmission occurs within school, and either across or within grade. Such

transmission is plainly possible. The scientific consensus is that SARS-CoV-2 is airborne, meaning viral

particles linger in the air and can travel at least moderate distances (World Health Organization, 2021).

We should expect students learning in the same building, using the same hallways and shared spaces (i.e.

gyms and cafeterias) may infect one another. Epidemiological evidence indicates within-school transmis-

sion accounts for 3.7 to 7.6 percent of pediatric COVID cases (Falk et al., 2021; Boutzoukas et al., 2022),

likely a lower bound because it reflects confirmed in-school transmission only. Evidence outside of schools

also suggests that that children can infect other. One meta-analysis finds a household secondary attack

rate of 16.8 percent for a child case, lower than the adult attack rate (26.8 percent), but comparable to the

secondary attack rate for SARS and MERS (Madewell et al., 2020).

3 Data

3.1 Regenstrief Institute Databases

We obtained data from two databases maintained by Regenstrief Data Service (Regenstrief Institute,

2022). First, the Indiana Network for Patient Care (INPC) database, established to improve health care

among participating institutions, consists of encounter and other medical records from over 100 health

8



care entities, including hospitals, health care networks, and insurance providers. Second, a registry of

nearly all COVID-19 lab (PCR) tests and vaccinations conducted in the state of Indiana. Regenstrief

Institute obtained the registry through a partnership with the state to develop a COVID-19 dashboard.

Analysts at Regenstrief have generated patient identifiers to link these databases, and provided demo-

graphic and location (zip code and census tract) information for 75% of positive tests and 83% of patients

in the encounter data.3 We extract records on all patients in the database.

Our “full student sample" consists of roughly 990,000 students with non-missing date of birth, alive

on July 1 2020, with implied ages putting students in kindergarten through 12th grade in the 2020-21 or

2021-22 school years. We impute grade levels assuming that students begin kindergarten in the year they

are 5 on August 1, and advance one grade per year. Appendix Table A.3 reports the count of students

by grade and school year. While the Regenstrief Institute databases are not designed to cover the full

state population, the coverage here appears high: in the July 2020 Census report, there were 1,151,021

Indiana residents aged 5-17 (U.S. Census Bureau, 2022), thus our 2020-21 population corresponds to 86%

of the school aged children in the state. Because most hospitals in the state participate in the INPC, most

children born in the state appear in the data, regardless of insurance status or subsequent health care

utilization.

We construct separate analysis samples depending on the design. For the own effect and within-grade

indirect effect designs, we limit the sample to students born in the relevant date range, with high-quality

school assignment (defined below), and non-missing encrypted address. For the cross-grade indirect effect

design, we limit the full student sample to observations with high-quality school assignment, in sixth

grade, and assigned to a treatment or control school.

Appendix Table A.3 reports how our sample size changes as we impose our restrictions. The most

restrictive condition (beyond the age limitation) is the requirement of high-quality school assignment,

which cuts the sample by about half. Robustness tests show our results are not sensitive to the exact

sample restrictions.
3Some patients’ location changes between 2020 and 2021. We use the earliest location, because it is more likely to reflect

the school enrollment location, and to avoid conditioning on endogenous migration.
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3.2 Assigning students to schools

Our spillover research design requires that we link students to their school. To do so we use the geography

reported in the Regenstrief data (zip code and census tract), overlaid on school catchment area maps

(National Center for Education Statistics (2022)). Because census tracts/zipcodes and school maps do

not perfectly align, we assign each student to the sixth-grade-serving school whose catchment area covers

the greatest share of the land mass of her geography; we refer to this school as her “modal school." We use

the NCES data to classify students’ modal school as “treatment" or “control," where treatment schools

are six-and-up schools, and control schools are six-and down. We say an assignment is high-quality if

the assigned school’s catchment area covers at least 70 percent of the student’s geography, accounting

for double coverage (some points are covered by multiple school catchment areas, either because a given

geography lies in multiple school districts, or because a school district allows students to choose among

multiple schools.) Appendix D provides more details on the assignment process.

Because geography is an imperfect predictor of school assignment, our approach introduces measure-

ment error in the assignment of students to schools. However, our reduced form estimates are unbiased

as long as assignment to treatment is correct—that is, correct assignment to six-and-up or six-and-down

school type—even if we incorrectly assign students to particular schools. We show in Appendix D that

measurement error is likely small after limiting to high-quality school matches; errors in school assign-

ment and school vaccination rates appear rare, and errors in treatment status appear very rare.

3.3 Derived measures

We define our main outcomes at the student-month level: indicators for any lab-confirmed COVID-

19 case and for non-COVID emergency room visit, defined as a visit without a COVID test (positive

or negative) in the 4 days before or 5 days after the visit (following Sacks et al. (2022)). We also study

cumulative vaccination status, i.e. having been vaccinated by the end of a given month or sooner. Our IV

models focus on the effect of the second dose, but nearly everyone who receives a first dose also receives

a second. While our lab-confirmed case measure misses cases with rapid tests but not PCR tests, such
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cases are likely rare during our period when when rapid tests were often unavailable (Leonhardt, 2021).

Appendix C shows that differential selection into testing is also not an important confound.

In some analyses we look at school-level or school-grade-level characteristics, such as the school level

vaccination rate among all students (not just sixth graders). We construct such school-level characteristics

by averaging over all students assigned to a given school or school-grade meeting the inclusion criteria

described below.

Our “within grade spillovers" design requires that we condition on having unvaccinated parents. We

do not observe family identifiers, but we do observe (encrypted) addresses, the address a patient has on file

with a given health care provider. We treat each address as a household, and for each household we mea-

sure the share of adults (aged 26-64) at that household who are vaccinated as of April 30, 2021 (just before

12-16 year-olds became eligible). Because a patient may have multiple addresses, we define the parental

vaccination rate of students in our sample as the average adult vaccination rate across all households they

live in. This household imputation procedure appears to work well. The distribution of adult genders

seems reasonable (Appendix Table A.2), and adult vaccination is highly predictive of child vaccination

(Appendix Figure A.1).

4 Results

4.1 Vaccines protect the vaccinated

We begin by establishing the effectiveness and safety of the COVID-19 vaccines in our setting. We use

the “own effects" research design, comparing students just old enough to become eligible for COVID-

19 vaccines on May 12, 2021, to students just young enough that they are ineligible until November 3,

2021. Our key results are evident in the raw time series of vaccination rates, COVID-19 incidence, and

non-COVID emergency room visits for treatment and control, plotted in Figure 1.

The figure shows that vaccine eligibility increases vaccinations, reduces COVID-19 incidence, and

has no discernible effect on non-COVID emergency room visits. Starting from the top panel we see that
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vaccine take-up grows steadily for the treatment group when they become eligible, with of course no vac-

cination in the control group until their eligibility date six months later. The middle panel shows that, in

the pre-period, the treatment and control groups had essentially equal COVID-19 incidence, suggesting

little or no confounding. After becoming vaccine eligible, the treatment group diverges from the con-

trol group; the vaccine-ineligible students experienced lower COVID-19 in each of the last four months

of 2021.4 The final panel shows that vaccine eligibility has no effect on adverse events, measured here

as non-COVID emergency room visits. Treatment and control show nearly identical levels and trends

throughout the sample period, with no divergence after vaccine eligibility. For effects on all-cause and

COVID-related visits, see Appendix Table A.4.5

We report DID and IV estimates in Panel A of Table 1. Vaccine eligibility increases the vaccination

rate by about 27 percentage points, with nearly identical impacts on first and second doses. Since most

age-eligible students have age-eligible grade-mates, the impact on peer vaccination rates is quite similar.

Early eligibility reduces COVID-19 incidence by 0.4 percentage points. Earlier eligibility has no effect

on non-COVID emergency room visits; the confidence intervals rule out effects larger than about +0.1

percentage points. Our instrumental variables estimates indicate that vaccination itself reduces COVID-

19 incidence by about 1.5 percentage point, for a complier vaccine effectiveness of about 80 percent. (See

Appendix B for details on vaccine effectiveness.) This estimate is roughly comparable to, but somewhat

smaller, than the 95% effectiveness reported in the clinical trials for the mRNA vaccines (Baden et al.,

2020; Polack et al., 2020). These results are robust to alternative sample inclusion criteria (Appendix

Table A.5).

Thus, relative to sixth graders, seventh graders experienced an increase in vaccinations and a decrease

in COVID upon attaining vaccine eligibility. In principle our reduced form estimates reflect the com-

bination of own and within-grade spillover effects. However we show in Panel B that spillover effects
4This divergence does not occur until September, 2021, four months after initial vaccine eligibility. Such divergence is

unsurprising: vaccine take-up grew over time, vaccines take time to generate an immune response, and COVID-19 prevalence
was fairly low in May-July of 2021, but grew dramatically in August and September as the Delta variant circulated and school
resumed.

5A critical adverse event is “multi-system inflammatory condition." We observe zero cases of this in either treatment or
control.
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are likely small. Specifically in Panel B we limit the sample to students in households with unvaccinated

adults. The first stage falls to about 10 percentage points, and the DID estimate falls to a small and sta-

tistically insignificant -0.05 percentage points. There is no treatment effect among the students with a

small first-stage, despite similar sized peer vaccination take-up. This result suggests limited within-grade

spillovers, and validates our exclusion restriction. As further evidence for these conclusions, we see in

panels C and D that both the first stage and reduced form double when we focus on students in house-

holds with partially vaccinated adults or fully vaccinated adults, while the peer vaccination rates do not

change substantially across these samples. Thus the differential fall in infection among seventh graders

seems driven by own vaccine take-up rather than within-grade spillovers.

4.2 Indirect effects are at most small

While early vaccine eligibility reduces COVID-19 incidence for the eligible, this reduced incidence does

not spillover to the mostly unvaccinated sixth graders, as we now show with our cross-grade indirect

effects design. Our key results are again evident in the simple trends, which we plot in Figure 2, for sixth

graders in middle and elementary schools.

Treatment sixth graders experience a large increase in the vaccination rate of their schoolmates, rela-

tive to control sixth graders, but no differential decrease in COVID-19 incidence. The top panel shows

that vaccination rates are zero for both groups until May, 2021, when they diverge sharply. By Fall 2021,

treatment group sixth graders go to schools in which about one in five students are vaccinated, while for

the control group the number is closer to one in 100.6 Turning to COVID-19 incidence, in the middle

panel, we see near identical levels and trends in the pre-period for treatment and control, suggesting little

if any confounding. Incidence increases in fall 2021 for both groups. However, despite the large relative

increase in schoolmate vaccination for the treatment group, we see no relative decrease in COVID-19 in-

cidence during this period. By the late fall, sixth graders in treatment and control alike become vaccine

eligible themselves, and in the bottom panel we see some evidence of higher vaccine take-up among the
6Peer vaccination rates in the control group increase and then decrease steeply in May-July 2021, because sixth graders were

vaccine eligible in the spring of 2021. This pattern does not influence our estimates because we report fall-on-fall differences.
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treated sixth graders.

We report difference-in-difference estimates and standard errors, by time period, in Table 2. Going

to a middle school induces a 20 percentage point increase in school-wide vaccination rate; this difference

persists into the late fall, when sixth graders become vaccine eligible, because take-up is fairly low, and

take-up continues to grow among the older students. Despite the increase in schoolmate vaccination, we

find no protective effect of middle school attendance on COVID-19 incidence among sixth graders. In the

early fall, when few sixth graders were vaccine eligible, we estimate a positive and significant treatment

effect of 0.36 percentage points. Later in the fall, the effect falls to 0.10 percentage points. The lower

bounds of these confidence intervals rule out effects more negative than about -0.4 percentage points.

While heightened risk taking could in principle offset the protective effects of schoolmate vaccination,

we find little evidence for such Peltzman effects: we estimate small, insignificant, but positive effects on

own vaccination rates, i.e. reduced risk taking in response to peer vaccination. Mask policies and instruc-

tion modality do not explain these results, nor do they moderate the impact of schoolmate vaccination

(Appendix F).

Our small and insignificant estimates of infection-reducing externalities (indirect effects) are surpris-

ing given the large direct effects (effectiveness) of the vaccines and given prior work on vaccine spillovers.

Indeed this prior work has found that similar-sized increases in vaccination rates have had large health

spillovers across more distant peer groups, relative to our context. Ward (2014) shows that a universal flu

vaccination campaign in Ontario increased take-up of the non-elderly by about 11 percentage points and

reduced flu hospitalizations among the elderly, with no effect on non-elderly hospitalizations; similarly,

White (2021) finds that increased non-elderly flu vaccinations in the US reduce elderly mortality. Car-

penter and Lawler (2019) find that TDap mandate for middle schoolers increased their take-up by 13.5

percentage points, and reduced pertussis incidence by similar amounts among 0-4 year-olds as among

middle-school aged children. We also show theoretically in Appendix E in a calibrated SIR model that

even a 20 percentage point increase in vaccination would generate substantial spillovers, if the vaccine

produces sterilizing immunity and infectiousness is not too high. If instead infectiousness is very high,
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or the vaccine only partially prevents transmission, then it is possible that higher peer vaccination rates

than what we observe among current school age children would indeed generate substantial externalities,

even with no externality in our sample. Our results therefore imply, at minimum, that achieving external

benefits of vaccination requires high vaccination rates.

Heterogeneity analysis suggests that external benefits are not detectable even at peer take-up rates ap-

proaching 40 percent. To show this, we re-estimate our difference-in-difference models, separately by peer

vaccination rate. Specifically, we divide our treatment group into quartiles of school-wide vaccination rate

(as of October, 2021). As schools with high vaccination rates may differ in potential COVID incidence,

we use a DID-matching strategy to find comparable control schools. In particular we use the propensity

score to match treated students to control students with similar census-tract-level vaccination rates.7 This

matching strategy addresses the main source of confounding that conditioning on high-vaccination rate

schools may condition on high-COVID-prevention in general.8

We show the results in Table 3. Each column corresponds to a different quartile of school-wide vac-

cination rate. At the top quartile, treatment raises peer vaccination rates to 37 percent, from 10 percent.

Even at this high take-up rate, we find a small and insignificant impact on incidence. These quartile-

specific contrasts appear unconfounded (after propensity score matching), as we find precisely zero dif-

ference between treatment and control in the pre-period, consistent with little or no confounding after

matching. In the final panel we confirm our finding that the limited spillovers are not driven by risk com-

pensation in the form of vaccine take-up; we estimate small and insignificant effects of peer vaccination

on own vaccination.

Our finding of no spillovers from vaccinated schoolmates is robust to alternative specification choices

and shows up in different subperiods, as we show in Appendix Tables A.7-A.8. Broadening or tightening

the school coverage area (as low as 60% or as high 99%) does not substantially change our estimates, nor
7We model the propensity score as a logit in census-tract level vaccination rates. We start with a (logit-)linear model, and

add higher degree terms until Cohen’s D for the weighted control group is less than 0.05. We limit the sample to students in
schools with at least 30 observations, to avoid contaminating the extreme strata with small sample sizes, and for simplicity we
focus on the November-December period only.

8We obtain highly similar results using the alternative approach of simply stratifying on tract-level vaccination rates; see
Appendix Table A.6.
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does limiting to students with prior medical claims (for whom coverage is better), nor does including

students in “mixed type" areas, or excluding sixth graders who became vaccine eligible prior to November

3. Our results are also robust to adjusting for school mask mandates or in-person learning (Appendix F.)

5 Conclusion

We have shown using data on Indiana 11 and 12 year-olds and natural experiment study designs that the

COVID-19 vaccines produce strong protection for the vaccinated, with no detectable adverse events.

However, increasing school- or grade-wide vaccination rates from roughly 5 percent to 25 percent does

not reduce COVID incidence among the unvaccinated. We emphasize two limitations of our spillover

result. First, we lack data on social interactions. It is possible that sixth and seventh graders interact little,

and in general that vaccinated and unvaccinated students in our sample interact less than other groups

such as family members or coworkers. Second, COVID-19 does not typically produce severe illness in

children; it is possible indirect effects would be different for more vulnerable populations.

Despite these limitations, our results have several implications. First, in our context most of the bene-

fits of vaccination accrue to the vaccinated; thus these findings strengthen the private (direct) case for vac-

cination. Second, the current level of vaccination among adolescents has not produced large protections

for the unvaccinated, and marginal vaccinations are unlikely to produce indirect effects. It is possible that

even larger increases in vaccination might produce indirect effects. Third, the apparently small indirect

effects of vaccination imply that masking and physical distancing may be helpful in reducing transmission

in populations with modest vaccination rates.

Our results suggest that infection-reducing externalities are likely smaller than previously thought

and imply optimal interventions (such as mandates or subsidies) are likely weaker as well. However, other

justifications for these interventions remain. One justification is paternalism. The vaccines are safe, effec-

tive, and generate few if any severe side effects. People seem to undervalue these private benefits (Carlin

et al., 2022) and vaccination rates are far from 100 percent. Vaccine mandates increase vaccination (Abre-

vaya and Mulligan, 2011; Carpenter and Lawler, 2019), although so do recommendations (Lawler, 2017,
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2020). Vaccine market interventions may also produce externalities other than infection reduction. One

key possibility is that vaccinations reduce the strain on a health care system. Another is that, by reducing

individual risk, they increase economic activity, allowing the economy to function; this benefit of vac-

cines plays an important role in the very high value of vaccine capacity estimated by Castillo et al. (2021).

Further research on these external benefits would be valuable.
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Table 1: Effects of vaccine eligibility and take-up on illness

Dep. var. 1+ dose 2+ doses Peer 1+ dose Peer 2+ dose Any COVID Non-COVID ER

A. All students
DID estimate 0.2728 0.2650 0.2298 0.2274 -0.0040 0.0006

(0.0041) (0.0039) (0.0012) (0.0011) (0.0009) (0.0009)
IV estimate -0.0152 0.0022

(0.0034) (0.0032)
Vaccine effectiveness 0.788 -0.348

(0.044) (0.374)
# Students 24,887

B. Students in households with unvaccinated adults
DID estimate 0.1223 0.1094 0.2075 0.2025 -0.0005 -0.0004

(0.0050) (0.0045) (0.0018) (0.0017) (0.0015) (0.0014)
IV estimate -0.0042 -0.0034

(0.0139) (0.0128)
Vaccine effectiveness 0.077 -0.257

(2.577) (2.097)
# Students 8,574

C. Students in households with partially vaccinated adults
DID estimate 0.2906 0.2823 0.2375 0.2356 -0.0042 0.0022

(0.0063) (0.0059) (0.0018) (0.0017) (0.0014) (0.0014)
IV estimate -0.0148 0.0077

(0.0048) (0.0049)
Vaccine effectiveness 0.839 -0.568

(0.057) (0.554)
# Students 11,083

D. Students in households with fully vaccinated adults
DID estimate 0.6215 0.6295 0.2729 0.2766 -0.0118 -0.0021

(0.0116) (0.0114) (0.0038) (0.0036) (0.0024) (0.0020)
IV estimate -0.0188 -0.0033

(0.0039) (0.0031)
Vaccine effectiveness 0.781 0.088

(0.051) (0.283)
# Students 3,378

Notes: Table reports DID estimates for each outcome, and DID-IV estimates and vaccine effectiveness for effect of two vaccine
doses on monthly COVID incidence and ER visits. Treatment group is born in the six months before May 12, 2009; control
group is born in the six months after November 3, 2009. The post period is Fall 2021, pre-period is Fall 2020. See Appendix
B for details on vaccine effectiveness. In Panel A the sample is the full own-effect sample. Panels B, C, and, D are restricted to
6th and 7th graders living in households where no adults are vaccinated, some but not all adults vaccinated, and all adults are
vaccinated (as of April 30, 2020).
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Table 2: Vaccine-eligible schoolmates do not reduce COVID incidence among vaccine-ineligible

Period August-October November-December August-December

Effect of vaccine-eligible school mates on...
School-wide vaccination rate 0.1864 0.2055 0.1941

(0.0106) (0.0120) (0.0111)
Sixth grade COVID-19 incidence 0.0035 -0.0002 0.0020

(0.0016) (0.0018) (0.0011)
Sixth grade vaccination rate 0.0024 0.0078 0.0045

(0.0023) (0.0069) (0.0041)

Notes: Each cell reports difference-in-differences estimate of the effect of vaccine eligible schoolmates on the indicated out-
come. The sample consists of monthly observations of sixth grade students with reliable school assignment, in the indicated
months. The pre-period is 2020 and the post-period 2021. The treatment group is students who go to school with older grades
(who are vaccine eligible in May 2021 and later the post-period) and the control group students who go to school with younger
students (who are not vaccine-eligible until November 2021). Robust standard errors, clustered on school, in parentheses.
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Table 3: Effect of vaccine eligible schoolmates, by school-wide vaccination rate

School vaccine take-up quartile First Second Third Fourth

Y = school vaccination rate
DID estimate 0.1265 0.1702 0.2217 0.2632

(0.0058) (0.0088) (0.0124) (0.0194)
Control mean, post 0.0336 0.0478 0.0723 0.0942

(0.0033) (0.0056) (0.0090) (0.0109)

Y = covid Incidence
DID estimate 0.0009 -0.0010 -0.0016 -0.0016

(0.0022) (0.0020) (0.0025) (0.0032)
Pre-period difference 0.0001 0.0011 0.0017 0.0011

(0.0013) (0.0012) (0.0014) (0.0018)
Control mean, post 0.0159 0.0163 0.0178 0.0184

(0.0011) (0.0011) (0.0015) (0.0026)

Y = own vaccination rate
DID estimate -0.0052 0.0040 0.0089 0.0007

(0.0050) (0.0067) (0.0106) (0.0178)
Control mean, post 0.0623 0.0827 0.1172 0.1557

(0.0035) (0.0042) (0.0089) (0.0147)

Cohen’s D 0.0064 0.0257 0.0106 0.0299

Notes: Table reports propensity-score weighted difference-in-differences estimates of the effect of vaccine eligible schoolmates
on the indicated outcome, for each quartile of school-wide vaccination rates. We also report the outcome mean in the post pe-
riod for the control group, and where indicated, the pre-period difference between treatment and control The sample consists
of monthly observations of sixth grade students with reliable school assignment, in November-December. The pre-period
is 2020 and the post-period 2021. The treatment group is sixth graders who go to school with older grades (who are vaccine
eligible in May 2021 and later the post-period) and the control group is sixth graders who go to school with younger students
(who are not vaccine-eligible until November 2021). Within quartile, we use the propensity score weighting to match treat-
ment and control students, matching on on census-tract wide vaccination rates. Robust standard errors, clustered on school,
in parentheses.
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Figure 1: Vaccines reduce COVID-19 incidence among the vaccinated, with no adverse events
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Notes: Figure plots means of the indicated variables, for Indiana residents born in the six months prior to May 12, 2009
(treatment) or the six months after November 3, 2009 (control), drawn from Regenstrief institute data on Indiana COVID-
19 vaccinations, COVID-19 testing, and emergency room visits. Shaded area shows 95% confidence intervals, derived from
robust standard errors clustered on individuals. The vertical line is the date the treatment group became vaccine-eligible. The
DID estimate compares August-December 2020 and August-December 2021.
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Figure 2: More school-wide vaccinations do not reduce own COVID-19 incidence
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Notes: Figure plots means of the indicated variables, for Indiana sixth graders in the indicated school type. Sample is limited
to students for whom we can reliably impute public school assignment. “Middle” schools are schools where the youngest
grade is six, and “elementary” school are where the oldest grade is six. Shaded area shows 95% confidence intervals, derived
from standard errors clustered on school. The vertical line is the earliest date children were vaccine-eligible. The DID estimate
compares August-December 2020 and August-December 2021.
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A Appendix Exhibits

Table A.1: Distribution of schools in analysis sample, by grades served

Grades served Count of students Share of students

K-6 10,312 0.191
1-6 500 0.009
2-6 124 0.002
3-6 1,022 0.019
4-6 863 0.016
5-6 5,452 0.101
6-6 2,270 0.042
6-8 32,862 0.608
6-9 131 0.002
6-12 540 0.010

Notes: Table report the count and share of students in our spillover analysis sample assigned to a school with the indicated
grade range.
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Table A.2: Joint frequency distribution of adult genders, within address

# female 25-64 year-olds
0 1 2 ≥ 3

# male 25-64 year-olds
0 0.104 0.136 0.045 0.019
1 0.041 0.244 0.102 0.049
2 0.007 0.045 0.053 0.044
3+ 0.001 0.010 0.016 0.085

Notes: Each cell is a fraction (0-1); they sum to 100 percent across all 16 cells. Table reports the fraction of sixth and seventh
graders living with the indicated number of male and female adults, among sixth and seventh graders in 2020 or 2021, with
non-missing address information. We average over all addresses at which the student lives, and round to the nearest integer.
The bottom right cell, for example, means that 11 percent live at addresses where three or more adult females and three or more
adult males also live.

Table A.3: Creating the analysis samples

Restriction imposed # Students

A. Own effects and within-grade sample
Full student sample 991,323
...& Born 2008-11-13 to 2009-5-12, or 2009-11-3 to 2010-5-2 64,422
...& Has high-quality school match 31,432
...& Has encrypted address 24,887

B. Cross-grade spillover sample
Full student sample 991,323
...& Sixth grade 132,885
...& High-quality school match 61,266
...& Six-and-up or six-and-down school 54,076

Notes: Table reports the count of students as we impose successive criteria to create our analysis samples. “High quality match"
means the assigned school’s catchment area catchment area covers at least 70 percent of the students geography.
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Table A.4: Effect of early vaccine eligibility on ER visits with and without COVID

Type of ER visit All With positive test With negative test With no test (COVID-unrelated)

DID estimate -0.0008 -0.0005 -0.0009 0.0006
(0.0010) (0.0002) (0.0005) (0.0009)

IV estimate -0.0030 -0.0017 -0.0035 0.0022
(0.0038) (0.0008) (0.0019) (0.0032)

Notes: Table shows the effect of vaccine eligibility (DID) and vaccine take-up (IV) on all ER visits, ER visits with positive
COVID test in surrounding days, and ER visits with negative (and no positive) test in surrounding days, and ER visits with
no COVID test in surrounding days, which we call “COVID-unrelated" visits. Surrounding days are 5 days before to four
days after the ER visit. The sample and specification are defined in the notes to Table 1.
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Table A.5: Robustness of estimated effects of vaccines on the vaccinated to alternative samples

First stage Reduced form

Dep. var. 1+ dose 2+ doses Peer 1+ dose Peer 2+ dose COVID ER

A. Baseline sample (born within 6 months of cutoff)
DID estimate 0.2728 0.2650 0.2298 0.2274 -0.0040 0.0006

(0.0041) (0.0039) (0.0012) (0.0011) (0.0009) (0.0009)
IV estimate -0.0152 0.0022

(0.0034) (0.0032)
Vaccine effectiveness 0.788 -0.348

(0.044) (0.374)
# Students 24,887

B. Limit to born within 3 months of cutoff
DID estimate 0.2689 0.2664 0.2322 0.2297 -0.0046 -0.0003

(0.0058) (0.0055) (0.0017) (0.0016) (0.0013) (0.0012)
IV estimate -0.0174 -0.0011

(0.0047) (0.0045)
Vaccine effectiveness 0.854 0.239

(0.046) (0.201)
# Students 12,550

C. Expand to born within 12 months of cutoff
DID estimate 0.1697 0.1631 0.1431 0.1404 -0.0027 -0.0009

(0.0043) (0.0042) (0.0014) (0.0013) (0.0007) (0.0008)
IV estimate -0.0166 -0.0055

(0.0043) (0.0050)
Vaccine effectiveness 0.796 0.184

(0.060) (0.166)
# Students 49,443

D. Broadest possible sample
DID estimate 0.2474 0.2380 0.2049 0.2011 -0.0042 0.0008

(0.0025) (0.0023) (0.0008) (0.0008) (0.0005) (0.0005)
IV estimate -0.0176 0.0034

(0.0021) (0.0022)
Vaccine effectiveness 0.796 -0.110

(0.029) (0.194)
# Students 64,422

Notes: Table reports DID estimates for each outcome, and the DID-IV estimates for effect of two vaccine doses on monthly
COVID incidence and ER visits. The post period is Fall 2021, pre-period is Fall 2020. Treatment group is born in six (panels
A and D), three (panel B), or 12 (panel C) months before May 12, 2009; control group is born in the same number of months
after November 3, 2009. The sample is limited to students with high quality school assignments, except in panel D, which
drops those restrictions. See Appendix B for details on vaccine effectiveness.

30



Table A.6: Effect of vaccine eligible schoolmates on ineligible students, by census tract vaccination rate

Census tract vaccination quartile First Second Third Fourth

Y = school vaccination rate
DID estimate 0.1318 0.1615 0.2072 0.2652

(0.0067) (0.0084) (0.0126) (0.0235)
Control mean, post 0.0234 0.0425 0.0653 0.1068

(0.0019) (0.0044) (0.0108) (0.0128)

Y = covid Incidence
DID estimate -0.0000 0.0007 0.0018 -0.0034

(0.0027) (0.0030) (0.0037) (0.0038)
Pre-period difference -0.0014 0.0017 0.0016 0.0003

(0.0018) (0.0017) (0.0024) (0.0025)
Control mean, post 0.0154 0.0166 0.0148 0.0215

(0.0016) (0.0015) (0.0020) (0.0030)

Y = own vaccination rate
DID estimate 0.0030 0.0012 0.0033 -0.0014

(0.0061) (0.0069) (0.0078) (0.0167)
Control mean, post 0.0472 0.0748 0.1017 0.1814

(0.0043) (0.0049) (0.0063) (0.0117)

Notes: Table reports difference-in-differences estimates of the effect of vaccine eligible schoolmates on the indicated outcome,
for each quartile of census-tract level vaccination rate. We also report the outcome mean in the post period for the control
group, and where indicated, the pre-period difference between treatment and control The sample consists of monthly ob-
servations of sixth grade students with reliable school assignment, in November-December. The pre-period is 2020 and the
post-period 2021. The treatment group is sixth graders who go to school with older grades (who are vaccine eligible in May
2021 and later the post-period) and the control group sixth graders who go to school with younger students (who are not
vaccine-eligible until November 2021). Robust standard errors, clustered on school, in parentheses.
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Figure A.1: Adult vaccination and child vaccination
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B.  7th grade vaccination rate, 2021-12-31Pe
rc

en
t

Household adult vaccination rate, 2021-04-30

Notes: The top panel shows the distribution of adult vaccination rates as of April 30, 2021, among adults aged 26-64 and living
in the same addresses as seventh graders in our sample. The bottom panel shows the vaccination rate (as of October 31, 2021)
among seventh graders in each bin of adult vaccination rates. The solid circles represent the modal adult vaccination rates of
0, 50, and 100 percent.
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B Vaccine effectiveness in an instrumental variables framework
Studies of causal effects in empirical microeconomics typically focus on treatment effect parameters that
are expressed as differences in the expected value of treated and untreated potential outcomes for spec-
ified sub-populations. Instrumental variable estimators that account for incomplete take up or non-
compliance with assigned treatments are interpreted as average casual effects among members of the com-
plier sub-population. The clinical trials used to evaluate the effects of the Covid-19 vaccines focused pri-
marily on a somewhat different causal parameter, which is often referred to as “vaccine efficacy”.

In this appendix, we define a new parameter called “complier average vaccine efficacy" (CAVE). We
derive an instrumental variables estimator of the CAVE that is valid under standard instrumental variable
assumptions. We use the estimator in the paper to estimate the CAVE in our own effects study design.

B.1 Notation and Assumptions
Use i = 1...N to index members of a study population. Ci is a binary observed outcome variable that
indicates whether the person has a confirmed positive Covid-19 test during a specified follow up window.
Vi is a binary treatment variable indicating whether the person was vaccinated for Covid-19 before the
start of the follow up window. And Zi is a binary instrumental variable, which is supposed to affect
vaccine take up but is unrelated to Covid-19 infection risk. Values of (Ci, Vi, Zi) are observed for each
member of the study population.

Observed vaccine take up and Covid-19 infections are realizations of underlying potential outcomes.
Specifically, let Vi(z) be the vaccination status of person i when her instrument is set to z for z = [0, 1].
That means that realized vaccine take up is Vi = Vi(0) + Zi[Vi(1) − Vi(0)], where Vi(1) − Vi(0)
represents the causal effect of the instrument on person i′s vaccine take up. Similarly, let Ci(z, v) be
person i′s downstream Covid-19 infection status if person i′s instrument is set to z and her vaccination
status is set to v for v = [0, 1].

We work with a set of five instrumental variable assumptions, which were originally described in pa-
pers by Imbens and Angrist (1994) and Angrist et al. (1996).

A1 SUTVA Covid-19 infection outcomes are individualistic and do not depend on the vaccination status
or instrumental variable assignments of any other members of the study population. More formally, let
Z−i be the 1×N − 1 vector containing the instrumental variable assignments of each j = 1...N such
that j ̸= i. Likewise V −i is the 1 × N − 1 vector of vaccination outcomes for each j ̸= i. Now let
Ci(Zi, Vi, Z

−i, V −i) be the potential outcome that person i would experience under a specific combi-
nation of own instrument and vaccine exposures **and** peer instrument and vaccine exposures. Under
SUTVA Ci(Zi, Vi, Z

−i, V −i) = Ci(Zi, Vi) so that each person’s potential outcomes do not depend on
the vaccine status or instrumental variable status of any other member of the study population.

A2 Independence – The instrument is statistically independent of potential vaccine take up and po-
tential Covid-19 infection outcomes. Formally, independence implies Pr(Zi = 1|Vi(z), Ci(z, v)) =
Pr(Zi = 1) for all combinations of z and v.

A3 Exclusion – The instrument has no causal effect on Covid-19 infection outcomes. This implies that
Ci(z, v) = Ci(v) for all i = 1...N .
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A4 Monotonicity – The causal effect of the instrument on vaccine take up is non-negative for any indi-
vidual in the sample. In other words Vi(1)− Vi(0) ≥ 0 for all i = 1...N .

A5 First Stage – The instrument has a non-zero causal effect on vaccine take up for at least some members
of the study population so that E[Vi(1)− Vi(0)] ̸= 0.

B.2 Treatment Effects
B.2.1 Additive Effects

At the person level, the additive causal effect of the vaccine on Covid-19 infections isβi = Ci(1)−Ci(0).
Since the infection variable is binary, the treatment effect for any single individual can only take on three
different values. When βi = −1, the person would have been infected with Covid-19 if not for the
vaccine. When βi = 1 the person is infected with Covid-19 if she is vaccinated but not infected if she is
not vaccinated. Finally βi = 0 if the person would either be infected in both vaccination states of the
world or uninfected in both states of the world.

Treatment effect heterogeneity across subjects may occur for a variety of reasons, including: (i) behav-
ioral responses to vaccination (i.e. Peltzman effects) that lead some people to engage in riskier behaviors
(Peltzman effects) or safer behaviors (health complementarity); (ii) biological differences in the immune
response generated by the vaccine across subjects; and (iii) differences in epidemiological conditions (ex-
posures) experienced by subjects in different times, places, and social settings.

The average treatment effect of the vaccine is

ATE = E[Ci(1)− Ci(0)].

The ATE is the difference in Covid-19 infection rates between counterfactual states in which the
population is universally vaccinated or universally unvaccinated. It’s straightforward to defined con-
ditional average treatment effects. Standard examples are the average treatment effect on the treated:
ATT = E[Ci(1) − Ci(0)|Vi = 1], which represents the average effect of the vaccine on Covid-19
infection among people who are actually vaccinated. If ATT > ATE , vaccinated people benefit more
from the vaccine than unvaccinated people. If ATT < ATE then vaccination would have larger effects
on the unvaccinated population.

B.3 Vaccine Efficacy Effects
The literature on vaccine trials often focuses on measures of vaccine efficacy rather than on additive av-
erage treatment effects. Usin the notation developed so far, vaccine efficacy is

δ = 1− Pr(Ci(1))

Pr(Ci(0))

With a vaccine that is perfectly effective, vaccinating the entire population eliminate 100% of the infec-
tions that would occur in the absence of the vaccine. Note, however, that vaccine efficiency is undefined
when there is infection risk in the absence of the vaccine so that Pr(Ci(0)) = 0. In addition, it is less
sensible to define efficacy at the person level the way we do for the additive treatment effect. For instance,
δi = 1− Ci(1)

Ci(0)
will equal 0 for people who get infected regardless of vaccination status, 1 for people who
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avoid an infection due to vaccination, and is undefined for people who are are not infected in the absence
of vaccination. That’s unappealing since the vaccine could – in theory – increase infection risk among
some people due to Peltzman type risk adjustment responses. The vaccine efficacy concept makes sense
at a group level as long as there is a non-zero prevalence of cases of disease in the absence of vaccination.

B.4 Treatment Effects With Non-compliance
The Covid-19 vaccine trials for the Pfizer, Moderna, and Johnson and Johnson vaccines used randomized
experimental designs Polack et al. (2020); Baden et al. (2020); Sadoff et al. (2021). People were randomly
assigned to a vaccine group and a placebo group. Covid-19 infections were measured at follow up and
the infection rates in the two groups were used to estimate the causal effects of the vaccine. For example,
Baden et al. (2020) report that at the end point of the Moderna trial, there were about 131.5 Covid-19
cases per 10,000 people in the placebo group and about7.8Covid-19 cases per 10,000 in the vaccine group.
The average treatment effect implies that the vaccine reduced Covid-19 infection rates by 7.8− 131.5 ≈
123.7 cases per 10,000. The efficacy of the vaccine was 1− 7.8

123.7
× 100 ≈ 94.1%.

B.4.1 Complier Average Treatment Effects

The Covid-19 vaccine trials experienced a small amount of non-compliance with the study protocol.
Some subjects were lost to follow up, did not receive both doses of the vaccine, or experienced other
events that made them ineligible. The main analysis in the trials used some form of per-protocol anal-
ysis in which these subjects were discarded, although various types of intent-to-treat samples were also
considered.

In empirical economics, non-compliance with assigned treatments is often handled using instrumen-
tal variables analysis, providing a bridge between randomized experiments and quasi-experimental de-
signs. A pair of papers by Imbens and Angrist (1994) and Angrist et al. (1996) show that in settings with
a binary treatment and a binary instrumental variable satisfying assumptions A1-A5, the Wald-IV estima-
tor identifies a parameter called the “Complier Average Treatment Effect” (CATE). Using the notation
developed above, these papers show that

E[Ci|Zi = 1]− E[Ci|Zi = 0]

E[Ci|Zi = 1]− E[Ci|Zi = 0]
= E[Ci(1)− Ci(0)|Vi(1) > Vi(0)]

The right hand side is the CATE, which is the average treatment effect in the sub-population of peo-
ple who are induced to be vaccinated because of the instrumental variable. Given a valid instrumental
variable, it is straightforward to estimate the CATE parameter from observed data. We report estimates
of the CATE in our study of the own effects of the vaccine in Table 1.

B.4.2 Complier Vaccine Efficacy

In this section, we show how to identify a conditional version of the overall vaccine efficacy parameter,
which we refer to as the “Complier Vaccine Efficacy” (CAE). The CAE is analogous to the CATE in
the sense that it is a measure of vaccine efficacy in the sub-population of people who are induced to be
vaccinated because of a binary instrumental variable. The CAE parameter that we focus on in this section
is defined as:
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δcomplier = 1− Pr(Ci(1)|Vi(1) > Vi(0))

Pr(Ci(0)|Vi(1) > Vi(0))
.

δcomplier is a function of two counterfactual quantities. Pr(Ci(0)|Vi(1) > Vi(0)) is the com-
plier base rate: it represents the Covid-19 infection rate among compliers in the absence of vaccination.
Pr(Ci(1)|Vi(1) > Vi(0)) is the complier breakthrough rate. It represents the complier infection rate
when the compliers are vaccinated.

In this section, we show that both of these quantities are identified under assumptions A1-A5. The
CAE is identified under the additional restriction that Pr(Ci(0)|Vi(1) > Vi(0)) > 0.
The First Stage

Under A1-A5, the first stage comparison identifies the fraction of compliers in the population:

F = E[Vi|Zi = 1]− E[Vi|Zi = 0]

= E[Vi(1)|Zi = 1]− E[Vi(0)|Zi = 0]

= E[Vi(1)]− E[Vi(0)]

= P [Vi(1) > Vi(0)]

The second equality follows after substitution of the potential vaccine take up expression for the
observed vaccine take up outcomes. The third equality imposes the independence assumption. And the
fourth equality imposes the monotonicity condition. This shows that the first stage difference in vaccine
take up rates identifies the prevalence of compliers.
The Complier Base Rate

The logical challenge in identifying the complier base rate is that complier status is unknown at the
individual level, and unvaccinated Covid-19 potential outcomes are not observed for the full population.
We can apply the standard instrumental variables analysis to an adjusted/censored outcome variable to
uncover complier averages of the individual outcomes.

Let Rbase
i = (1 − Vi)Ci to be an adjusted outcome that is set to 0 for people who are vaccinated

and set to the value of Ci for people who are unvaccinated. The reduced form difference in (adjusted)
Covid-19 outcomes across levels of the instrument is:

ITTbase = E[Rbase
i |Zi = 1]− E[Rbase

i |Zi = 0]

= E[(1− Vi)Ci|Zi = 1]− E[(1− Vi)Ci|Zi = 0]

= E[(1− Vi(1))Ci(0)|Zi = 1]− E[(1− Vi(0))Ci(0)|Zi = 0]

= E[Ci(0)(Vi(0)− Vi(1))]

= −E[Ci(0)|Vi(1) > Vi(0)]Pr(Vi(1) > Vi(0)).

The second equality substitutes the definition of the adjusted outcome, and the third equality intro-
duces the potential outcomes structure, invoking the exclusion restriction. The fourth quality imposes
the independence assumption to drop conditioning on the instrument. The fifth line decomposes the ex-
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pectation using the fact that Vi(0)−Vi(1) can only take on the values 1, 0, and -1. Two of the three terms
drop out: the zero term is multiplied by zero and Pr(Vi(0)− Vi(1) = 1) = 0 under Under A4 (mono-
tonicity). Thus ITTbase is equal to the negative of the complier base rate multiplied by the prevalence of
compliers. Dividing by the negative of the complier share using a standard Wald Ratio gives:

Wbase =
ITTbase

−F

=
E[Rbase

i |Zi = 1]− E[Rbase
i |Zi = 0]]

−(E[Vi|Zi = 1]− E[Vi|Zi = 0])

=
−E[Ci(0)|Vi(1) > Vi(0)]Pr(Vi(1) > Vi(0))

−Pr(Vi(1) > Vi(0))

= E[Ci(0)|Vi(1) > Vi(0)]

= Pr[Ci(0) = 1|Vi(1) > Vi(0)].

The Complier Breakthrough Rate
Following a parallel approach for the complier breakthrough rate, define the adjusted outcomeRbreak

i =
ViCi, which is set to 0 for people who are unvaccinated and set to Ci for people who are vaccinated. The
reduced form comparison in this case is:

ITTbreak = E[Rbreak
i |Zi = 1]− E[Rbreak

i |Zi = 0]

= E[ViCi|Zi = 1]− E[ViCi|Zi = 0]

= E[Vi(1)Ci(1)|Zi = 1]− E[(Vi(0)Ci(1)|Zi = 0]

= E[Ci(1)(Vi(1)− Vi(0))]

= E[Ci(1)|Vi(1) > Vi(0)]Pr(Vi(1) > Vi(0)).

Here, the second equality uses the definition of the adjusted outcome and the third line equality in-
troduces the potential outcomes structure, invoking the SUTVA condition and the exclusion restriction.
The fourth equality imposes the independence assumption and collects terms. The fifth line decomposes
the expected value of the product ofCi(1) andVi(1)−Vi(0) and imposes the monotonicity assumption.
The result shows that ITTbreak is the complier breakthrough infection rate multiplied by the prevalence
of compliers. The Wald ratio isolates the complier breakthrough rate:
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Wbreak =
ITTbreak

F

=
E[Rbreak

i |Zi = 1]− E[Rbreak
i |Zi = 0]]

E[Vi|Zi = 1]− E[Vi|Zi = 0]

=
E[Ci(1)|Vi(1) > Vi(0)]Pr(Vi(1) > Vi(0))

Pr(Vi(1) > Vi(0))

= E[Ci(1)|Vi(1) > Vi(0)]

= Pr[Ci(1) = 1|Vi(1) > Vi(0)].

Estimation
The complier average vaccine efficiency can be estimated using the ratio of the two Wald ratios:

δcomplier = 1− Wbreak

Wbase

= 1− ITTbreak × F−1

−ITTbase × F−1

= 1 +
ITTbreak

ITTbase

= 1− Pr(Ci(1)|Vi(1) > Vi(0))

Pr(Ci(0)|Vi(1) > Vi(0))
.

Interestingly, the first stages cancel and so the efficiency is equal to 1 plus the ratio of the reduced forms.
In practice, you could estimate the complier efficiency by computing the two IV estimates (complier base
rate and complier breakthrough rate) directly and then computing the ratio of the two. Or your could
compute the two ITT effects and compute their ratio. In both cases, it would be sensible to do things in
a stacked framework so that you could produce a joint covariance matrix. This is pretty straightforward
though.
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C Selection into testing
Our primary outcome is an indicator for at least one lab confirmed case of COVID-19 in a given month,
Pr(test positive). This is decomposes as

Pr(test positive) = Pr(positive|test = 1) · Pr(test = 1). (3)

This decomposition shows that our outcome can change, in principle, not because of true changes in
COVID incidence but because of changes in testing behavior, i.e. changes in Pr(test = 1).

Here we argue that changing test behavior is unlikely to account for our key qualitative results. Key
to our argument is the observation that the test positivity rate, Pr(positive|test = 1), reflects the
combination of selection into testing and overall COVID incidence (Manski and Molinari, 2021; Sacks
et al., 2022). Holding fixed COVID incidence, as the tested population becomes more positively selected,
Pr(positive|test = 1) increases. Thus our estimate that vaccine eligibility reduces measured COVID
incidence might be explained by reduced testing rather than reduced incidence.

If this explanation were true, we would expect to see that vaccine eligibility increases the test yield,
because the marginal patient induced not to test by vaccine eligibility should have a relatively low chance
of having COVID. Appendix Figure C.1 shows Pr(positive|test = 1) over time for our treatment and
control group in the direct effects design. The overall positivity pattern for this sample is quite similar to
the state as a whole (Sacks et al., 2022). Importantly, we can see that positivity falls with vaccine eligibility.
This is of course consistent with our conclusion that the vaccine is effective for the vaccinated. But it is
inconsistent with falling test rates (conditional on symptoms) among the vaccinated, and thus indicates
that changing selection into testing does not account for our finding of substantial direct effects.

It is also unlikely that changing testing behaviors explain our finding of no indirect effects. Such an
explanation would require that having more vaccine eligible school-mates or grade-mates induces stu-
dents to test more, so that fewer true COVID cases are offset by more detections. Although we cannot
rule this out, we view it as unlikely because more vaccinated peers implies fewer infections in the school
and hence fewer occasions (for example from contact tracing) to test.
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Figure C.1: Vaccine eligibility induces negative selection into testing
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Notes: Figure plots the test positivity rate, defined here as the probability of at least one positive conditional on at least one
test, by month and group. Sample consists of Indiana residents born in the six months before May 12, 2009, or the six months
after November 3, 2009, drawn from Regenstrief institute data. Shaded area shows 95% confidence intervals, derived from
robust standard errors clustered on individuals. The vertical line is the date the treatment group became vaccine-eligible. The
DID estimate compares August-December 2020 and August-December 2021.
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D Details on assigning students to schools
This appendix provides a detailed explanation of our approach to imputing school assignment, and vali-
dates the approach, in the sense of showing that measurement error from imperfect address information
largely does not propagate to measurement error in school assignment.

D.1 Detailed assignment process
We assign patients in the Regenstrief data to schools based on the geography reported in the vaccine and
test registry. We obtain data on grades and catchment area of schools from National Center for Education
Statistics (2022). Our goal is to assign each Regenstrief geography—census tract by zip code—to a sixth-
grade serving school. We focus on schools serving sixth graders only, because our identification strategy
compares sixth graders with vaccine-eligible peers to sixth graders without such peers.

Using geography to assign patients to schools faces three challenges. First, some school districts have
school choice program which means that middle school assignment is not determined by geography
alone. For example Indianapolis Public Schools has both “neighborhood schools" and “choice schools"
(Indianapolis Public Schools, 2022), and the NCES shapefiles report that the catchment area for each
school is the entire school district. Second, school catchment areas do not completely cover the state,
either because of incomplete data or because no one lives in some census tracts of the state (e.g. state
forests). Third, the geography reported in the test and vaccine registry data, zip codes and census tract,
does not necessarily align with school catchment areas or even school districts. As a result, a given zip code
and census tract can contain multiple catchment areas, or even multiple school districts (which happens
for example when a census tract contains multiple towns).

Roughly speaking, to overcome these challenges, we assign patients to the school whose catchment
area covers the largest share of their geography, and we limit the sample to patients whose assigned school
is reasonably likely to be their school. To explain the procedure in detail, denote a given zip code-census
tract combination (a “geography") as g, and a school catchment area s. Using GIS, we overlay {g} and
{s}. For each g, s we calculate the share of the area of g that s covers, pgs. If each school catchment areas
covered the entire state and never overlapped, the covered share of each geography, coveredg ≡

∑
s pgs,

would always equal 1. However, geographies are multiply covered because students can choose among
multiple schools (as in the Indianapolis Public School district), which implies that coveredg > 1. Other
geographies are undercovered because of holes in the school catchment area coverage map. Appendix
Figure D.1 shows the distribution of coveredg across geographies in the registry data. While the modal
area is 100 percent covered, the spikes at 200 percent reflects areas served by multiple schools, and the
mass at non-integer amounts reflects undercoverage.

Accounting for both over- and under-coverage, we say that the adjusted coverage share of school
catchment area s for geography g is

p̃gs =
pgs

max {1, coveredg}
.

p̃gs is equal to pgs as long as g does not contain overlapping catchment areas. If g contains overlapping
catchment areas, p̃gs is scaled down by the sum of covered areas. If students were uniformly distributed
within a geography, and chose schools at random from among the schools they were eligible to attend,
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then p̃gs would be the probability that a student in g attends s.
We set the assigned school for g to be the school with the largest p̃gs.9Appendix Figure D.2 shows the

distribution of p̃gs for the modal school. A majority of geographies have modal school coverage above
99.9 percent, but there is a long left tail. Our analysis sample restricts attention to students in “ high
coverage" geographies, defined as geographies where p̃gs ≥ 0.7, meaning at least 70 percent of the area of
g is assigned to s, accounting for overlapping catchment areas.

D.2 Illustrative cases
We illustrate the process in Appendix Figure D.3. Each panel zooms in on a different geography. Panel
(a) shows the simplest case. The geography defined by zipcode 46057 and census tract 18023950200 is
contained entirely within the Clinton Central Elementary School catchment area, so we assign that as
the sixth grade school to all students in this geography. Panel (b) illustrates the case that multiple non-
overlapping catchment areas overlay a single geography; 60 is covered by Clinton Prairie’s catchment
area, and 40 percent by Rossville Elementary. We assign students in this geography to Clinton Prairie,
the modal school, but because its covered share is less than 70 percent, we do not include this geography
in our main spillover analysis sample. Panel (c) shows a case of undercoverage; part of the geography
is not covered by any school catchment area. Covington Middle School covers 72 percent of the area,
so we assign Covington Middle school as the school, and include this geography in our main spillover
analysis sample. Panel (d) shows the final problematic case: the catchment areas of Brookside School
54 and Eleanor Skillen School 34 both overlay the entire geography. In this case the area is 200 percent
covered. The normalized coverage share is 50 percent (i.e. 100/200), below 70 percent, so we exclude this
geography from our main spillover analysis sample.10

D.3 Measurement error likely plays a limited role in our estimates
Our approach to imputing school assignment suffers from three sources of measurement error: first, we
impute public school assignment, but students may attend private school; second, a given address may
be eligible to attend multiple public schools; and third, we do not observe exact address, only census tract
and zip code. We argue that each of these sources is unlikely to be important in our application.

First, while we cannot observe private school attendance, private school attendance represents about
8 percent of K-12 enrollment in Indiana.11 Thus roughly 8 percent of our treatment and control group is
potentially miss-assigned. Even if all treatment and control students were miss-assigned, the attenuation
bias would be fairly small (16 percent). It is unlikely that all private school students are miss-assigned,
of course. Second, our approach excludes students eligible to attend multiple schools, since their modal
school will cover 50 percent of the normalized area.

Third, it turns out that our geography information is sufficiently rich to capture most of the variation
in school assignment, after imposing our sample restrictions. To show this, we first assign census blocks

9In our high-coverage sample, ties are impossible. In broader samples ties are possible because, for example, two schools
both cover 100 percent of an area. In those cases we break ties first by assigning students to the school with more sixth grade
enrollment, and then by assigning students to the school with the first NcES id.

10In fact this example is from Indianapolis Public Schools district, which has a school choice framework. Every student can
attend any school in district, so the total coverage share is much higher than 200 percent.

11Seehttps://www.in.gov/doe/about/news/indiana-k-12-school-enrollment-grows-for-2021-2022-school-year/.
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to both schools and census tracts and zip codes. Census blocks are sufficiently small that there is essen-
tially no ambiguity about school assignment outside of “school choice" districts where each location has
multiple options. We then compare the census block’s true school to the one our algorithm assigned.

Appendix Table D.1 shows the concordance between true school assignment and imputed assign-
ment, weighting by census-block population. Looking at all census blocks, we see that the true assigned
and imputed assigned school agree in 83 percent of cases, and the type agrees in 96 percent. The mean
absolute error in school-wide vaccination rate (August-September 2021) is 0.7 percentage points. Thus
without any sample restrictions the agreement rate is very high. In the remaining columns we impose
restrictions to improve the agreement rate. Limiting to high coverage schools brings the agreement rate
to 95 percent, and the type agreement rate to 98.5 percent (in column 5 we report the statistics for our
analysis sample). These restrictions limit the analysis sample to 62 percent of the population. We can
further improve the coverage by restricting the sample to geographies where there is essentially no ambi-
guity in treatment/control status among possible schools. Doing so reduces the coverage by a further 8
percent, so we opted not to.12 Thus more detailed address data would not improve our school assignment
substantially.

12The treatment status agreement rate is less than 100 percent because we allow for a slight amount of ambiguity; the most
common type must cover at least 99 percent of the geography’s area, not 100 percent.
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Figure D.1: Distribution of land mass covered by school catchment areas, across geographies
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Notes: Figure shows the frequency distribution, across areas, of the share of the area covered by a school catchment area.
Some areas can be doubly covered, leading to shares above 1. For readability, figure uses two bin widths: 0.001 in the vicinity
of integers, and 0.25 otherwise.
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Figure D.2: Cumulative distribution of modal school’s normalized coverage, across geographies

62.8% of geographics have modal school coverage ≥ 70%
41.1% of geographics have modal school coverage ≥ 99.9%
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Notes: Figure shows the cumulative distribution, across areas, of the share of the area covered by the modal school’s catchment
area (i.e. the school with the greatest coverage), normalizing by the total covered share if that share exceeds one.

Table D.1: Coarse geography does not lead to substantial measurement error

Sample Full No ambiguous ≥ 60% No ambiguity, ≥ 70% no ambiguity,
type coverage ≥ 60% coverage coverage ≥ 70% coverage

School agreement rate .8383 .8588 .9267 .9404 .9477 .9586
Type agreement rate .9591 .9988 .9801 .9999 .9851 .9999
Mean Absolute Error .0065 .0034 .004 .0023 .0031 .0018
Share of Population 1 .7455 .6792 .5781 .6189 .5389

Notes: Table shows concordance between census-block level school assignment and the assignment imputed from zip code-
census tract alone, for indicated samples. The first row reports the population-weighted fraction of census blocks where
the actual and imputed public school assignment match, and the second row reports the agreement rate between actual and
imputed school treatment status (treatment, control, neither) match. Rows 3 and 4 report the constant and slope from a
regression of vaccination rate in the imputed school on vaccination rate in the true school. The final row shows the share of
population included in the sample. The samples are restricted to zip-code census tract within which there is no substantial
ambiguity about treatment status, and/or where the modal school’s normalized coverage share exceeds the indicated threshold.
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Figure D.3: Examples of geography and school assignment

(a) Geography 100% covered, single catchment areas (b) Geography 100% covered, non-overlapping catch-
ment areas

(c) Geography not fully covered by catchment areas (d) Geography covered by overlapping catchment areas

Notes: Figure illustrates the process of assigning census tract-zip code geographies to school districts. We consider four cases
illustrating the ideal case (panel a) and the various ways things can go wrong. The top left of each panel shows the geography
in the state. In the rest of the panel, the lightly shaded area is school catchment area (with dashed boundary) and the heavily
shaded area is the intersection of the indicated zip code and census tract.
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E A quantitative model of vaccine externalities
This section presents and numerically analyzes an SIR-model with vaccination to understand whether in-
complete vaccine take-up could explain the near-zero spillovers we estimate. We have three results. First,
except for very high levels of infectiousness, prevalence among the unvaccinated is nearly linear in the
vaccination rate, up to the herd immunity threshold. The effect of additional vaccinations on the unvac-
cinated therefore is not very sensitive to baseline baccination rates except at high levels of infectiousness.
Our second result is that at high levels of infectiousness, a marginal vaccination provide little protection
to the unvaccinated, because an unvaccinated person is likely to become infected from another source.13

Taken together these results imply that when spillovers exist, they are likely large enough for us to
detect from a 20 percentage point increase in schoolmate vaccination rates. Our third result shows this
directly: at all levels of vaccination below herd immunity, the simulated effect of a 20 percentage point
increase in vaccination is much larger than what our confidence intervals rule out, except in the case of
high infectiousness, when spillovers are small.

We caution that this model is particularly simple and may not capture the dynamics of COVID-19.
The results here do not necessarily generalize to other disease models.

E.1 Model set-up
We consider the simple SIR model with uniform mixing and a share v of the population of size N is vac-
cinated. The vaccine is assumed to be 100 percent effective, and we model vaccinated people as removed
from the susceptible pool. Our set up is the discrete time analog of the model in Goodkin-Gold et al.
(2020), except we assume perfect effectiveness and abstract from the vaccine demand phase. Thus

N = S + I +R + vN.

The equations describing infection dynamics are

∆S = −βS · I/N
∆I = βS · I/N − γI

∆R = γI.

Here β is the transmission rate and γ is the recovery rate.
A key parameter is the reproductive number R, the number of new infections spawned by a single

infection. The basic reproductive number R0 is the value of R in a completely susceptible population,
so R0 = β/γ. When R < 1, infections do not replace themselves and so disease outbreaks die out.

Because the vaccinated and unvaccinated populations mix uniformly, a vaccination rate of v scales
down the susceptible population by (1 − v), and so reduce the reproductive number (1 − v). A large
enough vaccinated population ensures that R < 1; the so-called herd-immunity vaccination rate guar-
anteeing this condition is

v∗ = 1− 1/R0.

As we will see, this threshold plays an important role in the results.
13This intuition is from Goodkin-Gold et al. (2020), who develop it in a series of related results.

50



Simulation details Closed-form solutions for final infection rates and infection dynamics do not
exist, so we solve the model with forward simulation to obtain the final-period count of ever infected
individuals, R(T ). We simulate for T = 20000 time periods, starting with I(1) = 1 and R(1) = 0. In
each run we verify that the simulation converges in the sense that the number of infected people change
by less than 1/1000 over the last periods.

Parameterization The model parameters are N, β, γ and v. We fix N = 100, 00 and γ = 1/10.
We choose β so thatR0 ∈ 1.1, 1.5, 2, 3, 5; note that γ = .1, meaning a 10 day expected infection length.
For each β I vary the vaccination rate from 0 to 1 in increments of 0.01.

These parameters trace out a range of reasonable values forR0 in the context of COVID-19; 1.1 is lower
than estimates; 1.5 is the estimated R0 for the ancestral strain (also used in Goodkin-Gold et al. (2020)),
and 5 represents a very high estimate, possibly occurring with the latest strains, although it is unclear if
high transmission of the latest waves reflects immune escape or high R0. The scale of γ is not relevant
for R0, but γ = 1 has multiple advantages. First, high values of γ ensure that the epidemic concludes in
relatively few iterations. However, β must be less than 1 since it is a transmission probability. Choosing
γ = .1 means that β = .5 when R0 = 5.

Simulation output: For each value of v and R0 we calculate the fraction of the unvaccinated pop-
ulation that ever becomes. Since the vaccinated cannot be infected, this fraction is

pr(infected|unvaccinated; v,R0) = R(T ; v,R0)/(N · (1− v)).

Our empirical analysis of vaccine spillovers considers a shock that increases peer vaccination rate by roughly
20 percentage points. We therefore also calculate the implied impact of such a shock on the unvaccinated
infection rate:

∆pr(infected|unvacc; v,R0) = pr(infected|unvacc; v+ .2, R0)− pr(infected|unvacc; v,R0).

E.2 Model results
We begin by showing the fraction of the unvaccinated population that ever becomes infected, as a func-
tion of the vaccination rate, for variousR0, in Appendix Figure E.1. Several patterns are clear in the figure.
Most obviously, marginal vaccinations beyond the herd immunity threshold (the vertical lines) have only
very small impacts on the unvaccinated, because at the the herd immunity threshold and beyond, infec-
tions die out and nearly all unvaccinated would not become infected even absent greater vaccination.

More importantly, for low levels of infectiousness—R0 < 3—the relationship betweenPr(infected|
unvacc) and v is approximately linear, up to the herd immunity threshold. Thus the marginal benefit of
vaccinations is roughly constant in v; it does not depend on the starting level of vaccination. Estimates
of the impact of greater peer vaccination on own infections, if this model were true, would not be too
sensitive to baseline vaccination rate. For high levels of infection, the nonlinearity is stronger. However
it is also true at these high levels of infection, especially when R0 = 5, there is very little external benefit
of vaccines; even large increases in the vaccination rate do not produce large reductions in unvaccinated
incidence, except at very high levels of vaccination.

We show this more specifically in Appendix Figure E.2. The figure shows the simulated impact of a
20 percentage point increase in the vaccination rate on incidence among the unvaccinated, as a function
of the initial vaccination rate, for different levels of R0. While the effect size does vary with v, it is always
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large when R0 < 5. Indeed the lower bound of the confidence interval from our main estimates—
about -0.005 — easily lets us rule out any effect size in the figure, except when either (a) herd immunity
is reached, or (b) infectiousness is so high that the spillover is small for a wide range of initial vaccination
levels. Even in the case, however, the implied effect is on the order of a few percentage points, an order of
magnitude larger (in absolute value) than the lower bound of our confidence interval.
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Figure E.1: Infections among the unvaccinated fall with the vaccination rate, up to the herd immunity
threshold
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Notes: Figure shows the simulated infections per unvaccinated capita, over the course of a pandemic, as a function of the
vaccination rate, for various levels of infectiousness given by R0.
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Figure E.2: A 20 percentage point increase in the vaccination rate causes a large reduction in infections
among the unvaccinated, regardless of starting level
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Notes: Figure shows the change in the share of the unvaccinated that are ever infected, when the vaccination rate increases by
20 percentage points, from a given initial vaccination rate for various levels of infectiousness given by R0.
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F No confounding from school modality or mask mandates
Here we show that two key school mitigation policies—mask mandates and in-person instruction—do
not confound our estimates. We also show that our estimated effect sizes do not differ by the presence or
absence of mask mandates. Mask mandates were in effect for the entire state in the 2020/21 school year,
but they were at school districts’ discretion during the 2021-22 year. Our mask mandate data start with
Waldron (2022b), who collected data on school mask policies for most Indiana school districts through
September, 2021, by visiting district websites and monitoring Google alerts (Waldron, 2022a). We extend
the data through summer, 2022, by visiting each school districts’ website and checking for news releases
about COVID mitigation policies. We use archive.org to fill in missing gaps where possible. We focus
on mask mandates for students (as opposed to recommendations, or staff mandates). Our school modal-
ity data come from COVID-19 School Data Hub (2022), who report instruction modality by school and
week for the 2020-21 school year. We focus on in-person instruction as a measure of modality, and we
assume all schools are in person for the 2021-22 year.

To show that these mitigation policies do not confound our treatment effect estimates, we re-estimate
our main DID spillover models, but (a) putting the policy as the dependent variable, and (b) including
the policy as a covariate. We limit the sample to cases with non-missing policy information. The results
for mask mandates are in Appendix Table F.1, and for in-person instruction they are in Appendix Table
F.2. Neither policy changes differently for the treatment group, and adjusting for the policies makes no
difference to our main estimate. We further show in column (4) of Appendix Table F.1 that mask man-
dates do not mediate our effect; we include an interaction between mask mandate, post ,and treatment,
and find a statistically insignificant coefficient. Two-way interactions between mask mandate and post,
or between mask mandate and treat, are redundant, because mask mandate only varies in the post pe-
riod. We cannot study heterogeneous effects of vaccinations by instruction modality because instruction
modality does not vary across schools in the post period, so the coefficient would not be identified.
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Table F.1: Mask mandates neither confound not interact with the spillover effect

Outcome Mandate COVID-19 COVID-19 COVID-19
(1) (2) (3) (4)

PostXtreat 0.0187 0.0028 0.0028 0.0028
(0.0802) (0.0011) (0.0010) (0.0017)

Mask mandate in effect -0.0036 -0.0037
(0.0011) (0.0016)

mandate X post X treat 0.0001
(0.0021)

# Observations 114,365 114,365 114,365 114,365
# Students 22,873 22,873 22,873 22,873
# Schools 310 310 310 310

Notes: Table reports difference-in-differences estimates of the effect of vaccine eligible schoolmates on the indicated outcome.
Columns (3) and (4) regression adjust for differences in mask mandates, and column (4) allows the effect of vaccine-eligible
schoolmates to vary with mask mandates. The sample consists of monthly observations of sixth grade students with reliable
school assignment, in August-September (the dates for which mask mandate policy information exists). The pre-period is
2020 and the post-period 2021. The treatment group is students who go to school with older grades (who are vaccine eligible
in May 2021 and later the post-period) and the control group students who go to school with younger students (who are not
vaccine-eligible until November 2021). Robust standard errors, clustered on school, in parentheses.

Table F.2: In-person schooling does not confounds indirect effect

Outcome In-person COVID-19 COVID-19
(1) (2) (3)

PostXtreat 0.0412 0.0026 0.0027
(0.0807) (0.0012) (0.0011)

In person instruction -0.0026
(0.0006)

# Observations 230,615 230,615 230,615
# Students 46,123 46,123 46,123
# Schools 325 325 325

Notes: Table reports difference-in-differences estimates of the effect of vaccine eligible schoolmates on the indicated outcome.
Columns (3) regression adjusts for differences in in-person schooling. The sample consists of monthly observations of sixth
grade students with reliable school assignment, in August-December. The pre-period is 2020 and the post-period 2021. The
treatment group is students who go to school with older grades (who are vaccine eligible in May 2021 and later the post-period)
and the control group students who go to school with younger students (who are not vaccine-eligible until November 2021).
Robust standard errors, clustered on school, in parentheses.
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